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0. INTRODUCTION

Let (M, g) be an oriented four-dimensional Riemannian manifold. We shall
say that (M, g) is locally conformally Kdhlerian if every point x of M has a
neighbourhood U with a function F > 0 on U such that Fg is a Kihler
metric for some complex structure in U, compatible with the original
orientation.

The aim of the present paper is to discuss some properties and examples
of Einstein manifolds which are locally conformally Kéhlerian. In the case
of orientable Einstein 4-manifolds, this condition does not seem too
unnatural. It holds, for example (for some orientation), if the manifold has
sufficiently many isometries with fixed points (see §3.5), as well as for all
known examples of compact orientable Einstein 4-manifolds ([7], §85). The
list of these examples (up to finite isometric coverings) consists of: (1)
products of surfaces, (2) locally irreducible locally symmetric spaces, (3)
compact complex Kihler surfaces having ¢y < 0 or ¢, = 0 with
Kihler—Einstein metrics (cf. the existence theorems of Yau and Aubin
[2,15,18]), (4) the complex surface obtained by blowing up a point in CP?
(homeomorphic to CP? # (—CP?%) with the U(2)-invariant Hermitian
Einstein metric constructed by Page [4,14].

In Sections 1 and 2 we list some properties of locally conformally
Kahlerian Einstein 4-manifolds. Some examples of complete manifolds of
this type are described in Section 3; these examples are ecither locally
conformal to products of surfaces (§3.3; by §2.5, there is no chance of

+This paper was written as part of the programme *Sonderforschungsbereich Theoretische
Mathematik’ (SFB 40) at the University of Bonn.
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finding essentially new compact examples in this way) or self-dual (§3.4).
An interesting feature of our examples is that, for many of them, the
conformally related Kdhler metrics are essentially non-complete.

For a given Riemannian metric g, we shall use the symbols V, Ric, Scal,
W = W(g) and A = —g¥V,V, for its Riemannian connection, Ricci tensor,
scalar curvature, Weyl conformal tensor and Laplace operator.

1. KAHLER MANIFOLDS OF REAL DIMENSION 4 WHICH ARE
LOCALLY CONFORMALLY EINSTEINIAN

Before discussing the Einstein 4-manifolds which are locally conformally
Kihlerian, let us consider the corresponding (locally conformally
Einsteinian) Kéahler 4-manifolds. The characterization of the latter is,
generically, very simple (equation (1) below). Conditions, characterizing
locally conformally Einsteinian manifolds among arbitrary Riemannian
ones, were found by Brinkmann [5].

For a Riemannian manifold (M, g), the Bach tensor B = B(g) (first
studied by Bach [3]) is defined by B; = V/VIW,.. + Va(Ricy’TW,,.
Under a conformal change of metric in dimension 4, the Bach tensor
transforms like B(Fg) = B(g)/F. If g is an Einstein metric, we have
VPVIW,iqe = 0, (Ric)?W,;, = 0 and hence B(g) = 0. Consequently,
condition B(g) = 0 is necessary in order that a Riemannian 4-manifold (M,
g) be locally conformally Einsteinian.

1.1
A Kahler 4-manifold (M, J, g) satisfies B(g) = 0 if and only if
¢)) 2V 3Scal + Scal - Ric = (Scal¥4 — AScal/2)g

(7], Lemma 5). Conversely, for a Kahler 4-manifold (M, J, g) satisfying
(1), the conformally related metric ¢ = g/Scal® (defined wherever Scal #0)
is Einsteinian. The Einstein metric conformal to g is essentially unique
and, if Scal is not constant, g is not locally symmetric (since 24g(W*(g),
W*(g)) = Scal®; cf. Section 2 and [7], Proposition 3). Therefore, at points
where Scal # 0, a Kahler 4-manifold is locally conformally Einsteinian if
and only if it satisfies (1).

