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COMPACT RICCI SOLITONS

ANDRZEJ DERDZINSKI

Abstract. This is a self-contained exposition of results on compact Ricci
solitons, with proofs phrased in the language of real Riemannian geometry.
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Introduction

A Ricci soliton [63] is a Riemannian manifold (M, g) such that

(0.1) £wg + r = λg for a constant λ

and for some C∞ vector field w on M , where £w is the Lie derivative and r
denotes the Ricci tensor. If, in addition, g is a Kähler metric on a complex manifold
M, we call (M, g) a Kähler-Ricci soliton (cf. [78], [17]). Metrics g with (0.1) are
also of interest to physicists, who refer to them as quasi-Einstein [52], [33], [28].

Compact Ricci solitons are the fixed points of the Ricci flow dg/dt = −2r
projected, from the space of metrics, onto its quotient modulo diffeomorphisms
and scalings (see the end of Appendix U). Complete Ricci solitons in turn often
arise as blow-up limits for the Ricci flow on compact manifolds [65], [107]. They also
serve as model cases of various Harnack inequalities for the Ricci flow [64], which
become equalitites when the flow consists of Ricci solitons. Finally, Kähler-Ricci
solitons are natural candidates for ‘optimal’ Kähler metrics on compact complex
manifolds whose first Chern class is positive, zero, or negative [111], and existing
results establish this for compact complex surfaces. See the text following (1.7).

There is a vast literature on Ricci solitons, both compact and complete noncom-
pact ones (see the bibliography). Its contents range from constructions of examples,
through various structure theorems, to existence, uniqueness and classification re-
sults; the proofs use a variety of techniques, including the Ricci-flow approach and
the continuity method for the complex Monge-Ampère equation.

This article is a presentation of known results on compact Ricci solitons, with
all proofs phrased in the language of real Riemannian geometry. The reader need
not be familiar with complex manifolds: Appendices F – L provide a self-contained
exposition of relevant facts from Kähler geometry.

The discussion is limited to the compact case due to its relative simplicity. A
comparable presentation of results on complete noncompact Ricci solitons does not
seem possible in a text of this size.

For another such exposition, see the article [48] by Eminenti, La Nave and Man-
tegazza.

I wish to express my gratitude to Huai-Dong Cao, Claude LeBrun, Lei Ni and
Zhenlei Zhang for helpful comments. Most of all, I would like to thank Gideon
Maschler, who checked §6 and Appendix A, suggesting numerous corrections and
improvements.

1. Questions and answers

The most obvious examples of (0.1) are Einstein solitons (M, g), in which r =
λg and £wg = 0, that is, g is an Einstein metric with the Einstein constant λ
and w is a Killing field for g. For obvious reasons (cf. the last line in Remark 4.5)
this is automatically the case whenever (M, g) is a compact Ricci soliton and g is
an Einstein metric, even if λ in (0.1) is not assumed to be the Einstein constant.

Koiso [78] and, independently, Cao [17] constructed examples of non-Einstein
Kähler-Ricci solitons on simply connected compact complex manifolds in all even
real dimensions n ≥ 4. See §11. Each of their examples satisfies (0.1) with λ > 0
and a gradient vector field w, and has a nonconstant scalar curvature s > 0.

Since the Riemannian product of two Ricci solitons with the same constant λ
in (0.1) is a Ricci soliton, the Koiso-Cao examples have trivial extensions (their
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products with Einstein manifolds of positive scalar curvature), which shows that
non-Kähler, non-Einstein compact Ricci solitons exist in all real dimensions n ≥ 6.

One may ask whether the properties of the Koiso-Cao examples (and their trivial
extensions), listed above, hold more generally. Namely, if (M, g) is a non-Einstein
compact Ricci soliton of dimension n with the scalar curvature function s,

(1.1)
Does it follow that n ≥ 4? Must s be nonconstant? Must it
be positive? Does the constant λ in (0.1) have to be positive?

All four questions have been answered in the affirmative: the first one by Hamilton
[63] and Ivey [71], who showed that n 6= 2 and, respectively, n 6= 3, the second by
Bourguignon [9], as a special case of a more general theorem, and the last two by
Ivey [71], cf. also Friedan [52]. For details, see §4.

The motivations provided here for Questions (1.1) – (1.8) do not always reflect
the historical chronology of events. For instance, Hamilton’s proof [63] of the fact
that n 6= 2 came before the Koiso-Cao examples [78], [17] used here to justify the
question, and Bourguignon’s result [9] even predates, by more than a decade, the
very emergence of Ricci solitons as a subject of study.

Another question about compact Ricci solitons (M, g), suggested by the Koiso-
Cao examples and their trivial extensions, is

(1.2)
Can the vector field w with (0.1) always be replaced by a gradient,
that is, must w be the sum of a gradient and a Killing vector field?

That the answer is ‘yes’ was shown by Perelman [101]. See §6.
On the other hand, since Ricci solitons form a generalization of Einstein man-

ifolds, it is natural to ask whether the Myers and Bochner theorems for Einstein
manifolds with positive Einstein constants remain valid for Ricci solitons. This
amounts to the following questions about the fundamental group π1M and the
first Betti number b1(M) of a Ricci soliton (M, g) such that λ > 0 in (0.1):

(1.3)
If M is compact, does π1M have to be finite? Is it then at least true
that b1(M) = 0? Does completeness of (M, g) imply compactness of M ?

That the answer to the first question in (1.3) is ‘yes’ was first shown by Li [84], then,
independently, by Fernández-López and Garćıa-Ŕıo [50]. The same clearly follows
for the second question, cf. [43]. For the third question, the answer is generally
‘no’ (as illustrated by the Gaussian soliton, in which w is the radial vector field
on a Euclidean space; further counterexamples were found by Feldman, Ilmanen
and Knopf [49, Theorem 1.5]). However, it is ‘yes’ under the additional assumption
that g(w,w) is bounded; this is, again, due to Fernández-López and Garćıa-Ŕıo
[50]. More recently, Zhang [120] independently answered the first two questions in
(1.3) using a more direct argument. See §5.

For an oriented compact Ricci soliton (M, g) in dimension n = 4, with the
signature τ(M) and Euler characteristic χ(M), the following question arises in
view of the Einstein case ([6], [68], [110]):

(1.4) If n = 4, must M satisfy the Thorpe inequality 3|τ(M)| ≤ 2χ(M)?

The answer is unknown, but as b1(M) = 0 when λ > 0, while g must be Einstein if
λ ≤ 0 (cf. Questions (1.3) and (1.1)), a weaker conclusion is true: namely, Berger’s
inequality χ(M) > 0 holds, if n = 4, not only for non-flat compact Einstein
manifolds [6, Theorem 6.32], but also for all non-flat compact Ricci solitons.
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Ma [88] showed that the answer to Question (1.4) is ‘yes’ under the additional
assumption that the squared L2 norm of the scalar curvature does not exceed 24λ2

times the volume of M . See Remark 5.14.
Returning to arbitrary dimensions n ≥ 2, we have a further question: n > 4:

(1.5)
Let (M, g) be a compact Ricci soliton, of any dimension n, with positive
(or, nonnegative) curvature operator. Must (M, g) have constant sectio
nal curvature (or, respectively, be a locally symmetric Einstein manifold)?

Question 1.5 has two separate motivations. First, the answer is ‘yes’ both if n = 4,
by a result of Hamilton [62], and for n ≤ 3, in view of what Hamilton [63] and Ivey
[71] proved about the lowest dimensions (see the lines following Question 1.1). On
the other hand, a 1974 theorem of Tachibana [109] provides an affirmative answer
in the special case of Einstein manifolds of all dimensions. (In fact, Tachibana
assumes only that (M, g) has harmonic curvature, which is generally much weaker
than the Einstein condition.)

Böhm and Wilking [8] recently proved that, in the case of positive curvature
operator, the answer to Question 1.5 is ‘yes’ in all dimensions (as conjectured by
Hamilton). For details, see §7 and Appendix E.

The next two questions deal with Kähler-Ricci solitons. Namely, suppose that a
compact Kähler manifold (M, g) satisfies (0.1) for some w and λ.

(1.6)
Must w be holomorphic? If λ 6= 0, is g determined by the complex struc-
ture of M uniquely up to a complex automorphism and a scale factor?

The first of these questions is suggested by the Koiso-Cao examples, the second
by uniqueness of Kähler-Einstein metrics (due to Calabi [16] for negative Einstein
constants, to Bando and Mabuchi [3] for positive ones). The answer is ‘yes’ in both
cases: holomorphicity of w appears to be a folklore result, while uniqueness of g
was proved by Tian and Zhu [115]. See §8, Appendix M and §10.

For a compact complex manifold M with the first Chern class c1, one may ask:

(1.7) Does M admit a Kähler-Ricci soliton whenever c1 < 0, c1 = 0 or c1 > 0?

If c1 = 0 or c1 < 0, the answer is ‘yes’ and, in fact, a Kähler-Einstein metric exists
on M , in view of Calabi’s conjectures, proved by Aubin [2] and Yau [119]; however,
a Kähler-Einstein metric need not exist when c1 > 0, the simplest counterexamples
being the compact complex surfaces obtained by blowing up one or two points in
CP2. (They admit no Kähler-Einstein metrics due to theorems of Lichnérowicz
[85] and Matsushima [92].) Still, both surfaces do admit Kähler-Ricci solitons: the
one-point blow-up appears among the Koiso-Cao examples [78], [17], and for the
other surface this follows from a recent result of Wang and Zhu [116] (see §11).

The answer to question (1.7) is ‘yes’ in complex dimension 2, but ‘no’ in general;
in the former case, this follows from combined results of Aubin [2], Yau [119], Koiso
[78], Wang and Zhu [116], and Tian [111]. In the latter, counterexamples were found
by Tian [111], in the form of compact complex manifolds with c1 > 0 admitting
neither a Kähler-Einstein metric nor a nontrivial holomorphic vector field. (As to
why this precludes the existence of a Kähler-Ricci soliton, see Proposition 8.2.)

The questions on our final list, still open, are motivated by the scarcity of known
examples. They have been raised by Gang Tian in various talks, especially for
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n = 4. Here (M, g) is assumed to be a compact n-dimensional Ricci soliton:

(1.8)

If n = 4 and g is not Einstein, must some finite Riemannian covering
space of (M, g) be a Kähler manifold? If n = 5, is (M, g) necessarily
an Einstein manifold? More generally, does the Riemannian universal
covering of (M, g) have to be a Kähler manifold, an Einstein manifold,
or a Riemannian product with one Kähler and one Einstein factor?

2. Preliminaries

Let (M, g) be a Riemannian manifold of dimension n. We always assume that
M is connected and all functions, vector and tensor fields under considerations
are C∞ differentiable. The symbols ∇, R, r, s denote the Levi-Civita connection,
curvature tensor, Ricci tensor and scalar curvature of g. Thus,

(2.1) R(u, v)w = ∇v∇uw −∇u∇vw +∇[u,v]w for vector fields u, v, w

and r(u,w) = tr [v 7→ R(u, v)w] for vectors u, v, w ∈ TxM at any point x ∈ M .
Given vector fields u, v, we denote by R(u, v) the vector-bundle morphism

(2.2) R(u, v) : TM → TM , acting on vector fields by w 7→ R(u, v)w.

Remark 2.1. The metric g will often be used to identify twice-covariant tensors
a on M with bundle morphisms A : TM → TM by requiring that g(Av,w) =
a(v, w) for all vector fields v, w. Symmetry/skew-symmetry of a amounts to self-
adjointness/skew-adjointness of A. We denote by 〈 , 〉 the inner product of twice-
covariant tensors, so that 〈a, b〉 = 〈A,B〉 for A,B related to a, b as above, with
〈A,B〉 = trAB∗, where A∗ is the (pointwise) adjoint of A. The symbols | | and
trg will stand for the corresponding norm and the g-trace. Thus, trga = 〈g, a〉 and

(2.3) i) s = 〈g, r〉 = trgr , ii) |r|2 = |e|2 + s2/n , where iii) e = r − sg/n .

One calls e the Einstein tensor of g, or its traceless Ricci tensor .

Remark 2.2. The curvature tensor of (M, g) gives rise to two bundle morphisms

R̂ : [T ∗M ]∧2 → [T ∗M ]∧2 and R
◦

: [T ∗M ]�2 → [T ∗M ]�2, known as the curvature
operators acting on exterior 2-forms ω and, respectively, twice-covariant symmet-
ric tensors a, and uniquely characterized by [R̂(ξ ∧ η)](w,w′) = g(R(u, v)w,w′),

[R
◦

(ξ � ξ)](w,w′) = g(R(u,w)u,w′) for x ∈ M , u, v, w,w′ ∈ TxM and ξ = ıug,

η = ıvg. In local coordinates, 2(R̂ω)jk = ω lmRjklm and (R
◦
a)jl = akmRjklm.

(See [6, Defn. 1.131(b)], [12].) Our conventions about ξ ∧ η and ξ � ξ are

(2.4) (ξ ∧ η)(w,w′) = ξ(w)η(w′) − η(w)ξ(w′), (ξ � ξ)(w,w′) = ξ(w)ξ(w′).

We let £w stand for the Lie derivative in the direction of a vector field w on
M . Thus, £wf for a function f coincides with the directional derivative dwf .
Given a twice-covariant symmetric tensor a, the usual expression (£wa)(u, v) =
dw[a(u, v)] − a([w, u], v) − a(u, [w, v]) for vector fields u, v can be rewritten as
(£wa)(u, v) = (∇wa)(u, v) + a(∇uw, v) + a(u,∇vw), that is,

(2.5) £wa = ∇wa + a∇w + (∇w)∗a ,

the two multiplications by a on the right-hand side being the compositions with
A that corresponds to a as in Remark 2.1. Also, with ∇f denoting the g-gradient
of a function f ,

(2.6) a) £wg = ∇w + (∇w)∗, b) £wg = 2∇df if w = ∇f.
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(In fact, (a) follows from (2.5), and implies (b).) Here ∇w is treated as a vector-
bundle morphism TM → TM sending any vector (or vector field) v to ∇vw, while
(∇w)∗ : TM → TM stands for its (pointwise) adjoint, and a = £wg is identified
with A = ∇w+(∇w)∗ as in Remark 2.1. For a vector field w and a twice-covariant
symmetric tensor a, we have

(2.7) i) δw = tr∇w, ii) 2δıwa = 2ıwδa + 〈a,£wg〉, iii) 〈g,£wg〉 = 2δw.

Here (i) defines the divergence operator δ, (iii) is obvious from (ii) (or (2.6.a)), and
(ii) follows from (2.6.a) via the local-coordinate calculation 2(wjajk),k = 2wjajk

,k+
(wj,k + wk,j)ajk. Next, for a vector field w and a function f ,

(2.8) a) dwf = δ(fw) − fδw, where b) dwf = ıwdf = g(w,∇f).

We can also apply δ to vector-bundle morphisms A : TM → TM , such as ∇w,
resulting in the 1-form δA that sends any vector field v to the function

(2.9) (δA)v = δ(Av) − tr (A∇v) ,

the “product” of A and ∇v being the composite. We then further extend δ to
twice-covariant symmetric tensors a by setting δa = δA, where A corresponding
to a as in Remark 2.1. Given such a (an example of which is the Ricci tensor r),
and a vector field v, we define the 1-form ıva by the usual formula ıva = a(v, · ).
Thus, v 7→ ıvg is the “index-lowering” isomorphism TM → T ∗M . The relations

(2.10) i) ıvg = df if v = ∇f, ii) 2ıva = dQ if v = ∇f, Q = |v |2 and a = ∇df ,

valid for any function f : M → R, follow since dwf = g(w, v) for all vectors w,
while 2f ,jf,jk = [f ,jf,j ],k in local coordinates. The divergence δξ of a 1-form ξ
is given by δξ = δv for the vector field v with ξ = ıvg. Now δ may be applied
twice in a row to a bundle morphism A : TM → TM such as ∇w or (∇w)∗. In
addition, δξ has an obvious generalization to once-contravariant tensor fields on
(M, g), with any number of covariant arguments, and

(2.11)
a) d∇w = −R( · , · )w , b) ıwr = δ∇w − dδw , ,
c) 2δr = ds , d) δR = −dr ,
e) 〈r,£wg〉 = 2δıwr − dws , f) δδ∇w = δδ(∇w)∗

for any vector field w. Equalities (2.11.a) – (2.11.d) have the local-coordinate forms

(2.12)
a) wj ,kl − wj ,lk = Rkls

jws , b) Rklw
k = wk,lk − wk,kl ,

c) 2Rj
k
,k = sj d) Rjkl

s
,s = Rjl,k − Rkl,j .

The first three of them are known as the Ricci identity, the Bochner (or or Weit-
zenböck) formula, and the Bianchi identity for the Ricci tensor. To justify (2.11),
note that (2.11.a) is, essentially, the definition of the curvature tensor R, (2.11.b),
(2.11.d) and (2.11.c) are immediate if one applies a contraction to (2.11.a), the sec-
ond Bianchi identity for R and, respectively, (2.11.d), while (2.11.e) follows from
(2.7.ii) and (2.11.c). Finally, (2.11.f) is obvious since δ2 = 0 for the divergence
operator δ acting on differential forms; namely, being skew-adjoint, ∇w − (∇w)∗

corresponds, as in Remark 2.1, to a 2-form. Here is a direct local-coordinate ver-
ification of (2.11.f): δδ∇w − δδ(∇w)∗ = wj,kj

k − wj,k
k
j = 0, immediate from

(2.12.a) and symmetry of the Ricci tensor.
For functions f : M → R, (2.11.b) gives

(2.13) ıvr = δa − dY if v = ∇f, a = ∇df and Y = ∆f.
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The symbol ∆ will also stand for the ‘rough Laplacian’ acting on arbitrary ten-
sors A, so that ∆A is obtained from the second covariant derivative of A by
g-contraction applied to the differentiation arguments. Thus, for a function f we
have ∆f = δξ, with the 1-form ξ = df , while, for any vector field w,

(2.14) i) ∆f = δ∇f = trg∇df = 〈g,∇df〉, ii) ∆ıwg = δ(∇w)∗.

Relation (2.14.ii) is easily verified in local coordinates, using (2.5) and the Ricci
identity (2.12.a).

We denote by dg and V =
∫
M

dg ∈ (0,∞] the volume element of g and the
total volume of M relative to g. If M is compact, fmax and fmin stand for the
extrema of a function f : M → R, while favg = V−1

∫
M
f dg is its average value.

We will repeatedly use the divergence theorem:

(2.15)
∫
M
δw dg = 0 for any compactly supported vector field w.

Given a function f : M → R on a compact Riemannian manifold (M, g),

(2.16) favg = 0 if and only if f = ∆φ for some φ : M → R.

Recall that a function is, by definition, C∞-differentiable.
The ‘if’ part of (2.16) is obvious from (2.14.i) and (2.15). The ‘only if’ claim in

(2.16) is one of the very few facts from analysis that are esed in this exposition.
From (2.15) and (2.8.a) it follows that, for a function f and a vector field w,

(2.17)
∫
M
fδw dg = −

∫
M
dwf dg if M is compact.

For instance, given a function f on a compact Riemannian manifold (M, g),

(2.18)
∫
M
duf dg = 0 if u is a Killing field,

since δu = 0. If w = ∇φ is the gradient of a function φ, (2.17) becomes

(2.19)
∫
M
f∆φdg = −

∫
M
g(∇f,∇φ) dg =

∫
M
φ∆f dg if M is compact,

which, applied to φ = f , shows that

(2.20)
a)

∫
M
f∆f dg = −

∫
M
|∇f |2dg if M is compact, and so

b) a function f : M → R is constant if M is compact and ∆f ≥ 0.

(Namely, as
∫
M
∆f dg = 0 by (2.15), the inequality ∆f ≥ 0 yields ∆f = 0.)

Another consequence of (2.15) is Bochner’s integral formula

(2.21)
∫
M

r(w,w) dg =
∫
M

(δw)2dg −
∫
M

tr (∇w)2dg,

valid for all compactly supported vector fields w on a Riemannian manifold (M, g)
(and easily derived from (2.12.b)). An important special case of (2.21) arises when
w = ∇ϕ is the gradient of a function:

(2.22)
∫
M

r(∇f,∇f) dg =
∫
M

(∆f)2dg −
∫
M
|∇df |2dg.

In the case of oriented manifolds, (2.15) may be restated as the Stokes formula
(which we need only in Appendix H): on an oriented n-dimensional manifold M ,

(2.23)
∫
M
dη = 0 for any compactly supported (n− 1) form η.

In fact, as M is oriented, we may treat the volume element dg of any fixed metric
g as a positive differential n-form, and then dη = (δw) dg for the unique vector
field w corresponding to η under the Hodge-star isomorphism TM → [T ∗M ]∧(n−1)
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(in the sense that η = ıw dg). The exterior derivative of a 1-form ξ or 2-form ζ
acts on vector fields u, v, w by

(2.24)
a) (dξ)(u, v) = du[ξ(v)] − dv[ξ(u)] − ξ([u, v]) ,
b) (dξ)(u, v) = [∇uξ](v) − [∇vξ](u) ,
c) (dζ)(u, v, w) = [∇uζ](v, w) + [∇vζ](w, u) + [∇wζ](u, v) .

Here (a) expresses our convention about dξ, while (b) and (c) easily follow from the
Leibniz rule, for any torsionfree connection ∇, such as the Levi-Civita connection
of a Riemannian metric.

In any Riemannian manifold, for the four-times covariant tensor fields A,B with
Ajklm = Rj

p
l
sRpksm−RkplsRpjsm and Bjklm = Rjk

spRsplm, we have

(2.25) Rjklm,
s
s = Rjkl

s
,sm−Rjkms,sl+Rjkl

sRsm−RjkmsRsl− 2Ajkml−Bjklm .

In fact, by the second Bianchi identity, Rjklm,
s
s = Rjkl

s
,ms − Rjkm

s
,ls. The

Ricci identity for R (analogous to (2.12.a) for vector fields w) now shows that
Rjklm,

s
s is the difference of the expression Rjkl

s
,sm +Rsmj

pRpkl
s+Rsmk

pRjpl
s+

Rsml
pRjkp

sRjkl
sRsm and its version with l,m switched, which yields (2.25).

Finally, if a = £wg for a vector field w on a Riemannian manifold (M, g), then

(2.26) 2wj,kl = 2Rjkl
pwp + ajl,k + ajk,l − akl,j .

In fact, ajk = wk,j+wj,k (cf. (2.6.a)), while the Ricci identity (2.12.a) gives ajl,k+
ajk,l − akl,j = 2wj,kl + Rkjl

sws + Rklj
sws + Rljk

sws, and so (2.26) follows, since
Rklj

sws +Rljk
sws = Rkjl

sws by the first Bianchi identity.

Remark 2.3. The facts from analysis used in this text are
if
∫
M
fφdg = 0, then φ = ∆f for some f

3. Basic properties of Ricci solitons

Throughout this section, except for Lemma 3.1, (M, g) is assumed to be a Ricci
soliton of dimension n, so that (0.1) holds for some fixed w and λ, while R, r, s
denote the curvature tensor, Ricci tensor and scalar curvature. First, we have

(3.1)

a) 2∇wR = ∆R + 2A + B − 2λR for A,B as in (2.25),

b) 2∇wr = ∆r − 2R
◦

r − 2λr,
c) 2dws = ∆s + 2|r|2 − 2λs .

It suffices to verify (3.1.a), as the other two identities then are obtained by successive
contractions. In view of (2.25), proving (3.1.a) amounts to showing that, as a
consequence of (0.1), the expression Rjkl

s
,sm − Rjkms,sl + Rjkl

sRsm − RjkmsRsl
appearing in (2.25) equals 2wpRjklm,p − 2λRjklm. To this end, first note that
wpRjklm,p = wp(Rjklp,m+Rjkmp,l) in view of the first Bianchi identity, so that the
Ricci identity (2.12.a) gives wpRjklm,p = wp,lRjkm

p−wp,mRjklp and, using formula
(2.26) (in which ∇a = −∇r by (0.1)), we obtain our claim as a consequence of the
second Bianchi identity and (0.1).

