
ON WEAKLY EINSTEIN KÄHLER SURFACES

ANDRZEJ DERDZINSKI1, YUNHEE EUH2, SINHWI KIM2, JEONGHYEONG PARK2

Abstract. Riemannian four-manifolds in which the triple contraction of the curvature
tensor against itself yields a functional multiple of the metric are called weakly Ein-
stein. We focus on weakly Einstein Kähler surfaces. We provide several conditions
characterizing those Kähler surfaces which are weakly Einstein, classify weakly Einstein
Kähler surfaces having some specific additional properties, and construct new examples.

1. Introduction

Following Euh, Park and Sekigawa [14], we say that a Riemannian four-manifold is
weakly Einstein when the three-index contraction of its curvature tensor against itself
equals a functional multiple of the metric. This is the case – in dimension four only – for
all Einstein manifolds. See formulae (4.4) and (4.5) in Sect. 4.

The same requirement in dimensions n > 4, coupled with the Einstein condition,
defines what one calls super-Einstein manifolds, and then the above ‘functional multiple’
must – only if n > 4 – be a constant multiple [2, p. 165], [18, p. 358], [3, Lemma 3.3].

The present paper deals with weakly Einstein Kähler surfaces. Our Theorem 5.1 pro-
vides five conditions equivalent to the weakly Einstein property of a given Kähler surface,
which allows us to quickly conclude whether a specific Kähler surface is weakly Einstein.

One calls a function τι on a Riemannian manifold transnormal if the integral curves
of its gradient v are reparametrized geodesics. This amounts to requiring that, locally,
at points where v 6= 0, the norm-squared Q of v be a function of τι. When the last
condition holds for both Q and the Laplacian of τι, one refers to τι as isoparametric.
See [4, 19, 22]. Our next four theorems (three local, one assuming compactness) classify
weakly Einstein Kähler surfaces having specific additional properties.

Theorem 1.1. Up to local isometries, Riemannian products of two real surfaces of oppo-
site nonzero constant Gaussian curvatures are the only locally homogeneous non-Einstein
weakly Einstein Kähler surfaces.

Theorem 1.2. All self-dual weakly Einstein Kähler surfaces are locally symmetric, and
hence locally homothetic to a standard complex projective or hyperbolic space, or to a
product of two real surfaces of opposite constant Gaussian curvatures.

Theorem 1.3. On a weakly Einstein Kähler surface, every transnormal function with a
holomorphic gradient is necessarily also isoparametric.

Theorem 1.4. Up to biholomorphic isometries, the only compact non-Einstein weakly
Einstein Kähler surfaces admitting nonconstant transnormal functions with holomorphic
gradients are certain compact isometric quotients of the Riemannian product of a sphere
and a hyperbolic plane with opposite constant Gaussian curvatures.

The word ‘certain’ in Theorem 1.4 accounts for the requirement that both factor dis-
tributions be orientable (so as to make the quotient Kähler, and not just locally Kähler).
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The isometric quotients in question are precisely all the nonflat conformally flat compact
Kähler surfaces. See Remark 5.5.

In the Kähler-Einstein case the conclusion of Theorem 1.3 holds for well-known and
general reasons. See the second sentence of Remark 5.6.

We do not know whether there exist compact non-Einstein weakly Einstein Kähler sur-
faces other than the compact isometric quotients of the Riemannian products of spheres
and hyperbolic planes with opposite Gaussian curvatures, mentioned in Theorem 1.4.

What we can easily conclude, using Theorem 1.4, is that examples of this kind – if they
exist – cannot have a nonzero Euler characteristic and at the same time admit groups of
isometries with an infinite center and with principal orbits of dimension three. Thus, a
U(2)-invariant Kähler metric on the one-point and two-point blow-ups of CP2 is never
weakly Einstein.

Theorem 1.3, although not per se a classification result, provides a crucial step in the
proof of our Theorem 9.1, which explicitly describes the local structure of all non-Ein-
stein weakly Einstein Kähler surfaces with nonconstant transnormal functions having
holomorphic gradients. We then use Theorem 9.1 to prove Theorem 1.4.

As an added bonus, Theorem 9.1 leads to new examples of (noncompact) non-Einstein
weakly Einstein Kähler surfaces, presented in Sect. 12.

For compact Riemannian n-manifolds with parallel Ricci tensor, n ≥ 4, the weakly
Einstein property (as stated above when n = 4) is necessary and sufficient in order that
the metric be a critical point of the functional associating with metrics of unit volume
the L2 norm-squared of their curvature [2, Corollary 4.72]. See also [16]. For n = 3,
non-Einstein weakly Einstein manifolds are characterized by having a Ricci tensor of
rank one [17]. For n ≥ 4, only partial classification results exist such as Arias-Marco
and Kowalski’s theorem [1] in the locally homogenous case with n = 4, mentioned in
Sect. 3. Several results in this direction can be found in [2, Sect, 6.55–6.63]. Conformally
flat weakly Einstein Riemannian manifolds were classified by Garćıa-Ŕıo et al. [17]. For
the weakly Einstein condition in extrinsic geometry, see [20] and the references therein.

2. Notation and preliminaries

All manifolds, mappings, tensor fields and connections are assumed smooth. Manifolds
are by definition connected. Given a Riemannian manifold (M, g), we denote by ∇, R, r, e
and s its Levi-Civita connection, curvature tensor, Ricci tensor, Einstein tensor and
scalar curvature, with the sign convention such that r(w,w′) = tr[R(w, · )w′] for vector
fields w,w′. Thus, s = trgr. The symbol ∇ also stands for the g-gradient.

In the underlying real space of a complex vector space V of positive finite dimension
m we use the natural orientation such that e1, ie1, . . . , em, iem is a positive real basis for
any complex basis e1, . . . , em of V . (The automorphism group GL(V ) ≈ GL(m,C) is
connected, since every automorphism has, in some basis, a triangular matrix, which is
joined to Id by an obvious curve of nonsingular triangular matrices.) Thus,

(2.1) every almost complex manifold is canonically oriented.

Remark 2.1. A Riemannian manifold (M, g) with se = 0 that is, one in which sr is a
functional multiple of g, necessarily has s = 0 identically, or e = 0 everywhere. (This
needs to be justified as we are not assuming real-analyticity.) First, we may assume that
dimM > 2. (For surfaces, se = e = 0.) Now sds = 0, since a point with s 6= 0 has a
connected neighborhood U on which e = 0, so that, by Schur’s lemma, s is constant and
ds = 0 on U. The ensuing constancy of s2 gives s = 0 identically or s 6= 0 everywhere.

Remark 2.2. If d < c and a differentiable function ψ of the variable α ∈ [d, c) has a
positive derivative ψ ′(α) at every α at which ψ(α) ≥ λ, for some given λ ∈ IR, then
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either ψ < λ everywhere in [d, c) or, for the least α1 ∈ [d, c) at which ψ(α1) ≥ λ, the
restriction of ψ to (α1, c) is greater than λ and strictly increasing; consequently, ψ has
at c a limit lying in (λ,∞].

In fact, our claim will follow immediately once we verify that ψ ≥ λ on (α1, c).
Assuming this not to be the case, we let α2 be the infimum of those α ∈ (α1, c) at which
ψ(α) < λ. Thus, α2 > α1, since at α1 one has ψ(α1) ≥ λ and ψ ′(α1) > 0. It follows
now that ψ(α2) = λ, and hence ψ ′(α2) > 0, giving ψ(α) > λ for all α > α2 close to α2,
contrary to the definition of α2.

