
Harmonic-curvature warped products over surfaces

Andrzej Derdzinski and Paolo Piccione

Abstract. For warped products with harmonic curvature, nonconstant warp-
ing functions φ, and compact two-dimensional bases (M,h), we establish a di-

chotomy: either the Gaussian curvature K of the metric g = φ−2h is constant
and negative, or φ equals a specific elementary function of K, also depending

on the dimension p and Einstein constant ε of the fibre. In both cases the

fibre must be an Einstein manifold with p > 1 and ε > 0, while the func-
tion f = φp/2 satisfies a Yamabe-type second-order differential equation on

(M, g). We prove that both possibilities are realized on every closed orientable

surface of genus greater than 1, and in the latter case – which also occurs
on the 2-sphere and real projective plane – the metrics in question constitute

uncountably many distinct homothety types.

Introduction

One says that a Riemannian manifold with the curvature tensor R has har-
monic curvature [4, Sect. 16.33] if divR = 0 or, in local coordinates, Rijl

k
,k = 0.

This condition amounts to the Codazzi equation (1.3) imposed on the Ricci tensor,
and it implies constancy of the scalar curvature [4, Sect. 16.4(ii)]. A compact Rie-
mannian manifold has harmonic curvature if and only if its Levi-Civita connection
is a critical point of its Yang-Mills functional [4, Sect. 16.34].

The known examples of Riemannian manifolds with harmonic curvature include
five non-disjoint classes, consisting of: Einstein manifolds, conformally flat man-
ifolds of constant scalar curvature, locally reducible manifolds having divR = 0,
certain nontrivial warped products of dimensions n > 4 with Einstein fibres and
one-dimensional or hyperbolic bases, and some four-manifolds that are, locally or
globally, nontrivial warped products of surfaces. See [4, Sect. 16.34, 16.40], [9,
Sect. 4]. Every known compact example belongs to one of these five classes.

In the construction of the last two classes of the preceding paragraph, except
for the case of hyperbolic bases, the (local) warped-product structure, rather than
being an Ansatz, follows from a purely geometric assumption, namely, that a certain
tensor field B should have no more than two distinct eigenvalues at each point.
Specifically, in the fourth (or, fifth) class, B is the Ricci tensor [4, Sect. 16.38]
or, respectively, the self-dual Weyl tensor acting on self-dual bivectors [9, p. 145].
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Warped products with harmonic curvature were studied by Kim, Cho and Hwang
[15], and there are interesting results on Einstein warped products [14, 16].

It is therefore natural to consider the following problem.

Question 0.1. Which compact warped-product Riemannian manifolds of di-
mensions greater than 3 have harmonic curvature, without belonging to the first
three classes italicized above?

Question 0.1 remains open in general, and its complexity clearly increases with
the dimension m of the base. For m = 1 the answer is well known [7, Lemma
1(ii) and Theorem 1]. The present paper deals with the case m = 2.

We begin by proving a dichotomy result (Theorem 3.1): if a warped product
has harmonic curvature, a compact-surface base (M,h), and a nonconstant warping
function φ, while K denotes the Gaussian curvature of the conformally-related
metric g = φ−2h on M, then

(0.1)
the fibre must be an Einstein manifold of some
dimension p > 1 with an Einstein constant ε > 0

(for compact bases of all dimensions; see Remark 2.2), the function f = φ p/2

satisfies a Yamabe-type second-order differential equation (6.2.iii) on (M, g), and

(0.2)
either K is the negative constant −ε/(p − 1), or φ equals a positive
constant times |(p − 1)K+ ε|1/(1−p), with K (necessarily) nonconstant.

Conversely, these conditions imply harmonic curvature for the warped product.
Theorem 3.1 is a the first step toward answering Question 0.1 for m = 2, and

the two cases of (0.2) amount to two very different problems.
The first one concerns finding, for p, ε fixed as in (0.1), nonconstant positive

solutions f to the quasilinear elliptic equation

(0.3) ∆f − af = −cf 1+4/p with constants a = p(p − 2)ε/[4(p − 1)] and c > 0

on a given closed surface of negative constant Gaussian curvature K= −ε/(p−1).
(This is equation (6.2.iii), with r = 0 < c due to (6.3) – (6.4.i).) Yamabe [22] has
shown – cf. Lemma 13.1 below – that such f exist, on any compact Riemannian
surface, if the parameters a, p satisfy a specific inequality, which here reads

(0.4) p > 2 − λ1/K.

As we point out in Remark 1.10, a result of Schoen, Wolpert and Yau [19] yields

(0.5) λ1 < 2|K|
whenever the metric of constant curvature K< 0, on any closed orientable surface
of genus g > 1, is confined to a suitable nonempty open subset of the Teichmüller
space; (0.5) gives (0.4) for all p ≥ 4, and the fibre dimensions p ≥ 4 are the only
ones of interest for the “constant K case” of Question 0.1 (see Remark 3.5).

Consequently, the first possibility in (0.2) is realized, with warped products of
all relevant fibre dimensions, by a Teichmüller-open nonempty set of metrics of
constant curvatures K< 0, on closed orientable surfaces of all genera g > 1.

In the remaining, second case of (0.2) we look for metrics g on compact sur-
faces M having nonconstant Gaussian curvatures K such that there exist positive
constants ε, µ ∈ IR with (p − 1)K+ ε 6= 0 everywhere in M and

(0.6)
2(p+ 1)[(p − 1)K+ ε]∆K − (3p − 2)(p+ 1)g(∇K,∇K)]

= µ|(p − 1)K+ ε|2(p−2)/(p−1) − (2K+ pε)[(p − 1)K+ ε]2.
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(Equation (0.6), that is, (3.3), requires a normalization of the warping function,
described in Section 3.) Let us emphasize that the existence of ε, µ ∈ (0,∞)
for which (0.6) holds and |(p − 1)K+ ε| > 0 on M is a property of the metric
g alone. Using a bifurcation argument, we prove, in Section 12, that metrics g
with this property exist for M diffeomorphic to S2, IRP2 or any closed orientable
surface of genus greater than 1. More precisely, curves of such metrics, emanating
from a given metric ĝ of (nonzero) constant Gaussian curvature K̂ on M, are

naturally associated with certain positive eigenvalues λ of −∆̂, for the Laplaci-
an ∆̂ of ĝ. Each of the curves in question, which we call λ-branches, consists of
metrics representing uncountably many distinct homothety types and, if λ′ 6= λ, a
metric from the λ-branch, close to ĝ, cannot be homothetic to any metric near ĝ
belonging to the λ′-branch. Here are some further details.

If K̂ > 0, the eigenvalues λ > 0 that give rise to λ-branches may be completely
arbitrary (on IRP2), or even-numbered and otherwise arbitrary (on S2). For K̂ < 0
(that is, on any closed orientable surface of genus greater than 1) these λ have to be

simple and different from (p − 2)|K̂|, and so, according to the theorem of Schoen,
Wolpert and Yau [19] mentioned in Remark 1.10, constant-curvature metrics ĝ
admitting such eigenvalues λ fill a nonempty open subset of the Teichmüller space.

As a result, warped products of all fibre dimensions p > 1 realize the second
case of (0.2) with M = S2, or M = IRP2, or M closed, orientable and of any
genus greater than 1, while – in the last case – the conformal types of the metrics
g form a nonempty Teichmüller-open set.

Two subcases of the second case of (0.2) need commenting on. One, charac-
terized by p = 2, has already been settled in [9]. The other, in which M = T 2, is
still an open problem, even though one can easily provide examples of nontrivial
compact warped products with harmonic curvature and bases diffeomorphic to T 2

that are neither Einstein nor conformally flat: namely, Riemannian products of S1

and suitably chosen harmonic-curvature warped-product manifolds having the base
S1, classified in [7, Lemma 1(ii) and Theorem 1]. However, being reducible, such
examples do not lie within the scope of Question 0.1.

1. Notations and preliminaries

Manifolds (always assumed connected), mappings and tensor fields, includ-
ing Riemannian metrics and functions, are by definition of class C∞, except in
Sections 10 – 11 where, for technical reasons, we require that, rather than being
smooth, they should belong to suitable L2 Sobolev spaces. Given a Riemannian
metric g, we let ∇ stand for the Levi-Civita connection of g as well as the g-gradi-
ent, and ∆,Ric,div,K for the g-Laplacian, the Ricci tensor of g, the g-divergence
and, in the case of a surface metric g, its Gaussian curvature. When a metric is
denoted by h, the analogous symbols will be D,∆h,Rich,divh and Kh.

One calls a function β on Riemannian manifold (M, g) isoparametric [21] if
∆β and g(∇β,∇β) are functions of β. It is well-known that, when dimM = 2,
the existence of nonconstant isoparametric functions amounts (locally, at generic
points) to “rotational symmetry.” More precisely, for β : M → IR and a Killing
field v with dvβ = 0 and ∇β 6= 0 6= v everywhere, β must be isoparametric
since the flow of v leaves ∆β and g(∇β,∇β) invariant as well. Conversely, on
an oriented Riemannian surface (M, g), isoparametricity of a function β without
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critical points leads to an explicit construction of a Killing field v without zeros,
orthogonal to ∇β. See, e.g., [9, Lemma 7], or formula (1.6.ii) below.

Here is another well-known fact, cf. [11, Remark 2.5] or the end of this section:

(1.1)
any Killing vector field defined on a nonempty connected open
subset of a simply connected, real analytic, Riemannian mani
fold (M,h), can be uniquely extended to a Killing field on M.

Lemma 1.1. Let a compact real-analytic Riemannian surface (M,h) have non-
constant Gaussian curvature Kh and nonzero Euler characteristic χ(M). Any
h-Killing vector field v defined on a nonempty connected open set U ⊆ M has
a unique extension to an h-Killing field on M, provided that, if necessary, one
replaces (M,h) by a two-fold isometric covering thereof, and U by a connected
component of the pre-image of U under the covering projection.

