NOTES FOR MATH 7721: PROJECTIVE SPACES AND GRASSMANNIANS

ANDRZEJ DERDZINSKI

[DG] stands for Differential Geometry at

https://people.math.osu.edu/derdzinski.1/courses/851-852-notes.pdf [KG] for Kähler Geometry from a Riemannian Perspective at

https://people.math.osu.edu/derdzinski.1/courses/7721/kg.pdf

1. The manifold structures

Let V be a vector space of positive dimension $n < \infty$ over the scalar field \mathbb{K} , where \mathbb{K} is \mathbb{R}, \mathbb{C} or \mathbb{H} and, in the last (quaternionic) case, we mean a *left* vector space. By the *projective space* of V one means the set

(1.1) $PV = \{L : L \text{ is a 1-dimensional vector subspace of } V\},$

and a surjective projection mapping $\pi: V \setminus \{0\} \to PV$ is defined by

$$\pi(x) = \mathbb{K}x.$$

The set PV carries a natural manifold structure provided by the atlas

$$\{(U_f, \varphi_f) : f \in V^* \setminus \{0\}\}\$$

indexed by all nonzero linear functionals on V, where

(1.4)
$$U_f = \{ L \in P(V) : L \text{ is not contained in Ker } f \}$$

(instead of 'is not contained in Ker f' one could also write ' $f(L) = \mathbb{K}$ ' or, equivalently, 'f maps L isomorphically onto \mathbb{K} '), and $\varphi_f: U_f \to f^{-1}(1)$ sends each $L \in U_f$ onto its unique intersection point with $f^{-1}(1)$. Also, $f^{-1}(1)$ is a coset of Ker f, which makes it an affine space with the translation vector space $\operatorname{Ker} f$, and

$$\begin{array}{ll} (1.5) & \varphi_f: U_f \to f^{-1}(1) \quad \text{is a bijection with the inverse} \ \pi: f^{-1}(1) \to U_f \ \text{and} \\ \varphi_f(\mathbb{K} x) = x/f(x) \quad \text{whenever} \ L = \mathbb{K} x \in U_f \ \ (\text{that is, } x \in V \smallsetminus \operatorname{Ker} f). \end{array}$$

Compatibility of any two charts in (1.3) now follows since, for $f, h \in V^* \setminus \{0\}$, the set $\varphi_f(U_f \cap U_h) = A_f \setminus \text{Ker } h$ is open in $f^{-1}(1)$ (due to closedness of Ker h in the ambient space V), while $(\varphi_f \circ \varphi_h^{-1})(x) = x/f(x)$ as a consequence of (1.5). (For the meaning of compatibility, see [**DG**, Section 1].)

Lemma 1.1. The atlas (1.3) satisfies the Hausdorff and countability axioms, cf. [**DG**, Section 1 and 14], and so it actually turns PV into a smooth manifold which, in addition, is compact.

Proof. See Problem 1 in **Homework** #3.

Lemma 1.2. Every linear automorphism of V, acting in an obvious manner on PV, constitutes a smooth diffeomorphism. The projection $\pi: V \setminus \{0\} \to PV$ is smooth as well.

Proof. Let $A: V \to V$ be a linear automorphism. Using the same symbol for $A: PV \to PV$, we obtain, from (1.5), the rational (and hence smooth) chart representations $(\varphi_f \circ A \circ \varphi_h^{-1})(x) = Ax/f(Ax)$. On the other hand, the chart representations of π are identity mappings, cf. the first line of (1.5).

Lemma 1.3. If $\mathbb{K} = \mathbb{C}$, the projective space PV carries a unique structure of a complex manifold such that all chart mappings φ_f are biholomorphisms. In addition, the projection $\pi: V \setminus \{0\} \to PV$ is then also holomorphic.

Proof. This is immediate since the transition mappings $\varphi_f \circ \varphi_h^{-1}$, being rational, are holomorphic. For the claim about π , see the proof of Lemma 1.2.

