MATH 7721, SPRING 2018 ## Homework #32, March 30 ## **PROBLEMS** 1. For any Killing vector field on a Riemannian manifold (M, g) and any smooth function $f: M \to \mathbf{R}$, verify that $$\nabla(d_w f) = [w, \nabla f]$$ and $d_w \Delta f = \Delta(d_w f)$. In other words, the gradient ∇ and Laplacian Δ both commute with the Lie derivative \mathcal{L}_w , that is, $$\nabla(\mathcal{L}_w f) = \mathcal{L}_w \nabla f$$ and $\mathcal{L}_w \Delta f = \Delta(\mathcal{L}_w f)$. - **2.** Let w be a holomorphic Killing vector field on a Kähler manifold (M, g). Show that the Lie derivative \mathcal{L}_w commutes with both the complex gradient operator ∂ and with the operator Θ defined by formula (28.2) in the day-by-day list of topics (where, in the latter case, M is assumed compact). - **3.** Given a compact gradient Kähler-Ricci soliton (M, g), with $\nabla df + \mathbf{r} = \lambda g$, where f is a smooth function and $\lambda \in \mathbf{R}$, prove that, setting $u = \nabla f$, one has $\tau \geq -2\lambda$ for every eigenvalue τ of $\operatorname{Ad} u : \mathfrak{h}(M) \to \mathfrak{h}(M)$. (Hint below.) **Hint.** In Problem 3, use the fact that $\operatorname{Ad} u:\mathfrak{h}(M)\to\mathfrak{h}(M)$ corresponds, under the complex-linear isomorphism ∂ (see (28.4) in the day-by-day list of topics) to the operator (32.2), in which $-\Delta+d_u$ is $(\ ,\)_f$ -nonnegative, as it equals $\nabla_f^*\nabla$, cf. (30.4) and (23.2).