NOTES FOR MATH 7721:
PROJECTIVE SPACES AND GRASSMANNIANS

ANDRZEJ DERDZINSKI

[DG] stands for Differential Geometry at
https://people.math.osu.edu/derdzinski.1/courses/851-852-notes.pdf

[KG] for Kdhler Geometry from a Riemannian Perspective at
https://people.math.osu.edu/derdzinski.1/courses/7721/kg.pdf

1. THE MANIFOLD STRUCTURES

Let V' be a vector space of positive dimension n < oo over the scalar field IK,
where KK is IR,C or IH and, in the last (quaternionic) case, we mean a left vector
space. By the projective space of V one means the set

(1.1) PV = {L: L is a 1-dimensional vector subspace of V},
and a surjective projection mapping 7 :V ~ {0} — PV is defined by
(1.2) m(z) = K.

The set PV carries a natural manifold structure provided by the atlas
(1.3) {(Up) : f € V'~ {0}}

indexed by all nonzero linear functionals on V, where

(1.4) Uy = {L € P(V): Lis not contained in Ker f}

(instead of ‘is not contained in Ker f’ one could also write ‘f(L) = IK’ or, equiv-
alently, ‘/ maps L isomorphically onto IK’), and o U — f~Y(1) sends each
L € U; onto its unique intersection point with f71(1). Also, f~1(1) is a coset of
Ker f, which makes it an affine space with the translation vector space Ker f, and
op U — f71(1) is a bijection with the inverse 7 : f=(1) — U; and
¢;(Kz) = x/f(x) whenever L =Kz € U, (that is, z € V \ Ker f).
Compatibility of any two charts in (1.3) now follows since, for f,h € V*~\ {0}, the
set op(UsNUy) = Ay~ Kerh isopenin f~1(1) (due to closedness of Kerh in the
ambient space V'), while (¢; o o )(x) = x/f(z) as a consequence of (1.5). (For
the meaning of compatibility, see [DG, Section 1].)

(1.5)

Lemma 1.1. The atlas (1.3) satisfies the Hausdorff and countability azioms, cf.
[DG, Section 1 and 14], and so it actually turns PV into a smooth manifold which,
in addition, is compact.

Proof. See Problem 1 in Homework #3. |

Lemma 1.2. Fvery linear automorphism of V, acting in an obvious manner on
PV, constitutes a smooth diffeomorphism. The projection 7 : V ~ {0} — PV is
smooth as well.
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Proof. Let A : V. — V be a linear automorphism. Using the same symbol for
A : PV — PV, we obtain, from (1.5), the rational (and hence smooth) chart
representations (¢; o A o ¢, ) (@) = Az/f(Az). On the other hand, the chart
representations of 7 are identity mappings, cf. the first line of (1.5). (]

Lemma 1.3. If IK = C, the projective space PV carries a unique structure of a
complex manifold such that all chart mappings @y are biholomorphisms. In addi-
tion, the projection w:V ~ {0} — PV is then also holomorphic.

Proof. This is immediate since the transition mappings ¢; o <p;1, being rational,
are holomorphic. For the claim about m, see the proof of Lemma 1.2. (Il

When V = K", rather than PV one writes IKP™! and speaks of the real,
complex or quaternionic projective space of dimension n — 1 over the respective
field, where the latter the real/complex dimension n — 1 or (for IK = IH) the real
dimension 4(n —1). The 1-dimensional subspace L € P(V') spanned by a nonzero
vector (z!,...,2") in K™ is then denoted by [z!,...,2"] € P(V), and one refers
to al,..., 2" as homogeneous coordinates of L = [z*,..., a"].

Generalization to Grassmannians. In addition to V,n,IK as above, let us also
fix an integer ¢ with 0 < ¢ <n, set

(1.6) Gr,V = {L: L is a g-dimensional vector subspace of V'},
and define a surjective projection mapping m: StV — Gr,V by
(1.7) m(x) = Spanx for x = (zy,...,7,) € St,V,

where St,V denotes the Stiefel manifold formed by all ¢-frames (that is, linearly
independent ordered g-tuples of vectors) in V. (Thus, St,V is an open subset of
the gth Cartesian power V?.) One calls Gr,V the Grassmannian of g-planes in
V. The set Gr,V carries a natural manifold structure provided by the atlas

(1.8) {(Up) - f€VENA{0}},  with Uy = {Le P(V): f(L) =K},

indexed by all surjective linear operators f: V — IK?. (Instead of ‘f(L) = IK? one
may equivalently write ‘f maps L isomorphically onto IK?’). The chart mappings

op Uy — FHer) x oo x f(ey)

with eq,..., e, denoting the standard basis of IKY are slightly more complicated:

¢r sends each L € Uy onto the unique ordered g¢-tuple x = (x4,...,z,) of vectors

a
in L such that f(z,) =e, for a=1,...,q. In other words, using the inverse f;* of
the restriction isomorphism f; : L — K% we have ¢;(L) = ( THeq)s s fr(eg))-
Note that f(e1) x ... x f(e;) a coset, in V9, of the gth Cartesian power of
Ker f, and hence an affine subspace of V9.



2. THE LOCALLY SYMMETRIC METRICS

Lemma 2.1. Given a Lie group G and a smooth isometric left action of G on
a pseudo-Riemannian manifold (X,7), along with a manifold M and a surjective
submersion w: X — M for which the m-preimages of points in M are nondegen-
erate submanifolds of (X,7v) and coincide with the orbits of the G action, there
ezists a unique pseudo-Riemannian metric g on M such that ©*g and ~ have
the same restriction to the ~y-orthogonal complement H of the vertical distribution
YV =Kerdr of .

Furthermore, under the identification, provided by w, between M and the set
Y/G of oll G orbits, every isometry of (X,v) commuting with the G action
leads to an obvious bijection X /G — X/G, and hence M — M, which is then a
smooth isometry of (M, g) onto itself.

Proof. O

Generalization to Grassmannians. Irreducible (globally) symmetric Riemann-
ian manifolds come in pairs: one compact, and one not. The latter is usually called
the noncompact dual of the former.



