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A lower bound for A, on manifolds with boundary

CHRisTOPHER B. CrOKE! and ANDRZEJ DERDZINSKI?

1. Introduction

The aim of this paper is to establish a geometric lower bound for A, on
compact Riemannian manifolds (M, g) with boundary, A, = ,(M, g) being the
first eigenvalue of the (positive) Laplacian on functions that vanish on oM
(Dirichlet boundary condition). We also classify the manifolds for which equality
in our estimate is attained.

For v in the unit tangent sphere U, at x € Int M, let [(v) =« be the length of
the maximal geodesic v, in Int M, tangent to v. Denoting by dv, the canonical
measure on U, and by a(n — 1) the volume of the unit (n — 1)-sphere, we prove

THEOREM. Every compact Riemannian manifold (M, g) with boundary
satisfies

Al(Mr g)ZE(M, g)’ (1)
where
EM, )= int | Pw)du, @

and n=dim M. Furthermore, equality holds in (1) if and only if (M, g) is
isometric to a Riemannian hemisphere bundle.

By a Riemannian hemisphere bundle we mean the total space M of any
O(m)-bundle of m-discs over a closed manifold B with the metric g on M
naturally determined by any metric 4 on B and any O(m)-connection in the
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bundle, so that the fibres are isometric to a round hemisphere (see Section 4).
Equivalently (cf. Remark 5) we can just require (M, g)— (B, h) to be a
Riemannian submersion, the fibres of which are isometric to a hemisphere and
totally geodesic.

The estimate (1) is due to the first author, while the description of the equality
case is a joint result.

The assertion of (1), as well as its proof, is a generalization of Theorem 16 of
[3], which applies only to the very special case where /(v) <« for all v and gives
Ay = na?(SUP; einear SUPvew, (V)] ! with equality precisely for round hemispheres.
That estimate did not even apply to Riemannian hemisphere bundles, which
illustrates how much stronger the present result is.

Inequality (1) is proved in Section 2 of this paper. In Section 4 we consider the
equality case. The final Section 5 consists of various remarks and corollaries. In
particular, we discuss there the case of non-compact manifolds and an application
to domains in S".

2. Proof of inequality (1)

Let UM (resp., U(Int M)) be the total space of the unit tangent bundle of
(M, g) (resp., of its restriction to Int M). We define U* 8M to be the subset of
UM consisting of all unit vectors u tangent to M at M which point inward, i.e.,
satisfy (T, u) >0, T being the inner unit normal field along M. In the sequel,
the symbols dv and du will stand for the canonical (local product) measures on
UM and U* M, respectively, while Q will denote the set of all (u, t) e U™ M X
R for which exp tu exists and lies in Int M, i.e., 0 <t <I(u), I(u) being the length
of the maximal geodesic y, in Int M with lim,_,  ,.(t) = u.

Define the geodesic flow {:Q— UM by {(u, t) = y,(t). One easily sees that
g is injective and C™. The main tools in our proof of (1) are Santal6’s formula

{*dv=(T,u)dtdu

(see [8], [1]) and the expression for A; coming from the Poincaré inequality
m(M, g)=int ([ [vfPax /[ fax), ®)
M M

where f runs over all non-trivial continuous functions on M which are C* on
Int M and vanish on oM (see [7]).

Let UM, U(Int M), U* M and Q be the subsets of UM, U(Int M), U* oM
and Q characterized by /(v) <= and /(u) <=, respectively. The image {(Q) has
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full measure in UM, so that Santal6’s formula yields, for any integrable function
¢ on UM

I(u)

¢ dv =j o(E(u, 1))(T, u) dtdu.

oM U*aM Ji=

(4)

To prove (1), we can now proceed as follows. For any C* function f on M that
vanishes on oM,

rlla(n ~1) fM|Vf|2 dx = fM fu,(df(”))z dv, dx
= [ @wyra=] wwyaw

l(u)
= @ oy (r w drau 6

=0

For ue U* M and 0<t<lI(u), set f,(t)=f(y.(t)). Thus, f, has the limits

£.(0)=f,(I(u))=0, as y,(0), v.(l(u)) € 3M. The one-dimensional Poincaré in-
equality gives

l(u)

l(u)
(df (EQu, 1)) dt = f (L)) dt

(u)

=17 (u) A (fu(e))*dt

l(u)
= 22 f 1) (r.(1)) db.