Proof. Assuming v to be nontrivial and denoting by (M′, h′) the Riemannian
universal covering of (M,h), we see that v gives rise to a h′-Killing field v′ on a
suitable (connected) open submanifold U ′ of M, and (1.1) allows us to treat v′

as defined on all of M ′. Then, push-forwards of v′ under deck transformations
are constant multiples of v′ (or else Kh would be constant), and v′ has zeros (or
else it would span a tangent-direction field on M ′, descending to M, even though
χ(M) 6= 0). As the flow of v′ is periodic due to its obvious periodicity on a
neighborhood of a zero of v′, the push-forwards of v′ under deck transformations,
having the same flow period as v′ itself, must all equal ±v′. �

For any function β on a Riemannian manifold (M, g) one clearly has

(1.2) 2[∇dβ](v, · ) = dQ, where v = ∇β and Q = g(∇β,∇β).

Suppose now that we are given a 1-form ξ and a twice-covariant symmetric tensor
field b on a Riemannian manifold (M,h). Treating b as a 1-form valued in 1-
forms, we define the exterior product ξ ∧ b and the exterior derivative db to
be the 2-forms valued in 1-forms with the local-coordinate expressions [ξ ∧ b]qrs =

ξqbrs−ξrbqs and [db]qrs = brs,q−bqs,r or, in coordinate-free notation, [ξ∧b](u, v) =

ξ(u)b(v, · ) − ξ(v)b(u, · ) and [db](u, v) = (Dub)(v, · ) − (Dvb)(u, · ) for tangent
vector fields u, v and the Levi-Civita connection D of h. Then, cf. [4, Sect. 16.3],

(1.3) db = 0 if and only if b is a Codazzi tensor on (M,h)

while, for any functions f, φ : M → IR, with dimM = 2 in (1.4.b) – (1.4.c),

(1.4)
a) d[fb] = fdb + df∧ b, b) d[Ddφ] = −Khdφ ∧ h,
c) Khdφ = divh[Ddφ] − d∆hφ.

Namely, (1.4.b) amounts to the Ricci identity for dφ expressed in terms of the
Gaussian curvature Kh, that is, the two-dimensional case of the general formula
d∇ξ = ξR (in coordinates: ξs,jq − ξs,qj = Rqjs

pξp), applied here to ξ = dφ, and
valid for any 1-form ξ on a manifold with a torsion-free connection ∇ having the
curvature tensor R. (The exterior derivative db of b = ∇ξ is defined, as above,
by [db]qrs = brs,q− bqs,r, but this time the twice-covariant tensor field b need not
be symmetric.) Contracting (1.4.b), one gets the Bochner identity (1.4.c).

Lemma 1.2. Let J and α be the complex-structure tensor and the area 2-form
of an oriented two-dimensional Riemannian manifold (M,h), with the convention
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that αqr = Jsqhsr or, equivalently, α = h(J · , · ). Any 1-form ξ and twice-covari-
ant symmetric tensor field b on M then satisfy the relation

J∗(ξ ∧ b) = α ⊗ [(trhb)ξ − b(v, · )], for v characterized by ξ = h(v, · ),
the local-coordinate version of which reads (ξqbrs − ξrbqs)Jsi = (bss ξi − bsi ξs)αqr.
Two special cases arise when b = h or, respectively, ξ = dφ and b = Ddφ with
a function φ : M → IR. Namely, if D denotes both the Levi-Civita connection of
(M,h) and the h-gradient, ∆h is the h-Laplacian, and H = h(Dφ,Dφ) : M → IR,

(1.5) J∗(ξ ∧ h) = α ⊗ ξ, J∗(dφ ∧Ddφ) = α ⊗ [(∆hφ)dφ− dH/2].

Proof. Being skew-symmetric in q, r, the expression ξqbrs− ξrbqs must equal

ρsαqr, for some 1-form ρ. Contracting this equality against hrs we obtain bss ξi −
bsi ξs = αirw

r = Jsi hsrw
r = Jsi ρs, with the vector field w given by ρ = h(w, · ),

which proves our formula for J∗(ξ ∧ b), and (1.5) now follows from (1.2). �

Given a Riemannian surface (M, g) and β, σ, ζ : M → IR such that σ and ζ
are functions of β, while ∆β = σ and g(∇β,∇β) = 2ζ, one has

(1.6)
i) 2ζ∇dβ = 2(σ − ζ ′)ζg + (2ζ ′− σ) dβ⊗dβ, with ζ ′ = dζ/dβ,

ii) if the surface (M, g) is oriented, then eκJv is a g Killing field,

for v = ∇β and J as in Lemma 1.2. Here (1.6.ii) holds on the open set U on
which dβ 6= 0, the function κ of β being any antiderivative of (σ − 2ζ ′)/(2ζ),
defined away from zeros of ζ. Namely, both sides of (1.6.i) are symmetric, have
the same g-trace, and agree, when evaluated on ∇β, as a consequence of (1.2),
which yields (1.6.i) both on our open set U, and in the interior of the zero set
of dβ, while the union of the two sets is dense. To obtain (1.6.ii), note that
2ζ e−κ∇(eκJv) = 2(σ−ζ ′)ζJ in view of the relations 2ζ dκ⊗Jv = (σ−2ζ ′) dβ⊗Jv
and 2ζJ∇v = 2(σ− ζ ′)ζJ + (2ζ ′− σ) dβ⊗ Jv due, respectively, to our choice of κ,
and to (1.6.i) rewritten as 2ζ∇v = 2(σ − ζ ′)ζ + (2ζ ′− σ) dβ⊗ v, where 2(σ − ζ ′)ζ
stands for 2(σ − ζ ′)ζ times the identity.

Lemma 1.3. For a Riemannian surface (M, g) with the Gaussian curvature K,

(i) whenever ψ, ν : M → IR are functions with ∇dK = ψg+ν dK⊗ dK, one
necessarily has (K− ψν) dK+ dψ = g(∇K,∇ν) dK− g(∇K,∇K) dν,

(ii) if functions Σ,Z defined on an interval containing the range of K satisfy
the relations ∆K = Σ(K) and g(∇K,∇K) = 2Z(K), then

(1.7) (2Z ′−Σ)(Z ′−Σ) = 2(Z ′′− Σ′ − K)Z, where ( )′ = d/dK.

Proof. In (i), ∆K = 2ψ + νg(∇K,∇K), and our claim immediately follows
from (1.4.c) for h = g and φ = K, combined with (1.2). Under the hypotheses of
(ii), we may apply (1.6.i), at points with dβ 6= 0, to (β, σ, ζ) = (K,Σ,Z), obtaining
the assumption of (i) for ψ = Σ−Z ′ and ν = (Z ′−Σ/2)/Z. The conclusion of (i)
now reads (K − ψν) dK + dψ = 0, since ν is a function of K, and it easily gives
(1.7) wherever Z 6= 0. Thus, (1.7) holds on the whole interval in question, due to
a dense-union argument analogous to the one following (1.6); note that Σ = 0 on
every open interval on which Z = 0. �

Remark 1.4. The scalar curvatures s, sh and Laplacians ∆,∆h of conformally
related Riemannian metrics g and h = g/τι2 in dimension m are given by

(1.8) sh = τι2s + 2(m− 1)τι∆τι −m(m− 1)g(v, v), ∆h = τι2∆− (m− 2)τιdv ,
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where v = ∇τι is the g-gradient of τι. Cf. [4, Theorem 1.159]. For m = 2, this
becomes Kh = τι2K+ τι∆τι − g(v, v) and ∆h = τι2∆, with s = 2K and sh = 2Kh

expressed in terms of the Gaussian curvatures K,Kh of g and h.

Remark 1.5. Under the assumptions of Remark 1.4, if τι assumes its extremum
values τιmax, τιmin, while s, sh are both constant and s < 0 < τι, then τι is constant
and sh < 0. This well-known conclusion follows since, by (1.8), τι2max ≤ sh/s ≤ τι2min.

Remark 1.6. The existence of a nontrivial h-Killing vector field v, for a Rie-
mannian metric h on a compact surface M, precludes negativity of the Gaussian
curvature K of any metric g on M. In fact, passing to a two-fold covering, if
necessary, we may assume M oriented, which turns h into a Kähler metric on a
compact complex curve of some genus g, admitting a nontrivial real-holomorphic
vector field v (so that g ≤ 1), while the condition K< 0 would give g > 1.

Remark 1.7. A Riemannian product with factors of dimensions n and n′ is
conformally flat if and only if both factors have constant sectional curvatures K,K ′

and (n−1)(n′−1)(K+K ′) = 0. See [23, Section 5], as well as [4, subsection 1.167].

Remark 1.8. Let ∆f = Ω(f) for a function f on a compact Riemannian
manifold and a function Ω on an interval containing the range of f. If Ω is strictly
increasing or constant, then f must be constant, since Ω(fmax) ≤ 0 ≤ Ω(fmin).

Remark 1.9. Let λj be the jth eigenvalue of −∆̂, for the Laplacian ∆̂ of the

2-sphere (or, projective plane) of constant Gaussian curvature K̂, with

(1.9) λ0 < λ1 < λ2 < . . . .

Then λj = j(j + 1)K̂ (or, λj = 2j(2j + 1)K̂). The spectrum of −∆̂ acting on
rotationally invariant functions is the same, but with one-dimensional eigenspaces,
spanned by the zonal spherical harmonics [24, Sect. 2.3].

Remark 1.10. On every closed orientable surface M of genus greater than 1
there exist metrics g having constant Gaussian curvature K< 0 and an arbitrarily
large number of eigenvalues of −∆ in (|K|/4, t+ |K|/4], for any t ∈ (0,∞), where
∆ is the Laplacian; all such metrics obviously satisfy (0.5). See [5, p. 211, Theorem
8.12], [6, p. 251, Theorem 2]. Also, M then admits a sequence of metrics g with
K = −1 for which the lowest positive eigenvalue λ1 of −∆ tends to 0 and has
multiplicity 1. This follows from a result of Schoen, Wolpert and Yau [19, three
final lines of the first paragraph on p. 279], applied to n = 1.

Finally, (1.1) follows since one can treat Killing fields as sections of a certain
vector bundle, parallel relative to a natural connection. This is why the same con-
clusion holds, more generally, both for conformal vector fields in the pseudo-Riem-
annian case, and for infinitesimal affine transformations on a manifold with a con-
nection, cf. [10, lines following Lemma 9.1], [12, text surrounding formula (1.5)].

