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1. Introduction

The aim of the present paper is to study some local and global questions
concerning four-dimensional Einstein and Kâhler manifolds satisfying
various conformally invariant conditions.
For an oriented Riemannian four-manifold (M, g), the bundle of 2-

forms over M splits as the Whitney sum 039B2M = 039B+ + 039B-, 039B± being
the eigenspace bundles of the Hodge star operator * E End A 2 M. The
Weyl conformal tensor W~End 039B2M leaves A * invariant, and the re-
striction W± of W to A* may be viewed as a (0,4) tensor, operating
trivially on A + . The oriented Riemannian four-manifold (M, g) is said to
be self-dual (resp., anti-self-duap ([2]) if W - = 0 (resp., W+ = 0).
Considering Kâhler metrics, we shall endow the underlying manifold
with the natural orientation and speak, e.g., of self-dual Kâhler mani-
folds (of real dimension four).

Section 3 of this paper deals with conformal changes of Kâhler

metrics in dimension four. We start by observing (Proposition 3) that,
for such a Kâhler metric g with scalar curvature u, the conformally
related metric g = g/U2 (defined wherever W+ ~ 0) satisfies the condi-
tions 5w+ = 0 (Î being the formal divergence operator associated to g)
and

i.e., W+ ~End039B+ has, at each point, less than three distinct eigenvalues.
Conversely, for any metric g satisfying these two conditions, a natural

A part of this work was done under the program Sonderforschungsbereich "Theore-
tische Mathematik" (SFB 40) at the University of Bonn.
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conformal change, defined wherever W+ ~ 0, leads to a Kàhler metric
(Proposition 5). Next we characterize, at points where W+ ~ 0, those
four-dimensional Kâhler metrics which are locally conformally Ein-
steinian (Proposition 4), as well as the Einstein metrics which are locally
conformally Kählerian (Proposition 5 and Remark 4). The latter result,
local in nature, has an additional consequence ((iv) of Proposition 5): A
four-dimensional Einstein manifold (M, g) satisfying condition (1) (which is
necessary and, generically, sufficient for g to be locally conformally
Kâhlerian), has either W+ = 0 identically, or W+ ~ 0 everywhere.

In Section 4 we study four-dimensional Kâhler manifolds which are
self-dual for the natural orientation. We prove there (Corollary 3 and
Proposition 6) that, except for some trivial cases, self-dual Kâhler

metrics coincide, locally, with (four-dimensional) metrics of recurrent
conformal curvature. The main result of Section 4 is Theorem 1, stating
that any compact self-dual Kâhler manifold is locally symmetric. This as-
sertion fails, in general, for non-compact manifolds (Remark 6). We also
prove (Proposition 7) that any compact analytic self-dual manifold, such
that l5W = 0, must be conformally flat or Einsteinian.

Section 5 of this paper is concerned with four-dimensional compact
oriented Einstein manifolds satisfying condition (1) (cf. assertion (iv) of
Proposition 5, mentioned above). All known examples of compact
orientable Einstein four-manifolds satisfy (1) for a suitable orientation.
Our main result (Theorem 2) says that up to a two-fold Riemannian
covering, every compact oriented Einstein four-manifold (M, g), having pro-
perty (1), belongs to one of the following three classes: (i) anti-self-dual
Einstein manifolds; (ii) non-Ricci-flat Kâhler-Einstein manifolds; (iii) M =
- S2 x S2 or M = CP2#(-kCP2), 0 ~ k ~ 8, and g is Hermitian (but
not Kählerian) for some complex structure, globally conformal to a Kâhler
metric and admits a non-trivial holomorphic Killing vector field. Known
examples show that each of these three cases may really occur (Remark
7). As a consequence, we obtain a finiteness theorem for compact four-
dimensional Einstein manifolds admitting sufficiently many local isometries
with fixed points (Theorem 3).
The author wishes to express his gratitude to Professors Alfred Gray,

Nigel J. Hitchin and Nicolaas H. Kuiper for informations and com-
ments which made it possible to put this paper in its final form. Special
thanks are due to Professor Jean Pierre Bourguignon, who read the first
version of the manuscript, suggesting many improvements of the text,
and observed that the former assertion of our Theorem 1 might be shar-
pened (Lemma 3).
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2. Notations and preliminaries

Throughout this paper we shall use the symbols V, R, r, u and W for
the Riemannian connection, curvature tensor, Ricci tensor, scalar cur-
vature and Weyl conformal tensor, respectively, of a given Riemannian
metric g on a manifold M. For a metric denoted by g, the corresponding
symbols (including ô and 0394) will be barred; however, for the pull-back
metric on any covering space of (M, g), we shall use the symbol g again.
Instead of g(Y, Z) we shall sometimes write Y, Z). Our conventions are
such that, in local coordinates, rij = Rkikj = gpqRipjq, u = gvry and

where n = dim M. Using a fixed metric g, we shall identify covariant
vectors with contravariant ones, tensors of type (0,2) with those of
type (1, 1) etc., without any special notation. In particular, a (o, 2) tensor
T operates on any tangent vector Y according to the formula

An arbitrary vector field Y satisfies the Ricci identity
= Rijkp Yp, which implies the Weitzenbôck formula

The Ricci identity for any (0, 2) tensor field T can be written as

so that, in view of the first Bianchi identity,

Denoting by 039Bm = 039BmM the bundle of exterior m-forms over (M, g),
we use the standard conventions for the inner product and exterior pro-
duct of forms:
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for 03B6, ~~039Bm, 03B8~039Bl, the latter summation being taken over all permuta-
tions j1,...,jm, k1,...,kl of {1,...,m+l} with j1...jm and

kl  ...  kl. Thus, for X, Y~039B1, 03B6~039B2, we have

where (X is defined according to (3), i.e., (X = -lX03B6. If the n-

dimensional Riemannian manifold (M, g) is oriented, we shall denote by
YEAn the corresponding volume form and by dV the measure on M
determined by K The Hodge star operator * : 039Bm ~ 039Bn-m is given by
(* ()im+ i...i" = (m!)-1 Vi1...in03B6i1...im, i.e., *(el A ... A em) = em+1 A ... A en
for any oriented (i.e., compatible with the orientation) orthonormal
basis el,..., en of a tangent space. The composite **:039Bm ~ 039Bm equals
(-1)m(n-m)id. The Hodge star is also characterized by C n ri = 03B6, *~&#x3E;V
for 03B6~039Bm, ~~039Bn-m, so that 03B6, *~&#x3E; = (-1)m(n-m)*03B6,~&#x3E;. Thus, in the
case where n is a multiple of four, *:039Bn/2 ~ 039Bn/2 is a self-adjoint invol-
ution and hence 039Bn/2 splits orthogonally into the Whitney sum 039Bn/2

= 039B+ + 039B-, 039B± = 039B±(M,g) being the (±1)-eigenspace bundle of

* c- End A n/2 . For x~M, any oriented orthonormal basis el,..., en of

TxM gives rise to a basis el 039B ei2 A ... A ein/2 + * (e1 A ei2 A ... A ein/2) of
039B±, labelled by all sequences of integers 2  i2  ...  in/2 ~ n. Conse-
quently, dim 039B± = 1 2(n n/2).
The exterior derivative d03B6 of any smooth m-form ( on a Riemannian

manifold (M, g) is given by (doi....i- - 03A30~s~m(-1)s~is03B6io...i^s...im. On
the other hand, for an arbitrary smooth tensor field T of type (0, m) on
M, we define its divergence b T to be the (0, m - 1) tensor field with