Therefore, we have from (5) and (4)

(6)

a(n — l)f |VF|? dx = nnzf_ [72(v)f*(v) dv.

Since I(v) = = for v € UM — UM, the last integral can equally well be taken over
UM, so that

a(n — I)J;’Wfl2 dx = nnzjlnwfz(x){L [73(v) dvx} dx

=nn® inf {f 1‘2(v)dv,}-jf2dx»
xeintM U, M

and (1) follows from (3).
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COROLLARY 1. Let (M,g) be a compact Riemannian manifold with
OM # & for which equality holds in (1). Then M admits a C function f with

f=0, f0)=oM+3, (M
Af =mf ®)

for some real m, and

(V,H)(v, v)=0, H(v,v)=<0 C)]
for any tangent vector v in Int M, where

H=f"'Vdf inIntM. (10)

Proof. Let f be a A, eigenfunction of A, so that (8) holds with m = 4, and we
obtain (7) from the maximum principle, changing the sign of f if necessary. Since
all inequalities in the preceding argument now become equalities, we conclude
from (6) that, for almost all ue U* dM, fi=—al"*(u)f,. As fi=(fey.)" =
(Vdf)(u, 7.), this just means that H(7,, 7.) = —a*l"*(u) and (V;,H)(Yu, 7.) =
Y.(H(V., .)) =0, H being defined by (10). Thus, (9) holds for almost all
v € U(Int M). The equality in (5) gives df(v) =0 for almost all v e UM~UM. Let
W < Int M be the projection of the part of the interior of UM — UM, lying over
Int M. Thus, f is locally constant in W, which gives V df = 0 there and hence (9)
for all v in the interior of UM — UM over Int M. Consequently, (9) holds for all
v € U(Int M), which completes the proof.

Remark 1. From the proof of Corollary 1 it is obvious that if (9) and (10) are
satisfied by a function f on a Riemannian manifold with boundary, then, for each
geodesic y, the function ¢+ f(y(t)) is sinusoidal, linear or constant in the sense
that it is given by p sin (gt + s), pt + s or s with some constants p #0, ¢ #0 and s,
depending on y.

Remark 2. For compact Riemannian manifolds (M, g) with boundary, the
converse to Corollary 1 is also true. We omit the details of this argument, based
on repeating the steps in the proof of (1) and on Remark 1, together with the
obvious relation a(n — 1)(Af)(x) = —n [, (V df)(v, v) dv, for x € Int M.

Remark 3. For a compact Riemannian manifold (M, g) with boundary, the
formula

h(x) = L I"X(v) du, 11)
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defines a finite continuous function 4 on Int M. Moreover, (11) also makes sense
for x e 9M and the resulting extension of A to M always attains its minimum.
These facts can be proved by a standard but lengthy argument that will not be
presented here. Note that 2 = on the boundary of a flat disc and the function
v —1(v) € [0, ] may fail to be continuous on U(Int M) if M is not convex.

3. Some auxiliary results

Given a manifold M with a metric g, usually denoted by (,), we use the
symbol V for the Riemannian connection of (M, g). Thus, for vector fields u, v, w
on M,

2(V,u, w) =([u, v], w) = (v, [u, w]) — (u, [v, w])
+uv,w)+v(u, w)—w(uv), (12)

uf =df(u) =V,f being the u-directional derivative of any function f on M. The
Hessian V df of f is given by

(Vdf)(u, v) = (Vdf)(v, u) = (V.Vf, v) = uof — df (V,v) (13)

for vector fields u, v, where Vf is the gradient of f. The Laplacian A is an
operator with negative symbol:

