That any linearly independent pair A, B in $\mathfrak{sl}(\Pi)$ with [A, B] = A has the form (7.1) in some basis w, w' of Π can be seen as follows. We have $A \in [\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}^{\perp}$, where $\mathfrak{g} = \operatorname{span}\{A, B\}$, and so A is \langle , \rangle -null, that is, tr $A = \det A = 0$. In a basis of Π containing an element of Ker A, the matrix representing A is therefore triangular, with zeros on the diagonal, so that $A^2 = 0$, while $A \neq 0$. Thus, $A(\Pi) \subset \text{Ker } A$ and, as both spaces are one-dimensional, $A(\Pi) = \text{Ker } A$. The relation [A, B] = Aimplies in turn that Ker A is invariant under B, and so B has real characteristic roots. Since $\operatorname{tr} B = 0$, the two roots must be nonzero, or else we would have $\operatorname{Ker} B = \operatorname{Ker} A$ and, in a basis containing an element of $\operatorname{Ker} A$, the matrices of both A and B would be triangular, with zeros on the diagonal, contradicting the linear independence of A and B. Thus, B is diagonalizable, with some nonzero eigenvalues $\pm c$ such that Ker A = Ker(B + c). Choosing a basis w, w' of Π diagonalizing B with $w' \in \text{Ker } A$, we may rescale w so that Aw = w' (since $A(\Pi) =$ A(Ker(B-c)) = Ker A). Applying [A, B] = A to w we now get c = 1/2, which vields (7.1), proving (b). \square

Appendix B. Local Lie-group structures

In this appendix we state and prove Theorem B.1, a well-known result, included here to provide a convenient reference for the proof of Lemma 8.1(i).

Given a real/complex vector space \mathfrak{h} of sections of a real/complex vector bundle \mathcal{V} over a manifold Σ , we will say that \mathfrak{h} trivializes \mathcal{V} if, for every $y \in \Sigma$, the evaluation operator $\psi \mapsto \psi_y$ is an isomorphism $\mathfrak{h} \to \mathcal{V}_y$. This amounts to requiring that dim \mathfrak{h} coincide with the fibre dimension of \mathcal{V} and each $v \in \mathfrak{h}$ be either identically zero, or nonzero at every point of Σ . In other words, some (or any) basis of \mathfrak{h} should form a trivialization of \mathcal{V} .

Theorem B.1. Let a Lie algebra \mathfrak{h} of vector fields on a simply connected manifold Σ trivialize its tangent bundle $T\Sigma$, and let $\Psi : \mathfrak{h} \to \mathfrak{g}$ be any Lie-algebra isomorphism between \mathfrak{h} and the Lie algebra \mathfrak{g} of left-invariant vector fields on a Lie group G. Then there exists a mapping $F : \Sigma \to G$ such that every $v \in \mathfrak{h}$ is F-projectable onto Ψv . Any such mapping F is, locally, a diffeomorphism, and Ψ determines Funiquely up to compositions with left translations in G.

Proof. Given $(y, z) \in \Sigma \times G$, let $K_{y,z} : T_y \Sigma \to T_{(y,z)}(\Sigma \times G) = T_y \Sigma \times T_z G$ be the linear operator with $K_{y,z}u = (u, (\Psi u')_z)$ for $u' \in \mathfrak{h}$ characterized by $u'_y = u \in T_y \Sigma$. Since $\Psi u'$ is left-invariant, the formula $\mathcal{H}_{(y,z)} = K_{y,z}(T_y \Sigma)$ defines a vector subbundle of $T(\Sigma \times G)$, invariant under the left action of G on $\Sigma \times G$. Thus, \mathcal{H} is (the horizontal distribution of) a G-connection in the trivial G-principal bundle over Σ with the total space $\Sigma \times G$.

The distribution \mathcal{H} on $\Sigma \times G$ is integrable, that is, our *G*-connection is flat. In other words, the \mathcal{H} -horizontal lift operation $v \mapsto \tilde{v}$, applied to vector fields v, won Σ is a Lie-algebra homomorphism. In fact, $\tilde{v}_{(y,z)} = (v_y, (\Psi v')_z)$, with $v' \in \mathfrak{h}$ such that $v'_y = v_y$. Choosing in \mathfrak{h} a basis $e_j, j = 1, \ldots, n$, we have $v = v^j e_j$, $w = w^{j}e_{j}, [e_{j}, e_{k}] = c_{jk}^{l}e_{l} \text{ and } [\Psi e_{j}, \Psi e_{k}] = c_{jk}^{l}\Psi e_{l} \text{ for some real numbers } c_{jk}^{l}$ and functions v^{j}, w^{j} . (The indices j, k, l = 1, ..., n, if repeated, are summed over.) Thus, $\tilde{v} = (v, v^{j}\Psi e_{j})$, that is, $\tilde{v}_{(y,z)} = (v_{y}, v^{j}(y)(\Psi e_{j})_{z})$, and similarly for w. Hence $[\tilde{v}, \tilde{w}] = ([v, w], (d_{v}w^{l} - d_{w}v^{l} + v^{j}w^{k}c_{jk}^{l})\Psi e_{l})$, as required: namely, $[v, w] = [v^{j}e_{j}, w^{k}e_{k}] = (d_{v}w^{l} - d_{w}v^{l} + v^{j}w^{k}c_{jk}^{l})e_{l}$, and so $[v, w]^{l} = d_{v}w^{l} - d_{w}v^{l} + v^{j}w^{k}c_{jk}^{l}$.

