
NOTES FOR MATH 7721:

PROJECTIVE SPACES AND GRASSMANNIANS

ANDRZEJ DERDZINSKI

[DG] stands for Differential Geometry at

https://people.math.osu.edu/derdzinski.1/courses/851-852-notes.pdf

[KG] for Kähler Geometry from a Riemannian Perspective at

https://people.math.osu.edu/derdzinski.1/courses/7721/kg.pdf

1. The manifold structures

Let V be a vector space of positive dimension n < ∞ over the scalar field IK,
where IK is IR,C or IH and, in the last (quaternionic) case, we mean a left vector
space. By the projective space of V one means the set

(1.1) PV = {L : L is a 1-dimensional vector subspace of V },
and a surjective projection mapping π : V r {0} → PV is defined by

(1.2) π(x) = IKx.

The set PV carries a natural manifold structure provided by the atlas

(1.3) {(Uf , ϕf ) : f ∈ V ∗ r {0}}
indexed by all nonzero linear functionals on V, where

(1.4) Uf = {L ∈ P (V ) : L is not contained in Kerf}
(instead of ‘is not contained in Ker f ’ one could also write ‘f(L) = IK’ or, equiv-
alently, ‘f maps L isomorphically onto IK’), and ϕf : Uf → f−1(1) sends each

L ∈ Uf onto its unique intersection point with f−1(1). Also, f−1(1) is a coset of
Ker f, which makes it an affine space with the translation vector space Kerf, and

(1.5)
ϕf : Uf → f−1(1) is a bijection with the inverse π : f−1(1)→ Uf and

ϕf (IKx) = x/f(x) whenever L = IKx ∈ Uf (that is, x ∈ V r Kerf).

Compatibility of any two charts in (1.3) now follows since, for f, h ∈ V ∗ r {0}, the
set ϕf (Uf ∩Uh) = Af r Kerh is open in f−1(1) (due to closedness of Kerh in the

ambient space V ), while (ϕf ◦ ϕ
−1
h )(x) = x/f(x) as a consequence of (1.5). (For

the meaning of compatibility, see [DG, Section 1].)

Lemma 1.1. The atlas (1.3) satisfies the Hausdorff and countability axioms, cf.
[DG, Section 1 and 14], and so it actually turns PV into a smooth manifold which,
in addition, is compact.

Proof. See Problem 1 in Homework #3. �

Lemma 1.2. Every linear automorphism of V, acting in an obvious manner on
PV, constitutes a smooth diffeomorphism. The projection π : V r {0} → PV is
smooth as well.
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Proof. Let A : V → V be a linear automorphism. Using the same symbol for
A : PV → PV, we obtain, from (1.5), the rational (and hence smooth) chart
representations (ϕf ◦ A ◦ ϕ

−1
h )(x) = Ax/f(Ax). On the other hand, the chart

representations of π are identity mappings, cf. the first line of (1.5). �

Lemma 1.3. If IK = C, the projective space PV carries a unique structure of a
complex manifold such that all chart mappings ϕf are biholomorphisms. In addi-

tion, the projection π : V r {0} → PV is then also holomorphic.

Proof. This is immediate since the transition mappings ϕf ◦ ϕ
−1
h , being rational,

are holomorphic. For the claim about π, see the proof of Lemma 1.2. �

When V = IKn, rather than PV one writes IKPn−1 and speaks of the real,
complex or quaternionic projective space of dimension n − 1 over the respective
field, where the latter the real/complex dimension n− 1 or (for IK = IH) the real
dimension 4(n− 1). The 1-dimensional subspace L ∈ P (V ) spanned by a nonzero
vector (x1, . . . , xn) in IKn is then denoted by [x1, . . . , xn] ∈ P (V ), and one refers
to x1, . . . , xn as homogeneous coordinates of L = [x1, . . . , xn].

Generalization to Grassmannians. In addition to V , n, IK as above, let us also
fix an integer q with 0 ≤ q ≤ n, set

(1.6) GrqV = {L : L is a q-dimensional vector subspace of V },

and define a surjective projection mapping π : StqV → GrqV by

(1.7) π(x) = Span x for x = (x1, . . . , xq) ∈ StqV ,

where StqV denotes the Stiefel manifold formed by all q-frames (that is, linearly
independent ordered q-tuples of vectors) in V. (Thus, StqV is an open subset of

the qth Cartesian power V q.) One calls GrqV the Grassmannian of q-planes in

V. The set GrqV carries a natural manifold structure provided by the atlas

(1.8) {(Uf , ϕf ) : f ∈ V ∗ r {0}}, with Uf = {L ∈ P (V ) : f(L) = IKq},

indexed by all surjective linear operators f : V → IKq. (Instead of ‘f(L) = IKq’ one
may equivalently write ‘f maps L isomorphically onto IKq’). The chart mappings

ϕf : Uf → f−1(e1)× . . .× f−1(eq)

with e1, . . . , eq denoting the standard basis of IKq, are slightly more complicated:

ϕf sends each L ∈ Uf onto the unique ordered q-tuple x = (x1, . . . , xq) of vectors

in L such that f(xa) = ea for a = 1, . . . , q. In other words, using the inverse f−1L of

the restriction isomorphism fL : L→ IKq, we have ϕf (L) = (f−1L (e1), . . . , f−1L (eq)).

Note that f−1(e1) × . . . × f−1(eq) a coset, in V q, of the qth Cartesian power of
Ker f, and hence an affine subspace of V q.

.....................
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2. The locally symmetric metrics

Lemma 2.1. Given a Lie group G and a smooth isometric left action of G on
a pseudo-Riemannian manifold (Σ, γ), along with a manifold M and a surjective
submersion π : Σ →M for which the π-preimages of points in M are nondegen-
erate submanifolds of (Σ, γ) and coincide with the orbits of the G action, there
exists a unique pseudo-Riemannian metric g on M such that π∗g and γ have
the same restriction to the γ-orthogonal complement H of the vertical distribution
V = Ker dπ of π.

Furthermore, under the identification, provided by π, between M and the set
Σ/G of all G orbits, every isometry of (Σ, γ) commuting with the G action
leads to an obvious bijection Σ/G → Σ/G, and hence M → M, which is then a
smooth isometry of (M, g) onto itself.

Proof. �

Generalization to Grassmannians. Irreducible (globally) symmetric Riemann-
ian manifolds come in pairs: one compact, and one not. The latter is usually called
the noncompact dual of the former.