Af = —Tr, Vdf.
The formula for the covariant derivative VH of a 2-tensor field H is
(V.H)(v, w)=u(H(v, w))—H(V,v, w)— H(v, V,w). 14)
The following lemma and remark recall well-known facts that we use later.
LEMMA 1. Let N be a regular level of a function f on a Riemannian manifold
with boundary (empty or not) such that V df =0 at each point of N. Then N is
totally geodesic and |Vf| is constant along each component of N.
In fact, this is immediate from (13) for vector fields «, v defined near N and

tangent to N, together with the obvious equality d |Vf|>=2(Vdf) (Vf, -) (cf.
(13)).
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Remark 4. For a distribution V on a Riemannian manifold we write X e V
when X is a local vector field (defined in an open set) which is a section of V.
Operations on such fields are to be considered only in the intersection of their
definition domains. Thus, V is integrable if and only if [X, Y] €V whenever
X, Y € V; integrable distributions with totally geodesic leaves are characterized
by the condition VxY € V for all X, Y € V. Moreover,

(i) If V is integrable, it has totally geodesic leaves if and only if VyX € V for
all XeV.

(ii) A local vector field u preserves V (i.e., its local flow leaves V invariant) if
and only if [u, X] € V whenever X € V.

(iii) If V is integrable, the local fields & € V* preserving V fill V* at each
point. In fact, locally, the leaves of V are fibres of a bundle with connection V+*
over some base B and the sections § in question are just the horizontal lifts of
vector fields in B.

(iv) Suppose that V is integrable and a local vector field u preserves V. Then
u preserves the metric restricted to V (i.e., its local flow sends the leaves
isometrically into one another) if and only if V,|X|?=0 for all X eV with
[u, X]=0 (such X fill V at each point).

(v) Let V be integrable. Then its leaves are all totally geodesic if and only if
all §eV* that preserve V also preserve the metric restricted to V. This is
immediate from (i), (iii), (iv) and (12) with u=v=XeV, w=EeV* and
[§, X]=0. See also [6].

(vi) If V is integrable, its leaves are, locally, the fibres of a Riemannian
submersion if and only if for any & € V* preserving V (a ‘“horizontal lift”), |&| is
constant along V. Note that, for such € and any X € V, (V4&, E) =(V:X, §) =
—(Vg&, X). Therefore, another equivalent condition is V:E € V* for all EeV*
(since the latter condition is tensorial, cf. (iii)).

Suppose we are given a principal bundle P with structure group G over a
closed manifold B and an isometric action p of G on a compact Riemannian
manifold (F, gr) with boundary. It is easy to see that, for any connection  in P
and any metric 4 on B, there is a unique smooth metric g on the total space M of
the bundle with fibre F associated with P, such that

(i) the w-horizontal spaces in M are g-orthogonal to the fibres,

(ii) the projection (M, g)— (B, h) is a Riemannian submersion,

(iii) on each fibre g induces the natural metric, isometric to gp.

DEFINITION 1. A compact Riemannian manifold (M, g) with boundary is
called a Riemannian fibre bundle if it is obtained by the above construction from
some P, G, p, B, F, gr, w and h. The manifolds (B, k) and (F, gr) will be called
the (Riemannian) base and fibre of (M, g), respectively.




112 CHRISTOPHER B. CROKE AND ANDRZEJ DERDZINSKI

REMARK 5. Riemannian fibre bundles can equivalently be defined, up to an
isometry, to be the compact Riemannian manifolds (M, g) with boundary
admitting a Riemannian submersion (M, g)— (B, h) with totally geodesic fibres,
where 9B = . In fact, by Remark 4(v) the fibres are totally geodesic in (M, g) if
and only if the parallel displacements with respect to the g-orthogonal connection
in M — B send them isometrically onto one another.

PROPOSITION 1. Let (M,g) be a Riemannian fibre bundle with
P, G, p, B, F, g, w and h as above, such that 3F + .