2. Warped products and harmonic curvature

Given Riemannian manifolds (M,h), (Π, η) of positive dimensions m, p and
a nonconstant function φ : M → (0,∞), consider the nontrivial warped product

(2.1) (M × Π, h+φ2η)



HARMONIC-CURVATURE WARPED PRODUCTS OVER SURFACES 7

with the base (M,h), fibre (Π, η) and warping function φ. (The word ‘nontrivial’
refers to nonconstancy of φ, and the same symbols h, η, φ represent the pullbacks
of h, η, φ to the product M ×Π.) The warped-product metric of (2.1) is obviously
conformal to a product metric: h + φ2η = φ2 [g + η ], where g = φ−2h. As one
easily verifies [11, Lemma 1.2], cf. also [15], the (nontrivial) warped product (2.1)
has harmonic curvature if and only if there exists a constant ε ∈ IR such that

(i) Rich− pφ−1Ddφ is a Codazzi tensor on (M,h),

(ii) divh(φp−2Ddφ) = [(p − 1)Λ− ε]φp−4dφ, where Λ = h(Dφ,Dφ),
(iii) (Π, η) is an Einstein manifold with the Einstein constant ε,

Rich and divh being the Ricci tensor of h and the h-divergence, and D denoting
both the Levi-Civita connection of (M,h) and the h-gradient.

Let us point out that, except for notations, (iii) and (i) are precisely (a)–(b)
in [11, Lemma 1.2], while (ii), with Λ = h(Dφ,Dφ), is equivalent to the condition

(2.2) φ3divh(φ−1Ddφ) = [(p − 1)Λ− ε] dφ+ (1− p)φdΛ/2
of [11, Lemma 1.2(c)], as one sees differentiating by parts, and also to the equality

(2.3) φ2[Rich(Dφ, · )+d∆hφ] = [(p−1)h(Dφ,Dφ)−ε] dφ+(1−p/2)φd[h(Dφ,Dφ)],

where ∆h denotes the h-Laplacian. See [11, Lemma 1.2(e)].
Using, for instance, the components of the Ricci tensor of h + φ2η evaluated

in [11, the Appendix], and noting that, if Λ = h(Dφ,Dφ),

(2.4) 2φ−1∆hφ + (p − 1)φ−2Λ = 4(p+ 1)−1φ−(p+1)/2∆hφ(p+1)/2 ,

we express the (necessarily constant) scalar curvature µ of h+φ2η as follows:

(2.5) sh + p[εφ−2− 4(p+ 1)−1φ−(p+1)/2∆hφ(p+1)/2] = µ ∈ IR.

Constancy of the scalar curvature µ is a general property of every metric with
harmonic curvature [4, Sect. 16.4(ii)]. Here we can also derive it from (i) and

(2.3): any h-Codazzi tensor b obviously has divhb = d(trhb) which, in the case

of b = Rich− pφ−1Ddφ amounts to −2pdivh(φ−1Ddφ) = d[sh− 2pφ−1∆hφ], where
we have used the Bianchi identity for the Ricci tensor [4, Proposition 1.94]. At the

same time, (2.2) states that −2pdivh(φ−1Ddφ) equals p times the differential of
[(p − 1)h(Dφ,Dφ)− ε]φ−2. Subtracting these two equalities one gets

(2.6) constancy of sh− 2pφ−1∆hφ− p[(p − 1)h(Dφ,Dφ)− ε]φ−2,
that is, by (2.4) – (2.5), of µ. Next, for a warped product (2.1) with divR = 0,

(2.7) the base metric h is real analytic in suitable local coordinates.

In other words, the C∞-manifold structure of the base M contains a unique real-an-
alytic structure making h analytic. Namely, as shown by DeTurck and Goldschmidt
[13], the analog of (2.7) holds for harmonic-curvature metrics, while the base (M,h)
is isometric to a totally geodesic submanifold of the warped product (2.1).

Remark 2.1. If dimM = 2, condition (i) amounts to (dKh + pKhφ−1dφ) ∧ h
+pφ−2dφ∧Ddφ = 0, as one sees using (1.3) and (1.4.a) for the pair (f, b) equal to

(Kh, h) or (φ−1, Ddφ), with Rich = Khh, followed by (1.4.b).

Remark 2.2. Any nontrivial warped product (2.1) with a compact base (M,h)
and harmonic curvature has p = dimΠ ≥ 2, as the Einstein constant ε of the fibre
(Π, η) must be positive [11, Theorem 1.4]: the h-inner product of the left-hand side
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of (ii) with the h-gradient Dφ obviously differs by an h-divergence from −φp−2
times the h-norm squared of Ddφ while, with Λ = h(Dφ,Dφ), the analogous inner
product for the right-hand side equals [(p − 1)Λ− ε]Λφp−4.

Remark 2.3. The case of a one-dimensional fibre (p = 1), for nontrivial warped
products with harmonic curvature, is of very limited interest: it precludes compact-
ness of the base (Remark 2.2) and, for two-dimensional bases – the main focus of this
paper – the resulting three-manifolds (2.1) are conformally flat [4, Sect. 16.4(e)].

3. Warped products with two-dimensional bases

Recall that the warped-product metric in (2.1) is conformal to a product metric:

(3.1) h+φ2η = [g + η ]/τι2, where g = φ−2h and τι = 1/φ.

The question of which nontrivial warped products (2.1) with two-dimensional bases
have harmonic curvature may obviously be rephrased in terms of the surface metric
g = φ−2h and the function τι = 1/φ. Remark 2.3 and condition (iii) of Section 2
allow us to assume that the fibre (Π, η) is an Einstein manifold of dimension p ≥ 2
with some Einstein constant ε. In Section 4 we prove the following result.

Theorem 3.1. Given a Riemannian surface (M, g), a nonconstant function
τι : M → (0,∞), and an Einstein manifold (Π, η) of dimension p ≥ 2 with the
Einstein constant ε, the warped-product metric [g+η ]/τι2 on M×Π has harmonic
curvature if and only if the Gaussian curvature K of g satisfies the equation

(3.2) (2K+ pε)τι2 + 2(p+ 1)τι∆τι − (p+ 1)(p+ 2)g(∇τι,∇τι) = µ

for a constant µ ∈ IR, and one of the following two conditions occurs.

(a) K is constant, and equal to −ε/(p − 1),
(b) K is nonconstant, (p − 1)K+ ε 6= 0 everywhere in M, and τι equals a

positive constant times |(p − 1)K+ ε|1/(p−1).
The constant µ in (3.2) then coincides with the scalar curvature of [g + η ]/τι2.

The positive constant mentioned of Theorem 3.1(b) may always be assumed
equal to 1 by simultaneously rescaling τι and µ, so that (3.2) still holds. The
resulting normalized version of case (b) in Theorem 3.1 amounts to a condition
imposed on K alone, with no reference to τι at all. Explicitly, it reads

(3.3) (p+ 1)[2ω∆K − (3p − 2)g(∇K,∇K)] = µ|ω|2(p−2)/(p−1) − (2K+ pε)ω2

for ω = (p − 1)K+ ε, with constants ε, µ ∈ IR, where K is the (nonconstant)
Gaussian curvature of the Riemannian surface (M, g), and ω 6= 0 everywhere.

Theorem 3.2. Under the assumptions stated in the preceding three lines, if M
is compact, ε and µ are uniquely determined by g and p.

Theorem 3.2, which will be proved in Section 5, has an obvious consequence:
the product εA, for A = area(M, g), is a homothety invariant of g. Note that
multiplying g by z ∈ (0,∞) causes the quintuple (A,K, ε, ω, µ) to be replaced
with (zA, z−1K, z−1ε, z−1ω, z(1+p)/(1−p)µ).

Remark 3.3. Another homothety invariant, naturally associated with any non-
flat compact Riemannian surface having the Gaussian curvature K, is the point
[Kmax :Kmin] of the real projective line IRP1, where [ : ] are the homogeneous
coordinates. Clearly, K is constant if and only if [Kmax : Kmin] = [1:1].
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Remark 3.4. Whenever the hypotheses of Theorem 3.1 are satisfied, along
with (3.2) for a constant µ, and one of conditions (a) – (b) holds, compactness of
M implies positivity of both ε and µ. See Remarks 2.2 and 6.2.

Remark 3.5. In the context of Question 0.1, case (a) of Theorem 3.1 is of
interest only for p ≥ 4, since an Einstein manifold (Π, η) of dimension p ∈ {2, 3}
with the Einstein constant ε has constant sectional curvature ε/(p−1). According
to Remark 1.7, this implies conformal flatness of the harmonic-curvature metric
[g + η ]/τι2 (while, in case (b), [g + η ]/τι2 is never conformally flat).

4. Proof of Theorem 3.1

Due to (3.1), [g + η ]/τι2 has harmonic curvature if and only if (M,h) satisfies
(i) and (ii) in Section 2 or, equivalently, (i) and (2.3). This further amounts to

(4.1)
a) φ2dKh + p[Khφdφ+ (∆hφ)dφ− dΛ/2] = 0,
b) φ2(Khdφ+ d∆hφ) − [(p − 1)Λ− ε] dφ − (1− p/2)φdΛ = 0,

with Λ = h(Dφ,Dφ), and Kh denoting the Gaussian curvature of h. Namely,

Rich = Khh, so that (2.3) becomes (4.1.b), while Remark 2.1 and (1.5) easily yield
the equivalence between (i) and (4.1.a).

As a consequence of (4.1), we obtain the relation (2.6), which now reads

(4.2) 2Kh + p[εφ−2− 2φ−1∆hφ− (p − 1)φ−2Λ] = µ for some µ ∈ IR.

Explicitly, subtracting (4.1.b) multiplied by 2pφ−3 from 2φ−2 times (4.1.a), we see
that d{. . .} = 0, with {. . .} denoting the left-hand side in (4.2). The system (4.1)
is thus equivalent to one consisting of (4.1.a) and (4.2), namely

(4.3)
i) φ2dKh + p[Khφdφ+ (∆hφ)dφ− dΛ/2] = 0,
ii) 2Kh + p[εφ−2 − 2φ−1∆hφ − (p − 1)φ−2Λ] is constant.

