MATH 7721, SPRING 2018

Homework #28, March 21

PROBLEMS

- 1. Verify that a real-linear operator from a real vector space $\mathcal V$ into a complex vector space $\mathcal W$ has a unique complex-linear extension $\mathcal V_{\mathbf C} \to \mathcal W$, where $\mathcal V_{\mathbf C}$ denotes the complexification of $\mathcal V$.
- **2.** Show that, if ψ is a smooth complex-valued function on a compact Kähler manifold and its complex gradient

$$\partial \psi = \nabla \mathrm{Re} \psi + J \nabla \mathrm{Im} \psi$$

vanishes identically, then ψ must be constant. (Hint below.)

- **3.** Prove that a holomorphic vector field w on a compact Kähler manifold is a Killing field if and only if its divergence δw vanishes identically. (Hint below.)
- **Hint.** In Problem 2, use integration by parts and Problem 1 in Homework #23 to conclude that $(\nabla \phi, J \nabla \chi) = 0$ for smooth real-valued functions ϕ, χ , and so

$$\|\partial\psi\|^2 = \|\nabla \operatorname{Re}\psi\|^2 + \|J\nabla \operatorname{Im}\psi\|^2,$$

- (,) being the L^2 inner product and the L^2 norm.
- **Hint.** Problem 3: by (19.6) in the day-by-day list of topics, $\zeta = (\mathcal{L}_w g)J$ is an exact skew-Hermitian 2-form, while, in view of (15.3), $\delta w = 0$ if and only if, for this ζ , the right-hand side of (12.1) equals 0.