(i) MM, g) = M(F, g).

(ii) E(M, g) = E(F, gr), the invariant E being defined by (2).

Proof. For x € M lying in the fibre F, = F, of M— B over y € B, let dx, dy and
dz be the Riemannian measures of M, B and F,, respectively.Suppose f is a A,
eigenfunction on (M, g) with f =0 on dM. Since |Vf| in (M, g) is not less than the

same quantity for the restriction of f to F, with the induced metric, the Poincaré
inequality for (F, gr) gives

L IVF2 dx = A,(F, ge) f fdz.

Locally, we have dx = dz dy and so

J fortas= [ (] 10 az)

=1(F 80| f fdzdy=(F 80| f*ds, (15)

which proves that

MM, g) = A(F, gF),
since

[ i =0, 0)] rax

Since F #0, the A,-eigenspace in (F, gr) is one-dimensional (cf. [1, Theorem
4.7]). A fixed A,-eigenfunction ¢ on (F, gr) (with ¢ =0 on I9F) is therefore
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invariant under the action p of G. Hence ¢ can be naturally propagated over all
fibres of M — B, giving a function f on M invariant under w-parallel displace-
ments (and so having vertical gradient Vf in (M, g)) and restricting to a
A,-eigenfunction on each fibre. With this f we have equality in (15), i.e., by (3),
A(M, g) = A,(F, gr), which proves (i) in view of the preceding inequality.

Given x € Int M and a maximal geodesic y:I/— Int M of (M, g), defined on an
open interval / with 0 € I and y(0) = x, consider the C* map vy :1 X I— Int M with

Y(s, 1) = 15(y(0)), (16)

7. F,— F, being the w-parallel displacement from ¢ to s along the projection
of y onto B. Now X = 9y/dt and § = dvy/3s are vector fields tangent to M along
¥ (i.e., sections of Yy*TM— I xI) and X is vertical, while § is horizontal and
y()=vy(t, t), so that y(t)=X(¢, t) + &(¢, t). Differentiating X, & covariantly
along vy, we obtain Vy, (X + &)=V,y =0 on the diagonal of I X I, while, by
Remark 4(i), (vi) and Remark 5, VxX is vertical, Vx&, V& are horizontal and so
is VeX, since [§, X]=0 along vy by definition. Consequently, VxX =0 on the
diagonal of I X1, i.e., for each sel the geodesic curvature of the curve
t— (s, t) in the totally geodesic fibre F,, vanishes as t =s. Since 7j.: F,—
F s~ is an isometry and 7.(y(s, t)) = y(s’', t), that geodesic curvature is zero at
each t =s', i.e., the curves t— (s, t) are all geodesics with affine parameter. Let
v € T,M be unit, so that

v=cos 0-X,+sin 6 - &,

with 6 e R and units vectors X, &, such that X, is vertical and §, is horizontal.
We claim that, if v is not horizontal (i.e., cos 8 #0),

_I(X)
cos 6’

I(v) 17)

In fact, let y = v, :I— Int M be a maximal geodesic with y,(0) =x, ,(0) =v. As
we saw, Yx,(s) = y(s/cos 6, 0), y being given by (16) and yy, is defined on the
maximal interval cos 0 - I, since dM is invariant under w-parallel displacements.
This proves (17). Using easy spherical integration we now conclude that A(x),
defined for F, with the metric isometric to g as in (11), is equal to the
corresponding quantity for (M, g) times an appropriate dimensional constant.
This implies (ii) and completes the proof.

The following three technical lemmas are the basic local ingredients for the
argument of Section 4.
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LEMMA 2. Let a symmetric 2-tensor field H on a Riemannian manifold
(M, g) satisfy (V,H)(v,v)=0 for all tangent vectors v and admit a constant
eigenvalue c of constant multiplicity. Then the corresponding eigenspace distribu-
tion V has the property that V,u € V for each local section u of V. Moreover,

(i) If V is integrable, its leaves are all totally geodesic.