3. Proof of Theorem 1.1

Recall from the Introduction that a Riemannian four-manifold is said to be weakly
Einstein when the three-index contraction of its curvature tensor R against itself equals
some function φ times the metric g (in coordinates: RikpqRj

kpq = φgij).
Arias-Marco and Kowalski [1] showed that a non-Einstein locally homogeneous weakly

Einstein four-manifold must be locally isometric either to a Riemannian product of sur-
faces with opposite nonzero constant Gaussian curvatures, or to what they call an EPS
space: one of the examples constructed by Euh, Park, and Sekigawa [15, Example 3.7].

This proves Theorem 1.1, since an EPS space (M, g) is not Kähler.
We verify the last claim as follows. In [15, Example 3.7], M is a Lie group with

left-invariant g-orthonormal vector fields e1, . . . , e4 satisfying some Lie-bracket relations
that involve constants a 6= 0 and b. According to [15, formula (3.14)], the only nonzero
components of the curvature tensor R in this frame are those algebraically related to
R1212 = R1313 = R1414 = R3434 = −a2 and R2323 = R2424 = a2. (The sign of R in [15] is
the opposite of ours.) Consequently, the frame diagonalizes the Ricci tensor r, with the
eigenvalues r11 = −3a2, r22 = a2 and r33 = r44 = −a2.

Thus, g is not a Kähler metric: if it were, the complex structure, leaving r invariant,
would cause r to have two double eigenvalues, contrary to the above formulae.

4. Algebraic curvature tensors

For an algebraic curvature tensor R in a Euclidean space T of dimension n ≥ 4,
denoting by g the inner product, by W, r, e the Weyl, Ricci and Einstein tensors of R,
and by s its scalar curvature, with rij = gpqRipjq, s = gpqrpq and e = r− sg/n, we have

(4.1)

a) Wijpq = Rijpq −
1

n− 2
(giprjq + gjqrip − gjpriq − giqrjp)

+
s

(n− 1)(n− 2)
(gipgjq − gjpgiq).

b) Wijpq = Rijpq −
1

n− 2
(giphjq + gjqhip − gjphiq − giqhjp),

where the more concise version involves the Schouten tensor h = r− sg/(2n− 2), We use
here components relative to any basis of T , with index raising and lowering via g, and
summation over repeated indices. See [2, Sect. 1.108].

The triple contraction of any such R is the symmetric 2-tensor trcR given by

(4.2) [trcR]ij = RikpqRj
kpq.

Using (4.1-b) and, respectively, (4.1-a), one easily verifies that

(4.3)
i) (n− 2)2(trcR − trcW ) + 2[2sr − 2(n− 2)Rr − nr2] is a multiple of g,
ii) (n− 2)(Rr − Wr) + 2r2 − nsr/(n− 1) is a multiple of g.

Here b = r2 has the components bij = rkj rik, and an algebraic curvature tensor R acts

on arbitrary (0, 2) tensors b by [Rb]ij = Ripjqb
pq, which preserves (skew)symmetry of



4 A.DERDZINSKI, Y. EUH, S.KIM, J,H. PARK

b, and – due to the Bianchi identity – becomes 2[Rα]ij = Rijpqα
pq when b = α is skew-

symmetric. We will repeatedly refer to tensors (or, tensor fields on a manifold with a
metric g) as multiples (or, functional multiples) of g, without the need to specify the
factor, since it is trivially found by contraction.

For instance, given a Riemannian manifold (M, g) with the curvature tensor R,

(4.4) (M, g) is called weakly Einstein when trcR is a functional multiple of g.

It is well known – see, e.g., [9, p. 413] – that trcW is a multiple of g when n = 4. Thus,
(4.3-i) with n = 4 implies that, as pointed out by Euh, Park and Sekigawa [14],

(4.5)
in dimension four, trcR− 2Rr + sr− 2r2 is a multiple of g, so
that, for Riemannian 4 manifolds, Einstein implies weakly Einstein.

Setting n = 4 in (4.3-ii) and adding the resulting expression to the one in (4.5),

(4.6) we see that trcR− 2Wr− sr/3 is a multiple of g when n = 4,

which easily yields [17, Theorem 2(i)]: a four-dimensional non-Einstein conformally flat
Riemannian manifold is weakly Einstein if and only if its scalar curvature vanishes. (This
involves a technical detail, discussed in Remark 2.1.) As the contractions of W vanish,
which makes Wr obviously equal to We, (4.6) implies that, in dimension four,

(4.7) (M, g) is weakly Einstein if and only if 6We = −se,

e = r− sg/4 being again the Einstein tensor. The additional assumption

(4.8)
that e has the spectrum of the form (a, a,−a,−a),
which is obviously satisfied by Kähler surface metrics,

leads to the following consequence:

(4.9) sr− 2r2 is a multiple of g.

In fact, by (4.8), e2 is a multiple of g, while 2e2 = 2r2− sr + s2g/8.
Therefore, from (4.5) – (4.9) it trivially follows that

(4.10) trcR− 2Rr is a multiple of g if n = 4 and (4.8) holds.

5. Kähler surfaces

A twice-covariant tensor field a on an almost-complex manifold (M,J) gives rise to
two more such tensor fields,

(5.1) aJ = a(J · , · ) and Ja = −a( · , J · ),

as well as the commutator [a, J ] = −[J, a] = aJ − Ja. Obviously,

(5.2) a is J invariant, that is, a(J ·, J · ) = a, if and only if aJ = Ja.

The tensor field a is said to be Hermitian if it is symmetric at every point and J-in-
variant. Clearly, if a is Hermitian, aJ is a 2-form and (aJ)J = J(Ja) = −a. By a
Hermitian metric on an almost-complex manifold (M,J) we mean a Riemannian metric
g on M which is a Hermitian tensor (gJ = Jg), which amounts to skew-adjointness of
J at every point or – equivalently – the requirement that J act in every tangent space
as a linear isometry. If g is Hermitian, and one identifies bundle morphisms A,B :
TM −→ TM with a = g(A· , · ) and b = g(B · , · ), then the operation a 7−→ b = Ja
(or, a 7−→ b = aJ), defined by (5.1) for twice-covariant tensor fields a,

(5.3) corresponds to the ordinary composition B = JA or, B = AJ.
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As an example, in a Kähler manifold (M, g, J) of real dimension n, both g and the Ricci
tensor r are Hermitian, and hence so is the Einstein (traceless Ricci) tensor e = r−sg/n,
giving rise to the Kähler, Ricci and Einstein 2-forms ω = gJ, ρ = rJ and η = eJ , with

(5.4) ∇ω = 0, dρ = 0, η = ρ− sω/n.

In any complex manifold M, the operator i∂∂ sends every C∞ function f : M −→ IR
to the exact 2-form i∂∂f given by

(5.5) 2i∂∂f = −d [(df)J ].

