NONEXISTENCE OF INVARIANT EINSTEIN METRICS ON SPECIAL LINEAR GROUPS

ANDRZEJ DERDZINSKI AND ŚWIATOSŁAW R. GAL

ABSTRACT. We prove the fact named in the title, which is a special case of Alekseevsky’s conjecture.

1. INTRODUCTION

In [1] Alekseevsky conjectured that, whenever G/K is a simply connected noncompact homogeneous nonflat Einstein manifold, K must be a maximal compact connected subgroup of the (connected) Lie group G.

In the special case where $G = \text{SL}(n, \mathbb{R})$ and K is the trivial group, Alekseevsky’s conjecture becomes a nonexistence statement, proved in this note:

Theorem A. There exists no left-invariant Riemannian Einstein metric on $\text{SL}(n, \mathbb{R})$ for any $n \geq 2$.

The assertion of Theorem A new for $n \geq 3$ and Einstein metrics with negative Einstein constants, stands in some contrast to the result of Leite and Dotti de Miatello [8] stating that $\text{SL}(n, \mathbb{R})$, for every $n \geq 3$, does admit a left-invariant metric of negative Ricci curvature.

We obtain Theorem A in §5 as an easy consequence of Corollary C (see below) combined with the well-known fact that the adjoint-action orbit of any definite symmetric bilinear form on $\text{sl}(n, \mathbb{R})$ is unbounded (Lemma 5.1). Corollary C is in turn obvious from the following result:

Theorem B. Given a unimodular Lie group G with the Lie algebra \mathfrak{g}, let \mathcal{M} be the set of all left-invariant Riemannian Einstein metrics with the Einstein constant -1 on G, and let \mathcal{L} be the set of Levi-Civita connections of all such metrics. Then

(i) \mathcal{L} is a bounded subset of the vector space $\mathfrak{g}^* \otimes \mathfrak{g}^* \otimes \mathfrak{g}$,
(ii) \mathcal{M} is a bounded set in $[\mathfrak{g}^*]^{\otimes 2}$,
(iii) both \mathcal{M} and \mathcal{L} are unions of some, possibly empty, families of orbits for the actions of $\text{Aut} G$ on $\mathfrak{g}^* \otimes \mathfrak{g}^* \otimes \mathfrak{g}$ and $[\mathfrak{g}^*]^{\otimes 2}$.
Corollary C. Let G be a unimodular Lie group such that, for every negative-definite symmetric bilinear form ρ on its Lie algebra g, the $\text{ad} G$ orbit of ρ is unbounded in $[g^*]^{\otimes 2}$. Then G admits no left-invariant Einstein metric with negative Einstein constant.

We prove Theorem B in §4 using an argument based on dealing primarily with left-invariant connections rather than metrics. Specifically, we exhibit the following explicit construction of such connections: If ∇ is the Levi-Civita connection of a non-Ricci-flat left-invariant Riemannian Einstein metric on a unimodular Lie group G, then the formula $\nabla_v w = [v, w] - \nabla_v w$, for left-invariant vector fields v, w on G, defines a left-invariant torsion-free connection on G, the Ricci tensor of which is symmetric and positive semidefinite. This implies a uniform bound on all such ∇ with negative Ricci curvature: due to their fixed difference (and hence distance), ∇ and $-\nabla$, as points in $g^* \otimes g^* \otimes g$, cannot approach infinity, since their Ricci tensors would then become asymptotically equal, rather than opposite in sign.

The italicized statement above, although useful in producing a contradiction needed to prove Theorems A and B, does not seem to be an interesting result in its own right.

We wish to express our gratitude to Tadeusz Januszkiewicz for helpful comments. We also thank Jorge Lauret for bringing the existence question discussed here to the first author’s attention.

2. Preliminaries

Manifolds, mappings, connections and tensor fields of all types are always assumed to be of class C^∞.

The Ricci tensor $\rho = \rho \nabla$ of a torsionfree connection ∇ on a manifold satisfies the Bochner identity (cf. [5, formula (4.39) on p. 449]):

$$\rho (v, w) = \text{div}[\nabla w] - d (\text{div} w)$$

for any vector field w.

