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January 8: Almost-complex manifolds. Examples: complex vector spaces; open sub-
manifolds; Cartesian products [FR]. Orientations in a real vector space of a positive finite
dimension [FR]. Connectedness of the automorphism group (and of the set of all ordered
bases) of a finite-dimensional complex vector space [FR]. The conclusion that finite-dimen-
sional complex vector spaces and, consequently, almost-complex manifolds, are canonically
oriented. The covariant 2-tensors

(1.1) aJ = a(J · , · ), Ja = −a( · , J · )
arising from a given covariant 2-tensor a on an almost-complex manifold. Hermitian
(symmetric) 2-tensors a and skew-Hermitian 2-forms a, defined by requiring that

(1.2) aJ = Ja.

Hermitian metrics on an almost-complex manifold, characterized, equivalently [Home-
work #1, Problems 1–2], by being real parts of complex-valued Hermitian fibre metrics;
or, being those metrics which make J skew-adjoint at each point; or, finally, by being
the metrics turning J , at each point, into a linear isometry of the tangent space. The
fact that, when one uses a Hermitian metric g to identify any covariant 2-tensor a with
the endomorphism A of the tangent bundle TM characterized by a(v, · ) = g(Av, · ) for
all tangent vector fields v, the 2-tensors aJ and Ja correspond in the same way to the
composite bundle endomorphisms AJ and JA, and so

(1.3) aJ = Ja if and only if [J,A] = 0,

[ , ] being the commutator. The one-to-one J-correspondence between Hermitian 2-ten-
sors and skew-Hermitian 2-forms. The Kähler form

(1.4) Ω = gJ, that is, Ω = g(J · , · ),
of the given Hermitian metric g on an almost-complex manifold. The equality, in which
( )∧m and dg denote the mth exterior power [FR] and, respectively, the volume form of
the oriented Riemannian manifold (M, g) (see below, under January 10):

(1.5) Ω∧m = m! dg, for m = dimCM.

References: [KG]: Section 3 except formula (3.2), and Remark 4.1(iii) except the last
sentence. Homework #1.
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January 10: The relations detA = ±1 for the transition matrix A between two ortho-
normal bases in a Euclidean n-space V or, in other words, any orthogonal n× n matrix
[FR], as well as ζ(w1, . . . , wn) = δζ(v1, . . . , vn) whenever v1, . . . , vn, w1, . . . , wn ∈ V sat-
isfy the matrix equality [w1 . . . wn] = [v1 . . . vn]A (that is, wj = Akj vk), where A is an
arbitrary n× n matrix and δ denotes its determinant [FR]. The volume form of an ori-
ented Euclidean space, or of an oriented Riemannian manifold [FR]. Tensor products and
symmetric/exterior powers of finite-dimensional real/complex vector spaces [FR]. Proof
of (1.5). Holomorphic mappings and biholomorphisms. Integrability of almost-complex
structures. Complex manifolds.

References: [KG]: Section 7 (the first 4 lines and the final paragraph). Homework #2.

January 12: Kähler connections on almost-complex manifolds. Kähler metrics/mani-
folds. Examples: complex vector spaces with Hermitian inner products; open submani-
folds; Cartesian products; oriented Riemannian surfaces (since an oriented Euclidean plane
is, naturally, the same as a complex line with a Hermitian inner product). Almost-complex
submanifolds. The Levi-Civita connection of a submanifold metric [FR]. The fact that
almost-complex submanifolds of Kähler manifolds become Kähler manifolds when endowed
with the submanifold metric. Locally symmetric Kähler manifolds, and a proof of their
actually being Kähler manifolds.

References: [KG]: Section 4 (the first three paragraphs and the paragraph immediately
following Remark 7.2). Homework #3.

January 17: The Stiefel manifold StqV of q-frames, and the Grassmannian GrqV of
q-planes in V, where V is a vector space of finite positive dimension n over the field
IK of real/complex numbers or quaternions, and q ∈ {0, 1, . . . , n}. The projective space
PV = Gr1V. The smooth projections π : StqV → GrqV and π : V r {0} → PV, holo-
morphic in the complex case (IK = C). Holomorphicity, when IK = C, of the mappings
PV → PV induced by complex-linear automorphisms of V .

References: [PS]. Homework #4.

January 19: The normal quotient metric g arising when an isometric action of a Lie
group G on a pseudo-Riemannian manifold (Σ, γ) has nondegenerate orbits and admits
a smooth quotient manifold M . The case where, for IK = IR or IK = C and V, n, q as
before, V is endowed with a bilinear/sesquilinear, symmetric/Hermitian, nondegenerate
form 〈 , 〉 which is either positive definite (ε = 1) or has the sign pattern of q minuses
and n − q pluses (ε = −1), and the resulting open submanifold M of GrqV given by

M = {L ∈ GrqV : ε〈 , 〉 is positive definite on L}. The normal quotient metric g on M
for q = 1 and the submanifold metric γ on Σ = {x ∈ V : 〈x, x〉 = ε}, with the group G
of unit scalars in IK acting via ordinary multplication. The terminology used for (M, g):
a constant-curvature real projective space or a complex projective space with a Fubini-Study
metric (ε = 1), and a real/complex hyperbolic space (ε = −1). The fact that such (M, g) are
(globally) symmetric Riemannian (or, Kähler) manifolds.

References: [PS]; [KG, the paragraph following Remark 7.2]. Homework #5.

January 22: The generalization of the preceding construction to arbitrary q, using the
submanifold Σ of StqV consisting of all (anti)orthonormal q-frames, the orthogonal or
unitary matrix group G, so that G = O(q) if IK = IR, and G = U(q) if IK = C, while γ
is the submanifold metric inherited by Σ from its ambient vector space, namely, the qth
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Cartesian power V q. The terminology used for (M, g): a real/complex Grassmannian with
a standard metric (ε = 1) and, respectively, its noncompact dual (ε = −1). The observation
that, again, all resulting (M, g) are symmetric Riemannian/Kähler manifolds.

References: [PS]; [KG, the paragraph following Remark 7.2]. Homework #6.

January 24: Nonsingular projective algebraic varieties as examples of Kähler manifolds.
The Grassmannian Gr+q V of oriented q-planes in a finite-dimensional real vector space

V, with the two-to-one surjective projection Gr+q V → GrqV, including the special case of

the sphere Gr+1 V. Almost-Kähler metrics/manifolds, including Kähler metrics as a special
case. Finite partitions of unity, oriented integration of compactly supported continuous
top-degree differential forms, the Stokes theorem, and de Rham cohomology [FR], [KG,
Section 2]. The Kähler form Ω = gJ of the given almost-Kähler manifold (M, g), and its
Kähler (cohomology) class

(7.1) [Ω ] ∈ H2(M, IR).

References: [PS]; [KG, Section 5 (the first paragraph, (iii) in Remark 4.1, the 4-line
paragraph preceding Theorem 5.3, and Remark 5.1)]. Homework #7.

January 26: Positive and negative cohomology classes in H2(M, IR) on an almost
complex manifold M, and the fact that, by (1.5), if M is compact, positivity implies
being nonzero. Mutual exclusiveness of positivity/negativity/vanishing in H2(M, IR) for
a compact almost-complex manifold M. Complex-linearity of R(u, v) in Kähler manifolds:

(8.1) [R(u, v), J ] = 0,

where [ , ] denotes the commutator, and u, v are any tangent vector fields; the latter is
also the case in the following equality, for the Ricci form ρ = rJ of an arbitrary Kähler
manifold, r being its Ricci tensor:

(8.2) trIRJ [R(u, v)] = −2ρ(u, v)

(in coordinates, Rklp
qJpq = −2ρkl), easily implying, via the second Bianchi identity,

(8.3) Hermitian symmetry of r and closedness (dρ = 0) of ρ.

Proof of (8.2) based on the identity

(8.4) ρkl = Rpkl
qJpq ,

which arises, via contraction against gqs, from the relation

(8.5) RqlspJ
p
k = RqlkpJ

p
s

that is, symmetry of RqlspJ
p
k in s, k, reflecting self-adjointness of the composite of two

commuting skew-adjoint morphisms – namely, R(u, v) and J in (8.1), cf. [Homework
#9, Problem 1].
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References: [KG, Section 5 (the text following the proof of Theorem 5.3); Section 4 (the
two lines preceding formula (4.1) plus the first 11 lines following it, and (i)–(ii) in Remark
4.1); Homework #8.

January 29: Another consequence of (8.5), obtained by contracting it against Jkr :

(9.1) R(Ju, Jv) = R(u, v),

u, v being any vector fields. The first Chern class c1(E) of a complex vector bundle E
and the formula for it using the curvature tensor R of any connection in E :

(9.2) 2πc1(E) = [Im ζ ], where ζ = trC [R( · , · )],

that is, ζ(u, v) = trC [R(u, v)] for all tangent vector fields u, v. The conclusion that

(9.3) (a) trC [R( · , · )] = iρ, (b) [ρ] = 2πc1(M) ∈ H2(M, IR)

in any Kähler manifold (M, g), derived from (8.2), (9.2) and the equality

(9.4) trIRA = 2 Re trCA,

valid whenever A is a complex-linear endomorphism of a finite-dimensional complex vector
space [Homework #9, Problem 2]. The (complex-valued) connection 1-forms Γ ba and
curvature 2-forms Rb

a on U, representing a given connection ∇ in a complex vector bundle
E over a manifold M, and its curvature tensor R, relative to a system ea of local trivializing
sections defined on an open set U ⊆M, with

(9.5) ∇vea = Γ ba (v)eb , R(v, w)ea = Rb
a(v, w)eb ,

v, w being arbitrary vector fields on U, so that, for ζ as in (9.2),

(9.6) Rb
a = −dΓ ba + Γ ca ∧ Γ bc , and ζ = Ra

a = −dΓ, where Γ = Γ aa .

The resulting local formula

(9.7) ρ = idΓ

obtained by combining (9.3.a) with the second part of (9.6) in the case where E is the
tangent bundle of a Kähler manifold. The fact that, due to positivity of Kähler classes,
H2(M, IR) 6= {0} for any compact almost-complex manifold M admitting an almost-
Kähler metric. An example of a compact complex manifold M with H2(M, IR) = {0}
(and hence with no almost-Kähler metric), provided by a Hopf manifold, that is, M =
S1 × Σ, where S1 denotes the circle of unit complex numbers, Σ the unit sphere in a
finite-dimensional complex vector space V carrying a fixed Hermitian norm | |, and the
complex structure is uniquely characterized by the requirement that the locally diffeomor-
phic surjective mapping

(9.8) V r {0} 3 x 7→ (eiθ log |x|, x/|x|) ∈ S1×Σ
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be holomorphic, θ being any nonzero real constant. (In other words, the local inverses
of (9.8) form a coordinate atlas with transition mapping which are holomorphic, namely,
constitute multiplications by positive constants.) The Betti numbers of spheres and the
Künneth formula for S1×N, derived from the Mayer-Vietoris sequence [FR].