Let us now rewrite (4.3) in terms of the conformally related metric g = φ−2h and
the function τι = 1/φ on M, using the symbols K,∇,∆ for the Gaussian curvature
of g, the g-gradient, and the g-Laplacian, as well as setting Q = g(∇τι,∇τι) and
Y = ∆τι. Since Λ= Q/τι2 and ∆(1/τι) = (2Q− τιY )/τι3, Remark 1.4 yields

(4.4)
a) τι3dK+ τι2dY − (1 + p/2)τιdQ+ [(2− p)Kτι + Y ]τι dτι = 0,
b) (2K+ pε)τι2 + 2(p+ 1)τιY − (p+ 1)(p+ 2)Q is constant.

Finally, we may replace (4.4) with the (obviously equivalent) system consisting of
(4.4.b) and the equality 2p(p − 1)−1τιp+2d{τι1−p[(p − 1)K+ ε]} = 0 obtained by
applying d to (4.4.b), multiplying the result by τι, and then subtracting it from
2(p+ 1) times (4.4.a). This proves Theorem 3.1, with the cases (a), (b) depending
on whether the constant τι1−p[(p − 1)K+ ε] is or is not equal to 0.

5. Proof of Theorem 3.2

We assume that p > 2, as the case p = 2 is already settled in [9, Remark 4].
It suffices to establish uniqueness of ε, since (3.3) provides an expression for

µ in terms of ε and geometric invariants of g. Suppose that, on the contrary, in
addition to (3.3) with ω = (p − 1)K+ ε one also has

(p+ 1)[2ω̃∆K − (3p − 2)g(∇K,∇K)] = µ̃|ω̃|2(p−2)/(p−1) − (2K+ pε̃)ω̃2

for ω̃ = (p − 1)K+ ε̃ and constants ε̃, µ̃, while ε̃ < ε and ωω̃ 6= 0 everywhere,
cf. the lines following (3.3). As ω − ω̃ = ε − ε̃, subtracting the last equality (or,
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ω times it) from (3.3) or, respectively, from ω̃ times (3.3), one gets ∆K = Σ(K)
and g(∇K,∇K) = 2Z(K) with the functions Σ and Z of the variable K given by

(5.1)

i) 2(p+ 1)(ε− ε̃)Σ(K) = ω̃2Θ̃ − ω2Θ,

ii) 2(p+ 1)(3p − 2)(ε− ε̃)Z(K) = ωω̃ [ω̃Θ̃ − ωΘ], for
iii) ω = (p − 1)K+ ε, ω̃ = (p − 1)K+ ε̃, and

iv) Θ = 2K+ pε− µ|ω|2/(1−p) , Θ̃ = 2K+ pε̃− µ̃|ω̃|2/(1−p).
Thus, since ωω̃ 6= 0 everywhere,

(5.2)

the values of K lie in I∗, which is one of the intervals
(−∞, ε/(1− p)), (ε/(1− p), ε̃/(1− p)), (ε̃/(1− p),∞),

while ω, ω̃, Θ, Θ̃,Σ and Z are real analytic functions
of the real variable K, defined on the whole interval I∗.

As (p − 1)K= ω − ε = ω̃ − ε̃, (5.1.iii) – (5.1.iv), with ( )′ = d/dK, give

(5.3)

(p − 1)Θ = 2ω + (p+ 1)(p − 2)ε− (p − 1)µ|ω|2/(1−p),
(p − 1)Θ̃ = 2ω̃ + (p+ 1)(p − 2)ε̃− (p − 1)µ̃|ω̃|2/(1−p),
ω′ = ω̃′ = p − 1, Θ′ = 2 + 2(sgnω)µ|ω|(1+p)/(1−p),
Θ̃′ = 2 + 2(sgn ω̃)µ̃|ω̃|(1+p)/(1−p).

Multiplying (5.1.i) and (5.1.ii) by p − 1, then using (5.3), we obtain

(5.4)

i) 2(p2− 1)(ε− ε̃)Σ = 2(ω̃3− ω3) + (p+ 1)(p − 2)(ε̃ω̃2− εω2)
+ (p − 1)[µ|ω|2(p−2)/(p−1)− µ̃|ω̃|2(p−2)/(p−1)],

ii) 2(p2− 1)(3p − 2)(ε− ε̃)Z
= [2ω̃3 + (p+ 1)(p − 2)ε̃ω̃2− (p − 1)µ̃|ω̃|2(p−2)/(p−1)]ω
− [2ω3 + (p+ 1)(p − 2)εω2− (p − 1)µ|ω|2(p−2)/(p−1)]ω̃.

Next, as a consequence of (5.3),

(5.5)
[ωΘ]′ = 4ω + (p+ 1)(p − 2)ε− (p− 3)µ|ω|2/(1−p),
[ω̃Θ̃]′ = 4ω̃ + (p+ 1)(p − 2)ε̃− (p− 3)µ̃|ω̃|2/(1−p).

Thus, [ω2Θ]′ = ω′ωΘ + ω[ωΘ]′ = ω{(p − 1)Θ + [ωΘ]′}. Now, by (5.3) and (5.5),

(5.6)
[ω2Θ]′ = 2[3ω + (p+ 1)(p − 2)ε− (p − 2)µ|ω|2/(1−p)]ω,
[ω̃2Θ̃]′ = 2[3ω̃ + (p+ 1)(p − 2)ε̃− (p − 2)µ̃|ω̃|2/(1−p)]ω̃.

From (5.1.ii), 2(p + 1)(3p − 2)(ε − ε̃)Z ′ = {ω[ω̃2Θ̃] − ω̃[ω2Θ]}′. The Leibniz rule

applied to both products ω[ω̃2Θ̃] and ω̃[ω2Θ] yields, via (5.3), (5.1.i) and (5.6),

2(p+ 1)(3p − 2)(ε− ε̃)Z ′ = 2(p2− 1)(ε− ε̃)Σ
+ 2ωω̃ [(p2− p+ 1)(ε̃− ε) + (p − 2)µ|ω|2/(1−p)− (p − 2)µ̃|ω̃|2/(1−p)],

as ω − ω̃ = ε− ε̃, which, setting γ = sgnω and γ̃ = sgn ω̃, we can rewrite as

(5.7)
2(p+ 1)(ε− ε̃)[(3p − 2)Z ′− (p − 1)Σ] = 2(p2− p+ 1)(ε̃− ε)ωω̃

+ 2(p − 2)[γµω̃ |ω|(p−3)/(p−1)− γ̃µ̃ω |ω̃|(p−3)/(p−1)].
With the same meaning of γ and γ̃, using (5.1.i) and (5.6), or (5.3), we get

(5.8)

i) (p+ 1)(ε− ε̃)Σ′ = 3(ω̃2− ω2) + (p+ 1)(p − 2)(ε̃ω̃ − εω)
+ (p − 2)[γµ|ω|(p−3)/(p−1)− γ̃µ̃|ω̃|(p−3)/(p−1)],

ii) Θ′′ = −2(p+ 1)µ|ω|2p/(1−p), Θ̃′′ = −2(p+ 1)µ̃|ω̃|2p/(1−p).

Consequently, (5.1.ii) gives 2(p + 1)(3p − 2)(ε − ε̃)Z ′′ = [(ωω̃2)Θ̃]′′− [(ω2ω̃)Θ]′′ =

(ωω̃2)Θ̃′′ − (ω2ω̃)Θ′′ + 2(ωω̃2)′Θ̃′ − 2(ω2ω̃)′Θ′ + (ωω̃2)′′Θ̃ − (ω2ω̃)′′Θ. As (5.3)
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easily implies that (ωω̃2)′, (ω2ω̃)′, (ωω̃2)′′ and (ω2ω̃)′′ are, respectively, equal to
(p−1)(ω̃+ 2ω)ω̃, (p−1)(ω+ 2ω̃)ω, 2(p−1)2(2ω̃+ω) and 2(p−1)2(2ω+ ω̃), we

obtain 2(p+ 1)(3p − 2)(ε− ε̃)Z ′′ = (ωω̃2)Θ̃′′− (ω2ω̃)Θ′′+ 2(p − 1)(ω̃ + 2ω)ω̃ Θ̃′−
2(p − 1)(ω + 2ω̃)ωΘ′ + 2(p − 1)(2ω̃ + ω)[(p − 1)Θ̃] − 2(p − 1)(2ω + ω̃)[(p − 1)Θ].

Therefore, replacing Θ̃′′, Θ′′, Θ̃′, Θ′, (p − 1)Θ̃ and (p − 1)Θ with the expressions
provided by (5.8.ii) and (5.3), we see that, since ω − ω̃ = ε− ε̃,

(5.9)
(p+ 1)(3p − 2)Z ′′ + 3(p − 1)(p2− p+ 2)ω equals the sum of a
constant and a constant coefficient combination of the functions
µω̃ |ω|2/(1−p)− µ̃ω |ω̃|2/(1−p) and γµ|ω|(p−3)/(p−1)− γ̃µ̃|ω̃|(p−3)/(p−1).

Lemma 5.1. As K→ ±∞, one has the following limit relations.

(a) 2(p+ 1)Σ/K2 and (p+ 1)Σ′/K both tend to −(p − 1)(p2− p+ 4),
(b) 2(p+ 1)(3p − 2)Z/K3 → −(p − 1)2(p2− p+ 2),
(c) 2(p+ 1)(3p − 2)Z ′/K2 → −3(p − 1)2(p2− p+ 2),
(d) (p+ 1)(3p − 2)Z ′′/K → −3(p − 1)(p2− p+ 2).

The limits, as K → ±∞, of 4[(p + 1)(3p − 2)]2(2Z ′ − Σ)(Z ′ − Σ)/K4 and of
8[(p+1)(3p−2)]2(Z ′′−Σ′−K)Z/K4 are −(p−1)2(p−2)(p2+ 5p−2)(3p2−p+2)
and, respectively, −4(p −1)2(p −2)(p2− p+ 2)(3p3−5p2+ 12p−8). The difference
between the former and the latter limits equals (p − 1)3(p − 2) times the positive
function 12p4− 23p3+ 55p2− 56p+ 60 of the real variable p ≥ 1.

