That any linearly independent pair A, B in $\mathfrak{s l}(\Pi)$ with $[A, B]=A$ has the form (7.1) in some basis w, w^{\prime} of Π can be seen as follows. We have $A \in[\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}^{\perp}$, where $\mathfrak{g}=\operatorname{span}\{A, B\}$, and so A is \langle,$\rangle -null, that is, \operatorname{tr} A=\operatorname{det} A=0$. In a basis of Π containing an element of Ker A, the matrix representing A is therefore triangular, with zeros on the diagonal, so that $A^{2}=0$, while $A \neq 0$. Thus, $A(\Pi) \subset \operatorname{Ker} A$ and, as both spaces are one-dimensional, $A(\Pi)=\operatorname{Ker} A$. The relation $[A, B]=A$ implies in turn that $\operatorname{Ker} A$ is invariant under B, and so B has real characteristic roots. Since $\operatorname{tr} B=0$, the two roots must be nonzero, or else we would have Ker $B=\operatorname{Ker} A$ and, in a basis containing an element of $\operatorname{Ker} A$, the matrices of both A and B would be triangular, with zeros on the diagonal, contradicting the linear independence of A and B. Thus, B is diagonalizable, with some nonzero eigenvalues $\pm c$ such that $\operatorname{Ker} A=\operatorname{Ker}(B+c)$. Choosing a basis w, w^{\prime} of Π diagonalizing B with $w^{\prime} \in \operatorname{Ker} A$, we may rescale w so that $A w=w^{\prime}($ since $A(\Pi)=$ $A(\operatorname{Ker}(B-c))=\operatorname{Ker} A)$. Applying $[A, B]=A$ to w we now get $c=1 / 2$, which yields (7.1), proving (b).

Appendix B. Local Lie-group structures

In this appendix we state and prove Theorem B.1, a well-known result, included here to provide a convenient reference for the proof of Lemma 8.1(i).

Given a real/complex vector space \mathfrak{h} of sections of a real/complex vector bundle \mathcal{V} over a manifold Σ, we will say that \mathfrak{h} trivializes \mathcal{V} if, for every $y \in \Sigma$, the evaluation operator $\psi \mapsto \psi_{y}$ is an isomorphism $\mathfrak{h} \rightarrow \mathcal{V}_{y}$. This amounts to requiring that $\operatorname{dim} \mathfrak{h}$ coincide with the fibre dimension of \mathcal{V} and each $v \in \mathfrak{h}$ be either identically zero, or nonzero at every point of Σ. In other words, some (or any) basis of \mathfrak{h} should form a trivialization of \mathcal{V}.

Theorem B.1. Let a Lie algebra \mathfrak{h} of vector fields on a simply connected manifold Σ trivialize its tangent bundle $T \Sigma$, and let $\Psi: \mathfrak{h} \rightarrow \mathfrak{g}$ be any Lie-algebra isomorphism between \mathfrak{h} and the Lie algebra \mathfrak{g} of left-invariant vector fields on a Lie group G. Then there exists a mapping $F: \Sigma \rightarrow G$ such that every $v \in \mathfrak{h}$ is F-projectable onto Ψv. Any such mapping F is, locally, a diffeomorphism, and Ψ determines F uniquely up to compositions with left translations in G.
Proof. Given $(y, z) \in \Sigma \times G$, let $K_{y, z}: T_{y} \Sigma \rightarrow T_{(y, z)}(\Sigma \times G)=T_{y} \Sigma \times T_{z} G$ be the linear operator with $K_{y, z} u=\left(u,\left(\Psi u^{\prime}\right)_{z}\right)$ for $u^{\prime} \in \mathfrak{h}$ characterized by $u_{y}^{\prime}=$ $u \in T_{y} \Sigma$. Since Ψu^{\prime} is left-invariant, the formula $\mathcal{H}_{(y, z)}=K_{y, z}\left(T_{y} \Sigma\right)$ defines a vector subbundle of $T(\Sigma \times G)$, invariant under the left action of G on $\Sigma \times G$. Thus, \mathcal{H} is (the horizontal distribution of) a G-connection in the trivial G-principal bundle over Σ with the total space $\Sigma \times G$.

The distribution \mathcal{H} on $\Sigma \times G$ is integrable, that is, our G-connection is flat. In other words, the \mathcal{H}-horizontal lift operation $v \mapsto \tilde{v}$, applied to vector fields v, w on Σ is a Lie-algebra homomorphism. In fact, $\tilde{v}_{(y, z)}=\left(v_{y},\left(\Psi v^{\prime}\right)_{z}\right)$, with $v^{\prime} \in \mathfrak{h}$ such that $v_{y}^{\prime}=v_{y}$. Choosing in \mathfrak{h} a basis $e_{j}, j=1, \ldots, n$, we have $v=v^{j} e_{j}$,
$w=w^{j} e_{j},\left[e_{j}, e_{k}\right]=c_{j k}^{l} e_{l}$ and $\left[\Psi e_{j}, \Psi e_{k}\right]=c_{j k}^{l} \Psi e_{l}$ for some real numbers $c_{j k}^{l}$ and functions v^{j}, w^{j}. (The indices $j, k, l=1, \ldots, n$, if repeated, are summed over.) Thus, $\tilde{v}=\left(v, v^{j} \Psi e_{j}\right)$, that is, $\tilde{v}_{(y, z)}=\left(v_{y}, v^{j}(y)\left(\Psi e_{j}\right)_{z}\right)$, and similarly for w. Hence $[\tilde{v}, \tilde{w}]=\left([v, w],\left(d_{v} w^{l}-d_{w} v^{l}+v^{j} w^{k} c_{j k}^{l}\right) \Psi e_{l}\right)$, as required: namely, $[v, w]=$ $\left[v^{j} e_{j}, w^{k} e_{k}\right]=\left(d_{v} w^{l}-d_{w} v^{l}+v^{j} w^{k} c_{j k}^{l}\right) e_{l}$, and so $[v, w]^{l}=d_{v} w^{l}-d_{w} v^{l}+v^{j} w^{k} c_{j k}^{l}$.