References: [KG, Section 4 (the two lines before, and the first 11 lines after formula (4.1),
plus Remark 4.1); Section 2; Section 6 (parts (i), (ii) of Remark 6.1 and the first two
paragraphs following it)]. Homework #9.

January 31: The observation that, in a Euclidean space V ,

(10.1) 2 trBA = trB(A−A∗) if A,B ∈ EndV and B∗ = −B.

The component formula for the (pointwise) adjoint A∗ of any smooth bundle morphism
A : TM → TM in a Riemannian manifold (M, g):

(10.2) B = A∗ has the components Bj
k = Akj , that is, Bj

k = Ap
qgpkgqj .

The local identities, valid for any smooth vector field v on a Kähler manifold (M, g),

(10.3)

i) tr (JA) = δ(Jv),

ii) δ(JA∗) = ρ(v, · ),
iii) tr JAJA = −r(v, v) + (tr JA)2 + δ [JAJv − (tr JA)Jv],

iv) tr JAJA∗ = −r(v, v) + δ(JA∗Jv),

with A = ∇v : TM → TM, and δ denoting the divergence of both vector fields and bundle
endomorphisms of TM. The coordinate versions Jpq v

q
,p = (Jpq v

q),p and

(10.4) Jpq vk,
q
p = ρlkv

l

of (10.3.i) and (10.3.ii). Proofs of (10.3.i) – (10.3.iii). The observation that, by (10.4),

(10.5) Jpq vk,p
q = −ρlkv l,

since tr JA∗ = −tr JA, for any bundle endomorphism of TM. (In fact, tr JA∗ = tr (JA∗)∗ =
trAJ∗ = −trAJ = −tr JA.)

References: [KG, Section 4 (formulae (4.1.b) and (4.2), along with the three lines preceding
formula (4.2) and six lines following it)]. Homework #10.

February 2: Proof of (10.3.iv). The notation v ∼ ξ, or ξ ∼ v, and a ∼ A, or A ∼ a,
for a vector field v, a differential 1-form ξ, a twice-covariant tensor field a, and a bundle
endomorphism A of TM, in a Riemannian manifold (M, g), meaning that

(11.1) ξ = g(v, · ) and a = g(A· , · ).

The observation that

(11.2) ∇ξ ∼ ∇v if ξ ∼ v.
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The seemingly-counterintuitive minus sign in the relation

(11.3) ξJ ∼ −Jv whenever ξ ∼ v,

satisfied by vector fields v and 1-forms ξ on an almost-complex manifold M carrying
a fixed Hermitian metric g, and immediate from skew-adjointness of J (which, for ξ =
g(v, · ), gives ξJ = g(v, J · ) = −g(Jv, · )); here ξJ , also written as J∗ξ, is the composite
bundle morphism TM → TM →M×IR, of J followed by ξ. The operator i∂∂ associated
with any given almost-complex manifold M, sending each smooth function f : M → IR
to the exact 2-form i∂∂f such that

(11.4) 2i∂∂f = −d [(df)J ].

The expression for i∂∂ in terms of any given torsionfree connection ∇ on M :

(11.5) 2i∂∂f = aJ + Ja − (df)(dJ), for a = ∇df,

(df)(dJ) being the composite in which dJ is the TM -valued 2-form assigning [∇uJ ]v −
[∇vJ ]u to vector fields u, v. The conclusion that, when the almost-complex manifold M
admits a Kähler connection ∇ (a torsionfree one having ∇J = 0), the operator i∂∂
takes values in skew-Hermitian 2-forms – as A with A ∼ i∂∂f, being then, for any f,
the anticommutator of J with B characterized by B ∼ ∇df, must commute with J , cf.
[Homework #11, Problem 3]. The formula

(11.6) trg [(i∂∂f)J ] = −∆f,

for smooth functions f on Kähler manifolds. The equality

(11.7)
√

2 ‖ζ‖ = ‖trg ζJ‖

satisfied by any exact skew-Hermitian differential 2-form ζ on a compact Kähler manifold
(M, g), where ‖ ‖ denotes the L2 norm, both for functions and bundle endomorphisms of
TM, the latter based on the inner product 〈 , 〉 with

(11.8) 〈A,B〉 = trAB∗

in EndV , for any Euclidean space V . Proof of (11.7), consisting of the following steps.
First, let ζ = dξ for a 1-form ξ, and let A = ∇v for the vector field v with v ∼ ξ. Thus,

(11.9) ζ ∼ A −A∗.

Note that (10.1) for B = J combined with (11.9) yields

(11.10) trg ζJ = 2 tr JA.

Now 2‖ζ‖2 equals, by (10.1) for B = A−A∗, the integral of −4 tr (A−A∗)A, and hence
the integral of 4 tr J(A−A∗)JA. (The ‘skew-Hermitian’ hypothesis means that A−A∗
commutes with J , and so A−A∗ = −J(A−A∗)J.) The integral of 4 tr J(A−A∗)JA =
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4(tr JAJA − tr JAJA∗) equals, however, that of (2 tr JA)2, due to (10.3.iii) – (10.3.iv) and
the divergence theorem. Therefore (11.8) follows from (11.10).

References: [KG, Section 4 (the three lines preceding Remark 4.1); formula (3.2) in Section
3; Section 4 (formula (4.3), part (d) of Lemma 4.2, and the first paragraph of its proof)].
Homework #11.

February 5: The conclusion, obvious from (11.8) that, for a compact Kähler manifold,

(12.1) the operator η 7→ trgηJ acting on exact skew-Hermitian 2-forms is injective.

The ∂∂ Lemma in any compact connected Kähler manifold the operator i∂∂ sending
smooth real-valued functions f to values to smooth exact skew-Hermitian 2-forms ζ is
surjective, and its kernel consists of constant functions. Proof of the ∂∂ Lemma, with
the claim about the kernel obvious [FR] from (11.6), and surjectivity immediate since the
function trg ζJ, having the integral 0 due to (11.10), (10.3.i), and the divergence theorem,

must equal −∆f for some f, so that, from (11.6), trg ηJ = 0 for η = ζ− i∂∂f which, by
(12.1), yields η = 0, as required. The ratio γ : M → (0,∞) of the volume elements of two
Riemannian metrics g and ĝ on an oriented manifold M, characterized by the equality
dĝ = γ dg, and the observation that

(12.2) detg ĝ = γ 2,

detg ĝ meaning det Ĥ for Ĥ = A : TM → TM as in (11.1) with a = ĝ . The formula

(12.3) ρ̂ = ρ − i∂∂ log γ ,

relating the Ricci forms ρ and ρ̂ of two Kähler metrics g, ĝ on the same almost-complex
manifold, where γ denotes the ratio of their volume elements, that is, dĝ = γ dg. Proof
of (12.3), first part: from (9.5) – (9.7) we get ρ = idΓ, where Γ = Γ aa and, analogously,

ρ̂ = idΓ̂, with Γ̂ = Γ̂ aa . At the same time, g and ĝ are the real parts of (unique)
Hermitian fibre metrics

(12.4) h = g − iΩ

and ĥ = ĝ − iΩ̂, cf. [Homework #1, Problem 2] and (1.4). The complex-linear endo-

morphism Ĥ : TU → TU over the local-trivialization domain U characterized by

(12.5) ĥ = h(Ĥ · , · )

must be the same as Ĥ in the line following (12.2), as one sees applying Re to (12.5). Its

complex-valued component functions Ĥ b
a with Ĥea = Ĥ b

aeb satisfy the relation

(12.6) ĥab = Ĥ c
ahcb ,

obtained by evaluating (12.5) on the pair (ea, eb). Four functions on U, valued in complex

m×m matrices (where m = dimCM) now emerge: G, Ĝ and Ĥ, having the entry in the
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bth row and ath column equal to hab, ĥab and, respectively, Ĥ b
a , cf. (9.5). As the values of

G and Ĝ are Hermitian and positive definite, it follows, according to [Homework #12,
Problem 1] and, respectively, (12.6), that

(12.7) D = detG and D̂ = det Ĝ are real and positive, while GĤ = Ĝ .

Applying det to the equality GĤ = Ĝ in (12.7) we obtain

(12.8) det Ĥ = D̂/D and det Ĥ = detCĤ = γ,

where det Ĥ = detCĤ since Ĥ is, for every point of x ∈ U, the matrix of Ĥ in the

complex basis of TxM formed by the values of ea at x, and detCĤ also equals γ, the

square root of detIRĤ – see (12.2) – as Ĥ, being h-self-adjoint and positive due to (12.5),
has in some complex orthonormal basis of TxM a diagonal matrix with positive real
entries on the diagonal, while in the corresponding real orthonormal basis [Homework
#1, Problem 6] each of these diagonal entries is repeated twice. The formula

(12.9) (detF )˙ = (detF ) tr F−1Ḟ ,

valid for any smooth curve t 7→ F = F (t) of linear automorphisms of a finite-dimensional
real/complex vector space [FR], [formula (6.1) in KG and the paragraph following it].

References: [KG, Section 4 (parts (a) – (c) of Lemma 4.2 and the second paragraph of its
proof; formula (6.2.a) along with the three lines before and five lines after it; part (iii) of
Remark 6.1 and the four paragraphs following it)]. Homework #12.

February 7: Three proofs of (12.9): one using the cofactor expansion of the determinant,
another based on evaluating the differential of det at the identity, and the third one
involving the two actions of F on the top exterior power of the given vector space. Proof
of (12.3), second part: applying (12.9) to F = G or F = Ĝ along any integral curve
t 7→ x(t) ∈M of any smooth local vector field w tangent to M, one gets, from (12.7),

(13.1) dw logD = trC(G−1dwG), dw log D̂ = trC(Ĝ−1dwĜ).