Next, applying 〈g, · 〉 to (0.1), we obtain, from (2.7.iii) and (2.15),

(3.2) i) 2δw + s = nλ, so that ii) savg = nλ if M is compact,

so that (3.1.c) combined with (3.2.ii) and (2.3.ii) yields

(3.3) 2dws = ∆s + 2|e|2 + 2(s− savg)s/n if M is compact.
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By (0.1), (2.7.iii) and (2.11.e), |£wg|2 = 〈λg− r,£wg〉= 2δ(λw− ıwr)+dws. Thus,

(3.4)
∫
M
dws dg =

∫
M
|£wg|2dg if M is compact,

by (2.15). Also, δ applied to both sides of (0.1) yields, by (2.6.a) and (2.11.c),

(3.5) i) ds/2 = −δ∇w − δ(∇w)∗, ii) ıwr = −δ(∇w)∗ ,

where (3.5.ii) follows from (2.11.b) and (3.5.i), as ds = −2dδw by (3.2.i).
Again, let (M, g) be a Ricci soliton, so that (0.1) holds for some w and λ. In

the open subset of M given by s 6= 0, using (3.1.b) and (3.1.c), we obtain, for the
vector field v with 2v = w −∇ log |s|,

(3.6) ∆|b|2 = dv |b|2 + 2|∇b|2 + 4s|b|4 − 4〈b, R
◦
b〉, where b = r/s .

Lemma 3.1. Let r and s be the Ricci tensor and scalar curvature of a Riemann-
ian manifold (M, g) with dimM = n ≥ 3. If s 6= 0 everywhere in M and the
tensor field b = r/s is parallel, then s is constant.

Proof. As ∇b = 0, any given eigenvalue µ of b is constant on M , and the corre-
sponding eigenspace distribution Eµ = Ker(b−µg) is tangent to a factor manifold
in a local Riemannian-product decomposition of g. Let r ′, s′ and n′ be the Ricci
tensor, scalar curvature and dimension of this factor manifold. Since b = µg on Eµ
and b = r/s, while r ′ = r on Eµ, we thus have n′µsg = n′sb = n′r = n′r ′ = s′g
on Eµ, that is, s′ = n′µs. As s′ is constant along all other factor manifolds, so is
s. Hence s must be constant on M unless b = r/s has just one eigenvalue. In
the latter case, however, s is constant by Schur’s lemma.. �

4. Answers to Questions (1.1)

The answer to each of the questions (1.1) is affirmative, and the details are
provided by Theorem 4.4 below. We begin with some lemmas.

Lemma 4.1. Let v = e1+ . . .+ en, where e1, . . . , en is the standard orthonormal
basis for the inner product 〈 , 〉 of Rn, and let Φ : Rn→ R be the function sending
x = (x1, . . . , xn) to x31 + . . .+ x3n. For any x ∈ Rn such that 〈v,x〉 = 0 we then

have the inequality n(n− 1)[Φ(x)]
2 ≤ (n− 2)2〈x,x〉3, which is strict except when

x equals a scalar times v− nej for some j = 1, . . . , n.

Proof. It suffices to maximize Φ(x), subject to the constraints 〈v,x〉 = 0 and
〈x,x〉 = 1, using Lagrange multipliers; we then find that, for any critical point
of Φ restricted to the unit sphere in v⊥, the n components xj of x represent
just two different values, as all components satisfy the same quadratic equation.
The constraint equations show that the two values must be

√
l/(kn) , occurring

k times, and −
√
k/(ln) , occurring l times, where k, l are postive integers and

k + l = n. For such points, replacing (l, k) by (l + 1, k − 1) increases the value of
Φ, so that the maximum is attained only when k = 1 and l = n− 1. �

In the next two lemmas, s, r are the scalar curvature and Ricci tensor of a given
Riemannian manifold (M, g) of any dimension n ≥ 1. If n ≥ 3, one also defines its
Schouten and Weyl tensors S and W to be the twice and, respectively, four times
covariant tensor fields S = r − (2n− 2)−1 sg and W = R− (n− 2)−1 g ∧ S, where
∧ is the exterior product of 1-forms valued in 1-forms, obtained from the valuewise
multiplication also provided by ∧ (thus, producing a 2-form valued in 2-forms). In
local coordinates, Wjklm = Rjklm− (n−2)−1(gjlSkm+ gkmSjl− gklSjm− gjmSkl).
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We always have W = 0 if n = 3, while in dimensions n ≥ 4 vanishing of W is,
as shown by Schouten [105, p. 83], equivalent to conformal flatness of g (see [6, p.
48] and [46, p. 531]). Finally, we adopt the convention that W = 0 if n ≤ 2, and,

in any dimension, let W
◦

stand for the bundle morphism [T ∗M ]�2→ [T ∗M ]�2 that

corresponds to W just as R
◦

defined in Remark 2.2 corresponds to R.

Lemma 4.2. At every point of every Riemannian manifold (M, g), we have

(4.1) |r|4 ≥ s〈r, R
◦

r〉 − s〈r,W
◦

r〉 .
The inequality (4.1) is strict except at points where r either is a multiple of g, or
has exactly two eigenvalues, among them the eigenvalue 0 of multiplicity one.

Proof. Let n = dimM . Since |r|4 clearly coincides with s〈r, R
◦

r〉 at points where
r is a multiple of g, our assertion follows when n ≤ 2, and we will from now on
assume that n ≥ 3.

In terms of the bundle morphism A : TM → TM corresponding to a = r

as in Remark 2.1, expression |r|4 − s〈r, R
◦

r〉+ s〈r,W
◦

r〉 equals [(n− 1)(n− 2)]−1

times (n−1)(n−2)(trA2)2 +(trA)4− (2n−1)(trA)2 trA2 +2(n−1)(trA) trA3 =
n(n−2)σ2 trE2 + 2n(n−1)σ trE3 + (n−1)(n−2)(trE2)2, where σ = trA/n and
E = A− σ Id is the traceless part of A.

As our claim is now obvious at points with E = 0, we may assume that E 6= 0.
The quadratic polynomial in σ, appearing above, has the discriminant 4n(n − 1)
times n(n−1)(trE3)2−(n−2)2(trE2)3, which is nonpositive by Lemma 4.1 applied
to the n-tuple x = (x1, . . . , xn) of the eigenvalues of E. In view of the equality
clause in Lemma 4.1, this completes the proof. �

Lemma 4.3. Let (M, g) be a compact Ricci soliton of dimension n ≥ 3, with (0.1)

for some w, λ. If |r|4 ≥ s〈r, R
◦

r〉 at every point of M and the scalar curvature
s is positive everywhere in M , then s is constant.

Proof. By (3.6), ∆φ ≥ dvφ for φ = |b|2 and b = r/s, as s|b|4 ≥ 〈b, R
◦
b〉. Hence

φ is constant in view of Corollary A.2 in Appendix A, which, combined with (3.6),
gives ∇b = 0. Now Lemma 3.1 yields our assertion. �

The following theorem, which provides an affirmative answer to the questions
listed in (1.1), combines results of several authors. Specifically, the cases n = 2 and
n = 3 were settled by Hamilton [63, §10] and, respectively, Ivey [71]. Bourguignon
[9] showed that the scalar curvature s is not constant, and Ivey [71] proved posi-
tivity of s and λ. That λ > 0 and s ≥ 0 is also stated in Friedan’s paper [52,
Propositions 2.2.2 – 2.2.4 on p. 396].

Here is how the proof of Theorem 4.4 given below relates to existing presenta-
tions. The arguments excluding the cases n ∈ {2, 3}, although quite different from
the original proofs of Hamilton [63, §10] and Ivey [71], are not new: the former is
due to Chow [39, pp. 202–203] (see also Remark 4.6 below), and the latter, along
with its immediate extension that excludes conformal flatness, is a variation on
Hamilton’s Lemma 10.5 in [61, p. 285]. The rest of the proof is essentially the same
as the original arguments of Bourguignon [10, Proposition 3.11] and Ivey [71].

Theorem 4.4. Let (M, g) be a compact Ricci soliton of dimension n, with (0.1)
for some fixed w and λ. Let us also assume that (M, g) is not an Einstein
manifold with r = λg. Then n ≥ 4, the scalar curvature of g is nonconstant and
positive, λ > 0, and the Weyl tensor W of g is nonzero somewhere in M .
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Proof. Let r 6= λg (or, equivalently, £wg 6= 0) somewhere in M .
The scalar curvature s must be nonconstant, or else (3.4) would give £wg = 0.

Next, at any fixed point x at which s = smin, the left-hand side of (3.3) is 0,
while the first two terms on the right-hand side are nonnegative, and so the last
term cannot be positive. However, smin < savg since s is not constant; thus,
nonpositivity of the last term in (3.3) implies that smin ≥ 0.

Consequently, smin > 0, that is, s > 0 on M , as the case smin = 0 is excluded
by Theorem A.1 in Appendix A applied to f = s, ψ = 2(savg − s)/n, v = 2w
and our g, with M replaced by the connected component U, containing our x, of
the open set in M on which ψ > 0. (In fact, smin = 0 would give s = 0 on U,
while s = savg on the boundary ∂U, due to how U was defined, and U 6= M , so
that ∂U is nonempty; thus, ψ would be constant, and hence identically zero on
U, contrary to the definition of U.)

Positivity of λ now follows (even without using Theorem A.1), since s is non-
constant and nonnegative: if we had λ ≤ 0, (3.2.ii) would give smin < savg ≤ 0.

As g is not Einstein, n ≥ 2. Thus, n ≥ 3, for otherwise (3.4) and Theorem B.1
in Appendix B would yield £wg = 0. Finally, since s > 0, the Weyl tensor
W cannot vanish identically (and so, in particular, n 6= 3): if it did, (4.1) and
Lemma 4.3 would contradict non-constancy of s. This completes the proof. �

Remark 4.5. Here is a different reason why r = λg if s is constant in Theorem 7.3:
by (3.3), constancy of s gives 2|e|2 = 0, as the other three terms in (3.3) vanish.
Hence g is an Einstein metric and (0.1) becomes £wg = µg with the constant
µ = λ− s/n, so that (2.7.iii) yields 4δw = nµ, and, by (2.15), µ = 0, as required.

Remark 4.6. Chow’s proof [39, pp. 202–203] of Hamiltons result [63, §10] stating
that, under the hypotheses of Theorem 4.4, one has n 6= 2, relies on the uniformiza-
tion theorem for metrics g on closed surfaces; namely, the argument of Bourguignon
and Ezin [11], reproduced in Appendix B, requires choosing a constant-curvature
metric conformal to g. However, Chen, Lu and Tian [35] prove that n 6= 2 in
Theorem 4.4 without invoking the uniformization theorem.

5. Myers-type theorems: Questions (1.3)

Fernández-López and Garćıa-Ŕıo [50] showed that the answers to Questions (1.3)
are all affirmative if, in the third question, one adds a boundedness hypothesis.
They provided two separate proofs: one based on Ambrose’s compactness criterion
[1], the other using results of Lott [86]. Both arguments are presented below.

Before Fernández-López and Garćıa-Ŕıo’s paper [50] appeared, Zhang [120] in-
dependently answered the first two questions in (1.3), using yet another argument.
Zhang’s proof, presented in Appendix C, reaches the conclusion directly, without
relying on the results of either Ambrose [1] or Lott [86], although its basic idea is
quite similar to Ambrose’s.

In this section t always denotes a real variable ranging over a nontrivial closed
interval [a, b] or an upper half-line [a,∞), and ( )˙ = d/dt.

We begin with two lemmas due, along with the proofs, to Myers [94] and, re-
spectively, Ambrose [1]:

Lemma 5.1. Let R and r be the curvature and Ricci tensors of an n-dimensional
Riemannian manifold (M, g). Given a minimizing geodesic [a, b] 3 t 7→ x(t) ∈M ,
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a C∞ vector field t 7→ u(t) ∈ [ẋ(t)]⊥ ⊂ Tx(t)M normal to it with u(a) = u(b) = 0,
and any piecewise-C∞ function ϕ : [a, b]→ R such that ϕ(a) = ϕ(b) = 0, we have

(5.1) a) (R(ẋ, u)ẋ, u) ≤ (∇ẋu,∇ẋu), b)
∫ b
a
ϕ2 r(ẋ, ẋ) dt ≤ (n− 1)

∫ b
a
ϕ̇2dt,

( , ) being the L2 inner product of vector fields tangent to M along the geodesic.

Proof. The formula x(t, s) = expx(t) su(t) defines a C∞ mapping from a rectangle

[a, b]× [c,−c] in the ts-plane, with some c > 0, into M , such that x(t, 0) = x(t),
x(a, s) = x(a), x(b, s) = x(b) and xs(t, 0) = u(t) for all t, s, where xs = ∂x/∂s.

Defining L(s) and A(s) for s ∈ [c,−c] by L(s) =
∫ b
a
|xt(t, s)| dt and 2A(s) =∫ b

a
|xt(t, s)|2dt, with xt = ∂x/∂t, we obtain

2(b− a)A(0) = [L(0)]2 ≤ [L(s)]2 ≤ 2(b− a)A(s) for all s ∈ [c,−c].
In fact, the three relations, from left to right, follow from constancy of the func-
tion t 7→ |ẋ(t)|, the minimizing property of the geodesic t 7→ x(t) = x(t, 0) and,
respectively, the Schwarz inequality. Thus, A(s) assumes its minimum value at
s = 0, and so A′′(0) ≥ 0, with A′ = dA/ds. As 2A(s) = (xt, xt), integrating by
parts we see that A′(s) = (xt, xts) = (xt, xst) = −(xtt, xs), where the boundary
term vanishes since u(a) = u(b) = 0. The geodesic equation xtt(t, 0) = 0 now
gives A′′(0) = −(xtts, xs), at s = 0. (A second or third subscript t or s stands
for the covariant derivative along the curve t 7→ x(t, s) or s 7→ x(t, s).) Next,
xtts = xstt +R(xt, xs)xt (cf. (2.1)). Since A′′(0) ≥ 0 and xs(t, 0) = u(t), it follows
that 0 ≥ (u,∇ẋ∇ẋu+R(ẋ, u)ẋ), which proves (5.1.a).

Using (5.1.a) for u = ϕu, for any C∞ function ϕ : [a, b] → R with ϕ(a) =
ϕ(b) = 0 and a parallel unit vector field t 7→ u(t) ∈ Tx(t)M normal to the geodesic

t 7→ x(t), we get (ϕ2R(ẋ, u)ẋ, u) ≤
∫ b
a
ϕ̇2dt. Summing this over n−1 orthonormal

fields u with the stated properties, we obtain (5.1.b). Finally, one easily generalizes
(5.1.b) to the case where ϕ is only piecewise C∞-differentiable by smoothing ϕ
out in small neighborhoods of its nondifferentiability points. �

Lemma 5.2. Let h : [a,∞) → R be a continuous function with
∫ ∞
a
h dt = ∞,

and let p ∈ R. Then there exist a real number b ∈ (a,∞) and a piecewise-C∞

function ϕ : [a, b]→ R such that ϕ(a) = ϕ(b) = 0 and
∫ b
a
ϕ2h dt > p

∫ b
a
ϕ̇2dt.

Proof. We fix c ∈ (a,∞) and a C∞ function ϕ : [a, c] → R with ϕ(a) = 0
and ϕ(c) = 1. Every b ∈ (c,∞) gives rise to an extension of ϕ to the interval
[a, b], still denoted by ϕ, and characterized by being linear on [c, b] with ϕ(c) = 1
and ϕ(b) = 0. Given b ∈ (c,∞), using the corresponding ϕ : [a, b] → R, we set

Isr =
∫ s
r

(ϕ2h−pϕ̇2) dt, for r, s ∈ [a, b]. Thus, I bc +p/(b−c) = (b−c)−2
∫ b
c

(b−t)2h dt.
Choosing χ : [c,∞) → R with d3χ/dt3 = h and χ(c) = χ̇(c) = χ̈(c) = 0, then
integrating by parts, we get I bc + p/(b − c) = 2(b − c)−2χ(b), which tends to ∞
as b → ∞ due to l’Hospital’s rule and the relation χ̈(b) =

∫ b
c
h dt → ∞. (All

limits here are taken as b → ∞, with fixed c.) Consequently, I bc → ∞, and so
I ba = Ica + I bc →∞, since Ica does not depend on b. Therefore, for some b > c, we

have I ba > 0, that is,
∫ b
a
ϕ2h dt > p

∫ b
a
ϕ̇2dt. This completes the proof. �

We now prove Ambrose’s compactness criterion using his original argument [1]:

Theorem 5.3. Let r denote the Ricci tensor of a complete Riemannian manifold
(M, g). If M contains a point y such that

∫ ∞
a

r(ẋ, ẋ) dt =∞ for every unit-speed
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geodesic [a,∞) 3 t 7→ x(t) with x(a) = y, then M is compact and the fundamental
group π1M is finite.

Proof. Any unit-speed geodesic t 7→ x(t) emanating from y must eventually cease
to be minimizing, for otherwise Lemma 5.2 for p = dimM − 1 and h = r(ẋ, ẋ)
would contradict (5.1.b). Thus, we may associate with every unit vector u ∈ TyM
the upper endpoint `(u) ∈ (0,∞) of the maximal interval [0, `(u)] on which the
geodesic t 7→ expy tu is minimizing. Since the ‘minimizing’ property amounts to
the distance equality dist(y, expy tu) = t for every t ∈ [0, `(u)], and the unit
sphere Σ ⊂ TyM is compact, the function ` : Σ → (0,∞) just defined is bounded.
In fact, if it were not, we could choose a sequence uk ∈ Σ converging to some
u ∈ Σ with `(uk) → ∞, so that dist(y, expy tuk) = t for any t ∈ [0,∞) and
all large k (namely, k with `(uk) ≥ t). Taking the limit, we would then get
dist(y, expy tu) = t for every t ∈ [0,∞), contradicting finiteness of `(u).

As ` : Σ → (0,∞) is bounded, (M, g) has a finite diameter by the Hopf-
Rinow theorem, and so M is compact. The Riemannian universal covering space
of (M, g) must be compact as well, as it satisfies the same hypotheses. Therefore,
π1M is finite, which completes the proof. �

The next four results are due to Fernández-López and Garćıa-Ŕıo [50], and so is
the argument justifying Theorem 5.4. (The other three theorems follow.)

Theorem 5.4. Let a complete Riemannian manifold (M, g) admit a C∞ vector
field w such that g(w,w) is bounded on M and £wg+ r ≥ λg for some constant
λ > 0, in the sense that £wg+ r − λg is positive semidefinite at every point. Then
M is compact and has a finite fundamental group.

In fact, Theorem 5.3 then applies to every point y ∈ M , as r(ẋ, ẋ) ≥ λ −
(£wg)(ẋ, ẋ), while, by (2.6.a), (£wg)(ẋ, ẋ) = 2g(∇ẋw, ẋ) = γ̇, where γ = 2g(w, ẋ).

Thus,
∫ b
a

(£wg)(ẋ, ẋ) dt = γ(b)− γ(a) is a bounded function of b.

Theorem 5.5. Let (M, g) be a complete Ricci soliton such that, in (0.1), λ > 0
and g(w,w) is bounded. Then M is compact and π1M is finite.

Theorem 5.6. If a compact Riemannian manifold (M, g) admits a C∞ vector
field w such that the twice-covariant symmetric tensor £wg+ r is positive definite
at every point of M , then the fundamental group π1M is finite.

Theorem 5.7. If (M, g) is a shrinking compact Ricci soliton, then π1M is finite.

Theorem 5.4 with w = 0 amounts to a part of Myers’s classical theorem [94],
stating that a complete Riemannian manifold (M, g) with r ≥ λg for a constant
λ > 0 is compact and has a finite fundamental group. The remaining part of
Myers’s theorem is a diameter estimate: namely, the diameter of (M, g) then does
not exceed the square root of (n − 1)π2/λ, where n = dimM . (This is justified
later, in the lines following Theorem 5.10.)

A similar diameter estimate also holds under the assumptions of Theorems 5.5
and 5.7. It is derived from a different argument, in the form of the following lemma
and two theorems, all three of which are due to Lott [86]. Note that none of the
results obtained earlier in this section are used below, except for Lemma 5.1.

We begin with a Poincaré-type estimate:
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Lemma 5.8. Let ϕ : [a, b] → R and H : (a, b) → R be C1 functions such that
ϕ(a) = ϕ(b) = 0 and there exist finite limits of (t − a)H(t) as t → a+ and of

(t − b)H(t) as t → b−. Then
∫ b
a

(Ḣ − H2)ϕ2dt ≤
∫ b
a
ϕ̇2dt, with equality only if

ϕ = Ce−F on (a, b) for some constant C and a fixed antiderivative F of H.

In fact,
∫ b
a

(ϕ̇2−Ḣϕ2+H2ϕ2) dt is nonnegative: it equals
∫ b
a

(ϕ̇+Hϕ)2dt, as one

sees noting that (ϕ̇+ Hϕ)2 = ϕ̇2 + 2Hϕϕ̇ + H2ϕ2, while the integrals of 2Hϕϕ̇

and −Ḣϕ2 coincide, since 2Hϕϕ̇+ Ḣϕ2 = (Hϕ2) .̇

Remark 5.9. The ordinary Poincaré inequality in dimension 1 is a special case
of Lemma 5.8, obtained by setting H(t) = −(b − a)−1π cot[π(t − a)/(b − a)]. It
states, in terms of the L2 norm ‖ ‖, that π‖ϕ‖ ≤ (b− a)‖ϕ̇‖ for any C1 function
ϕ : [a, b]→ R with ϕ(a) = ϕ(b) = 0, and the inequality is strict except when ϕ(t)
equals a constant times sin[π(t− a)/(b− a)].

The following theorem, due to Lott, is the main step in the proof [86, p. 868] of
Theorem 1.1 of [86]. Lott assumes, in addition, that w is the gradient of a function,
some power of which serves as the warping function of a warped product metric
used in his proof. Lott’s argument is rephrased here so as to avoid mentioning
warped products, which makes assuming that w is a gradient unnecessary.

Theorem 5.10. Let a complete n-dimensional Riemannian manifold (M, g) ad-
mit a C∞ vector field w such that, for the corresponding 1-form ξ = ıwg,

(5.2) £wg + r − 4q−1ξ ⊗ ξ ≥ εg with some positive constants ε and q,

r being the Ricci tensor, in the sense that £wg + r − 4q−1ξ ⊗ ξ − εg is positive
semidefinite at every point. Then M is compact, its fundamental group is finite,
and the diameter of (M, g) does not exceed the square root of (q + n− 1)π2/ε.

Proof. Let L be the length of any fixed minimizing geodesic [a, b] 3 t 7→ x(t) ∈M ,
and let ϕ : [a, b] → R be any C∞ function with ϕ(a) = ϕ(b) = 0. By (5.2),∫ b
a
ϕ2(£wg+ r− 4q−1ξ⊗ ξ)(ẋ, ẋ) dt ≥ ε

∫ b
a
ϕ2g(ẋ, ẋ) dt, while (b− a)2g(ẋ, ẋ) = L2,

and, setting H = 2q−1g(w, ẋ), we get (£wg − 4q−1ξ ⊗ ξ)(ẋ, ẋ) = q(Ḣ −H2) (cf.

(2.6.a)). Lemma 5.8 and (5.1.b) now give (b−a)−2εL2
∫ b
a
ϕ2dt ≤ (q+n−1)

∫ b
a
ϕ̇2dt.

So far the C∞ function ϕ with ϕ(a) = ϕ(b) = 0 was arbitrary. The estimate
εL2≤ (q+n−1)π2 follows from the last inequality with ϕ(t) = sin[π(t−a)/(b−a)]
(cf. Remark 5.9). Thus, M must be compact, which, applied to the Riemannian
universal covering space of (M, g), yields finiteness of π1M . �

Theorem 5.10 provides an alternative proof of Theorem 5.6, which is how Lott
used it [86, Theorem 1.1 on p. 866] under the assumption that w is a gradient.