Therefore, as Σ is simply connected, $\Sigma \times G$ is the disjoint union of the leaves of \mathcal{H}, and the projection $\pi: \Sigma \times G \rightarrow \Sigma$ maps each leaf N diffeomorphically onto Σ (cf. [12, Vol. I, Corollary 9.2 , p. 92]). On the other hand, one easily sees that a mapping F has the properties claimed in our assertion if and only if $d \Xi_{y}=K_{y, F(y)}$ for all $y \in \Sigma$, where $\Xi: \Sigma \rightarrow \Sigma \times G$ is given by $\Xi(y)=(y, F(y))$. Equivalently, Ξ is required to be an \mathcal{H}-horizontal section of the G-bundle $\Sigma \times G$, that is, the inverse diffeomorphism $\Sigma \rightarrow N$ of $\pi: N \rightarrow \Sigma$ for some leaf N of \mathcal{H}. The existence of F and its uniqueness up to left translations are now immediate, while such F is, locally, a diffeomorphism in view of the inverse maping theorem. This completes the proof.

Appendix C. Lagrangians and Hamiltonians

A more detailed exposition of the topics oulined here can be found in [16].
We use the same symbol \mathcal{V} for the total space of a vector bundle \mathcal{V} over a manifold Σ as for the bundle itself, identifying each fibre $\mathcal{V}_{y}, y \in \Sigma$, with the submanifold $\pi^{-1}(y)$ of \mathcal{V}, where $\pi: \mathcal{V} \rightarrow \Sigma$ is the bundle projection. (Thus, $T \Sigma$ and $T^{*} \Sigma$ are manifolds.) As a set, $\mathcal{V}=\left\{(y, \psi): y \in \Sigma, \psi \in \mathcal{V}_{y}\right\}$.

The identity mapping $\Pi \rightarrow \Pi$ in a real vector space Π with $\operatorname{dim} \Pi<\infty$, treated as a vector field on Π, is called the radial vector field on Π. On the total space \mathcal{V} of any vector bundle over a manifold Σ we have the radial vector field, denoted here by \mathbf{x}, which is vertical (tangent to the fibres) and, restricted to each fibre of \mathcal{V}, coincides with the radial field on the fibre.

By a Lagrangian $L: U \rightarrow \mathbf{R}$, or, respectively, a Hamiltonian $H: U_{*} \rightarrow \mathbf{R}$ in a manifold Σ one means a function on a nonempty open set $U \subset T \Sigma$ or $U_{*} \subset T \Sigma$. The Legendre mapping $U \rightarrow T^{*} \Sigma$, or $U_{*} \rightarrow T \Sigma$, associated with L or H, is defined by requiring that, for each $y \in \Sigma$, it send any $v \in U \cap T_{y} \Sigma$ or $\xi \in U_{*} \cap T_{y}^{*} \Sigma$ to the differential of $L: U \cap T_{y} \Sigma \rightarrow \mathbf{R}$ (or, of $H: U_{*} \cap T_{y} \Sigma \rightarrow \mathbf{R}$) at v (or at ξ), which is an element of $T_{v}^{*}\left(U \cap T_{y} \Sigma\right)=T_{y}^{*} \Sigma \subset T^{*} \Sigma$ or, respectively, of $T_{\xi}^{*}\left(U_{*} \cap T_{y}^{*} \Sigma\right)=T_{y} \Sigma \subset T \Sigma$. We call such a Lagrangian $L: U \rightarrow \mathbf{R}$ or Hamiltonian $H: U_{*} \rightarrow \mathbf{R}$ in Σ nonsingular if the associated Legendre mapping is a diffeomorphism $U \rightarrow U_{*}$, or $U \rightarrow U_{*}$ (then referred to as the Legendre transformation), for some open set $U_{*} \subset T^{*} \Sigma$ or, respectively, $U \subset T \Sigma$. Nonsingular Lagrangians L in Σ are in a natural bijective correspondence with nonsingular Hamiltonians H in Σ. Namely, if $L: U \rightarrow \mathbf{R}$ is nonsingular, we define $H: U \rightarrow \mathbf{R}$ by $H=d_{\mathbf{x}} L-L$, for the radial vector field \mathbf{x} mentioned above, and then use the Legendre transformation to identify U with U_{*}, so that H becomes a function $U_{*} \rightarrow \mathbf{R}$. A nonsingular Hamiltonian $H: U_{*} \rightarrow \mathbf{R}$ similarly gives rise to $L: U_{*} \rightarrow \mathbf{R}$ with $L=d_{\mathbf{x}} H-H$