Next, as ∇h = 0 by (12.4), the Leibniz rule gives

(13.2) dwhab = Γ ca (w)hcb + Γ cb (w)hca

as well as its analog for ĥ and the Levi-Civita connection ∇̂ of ĝ or, in matrix form,

(13.3) dwG = GT + (GT )∗ , dwĜ = ĜT̂ + (ĜT̂ )∗ ,

∗ denoting the conjugate transpose, and T or T̂ the matrix-valued function with the
entry in the bth row and ath column equal to Γ ba (w) or, respectively, the analogous

expression Γ̂ ba (w) corresponding to ∇̂. Now (13.1) and (13.3) give

(13.4) dw logD = tr (G−1dwG) = tr (T + T ∗) = 2 Re tr T = 2 ReΓ (w),
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for Γ = Γ aa as in (9.6). Hence d logD = 2 ReΓ and, analogously, d log D̂ = 2 Re Γ̂, so
that (12.8) and (9.7) yield

(13.5) d log γ = 2 Re (Γ̂ − Γ ), ρ − ρ̂ = id(Γ − Γ̂ ) = d [i(Γ − Γ̂ )].

References: [KG, Section 6 (the long paragraph before Theorem 6.2)]. Homework #13.

February 9: Proof of (12.3), third part: Γ − Γ̂ is, at every point x ∈ U, a complex-
linear mapping TxM → C. (In fact, so is Γ ba − Γ̂ ba for each pair of indices a, b, since

∇̂vw − ∇vw depends on v, w symmetrically and complex-bilinearly: symmetry follows
as both connections are torsionfree, while C-linearity in v is immediate from symmetry
and C-linearity in w, the latter being due to the relations ∇J = ∇̂J = 0.) Therefore,

since ρ and ρ̂ are real-valued, (13.5) gives ρ − ρ̂ = d [(Γ − Γ̂ )J ] = Re d [(Γ − Γ̂ )J ] =

dRe [(Γ − Γ̂ )J ] = −d [(d log γ)J ]/2 = i∂∂ log γ, with the last equality due to (11.4), which
proves (12.3). Einstein and Kähler-Einstein metrics/manifolds. Ricci-flatness.

References: [KG, Section 6 (the long paragraph before Theorem 6.2)]. Homework #14.

February 12: Positivity/negativity of c1(M) for any compact almost-complex manifold
M carrying a non-Ricci-flat Kähler-Einstein metric, the sign being the same as that of
the Einstein constant λ. The Calabi conjecture (for c1 < 0, proved independently by
Aubin and Yau): every compact almost-complex manifold M with c1(M) < 0, admitting
a Kähler metric, also admits a Kähler-Einstein metric. The Calabi conjecture (for c1 = 0,
proved by Yau): if ρ is a closed skew-Hermitian 2-form on a compact almost-complex manifold
M admitting a Kähler metric, and [ρ] = 2πc1(M), then every positive cohomology class in
H2(M, IR) contains the Kähler form of a Kähler metric for which ρ the Ricci form. The Gold-
berg conjecture (still open): a compact almost-Kähler Einstein manifold is necessarily a Kähler
manifold. The inequalities

(15.1) a ≤ b, a < b, a ≥ b, a > b

for twice-covariant symmetric tensors or tensor fields a, b, meaning that a− b is positive
semidefinite (or definite), or negative semidefinite (or definite), at the given point, or at ev-
ery point. Uniqueness in the Calabi conjectures (proved by Calabi, with the normalization
λ = −1 for the Einstein constant λ). Proof of uniqueness in the first Calabi conjecture.

References: [KG, Section 5 (the paragraph preceding Lemma 5.2); Section 6 (part (a) of
Theorem 6.2 and its proof)]. Homework #15.

February 13: Proof of the uniqueness assertion in the second Calabi conjecture.

References: [KG, Section 6 (the long paragraph before Theorem 6.2)]. Homework #16.

February 14:

(17.2) £ug = g(A· , · ) for A = B +B∗ and B = ∇u,

(17.3) (£ug)jk = uj,k + uk,j .
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(17.4) £vJ = [J,∇v].

The Lie-bracket-versus-commutator relation

(17.5) £[v,w] = [£v,£w],

The divergence of a smooth real-linear endomorphism A of tangent bundle of a manifold
M endowed with a connection, defined to be the 1-form η = δA on M given by

(17.8) ηj = Akj,k ,

so that, due to (10.2), in the case of the Levi-Civita connection of a Riemannian metric g,
for the (pointwise) adjoint A∗ of A and ξ = δA∗, one has

(17.9) ξj = gjlA
l
k
,k.

References: [KG, Section 6 (the long paragraph before Theorem 6.2)]. Homework #17.

February 16: The Lie subalgebra i(M, g) (or, h(M)) of XM for a Riemannian (or,
almost-complex) manifold (M, g) (or, M), consisting of all Killing (or, respectively, hol-
omorphic) vector fields, XM being the Lie algebra of all smooth vector fields on M. The
Bochner identity [FR]

(18.1) Rjkv
k = vk,jk − vk,kj , that is, r( · , v) = δ∇v − dδv

valid whenever v is a smooth vector field on a manifold endowed with a torsionfree con-
nection ∇ (the Ricci tensor r of which need not be symmetric). The linear differential
operator D : XM → XM, associated with an arbitrary Riemannian manifold (M, g), and
defined by

(18.2) Dw = −∆w − rw, that is, (Dw)j = −wj,kk − Rjkw
k ,

where the second formula is the local-coordinate version after index lowering. The observa-
tion that (18.2) and (18.1) give (Dw)j = −wj,kk−wk,jk+wkk,j = −(wj,k + wk,j)

,k+wkk,j
or, equivalently,

(18.3) g(Dw, · ) = −δ£wg + dδw

for any smooth vector field w on a Riemannian manifold (M, g). The identity

(18.4) |£wg|2 = 2(wj,k + wk,j)w
j,k

arising as a trivial consequence of symmetry of wj,k + wk,j in j, k. The equality

(18.5) 2(Du, u) = ‖£ug‖2 − 2‖δu‖2

10



satisfied by all compactly supported smooth vector fields u on any Riemannian manifold
(M, g). The proof of (18.5) based on integration by parts:

(18.6) letting ≈ always mean ‘differs by a divergence’

we see that (18.4) yields |£ug|2 ≈ −2(uj,k + uk,j)
,kuj, while this last expression is the

inner product of u and the vector field corresponding via g to −2δ£ug, or – by (18.3) –
of u and the vector field 2(Du − ∇δu), and so |£ug|2 ≈ 2[g(Du, u) + (δu)2], due to the
obvious relation −g(∇δu, u) = −uk,kjuj ≈ uk,ku

j
,j = (δu)2. A further integral formula:

(18.7) (Dv, v) = ‖∇v‖2 −
∫
M

r(v, v) dg,

where v is, again, a compactly supported smooth vector field on a Riemannian manifold
(M, g), and the claim is, again, obvious from (18.2) via integration by parts. The equality

(18.8) δ [J,∇v]∗ = −g(JDv, · )

valid for any smooth vector field v on a Kähler manifold, and its consequence

(18.9) 2(Dv, v) = ‖£vJ‖2

in the case where v is compactly supported (both established below), ‖ ‖ and ( , ) denot-
ing the L2 norm and L2 inner product. The conclusion – immediate from (18.9), (18.8)
and (18.3) – that, in a compact Kähler manifold (M, g),

(18.10) D ≥ 0 and i(M, g) ⊆ h(M) = KerD,

or, equivalently, the operator D is nonnegative, and its kernel consists precisely of all
holomorphic vector fields, while all Killing fields are holomorphic. Proof of (18.8) in
local coordinates: the kth component of the left-hand side is gkl(J

l
pv
p
,q − v l,pJ

p
q ),q =

gklJ
l
pv
p
,q
,q−Jpq vk,pq while, by (10.5), −Jpq vk,pq equals the the kth component of ρ(v, · ) =

r(Jv, · ) = g(rJv, · ) = g(Jrv, · ) due to Hermitian symmetry of r, so that (18.2) yields
(18.8). Proof of (18.9): by (17.5), for A = ∇v one has £vJ = [J,A], which gives |£vJ |2 =
tr [J,A][J,A]∗ = 2 trJAJA∗ + 2 trAA∗, and so, as trAA∗ = |∇v|2, (18.9) follows via
integration, in view of (10.3.iv) and the divergence theorem, combined with (18.7).

References: [KG, Section 9 (formulae (9.1), (9.2), (9.5), parts (i) and (iii) in Remark 9.1,
Lemma 9.2)]. Homework #18.

February 19: Examples of Einstein manifolds: vector spaces with constant metrics
(which are flat, hence Ricci-flat); suitable Riemannian products (with Einstein factors of
the same Einstein constant); Riemannian surfaces of constant Gaussian curvature. The
Einstein condition as a consequence of irreducibility of the local isotropy representation
at every point (or just at one point, in the locally homogeneous case); further examples
of Einstein manifolds provided, for this last reason, by complex projective spaces with the
Fubini-Study metrics, complex hyperbolic spaces, and standard spheres.
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Bochner’s integral formula [FR] valid whenever v is a compactly supported smooth
vector field on a Riemannian manifold (M, g):

(19.2)

∫
M

r(v, v) = ‖δv‖2 −
∫
M

tr (∇v)2dg,

and its version for gradients v = ∇f of compactly supported smooth functions:

(19.3)

∫
M

r(v, v) = ‖∆f‖2 − ‖∇v‖2 ,

leading to the equality

(19.4) τ ‖v‖2 = (Dv, v) + 2

∫
M

r(v, v) dg if v = ∇f and ∆f = −τf,

f being here a smooth function on a compact Riemannian manifold (M, g). Proof of

(19.4): as τ ‖v‖2 = −τ (f,∆f) = ‖∆f‖2, (19.3) gives τ ‖v‖2 = ‖∇v‖2 +
∫
M
r(v, v) dg, and

(18.7) yields (19.4). A trivial consequence of (19.4) and the first part of (18.10): in any
compact Kähler manifold (M, g) such that r ≥ λg, cf. (15.1), and λ ∈ (0,∞), one has

(19.5) τ ≥ 2λ for every nonzero eigenvalue τ of −∆.

The Lichnerowicz inequality τ ≥ nλ/(n−1) (a conclusion analogous to, but weaker than
(19.5)), valid [FR] whenever (M, g) above is only assumed to be a compact Riemannian
manifold, of (real) dimension n ≥ 2.

References: [KG, Section 9 (Lemma 9.2, formula (9.9), and the first part of Theorem 9.4
along with the first line of its proof)]. Homework #19.

February 21:

(20.9) D∇f = −∇∆f − 2r∇f.

References: [KG, Section 9 (Lemma 9.2, formula (9.9), and the first part of Theorem 9.4
along with the first line of its proof)]. Homework #20.