(03B4T)i2...im = -~pTpi2...im, (03B4T = 0 if m = 0), which, in the case where
T is an exterior m-form, gives (-1)mn03B4T = * d * T. The Laplace operator
J = d03B4 + ôd acts on any function f by d f = -gij~i~jf.
From Green’s formula together with (4) one obtains immediately, for

any vector field Y on a compact oriented Riemannian manifold (M, g),
the well-known equality

(cf. [5], [21] and [20], pp. 249-251).
For any Riemannian manifold (M, g), the second Bianchi identity

easily implies the following divergence formulae: -~pRpijk = ~krij -
- Vjr ik,
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where

Any (Q, 4) tensor A on a Riemannian manifold (M, g), having the pro-
perties Ahijk = - Aihik = Ajkhi can be considered as a self-adjoint endo-
morphism of A2M by the formula A(03B6)ij = 1 2Aijpq03B6pq. For two such ten-
sors A, C, we set A, C) = g(A, C) = 1 4AhijkChijk, so that, if A and C

commute (i.e., AC E End A 2 M is self-adjoint), we have (A, C) =
= Trace(A C). Examples of (o, 4) tensors with these properties are R, W
and, if n = dim M = 4 and M is oriented, the volume element V (the
corresponding endomorphism being * c- End A2). As a trivial conse-

quence of (6) and (2) we obtain, for any 2-form 03B6, the formula

Formula (11) is particularly interesting for n = 4, since it does not then
involve the Ricci tensor explicitly.

In an oriented four-dimensional Riemannian manifold (M, g), the

endomorphisms W and * of 039B2M commute, which follows from the
algebraic properties of W ([29], Theorem 1.3). Consequently, W leaves
the subbundles 039B± invariant. The restrictions W± of W to A± satisfy
the relation

(cf. [29], l.cit.). Whenever convenient, we shall consider W± as (o, 4)
tensors, i.e., as endomorphisms of A 2 M with W±|039B~ = 0. In this sense,
W = W+ + W - . Since 039B± are invariant under parallel displacements,
we have

for any tangent vector Y Consequently,

In the case where the oriented Riemannian four-manifold (M, g) is com-
pact, one can use the Chern-Weil description of characteristic classes
([25], pp. 308, 311) to obtain the relations Sn2x(M) =
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= lm Trace(R * R*)dV(cf. [29], p. 359 and [16], p. 48) and 1203C0203C4(M)=
= ~M Trace(RR*)dV = ~MW,W*&#x3E;dV (cf. [16], p. 48) for the Euler
characteristic x(M) and the signature i(M) of M. Transforming the in-
tegrands, one easily obtains

and

As an immediate consequence of (15) and (16), we have the Thorpe in-
equality 3|03C4(M)| ~ 2X(M), valid for any compact orientable Einstein
manifold of dimension four. It is also immediate that, for such a mani-
fold, the strict inequality

holds unless r = 0 and W+ = 0 for some orientation (cf. [31], [17] and
[16]).
Consider now a conformal change 0 = e03C3g of the Riemannian metric

g on an n-dimensional manifold M, J being a smooth function on M.
The Weyl tensor W of type (1, 3) is conformally invariant, so that, for the
Weyl tensor of type (2, 2), W = e-03C3W~End039B2M and

while the volume element Y (defined if M is oriented) and the divergence
l5Wof W, viewed as tensors of types (0, n) and (0,3), respectively, trans-
form like 5w = 03B4W - 1 2(n - 3)W(~03C3,·,·,·) and V = en03C3/2V, which implies
that, for n ~ 0(mod4), * = * ~ End 039Bn/2M and 039B±(M, g) = 039B±(M,g).
Therefore, if n = 4 and M is oriented, (13) yields

For two conformally related metrics g and g = e"g, a tangent vector Y
and a smooth 2-form 03C9, we have
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the vector Y in the last term being viewed as a 1-form with the aid of g.
On the other hand, for the conformal change written as 9 = h - 2g, h a
non-zero function on the n-dimensional manifold M, the transformation
rules for the Ricci tensor and for the scalar curvature are

Suppose now that M is a compact oriented four-dimensional mani-
fold. For any Riemannian metric g on M, the 4-form g( W, W)V is inva-
riant under conformal changes of g. Therefore, the formula

defines a conformally invariant functional in the space of all

Riemannian metrics on M. It is easy to verify that the critical points of
(22) are characterized as follows.

LEMMA 1 (R. Bach, [3]): A metric g on a compact oriented four-
manifold M is a critical point of (22) if and only if its Bach tensor B, given
by the local coordinate formula

vanishes identically.

REMARK 1: From the conformal invariance of (22) it is clear that con-
dition B = 0 should be preserved by conformal changes of metrics (in
dimension four); in fact, B = e-(1B when g = e(1g. On the other hand, (9)
implies B = 0 for any Einstein metric; thus, B = 0 whenever the metric
is locally conformally Einsteinian.

The Bach tensor of a metric g (n = 4) can also be written as
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On the other hand, using (9) and the Ricci identity (5) with T = r, we
obtain vpvkr;p - 1 2~j~ku = ~p~krjp - VkVPrjp = rPqRpkjq + rprpk· Con-

sequently,

and, by (2), 6rpqWpkjq = 6VPVkrjp - 3VkViU + 4urkj - 12rkPrpj +
+ (3|r|2 - U2)gkj’ Formula (24) is now immediate from (25) and (26).
Let (M, g) be an oriented Riemannian four-manifold. For x~M,

denote by Px the set of all oriented orthonormal bases of TxM. To each
e = (el, e2, e3, e4) E Px, we can assign the orthogonal basis F±x(e) of A ’ X ,
formed by elements

of length J2. Since the assignment F±x is continuous, each of 039B ± has a
preferred orientation. Let Qx be the set of all orthogonal bases of
039B2TxM, consisting of an oriented basis of 039B+x and of an oriented basis of
039B-x, with all vectors of length J2. The group SO(3) x SO(3) acts on Qx
freely and transitively and it is easy to verify that the map Fx =
= (Fx+, F-x): Px - Qx is equivariant with respect to the two-fold covering
homomorphism SO(4) - SO(3) x SO(3). Thus, Fx is a two-fold covering.
Consequently, we obtain

LEMMA 2 (cf. [2]): Suppose that (M, g) is an oriented Riemannian four-
manifold and x~ M. Then, every pair of oriented orthogonal bases, one of
039B+x and one of A;, consisting of vectors of length J2, is of the form (27)
for precisely two oriented orthonormal bases of TxM, and

(i) A: and 039B-x are mutually commuting ideals, both isomorphic to

so(3), in the Lie algebra 039B2TxM ~ so(4) of skew-adjoint endomorphisms
of Tx M.

