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Witold Roter was born on September 20th, 1932 and died on June 19th,
2015. He authored or co-authored 40 papers in differential geometry, pub-
lished between 1961 and 2010. His nine Ph.D. advisees, listed here along
with the year of receiving the degree, are: Czesław Konopka (1972), Edward
Głodek (1973), Andrzej Gębarowski (1975), Andrzej Derdziński (1976), Zbig-
niew Olszak (1978), Ryszard Deszcz (1980), Marian Hotloś (1980), Wiesław
Grycak (1984), and Marek Lewkowicz (1989).

Also, for many years, he ran the Wrocław seminar on differential geome-
try, first started by Władysław Ślebodziński, who had been Witold Roter’s
Ph.D. advisor. For more biographical information (in Polish), see Zbigniew
Olszak’s article [44].

This is a brief summary of Witold Roter’s selected results, divided into
four sections devoted to separate topics. Since he repeatedly returned to
questions he had worked on earlier, our presentation is not chronological.

1. Parallel Weyl tensor in the Riemannian case. The curvature
tensor R of a given n-dimensional pseudo-Riemannian manifold (M, g) is
naturally decomposed into the sum R = S + E +W of its irreducible com-
ponents [41, p. 47]. The first two correspond to the scalar curvature and
Einstein tensor (the traceless part of the Ricci tensor). The third component
is the Weyl tensor W , also known as the conformal curvature tensor, which
is of interest only in dimensions n ≥ 4 since, for algebraic reasons, W = 0
whenever n ≤ 3.

Viewed as a (1, 3) tensor field, so that it sends three vector fields trilin-
early to a vector field, W is a conformal invariant : it remains unchanged
when the metric g is replaced by the product φg, where φ is any smooth
positive function. Thus, W = 0 if the metric is conformally flat (meaning
that it is locally of the form φg, with flat metrics g). Conversely, for n ≥ 4,
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the condition W = 0 is also sufficient for conformal flatness, as shown by
Jan Arnoldus Schouten [45] back in 1921.

Pseudo-Riemannian manifolds of dimensions n ≥ 4 whose Weyl tensor
is parallel, that is, invariant under parallel transport (or, equivalently, sat-
isfies the condition ∇W = 0), were first studied in the early 1960s. One
necessarily has ∇W = 0 when the metric is conformally flat (W = 0), or
locally symmetric (∇R = 0). Most authors discussing manifolds or metrics
with ∇W = 0 referred to them as conformally symmetric, which may lead
to confusion, since the term conformal symmetry also appears in the litera-
ture with some different meanings. Therefore, following [37], we speak here
of manifolds or metrics with parallel Weyl tensor, using the acronym “ECS”
(short for essentially conformally symmetric) for those among them which
are neither conformally flat, nor locally symmetric.

Requiring the Weyl tensor W to be parallel is one of the most natu-
ral conditions that one may impose on the curvature tensor R of a given
pseudo-Riemannian manifold. By comparison, the irreducible component S
mentioned above is parallel if and only if the metric has constant scalar cur-
vature, while the equality ∇E = 0 is equivalent, in dimensions n ≥ 3, to
requiring that the Ricci tensor be parallel (which, in the Riemannian case,
characterizes Einstein metrics and—locally—their Cartesian products). Fi-
nally, it is precisely for locally symmetric manifolds that the irreducible
components are all parallel.

Returning to ECS metrics, one encounters two obvious questions: do they
exist at all, and can they be Riemannian (that is, positive definite)? Both
questions were answered by Witold Roter: the first one in the affirmative,
the second in the negative. A detailed presentation of the former result [14,
Corollary 3] will be given in Section 2; the latter [19, Theorem 2] can be
stated as follows.

Theorem 1.1. In a Riemannian manifold of any dimension n ≥ 4 the
Weyl tensor cannot be parallel except in the trivial case, that is, when the
metric is conformally flat or locally symmetric.

In other words, no ECS metric is positive definite.
The next paragraph provides a historical commentary clarifying the issues

of both Witold Roter’s priority in establishing the above result, and the full
credit that he deserves for it.

In the paper [17], presented on Sept. 30, 1975, Witold Roter proved a
weaker version of Theorem 1.1 (for n ≥ 5). The same weaker version was
independently obtained by Teturo Miyazawa [43], whose paper was, however,
submitted almost a year later, on Sept. 12, 1976.