February 23: The fact that, whenever ζ is a smooth bivector field (twice-contravariant
tensor field, skew-symmetric at every point) on a manifold M with a fixed torsionfree
connection admitting, locally, a parallel volume form, one has

(21.1) δδζ = 0 (in coordinates, ζ jk,jk = 0),

and its proof via integration by parts: fζ jk,jk ≈ −f,kζ jk,j ≈ −f,kj ζ jk = 0, with the

convention (18.6), whenever f is a smooth function compactly supported in an open set
forming the domain of a parallel volume form; here f,kjζ

jk = 0 due to symmetry of

the Hessian of f. An alternative proof of (21.1), in [Homework #21, Problems 3–4],
with the local existence of parallel volume forms replaced by the equivalent requirement

12



of symmetry of the Ricci tensor. The conclusion that any smooth vector field w on a
Riemannian manifold satisfies the relation

(21.2) wj,k
kj = wj,k

jk ,

obvious from (21.1) applied to ζ jk = wj,k− wk,j, as well as the identity

(21.3) δ(Dw + 2rw) = −∆δw,

which follows since (18.2) and (18.1) give (Dw + 2rw)j = −wj,kk − Rjkwk + 2Rjkw
k =

−wj,kk + Rjkw
k = −wj,kk + wkj,k − wkk,j , and so (Dw + 2rw)j

,j = −wkk,jj = −∆δw,

the vanishing of −wj,kkj+wkj,k
j being nothing else than (21.2). An obvious corollary: in

an Einstein manifold with the Einstein constant λ,

(21.4) ∆φ = −2λφ whenever w ∈ KerD and φ = δw.

References: [KG, Section 9 (Lemma 9.2, formula (9.9), and the first part of Theorem 9.4
along with the first line of its proof)]. Homework #21.

February 26: Matsushima’s theorem (the general Riemannian version): for any compact
Einstein manifold, one has the L2-orthogonal decomposition

(22.4) KerD = k ⊕ p,

k = i(M, g) and p denoting, respectively, the Lie algebra of all Killing fields and the space of
all gradient vector fields in KerD. In the case where the Einstein constant λ is nonzero, the k
component u and p component v of any w ∈ KerD are given by

(22.5) u = w +
1

2λ
∇φ and v = − 1

2λ
∇φ, with φ = δw.

Also, k = p = KerD = {0} if λ < 0. Finally, when λ = 0, the space p is again trivial, and
KerD = k consists of all parallel vector fields. Proof of Matsushima’s theorem: the claim
about the case λ ≤ 0 is obvious from (18.7) and (18.2), since the (18.1) gives r(v, · ) = 0
for any parallel vector field v.

References: [KG, Section 9 (Lemma 9.2, formula (9.9), and the first part of Theorem 9.4
along with the first line of its proof)]. Homework #22.

February 27: Three trivial observations. First, whenever A,B, J are linear endomor-
phisms of a Euclidean space such that J2 = −Id and J∗= −J,

(23.1)
if [J,A] = 0 and A∗ = A, while B = JA, then [J,B] = 0 and B∗ = −B,
if [J,B] = 0 and B∗ = −B, while A = −JB, then [J,A] = 0 and A∗ = A.

Second, given smooth vector fields v, u on a Riemannian manifold,

(23.2) v is a local gradient if and only if A∗ = A, where A = ∇v,
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(by (11.9), as the local-gradient property of v obviously means closedness of the 1-form
ξ with ξ ∼ v); at the same time, from (17.2),

(23.3) u is a Killing field if and only if B∗ = −B, where B = ∇u.

Third, for smooth vector fields v, u on a Kähler manifold, since J is parallel,

(23.4) if u = Jv, then A = ∇v and B = ∇u are related by B = JA.

The consequence that, for J acting on vector fields in any Kähler manifold (M, g),

(23.5)
J maps h(M) isomorphically onto itself, and it also maps the space of local

gradients in h(M) isomorphically onto the space of Killing fields in h(M).

which is immediate if one uses (23.1) – (23.4) for A = ∇v and B = ∇u, noting that
holomorphicity of v (or, of u) amounts to the equality [J,A] = 0 (or, [J,B] = 0), cf.
(17.4). The fact that, whenever f is a smooth function on a Kähler manifold,

(23.7) ∇f is holomorphic if and only if the Hessian ∇df is Hermitian,

due to (1.2) – (1.3) applied to v = ∇f, with a = ∇df and A = ∇v, cf. (11.2) for ξ = f.
The Kähler case of Matsushima’s theorem, in which (22.5) – according to (18.10) – reads

(23.8) h(M) = k ⊕ p,

k = i(M, g) still being the real Lie algebra of all Killing fields, and p now (also) the space
of all holomorphic gradients while, in addition,

(23.9) p = Jk if the Einstein constant λ is nonzero.

Proof of (23.9); That J maps p into k is clear from the second claim in (23.5). Next, if
u ∈ k and the first claim in (23.5) gives Ju ∈ h(M) and so, by (23.5) and (23.8), Ju is
a local gradient and Ju = w − v with v ∈ p and w ∈ k. According to (23.2) – (23.4),
in the resulting equality ∇[Ju] = ∇w − ∇v the first and last terms are self-adjoint, the
remaining term both skew-adjoint and self-adjoint, and hence ∇w = 0. Now (18.1) with
r = λg gives 0 = rw = λw, and so w = 0, proving that Ju = −v ∈ p. Thus, J maps k
into p, as required. The relation

(23.10) uq,jk = Rqjk
sus + aqj,k + aqk,j − ajk,q , where aj,k = (uj,k + uk,j)/2

valid for any smooth 1-form u on a manifold carrying a fixed torsionfree connection, and
its proof based on rewriting the difference 2[uq,jk− (aqj,k + aqk,j − ajk,q)] with the aid of

three applications of the Ricci identity uq,jk−uq,kj = Rkjq
sus for 1-forms, followed by the

use of the first Bianchi identity. An obvious special case of (23.10):

(23.11) uj,kl = Rjkl
sus

14



whenever u is a Killing field on a Riemannian manifold, so that one then has

(23.12) ∇wB = R(u,w), where B = ∇u and w is any smooth vector field.

The resulting system of linear equations, satisfied by a Killing field u and B = ∇u along
any smooth curve t 7→ x(t):

(23.13) ∇ẋu = Bẋ, ∇ẋB = R(u, ẋ).

The conclusion that, due to uniqueness of solutions for (23.13), given a connected Rieman-
nian manifold and a point x ∈M,

(23.14) the linear operator i(M, g) 3 u 7→ (ux , [∇u]x) ∈ TxM × so(TxM) is injective.

The resulting dimension estimates, with n = dimM and, respectively, m = dimCM :

(23.15) dim i(M, g) ≤ n(n+ 1)

2
, dim i(M, g) ≤ m(m+ 2),

the first valid for any connected Riemannian manifold, the second for any compact con-
nected Kähler manifold, the improved estimate being due to the fact that, by (18.10),
the injective operator u 7→ (ux , [∇u]x) takes values in TxM × u(TxM). Complexifications
and real forms of Lie algebras. The conclusion – from (23.9) and (23.15) – that, in any
compact non-Ricci-flat Kähler-Einstein manifold (M, g), the Lie algebra k = i(M, g) of
Killing vector fields is a real form of h(M), and so

(23.16) dimIR i(M, g) = dimC h(M) ≤ m(m+ 2),

as a consequence of (23.15). The Lie algebra Der k of all derivations of a Lie algebra k
(linear endomorphisms of k obeying the Leibniz rule) and the Ad representation of k,
that is, that Lie-algebra homomorphism Ad : k→ Der k with

(23.17) Adu = [u, · ],

where the Der k-valuedness and the homomorphic property both amount to the Jacobi
identity. Compact (real) Lie algebras k, defined by requiring the existence of a Euclidean
inner product making Adu skew-adjoint for all u ∈ k. Compactness of i(M, g) for a
compact Riemannian manifold (M, g), the required condition being provided by the L2

inner product, due to the equality, satisfied whenever u, v are Killing fields:

(23.18) g([u, v], v) = δw, with w = −[g(v, u)]v.

Proof of (23.18): first, on a Riemannian manifold,

(23.19) δ(fv) = dvf + fδv for any vector field v and function f, both smooth.

(A trivial exercise.) Now g([u, v], v) = g(∇uv, v) − g(∇vu, v). As ∇v is skew-adjoint, and
g symmetric, this equals −g(∇vv, u)− g(v,∇vu) = −dv[g(v, u)]. (We choose to ignore the
fact that g(v,∇vu) = 0.) By (23.19), the last expression is nothing else than δw in (23.18).
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The corollary that h(M) has a compact real form whenever the given compact almost-complex
manifold M admits a non-Ricci-flat Kähler-Einstein metric (or, equivalently – by (9.3.b) – M
admits a Kähler-Einstein metric and c1(M) 6= 0). The Jacobi equation

(23.20) ∇ẋ∇ẋu = R(u, ẋ)ẋ

satisfied, in view of (23.13), by any Killing field on a Riemannian manifold, along any
geodesic. An alternative version

(23.21) uj,kl = usRslk
j

of (23.11), of interest since it makes sense for a smooth vector field u on a manifold
endowed with a torsionfree connection, and is known to hold if and only if the local flow
of u preserves the connection.

References: [KG, Section 9 (Lemma 9.2, formula (9.9), and the first part of Theorem 9.4
along with the first line of its proof)]. Homework #23.