(ii) Elements of length J2 in A: or in 039B-x coincide with the almost

complex structures in TxM, compatible with the metric.
(iii) Every oriented orthogonal basis co, il, 0 of A± such that Icol = |~|

101 = , satisfies the conditions W2 = q2 - 02 = -id, 03C9~ = 0 =

- rico, so that it forms a quaternionic structure in TxM.
(iv) Given elements 03C9~039B+x, w - E A; of length .,F2, their composite

03C903C9- = 03C9-03C9 is a self-adjoint, orientation preserving involution of TxM,
distinct from + id, whence its ( ± 1)-eigenspaces form an orthogonal de-
composition of TxM into a direct sum of two planes.
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Let us again consider an oriented Riemannian four-manifold (M, g).
For x E M, we can choose an oriented orthogonal basis 03C9, q, 8 (resp.,
03C9-, ~-, 03B8-) of A ’ (resp., 039B-x), consisting of eigenvectors of W such that

Consequently, we have, at x, a relation of the form

À, y, v (resp., À-, Jl-, v-) being the eigenvalues of W+x (resp., W-x). Thus,
BW+12 = Â2 + Jl2 + V2 and, in view of (12), we have

An immediate consequence of (29) together with Lemma 2 is the well-
known formula WkpqiWjkpq = 1 Wl2gij, valid for any Riemannian four-
manifold ; similarly, (29) yields

Let MW be the open dense subset of M, consisting of points at which the
number of distinct eigenvalues of W is locally constant. In Mw, the
pointwise formula (29) is valid locally in the sense that the mutually
orthogonal sections w, il, 0 of 039B+, W -, YJ -, e - of ll - and the functions

À, 03BC,..., v -, satisfying (28H30), may be assumed differentiable in a

neighbourhood of any point of Mw. Since 039B± are invariant under paral-
lel displacements, in a neighbourhood of any x E Mw we have (29) and

for some 1-forms a, b, c defined near x. (Clearly, similar formulae hold
for Vco ~03B8-). Note that (32) and (29) remain valid after any simul-
taneous cyclic permutation of the three ordered triples (03C9, il, 0), (03BB,03BC, v),
(a, b, c), and, therefore, this invariance will hold for all consequences of
(32). The Ricci identity (5), applied to T = co, yields, in view of (32), (2),
(29) and Lemma 2,



414

Transvecting this equality with 0" and applying the cyclic permutations
mentioned above, we obtain

Using now (29), (32) and (iii) of Lemma 2, we obtain

Consequently, the oriented four-manifold (M, g) satisfies the condition
àW+ = 0 if and only if, in the above notations, relations

hold (locally) in Mw. For any 2-form ( and a 1-form Y, we have 03B4(03B6Y)
= 03B403B6, Y&#x3E; - 03B6, dY&#x3E;. On the other hand, (7) and (33) imply ~, db&#x3E;
= a, ~c&#x3E; + 203BC + u/6 and 03B8, de&#x3E; = - a, Ob) + 2v + u/6, while (32)
yields 03B4~ = - wc + 0a and 03B403B8 = cob - ~a. Therefore, 03B4(03B8c) = - b, wc)
+ a, qc) + a, 03B8b&#x3E; - 2v - u/6 and 03B4(~b) = - b, mc) - a, ~c&#x3E;
- a, 03B8b&#x3E; - 2p - u/6. Consequently, for any oriented Riemannian four-
manifold such that t5W+ = 0, we have, from (34), the following ex-
pression for 4À = t5 d03BB:
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3. Kàhler manifolds of real dimension four and conformal deformations

By a Kâhler form in a Riemannian manifold (M, g) we shall mean a
parallel 2-form co on M such that the corresponding section of End TM
is an almost complex structure on M. The triple (M, g, w) will then be
called a Kâhler manifold. For Kâhler manifolds of any dimension n ~ 4,
we have the following result, proved by Y. Matsushima [24] in the com-
pact case. The local argument given below is due to S. Tanno [30].

PROPOSITION 1 (Matsushima, Tanno): Let (M, g, ce) be a Kâhler mani-
fold of dimension n ~ 4. If the divergence l5W of the Weyl tensor vanishes
identically, then the Ricci tensor r is parallel.

PROOF: Formula (9) implies the Codazzi equation VjPki = V¡Pkj, P
being given by (10). Since P commutes with the Kâhler form co, the local
coordinate formula Tij = Piq03C9qj defines an exterior 2-form T. The ex-

pression ~kTij = (~kPiq)03C9qj is now symmetric in k, i and skew-symmetric
in i, j, and so it must be zero. Thus, VP = 0 and, by (9), 0 = 2(n - 2)
(n - 3)-103B4P = (2 - n)(n - 1)-1~u, so that Vr = 0, which completes the
proof.

Suppose now that (M, g, co) is a Kâhler manifold of real dimension

four. For the natural orientation, co is a section of A +. At any point
x E M, WX can be completed to an orthogonal basis cox, ri, 0 of A’ with
|~| = |03B8| = fi. It is clear that the tensor Cx = ~~~ + 03B8~03B8 does not
depend on the choice of 11 and 0, and that the tensor field C on M
obtained in this way is parallel. We can now define the non-trivial paral-
lel tensor field

Viewed as an endomorphism of A 2 M, A is given by ( - 03BE+, w)w/8 -
- 03B6+/12, 03B6+ being the 039B+ component of (EA2M.
The following proposition is well-known (cf. [16], [27]).

PROPOSITION 2: Let (M, g, co) be a Kâhler manifold of real dimension
four, oriented in the natural way. Considering W+ as an endomorphism of
039B2M, trivial on 039B-M, we have

where u is the scalar curvature and A denotes the non-trivial parallel
tensor field given by (36). Moreover,
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(i) #spec039B+(W+) ~ 2, i.e., the endomorphism W+ of A + has, at each
point, less than three distinct eigenvalues;

(ii) U2 = 24|W+|2;
(iii) u03B4W+ + W+(~u,·,·,·) = 0.

PROOF: Since W(03C9) = u03C9/6 by (11), we can find, locally in Mw (nota-
tion of Section 2), 2-forms ~, 03B8, 03C9-, ~-, 03B8- such that 03C9, ~, 03B8 (resp.,
03C9-, ~-, 03B8-) form an oriented orthogonal frame field for A’ (resp., for
039B-) and formulae (28H30) hold for certain functions 03BB, 03BC, ..., 03BD-. Thus,
03BB = u/6. Now, as Vco = 0, we have b = c = 0 in (32), so that (33) yields

Fix x E MW. Relation rco = cor, valid for any Kâhler manifold, implies
that rx has two double eigenvalues a, fl (which may coincide). Given
YE TxM with Y ~ 0 and rx(Y) = 03B1Y, both Y and 03C9Y lie in the a-

eigenspace of rx and so ~Y, 03B8Y lie in the 03B2-eigenspace. Evaluating (37) on
Y, we obtain u/3 - 2p = u/3 - 2v = a + fi = u/2, so that p = v = - u/12.
Thus, 2W+ = Âco0co + 03BC~~~ + 03BD03B8~03B8 = 2uA. Assertions (i)-(iii) are

now immediate, which completes the proof.

The following lemma is a direct consequence of (15) and (16) together
with (ii) of Proposition 2. It implies that Cp2 does not admit a non-
standard self-dual Kâhler metric, which is crucial for the proof of
Theorem 1 in Section 4. The author is obliged to Jean Pierre Bourguig-
non for bringing this lemma to his attention.

LEMMA 3: Every compact Kâhler manifold of real dimension four, endo-
wed with the natural orientation, satisfies the equality 16n2(Jt(M)
- x(M)) = ~M|r-ug/4|2 dV- 6~M|W-|2 dV.

REMARK: Lemma 3 implies the inequality 303C4(M) ~ x(M) for any com-
pact Kâhler-Einstein four-manifold, due to H. Guggenheimer (cf. [14],
[33]).