Here the 1-form (df)J equals, at any point x ∈M , the composite of Jx : TxM −→ TxM
followed by dfx : TxM −→ IR. For any torsionfree connection ∇ on the complex manifold
M such that ∇J = 0, (5.5) is easily seen to become

(5.6) 2i∂∂f = bJ + Jb, where b = ∇df.
The Weyl tensor acts on 2-forms α in a Riemannian manifold of dimension n ≥ 4, with
the scalar curvature s, via the Weitzenböck formula [9, p. 409], [10, p. 458], immediate
from the Ricci identity:

(5.7) Wα =
1

2
[δ(∇α− dα)− dδα)] +

n− 4

2(n− 2)
{r, α}+

s

(n− 1)(n− 2)
α,

{ , } being the anticommutator, r the Ricci tensor. In local coordinates,

(5.8)
Wijpqα

pq = −αpi,jp − αjp,ip − αpj,pi + αpi,
p
j

+
n− 4

n− 2
(rpjαip + rpi αpj) +

2s

(n− 1)(n− 2)
αij.

When n = 4, (5.4) and (5.8) yield

(5.9) a) Wω =
s

6
ω, b) 2Wη = ∆ρ − i∂∂ s +

s

3
η.

Here ∆ sends a twice-covariant tensor field a to ∆a given by [∆a]pq = apq,k
k.

Theorem 5.1. For a Kähler surface (M, g, J) with the Weyl, Ricci, Einstein tensors
W, r, e, Ricci and Einstein forms ρ, η, and the scalar curvature s, the following six con-
ditions are mutually equivalent.

(a) (M, g, J) is weakly Einstein.
(b) Rr equals a functional multiple of g.
(c) 6We = −se.
(d) 3Wη = −sη.
(e) ∆ρ − i∂∂ s = −sη.
(f) 2∆r − ∇ds + J [∇ds]J = −2se.

We prove Theorem 5.1 in the next section.

Remark 5.2. Since Rr behaves “multiplicatively” under Riemannian products, and equals
K2g for a surface metric with Gaussian curvature K, a Riemannian product of two sur-
faces, being locally Kähler, is – according to (a), (b) above – weakly Einstein if and only
if the two Gaussian curvatures are constant and equal or mutually opposite. The latter
case constitutes the example found by Euh, Park, and Sekigawa [15].

Remark 5.3. The equivalence of (a) through (c) above really amounts to a statement
about algebraic curvature tensors, once we replace the Kähler condition by (4.8) and (a)
by trcR is a multiple of g. We could include (d) here as well if, instead of just (4.8), we
invoked one further property of Kähler-type algebraic curvature tensors, namely, (5.9-a).
For more details, see Section 6.
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Remark 5.4. As shown by Cartan [7], see also [10, Theorem 14.7], local-homothety types of
locally symmetric Riemannian four-manifolds form seven disjoint classes: flat, spherical,
hyperbolic, complex projective, complex hyperbolic and, finally, nonflat 2 + 2 and 1 + 3
Riemannian products (with Einstein factors). Of these, the first five – due to their being
Einstein, cf. (4.5) – are weakly Einstein. The sixth one is weakly Einstein when the two
Gaussian curvatures are equal (the Einstein case) or opposite (Remark 5.2). Remark 5.2
also shows that the remaining products listed above are not weakly Einstein, the 1 + 3
case, with W = 0 and s 6= 0, being immediate from the sentence following (4.6).

Remark 5.5. As shown by Tanno [21], up to local isometries, the only conformally flat
Kähler surfaces are the Riemannian products of real surfaces with opposite constant
Gaussian curvatures.

Remark 5.6. As observed by Calabi [6], cf. also [2, Sect. 2.140], on any Kähler manifold,
for a function τι with a real holomorphic gradient v = ∇τι, one has 2r(v, · ) = −d∆τι. In
the Kähler-Einstein case this implies that, locally, at points where v 6= 0, the Laplacian
of τι is a function of τι.

6. Proof of Theorem 5.1

That (a) is equivalent to both (b) and (c), is immediate: the former from (4.4) and
(4.10), the latter due to (4.7). We now proceed to show that (c) holds if and only if (d)
does, still using a purely algebraic argument (cf. Remark 5.3), and adopting the notation
of the lines preceding (4.1), with T standing for the tangent space of M at a given point.
The inner product g provides the identifications

(6.1) a) T = T ∗, b) T ∧2 = so(T ) = [T ∗]∧2,
so that u ∧ v, for u, v ∈ T , becomes the endomorphism of T given by

(6.2) w 7−→ (u ∧ v)w = 〈u,w〉v − 〈v, w〉u
We assume that e 6= 0, and choose in T an orthonormal basis of the form u, Ju, v, Jv,
diagonalizing e with some eigenvalues (a, a,−a,−a). Thus, by (6.2), J = u∧Ju+v∧Jv,
and so, for the basis ξ1, . . . , ξ4 of T ∗ dual to u, Ju, v, Jv,

(6.3) ω = ξ1∧ξ2+ξ3∧ξ4, e = a(ξ1⊗ξ1+ξ2⊗ξ2−ξ3⊗ξ3−ξ4⊗ξ4), η = a(ξ1∧ξ2−ξ3∧ξ4),
with a 6= 0. Here ω = g(J · , · ) and η = e(J · , · ), while, for 1-forms ξ, ζ ∈ T ∗, we set

(6.4) [ξ ⊗ ζ]pq = ξpζq, [ξ ∧ ζ]pq = ξpζq − ξqζp.
Due to (5.9-a) and (6.3) with a 6= 0, we have 3Wη = −sη if and only if

(6.5) 12W (ξ1∧ ξ2) = −s ξ1∧ ξ2 + 3s ξ3∧ ξ4, 12W (ξ3 ∧ ξ4) = 3s ξ1∧ ξ2− s ξ3∧ ξ4.
As stated in the lines following (4.3), any algebraic curvature tensor R acts on bivectors
via 2[Rα]ij = Rijpqα

pq, so that R(w ∧ w′) = R(w,w′). Thus, (6.5) is nothing else than

(6.6)
W1212 = W3434 = −s/12 and W1234 = s/4, while
W12ij = W34ij = 0 unless {i, j} is {1, 2} or {3, 4}.

In terms of components relative to our basisu, Ju, v, Jv, the well-known fact [10, p. 647]
that W commutes with the Hodge star amounts to

(6.7) Wijkl = Wpqrs if (i, j, p, q) and (k, l, r, s) are even permutations of (1, 2, 3, 4).

Since [We]ij = Wipjqe
pq, and Wg = 0, (6.3) and (6.7) give [We]11 = [We]22 = 2aW1212,

[We]12 = [We]34 = 0, [We]13 = 2aW1232, [We]14 = 2aW1242, [We]23 = 2aW1213, [We]24 =
2aW1214, [We]33 = [We]44 = −2aW3434. As e11 = e22 = a = −e33 = −e44 and eij = 0
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otherwise, this description of We, combined with (6.6), proves that (c) is equivalent to
(d). More precisely, the above equalities amount to (6.7) except the formula for W1234

which, however, then follows as (5.9-a) and (6.3) yield W1234 = −W1212 + s/6 = s/4.
The equivalence of (d) and (e) is in turn immediate from (5.9-b).
Finally, (f) is – due to (5.6) – precisely the result of applying J to (e).

7. Proof of Theorem 1.2

On any Kähler surface, with the orientation as in (2.1),

(7.1) the Einstein form η is always anti self dual.