February 28: The trivial fact that, on a connected Riemannian manifold, a local gradient
can at the same time be a Killing field only if it is parallel. A generalization – given a
smooth vector field v and Riemannian metrics g, ĝ on a connected manifold, if v is a
local gradient relative to g (meaning: closedness of the 1-form g(v, · )), and also a Killing
field for ĝ , then v must either vanish identically, or be nonzero everywhere. (Proof: if

v = 0 at a point z, let A = [∇v]z = [∇̂v]z for the Levi-Civita connections ∇, ∇̂ of g and
g, with the equality arising from the independence of A of the connection used; by (23.2) –

(23.3), A is gz-self-adjoint – and hence diagonalizable – as well as ĝz-skew-adjoint, and so
any of its real eigenvalues equals zero; thus, A = 0 and, consequently, (23.14) gives v = 0

on M .) Maximality of the real form k = i(M, g) in (23.8) among the Lie algebras k̂ = i(M, ĝ)
of Killing fields for all Kähler metrics ĝ on the given compact almost-complex manifold

M carrying our fixed non-Ricci-flat Kähler-Einstein metric. (Proof of maximality: if k̂
contained k as a proper subspace, being – by (18.10) – itself contained in h(M), it would,
due to dimensional reasons, nontrivially intersect the other summand p in (23.8), that is,
a nontrivial gradient relative to g would at the same time be a Killing field for ĝ , which
contradicts the preceding observation since, on a compact manifold, a gradient must vanish
somewhere.) The linear vector field x 7→ Ax on a finite-dimensional real/complex vector
space V , associated with any given linear endomorphism A ∈ EndV , and its local flow
t 7→ etA, defined as usual [FR]. The first-order linear ordinary differential equation

(24.1) Ψ̇ = AΨ

with ( )˙ = d/dt, satisfied when t 7→ Ψ = Ψ(t) takes values in V (or, in EndV ) and Ψ(t)
is equal to one of the expressions etAx, etA(x+y)−etAx−etAy, etA(cx)−cetAx, for any fixed
x, y ∈ V and c ∈ IR (or, respectively, Ψ = AetA − etAA). The resulting completeness
of the vector field A, as linearity leads to global solutions [FR]. Linearity of the flow
transformations etA, and the commutation relation AetA = etAA, both derived from the
uniqueness of solutions (as they involve the initial value 0 at t = 0). Projectability (the
existence of push-forwards) for vector fields under smooth mappings between manifolds
[FR]. Uniqueness and smoothness of the push-forward under a surjective submersion, if
the original vector field is smooth and projectable, immediate from the rank theorem [FR].
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The observation that any linear vector field A on V is projectable under π : V r{0} → PV
(namely, for two π-preimages x, cx ∈ V r {0} of a point in PV , the vectors of A at x
and cx are the velocitites at t = 0 of the curves t 7→ etAx and t 7→ etA(cx) = cetAx,
which both project onto the same curve in PV ). Holomorphicity of the projected vector
fields (dπ)A on PV , for all A ∈ EndV , due to the fact that they exist and are smooth
(according to the last two sentences), while the mappings PV → PV induced by com-
plex-linear automorphisms of V , such as etA, are holomorphic [FR]. Injectivity of the
push-forward operator dπ on the space End0V ⊆ EndV of all traceless endomorphisms

(the kernel of dπ clearly being the span of the identity), implying that, for m = dimCM,

by (23.16), m(m+ 2) = dimIREnd0 ≤ dimC h(M) ≤ m(m+ 2), which yields

(24.2) the complex-linear isomorphism dπ : End0V → h(M), where M = PV.

If A ∈ End0V is nonzero, so is (dπ)A ∈ h(M), while (dπ)A = 0 somewhere, since A has
eigenvectors; thus, as a consequence of two lines following (22.5),

(24.3) Fubini-Study metrics are Einstein metrics with positive Einstein constants.

(Their Einstein property was established in the discussion preceding (19.2).)

References: [DG], [PS], as listed in [FR]. Homework #24.

March 1: A description of Ker(∆ + 2λ) for the complex projective space PV with the
Fubini-Study metric, associated with the given Hermitian inner product 〈 , 〉 in the vector
space V : namely, Ker(∆ + 2λ) consists of all functions

(25.1) Cx 7→ 〈Ax, x〉
〈x, x〉

,

where A ranges over traceless self-adjoint complex-linear endomorphisms of V . Proof of the
italicized statement:.....

The equality, in which w is any tangent vector field:

(25.2) 2∇wζ = ζw + JζwJ

valid whenever torsionfree connections ∇, ∇̂ and a Hermitian twice-covariant tensor field
h on an almost-complex manifold M satisfy the conditions ∇̂J = 0 and ∇h = 0, for
the skew-Hermitian 2-form ζ = hJ and the 2-form ζw = (dζ)(w, · , · ). A corollary,

immediate when one applies the above assertion to h = g and the Levi-Civita connection

∇ of g: on an almost-complex manifold admitting a Kähler connection – that is, a torsionfree one
making J parallel – every almost-Kähler metric g is necessarily a Kähler metric.
References: [KG, Lemma 5.2 in Section 5]. Homework #25.

March 2: Proof of (25.2).

References: [KG, Proof of Lemma 5.2 in Section 5]. Homework #26.

March 5: The existence, on any compact connected Riemannian manifold, of a smooth
function f, unique up to an additive constant, such that

(27.1) ∆f + s = savg
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(or, equivalently, ∆f + s is constant), where savg denotes the average value of the scalar
curvature s. The resulting linear differential operator L sending each smooth vector field
v to the a smooth function Lv, with

(27.2) Lv = δv − dvf.

The Futaki invariant of a given compact (connected) Kähler manifold (M, g), defined to
be the real-linear functional

(27.3) F : h(M)→ IR, given by Fv = (savg)
m

∫
M

dvf dg, where m = dimCM,

for f as in (27.1). The observation that, due to the presence of the factor (savg)
m,

(27.4) F remains unchanged when g is rescaled.

The existence on a compact almost-complex manifold M with c1(M) > 0 or c1(M) < 0,
admitting a Kähler metric, of a further Kähler metric g such that

(27.5) i∂∂f + ρ = λΩ for some smooth function f : M → IR and some λ ∈ IR r {0},

the sign of λ being characterized by λc1(M) > 0 (and its actual value by λ[Ω ] =
2πc1(M)). Proof of this claim, arising as an obvious consequence of the definition of
positivity/negativity in H2(M, IR), formula (9.3.b), the italicized statement at the end of
the paragraph following (25.2), and the ∂∂ Lemma (see February 5): namely, for any
fixed λ 6= 0, such g is just any Kähler metric with λ[Ω ] = 2πc1(M). The fact that on
any Kähler manifold (M, g), whether compact or not,

(27.6) condition (27.5) implies ∆f + s = mλ/2, where m = dimCM,

as one sees “multiplying” (27.5) from the right by J , then applying trg and using (11.6)
along with the definitions of Ω and ρ preceding (7.1) and, respectively, (8.2).

References: [KG, Lemma 5.2 in Section 5]. Homework #27.

March 21: The fact that, whenever a smooth function f : M → IR on a Kähler manifold
(M, g) and a real constant λ satisfy the condition

(28.1) i∂∂f + ρ = λΩ,

then for every smooth vector field v on M, its divergence δv, and the function Lv =
δv − dvf one has the identity

(28.2) ∇Lv − J∇LJv = −2λv − JES, where S = £vJ ,

E being the linear differential operator which sends any smooth endomorphism S of TM
to the vector field ES having the components (ES)j = gjk(ES)k with (ES)k given by

(28.3) (ES)k = Spk,p − f,pS
p
k , that is, g(ES, · ) = δS − (df)S,
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cf. (17.8). The result of applying δ to (28.2): under the above assumptions,

(28.4) ∆Lv = −2λδv − δ(JES),

as one sees noting that

(28.5) δ(Jw) = 0 if w is a local gradient,

since δ(Jw) = (Jkl w
l),k = Jkl w

l
,k = tr (J∇w) must then vanish due to skew-adjointness

of J and self-adjointness of ∇w. Proof of (28.2), based on the relations

(28.6)

a) vk,pq = vk,qp +Rpqs
kvs , b) Jpkv

k
,q = Jkq v

p
,k + Spq ,

c) Jql J
p
kRpqs

kvs = Rkls
kvs = −Rlpvp , d) Jql J

k
q = −δkl ,

e) vk,kl − vp,lp = −Rlpvp , f) (∇df)J + J(∇df) = 2(λΩ−ρ)

due, respectively, to: the Ricci identity [KG, formula (1.11.a)]; the fact that, in view of
(17.4), S = £vJ equals [J,∇v]; (9.1) followed by the definition of the Ricci tensor; the
equality J2 = −Id; the Bochner identity (18.1); and (11.5) (in which dJ = 0 as ∇J = 0)
combined with (28.1). In local coordinates, the component [g(∇Lv − J∇LJv, · )]l of the
left-hand side of (28.2) equals

(28.7) vk,kl + Jql J
p
kv

k
,pq − vk,lf,k − vkf,kl − Jql J

p
kv

kf,pq − Jql J
p
kv

k
,qf,p ,

the first (or, third and fourth) term(s) representing the differential of δv (or, of −dvf),
the second (or, the last two) similarly corresponding to the analogous contributions from
−J∇LJv. Note the signs, consistent with (11.3). Rewriting the second term of (28.7) via
(28.6.a), then using (28.6.c) along with the relation Jpkv

k
,qp = Jkq v

p
,kp+Spq,p (obvious from

(28.6.b) since ∇J = 0) and, in turn, applying (28.6.d), we see that the sum of the first two
terms is vk,kl− vp,lp−Rlpvp+Jql S

p
q,p which, from (28.6.e), amounts to −2Rlpv

p+Jql S
p
q,p.

Next, the fourth and fifth terms of (28.7) add up to 2Rlpv
p − 2λvl . Namely, with

u = Jv, their sum is the lth component of −[(∇df)(v, · )+(∇df)(Jv, J · )] = (∇df)(Ju, · )−
(∇df)(u, J · ) = [(∇df)J + J(∇df)](u, · ) which, according to (28.6.f), is nothing else than
2(λΩ−ρ)(u, · ) = 2(λg − r)(Ju, · ) = 2(r − λg)(v, · ), as required.

Finally, the last term of (28.7), successively rewritten with the aid of (28.6.b) and
(28.6.d), becomes vk,lf,k− J

q
l f,pS

p
q . Consequently, (28.7) equals

(−2Rlpv
p + Jql S

p
q,p) − vk,lf,k + (2Rlpv

p− 2λvl) + (vk,lf,k− J
q
l f,pS

p
q ),

that is, −2λvl + Jql (Spq,p − f,pSpq ), and (28.2) follows, with the minus sign due to (11.3).
Time-dependent objects (such as differential operators, including connections, and

tensor fields, including Riemannian metrics and functions) on a given manifold, defined
to be objects that depend smoothly on a time parameter t ranging over a fixed interval,
in the sense that their local-coordinate components C∞ are functions of the coordinates
and t. The convention that those objects’ dependence on t is usually suppressed in the
notation, and ( )˙ stands for d/dt. The relations

(28.8) i) (dg)˙ = ϕdg, ii) trg ġ = 2ϕ, iii) δ̇ = dϕ

19



satisfied by any time-dependent Riemannian metric g on an oriented manifold, its volume
form dg, and its associated divergence operator δ, (28.8.i) being the definition of a time-de-
pendent function ϕ, and (28.8.iii) reading (δv)˙ = dvϕ for every time-independent smooth
vector field v (its time-independence meaning that v̇ = 0). The case of a time-dependent

Kähler metric g on an almost-complex manifold that is fixed (and so J̇ = 0), with

(28.9) ϕ = ∆χ and ρ̇ = −i∂∂∆χ whenever Ω̇ = 2i∂∂χ

for a time-dependent function χ, where ϕ is characterized by (28.8.i). Proofs of (28.8.ii)

– (28.8.iii): applying (12.9) to the contracted version 2Γ jjk = gjl∂kgjl of the Christoffel-

symbol formula 2Γ ljk = gls(∂jgks + ∂kgjs − ∂sgjk) and, respectively, noting that dg has

the component function (det[gjl])
1/2, we get

(28.10) a) 2Γ jjk = ∂k log det[gjl], b) 2ϕ = (log det[gjl])˙.