1.2

For a Kahler 4-manifold (M, J, g) satisfying (1), J(V Scal) is @ holomorphic
Killing vector field ([7], Proposition 4). Thus, g is then an extremal Kahler
metric in the sense of Calabi [6].
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2. LOCALLY CONFORMALLY KAHLERIAN FOUR-DIMENSIONAL
EINSTEIN MANIFOLDS

Let M be an oriented smooth 4-manifold. If a Riemannian metric g (or a
conformal structure) is chosen in M, the bundle A%M of 2-forms on M can
be written as the Whitney sum A™M + A~M, where the 3-plane bundles
A*M consist of all 2-forms { with *§ = £{. The Weyl tensor W of (M, g),
viewed as an endomorphism of A?M, always commutes with * ([16]) and
hence it leaves A*M invariant; we shall denote by W* = W*(g): A*M —
A*M the resulting restrictions of W.

2.1

In a Kahler 4-manifold (M, J, g) endowed with natural orientation (so that
the Kihler form w is a section of A* M), the eigenvalues of W* at any point
are {Scal/6, —Scal/12, —Scal/12} and w is an eigenvector of W* for the
‘simple’ eigenvalue Scal/6 (cf. [11]). By the conformal invariance of W, this
implies that the condition # Spec W* < 2 (‘W™ has less than three distinct
eigenvalues at any point’) is necessary for an oriented Riemannian
4-manifold to be locally conformally Kahlerian (in the sense of Section 0).

2.2 Uniqueness of a Kiahler metric within a given conformal class

Let (M, J, g) be a Kéhler 4-manifold, U an open subset of M with W* # 0
everywhere in U and F > 0 a function on U such that § = Fg is a Kihler
metric for some complex structure J compatible with the orientation
determined by J. Then F is constant and J = +J. In fact, in view of (2.1),
the Kéhler form w of g (resp. @ of g) is determined (up to a sign) by W*(g)
(resp. by W*(g) = W*(g)/F), at any point of U. Thus, @ = = Fw and hence
J = *J: since dw = dw = 0, F must be constant.

2.3
Let (M, g) be an oriented Einstein 4-manifold with # Spec W* < 2.

(a) If W* = 0 identically, then (M, g) is called an anti-self-dual Einstein
manifold ([1]). In the case where M is compact and Scal = 0, these
manifolds have been classified by N. Hitchin [12,13] (see also [10]).

(b) If W* does not vanish identically, then W* # 0 everywhere. The
global conformal change g = |W*|?g gives rise to a Kahler metric g on M
or on some twofold cover of M (the Kahler form for g is determined by g
only up to a sign) and the scalar curvature of g is non-zero everywhere ([7],
Proposition 5).
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24

Let (M, g) be a compact oriented Einstein 4-manifold such that # Spec W™
< 2 and W is not parallel. Then the universal covering manifold M of M is
diffeomorphic to $2 X 52 or to a connected sum CP? # (—kCP?),0< k <
8, while the pull-back of the metric |W*|??g to M is a Kihler metric with
positive non-constant scalar curvature ([7], Theorem 2).

From (2.3) it follows that, for oriented Einstein 4-manifolds with W*
0, local conformal equivalence to a Kéahler manifold implies global one (at
least for a twofold cover). The only known example of a compact manifold
of this type which is not (locally) Kéhlerian (i.e. satisfies the hypothesis of
§2.4) is CP? # (—CP?) with the Page metric (Section 0). The following
argument shows that no new compact Einstein 4-manifolds can be obtained
by conformal deformations of products of surfaces, even without insisting
that the underlying manifold be globally diffeomorphic to a product.

2.5

Proposition Let (M, g) be a compact Einstein 4-manifold. If, for some
non-void connected open subset U of M and a function F > 0 on U, the
Riemannian manifold (U, Fg) is isometric to a product of surfaces, then
either g is a metric of constant curvature, or F is constant and (M, g) is
isometrically covered by a product of surfaces.