From Proposition 2 it follows that, for any four-dimensional Kâhler
metric g, the conformally related metric u-2g has some interesting pro-
perties. Namely, we have

PROPOSITION 3: Suppose that (M, g, úJ) is a Kâhler manifold of real di-
mension four, oriented in the natural way, and let Mw+ be the open set of
points at which W+ ~ 0 (i.e., u ~ 0).
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(i) If a metric of the form g = e(1g, defined in an open connected subset
of Mw+, satisfies 03B4W+ = 0, then the function e(1 is a constant multiple of
u-2.

(ii) The metric g = u-2g, defined in Mw+, has the following properties:
5W+ = 0, #spec(W+) ~ 2 (i.e., W+~End039B+ has at most two distinct
eigenvalues at each point) and g(W+, W+) = u6/24, so that, in terms of g,
g is given by g = (24g(W+, W+))1/3g.

PROOF: Assertion (ii) is immediate from Proposition 2 together with
(19) and (18). On the other hand, if two metrics, g and g = e(1g, satisfy
9«" = 5W+ = 0, then, by (19) and (31), Va = 0 wherever W+ ~ 0,
which completes the proof.

REMARK 2: Every conformally flat Kâhler manifold of dimension

greater than four is flat ([32]; this follows also easily from Proposition
1). On the other hand, the Riemannian product of two surfaces with
mutually opposite constant curvatures is conformally flat and

Kählerian. It is well-known that, up to local isometries, these products
are the only conformally flat Kâhler four-manifolds, which also follows
immediately from Propositions 1 and 2.

REMARK 3: Given a Kâhler form ro in a Riemannian four-manifold

(M, g), - co is another Kâhler form, corresponding to the complex con-
jugate of the original complex structure of M. However, there are no
more Kâhler structures in (M, g), unless r = 0 and W  = 0, or (M, g) is
locally a product of surfaces. This (well-known) statement can be veri-
fied as follows. Let il be a parallel 2-form, not collinear to 03C9. We may

assume ~~039B+ or ri E ll - and Itll = 2, 03C9, ~&#x3E; = 0. If ~~039B+, then 039B+

admits, locally, orthogonal parallel sections co, tl, 0 with |03B8| = 2, which
implies r = 0 and W + = 0 (for instance, (11) yields 6W+ = u·id039B+, so
that u = 0 and W+ = 0 by (12), while r03C9 = cvr and (33) with = Jl = v
= 0 and a = b = c = 0 give r = 0). In the case where fi E A -, (iv) of
Lemma 2 implies the existence of a parallel plane field in M, so that g is
locally reducible.

According to Proposition 3, every Kâhler metric (in dimension four)
with w+ =1= 0 is conformal, in an essentially unique way, to a metric
such that b W+ = 0. The latter relation is satisfied, e.g., by every Einstein
metric (in view of (9) and (14)). We are now going to characterize, in the
generic (four-dimensional) case, those Kâhler metrics which are locally
conformally Einsteinian. By Remark 1, a necessary condition is that the
Bach tensor of such a metric is zero; therefore, we start from studying
Kâhler metrics with B = 0.
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LEMMA 4: Let (M, g, 03C9) be a Kâhler manifold.
(i) If dim M = 4, then

(ii) Denoting by p = r03C9 = cor the Ricci form, we have

PROOF: To prove (i) one can proceed by a direct calculation, using a
diagonal matrix representation for r and the fact that r has two double
eigenvalues. As for (ii), relation dp = 0, satisfied by every Kâhler metric,
yields Vppij = VjPip - ~i03C1jp, so that vpvppi; = ~p~j03C1jp - VPViPjp and
vpvjpip - 2 ppij = 1 2(~p~j03C1ip + VPVip jp), the last term being just
VPViPjp symmetrized with respect to i, j. The Ricci identity (5) with
T = p implies VPVipjp = ViVPpjp + Rpijqpqp + r9pj,,. The last two terms
of this expression being skew-symmetric in i, j (as rp = pr), we obtain, by
its symmetrization, ~p~j03C1ip + VPVipjp = ViVPPjp + VjVPpip. From (9), we
have 203B403C1 = a)(Vu), so that 2~iVp03C1jp = WjpVPViU, which completes the
proof.

LEMMA 5: For any Kâhler four-manifold (M, g, co), the following two
conditions are equivalent:

(i) The Bach tensor B is zero;
(ii) 2V2U + u· r = (u2/4 - 0394u/2)g.

PROOF: Formula (24) yields 12wikB’ = 12~p~j03C1ip - 6VPVppij -
- 403C9ip~p~ju- L1u’ wij + 03C9ik(4urkj- 12r kprpj + (31rl2 - u2)b’), so that,
by Lemma 4 together with the relation p = r03C9 = cor, we have

Now, if (ii) holds, then V2U commutes with 03C9, since so does r, and B = 0

in view of (39). Conversely, if B = 0, then, by (38), co commutes with
aWV2u + 3(~2u)03C9, i.e., 0 = 03C9(03C9(03C9~2u ~ 3(V2u)w) - (03C9~2u ~ 3(V2u)w)w) =
= 2(03C9~2u - (V2 u)co). Equality (39) implies now (ii), which completes the
proof.
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We can now obtain the following characterization of Kâhler four-
manifolds which are locally conformally Einsteinian, valid wherever
W+ ~ 0 (i.e., u =1= 0).

PROPOSITION 4: Let (M, g, 03C9) be a Kâhler manifold of real dimension
four, oriented in the natural way. The following four conditions are

equivalent:
(i) The Riemannian metric u-2g, defined wherever W+ ~ 0, is

Einsteinian;
(ii) I n the open set where W+ ~ 0, g is locally conformal to an Einstein

metric;
(iii) The Bach tensor B vanishes identically ;
(iv) 2V2u + u. r = (u2/4 - 0394u/2)g.

Moreover, either of (ihiv) implies the condition
(v) 03C9(~u) is a holomorphic Killing vector field and

for some real constant K.
On the other hand, if u is not constant, then (v) implies (iHiv).

PROOF: Implications (i) ~ (ii) ~ (iii) ~ (iv) are immediate from Remark
1 and Lemma 5. On the other hand, in view of (21), (iv) implies (i).
Assuming (iv) again, we see (cf. (21)) that the left-hand side of (40) is
nothing but the constant scalar curvature of the Einstein metric u-2g.
Relation 03C9~2u = (V2u)w, immediate from (iv), means just that the tensor
field V(w(Vu)) is skew-adjoint, i.e., X = co(Vu) is a Killing field. It is

holomorphic since Lxco = Vxco + co(VX)* + (VX)co (by our convention
(3), VyX = (~X)*Y for any X, Y) and the tensor field VX = -(~X)* =
- wV2u commutes with 03C9, which proves (v). On the other hand, assum-
ing (v), we have, by (4),

and, for the Killing field X = m(Vu), rX = 03B4~X. Therefore r(Vu) = -
-rro(X) = -rorX = -03C9(03B4~X) = -03B4~03C9(X) = 03B4~2u, which, together
with (41), yields 2ôV2U = V4u and r(Vu) = ~0394u/2. The symmetric tensor
field T = 2~2u + u· r - (u2/4 - 0394u/2)g must, therefore, satisfy the re-

lation -12T(~u) = -12~(|~u|2) - 6u~0394u + 3u2 · Vu - 6Au Vu =
= V(u’ - 6uAu - 121Vu12) = 0, i.e., 1l:Vu) = 0. If u is not constant, then
the holomorphic field Vu is non-zero on a dense subset of M, so that T
is singular everywhere. However, Trace T = 0 and T commutes with m,
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since so does V2u by our hypothesis. Thus, the singular tensor T has, at
any point, two mutually opposite double eigenvalues, which implies
T = 0. This completes the proof.