Thus, (28.10.b) and (12.9) yield 2ϕ = (log det[gjl])˙ = gjlġjl = trg ġ. Next, applying d/dt

to 2δv = 2∂jv
j+ 2Γ jjkv

k = 2∂jv
j+ vk∂k log det[gjl], cf. (28.10.a), and switching d/dt with

∂k, we obtain (28.8.iii) from (28.10.b).

Proof of (28.9): as ġJ = Ω̇ = 2i∂∂χ, we have ġ = −2(i∂∂χ)J . Hence, by (28.8.ii)
and (11.6), 2ϕ = trg ġ = 2∆χ, that is, ϕ = ∆χ. Finally, let us set ĝ = g(t̂) for a fixed

value t̂ of t, so that dĝ = γ dg with a time-dependent positive function γ, and (12.3), with
time-independent left-hand side, gives ρ̇ = i∂∂ (log γ) .̇ At the same time, from (28.8.i),
0 = (dĝ)˙ = (γ dg)˙ = (γ̇+ϕγ) dg, so that (log γ)˙ = −ϕ = −∆χ, and our last claim follows.

References: [KG, in Section 8: the paragraph following Lemma 8.3, the two paragraphs
surrounding formula (8.10), and parts (i), (ii) of Lemma 8.7]. Homework #28.

March 23: A trivial consequence of (28.9):

(29.1) (i∂∂f + ρ − λΩ)˙ = i∂∂ (ḟ − ∆χ − 2λχ)

whenever time-dependent functions χ, f and a time-dependent Kähler metric g on a fixed
almost-complex manifold satisfy the condition Ω̇ = 2i∂∂χ, while λ is a time-independent
real constant. Futaki’s theorem, stating that, on a compact almost-complex manifold M with
c1(M) > 0 or c1(M) < 0, admitting a Kähler metric, the Futaki invariant (27.3) does not depend
on the choice of a Kähler metric g having the property (27.5). Proof of Futaki’s theorem:

let two time-independent Kähler metrics g̃, ĝ , and functions f̃ , f̂ have the property that

i∂∂f̃+ ρ̃ = λΩ̃ and i∂∂f̂+ ρ̂ = λΩ̂, for the same real constant λ (which may be achieved

by rescaling g̃). Thus, λ(Ω̂ − Ω̃) = i∂∂ (f̂ − f̃ − log γ), with γ as in (12.3) for g̃ rather

than g. The condition Ω̇ = 2i∂∂χ, where χ = (f̂ −f − log γ)/λ, now clearly holds for the
time-dependent Kähler metric defined to be the line segment [0, 1] 3 t 7→ g = g(t) joining

g̃ to ĝ. Denoting by f the unique time-dependent function having ḟ = ∆χ + 2λχ and
f(0) = f̃, we see that, by (29.1), i∂∂f + ρ = λΩ for every t. Thus, up to an additive

constant, f̂ = f(1) (see the claim about the kernel in the ∂∂ Lemma, February 5), and
so we just need to show that the Futaki invariant F = F(t) of the metric g(t) is the same
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for all t ∈ [0, 1]. To achieve this, we note that (27.6) gives savg = mλ/2, which does

not depend on t, and so, applying d/dt to (savg)
−mFv, where v ∈ h(M), we obtain the

integral over M of dv ḟ dg+ dvf (dg)˙ = (dv ḟ + ϕdvf) dg = [dv(∆χ+ 2λχ) + (∆χ) dvf ] dg.
Cf. (28.8.i) and (28.9). Formula (23.19) and its obvious consequence

(29.2) ψ∆φ ≈ φ∆ψ

for any smooth functions ψ, φ, with the convention (18.6), which arises since, by (23.19),
ψ∆φ = ψδ(∇φ) ≈ g(∇ψ,∇φ) (and the last expression is symmetric in ψ, φ), now yield
dv(∆χ+ 2λχ) ≈ −(∆χ+ 2λχ)δv ≈ −(χ∆δv + 2λχδv) and (∆χ) dvf ≈ χ∆(dvf). Thus,
due to the divergence theorem, integrating [dv(∆χ+ 2λχ) + (∆χ) dvf ] dg over M we get
the L2 inner product of −χ and the function ∆(δv − dvf) + 2λδv = ∆Lv + 2λδv = 0,
the last two equalities being immediate from (27.2) and (28.4) with S = £vJ = 0.

Ricci solitons, defined to be Riemannian manifolds (M, g) such that

(29.3) £wg + r = λg or, equivalently, wj,k + wk,j + Rjk = λgjk

for some smooth vector field w on M and some real constant λ. The role of Hamilton’s
Ricci-flow equation

(29.4) ġ = −2r

in Perelman’s proof of the three-dimensional Poincaré conjecture. The interpretation of
compact Ricci solitons as the fixed points of the Ricci flow projected, from the space of
metrics, onto its quotient modulo diffeomorphisms and scalings.

References: [KG, Lemma 5.2 in Section 5]. Homework #29.

March 26: Kähler-Ricci solitons, by which one means those Ricci solitons (M, g) which
at the same time are Kähler manifolds for some almost-complex structure J on M. The
observation that trg applied to (29.3) yields

(30.1) 2δw + s = nλ, where n = dimIRM.

The conclusion – obtained by integrating (30.1) and using the divergence formula – that
when M is compact and oriented, λ is uniquely determined by g (being equal to 1/n
times the average scalar curvature), which in turn makes w unique up to the addition
of a Killing field. Gradient Ricci solitons: the Ricci solitons with w in (29.3) which is a
gradient, w = ∇f/2, that is, the Riemannian manifolds (M, g) satisfying the condition

(30.2) ∇df + r = λg or, equivalently, f,jk + Rjk = λgjk for a constant λ

and some smooth function f. The result of Perelman, which we will not prove or use:

(30.3) every compact Ricci soliton is a gradient Ricci soliton.

Einstein manifolds as the simplest examples of (gradient) Ricci solitons. A corollary:

(30.4) Dw = 0 whenever £wg + r = λg with a constant λ,
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which follows since taking the differentials of both sides of (30.1) and subtracting the
result of applying 2δ to (29.3) we obtain 2g(Dw, · ) = 0 from (30.1), (18.3) and the
equality 2δr = ds known as the Bianchi identity for the Ricci tensor [FR]. The immediate
consequence that, by (18.10),

(30.5) w in (29.3) is holomorphic for any compact Kähler-Ricci soliton (M, g).

The general local fact that, given a Kähler manifold (M, g) and v ∈ h(M),

(30.6) £vg is Hermitian, and (£vg)J = d[g(Jv, · )].

(Thus, besides being, due to the Hermitian property of £vg, a – necessarily skew-Hermit-
ian – differential 2-form, (£vg)J must then in addition be exact.) Proof of (30.6): for
u,A,B as in (23.4), £vg ∼ A+A∗ by (17.2), with the notation of the lines preceding
(11.1), and so (£vg)J ∼ (A+A∗)J = B −B∗, while B −B∗ ∼ d[g(Jv, · )] due to (11.9).
An immediate corollary of (30.6): in the case where M is compact, the ∂∂ Lemma (see
February 5) then also gives

(30.7) (£vg)J = i∂∂f for some smooth function f.

The conclusion that, in view of (30.5) and (30.7), in every compact Kähler-Ricci soliton,
multiplying (29.3) from the right by J one obtains (27.5), and so, just as in the Kähler-
Einstein case, c1(M) is positive, negative or zero for any compact almost-complex manifold
M admitting a Kähler-Ricci soliton metric, the sign being the same as that of the soliton
constant λ in (29.3). More on complexifications of real vector spaces, with an example of
the latter (or, former) provided by the spaces

(30.8) FM and its complexification FcM,

consisting of all real-valued (or, complex-valued) smooth functions on a manifold M. The
real-part and conjugation operators in a complexified space. The fact that a complex-linear
operator from a complex space into a complexification is uniquely determined by its real part
(which may be any real-linear operator). An application of this last fact resulting in the
differential operator P, sending smooth vector fields v on a compact Kähler manifold to
smooth complex-valued functions, and defined to be the unique complex-linear operator
having the real part L with (27.2) or, explicitly,

(30.9) Pv = Lv − iLJv.

The Tian-Zhu invariant T of a compact Kähler manifold (M, g), defined to be the function

(30.10) T : h(M)→ C, given by T(v) = (savg)
m

∫
M

ePv dg, where m = dimCM,

The (redundant) assumption that dim h(M) <∞, leading to the formula

(30.11) dTvu = (savg)
m

∫
M

ePvPudg
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for the differential of T at any v ∈ h(M) and the observation that, in view of (30.11) and
complex-linearity of P, the function T : h(M)→ C is holomorphic, while (30.11) evaluated
at v = 0 reads, as a consequence of the divergence theorem,

(30.12) F = −Re dT0 ,

F being the Futaki invariant (27.3).

References: [KG, Section 8]. Homework #30.

March 28: The Lie algebra XM of all smooth vector fields on a manifold M, and the
associative algebras FM,FcM appearing in (30.8). The case of a compact Kähler manifold
(M, g) and a fixed smooth function f on M, leading to three differential operators

(31.1) ∂ : FcM → XM, P : XM → FcM, Θ : FcM → FcM,

all of them complex-linear, namely, the complex-gradient operator ∂ given by

(31.2) ∂ψ = ∇Reψ + J∇Imψ,

P with (30.9), that is, Pv = Lv − iLJv, for L as in (27.2), and

(31.3) Θ = ∆ − du − idJu , where u = ∇f,

while ∆, du, dJu : FM → FM are complex-linearly extended to FcM. The relation

(31.4) P∂ψ = Θψ for any (M, g), f as above and any ψ ∈ FcM,

trivially derived from the definitions of ∂ and P. Futaki’s theorem:

(31.5)
if a compact Kähler manifold (M, g) satisfies (27.5), then, for f as in (27.5),

∂ maps Ker(Θ + 2λ) isomorphically onto h(M), with the inverse −P/(2λ).