This is clear since ‘anti-self-dual’ is well known [10, Corollary 37.3, Proposition 37.5] to
mean the same as orthogonal to ω and commuting with ω, in the sense of the identifica-
tion of 2-forms with skew-adjoint endomorphisms provided by (6.1-b), while J-invariance
of r amounts to its commuting with J .

Let a Kähler surface (M, g) be weakly Einstein and self-dual.
Theorem 5.1(d) gives 3Wη = −sη while, from (7.1), Wη = 0 due to the self-duality

assumption. Thus, se = 0 everywhere. By Remark 2.1, one of s, e is identically zero,
and in either case s is constant. Constancy of s combined with self-duality implies local
symmetry [5, Proposition 9.3], [9, Lemma 7].

The final clause of Theorem 1.2 is immediate from Remarks 5.4 and 5.5.

8. Proof of Theorem 1.3

In [11, Sect. 5] one fixes a nonuple I, a,Σ, h,L, ( , ),H, γ, Q consisting of

(i) a nontrivial closed interval I = [τιmin, τιmax] of the variable τι,
(ii) a real number a > 0,

(iii) a compact Kähler manifold (Σ, h) of complex dimension 1,
(iv) a function Q : I −→ IR equal to 0 at the endpoints of I and positive on its

interior Io, such that Q̇(τιmin) = 2a = −Q̇(τιmax),
(v) a mapping γ : I −→ IRP1, with I ⊆ IR ⊆ IRP1,

(vi) a complex line bundle L over Σ with a Hermitian fibre metric ( , ),
(vii) the horizontal distribution H of a connection in L making the fibre metric ( , )

parallel and having the curvature form −a(τι∗− γ)−1ω(h),

where τι∗ ∈ I is the midpoint, ω(h) is the Kähler form of (Σ, h) and ( )˙ = d/dτι. One
also fixes a diffeomorphism Io 3 τι 7−→ r ∈ (0,∞) such that ṙ = ar/Q, and uses the
symbol r both for an independent variable ranging over [0,∞) and for the norm function
r : L −→ [0,∞) of the fibre metric ( , ), so that our fixed diffeomorphism turns τι, and
hence Q as well, into a function on the total space L.

For the section v of the vertical distribution V on L which, restricted to each fibre,
equals our a times the radial (identity) vector field, dv acts on functions of τι as Qd/dτι,
and v equals the g-gradient of τι for the Kähler-surface metric g on L with

(8.1)
g(v, v) = g(u, u) = Q, g(v, u) = g(v, w) = g(u,w) = 0,
g(w,w′) = (τι∗− γ)−1(τι − γ)h(w,w′),

w, w′, w′′ always denoting horizontal lifts (that is, projectable horizontal vector fields),
and u the vector field on L defined by u = iv (multiplication by i in each fibre).
See [11, pp. 1648–1649]. Then g is a Kähler metric for the almost-complex structure J
obtained by requiring that the vertical subbundle V of TM and H be J-invariant and
the restriction of J to V, or to H, coincide with the complex structure of the fibres or,
respectively, with the pullback of the complex structure of Σ.
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Let M be the CP1 bundle over Σ resulting from the projective compactification of L.
According to [11, Theorem 5.3] and the text preceding it in [11], the above construction
gives rise to a compact Kähler surface (M, g) with the nonconstant transnormal function
τι having the holomorphic gradient v, and τι is isoparametric if and only if γ is constant,
while, conversely, any compact Kähler surface carrying a non-isoparametric transnormal
function with a holomorphic gradient arises from this construction, for a nonconstant γ.

The second paragraph of [11, Remark 5.2] points out that we can relax conditions (iii)
and (iv), while keeping (ii) and (v) – (vii), so that Σ need not be compact, and Q is
defined and positive on an open interval. The construction then yields

(8.2) a quadruple M, g, J, τι with the same properties

except compactness of M, where M now is any connected component of the open set in
LrΣ defined by requiring that τι 6= γ 6= τι∗ and that the values of the norm function r
lie in the resulting new range.

The classification result of [11, Theorem 5.3] remains valid, mutatis mutandis, in this
more general setting: any point at which dτι ∧ d∆τι 6= 0, for a transnormal function τι
with a holomorphic gradient on a Kähler surface, has a neighborhood biholomorphically
isometric to a noncompact Kähler surface obtained as described in the last paragraph,
with nonconstant γ. To see this, note that, instead of creating the data (i) – (vii)
“globally” as in [11, Sect. 11], we may invoke the arguments of [12, Sect. 7], since they all
remain valid if τι is just assumed transnormal, rather than isoparametric.

We now proceed to show that the case of nonconstant γ just mentioned cannot occur
when the resulting Kähler surface is weakly Einstein, by assuming the weakly Einstein
property with nonconstant γ and deriving a contradiction.

This will clearly prove Theorem 1.3.
To simplify some expressions later, let us note that

(8.3)

h(w,w′)Dγ − h(Dγ,w′)w = −h(JDγ,w)Jw′,
h(Dγ,w′)Jw − h(Jw,w′)Dγ = h(Dγ,w)Jw′,
h(Dγ,w′)w − h(Dγ,w)w′ = −h(Jw,w′)JDγ,
h(Dγ,w′)Jw − h(Dγ,w)Jw′ = h(Jw,w′)Dγ.

In fact, the second equality in (8.3) holds trivially when w,w′ are linearly dependent,
and its two sides yield the same h-inner product with w, as well as with w′. The first
(or, third, or fourth) equality arises from the second one by replacing w with Jw (or,
applying −J to both sides or, respectively, moving two terms to the other side).

The third line of (8.3) gives h(Dγ,Dγ)w − h(Dγ,w)Dγ = h(JDγ,w)JDγ if one sets
w′ = Dγ. Applying h( · , w) we get

(8.4) h(Dγ,Dγ)h(w,w) − [h(Dγ,w)]2 = [h(JDγ,w)]2.

This will explain a seemingly strange presence of [h(JDγ,w)]2 in a later discussion,
instead of the (expected) left-hand side of (8.4).

For the Levi-Civita connection of g by ∇,

(8.5)

∇vv = −∇uu = ψv, ∇vu = ∇uv = ψu,
∇vw = ∇wv = φw, ∇uw = ∇wu = φJw,
∇ww′ = Dww

′+ S [h(Dγ,w)w′+ h(JDγ,w)Jw′]
− [2(τι∗− γ)]−1 [h(w,w′)v + h(Jw,w′)u].

Here D stands both for the Levi-Civita connection of the base-surface metric h and for
the h-gradient, while ψ, φ, S are the functions given by

(8.6) 2ψ = Q̇, 2φ = Q/(τι − γ), 2S = (τι∗− γ)−1− (τι − γ)−1,
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where ( )˙ = d/dτι. We have used the first line of (8.3) to replace the expression
S [h(Dγ,w)w′+ h(Dγ,w′)w− h(w,w′)Dγ] appearing (with a slightly different notation)
in the description of ∇ [11, p. 1648], by S [h(Dγ,w)w′+ h(JDγ,w)Jw′].