(i) If V* is integrable, its leaves form, locally, the fibres of a Riemannian
submersion.

Proof. Assume V # TM and fix a local section u of V. In a dense open subset
of M, the eigenvalues of H form mutually distinct C* functions. For such a
function ¢ #c and a local vector field w with H(w, )= ¢{w, -), we have
(w,u)=0. Since H(u, -)=c(u, +), (14) gives (V,H)(u, w)=(c — $){(V.u, w)
and (V,,H)(u, u) = |u|* wc =0 as c is constant. Thus, from (9), by polarization,
0= (V.H)(u, w)+ (V.H)(w, u) + (V,,H)(u, u) =2(c — ¢){(V,u,w), and so
V.u € V, since the vector fields w as above span V* in a dense set. Our assertion
now follows from Remark 4(i), (vi).

LEMMA 3. Let (M, g) be a Riemannian manifold with boundary admitting a

function f with (7) and (9) for all vectors v in Int M, H being defined by (10). Then
(i) At each point of OM, V df =0 and df #0.

(ii) M is totally geodesic in (M, g) and |Vf| is locally constant along M.

(iii) Let M be compact and denote by T the inner unit normal vector field along
OM. There exist positive constants p, q such that each maximal normal geodesic
t—>exp tT, issuing from y € OM has length rt/q, hits M perpendicularly at t = n/q
and f(exp tT,) = p sin (qt).

Proof. Since f >0 in Int M, Remark 1 gives df # 0 at each point of M. From
9), f(V*df)(v, v, v) = df (v)(V df)(v, v) for any vector v, wherever f # 0 and, by
continuity, everywhere in M. Consequently, on dM the symmetric product
df © V df vanishes, which gives (i), while (ii) now follows from Lemma 1.

Let M be compact. By Remark 1 with (7), for any y € 9IM

f(exptT}) = p(y) sin (¢ (y)1), (18)

where p, q are positive C~ functions on dM and 0=t=ux/q(y). On M,
|Vf| = pq is locally constant from (ii). However, since oM is totally geodesic, any
two components of M have a connecting geodesic y perpendicular to both, and
so the constant pq is the same for all components, as it is determined by foy (cf.
(18)). For y € M, the geodesic y(t) =exp T, hits M again at t=t, = 7x/q(y)
with (Vf, #(t,)) = —pq = —|Vf| - |7(t,)] in view of (18), so that pqy(s,)=
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—(Vf)(y(t,)) is normal to M. Since all geodesics issuing normally from y € oM
intersect OM perpendicularly, a standard variational argument shows that their
lengths 7/q(y) are all equal, whether or not dM is connected. This implies that p
and g are both constant, completing the proof.

LEMMA 4. Let g be a metric on M = N X I, where N is a manifold without
boundary and I = (0, 7/2) such that the curves t— (y, t), y € N, are all unit speed
geodesics, orthogonal to M = N x {0}, and the function f(y, t) =sint on (M, g)
satisfies (7), (8) for some real m and (9) for all tangent vectors v in Int M, H being
given by (10). Then

(i) m is an integer, 1 =m =n = dim M.

(ii) At each point of Int M, H has eigenvalues —1 and 0 of multiplicities m and
n —m, respectively. The (—1)-eigenspace distribution D of H in Int M has a C”
extension to OM that intersects T(OM) along an (m — 1)-dimensional distribution V
on OM. If V is integrable, so is D.

(iii) At (y,t)eM=NxI, g is given by g(T,T)=1 gX, X)=
COSZt ) gO(X’ X)’ g(&: ‘S) =g0(§’ &)x g(T’ X) =g(T’ E) =g(Xx E) = 07 where 8o is
the induced metric on dM = N X {0} = N, T is the vector field with integral curves
t—(y, t) and X (resp., &) is any vector of V (resp., of its go-complement V* in
T,N) at y, regarded as lying in T, \M.

