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ANDRZEJ DERDZINSKI

1. Preliminaries

Let (M, g) be a Riemannian manifold of dimension n. We always assume that
M is connected and all functions, vector and tensor fields under considerations
are C∞ differentiable. The symbols ∇, R, r, s denote the Levi-Civita connection,
curvature tensor, Ricci tensor and scalar curvature of g. Thus,

(1.1) R(u, v)w = ∇v∇uw −∇u∇vw +∇[u,v]w for vector fields u, v, w

and r(u,w) = tr [v 7→ R(u, v)w] for vectors u, v, w ∈ TxM at any point x ∈ M .
Given vector fields u, v, we denote by R(u, v) the vector-bundle morphism

(1.2) R(u, v) : TM → TM , acting on vector fields by w 7→ R(u, v)w.

Remark 1.1. The metric g will often be used to identify twice-covariant tensors
a on M with bundle morphisms A : TM → TM by requiring that g(Av,w) =
a(v, w) for all vector fields v, w. Symmetry/skew-symmetry of a amounts to self-
adjointness/skew-adjointness of A. We denote by 〈 , 〉 the inner product of twice-
covariant tensors, so that 〈a, b〉 = 〈A,B〉 for A,B related to a, b as above, with
〈A,B〉 = trAB∗, where A∗ is the (pointwise) adjoint of A. The symbols | | and
trg will stand for the corresponding norm and the g-trace. Thus, trga = 〈g, a〉 and
s = 〈g, r〉 = trgr.

Remark 1.2. The curvature tensor of (M, g) gives rise to the bundle morphism

R̂ : [T ∗M ]∧2 → [T ∗M ]∧2, known as the curvature operator acting on exterior 2-

forms ω, and uniquely characterized by [R̂(ξ ∧ η)](w,w′) = g(R(u, v)w,w′) for

x ∈ M , u, v, w,w′ ∈ TxM and ξ = ıug, η = ıvg. In local coordinates, 2(R̂ζ)jk =
ζ lmRjklm. Our convention about ξ ∧ η is

(1.3) (ξ ∧ η)(w,w′) = ξ(w)η(w′) − η(w)ξ(w′).

We let £w stand for the Lie derivative in the direction of a vector field w on
M . Thus, £wf for a function f coincides with the directional derivative dwf .
Given a twice-covariant symmetric tensor a, the usual expression (£wa)(u, v) =
dw[a(u, v)] − a([w, u], v) − a(u, [w, v]) for vector fields u, v can be rewritten as
(£wa)(u, v) = (∇wa)(u, v) + a(∇uw, v) + a(u,∇vw), that is,

(1.4) £wa = ∇wa + a∇w + (∇w)∗a ,

the two multiplications by a on the right-hand side being the compositions with
A that corresponds to a as in Remark 1.1. Also, with ∇f denoting the g-gradient
of a function f ,

(1.5) a) £wg = ∇w + (∇w)∗, b) £wg = 2∇df if w = ∇f.
(In fact, (a) follows from (1.4), and implies (b).) Here ∇w is treated as a vector-
bundle morphism TM → TM sending any vector (or vector field) v to ∇vw, while
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(∇w)∗ : TM → TM stands for its (pointwise) adjoint, and a = £wg is identified
with A = ∇w+(∇w)∗ as in Remark 1.1. For a vector field w and a twice-covariant
symmetric tensor a, we have

(1.6) i) δw = tr∇w, ii) 2δıwa = 2ıwδa + 〈a,£wg〉, iii) 〈g,£wg〉 = 2δw.

Here (i) defines the divergence operator δ, (iii) is obvious from (ii) (or (1.5.a)), and
(ii) follows from (1.5.a) via the local-coordinate calculation 2(wjajk),k = 2wjajk

,k+
(wj,k + wk,j)ajk. Next, for a vector field w and a function f ,

(1.7) a) dwf = δ(fw) − fδw, where b) dwf = ıwdf = g(w,∇f).

We can also apply δ to vector-bundle morphisms A : TM → TM , such as ∇w,
resulting in the 1-form δA that sends any vector field v to the function

(1.8) (δA)v = δ(Av) − tr (A∇v) ,

the “product” of A and ∇v being the composite. We then further extend δ to
twice-covariant symmetric tensors a by setting δa = δA, where A corresponding
to a as in Remark 1.1. Given such a (an example of which is the Ricci tensor r),
and a vector field v, we define the 1-form ıva by the usual formula ıva = a(v, · ).
Thus, v 7→ ıvg is the “index-lowering” isomorphism TM → T ∗M . The relations

(1.9) i) ıvg = df if v = ∇f, ii) 2ıva = dQ if v = ∇f, Q = |v |2 and a = ∇df ,
valid for any function f : M → R, follow since dwf = g(w, v) for all vectors w,
while 2f ,jf,jk = [f ,jf,j ],k in local coordinates. The divergence δξ of a 1-form ξ
is given by δξ = δv for the vector field v with ξ = ıvg. Now δ may be applied
twice in a row to a bundle morphism A : TM → TM such as ∇w or (∇w)∗. In
addition, δξ has an obvious generalization to once-contravariant tensor fields on
(M, g), with any number of covariant arguments, and

(1.10)
a) d∇w = −R( · , · )w , b) ıwr = δ∇w − dδw , ,
c) 2δr = ds , d) δR = −dr ,
e) 〈r,£wg〉 = 2δıwr − dws , f) δδ∇w = δδ(∇w)∗

for any vector field w. Equalities (1.10.a) – (1.10.d) have the local-coordinate forms

(1.11)
a) wj ,kl − wj ,lk = Rkls

jws , b) Rklw
k = wk,lk − wk,kl ,

c) 2Rj
k
,k = sj d) Rjkl

s
,s = Rjl,k − Rkl,j .

The first three of them are known as the Ricci identity, the Bochner (or or Weit-
zenböck) formula, and the Bianchi identity for the Ricci tensor. To justify (1.10),
note that (1.10.a) is, essentially, the definition of the curvature tensor R, (1.10.b),
(1.10.d) and (1.10.c) are immediate if one applies a contraction to (1.10.a), the sec-
ond Bianchi identity for R and, respectively, (1.10.d), while (1.10.e) follows from
(1.6.ii) and (1.10.c). Finally, (1.10.f) is obvious since δ2 = 0 for the divergence
operator δ acting on differential forms; namely, being skew-adjoint, ∇w − (∇w)∗

corresponds, as in Remark 1.1, to a 2-form. Here is a direct local-coordinate ver-
ification of (1.10.f): δδ∇w − δδ(∇w)∗ = wj,kj

k − wj,k
k
j = 0, immediate from

(1.11.a) and symmetry of the Ricci tensor.
For functions f : M → R, (1.10.b) gives

(1.12) ıvr = δa − dY if v = ∇f, a = ∇df and Y = ∆f.

The symbol ∆ will also stand for the ‘rough Laplacian’ acting on arbitrary ten-
sors A, so that ∆A is obtained from the second covariant derivative of A by
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g-contraction applied to the differentiation arguments. Thus, for a function f we
have ∆f = δξ, with the 1-form ξ = df , while, for any vector field w,

(1.13) i) ∆f = δ∇f = trg∇df = 〈g,∇df〉, ii) ∆ıwg = δ(∇w)∗.

Relation (1.13.ii) is easily verified in local coordinates, using (1.4) and the Ricci
identity (1.11.a).

We denote by dg and V =
∫
M

dg ∈ (0,∞] the volume element of g and the
total volume of M relative to g. If M is compact, fmax and fmin stand for the
extrema of a function f : M → R, while favg = V−1

∫
M
f dg is its average value.

We will repeatedly use the divergence theorem:

(1.14)
∫
M
δw dg = 0 for any compactly supported vector field w.

Given a function f : M → R on a compact Riemannian manifold (M, g),

(1.15) favg = 0 if and only if f = ∆φ for some φ : M → R.

Recall that a function is, by definition, C∞-differentiable.
The ‘if’ part of (1.15) is obvious from (1.13.i) and (1.14). The ‘only if’ claim in

(1.15) is one of the very few facts from analysis that are used in this exposition.
From (1.14) and (1.7.a) it follows that, for a function f and a vector field w,

(1.16)
∫
M
fδw dg = −

∫
M
dwf dg if M is compact.

For instance, given a function f on a compact Riemannian manifold (M, g),

(1.17)
∫
M
duf dg = 0 if u is a Killing field,

since δu = 0. If w = ∇φ is the gradient of a function φ, (1.16) becomes

(1.18)
∫
M
f∆φdg = −

∫
M
g(∇f,∇φ) dg =

∫
M
φ∆f dg if M is compact,

which, applied to φ = f , shows that

(1.19)
a)

∫
M
f∆f dg = −

∫
M
|∇f |2dg if M is compact, and so

b) a function f : M → R is constant if M is compact and ∆f ≥ 0.

(Namely, as
∫
M
∆f dg = 0 by (1.14), the inequality ∆f ≥ 0 yields ∆f = 0.)

Another consequence of (1.14) is Bochner’s integral formula

(1.20)
∫
M

r(w,w) dg =
∫
M

(δw)2dg −
∫
M

tr (∇w)2dg,

valid for all compactly supported vector fields w on a Riemannian manifold (M, g)
(and easily derived from (1.11.b)). An important special case of (1.20) arises when
w = ∇ϕ is the gradient of a function:

(1.21)
∫
M

r(∇f,∇f) dg =
∫
M

(∆f)2dg −
∫
M
|∇df |2dg.

In the case of oriented manifolds, (1.14) may be restated as the Stokes formula
(which we need only in Appendix H): on an oriented n-dimensional manifold M ,

(1.22)
∫
M
dη = 0 for any compactly supported (n− 1) form η.

In fact, as M is oriented, we may treat the volume element dg of any fixed metric
g as a positive differential n-form, and then dη = (δw) dg for the unique vector
field w corresponding to η under the Hodge-star isomorphism TM → [T ∗M ]∧(n−1)
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(in the sense that η = ıw dg). The exterior derivative of a 1-form ξ or 2-form ζ
acts on vector fields u, v, w by

(1.23)
a) (dξ)(u, v) = du[ξ(v)] − dv[ξ(u)] − ξ([u, v]) ,
b) (dξ)(u, v) = [∇uξ](v) − [∇vξ](u) ,
c) (dζ)(u, v, w) = [∇uζ](v, w) + [∇vζ](w, u) + [∇wζ](u, v) .