Applying the equality 2r(v, · ) = −d∆τι in Remark 5.6 to τι and v appearing above,
that is, in [11, formula (5.2)], and noting that ∆τι = 2(ψ+φ), while dv acts on functions
of τι as Qd/dτι, we get

(8.7)

2(τι − γ)2r(v, v) = 2(τι − γ)2r(u, u) = QP,

for P = Q− (τι − γ)Q̇− (τι − γ)2Q̈,
r(v, u) = 0, 2(τι − γ)2r(v, w) = −Qh(Dγ,w),
2(τι − γ)2r(u,w) = −Qh(JDγ,w),

using J-invariance of r to derive the equations involving u from those for v. This
shortcut describes all components of r except r(w,w′) for two horizontal vectors w,w′.

With the sign convention R(v, w)u = ∇[v,w]u+∇w∇vu−∇v∇wu, (8.5) and the equality

−Qφ̇ = 2(φ − ψ)φ, immediate from (8.6), yield the following equalities, describing all
components of the (0, 4) curvature tensor except those involving four horizontal vectors:

2R(v, u)v = −QQ̈u, 2R(v, u)u = QQ̈v, R(v, u)w = 2(φ− ψ)φJw,
R(v, w)v = (φ− ψ)φw, R(v, w)u = (φ− ψ)φJw,
2R(v, w)w′ = (τι∗− γ)−1(ψ − φ)[h(w,w′)v + h(Jw,w′)u]− (τι − γ)−2Qh(JDγ,w)Jw′,
R(u,w)v = (ψ − φ)φJw, R(u,w)u = (φ− ψ)φw,
2R(u,w)w′ = (τι∗− γ)−1(φ− ψ)[h(Jw,w′)v − h(w,w′)u] + (τι − γ)−2Qh(Dγ,w)Jw′,
2R(w,w′)v = −(τι − γ)−2Qh(Jw,w′)JDγ + 2(τι∗− γ)−1(φ− ψ)h(Jw,w′)u,
2R(w,w′)u= (τι − γ)−2Qh(Jw,w′)Dγ + 2(τι∗− γ)−1(ψ − φ)h(Jw,w′)v.

where we simplified 2R(w,w′)v using the third line of (8.3) and then derived the expres-
sion for 2R(w,w′)u from the fact that R(w,w′)u = J [R(w,w′)v].

For dimensional reasons, a “horizontal” component R(w,w′, w′′, w′′′) must be given by

(8.8) 2(τι∗− γ)(τι − γ)R(w,w′, w′′, w′′′) = Z [h(w,w′′)g(w′, w′′′) − h(w′, w′′)g(w,w′′′)]

for some function Z not depending on w,w′, w′′, w′′′. Before determining what Z is, we
now characterize the weakly-Einstein case as a condition imposed on Z. First,

(8.9)
2(τι∗− γ)(τι − γ)R(w,w′)w′′ = Z [h(w,w′′)w′ − h(w′, w′′)w]

+ h(Jw,w′)h(JDγ,w′′)v − h(Jw,w′)h(Dγ,w′′)u,

which now easily implies that, with Z̃ = Z + 2(τι − γ)(φ− ψ),

2(τι∗− γ)(τι − γ)r(w,w′) = Z̃h(w,w′).

The Ricci endomorphism of TM acts by

(8.10)
2(τι − γ)3rv = (τι − γ)Pv − (τι∗− γ)QDγ, ru = Jrv,

2(τι − γ)2rw = Z̃w − h(Dγ,w)v − h(JDγ,w)u.

The value assigned by Rr to each of the six pairs

(v, v), (v, u), (v, w), (u, u), (u,w), (w,w′)

of vector fields equals the trace of the composition in which the Ricci endomorphism,
with (8.10), is followed by

(8.11) R(v, · )v, R(v, · )u, R(v, · )w, R(u, · )u, R(u, · )w, R(w, · )w′.
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Due to Hermitian symmetry of Rr (that is, its J-invariance) we only need to consider
three of the six pairs: (v, v), (v, w) and (w,w′). First,

(8.12)
R(v, · )v and R(u, · )u send the triple (v, u, w) to

(0,−QQ̈u/2, (φ− ψ)φw) and (−QQ̈v/2, 0, (φ− ψ)φw).

Hence, with Z̃ = Z + 2(τι − γ)(φ− ψ) as before,

4(τι − γ)2[Rr](v, v) = 4(φ− ψ)φZ̃ −QQ̈P.
Similarly,

4(τι − γ)4[Rr](v, w) = [4(τι − γ)2(ψ − φ)φ−QZ̃]h(Dγ,w),

and 4(τι∗− γ)(τι − γ)4[Rr](w,w′) equals h(w,w′) times

(8.13) (τι − γ)ZZ̃ + 2(τι∗− γ)Qh(Dγ,Dγ) + 2(τι − γ)2(φ− ψ)P

or, equivalently, 4(τι − γ)5[Rr](w,w′) equals g(w,w′) times (8.13). In the case where γ
is nonconstant, for Rr to be a functional multiple of g it is necessary and sufficient that

4(τι − γ)2(ψ − φ)φ = QZ̃ and that (τι − γ)3[4(φ − ψ)φZ̃ − QQ̈P ] be equal to Q times
(8.13). Since 2(τι − γ)φ = Q, the first condition amounts to

(8.14) Z̃ = 2(τι − γ)(ψ − φ), that is, Z = 4(τι − γ)(ψ − φ).

Assuming (8.14), and noting that

−(τι − γ)2Q̈ = P −Q+ (τι − γ)Q̇ = P + 2(τι − γ)(ψ − φ),

we rewrite the second condition as

(8.15) 2(τι∗− γ)Qh(Dγ,Dγ) = (τι − γ)[P + 6(τι − γ)(ψ − φ)][P − 2(τι − γ)(ψ − φ)].

Since P = Q− (τι − γ)Q̇− (τι − γ)2Q̈ while, by (8.6), 2ψ = Q̇ and 2(τι − γ)φ = Q, the
two factors in square brackets on the right-hand side of (8.15) are equal to

−(τι − γ)2Q̈ + 2[(τι − γ)Q̇−Q] and − (τι − γ)2Q̈ − 2[(τι − γ)Q̇−Q],

so that their product is (τι−γ)4Q̈2−4[(τι−γ)Q̇−Q]2 and we may rewrite the right-hand
side of (8.15), divided by Q, as

−Q−1Q̈2γ5 + 5τιQ−1Q̈2γ4 + 2Q−1[2Q̇2− 5τι2Q̈2]γ3 + 2[4Q̇+ 6τιQ−1Q̇2 + 5τι3Q−1Q̈2]γ2

+[4Q− 16τιQ̇+ 12τι2Q−1Q̇2− 5τι4Q−1Q̈2]γ − 4τιQ+ 8τι2Q̇− 4τι3Q−1Q̇2 + τι5Q−1Q̈2.

This is a quintic polynomial in γ, with coefficients that are functions of τι, which equals –
according to (8.15) – a function on base-surface Σ. Applying dv to the latter function we
get 0 and, since dv acts on functions of τι as Qd/dτι, we conclude that the coefficients
of the above quintic polynomial are constant functions of τι. However, constancy of
both Q−1Q̈ and τιQ−1Q̈ means that Q̈ = 0, and hence Q̇ is constant. Looking at the
coefficients of γ3 and γ we now see that Q must be constant, and hence zero.

This contradiction proves that γ is constant. In other words, our τι, besides being
transnormal, is also isoparametric.