Witold Roter’s proof for the more general case n ≥ 4 appeared in the
paper [19], joint with the author of this note. The latter’s contribution,



WITOLD ROTER (1932–2015) 3

however, dealt just with the Lorentzian case [19, pp. 258–259], and had
nothing to do with Theorem 1.1.

2. Local classification of ECS metrics. By ECS manifolds we mean
here—just as in Section 1—pseudo-Riemannian manifolds (M, g) of dimen-
sions n ≥ 4 satisfying, everywhere in M , the relations ∇W = 0 and W 6= 0,
while having ∇R 6= 0 at some point. We then also call g an ECS metric.

Nonexistence of positive definite ECS metrics is the conclusion of The-
orem 1.1, proved by Witold Roter [19, Theorem 2] back in 1976. He also
showed [14, Corollary 3], in 1973, that pseudo-Riemannian ECS metrics do
exist, in all dimensions n ≥ 4, and represent all indefinite metric signatures.

This last result is a direct consequence of the construction, described in
(1)–(2) below, of metrics with parallel Weyl tensor [14, Theorem 3]. It was
the first of two such constructions discovered by Witold Roter; a description
of the other one [36, Theorem 21.1], found by him jointly with the present
author, will be preceded by some definitions.

Both constructions use a notational convention according to which, if a
manifoldM is the Cartesian product of some factor manifolds, covariant ten-
sor fields on the factors, including functions, are treated— without changing
the notation—as tensor fields onM . The following descriptions are borrowed
from [37, formulae (3.1), (4.2)].

The parameters needed for the first construction consist of a C∞ function
f : I → R on an open interval I ⊂ R, a nondegenerate symmetric bilinear
form 〈 , 〉 on a real vector space V of dimension n − 2 ≥ 2, and a traceless
linear operator A : V → V , self-adjoint relative to 〈 , 〉. With t, s denoting
the Cartesian coordinates in R2, products of differentials standing for their
symmetric products, the symbol κ for the function I × R × V → R given
by κ(t, s, v) = f(t)〈v, v〉 + 〈Av, v〉, and δ for the flat “constant” pseudo-
Riemannian metric on V corresponding to 〈 , 〉, the n-dimensional pseudo-
Riemannian manifold

(1) (M, g) = (I × R× V, κ dt2 + dt ds+ δ)

has parallel Weyl tensor. Its conformal flatness (or local symmetry) is equiv-
alent to the condition A = 0 (or, respectively, to constancy of f).

Choosing the above parameters so that

(2) A 6= 0 and f is nonconstant,

we thus obtain an example of an ECS metric.
Let us now proceed with the definitions mentioned earlier. One calls a

connection on a manifold Q projectively flat if it is torsion-free and, locally,
has the same unparametrized geodesics as some (locally defined) flat connec-
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tions. By the Riemann extension of a connectionD onQ we mean the pseudo-
Riemannian metric hD on T ∗Q defined by requiring that all D-horizontal
vectors be null, while hDx (ξ, w) = ξ(dπxw) for every point x ∈ T ∗Q, every
vector w ∈ TxT ∗Q, and every vertical vector ξ ∈ Ker dπx = T ∗π(x)Q, where
π : T ∗Q→ Q is the bundle projection.

The parameters for the second construction are: a surface Q with a pro-
jectively flat connection D, a nonzero 2-form ζ on Q, parallel relative to D,
a nondegenerate symmetric bilinear form 〈 , 〉 on a real vector space V of
dimension n − 4 ≥ 0, a sign factor ε = ±1, and a twice contravariant sym-
metric smooth tensor field φ on Q (that is, a smooth section of [TQ]�2),
satisfying, along with the Ricci tensor ρD of D, the differential equation

(3) divD(divDφ) + (ρD, φ) = ε

(in coordinates: φjk,jk + Rjkφ
jk = ε). The isomorphism TQ → T ∗Q acting

on vector fields w via w 7→ ζ(w, ·) induces an obvious isomorphism [TQ]�2 →
[T ∗Q]�2, which we may use to identify φ with a smooth section τ of [T ∗Q]�2,
that is, with a twice covariant symmetric smooth tensor field τ on Q. In
coordinates, τjk = ζjlζkmφ

lm. Denoting by δ the flat “constant” pseudo-
Riemannian metric on V corresponding to 〈 , 〉, and by θ the function V → R
with θ(v) = 〈v, v〉, we now define the n-dimensional pseudo-Riemannian
manifold

(4) (M, g) = (T ∗Q× V, hD − 2τ + δ − θρD)

with nonzero parallel Weyl tensor, which is locally symmetric if and only if
D has parallel Ricci tensor (DρD = 0). Choosing D so that

(5) DρD 6= 0 somewhere in Q,

we thus obtain another class of examples of ECS metrics.
It is of course a trivial exercise to verify that the two families of examples,

(1)–(2) and (4)–(5), actually consist of ECS metrics. These examples are,
however, locally universal : Witold Roter proved, jointly with the present au-
thor, the following classification result [36, Theorem 21.1], [39, Theorem 4.1]:

Every ECS manifold has, locally, the form (1)–(2) or (4)–(5), with pa-
rameters satisfying the conditions listed above.

