MATH 7721, SPRING 2018

Homework #33, April 2

PROBLEMS

- **1.** Let $f: M \to \mathbf{R}$ be a smooth function on a Kähler manifold (M, g). Show that the following three conditions are equivalent:
 - (i) the gradient ∇f is holomorphic,
 - (ii) $J\nabla f$ is a Killing field,
 - (iii) the Hessian ∇df is Hermitian.

(Hint below.)

2. For a smooth function $f: M \to \mathbf{R}$ on a Kähler manifold (M, g), let

$$i\partial \overline{\partial} f + \rho = \lambda \Omega$$

with a constant λ . Prove that, if $u = \nabla f$ is holomorphic (or, equivalently, Ju is a Killing field, cf. Problem 1), then

$$\nabla df + \mathbf{r} = \lambda g,$$

and so (M, q) is a gradient Kähler-Ricci soliton. (Hint below.)

3. Given finite-dimensional complex vector spaces V,W and a holomorphic mapping $F:U\to W$ defined on an open subset U of V, verify that the differential $dF:U\to \operatorname{Hom}(V,W)$ is holomorphic. Conclude that, for every $v\in V$, the directional derivative $d_vF:U\to W$ is holomorphic. (Hint below.)

Hint. In Problem 1, let $u = \nabla f$ and $B = \nabla u$, so that $B^* = B$ and $\nabla(Ju) = JB$. Condition (i) amounts to JB = BJ, and so it implies that $[\nabla(Ju)]^* = (JB)^* = (BJ)^* = J^*B^* = -JB = -[\nabla(Ju)]^*$, which is nothing else than (ii). Let us now assume (ii): $(JB)^* = -JB$. Thus, $JB = -(JB)^* = -B^*J^* = BJ$, that is, (i) follows. Finally, the bundle morphism $B = \nabla u : TM \to TM$ corresponds via index raising to ∇df , condition (iii), which reads $(\nabla df)J = J(\nabla df)$, is equivalent to JB = BJ, that is, (i).

Hint.