Proof. By (5.1.iii), ω/K and ω̃/K tend to p−1 as K→ ±∞. Since ω̃3−ω3 =
(ω̃−ω)(ω̃2+ω̃ω+ω2) and ω−ω̃ = ε− ε̃, (5.4.i) and (5.8.i), with 2(p−2)/(p−1) < 2
and (p− 3)/(p − 1) < 1, yield (a). Similarly, (5.4.ii), (5.7) combined with (a), and
(5.9) give (b), (c) and, respectively, (d). Now (a) – (d) imply positivity in the final
clause as 12p4−23p3+55p2−56p+60 = p2(p−1)(12p−11)+4(11p2−14p+15). �

We now derive the contradiction that proves Theorem 3.2. By Lemma 1.3(ii),
our Z and Σ satisfy the differential equation (1.7), and so the interval I∗ in (5.2)
must be bounded since, due to the positivity claim at the very end of Lemma 5.1,
the two sides of (1.7), divided by K4, have different limits as |K| → ∞. (At the
beginning of this section we assumed that p > 2.) Thus, I∗ = (ε/(1−p), ε̃/(1−p))
and K < ε̃/(1− p), so that K< 0, as Remark 2.2 yields ε̃ > 0. According to the
lines preceding (1.1), our equalities ∆K = Σ(K) and g(∇K,∇K) = 2Z(K) imply
the existence of a g-Killing field v without zeros, defined on a nonempty connected
open set U ⊆M, which is also an h-Killing field, for the metric h = g/τι2 in (3.1),
since the normalization of (3.3) gives τι = |(p−1)K+ε|1/(p−1), that is, τι = |ω|1/(p−1),
and the local flow of v preserves the Gaussian curvature K. The same obviously
applies to the metric h̃ = g/τ̃ι2, where τ̃ι = |ω̃|1/(p−1). By (2.7) and Theorem 3.1, h

and h̃ are real-analytic. At least one of them has nonconstant Gaussian curvature.
Otherwise, their constant Gaussian curvatures would be negative (from the Gauss-

Bonnet theorem – note that K < 0) and, as h and h̃ are conformally related,
Remark 1.5 would imply constancy of their conformal factor τ̃ι/τι, thus making K
constant. Finally, χ(M) < 0 since K < 0, so that by Lemma 1.1 a nontrivial

Killing field exists on (M,h), or (M, h̃), or on a two-fold isometric covering. This
in turn contradicts Remark 1.6.
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6. Theorem 3.1, rephrased

Let us rewrite Theorem 3.1 in terms of the positive function f = τι−p/2, the
parameter γ ∈ IR characterized by (p − 1)K+ ε = γτιp−1, and the following triple
of real constants:

(6.1) (a, c, r) = (p(p − 2)ε/[4(p − 1)], pµ/[4(p+ 1)], pγ/[2(p2− 1)]).

Theorem 6.1. Given a nonconstant function f : M → (0,∞) on a Riemann-
ian surface (M, g), and an Einstein manifold (Π, η) of dimension p ≥ 2, the
metric f 4/p[g + η ] on M × Π has harmonic curvature if and only if, for the
Gaussian curvature K of g, some a, c, r ∈ IR, and the Einstein constant ε of η,

(6.2)
i) K= 2r(1 + 1/p)f−2(1−1/p)− ε/(p − 1), ii) p(p − 2)ε = 4(p − 1)a,

iii) ∆f − af = −cf 1+4/p + rf−1+2/p.

The constant scalar curvature of f 4/p[g + η ] then equals 4(1 + 1/p)c. Also,

(6.3) cases (a) and (b) in Theorem 3.1 correspond to r = 0 and r 6= 0.

Here (6.3) is obvious since 2(p2− 1)r = pγ, cf. (6.1), and p ≥ 2.
When M is compact, and f : M → (0,∞) nonconstant, (6.2) implies that

(6.4)
i) c > 0, ii) p − 2 and a are both zero, or both positive,

iii) if a = 0, then K is nonconstant, r > 0, and p = 2,
iv) whenever r < 0, one has p > 2 and K< 0 everywhere.

In fact, (6.4.ii) follows from (6.2.ii), as ε > 0 (see Remark 2.2) and p ≥ 2. Next,
one of c and r is positive: by (6.4.ii), a ≥ 0, so that if we had r ≤ 0 and c ≤ 0,
(6.2.iii) would make ∆f the sum of three constant or increasing functions of the
variable f > 0 resulting, via Remark 1.8, in constancy of f. Nonpositivity of c
would thus lead to positivity of r, with (6.2.iii) expressing ∆f as the sum of three
nonnegative terms and, again, contradicting nonconstancy of f. This yields (6.4.i).
If a = 0, we get r > 0 (or else ∆f would, by (6.2.iii) and (6.4.i), be negative),
so that (6.2.i) and (6.4.ii) yield (6.4.iii). To prove (6.4.iv), let r < 0. Hence, by
(6.2.i), K< 0, as ε > 0 (Remark 2.2), while p > 2, or else (6.4.ii) with p = 2 and
(6.4.iii) would give r > 0.

Remark 6.2. Positivity of ε (or, µ) in the compact case follows from Re-
mark 2.2 or, respectively, (6.4.i) and (6.1).

7. Vanishing differentials and Hessians

For a manifold W, an interval I ⊆ IR, a C2 curve I 3 t 7→ y(t) ∈ W, and a
parameter c ∈ I such that ẏ(c) = 0, the acceleration vector w = ÿ(c) ∈ Ty(c)W
with the components wa = ÿa(c) in any local coordinates at y(c) is clearly well
defined, a coordinate-free description being: dwφ = d2[φ(y(t))]/dt2, evaluated at
t = c, whenever φ is a C2 function on a neighborhood of y(c) in W. Thus,

(7.1) ÿ(c) equals the ordinary second derivative of y(t) at t = c

if W happens to be a C2 submanifold of a Banach space V̂, making I 3 t 7→ y(t)

a curve in V̂. This is immediate if one diffeomorphically identifies a neighborhood
Û of y(c) in V̂ with U× Û ′, for open subsets Û ′ of some Banach space and U of

IRn, where n = dimW and 0 ∈ Û ′, so as to make Ŵ ∩ Û correspond to U ×{0},



HARMONIC-CURVATURE WARPED PRODUCTS OVER SURFACES 13

and then treats the projection U× Û ′→ U, restricted to Ŵ ∩ Û = U ×{0}, as a

local coordinate system for Ŵ.
Given a C2 mapping F : N → W between manifolds and a point z ∈ N

such that dFz = 0, one defines the Hessian of F at z to be the symmetric bilin-
ear mapping H : TzN × TzN → TF (z)W characterized by the component formula

[H(u, v)]a = Ha
jku

jvk with Ha
jk = (∂j ∂kF

a)(z), whenever u, v ∈ TzN and xj (or,

ya) are local coordinates in N at z, or in W at F (z). An obviously equivalent
definition of H(u, v), where symmetry allows us to set u = v, reads

(7.2)
H(v, v) = ÿ(c) for the curve y(t) = F (x(t)) if t 7→ x(t)
is a C2 curve in N such that x(c) = z and ẋ(c) = v.

The acceleration w = ÿ(c) in the lines preceding (7.1) involves a special case of
the Hessian; specifically, w = H(u, u) at z = c in N = I, the mapping F and u
being the curve and, respectively, 1 treated as a vector tangent to I.

8. Fredholm differentials and bifurcations

Suppose that we are given real Banach spaces V, V̂ and a Ck mapping L,
1 ≤ k ≤ ∞, from a neighborhood of 0 in V into V̂, such that L(0) = 0 and the

differential of L at 0 is a Fredholm operator Φ = dL0 : V → V̂. Thus, KerΦ

and V̂/Φ(V) are finite-dimensional, from which closedness of the image Φ(V) in V
follows [1, p. 156]. We fix closed subspaces Y ⊆ V and W ⊆ V̂ with V =Y⊕KerΦ

and V̂ =W⊕Φ(V), so that dimW <∞. Due to Banach’s open mapping theorem,

(8.1) Φ = dL0 restricted to Y is a linear homeomorphism Y → Φ(V).

The problem of understanding the preimage L−1(0), clearly contained in L−1(W),
has a local finite-dimensional reduction.

Lemma 8.1. Under the above assumptions, the intersection N of L−1(W) and
a suitable neighborhood of 0 in V forms a Ck manifold of the finite dimension
dim KerΦ, having at 0 the tangent space T0N = KerΦ, while L restricted to N
constitutes a Ck mapping F : N → W with F (0) = 0 such that dF0 = 0 and,
if k ≥ 2, the Hessian H of F at 0 is given by H(v, v′) = π(d[dL]0v)v

′ for any

v, v′ ∈ T0N = KerΦ and the projection π : V̂ → W having the kernel Φ(V).

Proof. Let pr = Id − π be the projection V̂ → Φ(V) with the kernel W.
Setting S(y, z) = (prL(y+z), z), we obtain a Ck mapping S from a neighborhood
of 0 in Y ×KerΦ into Φ(V)×KerΦ. The assignment (ẏ, ż) 7→ (Φẏ, ż) represents
the differential of S at (0, 0) which – due to (8.1) – is a linear homeomorphism.
Our claim about F : N → W now follows from the inverse mapping theorem: N
corresponds via S to a neighborhood of (0, 0) in {0}×KerΦ, while dS−1(0,0)(0, ż) =

(0, ż), and dF0 = 0 since T0N = KerΦ = Ker dL0. To evaluate H, we choose a
curve t 7→ y(t) + z(t) ∈ N ⊆ L−1(W) with y(t) ∈ Y and z(t) ∈ KerΦ, having at
t = 0 the value 0 and velocity v ∈ T0N = KerΦ. Thus, y(0) = z(0) = ẏ(0) = 0
and ż(0) = v, as well as L(y + z) = πL(y + z) for all t, due to W-valuedness of
L, where – from now on – we write y, z, ẏ, ż rather than y(t), etc. Applying d/dt
twice to the last equality, one gets dLy+z(ẏ + ż) = πdLy+z(ẏ + ż) at any t, and

d[dLy+z(ẏ + ż)]/dt = π(d[dL]0v)v at t = 0, since d[dLy+z]/dt = d[dL]y+z(ẏ + ż)

(with y = z = ẏ = 0 and ż = v when t = 0), while πdL0(ÿ + z̈) = πΦ(ÿ + z̈) =
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0 (note that Φ(V) = Kerπ). By (7.2) and (7.1), H(v, v) = π(d[dL]0v)v, and
symmetry of H implies the required formula for H(v, v′). �

9. The saddle-point case

A simple special case of Lemma 8.1 arises when

(i) Φ(V) has the codimension 1 in V̂ and, consequently, dimW = 1,
(ii) k ≥ 2 and dim KerΦ = 2, so that N is a surface,
(iii) there is an embedded C1 curve C ⊆ N with 0 ∈ C ⊆ L−1(0),
(iv) we identify W with IR, which turns 0 ∈ N into a critical point of the C2

function F : N → IR on the surface N, having F (0) = 0,
(v) H(v, v′) 6= 0 for the Hessian H of F at 0, some vector v tangent to the

curve C at 0, and some v′ ∈ T0N = KerΦ.