The diameter estimate in Myers’s theorem, mentioned immediately after The-
orem 5.6, is obvious from Theorem 5.10 with w = 0 and q → 0+. In addition,
Theorem 5.10 implies a further diameter estimate:

Corollary 5.11. Suppose that (M, g) is a compact Riemannian manifold admit-
ting a C∞ vector field w such that £wg + r ≥ λg for some λ ∈ (0,∞). For
instance, (M, g) might be a shrinking compact Ricci soliton, with w, λ as in (0.1).

Then d2 ≤ 2λ−2π2
[
(n− 1)λ+ 8 max |w|2

]
, where n = dimM and d denotes

the diameter of (M, g).

Proof. We then have (5.2) for ε = λ/2 and q = 8λ−1 max |w|2. �
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Zhang’s argument [120] yields yet another diameter estimate. See Appendix C.

Remark 5.12. On a related note, recent results of Perelman [102, Lemma 1.2] and
Ni [96, Theorem 3] represent a case where completeness of a shrinking gradient
Ricci soliton (M, g) implies compactness of M under a suitable positive-curvature
assumption. Specifically, Perelman assumes that dimM = 3, the sectional curva-
ture is bounded, positive, and g is κ-noncollapsed for some κ > 0 (in the sense of
[101, p. 20]), while Ni’s theorem deals with Kähler-Ricci solitons having positive bi-
sectional curvature. Note that neither result assumes the curvature to be bounded
away from zero.

Remark 5.13. A stronger version of Theorem 5.7 is known to be true for compact
shrinking Kähler-Ricci solitons (M, g). Namely, we then have c1(M) > 0 (see
Proposition 8.2), while compact complex manifolds M with c1(M) > 0 are all
simply connected [6, Theorem 11.26].

Remark 5.14. As shown by Ma [88], the answer to Question (1.4) is ‘yes’ if, in
addition, ‖s‖2 ≤ 24λ2V, where ‖ ‖ is the L2 norm, λ denotes the constant in
(0.1), and V stands for the volume of (M, g). This follows from the well-known
formula 96π2 [2χ(M) + 3τ(M)] = 48‖W+‖2− 12‖e‖2 + ‖s‖2 (see, for instance, [46,
p. 598]), which gives 2χ(M)± 3τ(M) ≥ 0, for both signs ±, if ‖s‖2 ≥ 12‖e‖2.

Specifically, under the assumption (0.1), one has ‖s‖2 ≥ 12‖e‖2 if and only
if ‖s‖2 ≤ 24λ2V. In fact, integrating (3.3) with n = 4, we get 6

∫
M
dws dg =

6‖e‖2 − 24λ2V + 3‖s‖2/2, from the divergence theorem (2.15) and (3.2). On the
other hand, (2.17) yields 6

∫
M
dws dg = −6

∫
M

s δw dg, which, by (3.2.i) and (3.2.ii),

equals 3‖s‖2− 48λ2V. Equating the two resulting expressions for 6
∫
M
dws dg, we

see that ‖s‖2 − 24λ2V = 6‖e‖2− ‖s‖2/2.

6. Gradient Ricci solitons and Question (1.2)

An affirmative answer to Question (1.2) is provided by the next theorem, due to
Perelman [101, Remark 3.2].

Theorem 6.1. Let (M, g) be a compact Ricci soliton, with a vector field w sat-
isfying (0.1). Then w is the sum of a Killing field and a gradient.

According to Theorem 6.1, which will be proved later in this section, every
compact Ricci soliton (M, g) is a gradient Ricci soliton, in the sense that

(6.1) ∇df + r = λg for a constant λ and a C∞ function f : M → R.

In terms of (0.1), relation (6.1) means that 2w −∇f is a Killing field (cf. (2.6.b)).
At least ex post facto, Perelman’s proof of Theorem 6.1 presented below can

be motivated as follows. If (6.1) holds, 2∆f − |∇f |2 + 2λf + s is constant (see
Remark 6.5), and may be assumed equal to 0 by adding a constant to f . One
may therefore try to exhibit a function f with (6.1) on a given compact Ricci
soliton (M, g) by solving the equation 2∆f − |∇f |2 + 2λf + s = 0. This equation,
with λ > 0, is in fact solvable on every compact Riemannian manifold (M, g)
(see Theorem 6.2), and, according to Theorem 6.3, it implies (6.1), provided that
(M, g) is also a Ricci soliton.

We now present the details, beginning with a result of Rothaus [104]:

Theorem 6.2. Given a Riemannian manifold (M, g) of dimension n, let P be the
nonlinear operator acting on C∞ functions f : M → R by Pf = ∆f − |∇f |2/2.
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If M is compact and n ≥ 3, then, for any real constant λ > 0, the mapping
f 7→ Pf + λf sends the space of all C∞ functions M → R onto itself.

For a proof, see Appendix D. (When n = 2, Theorem 6.2 remains true, but
requires a different argument [104].)

The next theorem constitutes the main step leading to Perelman’s Theorem 6.1;
our formulation is a minor variation on a result of Perelman [101, equality (3.4)],
often called Perelman’s monotonicity formula (cf. [108]). The proof given below
amounts to a very detailed exposition of the argument outlined by Perelman in
[101] and presented in much detail by Kleiner and Lott in [79].

Theorem 6.3. Let r and s be the Ricci tensor and scalar curvature of a compact
Riemannian manifold (M, g). For any given C∞ function f : M → R, any C∞

vector field w on M , and any constant λ ∈ R, let us define twice-covariant
symmetric tensors h, b and a function ψ by h = ∇df + r − λg, b = £wg +
r − λg, and ψ = ∆e−f + 2δ[e−fw], cf. (2.14.i) and (2.7.i). Then, with P as in
Theorem 6.2,

(6.2)
∫
M
|h|2e−fdg +

∫
M

(Pf + λf + s/2)ψ dg =
∫
M
〈h, b〉e−fdg.

Proof. It suffices to prove vanishing of the four expressions

(a) (∇df + r, e−f∇df) + (Pf + s/2, ∆e−f ),
(b) (−λg, e−f∇df) + (λf, ∆e−f ),
(c) (∇df + r, e−f [r − λg − b]) + (Pf + s/2, 2δ[e−fw]),
(d) (−λg, e−f [r − λg − b]) + (λf, 2δ[e−fw]),

where ( , ) stands for the L2 inner product of functions or twice-covariant sym-
metric tensors on M .

To show that (a) – (d) are all zero, we set v = ∇f , a = ∇df , Y = ∆f , Q = |v |2
and u = ∇e−f. Then, for any twice-covariant symmetric tensor c,

(e)
∫
M
e−f 〈c, a〉dg =

∫
M

(ıuδc− ıuıvc) dg,

by (2.15), since e−f 〈c, a〉 − ıuδc+ ıuıvc = −δıuc, as one sees in local coordinates:
[cjkf,ke

−f ],j = e−fcjkf,jk − cjk,j(e−f ),k + cjkf,k(e−f ),j .
Expression (a) is obtained by integrating the sum of five terms: e−f |∇df |2,

e−f 〈r,∇df〉, (∆f)∆e−f , −|∇f |2∆e−f/2, and s∆e−f/2, which can also be rewrit-
ten as e−f |a|2, e−f 〈r, a〉, Y∆e−f , −Q∆e−f/2, and s∆e−f/2. Since

∫
M

s∆e−fdg

equals −
∫
M
g(∇s, u) dg = −2

∫
M
ıuδr dg (see (2.19) and (2.11.c)), the integrals

of the second and fifth terms add up, by (e) for c = r, to −
∫
M

(ıuıvr) dg. Next,

the sum of the integrals of the first, third and fourth terms is
∫
M

(ıuıvr) dg (and

hence (a) equals 0). In fact, the integral of −Q∆e−f/2 coincides, by (2.19) and
(2.10.ii), with that of g(∇Q, u)/2 = ıuıva, and hence

∫
M

(e−f |a|2−Q∆e−f/2) dg =∫
M

(ıuδa) dg, by (e) for c = a, while, from (2.19), −
∫
M
Y∆e−fdg =

∫
M
g(∇Y, u) dg

=
∫
M

(ıudY ) dg and, by (2.13),
∫
M

(e−f |a|2+Y∆e−f−Q∆e−f/2) dg =
∫
M

(ıuıvr) dg.

The sum in (b) vanishes by (2.19) for φ = e−f, since ∆f = 〈∇df, g〉.
Next, as r −λg−b = −£wg (cf. the definition of b), with v, a, Y,Q, u as above,

(c) equals −
∫
M
e−f 〈a + r,£wg〉dg +

∫
M

(2Y − Q + s)(δ[e−fw]) dg. The first of

the two integrals is equal to 2
∫
M

[ıwδa− δıw(a + r) + dws/2]e−fdg, as one easily
sees using (2.7.ii) and (2.11.e). Furthermore, (2.17) with f and the 1-form ıwg
replaced by e−f and ıw(a+ r) gives −

∫
M

[δıw(a+ r)]e−fdg =
∫
M

[ıuıw(a+ r)] dg.

Also, by (2.13), ıwδa = ıwıvr + ıwdY , while e−fıwıvr = −ıuıwr as u = −e−fv,
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and, by (2.10.ii), 2ıua = −2e−fıva = −e−fdQ. Consequently, using (2.8.b) we get
2
∫
M

[ıwδa − δıw(a + r) + dws/2]e−fdg =
∫
M

[dw(2Y − Q + s)]e−fdg, which, by

(2.17), is the opposite of
∫
M

(2Y −Q+ s)(δ[e−fw]) dg, thus showing that (c) is 0.

Finally, using (2.17) twice, we get
∫
M

(δ[e−fw])f dg = −
∫
M
g(∇f, e−fw) dg =∫

M
g(∇e−f, w) dg = −

∫
M
e−f (δw) dg. Therefore, (d) vanishes: by the definition of

b and (2.7.iii), r − λg − b = −£wg, while 〈g,£wg〉 = 2δw. �

Proof of Theorem 6.1. Let n = dimM . If n ≤ 2 or λ ≤ 0 in (0.1), our assertion
follows since, by Theorem 4.4, g is an Einstein metric with r = λg, and so £wg =
0. If n ≥ 3 and λ > 0, choosing a C∞ function f : M → R with Pf+λf+s/2 = 0
(cf. Theorem 6.2), we get

∫
M
|h|2e−fdg = 0 from (6.2), since b = 0 and so the

other two integrals vanish. Thus, ∇df + r = λg, which completes the proof. �

Remark 6.4. Theorem 6.1 implies that in every compact Ricci soliton, (0.1) is
satisfied by a unique gradient vector field w and a unique constant λ. In fact,
λ is unique by (3.2.ii), while, applying 〈g, · 〉 to (6.1), we get ∆f = nλ − s, for
n = dimM . This determines f uniquely up to an additive constant (cf. (2.20.b)).

Remark 6.5. If (M, g) is a compact gradient Ricci soliton, with (6.1), we get∫
M

(Pf + λf + s/2)ψ dg = 0 from (6.2) for f satisfying (6.1) and w = ∇f/2.
(Note that h = b = 0.) This also follows directly (2.15), since ψ is, by definition,
a divergence, while Pf + λf + s/2 is constant.

Constancy of Pf + λf + s/2 is, actually, a local consequence of (6.1). Namely,
given an arbitary Riemannian manifold (M, g) with a C∞ function f , and a
constant λ, let us set v = ∇f , a = ∇df , Q = g(v, v), Y = ∆f = δv and h =
a+ r −λg. Thus, 2ıvh = dQ+2ıvr −2λdf (by (2.10)) and 2δh = 2ıur +2dY +ds,
from (2.13) and (2.11.c). Subtracting, we get 2δh− 2ıvh = d(2Y −Q+ 2λf + s),
and so 2Y − Q + 2λf + s is constant if (6.1) holds, that is, if h = 0. Other
interesting scalar equations also follow from (6.1): for instance [39, p. 201],

(6.3) ∆f − |∇f |2 + 2λf is constant,

as one sees subtracting from d(2Y −Q+ 2λf + s) = 0 the relation d(Y + s) = 0
(immediate since 0 = 〈g, h〉 = 〈g, a〉+ s − nλ = Y + s − nλ, where n = dimM).

7. Ricci solitons and the curvature operator

This section presents four theorems, due to Böhm and Wilking [8], Hamilton
[62], Ivey [74] and Tachibana [109]. The first of them answers Question 1.5 in the
case where the curvature operator is positive.

The following result of Böhm and Wilking [8] was first proved by Hamilton [62]
for n = 4. Hamilton also conjectured that the same conclusion remained valid for
all dimensions n.

Theorem 7.1. In any dimension n ≥ 2, a compact Ricci soliton with positive
curvature operator must have constant sectional curvature.

The second result is due to Hamilton [62].

Theorem 7.2. Every compact four-dimensional Ricci soliton with nonnegative cur-
vature operator is a locally symmetric Einstein manifold.
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Neither of Theorems 7.1 and 7.2 is explicitly stated in [8] or [62]; they are,
however, obvious consequences of much more general theorems about the Ricci
flow with an initial metric that has positive or nonnegative curvature operator [8],
[62]. The two papers never mention Ricci solitons at all.

In the next theorem, due to Ivey [74], the condition W ≤ s/6 in Theorem 7.3,
known as nonnegativity of the isotropic curvature [93, p. 201], means that the dif-
ference W − s/6 of the Weyl conformal tensor and multiplication by one-sixth
of the scalar curvature, acting as a self-adjoint operator on exterior 2-forms, is
nonpositive at every point.

Theorem 7.3. Let (M, g) be a compact four-dimensional Ricci soliton, with (0.1)
for some fixed w and λ, such that g is a Kähler metric and W ≤ s/6. Then g
is an Einstein metric and r = λg.

If, in addition, λ is positive, (M, g) must be isometric to CP2 or S2×S2 with
a multiple of the standard Kähler-Einstein metric.

Proofs of Theorems 7.1 – 7.3 are oulined at the end of this section.
The fourth result was proved by Tachibana [109] back in 1974. The metric g is

assumed here to have harmonic curvature in the sense that δR = 0, which is true
for all g with parallel Ricci tensor, including all Einstein metrics.

Theorem 7.4. Let (M, g) be a compact Riemannian manifold with δR = 0.

(i) If the curvature operator of (M, g) is nonnegative, then (M, g) is locally
symmetric.

(ii) If the curvature operator of (M, g) is positive, (M, g) must have constant
sectional curvature.

Proof. See Appendix E. �

Tachibana [109] proved Theorem 7.4 by a Bochner-type vanishing argument,
based on a Weitzenböck formula due to Berger [5]. An attempt to adapt Tachibana’s
proof to the case of compact Ricci solitons with positive (or, nonnegative) curvature
operator is hampered by the presence, in (0.1), of the term £wg which (even when,
using Theorem 6.1, one chooses w to be a gradient) cause the argument to break
down. Applying the methods of Gursky and LeBrun [60], in dimension four, does
not seem to produce immediate results either.

A more promising approach, inspired by Ivey’s proof, in [71], that all com-
pact three-dimensional Ricci solitons have constant sectional curvature (see Theo-
rem 4.4), consists in using Hopf’s maximum principle, which renders terms related
to £wg quite manageable.

In a Riemannian manifold (M, g) of any dimension n ≥ 3, let us consider the
following functions:

(7.1)
F = |R|2|r|2 − s [tr R̂3 + trR3/2],
G = |e|4 + 2(n− 2)−1 s tr e3 + n−1(n− 1)−1 s2|e|2,
H = |r|4 − s 〈r, Rr〉.

For the meaning of trR3, see the line following formula (E.2) in Appendix E.

further text in preparation

Proofs of Theorems 7.1 – 7.3.



COMPACT RICCI SOLITONS 19

in preparation

�

8. Kähler-Ricci solitons

By a Kähler-Ricci soliton we mean here a Ricci soliton which also happens to
be a Kähler manifold. Most authors’ definition of Kähler-Ricci solitons is different
from ours, although equivalent to it in the compact case (see Remark 8.4 below).

In this section we use some definitions and facts about Kähler manifolds, a self-
contained presentation of which is given in Appendices F through L. Note that a
holomorphic vector field is always assumed to be real, the Kähler and Ricci forms
of any given Kähler manifold (M, g) are denoted by Ω and ρ, while J stands for
the complex structure tensor and i∂∂ is the operator characterized by (G.2).

We begin with a lemma.

Lemma 8.1. Let (M, g) be both a Kähler manifold and a gradient Ricci soliton,
so that ∇df + r = λg for a constant λ and a C∞ function f : M → R, where
r is the Ricci tensor. Thus, we have (0.1) for w = ∇f/2, cf. (2.6.b). Then

(a) the vector fields w and Jw are holomorphic,
(b) Jw is a Killing field,
(c) i∂∂f + ρ = λΩ.

Proof. Since r and g are Hermitian (Remark H.1(i)), so is ∇df = λg− r. This has
two consequences. First, i∂∂f = (∇df)J = (λg − r)J = λΩ − ρ, cf. (H.3), which
yields (c). Secondly, (a) – (b) now follow from Remark L.1(d) with ξ = df/2. �

The next proposition provides an affirmative answer to the first question in (1.6).
The proof given below uses Perelman’s Theorem 6.1. However, to establish Theo-
rem 6.1 itself one has to solve a nonlinear elliptic equation. For the reader’s benefit
we give in Appendix M a different, completely elementary proof of Proposition 8.2.

Proposition 8.2. Let (M, g) be a compact Kähler-Ricci soliton, and let a vector
field w satisfy (0.1) with a constant λ. Then w is holomorphic and [ρ] = λ[Ω ]
in H2(M,R), where Ω and ρ are the Kähler and Ricci forms.

Proof. As stated immediately after Theorem 6.1, ∇df + r = λg for some constant
λ and a function f such that u = 2w − ∇f is a Killing field. Our claim is now
obvious from (a) and (c) in Lemma 8.1, since the Killing field u is holomorphic
(Remark M.3 in Appendix M) and the 2-form i∂∂h is exact (cf. (G.2)). �

For later reference, we state the following immediate consequence of Lemma 8.1:

Corollary 8.3. Given a compact Kähler-Ricci soliton (M, g), let w be the unique
gradient vector field satisfying (0.1), cf. Remark 6.4. Then w is holomorphic and
Jw is a Killing field.

Remark 8.4. Most authors define a Kähler-Ricci soliton to be a Kähler manifold
(M, g) whose Kähler and Ricci forms Ω and ρ satisfy the equality £vΩ+ρ = λΩ
for some real constant λ and some holomorphic section v of the complexified
tangent bundle [TM ]C. (One often normalizes the metric so that λ is 1, 0 or −1.)
Since such v equals w − iJw, where w is a real holomorphic vector field, taking
the real and imaginary parts we see that the above equality amounts to (0.1) with
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a real holomorphic field w such that Jw is a Killing field. Corollary 8.3 implies
that, in the compact case, this definition is equivalent to ours.

9. Non-Einstein examples

The examples of non-Einstein compact Kähler-Ricci solitons found by Koiso [78]
and, independently, Cao [17], are described in this section.

It is convenient to begin with a more general construction (which yields various
non-soliton metrics as well), and then narrow it down to the Koiso-Cao case.

The construction uses three sets of data. First, let there be given

(9.1)
an integer k ≥ 2, the total space M of an Sk bundle with the
structure group SO(k) over a manifold N, and the horizontal
distribution H of a fixed SO(k) connection in the bundle M .

Here and below we refer to the standard action of SO(k) on Sk, which keeps two
points fixed. Next, we have the fibre-related ingredients:

(9.2)

a real number c 6= 0, a nontrivial closed interval [tmin, tmax] of the vari
able t, and a C∞ function Q : [tmin, tmax]→ R vanishing at tmin and
tmax, positive on the open interval (tmin, tmax), such that the values of

its derivative Q̇ = dQ/dt at the endpoints tmin, tmax are 2c and −2c.

Finally, the data also include the geometry of the base manifold, namely,

(9.3) a C∞ curve [tmin, tmax] 3 t 7→ pt of Riemannian metrics on N.

The symbol t will simultaneously be used for a nonconstant function with the
extrema tmin, tmax on a manifold (such as Sk, k ≥ 2, or the total space M of an
Sk bundle). The dot ( )˙ always stands for the derivative d/dt.

Fixing the data (9.2) amounts to choosing a Riemannian metric b on Sk and a
surjective C∞ function t : Sk → [tmin, tmax], both SO(k)-invariant, such that the
b-Hessian of t equals some function times b. This is summarized as follows:

Lemma 9.1. Given the data (9.2), a solution r : (tmin, tmax) → (0,∞) to the
equation Qṙ = cr, and a Euclidean space V of dimension k ≥ 2 with the inner
product 〈 , 〉, let Sk be the k-sphere obtained when two disjoint copies of V are
glued together by the inversion diffeomorphism V \{0} 3 v 7→ v/〈v, v〉 ∈ V \{0}.
The first-copy embedding V → Sk allows us to identify V \{0} with an open subset
of Sk. Denoting by r also the Euclidean norm function V → R, we use the inverse
diffeomorphism r 7→ t of r : (tmin, tmax)→ (0,∞) to treat t, Q as functions of r,
and, consequently, also as C∞ functions V \{0}. Then

(a) Sk admits a unique Riemannian metric b equal to (cr)−2Q〈 , 〉 on V \{0},
(b) t, Q, Q̇ and Q̈ have unique extensions to C∞ functions on Sk,

(c) 2Ddt = Q̇b and b(Dt,Dt) = Q on Sk, where D stands for both the Levi-
Civita connection of b and the b-gradient,

(d) at points in Sk at which dt 6= 0, the gradient Dt is an eigenvector of

the Ricci tensor rb of b for the eigenvalue (1− k)Q̈/2, while all nonzero
vectors orthogonal to Dt are eigenvectors of rb corresponding to the eigen-
value (2− k)(Q̇2− 4c2)(4Q)−1− Q̈/2.

Proof. See Appendix S. �



COMPACT RICCI SOLITONS 21

Using the data (9.1) – (9.3) the metric b on Sk described in Lemma 9.1, we
now define a Riemannian metric g on the total space M by

(9.4) i) g = γ on V, ii) g = π∗pt on H, iii) g(V,H) = 0.

More precisely, (9.4.iii) means that the vertical distribution V on M is g-or-
thogonal to the horizontal distribution H, while (9.4.ii) states that, at any point
x ∈ M , the restriction of the metric gx to the horizontal space Hx coincides with
the restriction to Hx of the pullback π∗pt(x), where π : M → N is the bundle
projection and t(x) is the value at x of t : M → R.

the remainder of this section consists of
unfinished text, still in preparation

Although the metric b on Sk described in Lemma 9.1 depends on the choice of
the positive function t 7→ r with Qṙ = cr,

since the metric g constructed on M using b and the data the construction of
Given a C∞ curve [tmin, tmax] 3 t 7→ pt of Riemannian metrics on a mani-

fold N, a real vector bundle L of fibre dimension k ≥ 2 over N, a fibre met-
ric 〈 , 〉 in L, and a connection in L that makes 〈 , 〉 parallel, with the hori-
zontal distribution H and the curvature tensor Z, let us consider the following
five conditions. By Zφχ and bφ we mean here the 2-form and the symmetric 2-
tensor at any point y ∈ N with Zφχ = 〈Z( · , · )φ, χ〉 for fixed φ, χ ∈ Ly, and
bφ =

∑
w

∑
χ Zφχ( · , w)Zφχ( · , w), where φ ∈ Ly is fixed, and w (or, χ) ranges

over some/any basis of TyN (or, Ly) orthonormal relative to pt (or, 〈 , 〉).

Remark 9.2. pt(Ψtw,w
′) = ṗt(w,w

′),
trtṗt = trΨt,
trtp̈t = tr Ψ̇t + trΨ2

t ,
trΨ2

t = pt(ṗt, ṗt).