Therefore, as Σ is simply connected, $\Sigma \times G$ is the disjoint union of the leaves of \mathcal{H} , and the projection $\pi : \Sigma \times G \to \Sigma$ maps each leaf N diffeomorphically onto Σ (cf. [12, Vol. I, Corollary 9.2, p. 92]). On the other hand, one easily sees that a mapping F has the properties claimed in our assertion if and only if $d\Xi_y = K_{y,F(y)}$ for all $y \in \Sigma$, where $\Xi : \Sigma \to \Sigma \times G$ is given by $\Xi(y) = (y, F(y))$. Equivalently, Ξ is required to be an \mathcal{H} -horizontal section of the G-bundle $\Sigma \times G$, that is, the inverse diffeomorphism $\Sigma \to N$ of $\pi : N \to \Sigma$ for some leaf N of \mathcal{H} . The existence of F and its uniqueness up to left translations are now immediate, while such F is, locally, a diffeomorphism in view of the inverse maping theorem. This completes the proof.

Appendix C. Lagrangians and Hamiltonians

A more detailed exposition of the topics oulined here can be found in [16].

We use the same symbol \mathcal{V} for the total space of a vector bundle \mathcal{V} over a manifold Σ as for the bundle itself, identifying each fibre $\mathcal{V}_y, y \in \Sigma$, with the submanifold $\pi^{-1}(y)$ of \mathcal{V} , where $\pi : \mathcal{V} \to \Sigma$ is the bundle projection. (Thus, $T\Sigma$ and $T^*\Sigma$ are manifolds.) As a set, $\mathcal{V} = \{(y, \psi) : y \in \Sigma, \psi \in \mathcal{V}_y\}$.

The identity mapping $\Pi \to \Pi$ in a real vector space Π with dim $\Pi < \infty$, treated as a vector field on Π , is called the *radial vector field* on Π . On the total space \mathcal{V} of any vector bundle over a manifold Σ we have the *radial vector field*, denoted here by \mathbf{x} , which is vertical (tangent to the fibres) and, restricted to each fibre of \mathcal{V} , coincides with the radial field on the fibre.

By a Lagrangian $L: U \to \mathbf{R}$, or, respectively, a Hamiltonian $H: U_* \to \mathbf{R}$ in a manifold Σ one means a function on a nonempty open set $U \subset T\Sigma$ or $U_* \subset T\Sigma$. The Legendre mapping $U \to T^*\Sigma$, or $U_* \to T\Sigma$, associated with L or H, is defined by requiring that, for each $y \in \Sigma$, it send any $v \in U \cap T_y\Sigma$ or $\xi \in U_* \cap T_y^*\Sigma$ to the differential of $L: U \cap T_y\Sigma \to \mathbf{R}$ (or, of $H: U_* \cap T_y\Sigma \to \mathbf{R}$) at v (or at ξ), which is an element of $T_v^*(U \cap T_y\Sigma) = T_y^*\Sigma \subset T^*\Sigma$ or, respectively, of $T_{\xi}^*(U_* \cap T_y^*\Sigma) = T_y\Sigma \subset T\Sigma$. We call such a Lagrangian $L: U \to \mathbf{R}$ or Hamiltonian $H: U_* \to \mathbf{R}$ in Σ nonsingular if the associated Legendre mapping is a diffeomorphism $U \to U_*$, or $U \to U_*$ (then referred to as the Legendre transformation), for some open set $U_* \subset T^*\Sigma$ or, respectively, $U \subset T\Sigma$. Nonsingular Lagrangians L in Σ are in a natural bijective correspondence with nonsingular Hamiltonians H in Σ . Namely, if $L: U \to \mathbf{R}$ is nonsingular, we define $H: U \to \mathbf{R}$ by $H = d_{\mathbf{x}}L - L$, for the radial vector field \mathbf{x} mentioned above, and then use the Legendre transformation to identify U with U_* , so that H becomes a function $U_* \to \mathbf{R}$. A nonsingular Hamiltonian $H: U_* \to \mathbf{R}$ similarly gives rise to $L: U_* \to \mathbf{R}$ with $L = d_{\mathbf{x}}H - H$