Then H is indefinite. Namely, H 6= 0, while H(v, v) = 0 since L = 0 along C,
and so H cannot be definite (or semidefinite), or else we would have v = 0 (or
H(v, v′) = 0). As a result, F has a saddle point at 0, and

(9.1)

the intersection of L−1(0) with a neighborhood of 0 in N
is the union of two embedded curves intersecting transversal
ly at 0 ∈ N and having no other points in common; one of
these curves is contained in our C, the other has the tangent
line IRw at 0, for some w ∈ KerΦr IRv with H(w,w) = 0.

We will refer to these two curves, respectively, as

(9.2) the curve of trivial solutions (contained in C), and the bifurcating branch.

Next, given real Banach spaces V, V̂ and a mapping L of class Ck, 2 ≤ k ≤ ∞,
from a neighborhood of 0 in V into V̂ with L(0) = 0, suppose that

(a) V = V ′× IR, for a Banach space V ′,
(b) Lt(0) = 0 for all t near 0 in IR, where we set Lt(x) = L(x, t),
(c) dL0

0 (the differential of L0 at 0 ∈ V ′) is a Fredholm operator,

(d) dim Ker dL0
0 = dim [V̂/dL0

0(V ′)] = 1,

(e) dL0
0(V ′) ∩ dL̇0

0(Ker dL0
0) = {0} 6= dL̇0

0(Ker dL0
0), with L̇t = dLt/dt.

Lemma 9.1. Under the assumptions (a) – (e), the hypotheses of Lemma 8.1
along with conditions (i) – (v) above are all satisfied, and hence so are their conclu-
sions, including (9.1), while T(0,0)N = Ker dL0

0× IR. For the Hessian H of F at

(0, 0) and any vectors v, v′ ∈ Ker dL0
0 × IR of the form v = (0, 1) and v′ = (u, 0),

where u ∈ Ker dL0
0, one has H(v, v′) = dL̇0

0u. The curve C of condition (iii) is a
neighborhood of (0, 0) in {0} × IR.

Proof. The hypotheses of Lemma 8.1 easily follow from (a) – (e), and so do
(i) – (iv): the Fredholm property of Φ = dL(0,0), with the dimensions required in

(i) – (ii), is obvious since Φ has the kernel Ker dL0
0 × IR and the image dL0

0(V ′).
Finally, for v, v′ ∈ T(0,0)N = KerΦ = Ker dL0

0 × IR as in the statement of the

lemma, with a nonzero vector u ∈ Ker dL0
0, the formula H(v, v′) = π(d[dL]0v)v

′ of

Lemma 8.1 reads H(v, v′) = πdL̇0
0u while, by (e), dL̇0

0u /∈ dL0
0(V ′). The relation

dL0
0(V ′) = Φ(V) = Kerπ now yields H(v, v′) 6= 0, proving (v). �
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10. Nonconstant Gaussian curvature: part one

Compact warped products (M × Π, g) with harmonic curvature, nonconstant
warping functions, and two-dimensional bases (M, g) represent two separate cases,
(a) and (b) in Theorem 3.1. Case (b), discussed here, amounts, by Theorem 6.1,
to having g = f 4/p[g + η ] for an Einstein metric η with some Einstein constant
ε and a nonconstant function f : M → (0,∞) satisfying (6.2), that is,

(10.1) a) ∆f = Ω(f), b) K= 2r(1 + 1/p)f−2(1−1/p)− ε/(p − 1),

K and Ω being the Gaussian curvature of g and the function on (0,∞) given by

(10.2) Ω(f) = af − cf 1+4/p + rf−1+2/p with a = p(p − 2)ε/[4(p − 1)].

Here p ≥ 2 is the dimension of the fibre, c, r ∈ IR, and r 6= 0, cf. (6.3), while K
must be nonconstant due to nonconstancy of f and (10.1.b).

In the next section we will use the bifurcation method of Lemma 9.1 to prove the
existence of Riemannian metrics g on compact surfaces M admitting nonconstant
functions f : M → (0,∞) with (10.1) – (10.2). Such g will arise from conformal
changes of the form g = e2xĝ, where the metric ĝ on M has constant Gaussian
curvature K̂, and x : M → IR. However, rather than being smooth, x is only
required to lie in a suitable L2 Sobolev space, chosen so as to ensure C4-differen-
tiability of x.

Our approach uses a fixed choice of the data M, ĝ, K̂, p, i, r, λ consisting of
a compact Riemannian surface (M, ĝ) of constant Gaussian curvature K̂ 6= 0,
integers p ≥ 2 and i ≥ 6, a real parameter r 6= 0, and a suitable eigenvalue λ
of −∆̂, for the ĝ-Laplacian ∆̂. The Gauss-Bonnet theorem and (6.4.iv) make it
necessary to assume that

(10.3) if r < 0, then p > 2 and K̂ < 0.

By a solution of (10.1) we then mean a quadruple (x, f, ε, c) formed by a C4

function x : M → IR, a C2 function f : M → (0,∞), and constants ε, c ∈ IR
such that (10.1), with (10.2), holds for the Gaussian curvature K of the C4 metric

g = e2xĝ on M and the g-Laplacian ∆ (the objects M, ĝ, K̂, p, r still being fixed).
In contrast with the lines surrounding (10.1) – (10.2), f and K are this time

allowed to be constant: in fact, there exist trivial solutions of (10.1), namely,
(x, f, ε, c) having x = 0, a constant f > 0, and ε, c ∈ IR chosen so as to yield

(10.1) – (10.2) with K= K̂ and Ω(f) = 0, that is,

(10.4)
ε = (p − 1)[2r(1 + 1/p)f−2(1−1/p) − K̂], and
c = af−4/p + rf−2−2/p for a = p(p − 2)ε/[4(p − 1)].

This curve of trivial solutions is parametrized by f ∈ (0,∞), and some of them can
be deformed to bifurcating branches of solutions with nonconstant f and K. There
are obstructions to such a deformation, in the form of three positivity conditions
imposed on the constant f > 0. The first two reflect the fact that nonconstancy of
f gives ε, c ∈ (0,∞), cf. Remark 2.2 and (6.4.i), while – in trivial solutions – ε, c
depend on f via (10.4). The third condition arises since a bifurcation can only
occur at f if the value of f is quite specifically related to a nonzero (and hence

positive) eigenvalue λ of −∆̂, for the ĝ-Laplacian ∆̂. See formula (10.6.i) below.
It is convenient to replace the parameter f ∈ (0,∞) mentioned above with the

positive real variable θ = f−2(1−1/p). For the trivial solution (x, f, ε, c) of (10.1)
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corresponding to θ one then has x = 0 and f = θp/(2−2p), whereas (10.4) reads

(10.5) ε = 2(p − 1/p)rθ − (p − 1)K̂, 4c/p = [2(p − 1)rθ − (p − 2)K̂]θ2/(p−1).

In terms of θ, the relation between f and the eigenvalue λ of −∆̂ takes the form

(10.6) i) λ = 2(p − 1/p)rθ − (p − 2)K̂, that is, ii) λ = ε + K̂,

justified later by (11.6) and Lemma 11.2. If θ ∈ (0,∞), simultaneous positivity of
the three constants ε, c, λ in (10.5) – (10.6.i) clearly amounts to

(10.7) 2(p2− 1)rθ > max {p(p − 1)K̂, (p+ 1)(p − 2)K̂, p(p − 2)K̂}.

With M, ĝ, K̂, p, r still fixed, let Ir ⊆ (0,∞) be the open interval defined by

(10.8) Ir = (θ+,∞), when r > 0, or Ir = (0, θ−), for r < 0,

where θ+ = max {pK̂/[2(p + 1)r], 0} and θ− = p(p − 2)K̂/[2(p2− 1)r]. Note that

θ− > 0 if r < 0, due to (10.3), while

(10.9) p(p − 2) ≤ (p+ 1)(p − 2) < p(p − 1) whenever p ≥ 2.

Our three positivity conditions mean precisely that θ ∈ Ir. Namely, we have

Lemma 10.1. The interval Ir is the set of all θ ∈ (0,∞) for which the three
expressions ε, c and λ, given by (10.5) – (10.6.i), are simultaneously positive.

Proof. Depending on whether r > 0 and K̂ > 0 (or, r > 0 and K̂ < 0

or, respectively, r < 0, so that (10.3) gives K̂ < 0), condition (10.7) imposed

on θ ∈ (0,∞) reads, by (10.9), θ > pK̂/[2(p + 1)r], or θ > 0 or, respectively,

θ < p(p − 2)K̂/[2(p2− 1)r], as required. �

Remark 10.2. Given a compact Riemannian manifold (M, g) of any dimension
m and an open interval I ⊆ IR, the Sobolev embedding theorem implies that, if
i > m, the Sobolev space L2

i (M, IR) of functions with i derivatives in L2 can be
turned into a Banach algebra, while the I-valued functions in L2

i (M, IR) form an
open subset L2

i (M, I) of L2
i (M, IR). On the other hand, for any Banach algebra

A, convergent power series define A-valued C∞ functions on open subsets of A.
Applied to A = L2

i (M, IR), this yields A-valuedness and C∞-differentiability of the
mapping L2

i (M, I) 3 x 7→ ϕ ◦ x, whenever the function ϕ : I → IR is real-analytic.

