MATH 7721, SPRING 2018

Homework #21, February 26

PROBLEMS

- 1. Given a finite-dimensional complex vector space V with a Hermitian inner product $\langle \, , \rangle_{\mathbf{C}}$, and a complex-linear endomorphism A of V, show that the $\langle \, , \rangle_{\mathbf{C}}$ adjoint of A coincides with its $\langle \, , \rangle_{\mathbf{C}}$ adjoint, for the Euclidean inner product $\langle \, , \rangle_{\mathbf{C}}$ in the underlying real vector space of V. (Hint below)
- **2.** For $V, A, \langle , \rangle_{\mathbf{C}}$ and \langle , \rangle as in Problem 1, verify that $\langle , \rangle_{\mathbf{C}}$ -self-adjointness (or, $\langle , \rangle_{\mathbf{C}}$ -skew-adjointness) of A is equivalent to its \langle , \rangle -self-adjointness (or, respectively, \langle , \rangle -skew-adjointness).
- **3.** Prove that $\dim_{\mathbf{R}}\mathfrak{so}(V) = n(n-1)/2$ and $\dim_{\mathbf{C}}\mathfrak{u}(V) = m^2$ for the Lie algebra $\mathfrak{so}(V)$ (or, $\mathfrak{u}(V)$) of all real-linear (or, complex-linear) skew-adjoint endomorphisms of an n-dimensional real (or, m-dimensional complex) vector space V.

Hint. In Problem 1, apply Re to the relation $\langle Av, w \rangle_{\mathbf{C}} = \langle v, Bw \rangle_{\mathbf{C}}$, uniquely characterizing the $\langle , \rangle_{\mathbf{C}}$ -adjoint B of A.