Proof By a result of DeTurck and Kazdan [9], (M, g) is analytic. If g is
not of constant curvature, we may assume that M is oriented so that W+ #
0 somewhere. However, a manifold conformal to a product of surfaces
satisfies # Spec W* < 2 for both orientations, so that W* # 0 everywhere
by §2.3(b). Combining §2.3(b) with §2.2 we see that |W*|?¥/F is constant,
so that analyticity together with the de Rham decomposition theorem
implies that the universal covering space (M, G) of (M, |W*|*%) is
isometric to a product of surfaces. If |W+| were not constant, §2.4 would
imply that (M, G) is isometric to (S2, g;) X (52, g,) for some metrics g;, g>
on S?, one of which has non-constant Gauss curvature. On the other hand,
G is an extremal Kihler metric (the gradient of its scalar curvature is
holomorphic, cf. §1.1, §1.2) and so the same would hold for g, and g,. By a
theorem of Calabi ([6], p. 276), both g, and g, would have constant
curvatures. This contradiction completes the proof. 0O

3. EXAMPLES

By §2.3 and §1.1, the only way of obtaining locally conformally Kéhlerian
Einstein 4-manifolds with W* # 0 is, essentially, to take a Kiihler
4-manifold (M, J, g) satisfying (1) and define the Einstein metric by g =
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g/Scal®. Although this procedure is possible only in the set U where Scal #
0, it always gives rise to complete Einstein metrics in the components of U,
provided that g is complete and Scal is bounded. Actually, even weaker
conditions are sufficient for completeness of g. For convenience, we shall
now consider Riemannian manifolds with boundary (empty or not); they
are, naturally, metric spaces and their completeness is equivalent to the
existence of end-points for any curve of finite length.

3.1

Lemma Let f be a bounded C~ function on a complete Riemannian
manifold (N, g) (with boundary). Set g = glf* wherever f # 0. Then, for
any component Q of the set N\f "'({0}), (Q, &) is a complete Riemannian
manifold (with boundary).

Proof We claim that for any C' curve y: [a, b)) > Q witha < b < oo,
g(¥, ¥) = 1 and of finite g-length

L= [ @i,

there exists a limit y(b)e Q. If b = o, then L = o, since fis bounded. For
b < =, completeness of (N, g) implies the existence of y(b) € N. Note that
d[f(v(2))ydt = g(Vf, ¥) is bounded for ¢ < b, since y([a, b]) is compact. If
we had 1(b) € f~'({0}), so that f(y(b)) = 0, then this would give If(y(t))l <
A(b — 1) for some A > 0 and all ¢ € [a, b] and hence L = =, contradicting
our assumption. O

3.2

Proposition Let a Kihler 4-manifold (M, J, g) with non-constant scalar
curvature satisfy (1).

() Every (non-empty) component N of the set Scal™'([0, ©)) (or
Scal™'((—,0]) which is not a single point, is a four-dimensional
submanifold of M (possibly with boundary). (N, g) is complete if (M, g)
is also.

(ii) For N as in (i), if (N, g) is complete, Scal is bounded on N and Q is
the subset of N given by Scal # 0, then (Q, g/Scal®) is a complete Einstein
4-manifold (without boundary), which is not locally symmetric.

In fact, by §1.2 and equation (1), Scal~!'({0}) is a union of disjoint
hypersurfaces and isolated points (note that Scal (x) = 0 and V Scal(x) = 0
implies Hess Scal(x) = —AScal(x) - g(x)/4 # 0, since the Killing field
J(V Scal) is determined by its 1-jet at x). Applying §1.1 and §3.1 with N as
in (i) and f = Scal, we obtain (ii).
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Using §3.2, we shall now describe various explicit examples of complete
conformally Kéahlerian Einstein 4-manifolds.

3.3

Example Let our Kihler 4-manifold be a product of surfaces. (This
case was studied by Tashiro [17].) Relation (1) holds if and only if both
surfaces satisfy

(2) 2V%%k = (e — P)g,

g, V and k being now the metric, the connection and the Gauss curvature
of the surface, while ¢ is a common constant; by rescaling g, we shall
assume that ¢ € {—1, 0, 1}. For a surface (S, g) satisfying (2), we have
|VK|2 = —k/3 + ek — r = P, (x) = 0 for some real r and so the integral
curves of V k are geodesics. The length of such a geodesic y: (¢, £,) — S,
containing no critical points of k, is given by

@) L= [ [P 0]k K= lim k().