11. Nonconstant Gaussian curvature: part two

We now proceed to construct metrics on closed surfaces realizing case (b) in
Theorem 3.1. Curves of such metrics g, emanating from a constant-curvature
metric ĝ, will arise via the bifurcation argument of Lemma 9.1. As outlined in
Section 10, the construction uses a fixed septuple M, ĝ, K̂, p, i, r, λ formed by

(i) a closed Riemannian surface (M, ĝ) of nonzero constant Gaussian curva-

ture K̂, along with integers p ≥ 2 and i ≥ 6,
(ii) a real parameter r 6= 0, satisfying (10.3): r > 0 unless K̂ < 0 and p > 2,

(iii) a constant λ ∈ (0,∞) such that, for the ĝ-Laplacian ∆̂,

(a) λ = 2l(2l + 1)K̂, where l is a positive integer, if K̂ > 0,

(b) [λ+ (p − 2)K̂]r > 0 and dim Ker (∆̂ + λ) = 1, when K̂ < 0.
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In both cases (iii.a) – (iii.b), λ is a positive eigenvalue of −∆̂ (see Section 12).
For Ir ⊆ (0,∞) as in (10.8), let δ ∈ IR and I ⊆ IR be given by

(11.1) δ = p[λ+ (p − 2)K̂]/[2(p2− 1)r], I = {t ∈ IR : δ + t ∈ Ir}.

Lemma 11.1. Under the assumptions (i) – (iii), δ ∈ Ir and I is an open
interval containing 0.

Proof. The condition δ ∈ Ir reads rδ > rθ+ = max {pK̂/[2(p+ 1)], 0} when

r > 0, and 0 > rδ > rθ− = p(p − 2)K̂/[2(p2− 1)] if r < 0. Thus, δ ∈ Ir by (iii),

since p ≥ 2, and (11.1) yields 2(p2− 1)rδ/p = λ+ (p − 2)K̂. �

For our fixed septuple M, ĝ, K̂, p, i, r, λ, any given t ∈ I, a function x : M → IR
having some further properties, named in the paragraph following (11.4), and δ as
in (11.1), we let ε, c,K,∆, Ω and f denote the constants in (10.5) with θ = δ+ t,
the Gaussian curvature of the metric g = e2xĝ, the g-Laplacian, the function (10.2),
and f characterized by (10.1.b), that is, by K= 2r(1 + 1/p)f−2(1−1/p)− ε/(p−1).
Using K,∆, Ω and f depending on t, x as described here, we define Lt(x) =
L(x, t) to be ∆f −Ω(f). Explicitly,

(11.2)

Lt(x) = ∆f − af + cf 1+4/p − rf−1+2/p, where

a = p(p − 2)ε/[4(p − 1)] for ε = 2(p− 1/p)r(δ + t)− (p − 1)K̂,

c = p[2(p − 1)r(δ + t)− (p − 2)K̂](δ + t)2/(p−1)/4,
f = [2r(1 + 1/p)]−p/(2−2p)[K + ε/(p − 1)]p/(2−2p), and

g = e2xĝ , ∆ = e−2x∆̂, K = e−2x(K̂ − ∆̂x), cf. Remark 1.4.

Since (11.2) easily shows that, whenever t ∈ I,

(11.3) K and f have, at x = 0 and t, the values K̂ and (δ + t)p/(2−2p),

relations (11.2) easily yield

(11.4) Lt(0) = 0 for all t ∈ I.
As for x, we require that it be close to 0 in a subspace V ′ – described in the lines
preceding (11.7) – of the Sobolev space L2

i (M, IR), with i ≥ 6 derivatives in L2.
The Sobolev embedding theorem then guarantees C i−2 differentiability of x, while
its closeness to 0 is meant to ensure positivity of f via that of δ+ t ∈ Ir in (11.3),
the latter due to the definition of I, cf. (11.1), and the inclusion Ir ⊆ (0,∞).

Our data K̂, p, r, δ are constants, while ε and c depend only on t (not on
x), K only on x, and f on both x, t. Therefore, by (11.2) and (11.3), for the

differentials of K̂, p, r, δ, ε, c,K and f with respect to the variable x ∈ V ′, at
x = 0 and any t ∈ I, one has

(11.5)
dp0 = dr0 = dK̂0 = dδ0 = dε0 = dc0 = 0,

dK0 = −4r(1− 1/p2)(δ + t)(2−3p)/(2−2p)df0 = −(∆̂ + 2K̂),

2K̂ denoting here 2K̂ times the identity. From (11.1),

(11.6) λ = 2(p − 1/p)rδ − (p − 2)K̂ ∈ (0,∞),

which is also the value of λ in Lemma 10.1 for θ = δ.

Lemma 11.2. With notations of Section 9, 4r(1− 1/p2)(δ+ t)1−p/(2−2p)dLt0 =

[∆̂ + λ+ 2(p − 1/p)rt](∆̂ + 2K̂), as well as 8r(p − 1)(1 − 1/p2)δ2−p/(2−2p)dL̇0
0 =

[(2− 3p)∆̂− pλ+ 2(p − 1)(p − 2)K̂](∆̂ + 2K̂), at any t ∈ I, or t = 0, and x = 0.
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Proof. By (11.2), d[∆f ]0 = ∆̂df0 and d[Ω(f)]0 = Ω′(f) df0, with Ω′(f)
denoting the derivative dΩ/df at f = (δ + t)p/(2−2p) (the value of f for x = 0,
which is a constant function on M, depending on t). From (10.2) and (11.2),

Ω′(f) = a− (1 + 4/p)cf 4/p− (1− 2/p)rf−2+2/p = −[2(p−1/p)r(δ+ t)− (p−2)K̂]
which, by (11.6), equals −2(p−1/p)rt−λ. This yields dLt0 = d[∆f ]0−d[Ω(f)]0 =

[∆̂ + λ + 2(p − 1/p)rt] df0, cf. (11.2), and the last line of (11.5) implies the first
equality; applying d/dt to it and using (11.6), we obtain the second one. �

To use Lemma 9.1, we fix M, ĝ, K̂, p, i, r, λ, δ as in (i) – (iii) and (11.1), along

with specific vector subspaces V ′ of L2
i (M, IR) and V̂ of L2

i−4(M, IR) such that

(iv) V̂ contains V̂ ′ = (∆̂ + λ)(V ′) and all Lt(V ′), t ∈ I, while dim [V̂/V̂ ′] = 1.

Here is how we select V ′ and V̂. For K̂ < 0, we set V ′ = L2
i (M, IR) and V̂ =

L2
i−4(M, IR). If K̂ > 0, we fix a nontrivial ĝ-isometric action of the circle group

S1 on M = IRP2 (or, M = S2) and let the subspaces V ′, V̂ of L2
i (M, IR) and

L2
i−4(M, IR) consist of all S1-invariant functions required, in the case of M = S2,

to be also invariant under the antipodal isometry. In both cases one has (iv), since

(11.7) dim[V ′ ∩ Ker (∆̂ + λ)] = 1,

due to (iii.b) or, respectively, (iii.a) combined with Remark 1.9.

Lemma 11.3. Conditions (a) – (e) of Section 9 are all satisfied by V ′, V̂ and

L chosen as above, with V = V ′× IR and k =∞, while Ker dL0
0 ⊆ Ker (∆̂ + λ).

Proof. First, C∞-differentiability of L and (a) – (b) are obvious from Re-
mark 10.2 and, respectively, (11.4). (The former also holds for a more general
reason: one can derive it from Nemytsky’s theorem [18, Section 10.3.4], with-
out invoking real-analyticity.) Next, we have (c) – (d). Namely, due to (iii-a)

and Remark 1.9, ∆̂ + 2K̂ is injective on V ′. Thus, Lemma 11.2 for t = 0 gives
Ker dL0

0 = V ′∩Ker (∆̂+λ) and dL0
0(V ′) = (∆̂+λ)(V ′), while (11.7) and (iv) imply

one-dimensionality of both spaces in (d). Finally, (e) follows since the restriction

of the factor (2− 3p)∆̂− pλ+ 2(p−1)(p−2)K̂ in the last equality of Lemma 11.2

to Ker (∆̂ + λ) equals the identity times 2(p − 1)[λ+ (p − 2)K̂], which is nonzero
as a consequence of (iii). �

Lemma 11.3 allows us to apply Lemma 9.1 to our V ′, V̂, L and V = V ′× IR,
arising from a fixed septuple M, ĝ, K̂, p, i, r, λ, which yields (i) – (v) of Section 9,
along with (9.1). We define the λ-branch corresponding to these data to be the
set of all g = e2xĝ , where (x, t) ∈ V ′ × IR ranges over the bifurcating branch of
solutions introduced in (9.2). The λ-branches, associated with all positive eigenval-

ues λ of −∆̂ satisfying condition (iii), are curves of metrics on our closed surface

M, emanating from the fixed metric ĝ of nonzero constant Gaussian curvature K̂.

Lemma 11.4. Every metric g 6= ĝ in any λ-branch, close to ĝ, realizes case
(b) of Theorem 3.1 and, in particular, has nonconstant Gaussian curvature K.

Proof. By (9.1) – (9.2) the bifurcating branch is a subset of L−1(0), so that
(11.2) gives (6.2) whenever g = e2xĝ for any (x, t) from the bifurcating branch,
with a, ε, c, f as in (11.2). Theorem 6.1, the lines preceding it, and (6.3) will
now yield case (b) of Theorem 3.1, once K (or, equivalently, f) is shown to be
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nonconstant, which we do in the next paragraph; we cannot simply invoke (6.3),
with our fixed r 6= 0, since Theorem 6.1 assumes nonconstancy of f.