Here (a) expresses our convention about dξ, while (b) and (c) easily follow from the
Leibniz rule, for any torsionfree connection ∇, such as the Levi-Civita connection
of a Riemannian metric.

Remark 1.3. Only one result from global analysis is used in this text. It is the
assertion that, if f is a C∞ function on a compact Riemannian manifold and∫
M
φdg = 0, then φ = ∆f for some C∞ function f .

2. The first Chern class

Given a manifold M and an integer r, let F rM be the vector space of all
differential r-forms on M (that is, C∞ sections of [T ∗M ]∧r). Thus, F rM is
infinite-dimensional if dimM = n ≥ 1 and 0 ≤ r ≤ n, while, by definition,
F rM = {0} if r < 0 or r > dimM . The spaces Z rM and B rM of closed or,
respectively, exact r-forms are defined to be, respectively, the kernel of the exterior
derivative d : F rM → Ωr+1M and the image of d : Ωr−1M → F rM . Consequently,
B rM ⊂ Z rM ⊂ F rM , as dd = 0. The quotient space H r(M,R) = Z rM/B rM is
known as the rth de Rham cohomology space of M . We denote by [ζ] ∈ H r(M,R)
the cohomology class of ζ ∈ Z rM (that is, its equivalence class in Z rM/B rM).

As an example, the (real) first Chern class c1(L) ∈ H2(M,R) of a complex line
bundle L over a manifold M is given by 2πc1(L) = [Im ζ ], where Im ζ is the
imaginary part of the curvature form ζ of any given connection ∇ in L. More
precisely, the curvature tensor of ∇ is defined as in (1.1), except that the vector
field w has to be replaced by a section ψ of L. Since the fibre dimension is 1,
for vector fields u, v on M and sections ψ of L, the section R(u, v)ψ equals the
product of ψ and a function ζ(u, v) : M → C, which gives rise to the (complex-
valued) curvature form ζ. A fixed section ψ of L without zeros, defined on an
open set U ⊂ M , leads to the complex-valued connection form Γ of ∇ (relative
to ψ), with ∇vψ = Γ (v)ψ for all vector fields v on U. Now, by (1.1) and (1.23.a),
ζ = −dΓ , and so ζ is closed (although not necessarily exact, as Γ is defined only
locally). Thus, Im ζ is closed as well. Finally, c1(L) does not depend on the choice
of the connection ∇. In fact, for another connection ∇′, with the corresponding
ζ ′ and Γ ′, we clearly have ζ ′− ζ = dΓ− dΓ ′= dξ, for the complex-valued 1-form
ξ on M such that ∇′ = ∇− ξ.

One also defines the first Chern class c1(E) of a complex vector bundle E of
any fibre dimension m ≥ 1 over a manifold M by setting c1(E) = c1(L) for the
line bundle L = E∧m, that is, the highest complex exterior power of E .

The exterior multiplication ∧ of differential forms preserves closedness, and de-
scends to a multiplication ∪ of cohomology classes, known as the cup product;
explicitly, [ζ] ∪ [η] = [ζ ∧ η]. This is clear from the Leibniz rule for ∧ and d.

3. Almost complex manifolds

An almost complex manifold is a manifold M carrying a fixed almost complex
structure (a C∞ vector-bundle morphism J : TM → TM with J2 = − Id). In
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other words, TM then is the underlying real bundle of a complex vector bundle,
in which J is the multiplication by i. This allows us to define the first Chern class
c1(M) ∈ H2(M,R) by c1(M) = c1(TM). (See Section 2.)

We always use the symbol J for the almost complex structure under consid-
eration, while the almost complex manifold in question is simply denoted by M
(rather than, for instance, (M,J)). The complex dimension of M is then defined
to be dimCM = n/2, where n stands for the ordinary (real) dimension of M .

The automorphism group GL(V ) ≈ GL(m,C) of any complex vector space
V with 1 ≤ dimV = m < ∞ is connected, since every automorphism of V is
represented in some basis by a triangular matrix, and that matrix can be joined
to Id by an obvious curve of nonsingular triangular matrices. The underlying real
space of V thus becomes naturally oriented, as it has a distinguished connected
set of real bases, namely, e1, ie1, . . . , em, iem, where e1, . . . , em runs through the
set of all complex bases of V (and the latter set is connected, being an orbit of the
connected group GL(V )). This has the following obvious consequence:

(3.1) Every almost complex manifold is canonically oriented.

Given an almost complex manifold M , we denote by i∂∂ the operator sending
every C∞ function f : M → R to the exact 2-form i∂∂f such that

(3.2) 2i∂∂f = −d [(df)J ].

Here (df)J is the 1-form equal, at any point x ∈ M , to the composite in which
Jx : TxM → TxM is followed by dfx : TxM → R. For our purposes, i∂∂ may be
treated as a single symbol, even though the notation reflects an actual factorization.

Remark 3.1. A twice-covariant tensor field a on an almost complex manifold M
gives rise to two more such tensor fields, b = aJ (or, b = Ja), characterized
by b(u, v) = a(Ju, v) (or, respectively, b(u, v) = −a(u, Jv)) for any vector fields
u, v on M . The tensor field a is said to be Hermitian (or, skew-Hermitian)
if it is symmetric (or, skew-symmetric) at every point and aJ = Ja, that is, if
a(Ju, Jv) = a(u, v) for all vector fields u, v on M . Clearly, a is Hermitian if and
only if aJ is skew-Hermitian, while (aJ)J = J(Ja) = −a.

Note that a twice-covariant skew-symmetric tensor field is nothing else than a
differential 2-form.

Remark 3.2. By a Hermitian metric on a given almost complex manifold M we
mean a Riemannian metric g on M which is a Hermitian tensor, that is, gJ = Jg.
This amounts to g-skew-adjointness of J at every point; equivalently, J is required
to act in every tangent space as a linear isometry.

If g is Hermitian, the operation a 7→ b = Ja (or, a 7→ b = aJ), defined in
Remark 3.1 for twice-covariant tensor fields a, coincides with the ordinary compo-
sition B = JA (or, B = AJ) of bundle morphisms TM → TM , provided that one
identifies a, b with A,B as in Remark 1.1. In the case where a is also symmetric
(or, skew-symmetric) at every point, its being Hermitian (or, skew-Hermitian) is
obviously equivalent to complex-linearity of the corresponding bundle morphism
A : TM → TM , which in turn means that A commutes with J .

Let M be an almost complex manifold. If a Riemannian metric g on M is
Hermitian, the formula Ω = gJ clearly defines a skew-symmetric twice-covariant
tensor field (that is, a differential 2-form), which is also skew-Hermitian. Moreover,

(3.3) Ω∧m = m! dg, where m = dimCM.
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(Since M is oriented according to (3.1), the volume element dg may be treated
as a positive differential 2m-form.) In fact, let x ∈ M and let a complex basis
e1, . . . , em of TxM be orthonormal relative to the Hermitian inner product with
real part gx. Now Ωx = ξ1 ∧ ξ2 + . . . + ξ2m−1 ∧ ξ2m for the real basis ξ1, . . . , ξ2m
of T ∗xM , dual to the gx-orthonormal real basis e1, Je1, . . . , em, Jem of TxM , which
one easily sees using (1.3) to evaluate both sides on any pair of vectors from the
basis e1, Je1, . . . , em, Jem. Thus, Ω∧mx = m! ξ1 ∧ . . . ∧ ξ2m, as required.

4. Kähler metrics

By a Kähler manifold we mean a Riemannian manifold (M, g) which is simul-
taneously an almost complex manifold, such that g is Hermitian (Remark 3.2) and
∇J = 0, where ∇ is the Levi-Civita connection of g.

The simplest example of a Kähler manifold (M, g) arises when a finite-dimen-
sional complex vector space V with a Hermitian inner product 〈 , 〉 is given: we
then set M = V , let J operate in each tangent space TxM via the ordinary
multiplication by i (with the standard identification TxV = V ), and choose g to be
the constant (translation-invariant) metric Re 〈 , 〉. Another example is provided by
any oriented 2-dimensional Riemannian manifold (M, g), with J that acts in each
tangent plane TxM as the positive rotation by the angle π/2. Further examples
are provided by locally symmetric Kähler manifolds, described below in Section 7.

Speaking of a Kähler manifold (M, g), we usually skip the word ‘almost’ and call
J the (underlying) complex structure of (M, g), while g is referred to as a Kähler
metric on the complex manifold M . See also the end of Section 7.

By the Ricci form of a Kähler manifold (M, g) one means the twice-covariant
tensor field ρ = rJ (cf. Remark 3.1), where r the Ricci tensor of g. We have

(4.1) a) trRJ [R(v,w)] =−2ρ(v,w), b) δ [J(∇w)∗] = ıwρ, c) R(Jv,Jw)=R(v,w),

for δ as in (1.8) and any vector fields v, w on M . In coordinates, (a) – (c) read
Rklp

qJpq = −2ρkl, Jpqwk,
q
p = ρlkw

l and JrkJ
s
l Rrsp

q = Rklp
q.