If S is oriented, the complex structure tensor J gives rise to the Killing field
J(V k). It is now easy to verify that a complete local description of such
surfaces at points with Vi # 0 is

(@) g =d? + a(dx/de)’dx>

in suitable local coordinates (¢, x), where a > 0 and k = k(¢) is any solution
of the equation 2d?k/d> = £ — &2, i.e. of

&) (de/de)> = =13 + ek — r = P, (k)

for some r. The essentially distinct local types of surfaces satisfying (2) with
V k # 0 are, thus, parametrized by e € {—1, 0, 1} and r € R; the parameter
a in (4), locally irrelevant (adx®* = d(a'’x)?), will later have global
meaning. We can now describe some examples of such surfaces (S, g) with
‘as much completeness as possible’. Our g = g, , , will be the S'-invariant
metric, defined by (4) and (5) on the product (inf k, sup k) X S
(sometimes ‘completed’ by adding a point), where the second coordinate x
e S' = R/2aZ, while the first one is parametrized by k instead of ¢. For
brevity, we shall say that (S, g) is half-complete from above (resp. from
below) if, for all q € (inf k, sup k), k" '([q, ®)) (resp. K '((—, q])) is a
complete surface with boundary.

Let ko = ko(€, r) be the lowest real root of P = P, ,. Note that P may
have three distinct real roots (if e = 1 and |r| < 2/3), a simple and a double
one (if e =11, lrl = 2/3), a triple one (¢ = r = 0), or only one, simple real
root (otherwise). Let xk = k., be a solution of (§) with range (—x, k).
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(A) If (¢, r) is none of (0, 0), (1, 2/3), (1, —2/3), then k5 # €and, fora =
4/(e — K)?, our S'-invariant metricg = g, , ,on (—®, kg) X §' =
R?\ {0}, defined by (4), can be extended to a smooth S'-invariant
metric g’ on R? with x(0) = kq. The resulting surface A, , = (R?, g')
is half-complete from above (since k is a proper function on R?).

(B)Ife=1andr= —2/3,0ourmetricg =g, , oonS = (—®, ky) X S'is
half-complete from above for each a (which one can easily verify
using (3)) and its Gauss curvature k < ky = —1. Notation: (S, g) =
B,.

In the case where all roots of P = P,_, are rcal and the highest one, ki, is
simple (i.e. € = 1 and —2/3 < r < 2/3), denote by k; the largest root with k;
< K. Clearly, -1 < Kk, <1 < k; < 2. Take a solution k¥ = k,_, of (5) with
range (K;, Kj).

(C) If P'(x2) # 0 (i.e. (g, ) # (1, —2/3)), the choice of a = 4/(1 — K§)?
(resp. a = 4/(1 — K3)?) allows us to attach a point x; to (kz, k;) X S*
so that our metric g,, ,. , can be extended to an S'-invariant metric
g’ on a disc D? with k(x) = k; (resp. k(xo) = k3). The surface (D?,
g) = C} (resp. (D%, g') = C;) is half-complete from above (resp.
from below).

(D) If P'(k2)) = 0 ((g, r, Ky, K3) = (1, =2/3, 2, —1)), our surface D, =
((k2, k1) X S', g) is half-complete from below (by (3)) and, for a =
4/9, one can attach a point xy to D, so that g has an extension to a
metric g’ on a disc D? with k(xy) = k; the surface (D? g') = D is
complete.

Finally, we have the standard examples:

(E) Any complete surface (S, g) of constant curvature ¢ € {1, 0, —1}
satisfies (2) with ¢ = |c| By an abuse of notation, we shall write
here (S, g) = E. and associate with £ the parameter r = 2¢/3. .

