MATH 7721, SPRING 2018

Homework #18, February 19

PROBLEMS

1. Given a connection ∇ with the curvature tensor R in a real/complex vector bundle \mathcal{E} over a manifold M, and a torsion-free connection in TM (also denoted by ∇), prove the Ricci identity

$$\Phi_{a,jk}^b - \Phi_{a,kj}^b = R_{jkc}{}^b \Phi_a^c - R_{jka}{}^c \Phi_c^b$$

for any smooth section Φ of $\text{Hom}(\mathcal{E},\mathcal{E})$ or, equivalently,

$$[\nabla_{w}(\nabla \Phi)]v - [\nabla_{v}(\nabla \Phi)]w = [R(v, w), \Phi],$$

where v, w are any smooth vector fields and [,] on the right-hand side is the commutator of bundle morphisms $\mathcal{E} \to \mathcal{E}$, while [...]v and [...]w on the left-hand side are the images of v and w under bundle morphisms $TM \to \operatorname{Hom}(\mathcal{E}, \mathcal{E})$. (Hint below)

- 2. Use Problem 1 to conclude that $w_{j,k}^{\ jk}=w_{j,k}^{\ kj}$ for any smooth vector field w on a Riemannian manifold.
- **3.** Generalize Problem 1 to the case of two real/complex vector bundles $\mathcal{E}, \mathcal{E}'$ over a manifold M, both endowed with connections, and any smooth section Φ of $\operatorname{Hom}(\mathcal{E}, \mathcal{E}')$.

Hint. In Problem 1, note that, with $u = \nabla_w v$,

$$[\nabla_{u}(\nabla \Phi)]v = \nabla_{u}\nabla_{v}\Phi - \nabla_{u}\Phi$$

and so, for any smooth section ψ of \mathcal{E} ,

$$\{ [\nabla_w (\nabla \Phi)] v \} \psi = \nabla_w [(\nabla_v \Phi) \psi] - (\nabla_v \Phi) \nabla_w \psi - \nabla_u (\Phi \psi) + \Phi \nabla_u \psi,$$

while

$$\nabla_{w}[(\nabla_{v}\Phi)\psi] - (\nabla_{v}\Phi)\nabla_{w}\psi = \nabla_{w}[\nabla_{v}(\Phi\psi) - \Phi\nabla_{v}\psi] - \nabla_{v}(\Phi\nabla_{w}\psi) + \Phi\nabla_{v}\nabla_{w}\psi.$$

Since $R(v,w)\psi = \nabla_w \nabla_v \psi - \nabla_v \nabla_w \psi + \nabla_{[v,w]} \psi$, the difference $\{[\nabla_w (\nabla \Phi)]v\}\psi - \{[\nabla_v (\nabla \Phi)]w\}\psi$ thus equals $R(v,w)(\Phi\psi) - \Phi[R(v,w)\psi]$.