In fact, as ∇J = 0, the Levi-Civita connection ∇ is a connection in the complex
vector bundle TM , and so, for any vector fields u, v on M , the vector-bundle
morphism R(u, v) : TM → TM in (1.2) is complex-linear (commutes with J).
At every point, the commuting morphisms R(u, v) and J are skew-adjoint, and
so their composite is self-adjoint. Hence RqlspJ

p
k = RqlkpJ

p
s , which, contracted

against Jkr or gqs, gives (4.1.c) or, respectively, ρkl = Rpkl
qJpq . However, due

to the well-known symmetries of R and skew-adjointness of J , the expression
Rpkl

qJpq is skew-symmetric in k, l, so that, from the first Bianchi identity, 0 =

(Rkpl
q + Rkl

q
p + Rk

q
pl)J

p
q = −2Rpkl

qJpq − RklpqJpq , and (4.1.a) follows. Finally,

since J is skew-adjoint, 2Jpqwk,
q
p = Jpq (wk,

q
p−wk,pq) = JpqR

q
plkw

l = JpqRklp
qw l,

by the Ricci identity (1.11.a). Now (4.1.a) yields (4.1.b).
For any vector field v on a Kähler manifold (M, g), we have, with δ as in (1.6.i),

(4.2)
i) tr JAJA = (tr JA)2 − r(v, v) + δ [JAJv − (tr JA)Jv] and

ii) tr JAJA∗ = δ(JA∗Jv) − r(v, v) , where A = ∇v : TM → TM ,

A∗ being the (pointwise) adjoint of A. Namely, in local coordinates, tr JAJA =
Jpq v

q
,kJ

k
l v

l
,p = (Jpq v

q
,kJ

k
l v

l),p−Jpq vq,kpJkl v l. Next, (Jpq v
q
,kJ

k
l v

l),p = δ(JAJv) and,

by the Ricci identity (1.11.a), −Jpq vq,kpJkl v l = −Jpq vq,pkJkl v l + Jpq J
k
l Rpks

qvsv l,

while −Jpq vq,pkJkl v l = −(Jpq v
q
,pJ

k
l v

l),k + Jpq v
q
,pJ

k
l v

l
,k = −δ [(tr JA)Jv] + (trJA)2
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(as Jpq v
q
,p = tr JA). Also, by (4.1.c), Jpq J

k
l Rpks

qvsv l equals Rqls
qvsv l, that is,

− r(v, v). This proves (4.2.i). Finally, tr JAJA∗ = Jpq v
q
,kJ

k
l vp,

l = (Jpq v
qJkl vp,

l),k −
Jpq v

qJkl vp,
l
k, while (Jpq v

qJkl vp,
l),k = δ(JA∗Jv) and, by (4.1.b), −Jpq vqJkl vp, lk =

−Jpq vqρkpvk = ρ(Jv, v) = −r(v, v), which gives (4.2.ii).

Remark 4.1. If (M, g) is a Kähler manifold,

(i) the Ricci tensor r of (M, g) is Hermitian;
(ii) its Ricci form ρ = rJ is a closed differential 2-form;
(iii) as g is Hermitian, Ω = gJ is a skew-Hermitian 2-form on M , called the

Kähler form of (M, g). Being parallel, Ω is closed as well.

In fact, (i) amounts to skew-symmetry of ρ (obvious from (4.1.a)), while the rela-
tion dρ = 0, that is, ρsk,l + ρkl,s + ρls,k = 0 (cf. (1.23.c)), is immediate from the
coordinate version of (4.1.a) and the second Bianchi identity (since ∇J = 0).

For any function f : M → R on a Kähler manifold (M, g), we have

(4.3) i) 2i∂∂f = (∇df)J + J(∇df), ii) trg [(i∂∂f)J ] = −∆f

(notation of (1.13.i), (3.2) and Remark 3.1 for a = ∇df). Namely, (3.2) and (1.23.b)
give (i), which in turn implies (ii). Thus, by (1.19.b),

(4.4) a function f : M → R is constant if M is compact and i∂∂f = 0.

Lemma 4.2. Let an exact differential 2-form ζ on a compact Kähler manifold
(M, g) be skew-Hermitian in the sense that Jζ = ζJ , cf. Remark 3.1.

(a) There exists a C∞ function θ : M → R with ζ = i∂∂ θ.
(b) The function θ in (a) is unique up to an additive constant.
(c) Denoting by ‖ ‖ the L2 norm, both for functions and tensor fields on M ,

we have
√

2 ‖ζ‖ = ‖trg ζJ‖.
(d) If trg ζJ = 0, then ζ = 0.

Proof. We first prove (c). Let v be a vector field with ζ = dξ for the 1-form
ξ = ıvg, and let A = ∇v, so that, by (1.23.b), A−A∗ is the vector-bundle morphism
TM → TM corresponding to ζ as in Remark 1.1. We clearly have tr (A−A∗)A∗ =
− tr (A − A∗)A. Thus, ‖ζ‖2 = −

∫
M

tr (A − A∗)2dg = −2
∫
M

tr (A − A∗)Adg.
Since ζ is skew-Hermitian, [J,A − A∗] = 0, that is, A − A∗ = JA∗J − JAJ .
Thus, ‖ζ‖2 = 2

∫
M

tr JAJ(A −A∗) dg, and so (c) follows from (4.2) and (1.14), as
2 trJA = tr J(A −A∗) = trg ζJ due to skew-adjointness of J .

Next, (d) is obvious from (c). To prove (a), let us choose θ : M → R with
∆θ = − trg ζJ . (Such θ exists by (1.15), since, as we just saw, trg ζJ = 2 tr JA, so

that trg ζJ = 2Jpq v
q
,p = 2δ(Jv), and

∫
M

trg ζJ dg = 0.) Applying (d) to ζ− i∂∂ θ
rather than ζ, and noting that the premise of (d) is then satisfied in view of (4.3.ii),
we now see that ζ = i∂∂ θ. Finally, (b) is immediate from (4.4). �

5. Almost-Kähler manifolds

An almost-Kähler metric on an almost complex manifold M is any Hermitian
metric g on M (cf. Remark 3.2) for which the skew-Hermitian 2-form Ω = gJ
is closed. Such pairs (M, g) are referred to as almost-Kähler manifolds; obvious
examples are provided by Kähler manifolds (cf. Remark 4.1(iii)).
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Remark 5.1. If g is just a Hermitian metric, the differential 2-form Ω = gJ is
skew-Hermitian, but need not, in general, be parallel relative to the Levi-Civita
connection ∇, or even closed. The condition ∇Ω = 0 is necessary and sufficient
for a given Hermitian metric g to be a Kähler metric: it means the same as ∇J = 0,
since Ω = gJ and ∇g = 0.

One easily finds examples of non-Kähler, almost-Kähler metrics, also on compact
manifolds. On the other hand, as we will see below (Theorem 5.3), for an almost
complex manifold M on which a Kähler metric exists, all almost-Kähler metrics
on M are Kähler metrics. By Lemma 5.2, the same conclusion holds even if one
replaces the existence of a Kähler metric with the weaker requirement that J
be parallel relative to some torsionfree connection on M . Goldberg’s conjecture1

(stating that a compact almost-Kähler Einstein manifold is necessarily a Kähler
manifold) is still open2.

Lemma 5.2. Let torsionfree connections ∇, ∇̂ and a Hermitian tensor field h
on an almost complex manifold M satisfy the conditions ∇̂J = 0 and ∇h = 0.
Then, for the skew-Hermitian 2-form ζ = hJ and any vector field w on M , we
have 2∇wζ = ıwdζ + J(ıwdζ)J , in the notation of Remark 3.1.

Proof. Let v, w always stand for arbitrary vector fields on M . Denoting by B
the section of Hom([TM ]�2, TM) with ∇̂ = ∇ − B, we have ∇̂w = ∇w − Bw,
and B sends v, w to a vector field Bvw = Bwv, its symmetry being due to the
fact that ∇̂,∇ are both torsionfree. As J is ∇̂-parallel, ∇wJ = [Bw, J ], where
[ , ] denotes the commutator of bundle morphisms TM → TM . In coordinates,

Bw,∇wJ, , ∇̂wh∇wζ and ∇̂wζ have the components (Bw)lk = wsBlsk, (∇wJ)lk =

wsJ lsk, (∇̂wh)kl = wsHskl, (∇wζ)kl = wsZskl, and (∇̂wζ)kl = wsẐskl, for some

functions Blpk, J
l
pk, Hpkl, Zpkl, Ẑpkl such that

(a) J lpk= JskB
l
ps−J lsBspk , (b) Brkl=Brlk , (c) Zpkl= Jspkhsl , (d) Ẑpkl= JskHpsl ,

(e) Hpkl = Bspkhsl +Bsplhks , (f) Zlpk = −Zlkp , (g) JskẐpls = −JskẐpsl = Hpkl ,

(h) (dζ)pkl = Zpkl + Zklp + Zlpk , (i) (dζ)pkl = Ẑpkl + Ẑklp + Ẑlpk .

In fact, (a) is the coordinate version of ∇wJ = [Bw, J ], (b) expresses symmetry of

B, the relation ζ = hJ along with ∇h = 0 (or, ∇̂J = 0) yields (c) (or, respectively,

(d)), while (e) follows since ∇h = 0 and ∇̂ = ∇+B, (f) is due to skew-symmetry
of ζ and ∇wζ, and (d) implies (g) as J2 = − Id. Finally, (h) (or, (i)) amounts to

(1.23.c) for ζ = ζ and the torsionfree connection ∇ (or, ∇̂).
We need to prove the equality 2∇wζ − ıwdζ = J(ıwdζ)J , equivalent, in view

of (h) and (i), to Zpkl − Zklp − Zlpk = −JrkJsl (Ẑprs + Ẑrsp + Ẑspr). (Note that
2Zpkl − (Zpkl + Zklp + Zlpk) = Zpkl − Zklp − Zlpk.) First, (f) and (c) give Zpkl −
Zklp−Zlpk = Zlkp−Zklp+Zpkl = (Jslk−Jskl)hsp+Jspkhsl. In view of (a), this equals

JrkB
s
lrhsp−Jrl Bskrhsp+JrkB

s
prhsl−JsrBrpkhsl (two other terms cancel each other by

(b)). Using (e) and (b) we can rewrite the last expression as JrkHrlp− Jrl Bskrhsp−
JsrB

r
pkhsl, which equals JrkHrlp−Jrl Bskrhsp +Jrl B

s
pkhrs (where Jsrhsl = −Jsl hsr as

Jsrhsl = ζrl, and the indices r, s have been switched). Applying (e) and (b) again,
we see that this coincides with JrkHrlp + Jrl (Hpkr −Hrkp).

1S. I. Goldberg, Integrability of almost Kaehler manifolds, Proc. A. M. S. 21 (1969), 96–100
2T. Oguro and K. Sekigawa, Notes on the Goldberg conjecture in dimension four, Complex,

contact and symmetric manifolds, 221–233, Progr. Math., 234, Birkhäuser, Boston, MA, 2005
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On the other hand, by (d) and (g), −JrkJsl (Ẑprs + Ẑrsp + Ẑspr) is equal to
JrkHrlp + Jrl (Hpkr −Hrkp) as well, which completes the proof. �

Suppose that (M, g) is an almost-Kähler manifold. As in the Kähler case, we call
Ω = gJ the Kähler form of (M, g). Being closed, Ω gives rise to a cohomology
class [Ω ] ∈ H2(M,R) (see Section 2) known as the Kähler cohomology class of
(M, g), or, briefly, its Kähler class.