In fact, the coordinate form of (2.1), $R_{jk}^l w^k = w^k,_{jk} - w^k,_{kj}$, arises by contraction in $l = k$ from the Ricci identity $w^l,_{jk} - w^l,_{kj} = R_{jks}^l w^s$, which in turn is nothing else that the definition of the curvature tensor R. Evaluated on a vector field v, (2.1) implies that $\rho (v, w)$ equals

$$\text{div}[\nabla_v w - (\text{div} w)v] + (\text{div} v)(\text{div} w) - \text{tr} [\nabla v][\nabla w],$$

as one sees differentiating by parts. Here $\text{div} w = \text{tr} \nabla w$, with ∇w treated as the endomorphism of the tangent bundle acting on vector fields v by $v \mapsto \nabla_v w$.
We always identify the Lie algebra \mathfrak{g} of a given Lie group G with the space of left-invariant vector fields on G. Whenever a connection ∇ (or, a twice-covariant symmetric tensor field σ) on G is invariant under left translations, we treat it as an element of $\mathfrak{g}^* \otimes \mathfrak{g}^* \otimes \mathfrak{g}$ (or, $[\mathfrak{g}^*]^{\otimes 2}$), that is, a bilinear mapping $\nabla : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ (or, respectively, $\sigma : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$, which is in addition symmetric).

One calls a torsionfree connection ∇ on an m-dimensional manifold equiaffine if the connection induced by ∇ in the mth exterior power of the tangent bundle is flat, or, on other words, if the manifold admits, locally, ∇-parallel volume forms. Equiaffinity of ∇ is equivalent to symmetry of its Ricci tensor ρ. This well-known fact, cf. [4, p. 567], is stated here just as a comment, and will not be used in our argument.

If ∇ is a left-invariant torsionfree connection on a Lie group G, we will say that ∇ is unimodular if some/any left-invariant volume form on G is ∇-parallel.

Unimodularity of ∇ obviously implies its equiaffinity.

Lemma 2.1. Let ∇ be a left-invariant torsionfree connection on a Lie group G with the Lie algebra \mathfrak{g}.

(a) ∇ is unimodular if and only if $\nabla_v : \mathfrak{g} \in \text{End} \mathfrak{g}$ is traceless for every $v \in \mathfrak{g}$.

(b) ∇ is unimodular whenever there exists a nondegenerate left-invariant ∇-parallel twice-covariant symmetric tensor field on G, that is, whenever ∇ is the Levi-Civita connection of some left-invariant pseudo-Riemannian metric.

(c) If G is unimodular, then unimodularity of ∇ is equivalent to the condition $\text{div} w = 0$ for every $w \in \mathfrak{g}$.

(d) If both G and ∇ are unimodular, then the Ricci tensor $\rho = \rho^\nabla$ is given by $\rho(v, w) = -\text{tr} [\nabla v][\nabla w]$ for $v, w \in \mathfrak{g}$.

Proof.

3. **RICCI-PARALLEL MULTIPLICATIONS**

Let $\nabla : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ be a multiplication (bilinear operation) in a real vector space \mathfrak{g} with $\dim \mathfrak{g} < \infty$. For $v, w \in \mathfrak{g}$, we will write $\nabla_v w$ instead of $\nabla(v, w)$, and

$$\nabla_v (\text{or, } \nabla w) : \mathfrak{g} \to \text{End} \mathfrak{g}$$

denote by $\nabla_v (\text{or, } \nabla w)$ the operator sending w (or, respectively, v) to $\nabla_v w$.

We also define the Ricci pairing \(\rho = \rho^\nabla \) of \(\nabla \), its skew-symmetrization \(A \), and its symmetrization \(S \), to be the symmetric bilinear form \(\rho : g \times g \to \mathbb{R} \) and the multiplications \(S, A \) in \(g \), given, for any \(v, w \in g \), by

\[
(3.2) \quad \rho(v, w) = -\text{tr}[\nabla v][\nabla w]
\]

(so that \(-\rho^\nabla \) is the pullback, under the operator \(w \mapsto \nabla w \), of a natural pseudo-Euclidean inner product in \(\text{End} \, g \), and

\[
(3.3) \quad 2A_vw = \nabla_v w - \nabla_w v, \quad 2S_vw = \nabla_v w + \nabla_w v
\]

We call a multiplication \(\nabla \) in \(g \) Ricci-parallel if

\[
(3.4) \quad \nabla_v \text{ is skew-adjoint relative to } \rho^\nabla \text{ for every } v \in g
\]
or, equivalently, if

\[
(3.5) \quad \rho(\nabla_v w, w) = 0 \text{ for } \rho = \rho^\nabla \text{ and all } v, w \in g.
\]

Example 3.1.

Example 3.2. In any real Lie algebra \(g \), the formula \(\nabla_v w = [v, w]/2 \) defines a skew-symmetric Ricci-parallel multiplication \(\nabla \). In fact, (3.5) amounts here to \(\text{Ad} \)-invariance of the Killing form of \(g \).

Example 3.3.

4. Negative Ricci Curvature

We write \(\rho > 0 \), \(\rho < 0 \) or \(\rho \geq 0 \) to express positive/negative definiteness or semidefiniteness of a symmetric bilinear form \(\rho \).