With S = 2φ̇− trΨt, condition (6.1) holds for our (M, g) and φ if and only if

(a) δtṗt = d trtṗt = 0, where trt is the pt-trace, and δt is the divergence
operator corresponding to pt,

(b) for any t, s ∈ [tmin, tmax], the ratio dpt/dps of the volume elements of pt
and ps is a constant, depending on t and s,

(c) δtZ = 0, where δt may now depend on the connection in L as well,
(d) pt(Zφχ, Zφχ) = Π for some constant Π depending just on t, all y ∈ N,

and all φ, χ ∈ Ly such that 〈φ, φ〉 = 〈χ, χ〉 = 1 and 〈φ, χ〉 = 0.
(e) bφ = Σpt at every y ∈ N, for all φ ∈ Ly with 〈φ, φ〉 = 1, and for some

constant Σ depending only on t,
(f) and, finally,

(9.5)

4rt + SQṗt − 2Qp̈t − kQ̇ṗt − 2c−2ΣQpt + 2Qpt(Ψt · , Ψt · ) = 4λpt ,

SQQ̇− 2QQ̈+ (2− k)(Q̇2− 4c2) + c−2ΠQ2 = 4λQ,

SQ̇+ 2(1− k)Q̈+ (2Ṡ − trΨ2
t )Q = 4λ.

10. Uniqueness of Kähler-Ricci solitons

An affirmative answer to the second question in (1.6) is provided by assertions
(iii) – (iv) in following theorem, in which (ii) and (iii) are due to Calabi [16],
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while (iv), first proved in the Kähler-Einstein case by Bando and Mabuchi [3], was
generalized to Kähler-Ricci solitons by Tian and Zhu [115].

Throughout this section, whenever (M, g) is a specific Kähler manifold, Ω, ρ, J
and h(M) will denote its Kähler form, its Ricci form, the complex structure tensor
of M , and the Lie algebra of all (real) holomorphic vector fields on M . For more
on Kähler geometry, see Appendices F through L.

Theorem 10.1. Given Kähler metrics g and ĝ on a compact complex manifold
M , let both (M, g) and (M, ĝ) be Ricci solitons, so that they satisfy (0.1) with

some constants λ, λ̂ and some vector fields w, ŵ.

(i) The constants λ and λ̂ then are both positive, both zero, or both negative.
(ii) If λ = 0 and the Kähler forms of g and ĝ represent the same cohomology

class in H2(M,R), then ĝ = g.

(iii) If λ < 0, then λ̂ĝ = λg.

(iv) If λ > 0, then λ̂ĝ = λF ∗g for some biholomorphism F : M → M which
lies in the identity component of the complex automorphism group of M .

Theorem 10.1 has no direct analogue for real Ricci solitons. Even in dimension
2, two hyperbolic metrics on a given compact surface of genus greater than 1 need
not be isometric. In dimension 4, an example of this kind is provided by Page’s
Einstein metric [99] and the non-Einstein Koiso-Cao soliton [78], [17], which coexist
on the complex surface obtained by blowing up a point in CP2. Similarly, the two-
point blow-up of CP2 carries both the conformally-Kähler Einstein metric of Chen,
LeBrun and Weber [34], and the toric Kähler-Ricci soliton of Wang and Zhu [116].
Also, various spheres Sn, n ≥ 5, have been shown to admit nonstandard Einstein
metrics [77], [12], [7].

We begin by proving assertions (i) – (iii) in Theorem 10.1. The crucial steps used
here to establish (ii) and (iii) appear in Appendix H: for (iii), we follow Calabi’s
original argument [16], while the proof of (ii) is due to Yau [119].

Proof of (i) – (iii) in Theorem 10.1. As λ[Ω ] = [ρ] = 2πc1(M) ∈ H2(M,R)
according to Proposition 8.2 (and Remark K.1(ii)), the three possible values of
sgnλ correspond to the cases where c1(M) is positive, zero, or negative, which are
mutually exclusive (see the end of Appendix J). This proves (i). Assertion (ii) is in
turn an immediate consequence of Theorem K.2(a) in Appendix K, since, according
to Theorem 4.4, a compact Ricci soliton with λ = 0 in (0.1) must be Ricci-flat.

Now let λ < 0. By Theorem 4.4, g and ĝ are Kähler-Einstein metrics with the

negative Einstein constants λ and λ̂. Hence, replacing g and ĝ by λg and λ̂ĝ , we
obtain two Kähler metrics g and ĝ with the Ricci tensors r = −g and r̂ = −ĝ .
Theorem K.2(b) in Appendix K now gives g = ĝ , completing the proof. �

Tian and Zhu derive Theorem 10.1(iv) from the following two results of theirs
[114, Lemma A.2 and Theorem A in §7]. As usual, h(M) is the complex Lie algebra
of all (real) holomorphic vector fields on M . (See Remark L.2 in Appendix L.)

Theorem 10.2. Given a compact Kähler-Ricci soliton (M, g), let w be the unique
gradient vector field with (0.1), cf. Remark 6.4. The operator Adw : h(M)→ h(M)
sending v to [w, v] then is self-adjoint and nonnegative relative to some Hermitian
inner product in h(M), while its kernel, as a real subspace of h(M), is spanned by
g ∪ Jg, where g is the real Lie algebra of all Killing fields on (M, g).



COMPACT RICCI SOLITONS 23

Theorem 10.3. For any compact Kähler-Ricci soliton (M, g), the identity compo-
nent Isomo(M, g) of the isometry group of (M, g) is a maximal compact connected
Lie subgroup of the biholomorphism group Aut(M).

Proofs of Theorems 10.2, 10.3 and 10.1(iv) are given in Appendix P. They rely
on some other results of Tian and Zhu [115], which we present next, beginning with
some motivating remarks. First, if (M, g) is a compact Riemannian manifold and
savg denotes the average value of its scalar curvature s, (2.20.b) and (2.16) imply
that

(10.1) ∆f+ s = savg for some f : M → R, unique up to an additive constant.

Now, given a vector field v on M , we set

(10.2) Lv = δv − dvf for f as in (10.1),

where δ is the divergence, cf. (2.7.i). The resulting linear differential operator L
sends vector fields on M to functions M → R, and gives rise to the functional

(10.3) v 7→
∫
M
eLv dg

on the space of all C∞ vector fields on M . Furthermore,

(10.4) Lu = 0 if u is a Killing field.

In fact, by (10.1), the isometries forming the flow of u leave f invariant up to
additive constants. Thus, duf is constant and so, by (2.18), duf = 0. On the
other hand, δu = 0 due to skew-adjointness of ∇u and (2.7.i).

The importance of (10.3) for our discussion lies in the fact that a critical point
for (10.3) naturally arises in every compact gradient Ricci soliton (M, g) with
savg 6= 0. Specifically, it is the vector field u = ∇f/(2λ), where f and λ are as
in (6.1), so that, by (3.2.ii), λ = savg/n, for n = dimM , and ∆f + s = savg. In
fact, (2.14.i), (2.8.b) and (6.3) imply that Lu then differs from −f by a constant.
However, by (2.15),

∫
M

(Lv)e−fdg = 0 for any vector field v, since the integrand

is the divergence of e−fv (cf. (2.8.a)).
That u = ∇f/(2λ) is a critical point for (10.3), whenever ∇df + r = λg with a

constant λ 6= 0, will obviously remain true even if we modify (10.3), replacing the
exponent Lv by Pv = Lv + zL(Av) for a fixed complex number z and a fixed
linear operator A acting on vector fields, as long as L(Au) = 0. An important case
of such a modification of L arises when (M, g) is a compact, gradient, Kähler-Ricci
soliton and Av = Jv, as one sees using (10.4) and noting that Jw, for w = ∇f/2,
is a Killing field (Lemma 8.1(b)). It is also natural to choose z = −i, since the
corresponding P then is the unique complex-linear operator with the real part L.

Following Tian and Zhu [115, formula (2.3)], except for notation, we now set

(10.5) F(w) = µ
∫
M
ePw dg with Pw = Lw − iLJw and µ = (savg)m,

for any compact Kähler manifold (M, g) of complex dimension m, and for w
which, rather than being an arbitrary C∞ vector field on M , is now assumed to
be holomorphic. In other words, (10.5) defines a function F : h(M)→ C, and P
in (10.5) is obtained by restricting the modified version of (10.3) to the finite-di-
mensional Lie algebra h(M) of all (real) holomorphic vector fields on M .

We use here the multiplicative notation, without parentheses, for differential
operators (including bundle morphisms) acting on sections of vector bundles; thus,
LJw in (10.5) stands for L(Jw) (and ∇LJw will later denote its gradient). The
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factor µ = (savg)m in (10.5) is introduced to make F scale-invariant, that is,
unchanged when g is replaced by cg with c ∈ (0,∞). Furthermore,

(10.6) a) dFwv = µ
∫
M

(Pv)ePw dg, b) (dudvF)(w) = µ
∫
M

(Pu)(Pv)ePw dg

for any u, v, w ∈ h(M), where the real-linear function dFw : h(M) → C is the
differential of F at w, so that dFwv equals (dvF)(w), the value at w of the
directional derivative of F in the direction of the constant vector field v on h(M),
while dudvF = du(dvF) is a second-order directional derivative. In fact, since P
is complex-linear, dFw (or, d(dvF)w) is the composite of P with the differential
of the function ψ 7→ µ

∫
M
eψdg (or, ψ 7→ µ

∫
M

(Pu)eψdg), defined on a suitable
finite-dimensional function space.

By (10.6.a), dFw is complex-linear for any w ∈ h(M), and so the function
F : h(M)→ C is holomorphic; note that h(M) is a complex space, with v 7→ Jv
serving as the multiplication by i (cf. Remark L.2). We will refer to F as the
Tian-Zhu invariant.

If (M, g) is a compact Kähler manifold with [ρ] = λ[Ω ] ∈ H2(M,R) for some
real number λ 6= 0, the restriction of the operator P in (10.5) to h(M) is injective:

(10.7) h(M) ∩ KerP = {0} whenever [ρ] = λ[Ω ] 6= 0.

Namely, Lemma N.3(a) in Appendix N shows that w = 0 if w ∈ h(M) satisfies
the condition Pw = 0 (equivalent to Lw = LJw = 0).

The above discussion is summarized by the following result, due to Tian and
Zhu [115, Proposition 3.1]:

Proposition 10.4. Given a compact Kähler-Ricci soliton (M, g), let λ and w be
the unique real constant and gradient vector field that satisfy (0.1), cf. Remark 6.4.
If λ 6= 0, then λ−1w is a critical point of the Tian-Zhu invariant F : h(M)→ C.

As a next step, we define the Futaki invariant [53] of a compact Kähler manifold
(M, g) to be the real-linear functional F : h(M)→ R such that, if f is chosen as
in (10.2) and µ = (savg)m with m = dimCM , then

(10.8) Fv = µ
∫
M
dvf dg for v ∈ h(M), or, equivalently, F = −Re dF0 .

That F = −Re dF0 is clear from (10.6.a) for w = 0, (10.5) and (2.15). The Futaki
invariant constitutes a well-known obstruction [54] to the existence of Kähler-Ein-
stein metrics on compact complex manifolds M with c1(M) > 0. See Theorem N.1
in Appendix N.

Throughout this section, positivity of c1(M) is defined as at the beginning of
Appendix N, and so it amounts to the existence, on the given compact complex
manifold, of a Kähler metric whose Kähler form Ω and Ricci form ρ satisfy the
relation [ρ] = λ[Ω ] ∈ H2(M,R) for some real number λ > 0.

The next two results are due to Tian and Zhu [115, p. 305], [115, Lemma 2.2]:

Theorem 10.5. For any compact complex manifold M with c1(M) > 0, the
Tian-Zhu invariant F : h(M) → C, defined with the aid of a Kähler metric g
satisfying the condition [ρ] = λ[Ω ] ∈ H2(M,R) for some λ ∈ R, depends only on
the complex structure of M , and not on the choice of such a metric g.

Proof. See Appendix N. �

Lemma 10.6. Suppose that M is a compact complex manifold with c1(M) > 0,
while p ⊂ h(M) is the image, under the transformation v 7→ Jv, of the real Lie
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subalgebra of h(M) corresponding to any fixed maximal compact connected Lie
subgroup K of the biholomorphism group of M . The restriction to p of the Tian-
Zhu invariant F : h(M)→ C then is real-valued, and F : p→ R has exactly one
critical point.

Only the uniqueness part of Lemma 10.6 is needed for proving Theorem 10.1.
This is why the proof of the existence assertion is postponed until §11.

Proof of uniqueness of the critical point. According to Theorem 10.5, we can eval-
uate F using any Kähler metric g on M with the Kähler form Ω such that
[Ω ] = 2πc1(M). Let us choose g with this property which is also K-invariant, for
instance, one obtained by starting from any such metric, then averaging it over K.

For any w ∈ p, the function Pw in (10.5) is real-valued (by (10.4), since Jw
is a Killing field). Thus, (10.7) and real-valuedness of Pw,Pv in (10.6.b) give
dvdvF > 0 on p whenever v ∈ p and v 6= 0.

If F : p → R now had two different critical points w and w + v, setting
χ(t) = F(w + tv) and ( )˙ = d/dt for t ∈ R we would get χ̈ > 0, contrary to the
equalities χ̇(0) = χ̇(1) = 0. �

11. Existence of Kähler-Ricci solitons

in preparation

We will need the remaining part of Lemma 10.6:

The existence of a critical point. First, the operator h(M) 3 w 7→ Pw given by
(10.5) is injective: if Pw = 0, that is, Lw = LJw = 0, Lemma N.3(a) in Appen-
dix N gives w = 0. Thus, p 3 w 7→ Pw ∈ X is a linear isomorphism.

To prove that F : p → R has a critical point (actually, a minimum), we now
consider the space X of real-valued functions on M , obtained as the image of
p under the linear operator w 7→ Pw. For the function F : X → R given by
F(ψ) =

∫
M
eψdg, we have F(ψ) → ∞ as |ψ| → ∞, where | | is some (or any)

norm in X . In fact, given a sequence ψ[j] ∈ X , j = 1, 2, 3, . . ., with |ψ[j]| → ∞
as j → ∞, we may assume, passing to a subsequence, that ψ[j]/|ψ[j]| → ψ as
j → ∞, for some ψ ∈ X . Since |ψ| = 1 and

∫
M
ψe−fdg = 0 in (10.5), we

may fix ε ∈ (0,∞) and a nonempty open set U ⊂ M with ψ > 2ε on U.
Choosing | | to be the supremum norm, we now get ψ[j] ≥ ε|ψ[j]| on U for large
j, and so F(ψ[j]) ≥

∫
U
eψ[j] dg ≥

∫
U
eε|ψ[j]|dg → ∞ as j → ∞, which shows that

F(ψ) → ∞ as |ψ| → ∞. Next, since w 7→ Pw is a linear isomorphism p → X
and F(w) = F(Pw), we also have F(w) → ∞ as w → ∞ in p. Thus, F has a
minimum value in p, which completes the proof. �

We say that a compact complex manifold M with c1(M) > 0 is toric if its
biholomorphism group contains a Lie subgroup isomorphic to the real torus Tm,
where m = dimCM . If this is the case, we usually fix such a subgroup, and refer
to its action on N simply as the torus action.

The following theorem is due to Wang and Zhu [116].

Theorem 11.1. Let M be a compact complex manifold with c1(M) > 0. If M
is toric, then there exists a Kähler metric on M which is at the same time a Ricci
soliton invariant under the torus action.
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Proof.

in preparation

�

Appendix A. Hopf’s maximum principle

For the reader’s convenience, we give here a standard proof of Hopf’s maximum
principle [69] for manifolds without boundary.

Theorem A.1. If f is a C2 function on a Riemannian manifold (M, g) and
∆f ≤ ψf + dvf for some nonnegative function ψ and a vector field v, such that
both ψ and |v | are locally bounded, then f cannot have a nonpositive minimum
in M unless it is constant on M .

Proof. Suppose that, on the contrary, fmin = c ≤ 0 and the set f−1(c) has a
boundary point y′ (that is, Ø 6= f−1(c) 6= M). Let us now fix a diffeomorphic
identification of a neighborhood U ′ of y′ with a Euclidean ball {x : |x− y′| < 1}
and then choose z′ ∈ U ′ with |z′ − y′| < 1/3 and f(z′) > c. A point y in
U ′ ∩ f−1(c), nearest z′, thus lies on the boundary sphere ∂U ⊂ U ′ of an open
ball U of some radius r′ < 1/2, centered at z′, and f > c on U . Let us now
fix a point z with y 6= z 6= z′ on the segment joining z′ to y. The formula

ha(x) = e−a|y−z|
2− e−a|x−z|2, with a > 0, defines a function ha : U → R. For the

operator P with Pf = ∆f − ψf − dvf and the closed ball Y = {x : |x− y| ≤ r}
of any fixed radius r < |y − z|, the expression a−2ea|x−z|

2

(Pha + e−a|y−z|
2

ψ)
converges to some negative function, uniformly on Y , as a→∞, which one easily
verifies noting that Y ⊂ U ′ and Pf = gjk∂j∂kf +wj∂jf −ψf for some coefficient
functions gjk, wj. Since ψ ≥ 0, we may thus choose a such that Pha < 0 on
Y . Setting fε = f + εha for any ε > 0 we now get Pfε < 0 on Y , due to our
assumption that Pf ≤ 0 on M . For ε close to 0, we also have fε > c on the
sphere ∂Y . Namely, as f ≥ c on U ′, this is obvious, for any ε, at those points
of ∂Y at which ha > 0. On the other hand, points x ∈ ∂Y with ha(x) ≤ 0
(that is, |x − z| ≤ |y − z|) form a set Z contained in U, due to the relation
|x − z′| ≤ |x − z| + |z − z′| ≤ |y − z| + |z − z′| = |y − z′| = r′. (Note that
the resulting inequality |x − z′| ≤ r′ must be strict: otherwise we would have
|x− z′| = |x− z|+ |z − z′| and so x, y would both lie on the ray emanating from
z′ through z, at the same distance r′ from z′, which would give x = y, even
though |x − y| = r > 0 as x ∈ ∂Y .) Since Z ⊂ U, we have f > c on Z, so that
compactness of Z gives fε > c on Z (and hence on ∂Y ) for sufficiently small
ε > 0. However, fε(y) = c ≤ 0. The minimum value of fε on Y thus must be
nonpositive, and is assumed at an interior point of Y . At such a point, relation
Pfε < 0 gives 0 ≤ ∆fε < ψfε ≤ 0. This contradiction completes the proof. �

Corollary A.2. A nonconstant C∞ function φ on a Riemannian manifold (M, g),
such that ∆φ ≥ dvφ for some C∞ vector field v, cannot assume a maximum value
anywhere in M .

In fact, that would contradict Theorem A.1 with ψ = 0 and f = φmax − φ.
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Appendix B. The Bourguignon-Ezin theorem

The following result of Bourguignon and Ezin [11] is used to prove Theorem 4.4.

Theorem B.1. Let w be a conformal vector field on a Riemannian manifold
(M, g), in the sense that n£wg = 2(δw)g, where n = dimM . If M is compact,
then

∫
M
dws dg = 0, with s denoting the scalar curvature of g.

Proof. We have 2sδw = 〈r,£wg〉, since w is conformal and s = 〈g, r〉. Now
(2.11.e) and (2.8.a) for f = s give (n− 2)dws = 2nδıwe (cf. (2.3.iii)), and (2.15)
yields our assertion for n > 2.

Now let n = 2. As g is conformal to a metric of constant curvature, it suffices
to show that

∫
M
dws dg is a conformal invariant. This in turn follows from (2.15),

since, for s̃,dg̃ depending on the metric g̃ = eφg, conformal to g, just as s,dg
depend on g, we have (dw s̃)dg̃ = dws dg + σ dg with a function σ such that
σ = δv for some vector field v on M .

Namely, σ = (dwφ)∆φ−(dw∆φ+ sdwφ), since s̃ = e−φ(s−∆φ) and dg̃ = eφ dg.
We now show that, if n = 2 and w is conformal, σ defined by this formula
with any given function φ is, explicitly, a divergence. First, dw∆φ + sdwφ =
δ [2∇wu − (∆φ)w], for u = ∇φ, as one sees from the local-coordinate calculation
2(φ,jkw

k),j − (φ,j
jwk),k = 2φ,j

j
kw

k + 2φ,jkw
k,j −φ,jjkwk−φ,jjwk,k = φ,j

j
kw

k +
swkφ,k = dw∆φ + sdwφ. Here we reduced four terms to two by replacing 2φ,j

j
k

(and 2φ,jkw
k,j) with 2φ,j

jk+ sφk (and, respectively, φ,jk(wj,k+wk,j) = φ,j
jwk,k),

using (2.11.b) with r = sg/2 for u = ∇φ instead of w (or, respectively, using
relation wj,k + wk,j = w l,lg

jk, which states that w is conformal). Finally, for any
function φ and vector field w in dimension n = 2, setting a = ∇dφ− dφ⊗dφ and
u = ∇φ we have 8(dwφ)∆φ = 2〈£wg − (δw)g, a〉 + δv′, where v′ = 4(∆φ)φw −
4φ∇wu+ 4(dwφ)u+ sφ2δw + φ2∇µ− 2µφu and µ = δw. �

Appendix C. Zhang’s argument

The result presented here and its proof are due to Zhang [120]. The meaning of
inequalities between tensors is the same as in Theorem 5.4.

Theorem C.1. Let the Ricci tensor r of a complete Riemannian manifold (M, g)
of dimension n ≥ 2 and a C∞ vector field w on M satisfy the inequalities
λg −£wg ≤ r ≤ κg for some positive constants κ and λ. Then

(a) the fundamental group of M is finite;
(b) M is compact if, in addition, g(w,w) is bounded on M .

Proof. To prove (a) (or, respectively, (b)), we fix a point y ∈ M , set y′ = y,
and use the constant C by C = |w(y)| (or, respectively, consider two arbitrary
points y, y′ ∈ M and denote by C the supremum, over M , of the norm |w| =
[g(w,w)]1/2). Let [0, L] 3 t 7→ x(t) ∈ M be a unit-speed geodesic with y = x(0)
and y′ = x(L), having the minimum length: in case (a), among piecewise-C∞ loops
in its fixed-end homotopy class, or, in case (b), among all piecewise-C∞ curves
joining y to y′. It follows that

(C.1) λL ≤ 4C +
∫ L
0

[(n− 1)ϕ̇2 + κ(1− ϕ2)] dt

for every piecewise-C∞ function ϕ : [0, L]→ [−1, 1] with ϕ(0) = ϕ(L) = 0. In fact,
we have (5.1.b), since our proof of Lemma 5.1 uses only the assumption that the
geodesic minimizes the length among all nearby curves in its fixed-end homotopy
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class. As
∫ L
0
ϕ2 r(ẋ, ẋ) dt =

∫ L
0

r(ẋ, ẋ) dt−
∫ L
0

(1− ϕ2)r(ẋ, ẋ) dt, (C.1) is now imme-

diate from (5.1.b): the inequality r ≥ λg − £wg (or, r ≤ κg with ϕ2 ≤ 1) gives∫ L
0

r(ẋ, ẋ) dt ≥ λL− 4C (or, respectively,
∫ L
0

(1− ϕ2)r(ẋ, ẋ) dt ≤ κ
∫ L
0

(1− ϕ2) dt).

Note that
∫ L
0

(£wg)(ẋ, ẋ) dt = γ(λ) − γ(0), where γ = 2g(w, ẋ), cf. the proof of
Theorem 5.4.

For any ε ∈ (0, L/2), we have λL ≤ F (ε), with F : (0,∞) → (0,∞) given by
F (ε) = 4C + 2(n− 1)ε−1 + 4κε/3. This is clear from (C.1) applied to the function
ϕ vanishing at 0 and L, equal to 1 on [ε, L−ε], and linear on [0, ε] and [L−ε, L].
Let µ > 0 be the minimum value of F in (0,∞), assumed at a unique point
ε0 ∈ (0,∞). The lengths L now have an upper bound depending just on n, κ, λ
and C. Namely, L ≤ max(2ε0, µ/λ). In fact, if L > 2ε0, setting ε = ε0 we get
ε ∈ (0, L/2), and so λL ≤ F (ε) = F (ε0) = µ, that is, L ≤ µ/λ.