Theorem 5.3. Let A be the set of all almost-Kähler metrics on a given almost
complex manifold M .

(i) A is a convex subset of the vector space of all Hermitian twice-covariant
C∞ tensor fields a on M such that the differential 2-form aJ is closed.

(ii) The set of all Kähler metrics on M is either empty, or coincides with A.

Proof. Assertion (i) is obvious since A is defined by imposing on a metric g the
linear equations gJ = Jg and d(gJ) = 0. To prove (ii), let us suppose that M
admits a Kähler metric. For an arbitrary almost-Kähler metric g on M , denoting
by ∇ and Ω the Levi-Civita connection and Kähler form of g, we have ∇Ω = 0
by Lemma 5.2, and so g is a Kähler metric (Remark 5.1), as required. �

For an almost-Kähler metric g on a compact almost complex manifold M ,

(5.1) its volume V =
∫
M

dg depends only on its Kähler class [Ω ] ∈H2(M,R).

In fact, the oriented integral
∫
M
σ of a differential 2m-form σ, for m = dimCM ,

depends only on the cohomology class [σ] (as
∫
M
σ = 0 when σ is exact, by

Stokes’s formula (1.22)). That V =
∫
M

dg depends on g only through [Ω ] is clear
from (3.3), since [Ω∧m] = [Ω ]∪m, where ∪ is the cup product (Section 2).

Also, [Ω ] 6= 0 in H2(M,R), for the Kähler form Ω of any compact almost-
Kähler manifold (M, g). Namely, if we had Ω = dξ for some 1-form ξ, it would
follow that Ω∧m = d [ξ ∧Ω∧(m−1)], and so V = 0 by (3.3) and (1.22).

Given a compact almost complex manifold M , one calls an element of H2(M,R)
positive (or negative) if it equals [Ω ] (or, −[Ω ]) for the Kähler form Ω of some
almost-Kähler metric on M . A cohomology class in H2(M,R) cannot be simul-
taneously positive and zero, or zero and negative, or positive and negative: if it
were, a suitable difference would be both positive and zero, giving [Ω ] = 0 for the
Kähler form Ω of some almost-Kähler metric, contrary to the last paragraph.

6. Comparing Kähler metrics

For any C1 curve t 7→ F = F (t) ∈ GL(V ) of linear automorphisms of a finite-
dimensional real/complex vector space V , setting ( )˙ = d/dt we have

(6.1) (detF )˙ = (detF ) tr (F−1Ḟ ).

In fact, shifting the variable, we see that it suffices to establish (6.1) at t = 0. When
F (0) = Id, (6.1) at t = 0 means that tr the differential of the homomorphism
det at Id ∈ GL(V ), and so (6.1) follows since 1 + (trA) t is the first-order part
of det(Id + tA) treated as a polynomial in t. The general case is reduced to the
above by replacing the curve t 7→ F (t) with t 7→ [F (0)]−1F (t).

Suppose that g and ĝ are Riemannian metrics on a manifold M of any (real)
dimension n and γ : M → (0,∞) is the ratio of their volume elements, in the
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sense that dĝ = γ dg. Then, with trg denoting the g-trace, as in Remark 1.1,

(6.2) a) detg ĝ = γ 2, b) trg ĝ ≥ nγ 2/n.

Here detg ĝ : M → R assigns to each x ∈ M the determinant, at x, of the vec-
tor-bundle morphism A : TM → TM corresponding to ĝ (via the fixed metric
g) as in Remark 1.1. Namely, (6.2.a) follows since, in local coordinates, detA =
(det g)−1 det ĝ , while the component function of dg is (det g)1/2, and similarly for
ĝ . (By det g we mean the coordinate-dependent function det[gjk].) Next, for A
as above, trg ĝ = trA. As the eigenvalues of A at any given point x ∈ M are
positive, (6.2.b) is obvious from (6.2.a) and the inequality between the arithmetic
and geometric means, that is, (??) with k = n and c1 = . . . = cn = 1/n.

Remark 6.1. Let ρ be the Ricci form of a Kähler manifold (M, g).

(i) The curvature form ζ (see Section 2) of the connection ∇ which the Levi-
Civita connection of g, also denoted by ∇, induces in the complex exterior
power [TM ]∧m, for m = dimCM , is given by ζ = iρ.

(ii) In cohomology, [ρ] = 2πc1(M) ∈ H2(M,R), cf. Section 2.
(iii) The Ricci form ρ̂ of any other Kähler metric ĝ on the same underlying

complex manifold M is related to ρ by ρ̂ = ρ− i∂∂ log γ, where dĝ = γ dg,
that is, γ : M → (0,∞) is the ratio of the volume elements.

In fact, let the vector fields ea, a = 1, . . . ,m, trivialize the complex vector bundle
TM over an open set U ⊂M , and let Γ ba be the corresponding (complex-valued)
connection forms on U, with ∇vea = Γ ca (v)ec. (Here and below repeated indices
are summed over, and v, w are arbitrary vector fields on U.) Thus, by (1.1),
R(v, w)ea = Rc

a(v, w)ec, where Rb
a = −dΓ ba +Γ ca ∧Γ bc , with d and ∧ as in (1.23.a)

and (1.3). On the other hand, iρ(v, w) equals the complex trace of the complex-
linear bundle morphism R(v, w) : TM → TM defined as in (1.2). To see this,
note that, at each point, R(v, w) is skew-adjoint relative to g, as a real operator,
and hence also relative to the Hermitian fibre metric gC in TM with Re gC = g.
Consequently, i trC[R(v, w)] is real and coincides with the complex trace of the
self-adjoint composite morphism J [R(v, w)] = [R(v, w)]J , which equals 1/2 of its
real trace, and so i trC[R(v, w)] = −ρ(v, w) by (4.1.a).

In other words, ρ = idΓ aa on U, as iρ = Ra
a = −dΓ aa , with Γ ca ∧Γ ac = 0 due to

obvious pairwise cancellations. Now (i) and (ii) are immediate from the discussion
in the second paragraph of Section 2 applied to L = [TM ]∧m and ψ = e1∧ . . .∧em
(with the connection form Γ = Γ aa ).

The formulae G = [gC(ea, eb)] and D = detCG define functions on U valued
in m × m Hermitian matrices and, respectively, in positive real numbers. For
any vector field w on U we have dw logD = trC(G−1dwG), in view of (6.1) for
F = G treated as a function of the parameter t of any given integral curve of
w. As ∇gC = 0, the Leibniz rule gives dwhab = Γ ca (w)hcb + Γ cb (w)hca for the
entries hab = gC(ea, eb) of G, that is, dwG = TG+ (TG)∗, where ∗ stands for the
conjugate transpose, and T is the matrix-valued function with the entries Γ ba (w).
(In both Γ ba (w) and hab, the index a is the row number and b the column number.)
This gives dw logD = trC(G−1dwG) = trC[G−1TG + (G−1TG)∗ ] = 2 Re trCT =
2 ReΓ aa (w). Hence d logD = 2 ReΓ , where Γ = Γ aa denotes, as in the previous
paragraph, the connection form in [TM ]∧m with ρ = idΓ .

Let ĝC, ĥab, D̂, ∇̂, Γ̂ ba and Γ̂ be the analogous objects for another Kähler metric
ĝ on M (with the same vector fields ea on U), and let H : TM → TM be the
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complex-linear bundle morphism such that ĝC(v, w) = gC(Hv,w). For the matrix

Hb
a of functions U → C given by Hea = Hc

aec we thus have ĥab = Hc
ahcb, and

so D̂/D = detCH. Moreover, since H is, at each point, a self-adjoint positive
operator, detCH is real-valued and equals [detRH ]1/2. Finally, taking the real

part of the equality ĝC(v, w) = gC(Hv,w) we obtain ĝ(v, w) = g(Hv,w), and so,

by (6.2.a), [detRH ]1/2 = [detg ĝ ]1/2 = γ. Consequently, D̂/D = γ.
The equalities ρ = idΓ , d logD = 2 ReΓ and their analogues for ĝ now give

d log γ = 2 Re (Γ̂ − Γ ) and ρ − ρ̂ = id(Γ − Γ̂ ) = d [i(Γ − Γ̂ )]. However, Γ − Γ̂ is,

at every point x, complex-linear as a mapping TxM → C. (In fact, so is Γ ba − Γ̂ ba
for each pair of indices a, b, since ∇̂vw−∇vw depends on v, w symmetrically and
complex-bilinearly: symmetry follows as both connections are torsionfree, while C-
linearity in v is immediate from symmetry and C-linearity in w, the latter being
due to the relations ∇J = ∇̂J = 0.) Therefore, ρ − ρ̂ = d [(Γ − Γ̂ )J ]. Since ρ and

ρ̂ are real-valued, this equals dRe [(Γ − Γ̂ )J ] = −d [(d log γ)J ]/2 = i∂∂ log γ (see
(3.2)), which proves (iii).

The next result is due to Calabi3. The proof of assertion (a) given here comes
from Yau4, p. 375. See also Bérard Bergery’s exposition5.

Theorem 6.2. Let g, ĝ be two Kähler metrics on a compact complex manifold
M , with the Ricci tensors r and r̂, and the Kähler classes [Ω ], [Ω̂ ] ∈ H2(M,R).

(a) If r = r̂ and [Ω ] = [Ω̂ ], then g = ĝ .
(b) If r = −g and r̂ = −ĝ , then g = ĝ .

Proof. Let γ : M → (0,∞) be the ratio of the volume elements, with dĝ = γ dg.
The assumption r = r̂ made in (a) gives ρ = ρ̂ for the Ricci forms. Hence γ

is constant in view of Remark 6.1(iii) and (4.4). The other assumption, [Ω ] = [Ω̂ ],
now has two consequences. First, by (5.1), the constant γ must be equal to 1.