When $V=\mathbb{K}^n$, rather than PV one writes $\mathbb{K}\mathrm{P}^{n-1}$ and speaks of the real, complex or quaternionic projective space of dimension n-1 over the respective field, where the latter the real/complex dimension n-1 or (for $\mathbb{K}=\mathbb{H}$) the real dimension 4(n-1). The 1-dimensional subspace $L\in P(V)$ spanned by a nonzero vector (x^1,\ldots,x^n) in \mathbb{K}^n is then denoted by $[x^1,\ldots,x^n]\in P(V)$, and one refers to x^1,\ldots,x^n as homogeneous coordinates of $L=[x^1,\ldots,x^n]$.

Generalization to Grassmannians. In addition to V, n, \mathbb{K} as above, let us also fix an integer q with $0 \le q \le n$, set

(1.6)
$$\operatorname{Gr}_q V = \{L : L \text{ is a } q\text{-dimensional vector subspace of } V\},$$

and define a surjective projection mapping $\pi: \operatorname{St}_q V \to \operatorname{Gr}_q V$ by

(1.7)
$$\pi(\mathbf{x}) = \operatorname{Span} \mathbf{x} \text{ for } \mathbf{x} = (x_1, \dots, x_q) \in \operatorname{St}_q V,$$

where $\operatorname{St}_q V$ denotes the *Stiefel manifold* formed by all *q-frames* (that is, linearly independent ordered *q*-tuples of vectors) in V. (Thus, $\operatorname{St}_q V$ is an open subset of the qth Cartesian power V^q .) One calls $\operatorname{Gr}_q V$ the *Grassmannian of q-planes* in V. The set $\operatorname{Gr}_q V$ carries a natural manifold structure provided by the atlas

$$(1.8) \{(U_f, \varphi_f) : f \in V^* \setminus \{0\}\}, \text{with } U_f = \{L \in P(V) : f(L) = \mathbb{K}^q\},$$

indexed by all surjective linear operators $f: V \to \mathbb{K}^q$. (Instead of ' $f(L) = \mathbb{K}^q$ ' one may equivalently write 'f maps L isomorphically onto \mathbb{K}^q '). The chart mappings

$$\varphi_f: U_f \to f^{-1}(e_1) \times \ldots \times f^{-1}(e_q)$$

with e_1,\ldots,e_q denoting the standard basis of \mathbb{K}^q , are slightly more complicated: φ_f sends each $L\in U_f$ onto the unique ordered q-tuple $\mathbf{x}=(x_1,\ldots,x_q)$ of vectors in L such that $f(x_a)=e_a$ for $a=1,\ldots,q$. In other words, using the inverse f_L^{-1} of the restriction isomorphism $f_L:L\to\mathbb{K}^q$, we have $\varphi_f(L)=(f_L^{-1}(e_1),\ldots,f_L^{-1}(e_q))$. Note that $f^{-1}(e_1)\times\ldots\times f^{-1}(e_q)$ a coset, in V^q , of the qth Cartesian power of Ker f, and hence an affine subspace of V^q .

.....

.....

2. The locally symmetric metrics

Lemma 2.1. Given a Lie group G and a smooth isometric left action of G on a pseudo-Riemannian manifold (Σ, γ) , along with a manifold M and a surjective submersion $\pi: \Sigma \to M$ for which the π -preimages of points in M are nondegenerate submanifolds of (Σ, γ) and coincide with the orbits of the G action, there exists a unique pseudo-Riemannian metric g on M such that π^*g and γ have the same restriction to the γ -orthogonal complement $\mathcal H$ of the vertical distribution $\mathcal V = \operatorname{Ker} d\pi$ of π .

Furthermore, under the identification, provided by π , between M and the set Σ/G of all G orbits, every isometry of (Σ, γ) commuting with the G action leads to an obvious bijection $\Sigma/G \to \Sigma/G$, and hence $M \to M$, which is then a smooth isometry of (M, g) onto itself.

Proof.

Generalization to Grassmannians. Irreducible (globally) symmetric Riemannian manifolds come in pairs: one compact, and one not. The latter is usually called the *noncompact dual* of the former.