The following local result is a converse of Proposition 3.

PROPOSITION 5: Let (M, g) be an oriented Riemannian four-manifold
such that £5W+ = 0 and #spec(W+) ~ 2, i.e., W+, operating on 039B+, has
less than three distinct eigenvalues at each point. We have

(i) Denote by Mw+ the open set of points with W+ -1= 0. The metric
g = (24g(W+, W+))1/3g, defined in Mw+, is locally Kiihlerian in a manner
compatible with the orientation. The (local) Kâhler form C-0 for g can be
defined by

where, for x~MW+, 03C9x~039B+x is an eigenvector of W+x corresponding to the
(unique) simple eigenvalue and normed by g(03C9x, wx) = 2. This way, w is
defined, up to a sign, at each point of Mw+. The scalar curvature il is
characterized by

and sign(ù) = sign(det W+) (i.e., the sign of the simple eigenvalue of W+ in
039B+); in other words, ù = 25/9. 31/3(det W+)1/9, and g = g/Ü2.

(ii) The conformal deformation of g into a Kâhler metric is essentially
unique, i.e., if g = elTg is a metric on an open connected subset of M.,,
admitting a Kâhler form in 039B+, then elT is a constant multiple of
(g(W+, W+»113.

(iii) g(W+, W+) is constant if and only if VW+ = 0.
(iv) If, moreover, g is an Einstein metric, then either W+ = 0 identical-

ly, or W+ ~ 0 at every point of M.

PROOF: Locally, in Mw+, we have relations of the form (28H30), (32),
where co, Â,... etc. are differentiable and co, il, 0 (resp., 03C9-, ~ -, 03B8-) is an
oriented orthogonal frame field for 039B+ (resp., for 039B-). Since

#spec(W+) ~ 2, we may set, without loss of generality, 603BB = -1203BC =
-12v = 03BE for some function ç. Note that ç3 = 25 . 33 det W+, so that 03BE3
is well-defined and smooth everywhere in M. We have, clearly,
24g(W+, W+) = 03BE2 and g = 03BE2/3g. Since £5W+ = 0, formula (34) yields
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We assert that, for any tangent vector Y,

In fact, let us denote by a the 2-form occurring on the left-hand side of
(45). For any 03BE~039B-, we have (’, Vyw) = 0 and, by (i) of Lemma 2, (co
= 03C903B6. Hence, by (7), 03B6, 03B1&#x3E; = (Vç,’wY - 03C903B6Y&#x3E; = 0. Consequently,
03B1~039B+. On the other hand, relations qm = - 0, 0m il and 03C92 = -id
together with (32) and (44) imply ~, 03B1&#x3E; = Y, 603BEc + 20(Vj)) = 0 and,
similarly, (0, a) = (w, a) = 0, which proves (45). However (cf. (20)), (45)
means just that Vii = 0, where C-0 is given by (42) (i.e., w = ç2/3W) and V
is the Riemannian connection of g = ç2/3 g. Thus, since C-0 c- A+ and

g(w, w) = 2, C-0 is a Kâhler form for g, compatible with the prescribed
orientation. By Proposition 2, the simple eigenvalue of W+ in 039B+ is û/6,
while that of W+ is 03BE/6. The relation W+ = 03BE-2/3W+ ~ End 039B+ yields
now ù = 03BE1/3, which implies (i). The uniqueness assertion of (ii) follows
easily from (i) of Proposition 3 together with Proposition 2. To prove
(iii) note that, if g(W+, W+) is constant, then, by (i), g is a Kâhler metric
with constant scalar curvature and ~W+ = 0 in view of Proposition 2.
Suppose now that g is an Einstein metric. We may assume that W+ is
not parallel. By (iii) and (i), g is a locally conformally Einsteinian Kâhler
metric with non-constant scalar curvature Ü. In view of Proposition 4,
X = 03C9(~u) is a non-trivial Killing vector field for g and hence also for
g = O/û2. In terms of g, X is given by

As shown by DeTurck and Kazdan [13], every Einstein metric is analy-
tic in suitable coordinate systems. Formula (46) defines, up to a sign, a
Killing field X in an open subset of M, which gives rise to a Killing field
defined in an open connected subset of the Riemannian universal cover-

ing space (M, g) of (M, g). Using the standard procedure of extending
germs of local isometries along geodesics in analytic manifolds, we see
that the latter field must have an extension to a Killing field X on the
whole of M. Since the function ç3, pulled back to M, is well-defined and
analytic everywhere, relation || = |~03BE-1/3|, valid in some open subset
by (46), must hold at all points of M where it makes sense. Consequent-
ly, the function 0 = is defined and analytic almost everywhere in
M, with a possible exception of certain points at which 101 ~ oo, and its
gradient ~~ is bounded on compact subsets of M. It follows now easily
from a mean value argument that 101 must be finite everywhere in M.
Thus, 03BE ~ 0 and W+ ~ 0 at every point of M, which completes the
proof.
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REMARK 4: Propositions 3, 4 and 5 give the following local conformal
relations between metrics on oriented four-manifolds, valid wherever
W+ ~ 0:

a) The conformal structures containing Kâhler metrics, compatible
with the orientation, are precisely those containing metrics with bW+
= 0 and #spec(W+) ~ 2;

b) A Kâhler metric is locally conformally Einsteinian if and only if B
= 0, i.e., 2V’u + ur = (u2/4 - du/2)g (examples of such metrics on open
manifolds are described in [10]).

c) An Einstein metric is locally conformally Kählerian if and only if
#spec(W+) ~ 2.

In all these cases, the conformal change in question is given by a
natural formula and essentially unique. Moreover, an Einstein metric
with #spec(W+) ~ 2 is globally conformally Kahlerian unless W+ = 0
identically. Particular consequences of this fact, for compact manifolds,
are studied in Section 5.

4. Self-duality and récurrent conformal curvature

Let us recall that an oriented Riemannian manifold (M, g) is called
self-dual (resp., anti-self-dual) ([2]) if dim M = 4 and W - = 0 (resp.,
W+ = 0). We may also speak of se f dual or anti-self-dual Kâhler mani-
folds (M, g, 03C9), dim M = 4, choosing the orientation in M so that ru E 039B +.

REMARK 5: It is easy to see that a locally reducible Riemannian four-
manifold is self-dual if and only if it is conformally flat.

For any compact oriented Riemannian four-manifold (M, g), formula
(15) yields

with equality if and only if (M, g) is self-dual ([2]). Thus, every self-dual
metric on a compact oriented four-manifold M provides an absolute
minimum for the functional (22). Consequently, Lemma 1 implies

LEMMA 6: The Bach tensor of any compact self-dual Riemannian four-
manifold vanishes identically.

Another consequence of (47) is the inequality



423

valid for any compact, oriented, self-dual Riemannian four-manifold
which is not conformally flat ([2]).
The following local results follow immediately from Proposition 2

together with the equality IWI2 = |W+|2 + IW-12.

COROLLARY 1: Let (M, g, (0) be a four-dimensional Kâhler manifold.
The following conditions are equivalent:

(i) (M, g, (0) is anti-self-dual;
(ii) The scalar curvature of (M, g) is zero.

COROLLARY 2: For any four-dimensional Kâhler manifold (M, g, (0), we
have U2 ~ 24 |W|2, with equality if and only if (M, g, (0) is self-dual.