As M is compact whenever (M, g) is bounded, assertion (b) follows. To obtain
(a), note that boundedness of the set of lengths of all geodesic loops at a fixed
point y minimizing the length in their homotopy classes implies finiteness of the
fundamental group. This is clear since an infinite sequence of such geodesic loops
at y with uniformly bounded lengths Lj , j = 1, 2, 3, . . ., cannot represent infinitely
many distinct homotopy classes, as one sees choosing a convergent subsequence of
the sequence (uj , Lj), where uj is the initial unit tangent vector of the jth geodesic,
and using continuity of the geodesic exponential mapping expy : TyM →M . �

Theorem C.1 provides proofs of Theorems 5.6 and 5.7, more direct than those
given in §5 (which use results of Ambrose [1] or Lott [86]). In addition, the inequality
L ≤ max(2ε0, µ/λ) in the above proof amounts to a diameter estimate similar to
the one in Corollary 5.11 (and valid under the same assumptions), but differing
from it by depending, via κ, on the maximum of the Ricci curvature.

Appendix D. Proof of Rothaus’s Theorem 6.2

The argument presented here, due to Rothaus [104], follows the standard varia-
tional approach of realizing the equation Pf + λf = Ψ , with a fixed C∞ function
Ψ : M → R and an unknown C∞ function f , as the Euler-Lagrange equation for
some functional, and then proving the existence of a minimizer, that is, a C∞ func-
tion f for which the functional assumes its minimum value. Since the functional
(D.1) most obviously associated with our equation is unbounded, both from above
and below, an additional (integral) constraint is needed as well.

It suffices to find f such that Pf + λf − Ψ is constant, since adding a suitable
constant to f we then get Pf + λf −Ψ = 0. In terms of the positive C∞ function
ϕ = e−f/2 : M → R, constancy of Pf+λf−Ψ means that 2∆ϕ+2λϕ logϕ+Ψϕ
is a constant multiple of ϕ, which in turn amounts to its being L2-orthogonal
to every L2 function L2-orthogonal to ϕ. Thus, the positive C∞ function ϕ is
required to be a critical point of the functional

(D.1) ϕ 7→
∫
M

(ε|∇ϕ|2 − ϕ2 logϕ+Hϕ2) dg,

subject to the constraint ‖ϕ‖ = 1. Here ‖ ‖ is the L2 norm of functions on
(M, g), while dg denotes, as usual, the Riemannian volume element, ε = 1/λ, and
H = −εΨ/2. (The discussion would be exactly the same if we fixed the value of
‖ϕ‖ to be any given positive real number, rather than 1.)
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Recall that our compact Riemannian manifold (M, g) is assumed to be of di-
mension n ≥ 3. Now, for any real constant ε > 0,

(D.2) inf
∫
M

(ε|∇ϕ|2 − ϕ2 logϕ) dg > −∞,

the infimum being taken over all positive C∞ functions ϕ : M → R with ‖ϕ‖ = 1.
To obtain (D.2), we first establish Jensen’s inequality, valid for any smooth posi-

tive probability-measure density ω on a compact manifold M and any continuous
function F : M → R, which reads

(D.3) exp

∫
M

Fω ≤
∫
M

eFω ,

This is immediate from the corresponding inequality for finite Riemann sums:

(D.4) µc11 . . . µ
ck
k ≤ c1µ1 + . . .+ ckµk ,

for cj ∈ [0,∞) with c1 + . . . + ck = 1 and µj ∈ (0,∞), j = 1, . . . , k, which is in
turn easily verified by applying d/dµ1 to find the maximum of µc11 . . . µckk − c1µ1−
. . .− ckµk, where µ2, . . . , µk and all cj are kept fixed.

Next, a
∫
M
ϕ2 logϕdg =

∫
M
ϕ2 logϕadg for ϕ as in (D.2) and any real a > 0,

and
∫
M
ϕ2 logϕadg ≤ (2 + a) log ‖ϕ‖2+a, in view of (D.3) for ω = ϕ2dg and

F = logϕa. Choosing a = 4/(n − 2), we now use the p = 2 case of the Sobolev
inequality ‖ϕ‖r ≤ C‖ϕ‖p,1 with r = np/(n − p), which holds, with a constant C
depending only on M, g and p, whenever p ∈ R and 1 < p < n. We thus get
2
∫
M
ϕ2 logϕdg ≤ n log C‖ϕ‖2,1. As ‖ϕ‖22,1 =

∫
M

(|∇ϕ|2 + ϕ2) dg, we now have∫
M

(ε|∇ϕ|2 − ϕ2 logϕ) dg ≥ Φ(ξ), where Φ(ξ) = ε(ξ2 − 1) − (1 + 2/a) log Cξ for
ξ = ‖ϕ‖2,1 ≥ ‖ϕ‖ = 1. Now (D.2) follows since inf{Φ(ξ) : ξ ∈ [1,∞)} > −∞.

........

further text in preparation

........

Appendix E. Proof of Tachibana’s Theorem 7.4

Our presentation, although phrased differently, follows Tachibana’s argument in
[109]. We begin with a simple fact from linear algebra.

Lemma E.1. For nonnegative self-adjoint operators F, F ′ in a Euclidean space,

(a) trFF ′ ≥ 0, while
(b) trFF ′ > 0 if, in addition, F > 0 and F ′ 6= 0.

Proof. Evaluate trFF ′ in an orthonormal basis diagonalizing F ′. �

Let (M, g) be a Riemannian manifold, and let E be the real vector bundle over
M whose sections are the four-times covariant tensor fields S on M with Skjlm =
−Sjklm = Sjkml = Smljk (that is, skew-symmetric both in the first and in the
last pair of arguments, as well as symmetric under the switch of the two pairs); an
example of such S is provided by the curvature tensor R of g. With every section
S of E we can associate a bundle morphism Ŝ : [T ∗M ]∧2→ [T ∗M ]∧2 corresponding

to S just as R̂ in Remark 2.2 corresponds to R. Symmetries of S clearly imply
that Ŝ is self-adjoint, at each point, relative to the fibre metric 〈 , 〉 described in
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Remark 2.1, and the assignment S 7→ Ŝ is an isomorphic identification between
sections of E and (pointwise) self-adjoint bundle morphisms [T ∗M ]∧2→ [T ∗M ]∧2.

Setting 〈S, S′〉 = tr ŜŜ′, we obtain a fibre metric in E , also denoted by 〈 , 〉. The
curvature tensor R gives rise to a bundle morphism

(E.1) R : [T ∗M ]∧2→ E , with Ŝ = [Ad ω, R̂] for S = Rω and any 2-form ω.

More precisely, the self-adjoint bundle morphism Ŝ : [T ∗M ]∧2 → [T ∗M ]∧2, for

S = Rω, is the commutator of Ad ω and R̂, while Ad ω denotes the skew-adjoint
morphism [T ∗M ]∧2 → [T ∗M ]∧2 which, under the identification between 2-forms
and skew-adjoint morphisms TM → TM provided by Remark 2.1, acts as the
commutator [ω, · ]. In local coordinates, for the adjoint R∗ : E → [T ∗M ]∧2 of R
relative to the two fibre metrics, and any 2-form ω,

(i) (Rω)jklm = Rjkl
pωpm −Rjkmpωpl +Rlmj

pωpk −Rlmkpωpj ,
(ii) 2(R∗S)jk = Rj

mpqSkmpq −RkmpqSjmpq whenever S is a section of E .

In fact, for Rω and R∗S defined by (i) – (ii), 〈S,Rω〉 = SjklmRjkl
pωpm =

〈ω,R∗S〉, the contributions of the four (or, two) terms on the right-hand side of (i)
(or, (ii)) being all equal due to their (skew)symmetry properties.

A section S of E also gives rise to a bundle morphism S : [T ∗M ]⊗2 → [T ∗M ]⊗2,
denoted here simply by S, which acts on arbitrary twice-covariant tensor fields a
via (Sa)jl = akmSjklm. (Equivalently, [S(ξ� η)](w,w′) = g(S(u,w)v, w′) for any
vector fields u, v, w,w′ and the 1-forms ξ = ıug, η = ıvg.) On every Riemannian
manifold (M, g) we thus have the function φ : M → R given by

(E.2) φ = 2〈R•R, r〉 − 2 tr R̂3 − trR3, where S = g ∧ r .

Here “products” represent composites, r stands for the Ricci tensor, trR3 denotes
the trace of the third iteration of R : [T ∗M ]⊗2 → [T ∗M ]⊗2, and R•R is the twice-
covariant symmetric tensor a with the components given by 4ajk = RlmpjRlmpk.

Note that 2〈R•R, r〉 = tr ŜR̂2, where S = g ∧ r is the section of E with Sjklm =
gjlRkm + gkmRjl− gklRjm− gjmRkl (cf. §4). Hence

(E.3) 2φ = Rjklm(Rsmj
pRpkl

s +Rsmk
pRjpl

s +Rsml
pRjkp

s +RmpRjkl
p).

In fact, of the four terms appearing (by distributivity) on the right-hand side of
(E.3), the first and second are both clearly equal to trR3. In the third term, skew-
symmetry of Rjklm in l,m allowes us to replace Rsml

p with (Rsml
p− Rslmp)/2,

which, by the first Bianchi identity, is the same as −Rpslm. Thus, the third
terms equals −RlmjkRjkpsRpslm/2 = −4 tr R̂3, while the fourth one is precisely
4〈R•R, r〉.

Given a Riemannian manifold (M, g), the Laplacian ∆R of the curvature tensor
R, its divergence δR, and the exterior derivative dδR of δR, are the covariant
tensor fields with the components Rjklm,s

s, Rjkl
s
,s and Rjkm

s
,sl −Rjkls,sm.

In the following lemma, assertion (b) and the identity φ = trRR̂R∗ are due to
Tachibana [109], while the equality 〈R,∆R + dδR〉 = φ is a result of Berger [5];
〈R,∆R+ dδR〉 : M → R is well defined since R,∆R and dδR are sections of E .

Lemma E.2. In a Riemannian manifold (M, g) of any dimension n,

(a) 〈R,∆R+ dδR〉 = φ = trRR̂R∗ for R,φ given by (E.1) – (E.2),
(b) R= 0 identically if and only if g has constant sectional curvature or n≤ 2.
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Proof. The second Bianchi identity gives 0 = Rjklm(Rjklm,s
s+Rjkms,l

s+Rjksl,m
s) =

Rjklm(Rjklm,s
s− 2Rjkls,m

s). Thus, 4〈R,∆R〉 = RjklmRjklm,s
s = 2RjklmRjkl

s
,ms,

and so 2〈R,∆R+2dδR〉 = Rjklm(Rjkl
s
,ms−Rjkls,sm), which, by the Ricci identity

(2.12.a) combined with (E.3), equals 2φ, proving the first equality in (a).

Next, trRR̂R∗ = (Rjkl
pRpmq

m−RjkmpRplqm+Rlmj
pRpkq

m−RlmkpRpjqm)Rjkql,
with the four terms corresponding precisely to those in (i).

The ‘if’ part in (b) is obvious since constancy of the sectional curvature of g

means that R̂ is, at each point, a multiple of the identity operator. Conversely,
suppose that R = 0 at a point x ∈ M . For the basis ξ1, . . . , ξn of T ∗xM , dual
to any given orthonormal basis e1, . . . , en of TxM , let A = Ajk and B = Bjk
be the operators TxM → TxM corresponding as in Remark 2.1 to a = ωjk and

b = R̂ωjk, where we have set ωjk = ξj ∧ ξk. By (2.4), Ajkej = ek, Ajkek = −ej ,
and Ajkel = 0 whenever j 6= k 6= l 6= j, which yields the commutation relations
[Ajk, Ajl] = Akl if j 6= k 6= l 6= j and [Ajk, Alm] = 0 if {j, k} ∩ {l,m} = Ø. At

the same time, R̂ωjk =
∑
l,mRjklmωlm, with Rjklm = R(ej , ek, el, em). As the

assumption R = 0 gives [Ajk, Blm] = 0 for all j, k, l,m, we thus have Rjkjl = 0 if
j 6= k 6= l 6= j and Rjklm = 0 if {j, k} ∩ {l,m} = Ø. Consequently, every nonzero
2-form ω at x which is decomposable, i.e., equal to ξ ∧ η for some 1-forms ξ, η,
is an eigenvector of R̂ at x. (In fact, we just verified this when ω = ωjk and
j 6= k, for an arbitrary orthonormal basis e1, . . . , en.) Denoting by µjk = µkj ,

for j 6= k, the eigenvalue µ with R̂ωjk = µωjk, we have µjk = µjl whenever
j 6= k 6= l 6= j. Namely, all nonzero 2-forms in the plane spanned by ωjk and ωjl
are decomposable; thus, they are eigenvectors of R̂, and must all correspond to
the same eigenvalue. As a result, all the eigenvalues µjk are the same, and R̂ is a
multiple of the identity operator, which proves (b). �

Proof of Theorem 7.4. Let (M, g) be compact, with δR = 0 and R̂ ≥ 0.

The function 〈R,∆R〉 = tr R̂R∗R (cf. Lemma E.2(a)) vanishes identically,
and (M, g) is locally symmetric:

∫
M
〈R,∆R〉dg = −

∫
M
|∇R|2 dg ≤ 0 by (2.15),

since 4〈R,∆R〉 + 4|∇R|2 = RjklmRjklm,s
s + Rjklm,sRjklm,s = (RjklmRjklm,s)

,s

= 2δd(|R|2), while tr R̂R∗R ≥ 0 from Lemma E.1(a) applied to F = R̂ and
F ′ = R∗R in the tangent space of (M, g) at any point.

Finally, if R̂ > 0, positivity of F = R̂ at each point implies, by Lemma E.1(b),
vanishing of F ′ = R∗R, and hence of R (as trFF ′ = 0), so that g has constant
curvature in view of Lemma E.2(b). This completes the proof. �

Appendix F. The first Chern class

Given a manifold M and an integer r, let ΩrM be the vector space of all
differential r-forms on M (that is, C∞ sections of [T ∗M ]∧r). Thus, ΩrM is
infinite-dimensional if dimM = n ≥ 1 and 0 ≤ r ≤ n, while, by definition,
ΩrM = {0} if r < 0 or r > dimM . The spaces Z rM and B rM of closed or,
respectively, exact r-forms are defined to be, respectively, the kernel of the exterior
derivative d : ΩrM → Ωr+1M and the image of d : Ωr−1M → ΩrM . Consequently,
B rM ⊂ Z rM ⊂ ΩrM , as dd = 0. The quotient space H r(M,R) = Z rM/B rM is
known as the rth de Rham cohomology space of M . We denote by [ζ] ∈ H r(M,R)
the cohomology class of ζ ∈ Z rM (that is, its equivalence class in Z rM/B rM).
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As an example, the (real) first Chern class c1(L) ∈ H2(M,R) of a complex line
bundle L over a manifold M is given by 2πc1(L) = [Im ζ ], where Im ζ is the
imaginary part of the curvature form ζ of any given connection ∇ in L. More
precisely, the curvature tensor of ∇ is defined as in (2.1), except that the vector
field w has to be replaced by a section ψ of L. Since the fibre dimension is 1,
for vector fields u, v on M and sections ψ of L, the section R(u, v)ψ equals the
product of ψ and a function ζ(u, v) : M → C, which gives rise to the (complex-
valued) curvature form ζ. A fixed section ψ of L without zeros, defined on an
open set U ⊂ M , leads to the complex-valued connection form Γ of ∇ (relative
to ψ), with ∇vψ = Γ (v)ψ for all vector fields v on U. Now, by (2.1) and (2.24.a),
ζ = −dΓ , and so ζ is closed (although not necessarily exact, as Γ is defined only
locally). Thus, Im ζ is closed as well. Finally, c1(L) does not depend on the choice
of the connection ∇. In fact, for another connection ∇′, with the corresponding
ζ ′ and Γ ′, we clearly have ζ ′− ζ = dΓ− dΓ ′= dξ, for the complex-valued 1-form
ξ on M such that ∇′ = ∇− ξ.

One also defines the first Chern class c1(E) of a complex vector bundle E of
any fibre dimension m ≥ 1 over a manifold M by setting c1(E) = c1(L) for the
line bundle L = E∧m, that is, the highest complex exterior power of E .

The exterior multiplication ∧ of differential forms preserves closedness, and de-
scends to a multiplication ∪ of cohomology classes, known as the cup product;
explicitly, [ζ] ∪ [η] = [ζ ∧ η]. This is clear from the Leibniz rule for ∧ and d.

Appendix G. Almost complex manifolds

An almost complex manifold is a manifold M carrying a fixed almost complex
structure (a C∞ vector-bundle morphism J : TM → TM with J2 = − Id). In
other words, TM then is the underlying real bundle of a complex vector bundle,
in which J is the multiplication by i. This allows us to define the first Chern class
c1(M) ∈ H2(M,R) by c1(M) = c1(TM). (See Appendix F.)

We always use the symbol J for the almost complex structure under consid-
eration, while the almost complex manifold in question is simply denoted by M
(rather than, for instance, (M,J)). The complex dimension of M is then defined
to be dimCM = n/2, where n stands for the ordinary (real) dimension of M .

The automorphism group GL(V ) ≈ GL(m,C) of any complex vector space
V with 1 ≤ dimV = m < ∞ is connected, since every automorphism of V is
represented in some basis by a triangular matrix, and that matrix can be joined
to Id by an obvious curve of nonsingular triangular matrices. The underlying real
space of V thus becomes naturally oriented, as it has a distinguished connected
set of real bases, namely, e1, ie1, . . . , em, iem, where e1, . . . , em runs through the
set of all complex bases of V (and the latter set is connected, being an orbit of the
connected group GL(V )). This has the following obvious consequence:

(G.1) Every almost complex manifold is canonically oriented.

Given an almost complex manifold M , we denote by i∂∂ the operator sending
every C∞ function h : M → R to the exact 2-form i∂∂h such that

(G.2) 2i∂∂h = −d [(dh)J ].

Here (dh)J is the 1-form equal, at any point x ∈ M , to the composite in which
Jx : TxM → TxM is followed by dhx : TxM → R. For our purposes, i∂∂ may be
treated as a single symbol, even though the notation reflects an actual factorization.
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Remark G.1. A twice-covariant tensor field a on an almost complex manifold M
gives rise to two more such tensor fields, b = aJ (or, b = Ja), characterized
by b(u, v) = a(Ju, v) (or, respectively, b(u, v) = −a(u, Jv)) for any vector fields
u, v on M . The tensor field a is said to be Hermitian (or, skew-Hermitian)
if it is symmetric (or, skew-symmetric) at every point and aJ = Ja, that is, if
a(Ju, Jv) = a(u, v) for all vector fields u, v on M . Clearly, a is Hermitian if and
only if aJ is skew-Hermitian, while (aJ)J = J(Ja) = −a.

Note that a twice-covariant skew-symmetric tensor field is nothing else than a
differential 2-form.

Remark G.2. By a Hermitian metric on a given almost complex manifold M we
mean a Riemannian metric g on M which is a Hermitian tensor, that is, gJ = Jg.
This amounts to g-skew-adjointness of J at every point; equivalently, J is required
to act in every tangent space as a linear isometry.

If g is Hermitian, the operation a 7→ b = Ja (or, a 7→ b = aJ), defined in
Remark G.1 for twice-covariant tensor fields a, coincides with the ordinary compo-
sition B = JA (or, B = AJ) of bundle morphisms TM → TM , provided that one
identifies a, b with A,B as in Remark 2.1. In the case where a is also symmetric
(or, skew-symmetric) at every point, its being Hermitian (or, skew-Hermitian) is
obviously equivalent to complex-linearity of the corresponding bundle morphism
A : TM → TM , which in turn means that A commutes with J .

Let M be an almost complex manifold. If a Riemannian metric g on M is
Hermitian, the formula Ω = gJ clearly defines a skew-symmetric twice-covariant
tensor field (that is, a differential 2-form), which is also skew-Hermitian. Moreover,

(G.3) Ω∧m = m! dg, where m = dimCM.

(Since M is oriented according to (G.1), the volume element dg may be treated
as a positive differential 2m-form.) In fact, let x ∈ M and let a complex basis
e1, . . . , em of TxM be orthonormal relative to the Hermitian inner product with
real part gx. Now Ωx = ξ1 ∧ ξ2 + . . . + ξ2m−1 ∧ ξ2m for the real basis ξ1, . . . , ξ2m
of T ∗xM , dual to the gx-orthonormal real basis e1, Je1, . . . , em, Jem of TxM , which
one easily sees using (2.4) to evaluate both sides on any pair of vectors from the
basis e1, Je1, . . . , em, Jem. Thus, Ω∧mx = m! ξ1 ∧ . . . ∧ ξ2m, as required.

Appendix H. Kähler metrics

By a Kähler manifold we mean a Riemannian manifold (M, g) which is simulta-
neously an almost complex manifold, such that g is Hermitian (Remark G.2) and
∇J = 0, where ∇ is the Levi-Civita connection of g.

The simplest example of a Kähler manifold (M, g) arises when a finite-dimen-
sional complex vector space V with a Hermitian inner product 〈 , 〉 is given: we
then set M = V , let J operate in each tangent space TxM via the ordinary
multiplication by i (with the standard identification TxV = V ), and choose g to be
the constant (translation-invariant) metric Re 〈 , 〉. Another example is provided by
any oriented 2-dimensional Riemannian manifold (M, g), with J that acts in each
tangent plane TxM as the positive rotation by the angle π/2. Further examples are
provided by locally symmetric Kähler manifolds, described below in Appendix L.

Speaking of a Kähler manifold (M, g), we usually skip the word ‘almost’ and call
J the (underlying) complex structure of (M, g), while g is referred to as a Kähler
metric on the complex manifold M . See also the end of Appendix L.
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By the Ricci form of a Kähler manifold (M, g) one means the twice-covariant
tensor field ρ = rJ (cf. Remark G.1), where r the Ricci tensor of g. We have

(H.1) a) trRJ [R(v,w)] =−2ρ(v,w), b) δ [J(∇w)∗] = ıwρ, c) R(Jv,Jw)=R(v,w),

for δ as in (2.9) and any vector fields v, w on M . In coordinates, (a) – (c) read
Rklp

qJpq = −2ρkl, Jpqwk,
q
p = ρlkw

l and JrkJ
s
l Rrsp

q = Rklp
q.

In fact, as ∇J = 0, the Levi-Civita connection ∇ is a connection in the complex
vector bundle TM , and so, for any vector fields u, v on M , the vector-bundle
morphism R(u, v) : TM → TM in (2.2) is complex-linear (commutes with J).
At every point, the commuting morphisms R(u, v) and J are skew-adjoint, and
so their composite is self-adjoint. Hence RqlspJ

p
k = RqlkpJ

p
s , which, contracted

against Jkr or gqs, gives (H.1.c) or, respectively, ρkl = Rpkl
qJpq . However, due

to the well-known symmetries of R and skew-adjointness of J , the expression
Rpkl

qJpq is skew-symmetric in k, l, so that, from the first Bianchi identity, 0 =
(Rkpl

q + Rkl
q
p + Rk

q
pl)J

p
q = −2Rpkl

qJpq − RklpqJpq , and (H.1.a) follows. Finally,

since J is skew-adjoint, 2Jpqwk,
q
p = Jpq (wk,

q
p−wk,pq) = JpqR

q
plkw

l = JpqRklp
qw l,

by the Ricci identity (2.12.a). Now (H.1.a) yields (H.1.b).
For any vector field v on a Kähler manifold (M, g), we have, with δ as in (2.7.i),

(H.2)
i) tr JAJA = (tr JA)2 − r(v, v) + δ [JAJv − (tr JA)Jv] and

ii) tr JAJA∗ = δ(JA∗Jv) − r(v, v) , where A = ∇v : TM → TM ,

A∗ being the (pointwise) adjoint of A. Namely, in local coordinates, tr JAJA =
Jpq v

q
,kJ

k
l v

l
,p = (Jpq v

q
,kJ

k
l v

l),p−Jpq vq,kpJkl v l. Next, (Jpq v
q
,kJ

k
l v

l),p = δ(JAJv) and,

by the Ricci identity (2.12.a), −Jpq vq,kpJkl v l = −Jpq vq,pkJkl v l + Jpq J
k
l Rpks

qvsv l,

while −Jpq vq,pkJkl v l = −(Jpq v
q
,pJ

k
l v

l),k + Jpq v
q
,pJ

k
l v

l
,k = −δ [(tr JA)Jv] + (trJA)2

(as Jpq v
q
,p = trJA). Also, by (H.1.c), Jpq J

k
l Rpks

qvsv l equals Rqls
qvsv l, that is,

− r(v, v). This proves (H.2.i). Finally, tr JAJA∗ = Jpq v
q
,kJ

k
l vp,

l = (Jpq v
qJkl vp,

l),k−
Jpq v

qJkl vp,
l
k, while (Jpq v

qJkl vp,
l),k = δ(JA∗Jv) and, by (H.1.b), −Jpq vqJkl vp, lk =

−Jpq vqρkpvk = ρ(Jv, v) = −r(v, v), which gives (H.2.ii).