Among the above examples, complete ones occur only in (D) and (E).
However, even for the non-complete surfaces of (A)-(C), certain
additional conditions imply, for some of their four-dimensional products,
that the subset of the product defined by Scal = 0 (or by Scal < 0) is
complete (which follows from half-completeness of our surfaces) and Scal
is bounded on it. Therefore, by §3.2(ii) they give rise to complete,
conformally Kihlerian, open Einstein 4-manifolds, which have negative
scalar curvature (equal to 48(r + '), cf. notations in Table 1) and are not
locally symmetric (unless both surfaces are of type (E)). The details are
presented in Table 1 (with notational conventions like Kk, = ky(g, r), kj =
ko(g, '), etc.). Each of the Einstein 4-manifolds described here has an
isometry group of positive dimension.
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Table 1
Product manifold Additional Relation defining Topology of the
condition a complete 4-associated
submanifold complete with
boundary Einstein 4-manifold
A, , X A, , K+ k>0 Scal = 0 D*
A, , X B, Ko > 2 Scal = 0 S'x D3
A ,xC} K < —Kg < Kj Scal = 0 D*
A, ,xD K+2>0 Scal = 0 D!
A, , X E, e=|c|, k%> —c Scal = 0 DZXE§
B, x C} None Scal = 0 S!'x D
B, x D None Scal = 0 S' x D3
Cifx E_, None Scal = 0 D?* X E_,
(resp. Scal < 0)
C- x Cr K+ K<0 Scal <0 D?
C- x D, None Scal <0 S! x D?
C-xD None Scal €0 S! x p3
D, x D, None Scal <0 T2 x D?
D, x D None Scal <0 T2 x D?
D, x E_, None Scal <0 S''x D'x E_,
{ Scal = 0 D?
D x D None
Scal <0 S$3 x D!
Scal = 0 D? x E,
D x E, |c| =1
Scal 0 S' x D' x E.
3.4
Example Consider a four-dimensional Lie algebra with basis e,, ..., e4

such that [e;, e,] = 0 (o= 2), [es, €3] = 2(p — ¢)es, [e2, €4] = 2¢e3, [e3, €4]
= 2(p — q°)e,, where p, g € R, p # q* and £ = *1. Let abe any solution of
the equation

(6) doldt = 2(q — 0)(? — p)

defined on an interval (a, b) and such that &(0®> — p) >0, e(q — 0) > 0. The
open subset M = (a, b) X H of a Lie group R X H associated to our Lie
algebra (H locally isomorphic to SU(2) or to SL(2, R)) can now be
endowed with the Riemannian metric g given by g(e,, ;) = g(es, e3) = (g
- o)(az - p)’ 8(5’2, 62) = g(e4v 94) = 8(q - 0)’ g(ec\" eﬁ) =0 (a # ﬁ)’ where
odepends on t € (a, b) and e, = /3¢, e, 3, e, are viewed as right-invariant
vector fields on R X H. This metric is preserved by the right action of H on
M and it is Kihlerian for the complex structure J given by Je, = e;, Je, =
eq. Moreover, (M, J, g) satisfies (1) and Scal = 480 is not constant. By-
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§1.2, J(VScal) is a non-trivial H-invariant Killing field on M, so that the
isometry group of (M, g) is four-dimensional (locally isomorphic to S! x
H). Another property of g is that it is self-dual (W™ = 0 for the natural
orientation); for details, see [8]. Combining this construction with §3.2(ii),
we shall now describe some examples of complete Einstein 4-manifolds.
Take e = —1, p > 0, —p'? < ¢ < 0, H = SU(2) and a solution o of (6)
defined on an interval (a, b) and having range (g, p"’?). The U(2)-invariant
metric g constructed as above on the manifold (a, b) X §* (which we
identify with a pointed ball B*\ {0} in C?) can be extended to a Kihler
metric g’ on B* with o(0) = Scal(0)/48 = q ([8], §2). In (B*, g’), relation
Scal < 0 defines a ball Q with compact closure. Thus, by §3.2(ii), (Q,
g'/Scal’) = M,, , is a complete Hermitian Einstein 4-manifold, of negative
scalar curvature 2!2 - 3%°pg, which is conformally Kihlerian, not locally
symmetric and self-dual for the natural orientation. The four-dimensional
isometry group of M, , has three-dimensional principal orbits; various
examples of Einstein manifolds with the similar property of ‘principal
cohomogeneity one’ have been constructed by Bérard Bergery [4].