We shall need later the following lemma, obtained independently by
J.P. Bourguignon ([7], Proposition 9.3).

LEMMA 7: Let (M, g, (0) be a self-dual Kâhler manifold with constant
scalar curvature. Then (M, g) is locally symmetric.

PROOF: Proposition 2 together with W = W+ yield ~W = 0. Hence,
in view of Proposition 1, Vr = 0 and, consequently, VR = 0. Note that,
as shown by W. Roter (see [12]), a Riemannian manifold with VW = 0
must satisfy W = 0 or VR = 0.

A Riemannian manifold is said to have recurrent conformal curvature
([1]) if, for any point x and any tangent vector Y at x, the Weyl tensor
Wx and its covariant derivative Vy W are collinear. Clearly, this happens
if and only if the restriction of W to the open subset where W ~ 0 is a
functional multiple of a parallel tensor. Therefore, Proposition 2 implies

COROLLARY 3: Every self-dual Kâhler manifold has recurrent conformal
curvature.

The converse of Corollary 3 fails to hold in general, since the class of
four-manifolds with recurrent conformal curvature contains all con-

formally flat manifolds as well as all products of surfaces (cf. Remarks 5
and 2). However, these are, essentially, the only exceptions. Namely, we
have

PROPOSITION 6: Let (M, g) be a four-dimensional Riemannian manifold
with recurrent conformal curvature. If x~M and Wx :0 0, then either

(i) x has a neighbourhood isometric to a product of surfaces, or
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(ii) A neighbourhood U of x admits a Kâhler form w such that (U, g, co)
is a self-dual Kâhler manifold.

PROOF: In a sufficiently small oriented contractible neighbourhood U
of x, ~(FW) = 0 for some non-zero function F and, consequently, the
vector bundles ll ± split over U into direct sums of eigenspace bundles
of W±, each of which is invariant under parallel displacements. Since
Wx ~ 0, (12) implies that one of 039B± must split essentially, which gives
rise to a one dimensional eigenspace subbundle of 039B+ or 039B-, i.e., to a
Kâhler form m in U. Let, e.g., 03C9~039B+. If 039B- is an eigenspace of W-,
then, by (12), W- = 0 and (ii) follows. On the other hand, if 039B- does
split, then it contains a Kâhler form and (i) is immediate from Remark 3.
This completes the proof.

As a consequence, we obtain a direct proof for the following well-
known

COROLLARY 4: Let (M, g) be an orientable, locally irreducible, locally
symmetric Riemannian manifold of dimension four. Then (M, g) is self-dual
for some orientation. If, moreover, (M, g) is not a space of constant cur-
vature, then either (M, g) itself, or a two-fold Riemannian covering space
thereof is a self-dual Kâhler manifold.

PROOF: We may assume W ~ 0, which, since g is Einsteinian, is noth-
ing but excluding the case of constant curvature. Analyticity of (M, g)
together with Proposition 6 implies now W- = 0 for some orientation.
Moreover, there exist local Kâhler forms in 039B+. At any point, such a
form is unique up to a sign, for otherwise W+ would be zero (Remark
3). This completes the proof.

Because of strong geometrical consequences of self-duality ([2]), the
natural question arises, which compact four-manifolds carry self-dual
metrics (or conformal structures). However, the list of known examples
is rather scarce:

EXAMPLE 1: The only compact oriented four-manifolds which are

known to admit self-dual metrics are the following:
(i) compact conformally flat manifolds;

(ii) compact Ricci-flat Kâhler manifolds with the opposite of the
standard orientation ([2]; cf. also Corollary 1). They are either flat, or
diffeomorphic to quotients of K3 surfaces ([33], [17]);

(iii) compact, locally irreducible, locally symmetric Riemannian four-
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manifolds (Corollary 4). As shown by A. Borel [6], every simply con-
nected Riemannian symmetric space possesses compact isometric

quotients.

Thus, the known examples of non-conformally flat compact self-dual
manifolds are Kählerian (up to conformal deformations), but the

orientation for self-duality need not coincide with the natural one. In
the case where it does, we have the following result (global according to
Remark 6).

THEOREM 1: Every compact Kâhler manifold (M, g, co) of real dimension
four self-dual with respect to the natural orientation is locally symmetric.

PROOF: In view of Lemma 7 we may assume that the scalar curvature

u is not constant, so that W ~ 0 somewhere (Proposition 2), and the
signature z(M) is positive by (48). By Lemma 6 and Proposition 4, Vu is
a non-trivial holomorphic vector field with zeros on M. As shown by
Carrell, Howard and Kosniowski [9], a compact complex surface which
carries such a field and a Kâhler metric can be obtained by blowing up
finitely many points in CP’ or in the total space of a CP’ bundle over a
Riemann surface. Condition i(M) &#x3E; 0 implies now that M is

biholomorphic to CP’, so that 3i(M) = x(M). In view of Lemma 3, g is
Einsteinian and u is constant. This contradiction completes the proof.

REMARK: Another proof of Theorem 1 can be obtained from the

Bogomolov-Miyaoka inequality 3c2 ~ ci, valid for algebraic surfaces of
general type ([33]), together with Lemmas 3, 7, (48) and Kodaira’s clas-
sification theory for compact complex surfaces.

REMARK 6: The compactness hypothesis is essential in Theorem 1:

There exist examples (see [10]) of open self-dual Kâhler manifolds

which satisfy B = 0 and are not locally conformal to a symmetric space.
Thus, there exist analytic Riemannian four-manifolds which have re-
current conformal curvature and are neither conformally flat, nor lo-
cally symmetric, nor locally reducible (cf. Corollary 3 and Remark 5). As
shown recently by W. Roter [28], examples of this sort do not exist in
dimensions greater than four.

In [7] J.P. Bourguignon proved (Proposition 9.1) that every compact
self-dual manifold satisfying the condition bR = 0 must be conformally
flat or Einsteinian. It appears that, in the analytic case, this assertion
follows from the apparently weaker hypothesis ô W= 0. Our argument
is based on the following local lemma.
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LEMMA 8: Let (M, g) be an oriented Riemannianfour-manifold such that
c5W = 0, W - = 0 and the Bach tensor B = 0. Then W (D (r - ug/4) = 0.

PROOF: Condition 03B4W = 0 together with (23) yields rpqWpijq = 0, i.e.,
in the notation of (28H32), valid in an open dense subset Mw of M, we
have Â - = 03BC- = v - = 0 and the symmetric tensor T = 03BB03C9r03C9 + pqrtl
+ 03BD03B8r03B8 vanishes identically. If r - ug/4 does not vanish identically, then
it is non-zero at all points of some connected open subset U of Mw. We
shall prove that W = 0 in any set U with this property. Fix x~ U and
find YE TxM which is not an eigenvector of rx. Since Y is orthogonal to
03C9Y, ri Y and 03B8Y, r Y is not orthogonal to one of them; for instance,

Relation T = 0 gives, for any tangent vector Z, 0 = Z, TruZ)
= Ar(Z, ruZ) + (y - v)r(r¡Z, OZ). Substituting here Z = Y and Z = il Y, we
obtain, respectively, 03BBr(Y, 03C9Y) + (Jl- v)r(il Y, 03B8Y) = 0 and (Jl- v)r(Y, ru Y)
+ 03BBr(~Y, 03B8Y) = 0. In view of (49), this linear system must satisfy the de-
terminant relation 0 = 03BB2 - (03BC - v)’ = (03BB - 03BC + V)(A + 03BC - v), i.e., by (30),
pv = 0. Therefore det W+ = Àpv = 0 everywhere in U. Suppose now
that W = W+ ~ 0 at all points of some connected open subset Ul of U.
Taking Ul sufficiently small, we may assume, without loss of generality,
that A = 0 and, by (30), v = -y :0 0 everywhere in Ul. In Ul, relations
(34) and d03BB = 0 yield Oc = lb, so that |b| = Ici, and (35) implies 0 = 039403BB
= 4yv. This contradiction shows that W = 0 in U, which completes the
proof.