Secondly, the 2-form Ω − Ω̂ is exact, so that, in view of Lemma 4.2(a), Ω =

Ω̂ − i∂∂α for some C∞ function α : M → R. Taking the g-trace of both sides of
the corresponding equality ĝ = g − (i∂∂α)J involving the metrics g = −ΩJ and

ĝ = −Ω̂J , we see, using (4.3.ii), (6.2.b) with γ = 1 and trgg = n, for n = dimRM ,

that n = nγ 2/n ≤ trg ĝ = trg[g − (i∂∂α)J ] = n+∆α. Hence ∆α ≥ 0. Thus, by
(1.19.b), α is constant, and so g = ĝ , which proves (a).

Under the hypotheses of (b), ρ = −Ω and ρ̂ = −Ω̂ , so that, for α = log γ,

Remark 6.1(iii) yields Ω = Ω̂ − i∂∂α. As in the preceding paragraph, this gives
ĝ = g − (i∂∂α)J . By (4.3.i), −2[(i∂∂α)J ](u, v) = (∇dα)(u, v) + (∇dα)(Ju, Jv)
for any point x ∈ M and any vectors u, v ∈ TxM . Hence, as α = log γ, we
have ĝ ≤ g (or, ĝ ≥ g) at points where γ = γmax (or, respectively, γ = γmin).
The inequalities between tensors have here the usual meaning: for instance, ĝ ≤ g
states that ĝ − g is negative semidefinite, or, equivalently, that if ĝ is treated,

3E. Calabi, On Kähler manifolds with vanishing canonical class, Algebraic geometry and topol-

ogy: A symposium in honor of S. Lefschetz, pp. 78–89. Princeton University Press, Princeton,
NJ, 1957, pp. 86–87

4S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-
Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), 339–411

5L. Bérard Bergery, Exposé noVI, Première classe de Chern et courbure de Ricci: preuve de
la conjecture de Calabi, Séminaire Palaiseau, 1978, Astérisque 58, Soc. Math. de France, Paris,
1978, 89–102
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with the aid of g, as a bundle morphism A : TM → TM (see Remark 1.1), then
its eigenvalues do not exceed 1 at the point in question. Since the eigenvalues of
ĝ are all positive, we now have, from (6.2.a), γ 2 = detg ĝ ≤ 1 wherever γ = γmax

and, similarly, γ 2 ≥ 1 wherever γ = γmin. Consequently, γmax ≤ 1 ≤ γmin and so
γ = 1 everywhere in M , that is, α = 0 and g = ĝ . �

7. Holomorphic vector fields

We say that a C∞ mapping F : M → N between almost complex manifolds M
and N is holomorphic if, at every x ∈M , the differential dFx : TxM → TF (x)N is
complex-linear. A diffeomorphism F : M → N which is holomorphic is referred to
as a biholomorphism, and, if such F exists, M and N are called biholomorphic.
By a (real) holomorphic vector field on an almost complex manifold M we mean
any C∞ vector field w on M for which £wJ = 0, that is, the flow of w consists
of (local) biholomorphisms. For more on terminology, see the end of this section.

Remark 7.1. Let w be a vector field on a Kähler manifold (M, g). We treat the
covariant derivative ∇w of M , as well as the complex structure J , as bundle
morphisms TM → TM , while [ , ] denotes the commutator of such morphisms.

(a) For u = Jw, we have ∇u = J∇w.
(b) The Lie derivative £wJ equals [J,∇w]. Thus, w is holomorphic if and

only if [J,∇w] = 0.
(c) If w is holomorphic, so is Jw.
(d) The following three conditions are equivalent:

i) w is holomorphic and is, locally, the gradient of a function;
ii) Jw is a holomorphic Killing field;
iii) the tensor field ∇ξ, where ξ = ıwg, is symmetric and Hermitian.

In fact, as ∇J = 0, we get (a) and £wJ = [J,∇w], which yields (b). (The
relation £wu = [w, u] = ∇wu − ∇uw, for any vector field u, gives (£wJ)u =
£w(Ju)− J(£wu) = [J,∇w]u.) Now (c) is obvious from (a) and (b). Next, in (d),
let u = Jw. Condition (i) states that [J,∇w] = 0 (cf. (b)) and (∇w)∗ = ∇w,
and so [J,∇u] = 0 and (∇u)∗ = −∇u (as ∇u = J∇w by (a)); hence (ii) follows.
Assuming (ii) we similarly get [J,∇u] = 0 and (∇u)∗ = −∇u, while ∇w = −J∇u,
which yields [J,∇w] = 0 and (∇w)∗ = ∇w, that is, (i). Finally, as (i) amounts
to [J,∇w] = 0 and (∇w)∗ = ∇w, it is equivalent to (iii) (cf. Remark 3.2), since
a = ∇ξ in (iii) corresponds to A = ∇w as in Remark 1.1.

Remark 7.2. The real vector space h(M) of all holomorphic vector fields on a Käh-
ler manifold (M, g) is a complex Lie algebra: in addition to being closed under the
Lie bracket, it has the structure of a complex space, with v 7→ Jv serving as the
multiplication by i (cf. Remark 7.1(c)).

By a locally symmetric Kähler manifold we mean any Riemannian manifold
(M, g) which is simultaneously an almost complex manifold, such that the metric
g is Hermitian (Remark 3.2) and, for every x ∈ M , there exists a holomorphic g-
isometry Φ between some neighborhoods of x in M sending x to x, and having
the differential at x equal to −Id : TxM → TxM . The terminology makes sense
as such (M, g) is automatically a Kähler manifold (and, in addition, its curvature
tensor is parallel). In fact, any k-times covariant tensor field T on M , for odd
k, which is invariant under Φx for every x, must vanish identically (since the
differential of Φx at x sends Tx to Tx and, at the same time, to −Tx). Applying
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this to T = ∇Ω and T = ∇R, for Ω = gJ and the four-times covariant curvature
tensor R, we get ∇Ω = 0 and ∇R = 0, as required.

In any complex dimension m, one prominent example of a locally symmetric
Kähler manifold is the standard Cm. Another is the complex projective space CPm,
formed by all complex lines through 0 in Cm+1, and hence equal to the quotient
S2m+1/S1 of the unit sphere S2m+1 ⊂ Cm+1 under the action, by multiplication, of
the unit circle S1 ⊂ C. Since S1 acts on the ambient space Cm+1 by holomorphic
isometries, a Riemannian metric and an almost complex structure on CPm can be
uniquely defined by projecting them, via the isomorphism dπy, from the orthogonal
complement of Ker dπy in TyS

2m+1 onto TxCPm, where π : S2m+1 → CPm is the
quotient projection, while y ∈ S2m+1 and x = π(y). The holomorphic isometry
Φx required in the last paragraph is provided by the unitary reflection about the
line Cy in Cm+1, which obviously descends to CPm.

The Fubini-Study metric g on CPm, described above, is also an Einstein metric.
In fact, the unitary automorphisms of Cm+1 keeping a given unit vector y fixed
descend to isometries CPm → CPm which fix the point x = π(y). The differentials
of these isometries at x form a group acting on TxCPm in a manner equivalent
to how U(m) acts on Cm (as one sees identifying y⊥ ≈ Cm with TxCPm via
the isomorphism dπy). The Ricci tensor of g at x now must be a multiple of gx,
or else its eigenspaces would correspond to nontrivial proper U(m)-invariant real
subspaces of Cm (which do not exist, since U(m) acts transitively on the unit
sphere S2m−1 ⊂ Cm).

Here is the reason why we are speaking of Kähler metrics on complex manifolds
(without the word ‘almost’). One normally defines a complex manifold to be any
almost complex manifold M whose almost complex structure J is integrable in
the sense that every point of M has a connected neighborhood biholomorphic to
an open set in Cm, m = dimCM . In other words, M is required to be covered
by a collection of Cm-valued charts, the transition mappings between which are all
holomorphic. The term ‘holomorphic’ that we used for F or w at the beginning
of this section is usually reserved for objects on complex manifolds; in the general
almost-complex case, such F and w are called pseudoholomorphic. However, in
a Kähler manifold, J is always integrable (which is a well-known fact, not used
here). Our terminology thus agrees, in the end, with the standard usage.

8. The Futaki and Tian-Zhu invariants

By a compact complex manifold with c1(M) > 0, or c1(M) < 0, we mean any
compact almost complex manifold M that admits a Kähler metric with the Kähler
cohomology class c1(M) or, respectively, −c1(M). (Cf. the text preceding The-
orem 5.3.) This is equivalent to the requirement that M be a compact almost
complex manifold admitting a Kähler metric and, at the same time, having a pos-
itive (or, respectively, negative) first Chern class in the sense defined at the end
of Section 5. Namely, an almost-Kähler metric with the Kähler form Ω such that
c1(M) = ±[Ω ] must then be a Kähler metric by Theorem 5.3(ii).

The Futaki invariant6 of a compact Kähler manifold (M, g) is the real-linear
functional F : h(M) → R on the Lie algebra h(M) (see Remark 7.2), defined as
follows. With Ω and ρ denoting, as usual, the Kähler and Ricci forms, and with

6A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73
(1983), 437–443
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savg standing for the average value of the scalar curvature s, let f :M → R be a
function such that ∆f + s = savg. We set

(8.1) Fv = µ
∫
M
dvf dg for v ∈ h(M), where µ = (savg)m and m = dimCM.

The Futaki invariant F is particularly interesting for compact complex manifolds
M with c1(M) > 0, since M then admits a Kähler metric g with [ρ] = λ[Ω ] for
some λ ∈ (0,∞) (e.g., λ = 1), and F turns out to be the same for all such metrics
g. In other words, F then is an invariant of the complex structure of M . As such,
it constitutes a well-known obstruction7 to the existence of Kähler-Einstein metrics
on compact complex manifolds M with c1(M) > 0. All of this is summarized by
the following result of Futaki8.

Theorem 8.1. Given a compact complex manifold (M, g) with c1(M) > 0, the
Futaki invariant F : h(M) → C, defined with the aid of a Kähler metric g such
that [ρ] = λ[Ω ] for a constant λ, does not depends on the choice of such g.
Furthermore, F = 0 if M admits a Kähler-Einstein metric.

The final clause of Theorem 8.1 is immediate from its first part: using a Kähler-
Einstein metric g to evaluate F, we get F = 0, since f in (8.1) is constant.