9. The local-structure theorem

By a special Kähler-Ricci potential [12, Sect. 7] on a Kähler manifold (M, g, J) one
means any nonconstant function τι on M having a real-holomorphic gradient v = ∇τι
for which, at points where v 6= 0, all nonzero vectors orthogonal to v and Jv are eigen-
vectors of both ∇dτι and the Ricci tensor r. Such quadruples (M, g, J, τι) have been
completely described, both locally [12] and in the compact case [13].

In the case of Kähler surfaces, τι as above is nothing else than a nonconstant isopar-
ametric function with a holomorphic gradient. In fact, generally, on any Riemannian



ON WEAKLY EINSTEIN KÄHLER SURFACES 11

manifold, for v = ∇τι and Q = g(v, v) one has dQ = 2[∇dτι](v, · ) while, if v is real
holomorphic on a Kähler manifold, 2r(v, · ) = −d∆τι (see Remark 5.6).

The construction in [12] is a special case of [11, pp. 1648–1649], with constant γ. The
nonzero constant τι∗ − γ in (8.1) is replaced with ε/2, where ε = ±1 (with no loss of
generality, since the base-surface metric h can be rescaled). Now, from (8.1), as in [12,
pp. 791–792 and Sect. 16]

(9.1)
g(v, v) = g(u, u) = Q, g(v, u) = g(v, w) = g(u,w) = 0,
g(w,w′) = 2ε(τι − γ)h(w,w′),

w, w′ still denoting horizontal lifts (projectable horizontal vector fields). In terms of the
vertical and horizontal distributions V = Span(v, u) and H = V⊥,

(9.2)
r = µg on V, r = λg on H, r(V,H) = {0}, where

µ = −Ẏ /2, λ = [2ε(τι − γ)]−1(K − εY ), for Y = 2(ψ + φ)

(so that Y = ∆τι) and K is the Gaussian curvature of h. See (8.7) and [12, formula (7.4),
the lines following (8.1), and (b) in Sect. 16], where our γ is denoted by c. Thus, once
we identify v with g(v, · ), and similarly for u,

(9.3)
r = λg + (µ− λ)Q−1(v ⊗ v + u⊗ u), and hence
Rr = λr + (µ− λ)Q−1[R(v, · , v, · ) +R(u, · , u, · )].

From (8.12) and (9.2), Rr treated as an endomorphism of TM sends v, u, w to

[λµ+ (λ− µ)Q̈/2]v, [λµ+ (λ− µ)Q̈/2]u, [λ2 + (τι − γ)−1(µ− λ)(φ− ψ)]w,

ψ, φ being – as in (8.6) – the functions given by

(9.4) 2ψ = Q̇, 2φ = Q/(τι − γ)

Thus, Rr is a functional multiple of the identity (cf. Theorem 5.1) if and only if

(9.5) (τι − γ)2Q̈ + 2Q = εK(τι − γ),

as long as we exclude the Einstein case by assuming that µ 6= λ. (See Remark 9.2 below.)
One immediate conclusion is that K, the Gaussian curvature of the base-surface metric

h, must be constant: dwτι = 0 and Q is a function of τι, so dw applied to (9.5) yields
dwK = 0. Solving (9.5), we see that

(9.6)
Q as a function of τι equals εK(τι − γ)/2 plus a linear combination of

|τι − γ|1/2 cos[
√

7 (log |τι − γ|)/2] and |τι − γ|1/2 sin[
√

7 (log |τι − γ|)/2].

Theorem 9.1. Defining the quadruple (M, g, J, τι) by the local version (8.2) of the con-
struction in Section 8, for Q > 0 as in (9.6), we obtain a nonconstant isoparametric
function τι with a real-holomorphic gradient on a weakly Einstein Kähler surface.

Conversely, up to local biholomorphic isometries, any nonconstant transnormal func-
tion with a real-holomorphic gradient on a weakly Einstein Kähler surface arises in the
manner just described.

Proof. The first part of the theorem is immediate from the preceding discussion and
Theorem 5.1(b). The final clause is, according to the second paragraph of this section, a
special case of [12, Theorem 18.1], since ‘transnormal’ in our situation implies ‘isopara-
metric’ as a consequence of Theorem 1.3. �

Remark 9.2. We arrived at (9.5) after dividing an intermediate equality by λ−µ (“exclud-
ing the Einstein case”). By (9.2) and (9.4), 2(τι−γ)(λ−µ) = (τι−γ)2Q̈−2Q+εK(τι−γ),
so that g is an Einstein metric on any nonempty open set on which

(9.7) (τι − γ)2Q̈ − 2Q = −εK(τι − γ).
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Dividing by λ−µ in the non-Einstein case is allowed, without assuming real-analyticity,
even when such a nonempty open set exists. In fact, for some open interval I ′ of the
variable τι, one then has (9.7) on a proper subset P of I ′ with a nonempty interior
(which is a disjoint union of a countable family of open intervals), and on I ′r P, which
is also such a union, (9.5) holds. If I ′′ ⊆ P, or I ′′ ⊆ I ′ r P, is one of those countably
many subintervals, then an endpoint τι0 ∈ I ′ of I ′′ is a cluster point for both countable
unions. The Taylor series of Q at τι0 thus satisfies the series versions of both equations
(9.5) and (9.7), which determines it uniquely – see below – while Q is a solution to (9.7)
or, respectively, (9.5), on the half-open interval I ′′ ∪ {τι0}. Namely, treated as a formal
power series, our Taylor series, satisfying both (9.5) and (9.7), must correspond to

(9.8) Q = εK(τι − γ)/2,

and consequently have Q(τι0) = εK(τι0 − γ)/2 and Q̇(τι0) = εK/2. Our function Q is
thus given by (9.8), due to uniqueness of a solution to (9.7), or (9.5), on I ′′∪{τι0} with the
above initial data. We therefore have (9.8) on an open dense set, and hence everywhere,
in I ′. In other words, (9.5) always follows in the weakly-Einstein non-Einstein case, since
otherwise, as we just saw, Q = εK(τι − γ)/2, implying the Einstein property – namely,
the weakly-Einstein metric resulting from the construction based on (9.5), and mentioned
in Theorem 9.1, is Einstein if and only if Q = εK(τι − γ)/2.

Remark 9.3. The weakly-Einstein metric arising in Theorem 9.1 are not locally homoge-
nous case except in the Einstein case (when Q = εK(τι − γ)/2, cf. Remark 9.2). In
fact, for the eigenvalue function µ of the Ricci tensor, (9.2) gives −2µ(τι − γ)2 =
(τι − γ)2Q̈+ (τι − γ)Q̇−Q which, by (9.5), equals (τι − γ)Q̇+ εK(τι − γ)− 3Q. Solving
the resulting equation (τι − γ)Q̇− 3Q = −εK(τι − γ)−2µ(τι − γ)2 under the assumption
thatµ is constant, we get Q = a(τι − γ)3 + µ(τι − γ)2 + εK(τι − γ)/2 with a constant a,
which is not of the form (9.6) except when a = µ = 0 and Q = εK(τι − γ)/2.

Remark 9.4. In [12, sixth line of Sect. 8] there is a second case, with the factor 2ε(τι− γ)
in (9.1) replaced by 1. We leave it out of our discussion, since this is precisely the case
of product metrics [12, Corollary 13.2 and (c) in Sect. 16]. See also Remark 5.2.