Remark H.1. If (M, g) is a Kähler manifold,

(i) the Ricci tensor r of (M, g) is Hermitian;
(ii) its Ricci form ρ = rJ is a closed differential 2-form;

(iii) as g is Hermitian, Ω = gJ is a skew-Hermitian 2-form on M , called the
Kähler form of (M, g). Being parallel, Ω is closed as well.

In fact, (i) amounts to skew-symmetry of ρ (obvious from (H.1.a)), while the
relation dρ = 0, that is, ρsk,l + ρkl,s + ρls,k = 0 (cf. (2.24.c)), is immediate from
the coordinate version of (H.1.a) and the second Bianchi identity (since ∇J = 0).

For any function f : M → R on a Kähler manifold (M, g), we have

(H.3) i) 2i∂∂f = (∇df)J + J(∇df), ii) trg [(i∂∂f)J ] = −∆f
(notation of (2.14.i), (G.2) and Remark G.1 for a = ∇df). Namely, (G.2) and
(2.24.b) give (i), which in turn implies (ii). Thus, by (2.20.b),

(H.4) a function f : M → R is constant if M is compact and i∂∂f = 0.

Lemma H.2. Let an exact differential 2-form ζ on a compact Kähler manifold
(M, g) be skew-Hermitian in the sense that Jζ = ζJ , cf. Remark G.1.

(a) There exists a C∞ function θ : M → R with ζ = i∂∂ θ.
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(b) The function θ in (a) is unique up to an additive constant.
(c) Denoting by ‖ ‖ the L2 norm, both for functions and tensor fields on M ,

we have
√

2 ‖ζ‖ = ‖trg ζJ‖.
(d) If trg ζJ = 0, then ζ = 0.

Proof. We first prove (c). Let v be a vector field with ζ = dξ for the 1-form
ξ = ıvg, and let A = ∇v, so that, by (2.24.b), A−A∗ is the vector-bundle morphism
TM → TM corresponding to ζ as in Remark 2.1. We clearly have tr (A−A∗)A∗ =
− tr (A − A∗)A. Thus, ‖ζ‖2 = −

∫
M

tr (A − A∗)2dg = −2
∫
M

tr (A − A∗)Adg.
Since ζ is skew-Hermitian, [J,A − A∗] = 0, that is, A − A∗ = JA∗J − JAJ .
Thus, ‖ζ‖2 = 2

∫
M

tr JAJ(A −A∗) dg, and so (c) follows from (H.2) and (2.15), as
2 trJA = tr J(A −A∗) = trg ζJ due to skew-adjointness of J .

Next, (d) is obvious from (c). To prove (a), let us choose θ : M → R with
∆θ = − trg ζJ . (Such θ exists by (2.16), since, as we just saw, trg ζJ = 2 tr JA, so

that trg ζJ = 2Jpq v
q
,p = 2δ(Jv), and

∫
M

trg ζJ dg = 0.) Applying (d) to ζ− i∂∂ θ
rather than ζ, and noting that the premise of (d) is then satisfied in view of (H.3.ii),
we now see that ζ = i∂∂ θ. Finally, (b) is immediate from (H.4). �

Appendix J. Almost-Kähler manifolds

An almost-Kähler metric on an almost complex manifold M is any Hermitian
metric g on M (cf. Remark G.2) for which the skew-Hermitian 2-form Ω = gJ
is closed. Such pairs (M, g) are referred to as almost-Kähler manifolds; obvious
examples are provided by Kähler manifolds (cf. Remark H.1(iii)).

Remark J.1. If g is just a Hermitian metric, the differential 2-form Ω = gJ is
skew-Hermitian, but need not, in general, be parallel relative to the Levi-Civita
connection ∇, or even closed. The condition ∇Ω = 0 is necessary and sufficient
for a given Hermitian metric g to be a Kähler metric: it means the same as ∇J = 0,
since Ω = gJ and ∇g = 0.

One easily finds examples of non-Kähler, almost-Kähler metrics, also on compact
manifolds. On the other hand, as we will see below (Theorem J.3), for an almost
complex manifold M on which a Kähler metric exists, all almost-Kähler metrics
on M are Kähler metrics. By Lemma J.2, the same conclusion holds even if one
replaces the existence of a Kähler metric with the weaker requirement that J be
parallel relative to some torsionfree connection on M . A conjecture of Goldberg
[55], stating that a compact almost-Kähler Einstein manifold is necessarily a Kähler
manifold, is still open [98].

Lemma J.2. Let ∇ be the Levi-Civita connection of a Hermitian metric g on an
almost complex manifold M , and let ∇̂J = 0 for some torsionfree connection ∇̂
on M . Then, for the skew-Hermitian 2-form Ω = gJ and any vector field w on
M , we have 2∇wΩ = ıwdΩ + J(ıwdΩ)J , in the notation of Remark G.1.

Proof. Let v, w always stand for arbitrary vector fields on M . Denoting by B
the section of Hom([TM ]�2, TM) with ∇̂ = ∇ − B, we have ∇̂w = ∇w − Bw,
and B sends v, w to a vector field Bvw = Bwv, its symmetry being due to the
fact that ∇̂,∇ are both torsionfree. As J is ∇̂-parallel, ∇wJ = [Bw, J ], where
[ , ] denotes the commutator of bundle morphisms TM → TM . In coordinates,

Bw,∇wJ,∇wΩ, ∇̂wg and ∇̂wΩ have the components (Bw)lk = wsBlsk, (∇wJ)lk =
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wsClsk, (∇wΩ)kl = wsCskl, (∇̂wg)kl = wsDskl and (∇̂wΩ)kl = wsEskl, for some
functions B,C,D,E (with subscripts and superscripts) such that

(a) Clpk= JskB
l
ps−J lsBspk , (b) Brkl=Brlk , (c) Cpkl=Cspkgsl , (d) Epkl= JskDpsl ,

(e) Dpkl = Bspkgsl +Bsplgks , (f) Clpk = −Clkp , (g) JskEpls = −JskEpsl = Dpkl ,

(h) (dΩ)pkl = Cpkl + Cklp + Clpk , (i) (dΩ)pkl = Epkl + Eklp + Elpk .

In fact, (a) is the coordinate version of ∇wJ = [Bw, J ], (b) expresses symmetry of

B, the relation Ω = gJ along with ∇g = 0 (or, ∇̂J = 0) yields (c) (or, respectively,

(d)), while (e) follows since ∇g = 0 and ∇̂ = ∇+B, (f) is due to skew-symmetry
of Ω and ∇wΩ, and (d) implies (g) as J2 = − Id. Finally, (h) (or, (i)) amounts

to (2.24.c) for ζ = Ω and the torsionfree connection ∇ (or, ∇̂).
We need to prove the equality 2∇wΩ − ıwdΩ = J(ıwdΩ)J , equivalent, in view

of (h) and (i), to Cpkl − Cklp − Clpk = −JrkJsl (Eprs + Ersp + Espr). (Note that
2Cpkl − (Cpkl + Cklp + Clpk) = Cpkl − Cklp − Clpk.) First, (f) and (c) give Cpkl −
Cklp−Clpk = Clkp−Cklp+Cpkl = (Cslk−Cskl)gsp+Cspkgsl. In view of (a), this equals

JrkB
s
lrgsp − Jrl Bskrgsp + JrkB

s
prgsl − JsrBrpkgsl (two other terms cancel each other by

(b)). Using (e) and (b) we can rewrite the last expression as JrkDrlp − Jrl Bskrgsp −
JsrB

r
pkgsl, which equals JrkDrlp − Jrl Bskrgsp + Jrl B

s
pkgrs (where Jsr gsl = −Jsl gsr as

Jsr gsl = Ωrl, and the indices r, s have been switched). Applying (e) and (b) again,
we see that this coincides with JrkDrlp + Jrl (Dpkr −Drkp).

On the other hand, by (g), −JrkJsl (Eprs + Ersp + Espr) is equal to JrkDrlp +
Jrl (Dpkr −Drkp) as well, which completes the proof. �

Suppose that (M, g) is an almost-Kähler manifold. As in the Kähler case, we
call Ω = gJ the Kähler form of (M, g). Being closed, Ω gives rise to a cohomology
class [Ω ] ∈ H2(M,R) (see Appendix F) known as the Kähler cohomology class of
(M, g), or, briefly, its Kähler class.

Theorem J.3. Let A be the set of all almost-Kähler metrics on a given almost
complex manifold M .

(i) A is a convex subset of the vector space of all Hermitian twice-covariant
C∞ tensor fields a on M such that the differential 2-form aJ is closed.

(ii) The set of all Kähler metrics on M is either empty, or coincides with A.

Proof. Assertion (i) is obvious since A is defined by imposing on a metric g the
linear equations gJ = Jg and d(gJ) = 0. To prove (ii), let us suppose that M
admits a Kähler metric. For an arbitrary almost-Kähler metric g on M , denoting
by ∇ and Ω the Levi-Civita connection and Kähler form of g, we have ∇Ω = 0
by Lemma J.2, and so g is a Kähler metric (Remark J.1), as required. �

For an almost-Kähler metric g on a compact almost complex manifold M ,

(J.1) its volume V =
∫
M

dg depends only on its Kähler class [Ω ] ∈H2(M,R).

In fact, the oriented integral
∫
M
σ of a differential 2m-form σ, for m = dimCM ,

depends only on the cohomology class [σ] (as
∫
M
σ = 0 when σ is exact, by

Stokes’s formula (2.23)). That V =
∫
M

dg depends on g only through [Ω ] is clear
from (G.3), since [Ω∧m] = [Ω ]∪m, where ∪ is the cup product (Appendix G).

Also, [Ω ] 6= 0 in H2(M,R), for the Kähler form Ω of any compact almost-
Kähler manifold (M, g). Namely, if we had Ω = dξ for some 1-form ξ, it would
follow that Ω∧m = d [ξ ∧Ω∧(m−1)], and so V = 0 by (G.3) and (2.23).
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Given a compact almost complex manifold M , one calls an element of H2(M,R)
positive (or negative) if it equals [Ω ] (or, −[Ω ]) for the Kähler form Ω of some
almost-Kähler metric on M . A cohomology class in H2(M,R) cannot be simul-
taneously positive and zero, or zero and negative, or positive and negative: if it
were, a suitable difference would be both positive and zero, giving [Ω ] = 0 for the
Kähler form Ω of some almost-Kähler metric, contrary to the last paragraph.

Appendix K. Comparing Kähler metrics

For any C1 curve t 7→ F = F (t) ∈ GL(V ) of linear automorphisms of a finite-
dimensional real/complex vector space V , setting ( )˙ = d/dt we have

(K.1) (detF )˙ = (detF ) tr (F−1Ḟ ).

In fact, shifting the variable, we see that it suffices to establish (K.1) at t = 0. When
F (0) = Id, (K.1) at t = 0 means that tr the differential of the homomorphism
det at Id ∈ GL(V ), and so (K.1) follows since 1 + (trA) t is the first-order part
of det(Id + tA) treated as a polynomial in t. The general case is reduced to the
above by replacing the curve t 7→ F (t) with t 7→ [F (0)]−1F (t).

Suppose that g and ĝ are Riemannian metrics on a manifold M of any (real)
dimension n and γ : M → (0,∞) is the ratio of their volume elements, in the
sense that dĝ = γ dg. Then, with trg denoting the g-trace, as in Remark 2.1,

(K.2) a) detg ĝ = γ 2, b) trg ĝ ≥ nγ 2/n.

Here detg ĝ : M → R assigns to each x ∈ M the determinant, at x, of the vec-
tor-bundle morphism A : TM → TM corresponding to ĝ (via the fixed metric
g) as in Remark 2.1. Namely, (K.2.a) follows since, in local coordinates, detA =
(det g)−1 det ĝ , while the component function of dg is (det g)1/2, and similarly for
ĝ . (By det g we mean the coordinate-dependent function det[gjk].) Next, for A
as above, trg ĝ = trA. As the eigenvalues of A at any given point x ∈ M are
positive, (K.2.b) is obvious from (K.2.a) and the inequality between the arithmetic
and geometric means, that is, (D.4) with k = n and c1 = . . . = cn = 1/n.

Remark K.1. Let ρ be the Ricci form of a Kähler manifold (M, g).

(i) The curvature form ζ (see Appendix F) of the connection ∇ which the
Levi-Civita connection of g, also denoted by ∇, induces in the complex
exterior power [TM ]∧m, for m = dimCM , is given by ζ = iρ.

(ii) In cohomology, [ρ] = 2πc1(M) ∈ H2(M,R), cf. Appendix F.
(iii) The Ricci form ρ̂ of any other Kähler metric ĝ on the same underlying

complex manifold M is related to ρ by ρ̂ = ρ− i∂∂ log γ, where dĝ = γ dg,
that is, γ : M → (0,∞) is the ratio of the volume elements.

In fact, let the vector fields ea, a = 1, . . . ,m, trivialize the complex vector bundle
TM over an open set U ⊂M , and let Γ ba be the corresponding (complex-valued)
connection forms on U, with ∇vea = Γ ca (v)ec. (Here and below repeated indices
are summed over, and v, w are arbitrary vector fields on U.) Thus, by (2.1),
R(v, w)ea = Rc

a(v, w)ec, where Rb
a = −dΓ ba +Γ ca ∧Γ bc , with d and ∧ as in (2.24.a)

and (2.4). On the other hand, iρ(v, w) equals the complex trace of the complex-
linear bundle morphism R(v, w) : TM → TM defined as in (2.2). To see this,
note that, at each point, R(v, w) is skew-adjoint relative to g, as a real operator,
and hence also relative to the Hermitian fibre metric gC in TM with Re gC = g.
Consequently, i trC[R(v, w)] is real and coincides with the complex trace of the
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self-adjoint composite morphism J [R(v, w)] = [R(v, w)]J , which equals 1/2 of its
real trace, and so i trC[R(v, w)] = −ρ(v, w) by (H.1.a).

In other words, ρ = idΓ aa on U, as iρ = Ra
a = −dΓ aa , with Γ ca ∧ Γ ac = 0

due to obvious pairwise cancellations. Now (i) and (ii) are immediate from the
discussion in the second paragraph of Appendix F applied to L = [TM ]∧m and
ψ = e1 ∧ . . . ∧ em (with the connection form Γ = Γ aa ).

The formulae G = [gC(ea, eb)] and D = detCG define functions on U valued
in m × m Hermitian matrices and, respectively, in positive real numbers. For
any vector field w on U we have dw logD = trC(G−1dwG), in view of (K.1) for
F = G treated as a function of the parameter t of any given integral curve of
w. As ∇gC = 0, the Leibniz rule gives dwhab = Γ ca (w)hcb + Γ cb (w)hca for the
entries hab = gC(ea, eb) of G, that is, dwG = TG+ (TG)∗, where ∗ stands for the
conjugate transpose, and T is the matrix-valued function with the entries Γ ba (w).
(In both Γ ba (w) and hab, the index a is the row number and b the column number.)
This gives dw logD = trC(G−1dwG) = trC[G−1TG + (G−1TG)∗ ] = 2 Re trCT =
2 ReΓ aa (w). Hence d logD = 2 ReΓ , where Γ = Γ aa denotes, as in the previous
paragraph, the connection form in [TM ]∧m with ρ = idΓ .

Let ĝC, ĥab, D̂, ∇̂, Γ̂ ba and Γ̂ be the analogous objects for another Kähler metric
ĝ on M (with the same vector fields ea on U), and let H : TM → TM be the

complex-linear bundle morphism such that ĝC(v, w) = gC(Hv,w). For the matrix

Hb
a of functions U → C given by Hea = Hc

aec we thus have ĥab = Hc
ahcb, and

so D̂/D = detCH. Moreover, since H is, at each point, a self-adjoint positive
operator, detCH is real-valued and equals [detRH ]1/2. Finally, taking the real

part of the equality ĝC(v, w) = gC(Hv,w) we obtain ĝ(v, w) = g(Hv,w), and so,

by (K.2.a), [detRH ]1/2 = [detg ĝ ]1/2 = γ. Consequently, D̂/D = γ.
The equalities ρ = idΓ , d logD = 2 ReΓ and their analogues for ĝ now give

d log γ = 2 Re (Γ̂ − Γ ) and ρ − ρ̂ = id(Γ − Γ̂ ) = d [i(Γ − Γ̂ )]. However, Γ − Γ̂ is,

at every point x, complex-linear as a mapping TxM → C. (In fact, so is Γ ba − Γ̂ ba
for each pair of indices a, b, since ∇̂vw−∇vw depends on v, w symmetrically and
complex-bilinearly: symmetry follows as both connections are torsionfree, while C-
linearity in v is immediate from symmetry and C-linearity in w, the latter being
due to the relations ∇J = ∇̂J = 0.) Therefore, ρ − ρ̂ = d [(Γ − Γ̂ )J ]. Since ρ and

ρ̂ are real-valued, this equals dRe [(Γ − Γ̂ )J ] = −d [(d log γ)J ]/2 = i∂∂ log γ (see
(G.2)), which proves (iii).

The next result is due to Calabi [16, pp. 86–87]. The proof of assertion (a) given
here comes from Yau [119, p. 375]. See also Bérard Bergery’s exposition [4].

Theorem K.2. Let g, ĝ be two Kähler metrics on a compact complex manifold
M , with the Ricci tensors r and r̂, and the Kähler classes [Ω ], [Ω̂ ] ∈ H2(M,R).

(a) If r = r̂ and [Ω ] = [Ω̂ ], then g = ĝ .
(b) If r = −g and r̂ = −ĝ , then g = ĝ .

Proof. Let γ : M → (0,∞) be the ratio of the volume elements, with dĝ = γ dg.
The assumption r = r̂ made in (a) gives ρ = ρ̂ for the Ricci forms. Hence γ is

constant in view of Remark K.1(iii) and (H.4). The other assumption, [Ω ] = [Ω̂ ],
now has two consequences. First, by (J.1), the constant γ must be equal to 1.

Secondly, the 2-form Ω − Ω̂ is exact, so that, in view of Lemma H.2(a), Ω =

Ω̂ − i∂∂α for some C∞ function α : M → R. Taking the g-trace of both sides
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of the corresponding equality ĝ = g − (i∂∂α)J involving the metrics g = −ΩJ
and ĝ = −Ω̂J , we see, using (H.3.ii), (K.2.b) with γ = 1 and trgg = n, for

n = dimRM , that n = nγ 2/n ≤ trg ĝ = trg[g − (i∂∂α)J ] = n + ∆α. Hence
∆α ≥ 0. Thus, by (2.20.b), α is constant, and so g = ĝ , which proves (a).

Under the hypotheses of (b), ρ = −Ω and ρ̂ = −Ω̂ , so that, for α = log γ,

Remark K.1(iii) yields Ω = Ω̂ − i∂∂α. As in the preceding paragraph, this gives
ĝ = g − (i∂∂α)J . By (H.3.i), −2[(i∂∂α)J ](u, v) = (∇dα)(u, v) + (∇dα)(Ju, Jv)
for any point x ∈ M and any vectors u, v ∈ TxM . Hence, as α = log γ, we
have ĝ ≤ g (or, ĝ ≥ g) at points where γ = γmax (or, respectively, γ = γmin).
The inequalities between tensors have here the usual meaning: for instance, ĝ ≤ g
states that ĝ − g is negative semidefinite, or, equivalently, that if ĝ is treated,
with the aid of g, as a bundle morphism A : TM → TM (see Remark 2.1), then
its eigenvalues do not exceed 1 at the point in question. Since the eigenvalues of ĝ
are all positive, we now have, from (K.2.a), γ 2 = detg ĝ ≤ 1 wherever γ = γmax

and, similarly, γ 2 ≥ 1 wherever γ = γmin. Consequently, γmax ≤ 1 ≤ γmin and so
γ = 1 everywhere in M , that is, α = 0 and g = ĝ . �

Appendix L. Holomorphic vector fields

We say that a C∞ mapping F : M → N between almost complex manifolds M
and N is holomorphic if, at every x ∈M , the differential dFx : TxM → TF (x)N is
complex-linear. A diffeomorphism F : M → N which is holomorphic is referred to
as a biholomorphism, and, if such F exists, M and N are called biholomorphic.
By a (real) holomorphic vector field on an almost complex manifold M we mean
any C∞ vector field w on M for which £wJ = 0, that is, the flow of w consists
of (local) biholomorphisms. For more on terminology, see the end of this section.

Remark L.1. Let w be a vector field on a Kähler manifold (M, g). We treat the
covariant derivative ∇w of M , as well as the complex structure J , as bundle
morphisms TM → TM , while [ , ] denotes the commutator of such morphisms.

(a) For u = Jw, we have ∇u = J∇w.
(b) The Lie derivative £wJ equals [J,∇w]. Thus, w is holomorphic if and

only if [J,∇w] = 0.
(c) If w is holomorphic, so is Jw.
(d) The following three conditions are equivalent:

i) w is holomorphic and is, locally, the gradient of a function;
ii) Jw is a holomorphic Killing field;

iii) the tensor field ∇ξ, where ξ = ıwg, is symmetric and Hermitian.

In fact, as ∇J = 0, we get (a) and £wJ = [J,∇w], which yields (b). (The
relation £wu = [w, u] = ∇wu − ∇uw, for any vector field u, gives (£wJ)u =
£w(Ju)− J(£wu) = [J,∇w]u.) Now (c) is obvious from (a) and (b). Next, in (d),
let u = Jw. Condition (i) states that [J,∇w] = 0 (cf. (b)) and (∇w)∗ = ∇w,
and so [J,∇u] = 0 and (∇u)∗ = −∇u (as ∇u = J∇w by (a)); hence (ii) follows.
Assuming (ii) we similarly get [J,∇u] = 0 and (∇u)∗ = −∇u, while ∇w = −J∇u,
which yields [J,∇w] = 0 and (∇w)∗ = ∇w, that is, (i). Finally, as (i) amounts
to [J,∇w] = 0 and (∇w)∗ = ∇w, it is equivalent to (iii) (cf. Remark G.2), since
a = ∇ξ in (iii) corresponds to A = ∇w as in Remark 2.1.

Remark L.2. The real vector space h(M) of all holomorphic vector fields on a
Kähler manifold (M, g) is a complex Lie algebra: in addition to being closed under
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the Lie bracket, it has the structure of a complex space, with v 7→ Jv serving as
the multiplication by i (cf. Remark L.1(c)).

By a locally symmetric Kähler manifold we mean any Riemannian manifold
(M, g) which is simultaneously an almost complex manifold, such that the metric
g is Hermitian (Remark G.2) and, for every x ∈M , there exists a holomorphic g-
isometry Φx : Ux → Ux of some neighborhood Ux of x in M with the differential
at x equal to −Id : TxM → TxM . The terminology makes sense since such
(M, g) is automatically a Kähler manifold (and, in addition, its curvature tensor is
parallel). In fact, any k-times covariant tensor field T on M , for odd k, which is
invariant under Φx for every x, must vanish identically (as the differential of Φx
at x sends Tx to Tx and, at the same time, to −Tx). Applying this to T = ∇Ω
and T = ∇R, for Ω = gJ and the four-times covariant curvature tensor R, we get
∇Ω = 0 and ∇R = 0, as required.