Lemma 4.1. Let \(S, A \in g^* \otimes g^* \otimes g \) be multiplications in a finite-dimensional real vector space \(g \) such that \(A \) is skew-symmetric, \(S \) is symmetric, while, setting \(\nabla = A + S \) and \(\rho = \rho^\nabla \), we have \(\{\nabla, \nabla\} \circ \nabla = 0 \) and either \(\rho > 0 \), or \(\rho < 0 \). Then \(\rho^{A-S} \geq 0 \).

In fact, as \(\nabla_w = (A + S)_w = Sw - Aw \) is, for every \(w \in g \), skew-adjoint relative to the Euclidean inner product \(\pm \rho^\nabla \), cf. (3.4), our claim is immediate from the definition of \(\rho^{A-S} \) (see (3.2)).

Lemma 4.2. If \(A \in g^* \otimes g^* \otimes g \) is a fixed multiplication in a real vector space \(g \) with \(\dim g < \infty \), and \(w \in g \) is a fixed vector, then the set

\[
(4.1) \quad \{S \in g^* \otimes g^* \otimes g : \rho^{A+S}(w, w) < 0 \leq \rho^{A-S}(w, w)\}
\]

is bounded in \(g^* \otimes g^* \otimes g \).
Proof. Suppose that, on the contrary, (4.1) contains a sequence of elements S with $|S| \to \infty$ for some norm $|\cdot|$ in $g^* \otimes g^* \otimes g$. The ratio $[\rho^{A-S}(w, w)]/[\rho^{A+S}(w, w)]$ is nonpositive for such S, due to the definition of (4.1), yet at the same time, restricted to a subsequence, it tends to 1 as $|S| \to \infty$. (The limit is 1 since the ratio does not change when A and S are both divided by $|S|$, the dependence of ρ_∇ on ∇ in (3.2) being homogeneous quadratic.) The resulting contradiction completes the proof. □

Proof of Theorem B. As the connections $\nabla \in N$ are torsionfree, decomposing each of them into the sum $A + S$ of its skew-symmetric and symmetric parts we see that we see that $A = [\cdot, \cdot]/2$ is fixed. Thus, N is bounded, since, by Lemma 4.1, it is contained in the set (4.1) for every $w \in g \setminus \{0\}$. Assertion (ii) is in turn immediate from (i), since ρ_∇ is a quadratic polynomial function of ∇. □

5. Proof of Theorem A

We begin with a well-known lemma.

Lemma 5.1. Any definite symmetric bilinear form ρ on $g = sl(n, \mathbb{R})$ has an unbounded $ad G$ orbit in $[g^*]^{\otimes 2}$, for $G = SL(n, \mathbb{R})$ and $n \geq 2$.

Proof. Let us fix a vector $x \in \mathbb{R}^n$ and a linear functional $\theta \in [\mathbb{R}^n]^*$, both nonzero, such that $\theta(x) = 0$, and a basis e_1, \ldots, e_n of \mathbb{R}^n with $x = e_2$ and $\theta = e_1$, where e_1, \ldots, e_n is the basis of $[\mathbb{R}^n]^*$ dual to e_1, \ldots, e_n. For any scalar $c > 0$, defining $F \in SL(n, \mathbb{R})$ by $Fe_1 = c^{-1}e_1$, $Fe_2 = ce_2$, and $Fe_j = e_j$ if $j > 2$, we have $Fx = cx$ and $F^*\theta = c^{-1}\theta$. For the tensor product $w = \theta \otimes x \in sl(n, \mathbb{R})$, this gives $(ad F)w = FwF^{-1} = [(F^{-1})^*\theta] \otimes Fx = c^2\theta \otimes x = c^2w$ and hence $[(ad F)^*\rho](w, w) = c^4\rho(w, w)$. Consequently, the $ad G$ orbit of ρ is unbounded, as it has an unbounded image under the linear functional that sends $\sigma \in [g^*]^{\otimes 2}$ to $\sigma(w, w)$. □

To prove Theorem A, suppose that, on the contrary, $SL(n, \mathbb{R})$ admits a left-invariant Einstein metric with Einstein constant κ.

First, κ cannot be positive, as Myers’s theorem [5, pp. 606–607] would then imply compactness of $SL(n, \mathbb{R})$.

The case $\kappa = 0$ is in turn excluded by the result of Alekseevsky and Kimelfeld [2], who showed that a homogeneous Ricci-flat Riemannian manifold is necessarily flat. (According to Remark......, no left-invariant flat metric exists on $SL(n, \mathbb{R})$.)

Finally, if $\kappa < 0$, Corollary C contradicts Lemma 5.1.
REFERENCES

DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, COLUMBUS, OH 43210, USA

MATHEMATICAL INSTITUTE, WROCŁAW UNIVERSITY, PL. GRUNWALDZKI 2/4, 50-384 WROCŁAW, POLAND