MATH 7721, SPRING 2018

Homework #16, February 14

PROBLEMS

- 1. Verify that $\Psi(ZZ') = (\Psi Z)Z' + Z(\Psi Z')$ for any smooth vector fields w, u and tensor fields Z, Z' on a manifold, where $\Psi = \mathcal{L}_{[w,u]} \mathcal{L}_w \mathcal{L}_u \mathcal{L}_u \mathcal{L}_w$.
- **2.** Prove that $\mathfrak{h}(M)$, for any Kähler manifold (M,g), is actually a complex Lie algebra, by establishing complex-bilinearity of the Lie bracket in $\mathfrak{h}(M)$.
- 3. Show that, on a compact oriented Riemannian manifold whose Ricci tensor is negative-semidefinite at each point, $\operatorname{Ker} D$ consists precisely of all parallel vector fields. (Hint below)

Hint. In Problem 3, use formula (16.9) in the day-by-day list of topics.