## **MATH 7721, SPRING 2018**

## Homework #31, March 28

## **PROBLEMS**

- 1. Prove (31.2) in the day-by-day list of topics. (Hint below.)
- 2. Verify (31.5) in the day-by-day list of topics. (Hint below.)
- **3.** Establish a generalized version of Futaki's result (31.5) in the day-by-day list of topics: the same conclusion, while the assumption, instead of (31.3), is just the inequality

$$(1) -2\zeta J \ge 2\lambda g,$$

that is, positive semidefiniteness of  $-2\zeta J - 2\lambda g$  at every point.

**Hint.** In Problem 1, use the coordinate form

(2) 
$$R_{jk}v^k = v^k_{,jk} - v^k_{,kj}$$

of the Bochner identity, that is, formula (16.2) in the day-by-day list of topics. If one multiplies (2) by  $v^j e^{-f}$  and integrates by parts, the right-hand side yields four terms, namely, the integrals against  $e^{-f}dg$  of

(3) 
$$-v^{k}_{,j}v^{j}_{,k}, \quad v^{k}_{,j}v^{j}f_{,k}, \quad v^{k}_{,k}v^{j}_{,j}, \quad -v^{k}_{,k}v^{j}f_{,j},$$

which add up to the integral against  $e^{-f}dg$  of

(4) 
$$-\operatorname{tr}(\nabla v)^{2} + v^{k}_{,j}v^{j}f_{,k} + (\delta v)^{2} - (\delta v)d_{v}f.$$

Integrating by parts the second term in (4), multiplied by  $e^{-f}$ , we obtain the integral against  $e^{-f}dg$  of

$$(5) \qquad -v^k v^j{}_{,j} f_{,k} - v^k v^j f_{,kj} + v^k v^j f_{,k} f_{,j} = -(\delta v) \, d_v f - (\nabla d f) (v,v) + (d_v f)^2.$$

Now (31.2) easily follows if one replaces the second term in (4) with the right-hand side of (5).

**Hint.** In Problem 2, formula (30.2) in the day-by-day list of topics gives  $A^* = A$  in (31.5), so that  $|A|^2 = \operatorname{tr} A^2 = \operatorname{tr} [J, B]^2$  equals the left-hand side.