3.5

Remark Let (M, g) be an orientable Einstein 4-manifold such that for
each x € M there exists a non-trivial Killing field defined near x and
vanishing at x (this happens, for example, if all orbits of the isometry group
I(M, g) are of dimensions less than dim I(M, g)). By Lemma 9 of [7], we
have # Spec W* < 2 for both orientations and so, by §2.3, (M, g) is locally
conformally Kihlerian (for an appropriate orientation). However, if (M,
g) is not locally symmetric, one can easily prove, using the Killing field
mentioned in §1.2, that the Lie algebra of germs of Killing fields at any
point is four-dimensional and has principal orbits of dimension three; a
general existence theorem for (incomplete) Einstein metrics of coho-
mogeneity one is due to Koiso and Bérard Bergery ([4], Proposition 3).

REFERENCES

[1] M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in
four-dimensional Riemannian geometry. Proc. Roy. Soc. Lond. A
362 (1978), 425-461.

[2] T. Aubin, Equations du type de Monge-Ampére sur les variétés
kahlériennes compactes. C. R. Acad. Sci. Paris A 283 (1976),
119-121.

[3] R. Bach, Zur Weylschen Relativitiatstheorie und der Weylschen
Erweiterung des Kriimmungstensorbegriffs. Math. Zeitschr. 9
(1921), 110-135.



114

[4]

5]
[6]

[7]
(8]
(]
[10]
[11]

[12]
[13]
[14]
[15]

[16]

[17]

[18]

Einstein metrics [Ch. 4]

L. Bérard Bergery, Sur de nouvelles variétés riemanniennes
d’Einstein. Preprint, Institut Elie Cartan, Université de Nancy I
(1981).

H. W. Brinkmann, Riemann spaces conformal to Einstein spaces.
Math. Ann. 91 (1924), 269-278.

E. Calabi, Extremal Kihler metrics. In Seminar on Differential
Geometry (ed. by S. -T. Yau), Princeton University Press,
Princeton, N.J. (1982), pp. 259-290.

A. Derdzinski, Self-dual Kahler manifolds and Einstein manifolds of
dimension four. Compos. Math. (to appear).

A. Derdzisiski, Exemples de métriques de Kihler et d’Einstein
auto-duales sur le plan complexe. In Géométrie riemannienne en
dimension 4 (Séminaire Arthur Besse 1978/79), Paris (1981), pp.
334-346.

D. DeTurck and J. L. Kazdan, Some regularity theorems in
Riemannian geometry. Ann. Scient. Ecole Norm. Sup.(4) 14 (1981),
249-260.

T. Friedrich and H. Kurke, Compact four-dimensional self-dual
Einstein manifolds with positive scalar curvature. Math. Nachr. (to
appear).

A. Gray, Invariants of curvature operators of four-dimensional
Riemannian manifolds. In Proceedings of the 13th Biennial Seminar
of the Canadian Mathematics Congress Vol. 2 (1971), pp. 42-65.
N. Hitchin, Compact four-dimensional Einstein manifolds. J. Diff.
Geom. 9 (1974), 435-441.

N. Hitchin, Kahlerian twistor spaces. Proc. Lond. Math. Soc. 43
(1981), 133-150.

D. Page, A compact rotating gravitational instanton. Phys. Lett. B
79 (1978), 235-238.

Séminaire Palaiseau 1978, Premiére classe de Chern et courbure de
Ricci: preuve de la conjecture de Calabi. Astérisque 58 (1978).

I. M. Singer and J. A. Thorpe, The curvature of four-dimensional
Einstein spaces. In Global Analysis, Papers in Honor of K. Kodaira,
Princeton University Press, Princeton, N.J. (1969), pp. 355-365.
Y. Tashiro, On conformal diffeomorphisms of 4-dimensional
Riemannian manifolds. Kédai Math. Sem. Rep. 27 (1976), 436—444.
S. -T. Yau, Calabi’s conjecture and some new results in algebraic
geometry. Proc. Natl. Acad. Sci. U.S.A. 74 (1977), 1798-1799.