The following global result is now immediate from Lemma 8 and

Lemma 6.

PROPOSITION 7: Let (M, g) be a compact, oriented, analytic Riemannian
manifold of dimension four. If W- = 0 and JW = 0, then (M, g) is con-

formally flat or Einsteinian.

5. Four-dimensional Einstein manifolds

Let (M, g) be an oriented Riemannian four-manifold. According to
Proposition 2, if g is locally conformal to a Kâhler metric compatible
with the orientation, then it satisfies the condition #spec(W+) ~ 2, i.e.,
W+ ~End 039B+ has, at each point, less than three distinct eigenvalues. In
this section we study the consequences of this condition for Einstein
metrics on compact manifolds.



427

LEMMA 9: Let (M, g) be an orientable Riemannian four-manifold such
that (1) does not hold for some orientation. Then M possesses a non-empty
open subset Uo (dense if (M, g) is analytic) with the following property:
Every non-trivial Killing field, defined in any open connected subset U of
Uo, is non-zero at each point of U.

PROOF: Let U’0 be the open set of all points x E M such that

W+x E End A’ has three distinct eigenvalues. In the analytic case, U’0 is
dense in M. At any x~U’0, we may choose functions A, Jl, v with

A  y  v and mutually orthogonal sections m, ri, 0 of A’, differentiable
in a neighbourhood of x and satisfying relations of the form (28H30)
and (32) with some 1-forms a, b, c. By our hypothesis, these conditions
determine 03C9, ~, 03B8 (and hence a, b, c) uniquely up to changes of signs.
Consequently, 0 = lal2 + Ibl2 + |c|2 is a well-defined smooth function in
U’0. If we had 0 = 0 in some open subset Ul of U’0, (32), (11) and (12)
would yield A = 03BC = v = u/6 = 0 in Ul, contradicting our choice of U’0.
Thus, the open subset Uo of U’0, defined by 0 &#x3E; 0, is dense in U’0. At any
point y E Uo we have, for instance, a ~ 0 (notation as before), so that a,
03C9a, fia, Oa is an orthogonal frame field in a neighbourhood of y, inva-
riant under any local one-parameter group of isometries, defined near y.
If the local one-parameter group keeps y fixed, it must, therefore, consist
of the identity transformation only. In other words, a Killing field, de-
fined in a connected neighbourhood of y and vanishing at y, must

vanish identically. This completes the proof.

COROLLARY 5: Let (M, g) be an orientable Einstein four-manifold such
that (1) is not satisfied by some orientation. Denoting by G the group of all
isometries of (M, g), we have

(i) dim G ~ 3;
(ii) For almost all x E M, the orbit of G through x is of dimension dim G.

PROOF: Choose Uo as in Lemma 9. By a recent result of DeTurck and
Kazdan [13], every Einstein metric is analytic in a suitable coordinate
atlas. Therefore Uo may be assumed dense. An isometry of (M, g) keep-
ing a point x~ Uo fixed and sufhciently close to the identity must then
equal the identity, which yields (ii). Thus, dim G ~ 4. If we had dim G
= 4, a theorem of G.R. Jensen [19] would imply that the homogeneous
Einstein four-manifold (M, g) is locally symmetric. If the locally sym-
metric Einstein metric g is locally reducible, it is easy to verify that (1)
holds for both orientations. In the irreducible case, g is conformally flat
or locally Kählerian and self-dual (Corollary 4), which, again, gives (1)
for both orientations, in view of Proposition 2. This contradiction

completes the proof.



428

The manifolds listed below exhaust all known examples of compact,
orientable, four-dimensional Einstein manifolds.

EXAMPLE 2: (i) Compact Riemannian four-manifolds, locally iso-

metric to a product of two surfaces with equal constant curvatures, are
Einsteinian.

(ii) Locally irreducible, locally symmetric four-manifolds are Ein-

steinian (for the existence of compact quotients, see [6]).
(iii) Compact Kâhler-Einstein four-manifolds and their quotients.

Every compact Kâhler manifold whose first Chern class is zero or

negative, admits a Kâhler-Einstein metric ([33]).
(iv) The compact complex surface Fl = CP2 #(-CP2), obtained by

blowing up a point in Cp2, admits a Hermitian Einstein metric, whose
group of isometries is four-dimensional (with principal orbits of dimen-
sion three). This metric was found by D. Page [26] (for a clear exposit-
ion, see [4]).

Note that, except for (iv), the above examples are either conformally
flat or locally Kahlerian, and so they satisfy (1) for an appropriate
orientation (Proposition 2). On the other hand, the metric of (iv) satisfies
(1) in view of Corollary 5. Consequently, the condition #spec(W+) ~ 2,
for some orientation, holds for all known examples of compact, orientable,
four-dimensional Einstein manifolds.

Using the results of Section 3, we shall now prove the following
structure theorem for compact Einstein four-manifolds satisfying (1):

THEOREM 2: Let (M, g) be a compact, oriented, four-dimensional Ein-
stein manifold such that the endomorphism W+ of 039B+ M has, at each
point, less than three distinct eigenvalues. Then there exists a Riemannian
covering space (M, g) of (M, g), of multiplicity one or two, for which only
the following three cases are possible:

(i) W+ = 0, i.e., (M, g) is an anti-self-dual Einstein manifold; M = M.
(ii) W+ is parallel and non-zero, and (M, g) is a (non-Ricci-flat) Kâhler-

Einstein manifold; M is either M itself, or a quotient thereof by a free,
isometric, antiholomorphic involution.

(iii) W+ is not parallel. I n this case, W+ ~ 0 everywhere and g is

Hermitian (but not Kâhlerian) with respect to some complex structure J
on M, compatible with the original orientation. Either M = M, or M =
= Q/0 for some free antiholomorphic involutive isometry 0 of (M, g, J).
The complex surface (M, J) is biholomorphic to a surface obtained from
CP’ by blowing up k points (0 ~ k  8) or from a holomorphic CP’
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bundle over Cpl by blowing up k points (0 ~ k ~ 7), so that, topologically,
M is S2 X S2 or a connected sum CP2 # ( - kCP2), 0 ~ k ~ 8. The metric
g = (24g(W+, W+))1/3g on M is Kâhlerian with respect to J, its scalar

curvature ù is non-constant and positive everywhere and satisfies the

relations

u being the (constant) scalar curvature of g. The non-trivial vector field
X = J(Vu) is a Killing field for both g and g, holomorphic with respect to
J.