Theorem 8.1 can be derived from the following result, due to Tian and Zhu [?,
p. 305],

Theorem 8.2. For any compact complex manifold M with c1(M) > 0, the Tian-
Zhu invariant F : h(M)→ C, defined with the aid of a Kähler metric g satisfying
the condition [ρ] = λ[Ω ] ∈ H2(M,R) for some λ ∈ R, depends only on the
complex structure of M , and not on the choice of such a metric g.

However, we will establish the two theorems separately, since a direct proof of
Theorem 8.1 is much shorter than one needed for Theorem 8.2.

We begin with two lemmas, in which Ω, ρ and savg denote, as before, the Kähler
form, Ricci form, and the average value of the scalar curvature s.

Lemma 8.3. If (M, g) is a compact Kähler manifold, λ ∈ R, and [ρ] = λ[Ω ] in
H2(M,R), then λ = savg/n, where n = dimRM , and

(8.2) i∂∂f + ρ = λΩ for f : M → R such that ∆f + s = savg .

Proof. We have i∂∂f+ρ = λΩ for some function f , as [ρ] = λ[Ω ] (see Lemma 4.2(a)).
Now (4.3.ii) gives ∆f + s = nλ, and so λ = savg/n. �

On a Kähler manifold (M, g) with a smooth function f such that i∂∂f +
ρ = λΩ, where λ is a constant, setting A = £vJ (that is, A = [J,∇v]) and
Lv = δv − dvf , we obtain, for any smooth vector field v,

(8.3) vk,kl − (vkf,k),l + Jql J
p
kv

k
,pq − Jql J

p
k (vkf,p),q = −2λvl + Jql (Apq,p − f,pApq).

In fact, −vkf,kl − Jql J
p
kv

kf,pq is the lth component of −ıv∇df − (ıu∇df)J =

2ıu(i∂∂f) for u = Jv (by (4.3.i)), which equals 2ıu(λΩ − ρ) = −2λıvg + 2ıvr.
Next, −Jql J

p
kv

k
,qf,p = −Jql Jkq vp,kf,p−J

q
l A

p
qf,p = vp,lf,p−Jql Apqf,p, as [J,∇v] = A,

while the Ricci identity (1.11.a) implies that Jql J
p
kv

k
,pq = Jql J

p
kv

k
,qp+Jql J

p
kRpqs

kvs.

7A. Futaki, Kähler-Einstein metrics and integral invariants, Lecture Notes in Math. 1314,

Springer, Berlin, 1988
8A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73

(1983), 437–443
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The relation [J,∇v] = A also gives Jql J
p
kv

k
,qp = Jql J

k
q v

p
,kp + Jql A

p
q,p = −vp,lp +

Jql A
p
q,p. Moreover, by (4.1.c), Jql J

p
kRpqs

kvs = Rkls
kvs = −Rlsvs. Combining these

equalities and using (1.11.b), we get (8.3).
In the next lemma, only parts (a) and (b) are needed for a proof of Theorem 8.1.

The symbol L denotes the operator given by (??), with f as in (8.2), while P in
(e) is defined as in (??).

Lemma 8.4. Let (M, g) be a compact Kähler manifold such that [ρ] = λ[Ω ] in
H2(M,R) for some λ ∈ R. Then, for any holomorphic vector field v on M ,

(a) ∇Lv − J∇LJv = −2λv, (b) ∆Lv = −2λδv,
(c) |∇Lv |2 + 2λdvLv = |∇LJv |2 + 2λdJvLJv,
(d) g(∇Lv,∇LJv) + λ(dJvLv + dvLJv) = 0.
(e) λψ − dwψ +∆ψ/2 = idJwψ, where ψ = Pv and w = ∇f/2.

Proof. Assertion (a) is obvious from (8.3) with A = 0. Now (b) follows if we
apply the divergence operator δ to (a), where δ(J∇φ) = 0 for any function φ,
as δ(J∇φ) = Jkl φ,

l
k, while J is skew-adjoint and ∇dφ is symmetric. Next,

|∇Lv |2 + 2λdvLv = g(∇Lv,∇Lv + 2λv) = g(∇Lv, J∇LJv) by (a). The same
equality for Jv rather than v, cf. Remark 7.1(c), reads |∇LJv |2 + 2λdJvLJv =
−g(∇LJv, J∇Lv), and, as J is skew-adjoint, the two equalities together prove
(c). The left-hand side in (d) is 1/2 times g(∇LJv,∇Lv+2λv)+g(∇Lv,∇LJv+
2λJv) = g(∇LJv, J∇LJv)−g(∇Lv, J∇Lv) (by (a)); now (d) follows due to skew-
adjointness of J . Finally, (b) applied to both v and Jv (see Remark 7.1(c)) gives
∆ψ = −2λ[δv − iδ(Jv)] for ψ = Pv, since Pv = Lv − iLJv. Now, by (??),
∆ψ = −2λ(Lv + dvf ) + 2iλ(LJv + dJvf ) = −2λ(ψ + dvf − idJvf ), and so (a)
implies (e). �

Let us now suppose that (M, g) is a compact Riemannian manifold, f : M → R,
and u, v are vector fields on M . With Lw = δw− dwf, we get, for any vector field
w and any φ : M → R,

(8.4)
a) δ∇(e−fu) = δ(e−f∇u)− e−f [∇udf + (Lu)df ], b) e−fLu = δ(e−fu),
c) −dδw = ıwr − δ∇w, d)

∫
M
φδv dg = −

∫
M
ıvdφ dg.

In fact, (b) – (d) are trivial special cases of (1.7.a), (1.10.b) and (1.16), while (a)
follows since ∇(e−fu) = e−f∇u − e−fdf ⊗ u, and δ(e−fdf ⊗ u) = e−f∇udf +

e−f (Lu)df due to the definition of L. Let us denote by ( , )f the weighted

L2 inner product with (φ, φ)f =
∫
M
φ2e−f dg, by ‖ ‖f the corresponding norm,

both for functions and vector fields, and by ( , ) the ordinary L2 inner prod-
uct. Using, respectively, (8.4.b), (8.4.d) (for φ = δ(e−fu)), and (8.4.c) (for w =

e−fu), we see that (Lu, δv)f = (δ(e−fu), δv) = −
∫
M
ıvdδ(e−fu) dg = (Ricu, v)f −∫

M
ıvδ∇(e−fu) dg, where Ric is the bundle morphism A : TM → TM corre-

sponding as in Remark 1.1 to the Ricci tensor a = r of (M, g). Thus, by (8.4.a),

(Lu, δv)f =

Given a compact Riemannian manifold (M, g) and a function f : M → R,

let us denote by Ricf the bundle morphism A : TM → TM corresponding as

in Remark 1.1 to a = ∇df + r, where r is the Ricci tensor of (M, g), by δf
the operator sending a vector field w to the function δfw = efδ(e−fw) (so that,

when f is the zero function, δf becomes the ordinary divergence δ, cf. (1.6.i)),
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and by ( , )f the weighted L2 inner product of tensor fields on M with (A,B)f =∫
M
〈A,B〉e−f dg. The symbol 〈 , 〉 in the integrand represents the inner product

induced by g, including the ordinary product (when A,B are functions) and g
(when they are vector fields). The divergence theorem (1.14) now implies that

(8.5) a) (δfw, 1)f = 0, b) (∇χ,w)f = −(χ, δfw)f whenever χ : M → R.

Also, for any vector fields u, v on M , and any f : M → R,

(8.6) (Ricfu, v)f = (δfu, δfv)f − (∇u, (∇v)∗)f ,

(∇v)∗ being the (pointwise) adjoint of ∇v : TM → TM . If f = 0, (8.6) is nothing
else than Bochner’s integral formula (1.20).

To verify (8.6), note that δf [∇vu − (δfu)v] = tr (∇u)(∇v) + (r + ∇df)(u, v) −
(δfu)δfv (as one easily sees in local coordinates, using (1.11.b) and the Leibniz

rule); then apply (8.5.a).

It is obvious from (8.6) and (8.5.b), for χ = δfu and w = v, that

(8.7) −(∇δfu, v)f = (Ricfu, v)f + (∇u, (∇v)∗)f .

Lemma 8.5. Suppose that u, v are vector fields on a Kähler manifold (M, g) and
f : M → R. Then, for A = ∇u and B = ∇v,

i) £∇fJ = [J,∇∇f ],

ii) the bundle morphism (£∇fJ)J : TM → TM is self adjoint at every point,

iii) 〈Ju,∇Jv∇f〉 = (∇df)(u, v) + 〈u, (£∇fJ)Jv〉,
iv) δf [(dJuf)Jv) = (∇df)(u, v) + (dJuf)(tr JB − dJvf)

+ 〈∇f, JAJv〉+ 〈u, (£∇fJ)Jv〉.

Proof. Assertion (i) is obvious from Remark 7.1(b). By (i), £∇fJ anticommutes

with J . As J∗= −J and (∇∇f)∗= ∇∇f, (i) also implies that £∇fJ is self-adjoint

at every point, and (ii) follows.
Next, (∇df)(u, v) = 〈u, (∇∇f)v〉 = 〈Ju, J(∇∇f)v〉, which is nothing else than

〈Ju, (∇∇f)Jv〉 − 〈Ju, [J,∇∇f ]v〉, so that (i) yields (iii).

Finally, in local coordinates, δf [(dJuf)Jv] = ef [e−f (Ju)lf,l(Jv)k],k equals

−f,k(Ju)lf,l(Jv)k + J lsu
s
,kf,l(Jv)k + (Ju)sf

s
, k(Jv)k + (Ju)lf,lJ

k
s v

s
,k .

These four terms are, respectively, −(dJuf)dJvf , 〈∇f, JAJv〉, 〈Ju,∇Jv∇f〉 and

(dJuf) trJB. Now (iv) is immediate from (iii). �

The expression (Ricfu, v)f also appears in another integral identity, requiring
additional hypotheses. Specifically, we have the following lemma.

