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That any linearly independent pair A,B in sl(Π) with [A,B ] = A has the
form (7.1) in some basis w,w′ of Π can be seen as follows. We have A ∈ [g, g] = g⊥,
where g = span{A,B}, and so A is 〈 , 〉-null, that is, trA = det A = 0. In a basis of
Π containing an element of Ker A, the matrix representing A is therefore triangular,
with zeros on the diagonal, so that A2 = 0, while A $= 0. Thus, A(Π) ⊂ Ker A
and, as both spaces are one-dimensional, A(Π) = Ker A. The relation [A,B ] = A
implies in turn that Ker A is invariant under B, and so B has real characteristic
roots. Since tr B = 0, the two roots must be nonzero, or else we would have
Ker B = Ker A and, in a basis containing an element of Ker A, the matrices of
both A and B would be triangular, with zeros on the diagonal, contradicting the
linear independence of A and B. Thus, B is diagonalizable, with some nonzero
eigenvalues ±c such that Ker A = Ker (B + c). Choosing a basis w,w′ of Π diag-
onalizing B with w′ ∈ Ker A, we may rescale w so that Aw = w′ (since A(Π) =
A(Ker (B − c)) = Ker A). Applying [A,B ] = A to w we now get c = 1/2, which
yields (7.1), proving (b). !

Appendix B. Local Lie-group structures

In this appendix we state and prove Theorem B.1, a well-known result, included
here to provide a convenient reference for the proof of Lemma 8.1(i).

Given a real/complex vector space h of sections of a real/complex vector
bundle V over a manifold Σ, we will say that h trivializes V if, for every y ∈ Σ,
the evaluation operator ψ '→ ψy is an isomorphism h → Vy. This amounts to
requiring that dim h coincide with the fibre dimension of V and each v ∈ h be
either identically zero, or nonzero at every point of Σ. In other words, some (or
any) basis of h should form a trivialization of V.

Theorem B.1. Let a Lie algebra h of vector fields on a simply connected manifold Σ
trivialize its tangent bundle TΣ, and let Ψ : h → g be any Lie-algebra isomorphism
between h and the Lie algebra g of left-invariant vector fields on a Lie group G.
Then there exists a mapping F : Σ → G such that every v ∈ h is F-projectable
onto Ψv. Any such mapping F is, locally, a diffeomorphism, and Ψ determines F
uniquely up to compositions with left translations in G.

Proof. Given (y, z) ∈ Σ × G, let Ky,z : TyΣ → T(y,z)(Σ × G) = TyΣ × TzG
be the linear operator with Ky,zu = (u, (Ψu′)z) for u′ ∈ h characterized by u′

y =
u ∈ TyΣ. Since Ψu′ is left-invariant, the formula H(y,z) = Ky,z(TyΣ) defines
a vector subbundle of T (Σ × G), invariant under the left action of G on Σ × G.
Thus, H is (the horizontal distribution of) a G-connection in the trivial G-principal
bundle over Σ with the total space Σ × G.

The distribution H on Σ × G is integrable, that is, our G-connection is flat.
In other words, the H-horizontal lift operation v '→ ṽ, applied to vector fields v, w
on Σ is a Lie-algebra homomorphism. In fact, ṽ(y,z) = (vy, (Ψv ′)z), with v′ ∈ h
such that v ′

y = vy. Choosing in h a basis ej , j = 1, . . . , n, we have v = v jej ,
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w = wjej , [ej , ek] = cl
jkel and [Ψej ,Ψek] = cl

jkΨel for some real numbers cl
jk

and functions v j , wj. (The indices j, k, l = 1, . . . , n, if repeated, are summed over.)
Thus, ṽ = (v, v jΨej), that is, ṽ(y,z) = (vy, v j(y)(Ψej)z), and similarly for w.
Hence [ṽ, w̃] = ([v, w], (dvwl − dwv l + v jwkcl

jk)Ψel), as required: namely, [v, w] =
[v jej , wkek] = (dvwl −dwv l + v jwkcl

jk)el, and so [v, w]l = dvwl −dwv l + v jwkcl
jk.

Therefore, as Σ is simply connected, Σ×G is the disjoint union of the leaves
of H, and the projection π : Σ ×G → Σ maps each leaf N diffeomorphically onto
Σ (cf. [12, Vol. I, Corollary 9.2, p. 92]). On the other hand, one easily sees that a
mapping F has the properties claimed in our assertion if and only if dΞy = Ky,F (y)

for all y ∈ Σ, where Ξ : Σ → Σ × G is given by Ξ(y) = (y, F (y)). Equivalently,
Ξ is required to be an H-horizontal section of the G-bundle Σ × G, that is, the
inverse diffeomorphism Σ → N of π : N → Σ for some leaf N of H. The existence
of F and its uniqueness up to left translations are now immediate, while such F is,
locally, a diffeomorphism in view of the inverse maping theorem. This completes
the proof. !

Appendix C. Lagrangians and Hamiltonians

A more detailed exposition of the topics oulined here can be found in [16].
We use the same symbol V for the total space of a vector bundle V over a

manifold Σ as for the bundle itself, identifying each fibre Vy, y ∈ Σ, with the
submanifold π−1(y) of V, where π : V → Σ is the bundle projection. (Thus, TΣ
and T ∗Σ are manifolds.) As a set, V = {(y,ψ) : y ∈ Σ, ψ ∈ Vy}.

The identity mapping Π → Π in a real vector space Π with dim Π < ∞,
treated as a vector field on Π, is called the radial vector field on Π. On the total
space V of any vector bundle over a manifold Σ we have the radial vector field,
denoted here by x, which is vertical (tangent to the fibres) and, restricted to each
fibre of V, coincides with the radial field on the fibre.

By a Lagrangian L : U → R, or, respectively, a Hamiltonian H : U∗ → R in
a manifold Σ one means a function on a nonempty open set U ⊂ TΣ or U∗ ⊂ TΣ.
The Legendre mapping U → T ∗Σ, or U∗ → TΣ, associated with L or H, is defined
by requiring that, for each y ∈ Σ, it send any v ∈ U ∩ TyΣ or ξ ∈ U∗ ∩ T ∗

yΣ
to the differential of L : U ∩ TyΣ → R (or, of H : U∗ ∩ TyΣ → R) at v (or
at ξ), which is an element of T ∗

v (U ∩ TyΣ) = T ∗
yΣ ⊂ T ∗Σ or, respectively, of

T ∗
ξ (U∗∩T ∗

yΣ) = TyΣ ⊂ TΣ. We call such a Lagrangian L : U → R or Hamiltonian
H : U∗ → R in Σ nonsingular if the associated Legendre mapping is a diffeomor-
phism U → U∗, or U → U∗ (then referred to as the Legendre transformation), for
some open set U∗ ⊂ T ∗Σ or, respectively, U ⊂ TΣ. Nonsingular Lagrangians L in
Σ are in a natural bijective correspondence with nonsingular Hamiltonians H in Σ.
Namely, if L : U → R is nonsingular, we define H : U → R by H = dxL−L, for the
radial vector field x mentioned above, and then use the Legendre transformation
to identify U with U∗, so that H becomes a function U∗ → R. A nonsingular
Hamiltonian H : U∗ → R similarly gives rise to L : U∗ → R with L = dxH − H