The curve of trivial solutions – see (9.2) — is contained in {0} × IR, due to
the final clause of Lemma 9.1. It intersects the bifurcating branch transversally,
at (0, 0) ∈ V = V ′× IR, while both curves lie on the surface N ⊆ V. (Cf. (ii),
(a) in Section 9 and (9.1).) A nonzero vector (x, t) tangent to the bifurcating
branch at (0, 0) thus has x 6= 0 (or else it would be also tangent to the trivial-
solutions curve), and the image of (x, t) under the differential dΨ(0,0), at (0, 0),

of the mapping Ψ sending (x, t) ∈ N to the Gaussian curvature K of the metric

g = e2xĝ is, from the last line of (11.5), equal to −(∆̂+2K̂)x. in view of Lemmas 9.1

and 11.3, (x, t) ∈ T(0,0)N = Ker dL0
0 × IR and Ker dL0

0 ⊆ Ker (∆̂ + λ), so that

dΨ(0,0)(x, t) = −(∆̂ + 2K̂)x = (λ−2K̂)x is nonzero as λ 6= 2K̂ by (iii), and hence

also nonconstant, being an eigenfunction of −∆̂ for the positive eigenvalue λ. This,
combined with constancy of K̂ = Ψ(0, 0), implies nonconstancy of Ψ(x, t) for all
(x, t) 6= (0, 0) in the bifurcating branch, sufficiently close to (0, 0). �

The harmonic-curvature property of the metric f 4/p[g + η ] in Theorem 6.1 is
obviously unaffected when one multiplies g and η by the same positive constant,
or separately rescales f. Our approach removes this freedom, by insisting that
ε and c be defined as in (11.2): the metric g = e2xĝ , for any (x, t) ∈ L−1(0)
near (0, 0), either equals ĝ , or has nonconstant Gaussian curvature, depending on
whether (x, t) lies in the trivial-solutions curve, or in the bifurcating branch with
(0, 0) removed. Thus, such metrics include no nontrivial constant multiples of ĝ .

12. Nonconstant Gaussian curvature: conclusion

Lemma 11.4 implies the second case of (0.2), that is, (b) in Theorem 3.1, for
M diffeomorphic to S2, IRP2 or a closed orientable surface of any genus g > 1,
and metrics on M forming nontrivial curves of homothety types which, in the case
g > 1, also represent a Teichmüller-open nonempty set of conformal structures.

These metrics give rise to nontrivial compact warped products with harmonic
curvature, having fibres of all dimensions p ≥ 2, and any such M as the base.

Recall that the λ-branches appearing in Lemma 11.4, for eigenvalues λ > 0 of
−∆̂ satisfying (iii) in Section 11, constitute curves of metrics on the closed surface

M, emanating from the metric ĝ of constant Gaussian curvature K̂ 6= 0, and every
metric g near ĝ in the λ-branch, except ĝ, realizes case (b) of Theorem 3.1. The
metrics in any given λ-branch

(a) represent uncountably many distinct homothety types, and
(b) when sufficiently close to ĝ, they cannot be homothetic to any metric from

a λ′-branch, close to ĝ, provided that λ′ 6= λ.

First, (a) follows since the homothety invariant [Kmax : Kmin] of Remark 3.3, re-
stricted to any neighborhood of ĝ in the λ-branch, is nonconstant (and, obviously,
continuous): its constancy would make it equal to [1:1] (the value of the invariant
for ĝ), and the Gaussian curvatures of all the metrics near ĝ in the λ-branch
would thus be constant, contrary to the final clause of Lemma 11.4.

On the other hand, when a metric g 6= ĝ in the λ-branch approaches ĝ, the
area A of (M, g) tends to the area Â of (M, ĝ) (clearly equal to 2π/K̂ times
the Euler characteristic χ(M)) and, consequently, for the homothety invariant εA
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mentioned in the lines following Theorem 3.2, (10.6.ii) implies that

(12.1) εA → 2π(−1 + λ/K̂)χ(M) as g → ĝ in the λ branch.

The limits (12.1) are obviously different for different λ, which proves (b).

According to Theorem 3.1, for every positive eigenvalue λ of −∆̂ having the
property (iii-a) or (iii-b) of Section 11, the metrics g 6= ĝ in the λ-branch give rise
to nontrivial compact warped products with harmonic curvature.

In case (iii.a), λ is a positive eigenvalue of −∆̂, which may be completely
arbitrary (if M = IRP2), or of the form λj with j even and positive (if M = S2

and (1.9) represents the spectrum of −∆̂). See Remark 1.9.
Condition (iii.b) amounts to requiring that λ be simple and either greater than

(p − 2)|K̂| (when r > 0) or less than (p − 2)|K̂| (for r < 0), while K̂ < 0.
If r < 0 (so that (ii) in Section 11 gives p > 2), or r > 0 and p = 2, the

existence of such eigenvalues λ is immediate from the result of Schoen, Wolpert
and Yau [19] mentioned in Remark 1.10.

Finally, when r > 0 and p > 2, we can only provide some anecdotal evidence
for an analogous existence assertion: on the Bolza surface, with the convention
(1.9), λ24 is greater than 23|K̂| and simple [20]; therefore, (iii.b) holds in this case
for all p ∈ {3, 4, . . . , 21}.

To simplify the phrasing of the last two paragraphs, let us unify the two cases
of condition (iii.b) by ignoring the sign of r. Then, (iii.b) states that, on a closed
orientable surface of genus g > 1, with a metric of constant Gaussian curvature
K̂ < 0, the eigenvalue λ > 0 of −∆̂ is simple and different from (p − 2)|K̂|.
The result of [19] guarantees that, for every genus g > 1, metrics admitting such
eigenvalues λ realize a nonempty open subset of the Teichmüller space.

13. Constant Gaussian curvature: existence

We now proceed to verify that the first case of (0.2) – or, equivalently, (a) in
Theorem 3.1 – holds for a Teichmüller-open, nonempty set of metrics of constant
negative curvatures, on closed orientable surfaces M of all genera g > 1.

This results in nontrivial compact warped products with harmonic curvature,
having fibres of all relevant dimensions p ≥ 4, and all such M as the bases.

The existence assertion needed here is provided by the following result of Ya-
mabe [22], cf. also [2, pp. 115–119], [4, Lemma 16.37], which remains valid even if
dimM = m > 2, as long as (m− 2)q < 2m. The sign of the g-Laplacian ∆ in [4]
is the opposite of ours.

Lemma 13.1. Given a compact Riemannian surface (M, g), real numbers q > 2
and c > 0, and a ∈ IR such that (q − 2)a > λ1 for the lowest positive eigenvalue
λ1 of −∆, the equation

(13.1) ∆f − af = −cf q−1

admits a nonconstant positive C∞ solution f : M → IR.

By (6.3), Lemma 13.1 can be applied to case (a) in Theorem 3.1 for compact
bases M. The resulting construction of compact warped products with harmonic
curvature is a special case of one in [8] and [4, Example 16.35(v)].

Due to (6.3), equation (6.2.iii) then becomes (13.1) for q = 2 + 4/p (so that
q > 2), while (6.2.i) with r = 0 reads ε = (1− p)K. Since the Einstein constant ε
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of the fibre is positive (Remark 2.2), (M, g) has in this case the negative constant
Gaussian curvature K and, as a = p(p−2)ε/[4(p−1)], the condition (q−2)a > λ1
needed in Lemma 13.1 is equivalent to p > 2−λ1/K, cf. (0.4). However, we are free
to assume that p ≥ 4. (If p ∈ {2, 3}, the warped-product metric is conformally flat
according to Remark 3.5.) Obviously, having p > 2− λ1/K for all p ≥ 4 amounts
to the inequality 2 > −λ1/K.

According to the second part of Remark 1.10, every closed orientable surface
of genus greater than 1 admits metrics with negative constant Gaussian curvature
K satisfying this last inequality, which implies the existence of examples mentioned
in the italicized statement at the beginning of this section.

14. Constant Gaussian curvature: multiplicity

In equation (13.1) we can always assume that c = a, rewriting it as

(14.1) ∆f − af = −af q−1,

since f may be replaced with (a/c)q−2f. This normalization removes the freedom
of simultaneously rescaling f and c, which is of no geometric interest.

There are various known multiplicity results for positive solutions of (14.1) on
compact Riemannian manifolds (M, g) of all dimensions m ≥ 2. Consider

(14.2)
the number #(M, g, a, q) of distinct nonconstant
positive smooth solutions f to (14.1) on (M, g),

so that 0 ≤ #(M, g, a, q) ≤ ∞. Typically, a lower bound on #(M, g, a, q) is given
in terms of the topology of M.

One defines the Lusternik–Schnirelmann category cat(X) of a topological space
X to be the least integer k ≥ 1 such that X is the union of k open contractible
subsets. If no such k exists, one sets cat(X) =∞. Let us also denote by bi(X, IK)
the ith Betti number of X with coefficients in any given field IK, and by b(X, IK)

the sum
∑
i bi(X, IK) ≤ ∞. Thus, cat(Sm) = 2, while any closed surface M of

genus g ≥ 1 has cat(M) = 3 and b(M,ZZ2) = 2(1 + g).
Finally, one calls a solution f of (14.1) nondegenerate if it is nondegenerate as

a critical point of the associated energy functional or, equivalently, if the linearized
equation ∆ψ − aψ = a(1− q)f q−2ψ holds only for the trivial solution ψ = 0.

Theorem 14.1. Given a compact Riemannian manifold (M, g) of dimension
m ≥ 2, any sufficienly large a ∈ (0,∞), and any q ∈ (2, 2m/(m − 2)), with
2m/(m − 2) = ∞ if m = 2, one has #(M, g, a, q) > cat(M), in the notation
of (14.2). For any field IK and any sufficienly large a such that all nonconstant
smooth solutions of (14.1) are nondegenerate, #(M, g, a, q) > 2b(M, IK)− 2.

Proof. This is the central result of [3], where it is stated (for reasons not clear
to us) only for m ≥ 3. However, the proof remains completely valid also in the case
m = 2, due to the Sobolev embedding theorem. The same result, with exactly the
same proof, also appears in [17, Theorem 1.2], with no restriction on m ≥ 2. �

In the case of hyperbolic surfaces M, Theorem 14.1 with cat(M) = 3 yields

Corollary 14.2. On any closed orientable surface of genus greater than 1,
endowed with a metric of negative constant Gaussian curvature, equation (14.1)
has at least four distinct nonconstant positive smooth solutions f.
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