10. Nonrealizable boundary conditions

The following lemma is a crucial step in the proof of Theorem 1.4.

Lemma 10.1. For F : IR −→ IR given by F (α) = e−α cot c sinα, where c = tan−1
√

7 ,
there do not exist α, β ∈ IR such that α < β and F (α) − F (β) = F ′(α) + F ′(β) = 0,
while F is nonzero everywhere in the open interval (α, β).

Proof. Since F is positive/negative on the interval (nπ, (n + 1)π) for each even/odd
integer n, such α, β, if they existed, would both lie in one of the closed intervals In =
[nπ, (n+ 1)π]. The identity F (α+ π) = −e−π cot cF (α) shows that the graph of F is the
same, up to vertical rescaling, on all In, and so it suffices to consider the case n = 1,
that is, prove the nonexistence of α, β ∈ [0, π] with the stated properties.

Our F assumes in [0, π] the minimum value 0, just at the endpoints, and the maxi-
mum value F (c), only at c, as induction on q ≥ 0 gives, for F (q) = dqF/dαq,

(10.1)
i) F (q)(α) sinq c = (−1)qe−α cot c sin(α− qc),

ii) F ′> 0 on [0, c), while F ′< 0 on (c, π].

Numerically, c ≈ 1.209429, and so c ∈ (0, π/2). By (10.1-ii), F maps both [0, c) and
(c, π] diffeomorphically onto [0, F (c)). Thus, for every α ∈ [0, π] r {c} there exists a
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unique β = β(α) ∈ [0, π] r {c} with β 6= α and F (β) = F (α). Now

(10.2)
setting β(c) = c we obtain a decreasing diffeomor
phism [0, π] 3 α 7−→ β(α) ∈ [0, π] with β′(c) = −1.

Namely, smoothness at c in (10.2) follows from the Morse lemma: (c, c) is a nonde-
generate critical point with the index 0 and value 0 for the function on IR2 sending
(α, β) to F (α) − F (β), and so the zeros of this function near (c, c) form two smooth
curves intersecting transvesally at (c, c). The two curves are the graphs of the identity
function and the function α 7−→ β(α) in (10.2). Hence β′(c) exists and equals −1, as
the invariance of the graph in (10.2) under the switch of α with β causes the vector
(1,−1) to be tangent to the graph at (c, c), and thus ensuring that the graph does not
pass through (c, c) vertically. Now (10.1-i) gives F ′′(α) sin2 c = e−α cot c sin(α − 2c) and
F ′′′(α) sin3 c = e−α cot c sin(3c− α), so that,

(10.3)
as 3c − π ≈ 0.4867 lies in (0, π/4), and hence 0 < 3c− π < c,
F ′′ decreases on [0, 3c− π] from −2 cot c to F ′′(3c− π), increas
es on [3c− π, 2c] from F ′′(3c− π) to 0, and increases on [2c, π].

The identity F (α) = F (β(α)) and the chain rule give

(10.4) β′(α) =
F ′(α)

F ′(β(α))
whenever α ∈ [0, c),

and so the assertion of the lemma amounts to

(10.5) β′(α) 6= −1 for all α ∈ [0, c).

We will now obtain (10.5), and complete the proof, by showing that

(10.6) β′ < −1 on the interval [0, c).

Let α0 = β(2c). By (10.2), α0 ∈ (0, c). Also,

(10.7) β′(0) < −1 and β′(α0) < −1.

In fact, as β(0) = π, (10.4) and (10.1-i) with q = 1 yield β′(0) = −eπ cot c < −1 while,
with the approximate values α0 ≈ 0.3017 and β(α0) = 2c ≈ 2.418858 provided by
Mathematica, (10.4) and (10.1-i) for q = 1 give β′(α0) ≈ −1.8755.

Differentiating the identity F (α) = F (β(α)) twice we get

(10.8) F ′(β(α))β′′(α) = F ′′(α)− F ′′(β(α))[β′(α)]2.

One verifies numerically that F ′′(0)/F ′′(c) = 2ec cot c cos c ≈ 1.169 > 1, and so, by (10.3),

(10.9) F ′′(α) < F ′′(c) < F ′′(β) < 0 whenever 0 ≤ α < c < β < 2c.

For α ∈ [0, α0] we have β(α) ≥ 2c and, by (10.3), the right-hand side of (10.8) is
negative, while F ′(β(α)) < 0 due to (10.1-ii). Thus, β′′(α) > 0, so that β′ is increasing
on [0, α0] and, by (10.7), β′ < −1 on [0, α0].

The remaining part of (10.6) is the inequality β′ < −1 on (α0, c). We establish it by
showing that its negation leads to a contradiction. Namely, suppose that β′(α) ≥ −1
for some α ∈ (α0, c). At any such α, negativity of β′, due to (10.2), gives |β′(α)| ≤ 1,
and so, by (10.9) and (10.8), β′′(α) > 0. (In fact, β(α) ∈ (c, 2c), cf. (10.2), so that
(10.1-ii) and (10.3) imply negativity of F ′(β(α)), F ′′(α) and F ′′(β(α)), and (10.9) with
1 − [β′(α)]2 ≥ 0 yields F ′′(α) − F ′′(β(α)[β′(α)]2 < F ′′(β(α)) − F ′′(β(α))[β′(α)]2 ≤ 0.)
Remark 2.2 applied to ψ = β′ and λ = −1 now shows that β′ has a limit at c greater
than −1. This contradicts the equality β′(c) = −1 in (10.2), completing the proof. �
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11. Proof of Theorem 1.4

Under our assumptions, according to Theorem 1.3, the second paragraph of Sect. 9 and
[13, Theorem 16.3]. (M, g, J) arises, up to biholomorphic isometries, from the “compact”
version (8.2) of the construction in Sect. 8, using some data (i) – (vii) with τι∗−γ in (8.1)
replaced by ε/2, where ε = ±1, as mentioned in the lines preceding (9.1).

The question now is, if we exclude the product-of-surfaces case (see Remark 9.4), can
a function Q of the form (9.6) be positive on an open interval while, at its endpoints,
Q = 0 and the derivative Q̇ has mutually opposite, nonzero values?

We will now prove Theorem 1.4 by answering this question in the negative. Let us
therefore suppose that such Q exists.

Replacing the variable τι ∈ IR r {γ} by θ = (log |τι − γ|)/2, we get Q equal to
δεKe2θ/2 plus a linear combination of eθ cos

√
7θ and eθ sin

√
7θ, where δ = sgn(τι− γ).

As dθ/dτι = δe−2θ/2, there exists an open interval of the variable θ on which Q is
positive while, at the endpoints, Q = 0 and e−2θdQ/dθ has mutually opposite, nonzero
values. We have 2e−θQ = δεKeθ + p sin

√
7(θ − q) for some constants p, q, and p 6= 0

(as Q in neither constant, nor monotone).
Consequently, at some two distinct values of θ the function sending θ ∈ IR to

pe−θ sin
√

7(θ − q) assumes the same value −δεK, with opposite nonzero values of the
derivative, and is greater than −δεK between them. Note that we are free to set q = 0
by replacing the variable θ with θ − q and p with pe−q. Rescaling K, we may further
assume that |p| = 1. Thus, for F : IR −→ IR with F (θ) = e−θ sin

√
7θ, there are

(∗) two choices of θ at which dF/dθ has opposite nonzero values, while F assumes
the same value, and is different from this last value between them.