Proof. Writing (,) for g, we have from the generalized Gauss lemma
(T, T)=1, (T, &)=0,
(a, ﬂ) = (a? ﬁ>l

where I5t—g,=(,), is a curve of metrics on N, T is defined in (iii) and a, B
denote, from now on, arbitrary vector fields on N viewed at the same time as
vector fields on M. Thus

(19)

VT =[T, a]=0
(20)
<T) [d, ﬁ]) =0,
so that (12) and (19) yield (V,a, B) =3(8/3t){a, B). and hence
Vo=V, T=—tant - Ba (21)

B, being the curve of (1, 1) tensor fields on N given by

(Ba, B), = —%cottgt(a, B). (22)
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Consequently, from (21) and (19)
(Vop, T) =tant(Ba, B). (23)

Since f(y, t) =sint, we have Tf =cost, af =0, i.e., df(u) =cost - (u, T) for any
vector u. Therefore, from (13), (21), (20) and (23), (Vdf)(T, T)= —sint,
(Vdf)(T, «)=0 and (Vdf)(«, B)= —sint(B, B). In particular, Af=(1+
Tr B,)f and, since Af = mf by hypothesis,

TrB,=m—1. (24)
The 2-tensor field H = f~! V df on Int M now satisfies

H(T, T)=-1, H(T, a)=0,

H(a, )= —(Ba, B),

so that H(T, u)= —(T, u) for any vector u. Therefore, in view of (14), (23),
(21), (19) and (22), (VoH)(T, B) =tant((B,— BY)a, B), (V+H)(a, B)=—((3B,/
ot)a, B) (note that (25) holds for vectors a, B orthogonal to T, while
T(H(a, B)) = —3/0t(Ba, B),). Since, by (9) for all v, (V.HXT,B)+
(VrH)(B, a) + (VgH)(a, T) =0, we now obtain

(25)

3B,/3t =2 tan t(B, — BY). (26)

Hence, by induction, 8B¥/3t=2ktant(B*— B**') and so 38/3tTrBk=
2k tan t(Tr B¥ — Tr B¥*") for all k. Consequently, by induction we obtain from
(24)

TrBf=m-1

for each k. Since B, is g,-self-adjoint, the g,-norm of B, — B? now satisfies
|B, — B?|? = Tr (B, — B?)*=0. Therefore B? = B, and, by (26),

oB,/ot=0

i.e., B= B, is independent of ¢. Thus, at each point of N, B is an orthogonal
projection for all metrics g, and rank B =m — 1, which implies (i). Consider the
distributions V =Im B = Ker (B — Id) and V* = Ker B in N of dimensions m — 1
and n — m, respectively. In the sequel, let X (resp., §) denote an arbitrary local
section of V (resp., V*) in N, which we also view as a vector field in M. Thus,

BX =X, BE=0.




A lower bound for A, on manifolds with boundary 117

Hence (22) with B,=B and (19) imply (iii). On the other hand, (25) gives
H(T, )=—(T, ), H(X, ) =—(X, -), H(§, -) =0, so that (ii) follows from (20)
with @ = X, D being spanned by T and V in the obvious sense. This completes
the proof.

Remark 6. In the course of the above proof we have in fact classified all
manifolds (M, g) satisfying the hypotheses of Lemma 4. Namely, they are in a
bijective correspondence with the Riemannian manifolds (N, go)(dN =) en-
dowed with distributions V such that VxX € V and V& € V* for any local sections
X of V and & of its go-complement V* (cf. Lemma 2), \Y being the Riemannian
connection of go.

Remark 7. If a manifold (M, g) satisfying the hypotheses of Lemma 4 has
bounded curvature, then the distribution D is integrable and has totally geodesic
leaves of constant curvature 1. To verify this, it is sufficient to express the
curvature of g in terms of the metric g, and the distribution V on N, using (iii)
and Lemma 2. However, in the case where (M, g) has a Riemannian compac-
tification we shall prove the above assertion by a direct geometric argument (see
Section 4).