Lemma 8.6. Let f : M → R be a function on a compact Kähler manifold (M, g).
If vector fields u, v on M are local gradients, that is, the 1-forms ıug, ıvg are
closed, then, with J denoting the complex-structure tensor of (M, g),

(8.8) (£uJ,£vJ)f/2 = (∇u,∇v)f − (Ricfu, v)f + (dJuf,dJvf)f − ((£∇fJ)u,Jv)f ,

where £ stands for the Lie derivative. Furthermore,

(8.9) −(∇δfu, v)f = 2(Ricfu, v)f−(dJuf,dJvf)f+((£∇fJ)u,Jv)f+(£uJ,£vJ)f/2.
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In the remainder of Section 8, all tensor fields, such as a Riemannian metric
g, and operators (including connections), depend C∞-differentiably on a time pa-
rameter t varying in a fixed interval, in the sense that their components in a local
coordinate system are C∞ functions of the coordinates and t. Their dependence on
t will, however, be suppressed in our notation. The same will apply to the volume
element dg, divergence operator δ, and the g-inner product 〈 , 〉 of twice-covariant
symmetric tensors. Rather than speaking of curves of metrics, connections, etc., we
will refer to such objects as time-dependent (and call them time-independent when
appropriate). Writing ( )˙ for d/dt, we have

(8.10) a) δ̇ = dϕ and b) 〈g, ġ〉 = 2ϕ for ϕ : M → R such that: c) (dg)˙ = ϕdg,

(a) meaning that (δw)˙ = dwϕ for any time-independent vector field w on M . In
fact, contracting the Christoffel symbol formula 2Γ ljk = gls(∂jgks + ∂kgjs − ∂sgjk)

we get 2Γ jjk = gjl∂kgjl, that is, by (6.1), 2Γ jjk = ∂k log det[gjl]. Also, dg has

the component function (det[gjl])
1/2, and hence (6.1) gives 〈g, ġ〉 = gjlġjl = 2ϕ.

Finally, applying d/dt to δw = ∂jw
j + Γ jjkw

k = ∂jw
j + wk∂k log det[gjl] and

switching d/dt with ∂k, we obtain (8.10.a).

Lemma 8.7. Suppose that Ω̇ = 2i∂∂χ for some time-dependent function χ and
the Kähler form Ω of a time-dependent Kähler metric g on a given complex
manifold M with a time-independent complex structure J : TM → TM , where
( )˙ = d/dt. Then, for ρ, L as above and ϕ given by (8.10.c),

(i) ϕ = ∆χ, (ii) ρ̇ = −i∂∂∆χ, (iii) L̇ = −2λdχ,

(iv) f with (8.2) may be chosen so that ḟ = ∆χ+ 2λχ,

(iii) meaning that (Lw)˙ = −2λdwχ for all time-independent vector fields w.

Proof. As ġJ = Ω̇ = 2i∂∂χ, we have ġ = −2(i∂∂χ)J . Hence, by (4.3.ii), 〈g, ġ〉 =
2∆χ, and (8.10.b) yields (i). By (i), Remark 6.1(iii) and (8.10.c), ρ̇ = −i∂∂ϕ =
−i∂∂∆χ, and (ii) follows. Next, choosing f : M → R so that ∆f + s = savg for

some t and ḟ = ∆χ+ 2λχ for all t, and then applying d/dt to i∂∂f + ρ − λΩ,
we see that, by (ii), i∂∂f + ρ = λΩ for all t, which proves (iv). Using (??) and
(8.10.a) with ϕ = ∆χ we now obtain (iii). �

We now proceed to prove Theorems 8.1 and 8.2. Rescaling two given Kähler
metrics with the stated property, we may assume that they have the same value of
λ, which will also be the case for all intermediate metrics in a line segment of Käh-
ler metrics joining them (Theorem 5.3). We thus have a C∞ curve t 7→ g = g(t)
of Kähler metrics on the complex manifold M , with Kähler forms Ω such that
Ω̇ = 2i∂∂χ for some function χ : M → R. (We use the shorthand conventions of
the last paragraph.) We will from now on ignore the fact that the curve is a line
segment, although we do make use of its consequence in the form of differentiability
of the assignment t 7→ χ (which is in fact constant).

Proof of Theorem 8.1. Applying d/dt to −µ−1Fv =
∫
M
Lv dg (cf. (8.1) and (1.14)),

we obtain the integral of (∆χ)Lv − 2λdvχ. Integration by parts shows that this
equals the L2 inner product of χ and the function ∆Lv + 2λδv, which vanishes
by Lemma 8.4(b). �

Proof of Theorem 8.2. The relation L̇ = −2λdχ gives (Pw)˙ = 2iλdJwχ−2λdwχ,

and, since (dg)˙ = (∆χ) dg, we get µ−1Ḟ(w) =
∫
M

(2iλdJwχ−2λdwχ+∆χ)ePw dg
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from (??). Integrating by parts we see that this is equal to the integral of χ times

(8.11) ∆ePw + 2λ(dwe
Pw − idJwe

Pw) + 2λ[δw − iδ(Jw)]ePw .

To prove that (8.11) vanishes for every holomorphic vector field w, we use the
identity ∆eψ = eψ[∆ψ + g(∇ψ,∇ψ)], immediate when the function ψ is real-
valued, but also easily verified to complex-valued functions ψ, with g extended
complex-bilinearly to complex vector fields (sections of the complexified tangent
bundle). Thus, g(∇ψ,∇ψ) = |∇Reψ|2 − |∇ Imψ|2 + 2ig(∇Reψ,∇ Imψ). For
ψ = Pw, we have Reψ = Lw, Imψ = −LJw, and (8.11) equals ePw times

∆Lw + 2λδw − i [∆LJw + 2λδ(Jw)]
+ |∇Lw|2 + 2λdwLw − [|∇LJw|2 + 2λdJwLJw ]
− 2i [g(∇Lw,∇LJw) + λ(dJwLw + dwLJw)].

Each of the three lines is separately equal to zero, due to a part of Lemma 8.4: the
first, by (b); the second, by (c); and the third, in view of (d). �

9. Kähler-Einstein metrics

On an arbitrary Riemannian manifold (M, g), we denote by D the operator
sending any vector field w on M to the vector field Dw characterized by

(9.1) ıDwg = −∆ıwg − ıwr, that is, (Dw)j = −wj,kk −Rjkwk.

Replacing Rjkw
k by wk,jk−wk,kj (cf. (1.11.b)), we get (Dw)j = −(wj,k+wk,j)

k+
wk,kj . Rewritten with the aid of (1.5.a), this equality gives

(9.2) ıDwg = −δ£wg + dδw,

while, applied to w = ∇ψ for a function ψ : M → R, it yields, again by (1.11.b),
(Dw)j = −2ψ,kj

k + ψ,k
k
j = −2Rjkw

k− ψ,kkj , that is,

(9.3) ıDwg = −d∆ψ − 2ıwr if w = ∇ψ.

Also, for any vector field w on a Riemannian manifold,

(9.4) ∆δw = −δDw − 2δıwr,

since, in local coordinates, (1.11.b) gives wj,
jk
k = wj,

kj
k+(Rjkw

j),k, while formula
(1.10.f) (or, more precisely, its coordinate form, cf. the lines following (1.11)) yields
wj,

kj
k = wj,

k
kj = δ∆w (and so (9.1) implies (9.4)).

Note that D is a second-order elliptic differential operator; it is also self-adjoint,
in view of symmetry of r and the relation −g(∆w, v) = 〈∇w,∇v〉 − δ [(∇w)∗v]
(which has the local-coordinate form −vjwj,kk = vj,kwj,k− (vjwj,k),k). Applied to
v = w, this last relation shows that, on a compact Riemannian manifold (M, g),

(9.5) (Dw,w) = ‖∇w‖2 −
∫
M

r(w,w) dg

for any vector field w on M . Here and below ( , ) stands for the L2 inner product
of functions and vector or tensor fields, while ‖ ‖ is the corresponding L2 norm.

Similarly, any function φ and vector field w on a compact Riemannian manifold
satisfy the L2 inner-product relations

(9.6) 2(∇w,∇dφ) = (Dw − ∇δw,∇φ).

In fact, 2φ,jkwj,k = φ,jkwj,k + φ,jkwk,j differs by a divergence from −φ,jwj,kk +
φ,jwk,j

k which, in view of (9.1) and (1.11.b), equals φ,j(Dw)j − φ,jwk, kj.
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Remark 9.1. Our discussion of the operator D, defined by (9.1) on a Riemannian
manifold (M, g), deals mainly with the case where M is compact. In many cases,
however, one has Dw = 0 for purely local reasons:

(i) Dw = 0 if w is a Killing field;
(ii) Dw = 0 if w satisfies the soliton equation (??);
(iii) Dw = 0 if (M, g) is a Kähler manifold and w is holomorphic;
(iv) Dw = −∇(∆ψ + 2λψ) whenever (M, g) is an Einstein manifold with the

Einstein constant λ and w = ∇ψ for a function ψ : M → R. Thus, we
then have Dw = 0 if w = ∇ψ and ∆ψ = −2λψ.

Namely, (i) follows from (9.2), as the equality (∇w)∗ = −∇w gives δw = 0.
That (??) yields Dw = 0 is clear from (??.ii) and (1.13.ii). Next, if g is a
Kähler metric and w is holomorphic, [J,∇w] = 0 (see Remark 7.1(b)), so that
Jkpw

p
,q
q = Jpqw

k
,p
q, which, by (4.1.a), equals −JkpR

p
l w

l, proving (iii). Finally, (iv)
is immediate from (9.3).

About the relation between D and the Hodge Laplacian, see Remark 9.8 below.

Lemma 9.2. On any compact Kähler manifold (M, g), the operator D with (9.1)
is nonnegative, and its kernel consists of all holomorphic vector fields. In addition,
for every C2 vector field w on M , the L2 norm of £wJ is given by

(9.7) ‖£wJ‖2 = 2(Dw,w) .

In fact, for any vector field w on M , setting A = ∇w we have £wJ = [J,A]
(see Remark 7.1(b)), and so |£wJ |2 = tr [J,A][J,A]∗ = 2 tr JAJA∗+ 2 trAA∗. As
trAA∗ = |∇w|2, we now obtain (9.7) by integration, using (9.5), (4.2.ii) and (1.14).
Our assertion then follows from Remark 9.1(iii).