PROOF: Most of our assertion follows trivially from Propositions 5
and 4. In particular, if W+ is not parallel, then, by (iii) of Proposition 5
and (43), M is not constant and u ~ 0 everywhere. The non-trivial vector
field X = J(Vù) is a holomorphic Killing field (with zeros) for g and for
g = g/û2 (Proposition 4), so that, in view of (8), u &#x3E; 0. Choosing a point
x with JM(x) = 0, we obtain from (50) û3(x) = u + 12g(Vu(x), ~u(x)) &#x3E; 0

and hence M &#x3E; 0 at each point. By a theorem of Carrell, Howard and
Kosniowski [9], a compact complex surface admitting a Kâhler metric
and a non-trivial holomorphic vector field with zeros must be obtained
from CP’ or from a CP’ bundle over CP’ by successively blowing up
finitely many points. The estimate on the number of these points follows
immediately from Thorpe’s inequality (17). Finally, it is well-known (cf.
[23], p. 277) that (S2 x S2)#(-CP2) is diffeomorphic to CP2 # ( - 2CP2).
This completes the proof.

REMARK 7: Known examples show that each of the three cases of
Theorem 2 may really occur. Assertion (i) is satisfied, e.g., by flat mani-
folds and by K3 surfaces with Ricci-flat Kâhler metrics ([33]); on the
other hand, as shown by N. Hitchin ([ 17], [18]; cf. also [ 15]), a non-flat
(anti-)self-dual compact Einstein four-manifold with non-negative scalar
curvature must be isometric to S4 or to CP’ with a standard metric, or
to K3 surface with a Ricci-flat Kâhler metric. As for case (ii), beside
many concrete examples, there is the existence theorem of Aubin and
Yau ([33]). Finally, the Page metric on F, ((iv) of Example 2) satisfies
(iii) of Theorem 2. In fact, this metric is neither Kählerian (by a theorem
of A. Lichnerowicz [22], F, admits no Kâhler metric with constant
scalar curvature), nor self-dual for any orientation (in view of (48), since
T(Fi) = 0 and the Einstein metric on F, is not conformally flat). It fol-
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lows now from Theorem 2 that the Page metric on Fl is globally con-
formal to a Kâhler metric. The latter was found by E. Calabi [8], who
studied compact Kâhler manifolds for which the vector field Vu is

holomorphic.
As a consequence of Theorem 2 together with a result of L. Bérard

Bergery [4], we obtain

THEOREM 3: Let (M, g) be a compact Einstein four-manifold. Denote by
G the group of isometries of the Riemannian universal covering space
(M, g) of (M, g). If all orbits of G are of dimensions strictly less than

dim G, then either (M, g) is locally symmetric, or (M, g) is isometric, up to
a scaling factor, to CP’ # ( - CP2) endowed with the Page metric.

PROOF: We may assume that M is orientable and g is not locally
symmetric. Corollary 5, applied to (M, g), yields #spec(W+) ~ 2 and
#spec(W-) ~ 2. Since g is not conformally flat, we may choose the
orientation so that W+ ~ 0 (everywhere, by (iv) of Proposition 5). If we
had W- = 0, (ii) and (iii) of Theorem 2 together with Proposition 5
would imply that (a two-fold cover of) M carries a self-dual Kâhler
metric g, with scalar curvature ù (u ~ 0 everywhere) and g is a constant
multiple of g/Ü2; by Theorem 1, g would be locally symmetric and hence
so would be g. Therefore, by (iv) of Proposition 5, W- ~ 0 everywhere.
If both W+ and W - were parallel, there would locally exist two Kâhler
forms roI ~039B± for (M, g) (cf. Proposition 5); by Remark 3, the Einstein
metric g would be locally reducible and hence locally symmetric. Thus,
reversing the orientation if necessary, we obtain ~W+ ~ 0 somewhere.
From (iii) of Theorem 2 it follows now (cf. Proposition 5) that some
finite covering space of (M, g) admits a non-trivial Killing field X with
zeros, defined (up to a sign) by an explicit formula and hence invariant,
up to a sign, under all local isometries. Consequently, by (8) and the
Myers theorem, u is positive and M is compact, while the pull-back i of
X to M is invariant under the connected component GO of G. Conse-

quently, GO has an infinite center, and our hypothesis implies that

dim G0 ~ 2. We assert that dim G0 ~ 4. In fact, if we had dim G0 ~ 3,
then the compact connected Lie group GO with infinite center would be

isomorphic to a torus of dimension 2 or 3. Fix a point x~M lying in a
GO orbit of maximal dimension. For all points y sufficiently close to x,
the isotropy subgroups Hy c GO are subtori of the same positive codi-
mension and the corresponding subalgebras of the Lie algebra of G°
vary continuously with y. Consequently, Hy = H for some subtorus H of
GO and all y close to x. The non-trivial group H operates trivially on a
neighbourhood of x and, consequently, on M. This contradicts the
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effectiveness of the action of G and hence proves that dim G0 ~ 4. Our
assertion is now immediate from L. Bérard Bergery’s Théorème 1.8 of
[4].
Using Lie algebra techniques, G.R. Jensen proved in [19] that every

locally homogeneous four-dimensional Einstein manifold is locally sym-
metric. A direct proof of this result in the compact case can be obtained
as follows.

For an oriented Riemannian four-manifold (M, g), let us define the
discriminant D(W+) (resp., D(W-)) of W+ (resp., of W-) to be the
smooth function on M given by D(W±)(x) = (Â - 03BC)2(03BB - v)2(,u - v)’,
03BB, 03BC, v being the eigenvalues of W± E End Ax±.

LEMMA 10: Let (M, g) be a compact, oriented, Einstein four-manifold.
Then both discriminants D(W+), D(W-) vanish at certain points of M.

PROOF: Assume the contrary and choose the orientation so that

D(W+) &#x3E; 0 everywhere. Thus, W+ ~End 039B+ has three distinct eigen-
values at each point, which implies that 039B+M is a Whitney sum of line
bundles. Consequently, the real Pontryagin class p1(039B+M) is zero. On
the other hand, since p1(039B+M) = p1(TM) + 2e( TM) (see, e.g., [11], p.
490), we have 3r(M) + 2X(M) = 0. In view of (15) and (16), this means
that 48 ~M|W+|2 dV + ~Mu2 dV = 0. Consequently, W+ = 0 and D(W+)
= 0. This contradiction completes the proof.

The following result implies immediately that a locally homogeneous
compact Einstein four-manifold must be locally symmetric.

PROPOSITION 9: Let (M, g) be a compact, oriented, Einstein four-
manifold. Consider W ± ~End039B±. If the functions IW+12, IW-12 , det W+
and det W - are all constant (i.e., the eigenvalues of W are constant), then
(M, g) is locally symmetric.

PROOF: Since the discriminants D(W:f:) are symmetric functions of the
eigenvalues of W±, our hypothesis together with (12) implies that

D(W±) are constant. By Lemma 10, D(W±) = 0. We may assume that g
is not conformally flat, so that, e.g., the constant |W+|2 is positive. By (i)
of Proposition 5, (M, g) admits, locally, a Kâhler form 03C9+ ~039B+. If

|W-|2 &#x3E; 0, the same argument gives a local Kâhler form 03C9- EA - and,
by Remark 3, g is a locally reducible Einstein metric, so that VR = 0.
On the other hand, if W - = 0, our assertion is immediate from Lemma
7.
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Note. Theorem 1 of this paper was first proved by Bang-yen Chen (Some topological
obstructions to Bochner-Kaehler metrics and their applications. J. Differential Geometry
13 (1978) 547-558), who classified the compact Bochner-Kâhler manifolds of real dimen-
sion four, using Kodaira’s classification theory for complex surfaces (cf. Remark following
Theorem 1; these manifolds turn out to be just the self-dual Kâhler manifolds).
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