MATH 7721, SPRING 2018

Homework #8, January 26

PROBLEMS

- 1. Given a compact oriented n-dimensional manifold M, verify that integration over M is a well-defined linear functional $H^n(M, \mathbf{R}) \to \mathbf{R}$. In other words, the integral over M of a smooth differential n-form μ depends only on its cohomology class $[\mu] \in H^n(M, \mathbf{R})$.
- **2.** A differential n-form μ on an oriented n-dimensional manifold M is said to be positive (or, negative, nonpositive, nonnegative) if so is $\mu_x(v_1,\ldots,v_n)$ for any $x\in M$ and some/any positive-oriented basis v_1,\ldots,v_n of T_xM . Observe that, on a compact manifold M, one then has $\int_M \mu>0$ whenever μ is also continuous. Show that, in the case where n=2 and the orientation is induced by an almost-complex structure J on M, positivity of a smooth differential 2-form on M is equivalent to its being the Kähler form of some Kähler metric for J.
- 3. For oriented surfaces Σ_1,\ldots,Σ_m and the product $M=\Sigma_1\times\ldots\times\Sigma_m$ endowed with the direct-sum orientation (cf. Problem 2 in Homework #1), prove that the differential 2m-form $\mu=\zeta_1\wedge\ldots\wedge\zeta_m$ on M is positive if each ζ_j , for $j=1,\ldots,m$, is the pullback of a positive smooth differential 2-form on Σ_j under the jth-factor projection mapping $M\to\Sigma_j$. (Hint below)
- 4. Show that $\int_M \mu < 0$ for the compact almost-complex manifold M obtained as the product $\Sigma_1 \times \ldots \times \Sigma_m$ of closed almost-complex surfaces, where $\mu = [c_1(M)]^{\cup m}$ and, for some odd integer k, the first Chern classes of k factor surfaces are negative, and those of the remaining m-k are positive. Conclude that this almost-complex manifold M carries no Kähler-Einstein metric. (Hint below)
- **Hint.** In Problem 3, use the easily-verified fact that a differential n-form μ on an oriented n-dimensional manifold M is positive if and only if at each point x one has $\mu_x = \xi^1 \wedge \ldots \wedge \xi^n$ for some basis ξ^1, \ldots, ξ^n of T_x^*M , dual to a positive-oriented basis v_1, \ldots, v_n of T_xM .
- **Hint.** In Problem 4, note that $c_1(M) = \sum_j c_1(\mathcal{E}_j)$ (cf. Problem 2 in Homework #5), where \mathcal{E}_j , for $j = 1, \ldots, m$, is the pullback of $T\Sigma_j$ under the jth-factor projection mapping $M \to \Sigma_j$. As $[c_1(\mathcal{E}_j)] \cup [c_1(\mathcal{E}_j)] = 0$ for dimensional reasons, this gives $[c_1(M)]^{\cup m} = m![c_1(\mathcal{E}_1)] \cup \ldots \cup [c_1(\mathcal{E}_m)]$, and one can apply Problem 3.