In any complex dimension m, one prominent example of a locally symmetric
Kähler manifold is the standard Cm. Another is the complex projective space CPm,
formed by all complex lines through 0 in Cm+1, and hence equal to the quotient
S2m+1/S1 of the unit sphere S2m+1 ⊂ Cm+1 under the action, by multiplication, of
the unit circle S1 ⊂ C. Since S1 acts on the ambient space Cm+1 by holomorphic
isometries, a Riemannian metric and an almost complex structure on CPm can be
uniquely defined by projecting them, via the isomorphism dπy, from the orthogonal
complement of Ker dπy in TyS

2m+1 onto TxCPm, where π : S2m+1 → CPm is the
quotient projection, while y ∈ S2m+1 and x = π(y). The holomorphic isometry
Φx required in the last paragraph is provided by the unitary reflection about the
line Cy in Cm+1, which obviously descends to CPm.

The Fubini-Study metric g on CPm, described above, is also an Einstein metric.
In fact, the unitary automorphisms of Cm+1 keeping a given unit vector y fixed
descend to isometries CPm → CPm which fix the point x = π(y). The differentials
of these isometries at x form a group acting on TxCPm in a manner equivalent
to how U(m) acts on Cm (as one sees identifying y⊥ ≈ Cm with TxCPm via
the isomorphism dπy). The Ricci tensor of g at x now must be a multiple of gx,
or else its eigenspaces would correspond to nontrivial proper U(m)-invariant real
subspaces of Cm (which do not exist, since U(m) acts transitively on the unit
sphere S2m−1 ⊂ Cm).

Here is the reason why we are speaking of Kähler metrics on complex manifolds
(without the word ‘almost’). One normally defines a complex manifold to be any
almost complex manifold M whose almost complex structure J is integrable in
the sense that every point of M has a connected neighborhood biholomorphic to
an open set in Cm, m = dimCM . In other words, M is required to be covered
by a collection of Cm-valued charts, the transition mappings between which are all
holomorphic. The term ‘holomorphic’ that we used for F or w at the beginning
of this section is usually reserved for objects on complex manifolds; in the general
almost-complex case, such F and w are called pseudoholomorphic. However, in
a Kähler manifold, J is always integrable (which is a well-known fact, not used
here). Our terminology thus agrees, in the end, with the standard usage.
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Appendix M. An elementary proof of Proposition 8.2

Although the argument deriving Proposition 8.2 from Theorem 6.1 is trivial (and
well known), proving the latter requires solving a nonlinear elliptic equation; see
§6. This is why we give below a completely elementary proof of Proposition 8.2.

The symbols Ω and ρ stand for the Kähler and Ricci forms of any given Kähler
manifold (M, g), so that Ω(u, v) = g(Ju, v) and ρ(u, v) = r(Ju, v) for all vector
fields u, v. Both Ω and ρ are closed differential 2-forms, and the real cohomology
class [ρ] equals 2πc1(M). (See Remarks H.1 and K.1(ii) in Appendices H and K.)

Lemma M.1. Given a Kähler manifold (M, g), let A : TM → TM be a bundle
morphism anticommuting with J and skew-adjoint at every point, and let a be the
twice-covariant tensor corresponding to A as in Remark 2.1. If a is closed as a
differential 2-form, then δA = 0, where δ is the divergence operator with (2.9).

Proof. Let ξ = δA. In local coordinates, Jpk ξp = JpkA
l
p,l. As AJ = −JA, this

equals −J lpA
p
k,l = Ω lpakp,l, that is, −1/2 times Ω lpapl,k = Jpl A

l
p,k = (Jpl A

l
p),k.

(Since da = 0, (2.24.c) gives 0 = Ω lp(akp,l + alk,p + apl,k) = 2Ω lpakp,l +Ω lpapl,k.)
However, Jpl A

l
p = tr JA = 0, as JA = −AJ . Thus, Jpk ξp = 0 and δA = ξ = 0. �

In any Kähler manifold (M, g), given a bundle morphism B : TM → TM , the
commutator A = [J,B ] : TM → TM satisfies the obvious relations

(M.1) a) A+A∗ = [J,B+B∗], b) JA+AJ = 0, c) A = JB−(JB)∗−(B+B∗)J .

If, in addition, B +B∗ commutes with J , then

(M.2) trA2 = 2 trAJB.

In fact, (M.1.a) gives A∗ = −A, and so trA(B +B∗)J = trABJ + tr (AB∗J)∗ =
tr (ABJ + JBA) = tr (JAB + AJB) = tr (JA + AJ)B, which equals 0 by
(M.1.b). Now (M.1.c) yields trA2 = trAJB − trA(JB)∗, while trA(JB)∗ =
tr [A(JB)∗]∗ = − tr JBA = − trAJB, which implies (M.2).

In the next lemma aJ , for a = £wg, is defined as in Remark G.1.

Lemma M.2. Let w be a vector field on a Kähler manifold (M, g). If the sym-
metric tensor £wg is Hermitian and the 2-form (£wg)J is closed, then w is
holomorphic and (£wg)J is exact.

Proof. Let B = ∇w, A = [J,B], u = Jw and ξ = ıug. Hermitian symmetry
of £wg means, by (2.6.a) and Remark G.2, that [J,B + B∗] = 0, and hence
A∗ = −A (see (M.1.a)). Moreover, (M.1.c), combined with Remark G.2, states
that the twice-covariant tensor a, corresponding to A as in Remark 2.1, is given
by

(M.3) a = dξ − (£wg)J .

(In fact, JB = ∇u, cf. Remark L.1(a), so that, in view of (2.24.b) and (2.6.a), the
morphisms TM → TM associated with dξ, £wg and (£wg)J via Remark 2.1 are
JB−(JB)∗, B+B∗ and, respectively, (B+B∗)J .) Closedness of (£wg)J and (M.3)
now give da = 0, and so δA = 0 by (M.1.b) and Lemma M.1. Next, from (M.2),
trA2 = 2 trAJB = 2 trA(∇u), while trA(∇u) = δ(Au), since δA = 0. Integrating
and using (2.15), we obtain

∫
M

trA2dg = 0. Hence A = 0. (In fact, skew-adjoint-

ness of A yields trA2 < 0 at points where A 6= 0). Thus, w is holomorphic
(Remark L.1(b)). Also, (M.3) with a = 0 implies exactness of (£wg)J . �
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Remark M.3. One obvious consequence of Lemma M.2 is the well-known fact that,
on a compact Kähler manifold (M, g), every Killing vector field w is holomorphic.

Proof of Proposition 8.2. Equation (0.1) implies that £wg is Hermitian (since so
are r and g) and (£wg)J = (λg− r)J = λΩ− ρ is closed (since so are ρ and Ω);
see Remark H.1. Our assertion now follows from Lemma M.2. �

Appendix N. The Futaki and Tian-Zhu invariants

By a compact complex manifold with c1(M) > 0, or c1(M) < 0, we mean any
compact almost complex manifold M that admits a Kähler metric with the Kähler
cohomology class c1(M) or, respectively, −c1(M). (Cf. the text preceding The-
orem J.3.) This is equivalent to the requirement that M be a compact almost
complex manifold admitting a Kähler metric and, at the same time, having a pos-
itive (or, respectively, negative) first Chern class in the sense defined at the end of
Appendix J. Namely, an almost-Kähler metric with the Kähler form Ω such that
c1(M) = ±[Ω ] must then be a Kähler metric by Theorem J.3(ii).

The Futaki invariant [53] of a compact Kähler manifold (M, g) is the real-linear
functional F : h(M) → R on the Lie algebra h(M) (see Remark L.2), defined as
follows. With Ω and ρ denoting, as usual, the Kähler and Ricci forms, and with
savg standing for the average value of the scalar curvature s, let f :M → R be a
function such that ∆f + s = savg. We set

(N.1) Fv = µ
∫
M
dvf dg for v ∈ h(M), where µ = (savg)m and m = dimCM.

The Futaki invariant F is particularly interesting for compact complex manifolds
M with c1(M) > 0, since M then admits a Kähler metric g with [ρ] = λ[Ω ]
for some λ ∈ (0,∞) (e.g., λ = 1), and F turns out to be the same for all such
metrics g. In other words, F then is an invariant of the complex structure of M .
As such, it constitutes a well-known obstruction [54] to the existence of Kähler-
Einstein metrics on compact complex manifolds M with c1(M) > 0. All of this is
summarized by the following result of Futaki [53]:

Theorem N.1. Given a compact complex manifold (M, g) with c1(M) > 0, the
Futaki invariant F : h(M) → C, defined with the aid of a Kähler metric g such
that [ρ] = λ[Ω ] for a constant λ, does not depends on the choice of such g.
Furthermore, F = 0 if M admits a Kähler-Einstein metric.

The final clause of Theorem N.1 is immediate from its first part: using a Käh-
ler-Einstein metric g to evaluate F, we get F = 0, since f in (N.1) is constant.

Theorem N.1 can be derived from Tian and Zhu’s Theorem 10.5 (see Remark N.7
below). However, we establish the two theorems separately, since a direct proof of
Theorem N.1 is much shorter than one needed for Theorem 10.5.

We begin with two lemmas, in which Ω, ρ and savg denote, as before, the Kähler
form, Ricci form, and the average value of the scalar curvature s.

Lemma N.2. If (M, g) is a compact Kähler manifold, λ ∈ R, and [ρ] = λ[Ω ]
in H2(M,R), then λ = savg/n, where n = dimRM , and

(N.2) i∂∂f + ρ = λΩ for f : M → R such that ∆f + s = savg .

In fact, i∂∂f+ρ = λΩ for some function f , as [ρ] = λ[Ω ] (see Lemma H.2(a)).
Now (H.3.ii) gives ∆f + s = nλ, and so λ = savg/n.
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In the next lemma, only parts (a) and (b) are needed for a proof of Theorem N.1.
The symbol L denotes the operator given by (10.2), i.e., Lv = δv− dvf for vector
fields v, with f as in (N.2), while P in (e) is defined as in (10.5).

Lemma N.3. Let (M, g) be a compact Kähler manifold such that [ρ] = λ[Ω ] in
H2(M,R) for some λ ∈ R. Then, for any holomorphic vector field v on M ,

(a) ∇Lv − J∇LJv = −2λv, (b) ∆Lv = −2λδv,
(c) |∇Lv |2 + 2λdvLv = |∇LJv |2 + 2λdJvLJv,
(d) g(∇Lv,∇LJv) + λ(dJvLv + dvLJv) = 0.
(e) λψ − dwψ +∆ψ/2 = idJwψ, where ψ = Pv and w = ∇f/2.

Proof. The cotangent-vector version of (a): d(Lv) + {d[L(Jv)]}J = −2λıvg, reads

(N.3) vk,kl − (vkf,k),l + Jql J
p
kv

k
,pq − Jql J

p
k (vkf,p),q = −2λvl

in local coordinates. On the other hand, −vkf,kl − Jql J
p
kv

kf,pq is the lth com-

ponent of −ıv∇df − (ıu∇df)J = 2ıu(i∂∂f) for u = Jv (by (H.3.i)), which
equals 2ıu(λΩ − ρ) = −2λıvg + 2ıvr by (N.2). Next, as [J,∇v] = 0 (see
Remark L.1(b)), −Jql J

p
kv

k
,qf,p = −Jql Jkq vp,kf,p = vp,lf,p, while Jql J

p
kv

k
,pq =

Jql J
p
kv

k
,qp + Jql J

p
kRpqs

kvs by the Ricci identity (2.12.a). The relation [J,∇v] = 0

also gives Jql J
p
kv

k
,qp = Jql J

k
q v

p
,kp = −vp,lp. Moreover, by (H.1.c), Jql J

p
kRpqs

kvs =

Rkls
kvs = −Rlsvs. Combining these equalities and using (2.12.b), we get (N.3),

that is, (a). Now (b) follows if we apply the divergence operator δ to (a), where
δ(J∇φ) = 0 for any function φ, as δ(J∇φ) = Jkl φ,

l
k, while J is skew-ad-

joint and ∇dφ is symmetric. Next, |∇Lv |2 + 2λdvLv = g(∇Lv,∇Lv + 2λv) =
g(∇Lv, J∇LJv) by (a). The same equality for Jv rather than v, cf. Remark L.1(c),
reads |∇LJv |2 + 2λdJvLJv = −g(∇LJv, J∇Lv), and, as J is skew-adjoint,
the two equalities together prove (c). The left-hand side in (d) is 1/2 times
g(∇LJv,∇Lv+2λv)+g(∇Lv,∇LJv+2λJv) = g(∇LJv, J∇LJv)−g(∇Lv, J∇Lv)
(by (a)); now (d) follows due to skew-adjointness of J . Finally, (b) applied to both
v and Jv (see Remark L.1(c)) gives ∆ψ = −2λ[δv − iδ(Jv)] for ψ = Pv, since
Pv = Lv − iLJv. Now, by (10.2), ∆ψ = −2λ(Lv + dvf ) + 2iλ(LJv + dJvf ) =
−2λ(ψ + dvf − idJvf ), and so (a) implies (e). �

Let us now suppose that (M, g) is a compact Riemannian manifold, f : M → R,
and u, v are vector fields on M . With Lw = δw− dwf, we get, for any vector field
w and any φ : M → R,

(N.4)
a) δ∇(e−fu) = δ(e−f∇u)− e−f [∇udf + (Lu)df ], b) e−fLu = δ(e−fu),
c) −dδw = ıwr − δ∇w, d)

∫
M
φδv dg = −

∫
M
ıvdφdg.

In fact, (b) – (d) are trivial special cases of (2.8.a), (2.11.b) and (2.17), while (a)
follows since ∇(e−fu) = e−f∇u − e−fdf ⊗ u, and δ(e−fdf ⊗ u) = e−f∇udf +

e−f (Lu)df due to the definition of L. Let us denote by ( , )f the weighted

L2 inner product with (φ, φ)f =
∫
M
φ2e−f dg, by ‖ ‖f the corresponding norm,

both for functions and vector fields, and by ( , ) the ordinary L2 inner prod-
uct. Using, respectively, (N.4.b), (N.4.d) (for φ = δ(e−fu)), and (N.4.c) (for w =

e−fu), we see that (Lu, δv)f = (δ(e−fu), δv) = −
∫
M
ıvdδ(e−fu) dg = (Ricu, v)f −∫

M
ıvδ∇(e−fu) dg, where Ric is the bundle morphism A : TM → TM corre-

sponding as in Remark 2.1 to the Ricci tensor a = r of (M, g). Thus, by (N.4.a),

(Lu, δv)f =
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Given a compact Riemannian manifold (M, g) and a function f : M → R,

let us denote by Ricf the bundle morphism A : TM → TM corresponding as

in Remark 2.1 to a = ∇df + r, where r is the Ricci tensor of (M, g), by δf
the operator sending a vector field w to the function δfw = efδ(e−fw) (so that,

when f is the zero function, δf becomes the ordinary divergence δ, cf. (2.7.i)),

and by ( , )f the weighted L2 inner product of tensor fields on M with (A,B)f =∫
M
〈A,B〉e−f dg. The symbol 〈 , 〉 in the integrand represents the inner product

induced by g, including the ordinary product (when A,B are functions) and g
(when they are vector fields). The divergence theorem (2.15) now implies that

(N.5) a) (δfw, 1)f = 0, b) (∇χ,w)f = −(χ, δfw)f whenever χ : M → R.

Also, for any vector fields u, v on M , and any f : M → R,

(N.6) (Ricfu, v)f = (δfu, δfv)f − (∇u, (∇v)∗)f ,

(∇v)∗ being the (pointwise) adjoint of ∇v : TM → TM . If f = 0, (N.6) is nothing
else than Bochner’s integral formula (2.21).

To verify (N.6), note that δf [∇vu − (δfu)v] = tr (∇u)(∇v) + (r +∇df)(u, v) −
(δfu)δfv (as one easily sees in local coordinates, using (2.12.b) and the Leibniz

rule); then apply (N.5.a).

It is obvious from (N.6) and (N.5.b), for χ = δfu and w = v, that

(N.7) −(∇δfu, v)f = (Ricfu, v)f + (∇u, (∇v)∗)f .

Lemma N.4. Suppose that u, v are vector fields on a Kähler manifold (M, g)
and f : M → R. Then, for A = ∇u and B = ∇v,

i) £∇fJ = [J,∇∇f ],

ii) the bundle morphism (£∇fJ)J : TM → TM is self adjoint at every point,

iii) 〈Ju,∇Jv∇f〉 = (∇df)(u, v) + 〈u, (£∇fJ)Jv〉,
iv) δf [(dJuf)Jv) = (∇df)(u, v) + (dJuf)(tr JB − dJvf)

+ 〈∇f, JAJv〉+ 〈u, (£∇fJ)Jv〉.

Proof. Assertion (i) is obvious from Remark L.1(b). By (i), £∇fJ anticommutes

with J . As J∗= −J and (∇∇f)∗= ∇∇f, (i) also implies that £∇fJ is self-adjoint

at every point, and (ii) follows.
Next, (∇df)(u, v) = 〈u, (∇∇f)v〉 = 〈Ju, J(∇∇f)v〉, which is nothing else than

〈Ju, (∇∇f)Jv〉 − 〈Ju, [J,∇∇f ]v〉, so that (i) yields (iii).

Finally, in local coordinates, δf [(dJuf)Jv] = ef [e−f (Ju)lf,l(Jv)k],k equals

−f,k(Ju)lf,l(Jv)k + J lsu
s
,kf,l(Jv)k + (Ju)sf

s
, k(Jv)k + (Ju)lf,lJ

k
s v

s
,k .

These four terms are, respectively, −(dJuf)dJvf , 〈∇f, JAJv〉, 〈Ju,∇Jv∇f〉 and

(dJuf) trJB. Now (iv) is immediate from (iii). �

The expression (Ricfu, v)f also appears in another integral identity, requiring
additional hypotheses. Specifically, we have the following lemma.
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Lemma N.5. Let f : M → R be a function on a compact Kähler manifold (M, g).
If vector fields u, v on M are local gradients, that is, the 1-forms ıug, ıvg are
closed, then, with J denoting the complex-structure tensor of (M, g),

(N.8) (£uJ,£vJ)f/2 = (∇u,∇v)f − (Ricfu, v)f + (dJuf,dJvf)f − ((£∇fJ)u,Jv)f ,

where £ stands for the Lie derivative. Furthermore,

(N.9) −(∇δfu, v)f = 2(Ricfu, v)f−(dJuf,dJvf)f+((£∇fJ)u,Jv)f+(£uJ,£vJ)f/2.

In the remainder of Appendix N, all tensor fields, such as a Riemannian metric
g, and operators (including connections), depend C∞-differentiably on a time pa-
rameter t varying in a fixed interval, in the sense that their components in a local
coordinate system are C∞ functions of the coordinates and t. Their dependence on
t will, however, be suppressed in our notation. The same will apply to the volume
element dg, divergence operator δ, and the g-inner product 〈 , 〉 of twice-covariant
symmetric tensors. Rather than speaking of curves of metrics, connections, etc., we
will refer to such objects as time-dependent (and call them time-independent when
appropriate). Writing ( )˙ for d/dt, we have

(N.10) a) δ̇ = dϕ and b) 〈g, ġ〉 = 2ϕ for ϕ : M → R such that: c) (dg)˙ = ϕdg,

(a) meaning that (δw)˙ = dwϕ for any time-independent vector field w on M . In
fact, contracting the Christoffel symbol formula 2Γ ljk = gls(∂jgks + ∂kgjs − ∂sgjk)

we get Γ jjk = gjl∂kgjl, that is, by (K.1), Γ jjk = ∂k log det[gjl]. Also, dg has

the component function (det[gjl])
1/2, and hence (K.1) gives 〈g, ġ〉 = gjlġjl = 2ϕ.

Finally, applying d/dt to δw = ∂jw
j + Γ jjkw

k = ∂jw
j + wk∂k log det[gjl] and

switching d/dt with ∂k, we obtain (N.10.a).

Lemma N.6. Suppose that Ω̇ = 2i∂∂χ for some time-dependent function χ
and the Kähler form Ω of a time-dependent Kähler metric g on a given complex
manifold M with a time-independent complex structure J : TM → TM , where
( )˙ = d/dt. Then, for ρ, L as above and ϕ given by (N.10.c),

(i) ϕ = ∆χ, (ii) ρ̇ = −i∂∂∆χ, (iii) L̇ = −2λdχ,

(iv) f with (N.2) may be chosen so that ḟ = ∆χ+ 2λχ,

(iii) meaning that (Lw)˙ = −2λdwχ for all time-independent vector fields w.

Proof. As ġJ = Ω̇ = 2i∂∂χ, we have ġ = −2(i∂∂χ)J . Hence, by (H.3.ii), 〈g, ġ〉 =
2∆χ, and (N.10.b) yields (i). By (i), Remark K.1(iii) and (N.10.c), ρ̇ = −i∂∂ϕ =
−i∂∂∆χ, and (ii) follows. Next, choosing f : M → R so that ∆f + s = savg for

some t and ḟ = ∆χ+ 2λχ for all t, and then applying d/dt to i∂∂f + ρ − λΩ,
we see that, by (ii), i∂∂f + ρ = λΩ for all t, which proves (iv). Using (10.2) and
(N.10.a) with ϕ = ∆χ we now obtain (iii). �

We now proceed to prove Theorems N.1 and 10.5. Rescaling two given Kähler
metrics with the stated property, we may assume that they have the same value of
λ, which will also be the case for all intermediate metrics in a line segment of Käh-
ler metrics joining them (Theorem J.3). We thus have a C∞ curve t 7→ g = g(t)
of Kähler metrics on the complex manifold M , with Kähler forms Ω such that
Ω̇ = 2i∂∂χ for some function χ : M → R. (We use the shorthand conventions of
the last paragraph.) We will from now on ignore the fact that the curve is a line
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segment, although we do make use of its consequence in the form of differentiability
of the assignment t 7→ χ (which is in fact constant).

Proof of Theorem N.1. Applying d/dt to −µ−1Fv =
∫
M
Lv dg (cf. (N.1) and

(2.15)), we obtain the integral of (∆χ)Lv − 2λdvχ. Integration by parts shows
that this equals the L2 inner product of χ and the function ∆Lv + 2λδv, which
vanishes by Lemma N.3(b). �

Proof of Theorem 10.5. The relation L̇ = −2λdχ gives (Pw)˙ = 2iλdJwχ −
2λdwχ, and, since (dg)˙ = (∆χ) dg, we get µ−1Ḟ(w) =

∫
M

(2iλdJwχ − 2λdwχ +

∆χ)ePw dg from (10.5). Integrating by parts we see that this is equal to the integral
of χ times

(N.11) ∆ePw + 2λ(dwe
Pw − idJwe

Pw) + 2λ[δw − iδ(Jw)]ePw .

To prove that (N.11) vanishes for every holomorphic vector field w, we use the
identity ∆eψ = eψ[∆ψ + g(∇ψ,∇ψ)], immediate when the function ψ is real-
valued, but also easily verified to complex-valued functions ψ, with g extended
complex-bilinearly to complex vector fields (sections of the complexified tangent
bundle). Thus, g(∇ψ,∇ψ) = |∇Reψ|2 − |∇ Imψ|2 + 2ig(∇Reψ,∇ Imψ). For
ψ = Pw, we have Reψ = Lw, Imψ = −LJw, and (N.11) equals ePw times

∆Lw + 2λδw − i [∆LJw + 2λδ(Jw)]
+ |∇Lw|2 + 2λdwLw − [|∇LJw|2 + 2λdJwLJw ]
− 2i [g(∇Lw,∇LJw) + λ(dJwLw + dwLJw)].

Each of the three lines is separately equal to zero, due to a part of Lemma N.3: the
first, by (a); the second, by (c); and the third, in view of (d). �

Remark N.7. Theorem N.1 is also a direct consequence of Theorem 10.5 combined
with (10.8).

Appendix P. Proofs of Theorems 10.2, 10.3 and 10.1(iv)

We begin by proving Theorem 10.2. To this end, let us fix a compact Kähler-
Ricci soliton (M, g). By (6.1), ∇df + r = λg for some constant λ and some
function f . If λ ≤ 0, our assertion follows: g is an Einstein metric with r = λg
(see Theorem 4.4); thus, formula (Q.5) and Lemma Q.2 in Appendix Q show that
all holomorphic vector fields on M are parallel. Consequently, they are commuting
Killing fields, and h(M) = g = Jg = Ker (Adw). (If λ < 0, (Q.5) also shows that
h(M) = {0}.) From now on we assume that λ > 0.