The conclusion, in any Kähler manifold (M, g), stating that

v 7→ ES, where S = £vJ , is a complex-linear operator XM → XM, tag31.6

for E as in (28.3), due to the following antilinearity relations:

(31.7) £JvJ = −(£vJ)J , E(SJ) = −JES.

The first of them is immediate from (17.4) and (23.4), the second from the obvious lo-
cal-coordinate equality [E(SJ)]k = (Spl,p− f,pS

p
l )J lk, cf. (28.3), resulting in the minus sign

consistent with (11.3). The observation that, given smooth functions real-valued functions
ψ, φ on a Kähler manifold, one (or both) compactly supported, we have

(31.8) (∇ψ, J∇φ) = 0,
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( , ) being the L2 inner product. In fact, with the convention (18.6), ψ ,kJ lkφ,l ≈ −ψJ lkφ,lk,
which equals zero due to skew-adjointness of J and self-adjointness of ∇w for w = ∇φ,
cf. (23.2), and so (31.8) follows from the divergence theorem. The conclusion, immediate
from (31.8) and (31.2), that on any compact (connected) Kähler manifold,

(31.9) Ker ∂ consists precisely of all constant complex-valued functions.

References: [KG, Section 8]. Homework #30.

March 30: Before proving (31.5), it is useful to establish the relations

(32.1) a) (Θ + 2λ)ψ = −iPES if ψ = Pv, b) ∂Pv = −2λv −JES,

valid whenever i∂∂f+ρ = λΩ for a real constant λ and a smooth function f on a Kähler
manifold (M, g), whether compact or not, where, with any v ∈ XM and ψ ∈ FcM, one
sets S = £vJ , and the operators P,E, ∂,Θ are given by (30.9), (28.3) and (31.2) – (31.3).
First, (32.1.b) is nothing else than (28.2). As for (32.1.a), complex-linearity of P allows
us to rewrite its right-hand side as −PJES. At the same time, due to the complex-lin-
ear dependence of both sides on v (immediate from (32.1.b) as well as, separately, from
(31.6)), and the italicized statement following (30.8), it suffices to verify equality between
the real parts of both sides, that is, between Re [(Θ + 2λ)Pv] and −RePJES. This
last equality in turn reads ∆Lv + 2λδv + δ(JES) = g(u,∇Lv − J∇LJv + 2λv + JES),
with u = ∇f, both sides of which equal zero according to (28.4) and (28.2). An obvious
consequence of (32.1.a) – (32.1.b) with S = 0: for a Kähler manifold (M, g),

(32.2) P maps h(M) injectively into Ker(Θ + 2λ) whenever (27.5) holds.

The µ-adjoint Π∗ of a real/complex linear operator Π, characterized by

(32.3) (Πψ, φ) = (ψ,Π∗φ),

where µ is a fixed smooth positive volume form on an oriented manifold M and ( , ) de-
notes the L2 inner product of compactly supported smooth sections of any given real/com-
plex vector bundle over M, associated with µ and any fixed Riemannian/Hermitian fibre
metric in the bundle, while Π sends compactly supported smooth sections of one such
bundle to analogous sections of the other. Uniqueness of the µ-adjoint when it exists.
Some obvious facts: generally, for composites of operators as above,

(32.4) (ΠΛ)∗ = Λ∗Π∗, both ΠΠ∗ and Π∗Π are self-adjoint, while Π∗∗ = Π,

and a trivial observation, of interest only when M is compact:

(32.5) Π∗Π is self-adjoint, nonnegative, and KerΠ∗Π = KerΠ.

The Cauchy-Riemann operator H sending each smooth vector field v on an almost-com-
plex manifold to the endomorphism £vJ of its tangent bundle; in the Kähler case,

(32.6) Hv = £vJ , that is, Hv = [J,∇v],
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cf. (17.4). The dg-adjoint H∗ of the Cauchy-Riemann operator of a Kähler manifold
(M, g), sending any smooth real-linear endomorphisms S of TM to H∗S ∈ XM given by

(32.7) g(H∗S, · ) = δ [J, S∗]

with δ as in (17.8). Justification of (32.7) based on first observing that any such S has

(32.8) [J, S]∗ = [J, S∗]

and so, for the fibre metric 〈 , 〉 in TM given by (11.8), any S as above, and v ∈ XM, we
obtain, from (32.6) and (32.8), 〈Hv, S〉 = trS(Hv)∗ = trS[J,∇v]∗ = trS[J, (∇v)∗]. With
the convention (18.6), one thus gets, in local coordinates, 〈Hv, S〉 = Skl (J lpvk

,p− vp,lJ
p
k ) ≈

Skl
,lJpkvp − Skl ,pJ lpvk = vk(Jkl S

l
p
,p − Skl ,pJ lp) = vk[J, S]kp

,p = ξ(v), the 1-form ξ being the
divergence of [J, S]∗, defined as in (17.9). Now (32.8) yields ξ = δ [J, S∗], and (32.7) follows
via integration by parts (that is, from the divergence theorem).

The easily-verified fact that, if Π has the µ-adjoint Π∗ and f is a smooth function
on M, then Π has the e−fµ-adjoint Π∗f with

(32.9) Π∗f φ = efΠ∗(e−fφ).

The e−f-weighted L2 inner product ( , )f , related to ( , ), the original one, by

(32.10) ( · , φ)f = ( · , e−fφ),

so that Π∗f in (32.9) is at the same time the adjoint of Π relative to ( , )f :

(32.11) (Πψ, φ)f = (ψ,Π∗f φ)f .

References: [KG, Section 8]. Homework #32.

April 2: The easily-verified relations which hold in any Riemannian manifold with a
fixed smooth function f, the divergence δ being applied to any smooth vector field v or,
respectively, any smooth endomorphism S of the tangent bundle, cf. (17.8):

(33.1) Lv = efδ(e−fv), ES = efδ(e−fS),

for L,E given by (27.2) and (28.3). The dg-adjoint and e−fdg-adjoint of the gradient
operator ∇ : FM → XM of a Riemannian manifold (M, g), where f is a fixed smooth
function on M, as well as the e−fdg-adjoint of the complex-gradient operator ∂, cf, (31.1),
in the case of a Kähler manifold, given by

(33.2) a) δ = −∇∗, b) L = −∇∗f , c) P = −∂∗f .

δ, L, P being the divergence XM → FM and the operators with (27.2), (28.3). Proof
of (33.2): the claims (33.2.a) and (33.2.b) are obvious from (23.19), via the divergence
theorem and, respectively, from (33.2.a) combined with (32.9).
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(33.3) Θ = −∂∗f ∂ is ( , )f -self-adjoint, nonpositive, and Ker Θ = C,

C being here the space of constant complex-valued functions on M. The conclusion that,
for any compact almost-complex manifold M,

(33.4) h(M) = {0} if c1(M) < 0 and M admits a Kähler metric,

as c1(M) < 0 yields λ < 0 in (27.5); thus, due to nonpositivity of Θ, cf. (33.3), −2λ
cannot be an eigenvalue of Θ. Hence Ker(Θ + 2λ) = {0}, and (32.2) gives (33.4).

(33.5) JA+AJ commutes, [J,A] anticommutes with J ,

(33.6) if S is self-adjoint, so are [J, S ] and [J, JS ]

(33.7) H∗fHv = 2JES∗ , where S = £vJ ,

(33.8) (£vJ)∗ = £vJ whenever v = ∂ψ for any ψ ∈ FcM

Corollary: in a Kähler manifold (M, g), if i∂∂f + ρ = λΩ, with f ∈ FM and λ ∈ IR,
then

(33.9) H∗fH∂ψ = −2∂ [(Θ + 2λ)ψ] for all ψ ∈ FcM

Proof of Futaki’s theorem (31.5): due to (32.2) and (33.9), the latter combined with (32.5),
P and ∂ constitute complex-linear operators h(M) → Ker(Θ + 2λ) and, respectively,
Ker(Θ+2λ)→ h(M) while, by (31.4) and (32.1.b) with S = 0, both resulting compositions
P∂ and ∂P equal −2λ times the identity.

References: [KG, Section 8]. Homework #33.

April 4: The vector space, arising for a compact Kähler manifold (M, g) with (27.5),

(34.1) B = Ker(Θ + 2λ) ∩KerdJu = {ψ ∈ FcM : (Θ + 2λ)Reψ = (Θ + 2λ)Imψ = 0},

with u = ∇f and the second equality due to (31.3). The fact that, if we denote by
k = i(M, g) the real Lie algebra of all Killing fields, and by p the space of all holomorphic
gradients of real-valued functions, then

(34.2) ∂ maps B isomorphically onto k ⊕ p, while p = Jk

and, under the isomorphism ∂ in (34.2),

(34.3) p and k correspond to the summands ReB and iReB of B,
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ReB being the space of all real-valued functions in B or, equivalently, real parts of all
elements of B. Proof of (34.2) – (34.3) reduced – in view of injectivity of ∂ on Ker(Θ+2λ),
cf. (31.4) – to showing that the ∂-images of ReB and iReB are precisely p and k.

Bochner’s integral formula (19.2) for any compactly supported smooth vector field v
on a Riemannian manifold (M, g), rewritten as

(34.4) (rv, v) = ‖δv‖2 − (A,A∗), where A = ∇v,

( , ) and ‖ ‖ being the L2 inner product and L2 norm. The generalization of (34.4)
involving an arbitrary fixed smooth function f on M, the e−f-weighted L2 inner product
( , )f , the corresponding e−f-weighted L2 norm ‖ ‖f , the “f-modified Ricci tensor” h =

∇df + r, and the operator L given by (27.2):

(34.5) (hv, v)f = ‖Lv‖2f − (A,A∗)f , where h = ∇df and, again, A = ∇v.

Proof of (34.5): in local coordinates, (18.1) gives e−fh(v, v) = e−f(f,jk + Rjk)v jvk =

e−f(f,jkv
jvk+ vk,jkv

j− vk,kjv j) and so, with the convention (18.6), one has e−fh(v, v) ≈
e−f(f,jf,kv

jvk−f,jv j,kvk−f,jv jvk,k−vk,jv j,k+f,kv
k
,jv

j+vk,kv
j
,j−f,jvk,kv j). As vk,k = δv

and f,jv
j = dvf, while Lv = δv − dvf, the sum of the first, third and last two terms in

parentheses equals (Lv)2. At the same time, the second term cancels the fifth one, and
the fourth term, −trA2, is the inner product −〈A,A∗〉, cf. (11.8), so that (34.5) follows.