Remark 9.3. Inspired by Lemma 9.2, one might define the space of “holomor-
phic” vector fields on any compact Riemannian manifold (M, g) to be the kernel
of D. However, as observed by Yano 9, for any C2 vector field w on a compact
Riemannian manifold (M, g), we have

(9.8) 2(Dw,w) = ‖£wg‖2 − 2‖δw‖2,

since |£wg|2 = (wj,k + wk,j)(w
j,k + wk,j) = 2(wj,k + wk,j)w

j,k, which differs from
−2(wj,k+wk,j)

,kwj by a divergence, and so (9.8) follows from (9.2) by integration.
Thus, nonnegativity of D fails in general: examples with (Dw,w) < 0 are non-

Killing conformal vector fields w in dimensions n > 2, for which n£wg = 2(δw)g,
and so (9.8) gives n(Dw,w) = (2−n)‖δw‖2 < 0. Further such examples arise from
Remark 9.1(iv): for instance, on a sphere Sn of constant curvature K, choosing
an eigenfunction ψ of −∆ for the lowest positive eigenvalue nK, and noting that
λ = (n− 1)K, we get Dw = (2− n)w for w = ∇ψ.

On the other hand, D provides a characterization of Killing fields w on compact
Riemannian manifolds by a pair of scalar equations: Dw = 0 and δw = 0. This is
clear from (9.8) and Remark 9.1(i).

For a function ψ : M → R on a compact Riemannian manifold (M, g),

(9.9) µ‖w‖2 = (Dw,w) + 2
∫
M

r(w,w) dg if w = ∇ψ and ∆ψ = −µψ.

9cf. S. Kobayashi, Transformation Groups in Differential Geometry, Ergebnisse, vol. 70,
Springer-Verlag, Berlin, 1972, p. 93
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In fact, by (1.19.a), µ‖w‖2 = −µ(ψ,∆ψ) = ‖∆ψ‖2. Bochner’s formula (1.21), with
ϕ = ψ, thus yields µ‖w‖2 = ‖∇w‖2 +

∫
M

r(w,w) dg, and (9.5) gives (9.9).
In the following theorem, the inequality r ≥ λg means that r − λg is positive

semidefinite at every point, r being, as usual, the Ricci tensor; in other words, λ
is assumed to be a lower bound on the Ricci curvature.

Theorem 9.4. Let (M, g) be a compact Kähler manifold such that

(9.10) r ≥ λg with a constant λ > 0 .

Then µ ≥ 2λ for every positive eigenvalue µ of −∆.
If, in addition, r = λg, that is, g is a Kähler-Einstein metric with the Ein-

stein constant λ > 0, then the assignment ψ 7→ ∇ψ defines a linear isomorphism
between the space of all functions ψ : M → R with ∆ψ = −2λψ and the space of
all holomorphic gradient vector fields on M .

Proof. That µ ≥ 2λ is obvious from (9.9) and Lemma 9.2. Now let r = λg. If
ψ : M → R and ∆ψ = −2λψ, (9.9) with µ = 2λ gives (Dw,w) = 0 for w = ∇ψ,
and so, by (9.7), w is a holomorphic gradient. Thus, the operator ψ 7→ ∇ψ is
valued in the required space, and it is also injective, as ψ can be constant only
if ψ = 0. Finally, let w be any holomorphic gradient, so that w = ∇ψ for some
ψ : M → R. Since Dw = 0 (see Remark 9.1(iii)), assertion (iv) in Remark 9.1
shows that ∆ψ + 2λψ is constant and, adding a constant to ψ, we may assume
that ∆ψ = −2λψ, as required. �

A weaker form of Theorem 9.4 holds when (M, g), rather than being Kähler,
is just assumed to be a compact Riemannian manifold of any real dimension n.
Condition (9.10) then implies the Lichnérowicz inequality µ ≥ (n − 1)−1nλ for
every positive eigenvalue µ of −∆. (Proof: if ∆ψ = −µψ and µ‖ψ‖ > 0, the
Schwarz inequality (∆ψ)2 = 〈g,∇dψ〉2 ≤ n|∇dψ|2 implies, for w = ∇ψ, that
(δw)2− tr (∇w)2 = (∆ψ)2 − |∇dψ|2 ≤ (n − 1)(∆ψ)2/n, and so (1.21) gives (n −
1)−1nλ‖w‖2 ≤ (n − 1)−1n

∫
M

r(w,w) dg ≤ ‖∆ψ‖2. Since µ‖ψ‖2 = −(ψ,∆ψ) =

‖w‖2 by (1.19.a), we now get (n− 1)−1nλµ‖ψ‖2 = (n− 1)−1nλ‖w‖2 ≤ ‖∆ψ‖2 =
µ2‖ψ‖2, as required.)

The following is an obvious consequence of Theorem 9.4:

Corollary 9.5. In a compact Kähler-Einstein manifold (M, g), with a positive
Einstein constant λ,

(i) µ ≥ 2λ for every positive eigenvalue µ of −∆,
(ii) 2λ is an eigenvalue of −∆ if and only if M admits a nontrivial holo-

morphic gradient vector field.

The assertion of Corollary 9.5(ii) remains valid even if the word ‘gradient’ is
dropped, as one easily sees using Theorem 9.6(d) below, due to Matsushima10,
along with (9.11).

Theorem 9.6. Given a compact Einstein manifold (M, g), let λ, h, g and p be the
Einstein constant of g, the kernel of the operator D given by (9.1), the Lie algebra
of all Killing fields on (M, g) and, respectively, the space of all gradient vector fields
w on M with Dw = 0. Then we have an L2-orthogonal decomposition

(9.11) h = g ⊕ p.

10Y. Matsushima, Sur la structure du groupe d’homéomorphismes analytiques d’une certaine

variété kaehlérienne, Nagoya Math. J. 11 (1957) 145-150
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In particular, g ⊂ h. Furthermore,

(a) h = g = p = {0} if λ < 0,
(b) p = {0} and h = g is the space of all parallel vector fields, if λ = 0.
(c) In the case where λ > 0, the g and p components of any w ∈ h, relative

to the decomposition (9.11), are w+ (2λ)−1∇δw and −(2λ)−1∇δw, while
p consists of the gradients of all functions ψ : M → R with ∆ψ = −2λψ.

(d) If, in addition, (M, g) is a Kähler manifold and λ 6= 0, then h coincides
with the space h(M) of all holomorphic vector fields on M , and p = Jg.

Proof. That g ⊂ h is obvious from from Remark 9.1(i), while L2-orthogonality of
the spaces g and p follows from formula (1.17), stating that Killing fields are L2-
orthogonal to gradients. Next, (a) and (b) are immediate from (9.5), and (9.11) is
trivially satisfied when λ ≤ 0. Let us therefore suppose that λ > 0. We claim that
u = 2λw +∇δw is a Killing field whenever w ∈ h. In fact, |£ug|2 = 2uj,k(uj,k +
uk,j) (cf. the line following (9.8)), and so, since the same holds for w rather than
u, we get |£ug|2/4 = 2λ2wj,k(wj,k + wk,j) + 4λwj,kwl,ljk + wp,

pjkwl,ljk, that is,
|£ug|2/4 = λ2|£wg|2 + 4λ〈∇w,∇dφ〉 + |∇dφ|2, and so ‖£ug‖2/4 = λ2‖£wg‖2 +
4λ(∇w,∇dφ) + ‖∇dφ‖2, where φ = δw. Relation (9.4) with Dw = 0 and r =
λg gives ∆φ = −2λφ. (From now on, φ stands for δw.) Thus, (1.21) with
r = λg and ∆φ = −2λφ implies that ‖∇dφ‖2 = 4λ2‖φ‖2 − λ‖∇φ‖2, that is,
‖∇dφ‖2 = 2λ2‖φ‖2 (since ‖∇φ‖2 = 2λ‖φ‖2 by (1.19.a)). Also, by (9.8) with
Dw = 0, we have ‖£wg‖2 = 2‖φ‖2. Next, (9.6) with Dw = 0 and φ = δw reads
2(∇w,∇dφ) = −‖∇φ‖2 = −2λ2‖φ‖2. Combining these equalities, we see that
‖£ug‖2 = 0, as required. Thus, (9.11) holds also when λ > 0, and each w ∈ h has
the g and p components described in (c). Also, if w = ∇ψ ∈ p, Remark 9.1(iv)
with Dw = 0 shows that ∆ψ+ 2λψ is constant, and hence may be assumed equal
to 0. This proves (c).

Finally, under the assumptions of (d), h = h(M) by Lemma 9.2, and Jp ⊂ g
(that is, p ⊂ Jg) in view of Remark 7.1(d). Conversely, Jg ⊂ p. In fact, for any
u ∈ g, (9.11) gives Ju = w + v with w ∈ g and v ∈ p, while Ju is, locally, a
gradient (Remark 7.1(d)). Thus, ∇w is both self-adjoint and skew-adjoint at every
point, that is, ∇w = 0, and (1.11.b) yields w = 0, as r = λg and λ 6= 0. Hence
Ju = v ∈ p, which completes the proof. �

Corollary 9.7. For any compact Kähler-Einstein manifold (M, g), the identity
component Isomo(M, g) of the isometry group of (M, g) is a maximal compact
connected Lie subgroup of the biholomorphism group Aut(M).

Proof. Suppose, on the contrary, that there exists a vector field w ∈ h such that
w /∈ g and w belongs to the Lie algebra, containing g, of a compact Lie group
G of biholomorphisms of M . Replacing w by its p component relative to the
decomposition (9.11), we may assume that w = ∇ψ for some ψ : M → R.
Thus, dwψ = |w|2 is nonnegative everywhere and positive somewhere in M . Hence∫
M
dwψ dg′ > 0 for any fixed G-invariant Riemannian metric g′ on M , which

contradicts (1.17), as w is a Killing field on (M, g′). �

Remark 9.8. If (M, g) is an Einstein manifold and λ is its Einstein constant, then
D = H − 2λ, where H = −dδ − δd is the Hodge Laplacian acting on 1-forms ξ
(identified with vector fields w, so that ξ = ıwg). Thus, Dw = 0 if and only if
Hw = 2λw. Note that the decomposition of w in Theorem 9.6 coincides with the
Hodge decomposition of the eigenform ξ = ıwg of the Hodge Laplacian.