According to Lemma N.3(e) in Appendix N, the complex-linear operator P
defined in (10.5), with L given by (10.2), sends the complex Lie algebra h(M) into
the space Y of all C∞ functions ψ : M → C with λψ − dwψ + ∆ψ/2 = idJwψ,
where w = ∇f/2.

Furthermore, P : h(M) → Y is a complex-linear isomorphism. In fact, its
injectivity is immediate from (10.7). Lemma N.3(a) also states that the operator H
sending any function ψ : M → C to the vector field −(2λ)−1[∇Reψ + J∇ Imψ],
restricted to the image P (h(M)) ⊂ Y, is the inverse of P : h(M) → P (h(M)). It
is also a trivial exercise to see that PHψ = ψ for every ψ ∈ Y. Isomorphicity of
P : h(M) → Y thus will follow once we verify that Hψ is holomorphic whenever
ψ ∈ Y, which is achieved via the following integration by parts:
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in preparation

Next, for H defined as above (with a constant λ 6= 0), in any Kähler manifold
(M, g), and for any holomorphic Killing field u on (M, g), one easily verifies that
[u,Hψ] = Hduψ for all functions ψ : M → C. Applied to the Killing field u = Jw
this shows that, under the isomorphic identification h(M) = Y provided by P (or
H), our Z corresponds to the operator −idJw : Y → Y. (That dJw(Y) ⊂ Y can
be seen directly: as Jw is a Killing field, dJw commutes with ∆, and hence with
the operator whose kernel is Y.) We now easily obtain self-adjointness of −idJw
relative to the ordinary L2 inner product of functions in Y.

further text in preparation

This completes the proof of Theorem 10.2.
Note that Theorem 10.2 establishes a Cartan decomposition of h(M). Namely,

h(M) then is the direct sum of the eigenspaces of the operator Adw : h(M) →
h(M), and, setting qc = Ker [(Adw)Z − c] ⊂ h for c ∈ R, we have [qc, qd] ⊂ qc+d
whenever c, d ∈ R.

We now proceed to prove Theorem 10.3. To this end, let us fix a compact Käh-
ler-Ricci soliton (M, g). By (6.1), ∇df + r = λg for some constant λ and some
function f . If λ ≤ 0, our assertion follows: by Theorem 4.4, g is an Einstein metric
with r = λg, and so formula (Q.5) in Appendix Q shows that all holomorphic vector
fields on M are (parallel) Killing fields; hence Isomo(M, g) = Auto(M) (and, if
λ < 0, both groups are trivial). From now on we will therefore assume that λ > 0.

further text in preparation

Proof of Theorem 10.1. First, let us replace g and ĝ with λg and λ̂ĝ , that is,

rescale both metrics so as to have λ = λ̂ = 1 in (0.1). Next, let w and ŵ be the
unique vector fields with the property stated in Proposition 10.4, for g and ĝ . Now
By Corollary 8.3, Jw and Jŵ are Killing fields. Thus, their flows, consisting of
isometries of (M, g) and, respectively, (M, ĝ), are both contained in some maximal

compact connected Lie subgroups K and K̂ of the identity component Auto(M)
of the biholomorphism group of M . By the Malcev-Iwasawa theorem (Appendix T),

K and K̂ are conjugate to each other in Auto(M), and so, replacing ĝ with its
pullback under a suitable element of Auto(M), we may assume that, in addition,
both w and ŵ lie in the same subspace p ⊂ h(M) with the properties listed in
Lemma 10.6. Proposition 10.4 and Lemma 10.6 now imply that ŵ = w.

further text in preparation

�

Appendix Q. Kähler-Einstein metrics

On an arbitrary Riemannian manifold (M, g), we denote by D the operator
sending any vector field w on M to the vector field Dw characterized by

(Q.1) ıDwg = −∆ıwg − ıwr, that is, (Dw)j = −wj,kk −Rjkwk.
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Replacing Rjkw
k by wk,jk−wk,kj (cf. (2.12.b)), we get (Dw)j = −(wj,k+wk,j)

k+
wk,kj . Rewritten with the aid of (2.6.a), this equality gives

(Q.2) ıDwg = −δ£wg + dδw,

while, applied to w = ∇ψ for a function ψ : M → R, it yields, again by (2.12.b),
(Dw)j = −2ψ,kj

k + ψ,k
k
j = −2Rjkw

k− ψ,kkj , that is,

(Q.3) ıDwg = −d∆ψ − 2ıwr if w = ∇ψ.
Also, for any vector field w on a Riemannian manifold,

(Q.4) ∆δw − −δDw − 2δıwr,

since, in local coordinates, (2.12.b) gives wj,
jk
k = wj,

kj
k+(Rjkw

j),k, while formula
(2.11.f) (or, more precisely, its coordinate form, cf. the lines following (2.12)) yields
wj,

kj
k = wj,

k
kj = δ∆w (and so (Q.1) implies (Q.4)).

Note that D is a second-order elliptic differential operator; it is also self-adjoint,
in view of symmetry of r and the relation −g(∆w, v) = 〈∇w,∇v〉 − δ [(∇w)∗v]
(which has the local-coordinate form −vjwj,kk = vj,kwj,k− (vjwj,k),k). Applied to
v = w, this last relation shows that, on a compact Riemannian manifold (M, g),

(Q.5) (Dw,w) = ‖∇w‖2 −
∫
M

r(w,w) dg

for any vector field w on M . Here and below ( , ) stands for the L2 inner product
of functions and vector or tensor fields, while ‖ ‖ is the corresponding L2 norm.

Similarly, any function φ and vector field w on a compact Riemannian manifold
satisfy the L2 inner-product relations

(Q.6) 2(∇w,∇dφ) = (Dw − ∇δw,∇φ).

In fact, 2φ,jkwj,k = φ,jkwj,k + φ,jkwk,j differs by a divergence from −φ,jwj,kk +
φ,jwk,j

k which, in view of (Q.1) and (2.12.b), equals φ,j(Dw)j − φ,jwk, kj.

Remark Q.1. Our discussion of the operator D, defined by (Q.1) on a Riemannian
manifold (M, g), deals mainly with the case where M is compact. In many cases,
however, one has Dw = 0 for purely local reasons:

(i) Dw = 0 if w is a Killing field;
(ii) Dw = 0 if w satisfies the soliton equation (0.1);
(iii) Dw = 0 if (M, g) is a Kähler manifold and w is holomorphic;
(iv) Dw = −∇(∆ψ + 2λψ) whenever (M, g) is an Einstein manifold with the

Einstein constant λ and w = ∇ψ for a function ψ : M → R. Thus, we
then have Dw = 0 if w = ∇ψ and ∆ψ = −2λψ.

Namely, (i) follows from (Q.2), as the equality (∇w)∗ = −∇w gives δw = 0.
That (0.1) yields Dw = 0 is clear from (3.5.ii) and (2.14.ii). Next, if g is a
Kähler metric and w is holomorphic, [J,∇w] = 0 (see Remark L.1(b)), so that
Jkpw

p
,q
q = Jpqw

k
,p
q, which, by (H.1.a), equals −JkpR

p
l w

l, proving (iii). Finally, (iv)
is immediate from (Q.3).

About the relation between D and the Hodge Laplacian, see Remark Q.8 below.

Lemma Q.2. On any compact Kähler manifold (M, g), the operator D with (Q.1)
is nonnegative, and its kernel consists of all holomorphic vector fields. In addition,
for every C2 vector field w on M , the L2 norm of £wJ is given by

(Q.7) ‖£wJ‖2 = 2(Dw,w) .
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In fact, for any vector field w on M , setting A = ∇w we have £wJ = [J,A]
(see Remark L.1(b)), and so |£wJ |2 = tr [J,A][J,A]∗ = 2 tr JAJA∗ + 2 trAA∗.
As trAA∗ = |∇w|2, we now obtain (Q.7) by integration, using (Q.5), (H.2.ii) and
(2.15). Our assertion then follows from Remark Q.1(iii).

Remark Q.3. Inspired by Lemma Q.2, one might define the space of “holomorphic”
vector fields on any compact Riemannian manifold (M, g) to be the kernel of D.
However, as observed by Yano, cf. [80, p. 93], for any C2 vector field w on a
compact Riemannian manifold (M, g), we have

(Q.8) 2(Dw,w) = ‖£wg‖2 − 2‖δw‖2,
since |£wg|2 = (wj,k + wk,j)(w

j,k + wk,j) = 2(wj,k + wk,j)w
j,k, which differs from

−2(wj,k+wk,j)
,kwj by a divergence, and so (Q.8) follows from (Q.2) by integration.

Thus, nonnegativity of D fails in general: examples with (Dw,w) < 0 are non-
Killing conformal vector fields w in dimensions n > 2, for which n£wg = 2(δw)g,
and so (Q.8) gives n(Dw,w) = (2−n)‖δw‖2 < 0. Further such examples arise from
Remark Q.1(iv): for instance, on a sphere Sn of constant curvature K, choosing
an eigenfunction ψ of −∆ for the lowest positive eigenvalue nK, and noting that
λ = (n− 1)K, we get Dw = (2− n)w for w = ∇ψ.

On the other hand, D provides a characterization of Killing fields w on compact
Riemannian manifolds by a pair of scalar equations: Dw = 0 and δw = 0. This is
clear from (Q.8) and Remark Q.1(i).

For a function ψ : M → R on a compact Riemannian manifold (M, g),

(Q.9) µ‖w‖2 = (Dw,w) + 2
∫
M

r(w,w) dg if w = ∇ψ and ∆ψ = −µψ.
In fact, by (2.20.a), µ‖w‖2 = −µ(ψ,∆ψ) = ‖∆ψ‖2. Bochner’s formula (2.22), with
ϕ = ψ, thus yields µ‖w‖2 = ‖∇w‖2 +

∫
M

r(w,w) dg, and (Q.5) gives (Q.9).
In the following theorem, the inequality r ≥ λg means that r − λg is positive

semidefinite at every point, r being, as usual, the Ricci tensor; in other words, λ
is assumed to be a lower bound on the Ricci curvature.

Theorem Q.4. Let (M, g) be a compact Kähler manifold such that

(Q.10) r ≥ λg with a constant λ > 0 .

Then µ ≥ 2λ for every positive eigenvalue µ of −∆.
If, in addition, r = λg, that is, g is a Kähler-Einstein metric with the Ein-

stein constant λ > 0, then the assignment ψ 7→ ∇ψ defines a linear isomorphism
between the space of all functions ψ : M → R with ∆ψ = −2λψ and the space of
all holomorphic gradient vector fields on M .

Proof. That µ ≥ 2λ is obvious from (Q.9) and Lemma Q.2. Now let r = λg. If
ψ : M → R and ∆ψ = −2λψ, (Q.9) with µ = 2λ gives (Dw,w) = 0 for w = ∇ψ,
and so, by (Q.7), w is a holomorphic gradient. Thus, the operator ψ 7→ ∇ψ is
valued in the required space, and it is also injective, as ψ can be constant only
if ψ = 0. Finally, let w be any holomorphic gradient, so that w = ∇ψ for some
ψ : M → R. Since Dw = 0 (see Remark Q.1(iii)), assertion (iv) in Remark Q.1
shows that ∆ψ + 2λψ is constant and, adding a constant to ψ, we may assume
that ∆ψ = −2λψ, as required. �

A weaker form of Theorem Q.4 holds when (M, g), rather than being Käh-
ler, is just assumed to be a compact Riemannian manifold of any real dimension
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n. Condition (Q.10) then implies the Lichnérowicz inequality µ ≥ (n − 1)−1nλ
for every positive eigenvalue µ of −∆. (Proof: if ∆ψ = −µψ and µ‖ψ‖ > 0,
the Schwarz inequality (∆ψ)2 = 〈g,∇dψ〉2 ≤ n|∇dψ|2 implies, for w = ∇ψ,
that (δw)2− tr (∇w)2 = (∆ψ)2 − |∇dψ|2 ≤ (n − 1)(∆ψ)2/n, and so (2.22) gives
(n−1)−1nλ‖w‖2 ≤ (n−1)−1n

∫
M

r(w,w) dg ≤ ‖∆ψ‖2. Since µ‖ψ‖2 = −(ψ,∆ψ) =

‖w‖2 by (2.20.a), we now get (n− 1)−1nλµ‖ψ‖2 = (n− 1)−1nλ‖w‖2 ≤ ‖∆ψ‖2 =
µ2‖ψ‖2, as required.)

The following is an obvious consequence of Theorem Q.4:

Corollary Q.5. In a compact Kähler-Einstein manifold (M, g), with a positive
Einstein constant λ,

(i) µ ≥ 2λ for every positive eigenvalue µ of −∆,
(ii) 2λ is an eigenvalue of −∆ if and only if M admits a nontrivial holo-

morphic gradient vector field.

The assertion of Corollary Q.5(ii) remains valid even if the word ‘gradient’ is
dropped, as one easily sees using Theorem Q.6(d) below, due to Matsushima [92],
along with (Q.11).

Theorem Q.6. Given a compact Einstein manifold (M, g), let λ, h, g and p
be the Einstein constant of g, the kernel of the operator D given by (Q.1), the
Lie algebra of all Killing fields on (M, g) and, respectively, the space of all gradient
vector fields w on M with Dw = 0. Then we have an L2-orthogonal decomposition

(Q.11) h = g ⊕ p.

In particular, g ⊂ h. Furthermore,

(a) h = g = p = {0} if λ < 0,
(b) p = {0} and h = g is the space of all parallel vector fields, if λ = 0.
(c) In the case where λ > 0, the g and p components of any w ∈ h, relative

to the decomposition (Q.11), are w+(2λ)−1∇δw and −(2λ)−1∇δw, while
p consists of the gradients of all functions ψ : M → R with ∆ψ = −2λψ.

(d) If, in addition, (M, g) is a Kähler manifold and λ 6= 0, then h coincides
with the space h(M) of all holomorphic vector fields on M , and p = Jg.

Proof. That g ⊂ h is obvious from from Remark Q.1(i), while L2-orthogonality of
the spaces g and p follows from formula (2.18), stating that Killing fields are L2-
orthogonal to gradients. Next, (a) and (b) are immediate from (Q.5), and (Q.11) is
trivially satisfied when λ ≤ 0. Let us therefore suppose that λ > 0. We claim that
u = 2λw+∇δw is a Killing field whenever w ∈ h. In fact, |£ug|2 = 2uj,k(uj,k+uk,j)
(cf. the line following (Q.8)), and so, since the same holds for w rather than
u, we get |£ug|2/4 = 2λ2wj,k(wj,k + wk,j) + 4λwj,kwl,ljk + wp,

pjkwl,ljk, that is,
|£ug|2/4 = λ2|£wg|2 + 4λ〈∇w,∇dφ〉 + |∇dφ|2, and so ‖£ug‖2/4 = λ2‖£wg‖2 +
4λ(∇w,∇dφ) + ‖∇dφ‖2, where φ = δw. Relation (Q.4) with Dw = 0 and r =
λg gives ∆φ = −2λφ. (From now on, φ stands for δw.) Thus, (2.22) with
r = λg and ∆φ = −2λφ implies that ‖∇dφ‖2 = 4λ2‖φ‖2 − λ‖∇φ‖2, that is,
‖∇dφ‖2 = 2λ2‖φ‖2 (since ‖∇φ‖2 = 2λ‖φ‖2 by (2.20.a)). Also, by (Q.8) with
Dw = 0, we have ‖£wg‖2 = 2‖φ‖2. Next, (Q.6) with Dw = 0 and φ = δw reads
2(∇w,∇dφ) = −‖∇φ‖2 = −2λ2‖φ‖2. Combining these equalities, we see that
‖£ug‖2 = 0, as required. Thus, (Q.11) holds also when λ > 0, and each w ∈ h has
the g and p components described in (c). Also, if w = ∇ψ ∈ p, Remark Q.1(iv)
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with Dw = 0 shows that ∆ψ+ 2λψ is constant, and hence may be assumed equal
to 0. This proves (c).

Finally, under the assumptions of (d), h = h(M) by Lemma Q.2, and Jp ⊂ g
(that is, p ⊂ Jg) in view of Remark L.1(d). Conversely, Jg ⊂ p. In fact, for any
u ∈ g, (Q.11) gives Ju = w + v with w ∈ g and v ∈ p, while Ju is, locally,
a gradient (Remark L.1(d)). Thus, ∇w is both self-adjoint and skew-adjoint at
every point, that is, ∇w = 0, and (2.12.b) yields w = 0, as r = λg and λ 6= 0.
Hence Ju = v ∈ p, which completes the proof. �

Corollary Q.7. For any compact Kähler-Einstein manifold (M, g), the identity
component Isomo(M, g) of the isometry group of (M, g) is a maximal compact
connected Lie subgroup of the biholomorphism group Aut(M).

Proof. Suppose, on the contrary, that there exists a vector field w ∈ h such that
w /∈ g and w belongs to the Lie algebra, containing g, of a compact Lie group
G of biholomorphisms of M . Replacing w by its p component relative to the
decomposition (Q.11), we may assume that w = ∇ψ for some ψ : M → R.
Thus, dwψ = |w|2 is nonnegative everywhere and positive somewhere in M . Hence∫
M
dwψ dg′ > 0 for any fixed G-invariant Riemannian metric g′ on M , which

contradicts (2.18), as w is a Killing field on (M, g′). �

Remark Q.8. If (M, g) is an Einstein manifold and λ is its Einstein constant, then
D = H − 2λ, where H = −dδ − δd is the Hodge Laplacian acting on 1-forms ξ
(identified with vector fields w, so that ξ = ıwg). Thus, Dw = 0 if and only if
Hw = 2λw. Note that the decomposition of w in Theorem Q.6 coincides with the
Hodge decomposition of the eigenform ξ = ıwg of the Hodge Laplacian.

Appendix R. The real and complex Monge-Ampère equations

in preparation

Appendix S. More on the Koiso-Cao construction

in preparation

Appendix T. Maximal compact subgroups of Lie groups

The following classical result, due to Malcev [91], was later generalized by Iwa-
sawa [76]. The word ‘maximal’ means here having the largest possible dimension.

Theorem T.1. Let K and K̂ be maximal compact connected Lie subgroups of a
Lie group G. Then K is conjugate to K̂ in G.

Proof.

in preparation

�
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Appendix U. Ricci solitons and the Ricci flow

A C∞ curve t 7→ g(t) of Riemannian metrics on a manifold M is called a
solution to the Ricci-flow equation [61] if dg/dt = −2r, that is, at every time t the
derivative dg/dt equals −2 times the Ricci tensor r = rg(t) of the metric g(t).
Hamilton [61] proved that, on a compact manifold M , the Ricci-flow equation with
any prescribed initial metric g(0) has a unique solution on some maximal time
interval [0, T ), where 0 < T ≤ ∞.

A vast literature dealing with the Ricci flow begins with Hamilton’s paper [61]
and includes the preprints [101] – [103] in which Perelman proves the Poincaré con-
jecture by a Ricci-flow argument, implementing a program designed by Hamilton.

Given a compact Ricci soliton (M, g), with (0.1) for some fixed w and λ,
the solution to the Ricci-flow equation with the initial condition g(0) = g, de-
fined on the time interval (−∞, (2λ)−1), can be described quite explicitly (mod-
ulo solving ordinary differential equations). Namely, g(t) = (1 − 2λt)ϕ∗θg with
θ = −λ−1 log(1 − 2λt), where θ 7→ ϕθ is the flow of w. (That dg/dt = −2rg(t) is
clear since d(ϕ∗θg)/dθ = ϕ∗θ£wg for a vector field w with the flow θ 7→ ϕθ.)

Conclusions about compact Ricci solitons can in this way be derived from more
general results on the Ricci flow; this is how Ivey [71] originally excluded the case
n = 3 in Theorem 4.4. As an illustration, here is one step in Ivey’s proof: a
compact 3-dimensional Ricci soliton (M, g) with positive Ricci curvature must
have constant sectional curvature, since, according to a theorem of Hamilton [61],
the solution t 7→ g(t) to the Ricci-flow equation in a compact 3-manifold with an
initial metric g(0) of positive Ricci curvature, on the maximal time interval [0, T ),
rescaled so as to have time-independent volume, converges uniformly (as t → T )
to a metric of positive constant sectional curvature. Cf. also [42, pp. 90–91].

Let t 7→ g(t) be a fixed solution to the Ricci-flow equation on a compact man-
ifold. If the initial metric g(0) is a Ricci soliton, then, according to the above
formula for g(t), the metrics g(t) are all mutually homothetic (isometric up to a
constant factor). Conversely, Perelman [101, pp. 6–9] has shown that, if g(t) and
g(t′) are homothetic for some t, t′ with t 6= t′, then all g(t) are mutually homo-
thetic Ricci solitons. This is the precise meaning of the statement about ‘fixed
points’ in the second paragraph of the introduction.

Appendix W. Another meaning of ‘quasi-Einstein’

Goldberg and Vaisman [56] as well as other authors [44], [47] define a quasi-Ein-
stein metric g on a manifold M by requiring its Ricci tensor to have the form

(W.1) r = αg + βξ ⊗ ξ for some functions α, β and a 1 form ξ

(in coordinates: Rjk = αgjk + βξjξk). In other words, at each point, either r is a
multiple of g, or it has exactly two eigenvalues, of multiplicities 1 and dimM− 1.

For obvious algebraic reasons, (W.1) is satisfied in any Riemannian manifold of
cohomogeneity 1 whose isometry group, restricted to each principal orbit, has an
irreducible isotropy representation at every point. This is, for instance, the case for
any metric g on Sn which, although not SO(n+ 1)-invariant, is preserved by the
subgroup SO(n) ⊂ SO(n+ 1) keeping two antipodal points fixed. More generally,
(W.1) is easily verified to hold for any warped-product Riemannian manifold with
a one-dimensional base (totally geodesic factor) and an Einstein fibre.
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There is a conformal relation between a special case of condition (W.1) and
equation (6.1), characterizing gradient Ricci solitons. Specifically, let g be a Rie-
mannian metric on a manifold M of dimension n ≥ 3. Then g satisfies (6.1)

if and only if (n − 2) r̃ = γ g̃ + df ⊗ df with γ = ∆̃f + (n − 2)λe2f/(n−2) for

the conformally related metric g̃ = e−2f/(n−2)g, where r̃ and ∆̃ correspond to
g̃. (In fact, (n − 2) r̃ = (n − 2)(r + ∇df) + df ⊗ df + [∆f − g(∇f,∇f)]g

and ∆̃f = [∆f − g(∇f,∇f)]e2f/(n−2) whenever g̃ = e−2f/(n−2)g.) By (6.3),
∆f − g(∇f,∇f) = c − 2λf with c ∈ R, so that γ is a specific function of f .
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155, Birkhäuser, Boston, 1998.

48. M. Eminenti, G. La Nave and C. Mantegazza, Ricci solitons - the equation point of view,
Manuscripta Math. 127 (2008), 345–367.

49. M. Feldman, T. Ilmanen and D. Knopf, Rotationally symmetric shrinking and expanding gra-
dient Kähler-Ricci solitons, J. Differential Geom. 65 (2003), 169–209.
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78 (2003), 865–883.
87. L. Ma, Rigidity theorem for expanding gradient Ricci solitons, IHES preprint No. 49 (2006).

88. L. Ma, Remarks on compact shrinking gradient Ricci solitons of dimension four, IHES

preprint No. 50 (2006).
89. T. Mabuchi, Vector field energies and critical metrics on Kähler manifolds, Nagoya Math.

J. 162 (2001), 41–63.

90. T. Mabuchi, Kähler-Einstein metrics for manifolds with nonvanishing Futaki character, To-
hoku Math. J. (2) 53 (2001), 171–182.

91. A. Malcev, On the theory of the Lie groups in the large, Rec. Math. [Mat. Sbornik], N. S.

16 (1945), 163–190.
92. Y. Matsushima, Sur la structure du groupe d’homéomorphismes analytiques d’une certaine
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