This result was obtained in the years 2006–2007. A significant part of it
is, however, due to Witold Roter alone. As early as 1973 he showed [14, The-
orem 3] that at points of general position—where the Ricci tensor and its
covariant derivative are both nonzero—an ECS manifold having the addi-
tional property of Ricci-recurrency must locally, up to isometry, arise from
the construction (1)–(2).

Ricci-recurrent metrics will be discussed in Section 4.
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The two families of examples, (1)–(2) and (4)–(5), are easily verified to
be mutually disjoint.

3. Compact ECS manifolds. Recall that ECS metrics are the pseudo-
Riemannian metrics that have parallel Weyl tensor without being confor-
mally flat or locally symmetric.

Can such a metric exist on a compact manifold? Witold Roter and the
present author showed that the answer is ‘yes’ [40]:

Theorem 3.1. In every dimension n ≥ 5 such that n ≡ 5 (mod 3)
there exists a compact ECS manifold with any prescribed indefinite metric
signature, diffeomorphic to a nontrivial torus bundle over the circle.

Note that, just like conformal flatness, the property of having parallel
Weyl tensor is not generally preserved by the Cartesian product operation,
so that there is no trivial way of extending the above existence result to other
dimensions. In particular, the existence problem for n = 4 is still open. It is
known, however, that the presence of an ECS metric on a given compact man-
ifold M imposes specific restrictions on its fundamental group π1M , Euler
characteristic χ(M), and real Pontryagin classes pi(M) ∈ H4i(M,R). Fur-
ther topological consequences arise in the Lorentzian case. Namely, Witold
Roter and the present author proved the following facts [38]:

Theorem 3.2. Let (M, g) be a compact ECS manifold. Then the funda-
mental group π1M is infinite, χ(M) = 0, and pi(M) ∈ H4i(M,R) is zero
for all i ≥ 1.

Theorem 3.3. All four-dimensional Lorentzian-signature ECS mani-
folds are noncompact.

Theorem 3.4. If (M, g) is a compact Lorentzian ECS manifold, then
up to a two-fold covering, M is the total space of a bundle over the circle
with a fibre that carries a flat torsion-free connection admitting a nontrivial
parallel vector field.

The last two results show that—at least for the Lorentzian signature—
some properties of ECS manifolds whose existence is guaranteed by Theo-
rem 3.1 are not completely accidental.

4. Recurrent metrics and their generalizations. A tensor field H
on a manifold with a fixed torsion-free connection ∇ is called recurrent if H
are ∇vH are linearly dependent at every point, for every vector field v. This
is equivalent to the relation ∇H = ξ ⊗H at points where H 6= 0, for some
1-form ξ. Similarly, 2-recurrency of a tensor field H relative to ∇ means
that ∇2H = τ ⊗H everywhere in the set given by H 6= 0, with some twice
covariant tensor field τ .
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By a recurrent or Ricci-recurrent , or conformally recurrent manifold one
means a pseudo-Riemannian manifold (M, g) whose curvature tensor R, or
Ricci tensor ρ or, respectively, Weyl tensor W is recurrent relative to the
Levi-Civita connection ∇.

Witold Roter’s three earliest papers [1]–[3] dealt with manifolds that are
recurrent, or have a 2-recurrent curvature tensor. He generalized there some
results of Nikolay S. Sinyukov [46] and André Lichnerowicz [42]. It is also
worthwhile to mention his six much later papers [16], [25]–[28], [32], devoted
to conformally recurrent metrics. They contain, in particular, constructions
of nontrivial examples of such metrics [16], [25], and various results on con-
formal relations between them [26], [28], [32]. In [27] Witold Roter introduced
the class of simple conformally recurrent metrics, defined to be locally con-
formal to metrics with nonzero parallel Weyl tensor, gave examples of such
metrics which are not recurrent, and proved that—except in the locally sym-
metric case —their scalar curvature is identically zero.
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