Treating F as a function of the new variable α =
√

7θ and setting c = tan−1
√

7 , we
get (∗), with θ replaced by α, for F (α) = e−α cot c sinα. This contradicts Lemma 10.1,
thus completing the proof of Theorem 1.4.

12. New examples of weakly Einstein Kähler surfaces

The construction mentioned in Theorem 9.1 uses any function Q > 0 of the variable
τι having the form (9.6), that is, any positive solution of (9.5), to define a weakly Einstein
Kähler surface, which – according to Remarks 9.2 and 9.3 – is neither Einstein nor
locally homogenous unless Q = εK(τι − γ)/2, for the constant Gaussian curvature K of
the base-surface metric h.

For the reader’s benefit we provide below a different, self-contained description of these
examples, reflecting the fact that they have cohomogeneity one (see Remark 12.1 below),
and generalizing a construction in [8], rather than following the approach of [12].

In other words, the goal of this section is to offer a more user-friendly version of the
presentation given in Sect. 9.

Let us fix nonzero real constants p, q and consider a four-manifold M with vector
fields e1, . . . , e4 trivializing TM and satisfying the Lie-bracket relations

(12.1)
[e1, ei] = 0 for i = 2, 3, 4, [e2, e4] = 2pe3,
[e2, e3] = qe4, [e3, e4] = qe2.

We define a metric g and an almost-complex structure J on M by

(12.2) g(e1, e1) = g(e3, e3) = ζη, g(e2, e2) = g(e4, e4) = ζ, Je1 = e3, Je2 = e4

and g(ei, ek) = 0 otherwise. Here ζ, η, θ are functions of the real variable τι, with ζ, η
assumed positive, and τι also stands for a function τι : M −→ IR such that

(12.3) de1τι = 2ζηθ, deiτι = 0 for i > 1, and so ∇τι = 2θe1, g(∇τι,∇τι) = 4ζηθ2.



ON WEAKLY EINSTEIN KÄHLER SURFACES 15

Such τι exists, locally, due to the obvious closedness of the 1-form dτι, sending e1 to
2ζ2η2θ and the other three ei to 0.

Writing, this time, ( )′ = d/dτι, we also assume that ζ ′θ = −p, which turns out to
guarantee that (M, g, J) is a Kähler manifold.

The geometric content of our discussion remains unchanged when τι is replaced by any
function χ of the real variable τι, via a diffeomorphic change of the variable (that is,
with |χ′| > 0). As functions on M, our ζ and η the remain the same, while the role
of θ is now played by θnew = χ′θ. The function ζ ′θ and the condition ζ ′θ = −p remain
unaffected. We use this freedom of modifying τι to require, without loss of generality,
that τι : M −→ IR r {γ}, while

(12.4) θ 6= 0 be constant and ζθ = p(γ − τι) for some γ ∈ IR.

Namely, as θ 6= 0 everywhere (due to the condition ζ ′θ = −p), we may choose χ above
so as to make θnew constant.

Since ζ ′θ = −p, the Levi-Civita connection ∇ of g is given by

(12.5)

∇
e1
e1 = (ζη)′θe1, ∇e1e2 = ∇

e2
e1 = −pηe2,

∇
e1
e3 = ∇

e3
e1 = (ζη)′θe3, ∇e1e4 = ∇

e4
e1 = −pηe4,

∇
e2
e2 = pe1, ∇e2e3 = −pηe4, ∇e2e4 = pe3,

∇
e3
e2 = −(pη + q)e4, ∇e3e3 = −(ζη)′θe1,

∇
e3
e4 = (pη + q)e2,

∇
e4
e2 = −pe3, ∇e4e3 = pηe2, ∇e4e4 = pe1.

Also, as ζ ′θ = −p, the only possibly-nonzero components of the curvature tensor R, the
Ricci tensor r and the metric g are those algebraically related to

(12.6)

R1212 = R1234 = R1414 = R1423 = R2323 = R3434 = pζ2ηη′θ,

R1313 = −2[(ζη)′θ]′ζ2η2θ, R1324 = 2pζ2ηη′θ,
R2424 = −2p(2pη + q)ζ,

r11 = r33 = 2[3pη′− ζ(η′θ)′]ζηθ,

r22 = r44 = 2pζη′θ − 2p(2pη + q),

g11 = g33 = ζη, g22 = g44 = ζ.

For V = Span(e1, e3) and H = Span(e3, e4), we thus get

(12.7) r = µg on V, r = λg on H, r(V,H) = {0},

where µ = r11/g11 and λ = r22/g22. Consequently, with e1 ⊗ e1 + e3 ⊗ e3 equal to g11g
on V and to 0 on H, we get, as in (9.3),

r = λg +
µ− λ
g11

(e1 ⊗ e1 + e3 ⊗ e3),

provided that we identify e1 with g(e1, · ), and similarly for e3. Therefore,

(12.8) Rr = λr +
µ− λ
g11

[R(e1, · , e1, · ) +R(e3, · , e3, · )].

Since Rr is J-invariant, and clearly diagonalized by our frame, g is weakly Einstein if
and only if [Rr]11/g11 = [Rr]22/g22, that is, by (12.8), with R2323 = R1212 in (12.6),

λµ +
(µ− λ)R1313

g211
= λ2 +

2(µ− λ)R1212

g11g22
.
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The Einstein case being excluded, we can subtract the two sides and – according to
Remark 9.2 – divide by λ − µ, obtaining λ + R1313/g

2
11 = 2R1212/[g11g22]. As (12.6)

implies that R1313/g
2
11 = −2[(ζη)′θ]′θ and R1212/[g11g22] = pη′θ, this reads

λ − 2[(ζη)′θ]′θ − 2pη′θ = 0

and, multiplied by g22 = ζ, it becomes r22 − 2[(ζη)′θ]′ζθ − 2pζη′θ = 0 or, equivalently
due to (12.6), 2pζη′θ − 2p(2pη + q)− 2[(ζη)′θ]′ζθ − 2pζη′θ = 0, that is

p(2pη + q) + [(ζη)′θ]′ζθ = 0.

Since θ is constant and ζθ = p(γ − τι) in (12.4), multiplying by 4ζθ2 we get

(12.9) (τι − γ)2Q ′′ + 2Q = 4qθ(τι − γ),

for Q = 4ζηθ2, which is precisely equation (9.5) with K = 4εqθ, where ε = ±1 is the
signum of τι − γ on our interval of the variable τι, cf. (9.1).

Remark 12.1. The Lie-bracket relations (12.1) define a direct sum Lie algebra IR⊕ g, for
g isomorphic to sl(2, IR) or su(2) = so(3), so that, locally, e1, . . . , e4 are left-invariant
vector fields on a direct-product Lie group IR×G with e1 tangent to IR and e2, e3, e4 to
G. Right-invariant vector fields on G, transplanted into IR×G, commute with e1, . . . , e4
and are functional combinations of e2, e3, e4 which, by (12.3), makes them g-orthogonal
to the gradient ∇τι. Their flows thus preserve ζ, η and e1, . . . , e4 and, consequently, the
metric g defined by (12.2), so that g has local cohomogeneity one.
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