References: [KG, Section 8]. Homework #33.

April 6: A generalization of (19.5): given a compact Kähler manifold (M, g) and a
smooth function f on M such that

(35.1) h − JhJ ≥ 2λg, where h = ∇df ,

with a positive constant λ, the operator Θ defined by (31.3) satisfies the inequality

(35.2) τ ≥ 2λ for every nonzero eigenvalue τ of −Θ.

(Context: since r is Hermitian, (35.2) with constant f amounts to (19.5); while, by (33.3),
−Θ is ( , )f -self-adjoint and nonnegative, which causes its nonzero eigenvalues to be real

and positive, and we also know that its kernel consists of constants.) To prove (35.2), we
add to (34.5) its version for Jv rather than v, with the left-hand side of the latter formed
by the e−fdg-integral of h(Jv, Jv), noting that (35.1) gives h(v, v)+h(Jv, Jv) ≥ 2λg(v, v),
cf. (1.1), while, from (23.4), ∇u = JA whenever u = Jv and A = ∇v. Thus,

(35.3) 2λ‖v‖2f ≤ ‖Pv‖2f − [(A,A∗)f + (JA, (JA)∗)f ],

since ‖Lv‖2f +‖LJv‖2f = ‖Pv‖2f due to the equality |Lv|2+ |LJv|2 = |Pv|2 of the e−fdg-in-

tegrands, immediate from (30.9). At the same time, setting A = ∇v and S = £vJ we get
S = [J,A] according to (17.4), and so trS2 = tr [(JA−AJ)(JA−AJ)] = 2 tr [A2 + (JA)2],
which is twice the e−fdg-integrand of (A,A∗)f + (JA, (JA)∗)f , and so (35.3) becomes

(35.4) 2λ‖v‖2f ≤ ‖Pv‖2f − (S, S∗)f/2.
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If, in addition, v = ∂ψ for some ψ ∈ FcM, one has, from (33.8), S∗ = S, and (35.4) along
with (31.4) imply that

(35.5) 2λ‖∂ψ‖2f ≤ ‖P∂ψ‖2f − ‖S‖2f/2 ≤ ‖P∂ψ‖2f = ‖Θψ‖2f .

Let ψ now be an eigenfunction of −Θ for a nonzero eigenvalue τ . By (35.5) and (33.3),

2λ‖∂ψ‖2f ≤ ‖Θψ‖2f = (Θψ,Θψ)f = −τ (ψ,Θψ)f = τ (ψ, ∂∗f ∂ψ)f = τ (∂ψ, ∂ψ)f = τ ‖∂ψ‖2f ,

which proves (35.2): ψ is nonconstant as τ 6= 0, and so ‖∂ψ‖ > 0, cf. (31.9). An immediate
consequence of (32.2) and (35.2):

(35.6)
whenever a compact Kähler manifold (M, g) with h(M) 6= {0}
satisfies (27.5), 2λ is the lowest nonzero eigenvalue of −Θ.

References: [KG, Section 8]. Homework #33.

April 9: The observation that, for a Killing field w on a Riemannian manifold,

(36.1) £w commutes with ∆ and with the gradient operator ∇,

and, in the case of a holomorphic Killing field w on a Kähler manifold,

(36.2) £w commutes with the complex-gradient operator ∂.

the first claim in (23.5)

(36.3)
−idJu : Ker(Θ + 2λ)→Ker(Θ + 2λ) corresponds under the isomorphism

∂ : Ker(Θ + 2λ)→ h(M) in (31.5) to Adu = [u, · ] : h(M)→ h(M).

(36.4) h(M) =
⊕
τ

hτ , with hτ = Ker(Adu − τ) whenever τ ∈ IR,

τ in in the direct-sum decomposition ranging over the spectrum of Adu. The fact that
Adu is, for any Lie algebra h and any u ∈ h, a derivation of h, cf. the Lie-algebra
homomorphism (23.17), and so

(36.5) [hτ , hσ] ⊆ hτ+σ if τ, σ ∈ IR.

A consequence of (30.2): in any gradient Ricci soliton, with f, λ satisfying (30.2),

(36.6) ∆f − g(∇f,∇f) + 2λf is constant.

Proof of (36.6): one observes that, for Y = ∆f and Q = g(u, u), where u = ∇f,

(36.7)

a) dY + ds = 0,

b) 2r(u, · ) + 2dY + ds = 0,

c) dQ + 2r(u, · ) − 2λ df = 0,
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and then forms the linear combination of these three equations with the coefficients −1, 1
and −1, getting d(Y − Q + 2λf) = 0. The three equations (36.7) are in turn obtained
applying, to (30.2), trg followed by d, or twice the divergence operator δ, or – respectively
– the operation 2a(u, · ), with a denoting the difference of the two sides in (30.2). More
precisely, (18.1) for v = u = ∇f yields δ∇df = r(u, · ) + dY, while 2δr = ds from the
Bianchi identity for the Ricci tensor [FR], and 2(∇df)(u, · ) = dQ

Gradient Ricci solitons: the Ricci solitons with w in (29.3) which is a gradient,
w = ∇f/2, that is, the Riemannian manifolds (M, g) satisfying the condition

(30.2) ∇df + r = λg or, equivalently, f,jk + Rjk = λgjk for a constant λ

and some smooth function f.

References: [KG, Section 8]. Homework #33.

April 11: The version of (28.2) for Jv rather than v, which reads, due to (31.6),

(37.1) ∇LJv + J∇Lv = −2λJv + ES,

Two consequences of the same assumptions as in (28.2): with S = £vJ ,

(37.2)
|∇Lv |2 + 2λdvLv + g(∇Lv, JES) = |∇LJv |2 + 2λdJvLJv − g(∇LJv,ES),

2[g(∇Lv,∇LJv) + λ(dJvLv + dvLJv)] = g(∇Lv + J∇LJv,ES).

Namely, the first left-hand side equals g(∇Lv,∇Lv + 2λv + JES) = g(∇Lv, J∇LJv),
cf. (28.2), the (very obvious) invariance of which under the replacement of v with Jv
amounts, by (37.1), to the first line in (37.2). Similarly, the remaining left-hand side
in (37.2), g(∇Lv,∇LJv + 2λJv) + g(∇LJv,∇Lv + 2λv), rewritten via (28.2) and (37.1),
becomes g(∇Lv, J∇Lv+ES)+g(∇LJv, J∇LJv−JES), that is, the right-hand side, since
J is skew-adjoint (and so g(∇Lv, J∇Lv) = g(∇LJv, J∇LJv) = 0). The relation

(37.3) ∆eψ = [∆ψ + g(∇ψ,∇ψ)]eψ,

valid for any smooth complex-valued function on a Riemannian manifold, with

(37.4) g(∇ψ,∇ψ) = |∇Reψ|2− |∇Imψ|2 + 2ig(∇Reψ,∇Imψ),

that is, g has been extended complex-bilinearly to complex vector fields (sections of the
complexified tangent bundle), immediate when the ψ is real-valued, but also easily verified
in the general complex-valued case. The equalities

(37.5) L̇ = −2λdχ, (Pv)˙ = 2iλdJvχ − 2λdvχ,

Tian and Zhu’s theorem:
and, since (dg)˙ = (∆χ) dg, we get (savg)

−mṪ(v) =
∫
M

(2iλdJvχ−2λdvχ+∆χ)ePv dg

from (...). Integrating by parts we see that this is equal to the L2 inner product of χ and

(37.7) ∆ePv + 2λ(dve
Pv − idJve

Pv) + 2λ[δv − iδ(Jv)]ePv.
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To prove that (37.7) vanishes for every holomorphic vector field v, we use apply (37.3),
with (37.4), to ψ = Pv, so that Reψ = Lv and Imψ = −LJv, while and (37.7) equals
ePv times

∆Lv + 2λδv − i [∆LJv + 2λδ(Jv)]

+ |∇Lv|2 + 2λdvLv − [|∇LJv|2 + 2λdJvLJv ]

− 2i [g(∇Lv,∇LJv) + λ(dJvLv + dvLJv)].

Each of the three lines above is separately equal to zero, due to and, respectively,
Holomorphic functions φ : M → C on an almost-complex manifold M, characterized

by (dφ)J = i dφ, as they are nothing else than holomorphic mappings from M into C.
The algebra of holomorphic functions. Holomorphicity of multiplicative inverses.

References: [KG, Section 8]. Homework #33.

April 13: Vector bundles over manifolds, local sections, local trivializations and their
compatibility, in the sense of regularity of transition functions [DG, pp. 57-58]. Holomor-
phic complex vector bundles over almost-complex manifolds, defined analogously to smooth
real/complex vector bundles over smooth manifolds [DG, p. 58], just with holomorphici-
ty of transition functions rather than their smoothness. The tautological line bundle T
over any complex projective space PV , cf. [DG, p. 59]. Product bundles. Operations
on holomorphic vector bundles: direct sum, Hom, the dual. Holomorphic vector-bun-
dle morphisms, defined to be holomorphic sections of the Hom bundle, isomorphisms,
and holomorphically trivial bundles. Subbundles and quotient bundles in the holomorphic
category. The determinant bundle. The tangent bundle and canonical bundle of a complex
manifold.
References: [KG, Section 8]. Homework #33.

April 16: The total space of a vector bundle [DG, p. 66]. The natural structure of a
complex manifold on the total space of a holomorphic complex vector bundle over a complex
manifold. Holomorphic sections as complex submanifolds of the total space, including the
zero section, always identified with the base manifold. The tautological line bundle T
over a complex projective space PV as a subbundle of the product bundle P = PV × V ,
for any finite-dimensional complex vector space V . The natural isomorphic identifications

The natural biholomorphic identification

T ∗ = P(V × C) r {{0} × C}

for the tautological line bundle T over PV , obtained by assigning the graph of ξ to any
pair (Λ, ξ) with Λ ∈ PV .

References: [KG, Section 8]. Homework #33.

April 18:
Tensor products

V ⊗ IK = V, Hom(V ,W ) = V ∗⊗W.

T [PV ] = [Hom(T ,P/T ).

T ⊗(m+1) = det T ∗[PV ].

References: [KG, Section 8]. Homework #33.
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April 20:

References: [KG, Section 8]. Homework #33.

April 23:

References: [KG, Section 8]. Homework #33.
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