4. The equality case: Riemannian hemisphere bundles

In this section we classify the compact Riemannian manifolds (M, g) with
boundary for which

M(M,g)=EM,g), (27)

i.e., (1) becomes an equality. It turns out that they form the class defined as
follows.

DEFINITION 2. By a Riemannian hemisphere bundle we mean a compact
Riemannian manifold (M, g) with boundary which is a Riemannian fibre bundle
in the sense of Definition 1 having as the Riemannian fibre a round hemisphere of
some dimension m =1 and radius r >0 with G = O(m) acting in the natural way.

For a round hemisphere of dimension m and radius r, A, = m/r* and I(v) = r
for each unit tangent vector v, which implies (27). Therefore, by Proposition 1,
(27) also holds for all Riemannian hemisphere bundles.

We will now show that every compact Riemannian manifold (M, g) with
boundary, satisfying (27), is isometric to a Riemannian hemisphere bundle.
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In view of Corollary 1, M admits a function f with (7), (8) for some real m and
(9) for any tangent vector v in Int M, H being given by (10). By Lemma 3(iii), we
can rescale g and f'so that f(exp ¢T,) = sin ¢ for each y e 3M and t € [0, 7], T being
the inner unit normal vector field along M. Connecting any x e M to M by a
shortest geodesic, we see that

F(x) = sin [dist (x, dM)), (28)

which easily implies that all geodesics [0, 7/2) 5t—>exptT,, y € M, are mini-
mizing and mutually disjoint. Using a standard argument ([5, p. 135-136]) we
now conclude that the normal exponential map

M x [o, ’5‘) —M—f1(1) (29)

is a diffeomorphism. Thus, applying Lemma 4 to M — f~!(1) instead of M we see,
by continuity, that assertions (i) and (ii) of Lemma 4 hold everywhere in Int M.

Let B=f"'(1). For a geodesic y connecting y, z€B in M we have
O=foy=1=f(y)=f(z) and foy is sinusoidal or constant (Remark 1), so,
obviously, fey =1. Thus, y lies entirely in B and so does its extension beyond y
and z if y # 2, i.e., B is a totally convex compact submanifold without boundary.
Moreover, for y € B, T,B is the null-space of H, and so dim B=n —m. To see
this, note that we just showed that T,B consists of all vectors u at y tangent to
geodesics y with foy =1, which are precisely the vectors u with (V df)(u, u) =0,
since f =1 and df =0 on B and f is sinuisoidal or constant along each geodesic.
As H is semidefinite, these vectors form the null-space of H,.

Let y:[0, to)— Int M be a maximal geodesic normal to B at y = y(0) with
|¥|=1. Thus, 7(0) is in the (—1)-eigenspace of H,. The sinusoidal function
¢ =foy (Remark 1) has ¢(0) =1, ¢ =1, ¢'(0) =0 and ¢"(0) = —1, i.e., ty=7/2
and ¢(¢) = cost. Connecting any x € M to B by a distance minimizing segment of
such a geodesic y we see that

f(x) = cos [dist (x, B)], (30)

so that normal geodesics issuing from B are all minimizing and mutually disjoint.
Consequently, the normal exponential map from the bundle of radius /2 closed
normal discs over B is a diffeomorphism onto M, which allows us to identify M
with the total space of this bundle. The projection M — B (restricting to the
(m — 1)-sphere bundle dM — B) sends exp ¢T,, (y € M, 0=t =< 7/2) onto exp (/
2)T,. In fact, (28) and (30) give dist (x, M) + dist (x, B) = n/2 = dist (M, B) for
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all x € M, so that each geodesic normal to B hits M perpendicularly, and vice
versa.

Let s+ y(s) be a curve in M with y(s) tangent to the distribution V at each
point (cf. Lemma 4(ii)) and set y(s, t) = exp tT, for 0 =<t =un/2. Using Lemma
4(iii) with our identification (29) we see that the vector (3/3s)y(s, t) has length
cost |y(s)|, which vanishes for ¢ = 7/2 and any s. Therefore, y(s, 7/2) = exp (7/
2)T,, is constant, i.e., y(s) lies entirely in a fibre of M — B. For dimensional
reasons, this implies that V is integrable and hence so is D by Lemma 4(ii), while
the leaves of V are just the (m — 1)-sphere fibres of 9M — B. The leaves of D are
totally geodesic in view of Lemma 2(i). The normal geodesics issuing from B are
all tangent to D, since this is the case at their origins in B (cf. the above
description of T,B). Consequently, the totally geodesic leaves of D are just the
m-disc fibres of the bundle projection M — B, which is a Riemannian submersion
by Lemma 2(ii). In view of Lemma 4(iii), each of these fibres is isometric to a
unit hemisphere. for otherwise it would have a singularity at B. Now Remark 5
implies that (M, g) is isometric to a Riemannian hemisphere bundle.

5. Remarks and corollaries

A natural question suggested by the theorem of Section 1 is whether 4,(M, g)
being close to E(M, g) implies that (M, g) is close, in an appropriate sense, to a
Riemannian hemisphere bundle. That this is not the case, for a reasonable notion
of closeness, can be seen as follows. Given any closed Riemannian manifold
(N, g), consider the manifolds (M,, g.)=(N X [0, (n/2) — €], cos’t-g+dt?),
where 0<e<m/2. We then have A(M,, g.)=E(M,, g.)=n=dimN +1 and
A (M, g.)—n as €e—0, which one can verify by using the function sin¢ - ¢.(t)
with an appropriate cut-off function ¢.. More complicated examples of this type
are provided by Riemannian fibre bundles with fibre (M,, g.) as above.

The invariant E(M, g) is still well-defined for non-compact complete
Riemannian manifolds with boundary. In this case, our proof of (1) remains valid
if we define A,(M, g) by (3) restricted to functions f vanishing on M for which
|Vf| is square integrable. Consequently, we have

COROLLARY 2. Every complete Riemannian manifold (M, g) with bound-
ary satisfies A\(M, g) = E(M, g).

The last estimate is sharp for infinite strips in the plane as well as for
Riemannian hemisphere bundles with complete open base manifolds (B, k)
satisfying A,(B, h) =0 in the sense explained above. The simplest examples of
such (B, h) are the Euclidean spaces.
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For a complete n-dimensional Riemannian manifold (M, g) with boundary
and x € Int M, set (cf. [4])

1
EV.(M, )= | L(v)dv,,

1, (v) =« being the maximum length of the geodesic segment in Int M having v as
its tangent vector at the origin, so that

I(v)=1,(v)+1.(-v). (31)

If (M, g) is a Euclidean domain, EV,(M, g) is just the volume of the region
“visible from x". In general, it is the Euclidean volume in T,M of the set where
the exponential map is defined. Note that EV,(M, g) may be infinite even if M is
compact. As a consequence of (1) we obtain the following estimate (which is
never sharp).

COROLLARY 3. For any complete n-dimensional Riemannian manifold
(M, g) with boundary,

2 —~2/n
MM, g) 2%[a(n - 1)]2”'n("'2)"'[ sup. EV.(M, g)] :
x€lnt
Proof. Fix x € Int M. In view of (31), the Schwarz inequality yields
2
[e(n - )= (f dv,) = h(x)f Pw)dv, = 4h(x)f L (v) dv,,
U U, ] U,

h being given by (11). By the Holder inequality, we have

[ @ dvstat- D12 eV, (M, )1

Ux
so that
2/n
[a(n — D =4[atn — DI D"h()| n_sup EV.(M, )]
x€lnt

and our assertion is immediate from (1).
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For a domain £ in the unit n-sphere we have /(v) = or /(v) <2z, so that
4n*h(x) = u(x), where h is given by (11) and u(x) is the measure of {ve
U, :l(v) < »}. Therefore, by (1),

n .
WD = = 1) M)

In particular, A,(£2) = z/4 if Int £ contains no great circle.
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