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Abstract

Special Ricci–Hessian equations on Kähler manifolds (M, g), as defined by Maschler [‘Special
Kähler–Ricci potentials and Ricci solitons’, Ann. Global Anal. Geom. 34 (2008), 367–380], involve
functions τ on M and state that, for some function α of the real variable τ, the sum of α∇dτ and the
Ricci tensor equals a functional multiple of the metric g, while α∇dτ itself is assumed to be nonzero
almost everywhere. Three well-known obvious ‘standard’ cases are provided by (non-Einstein) gradient
Kähler–Ricci solitons, conformally-Einstein Kähler metrics, and special Kähler–Ricci potentials. We
show that, outside of these three cases, such an equation can only occur in complex dimension two and,
at generic points, it must then represent one of three types, for which, up to normalizations, α = 2 cot τ,
α = 2 coth τ, or α = 2 tanh τ. We also use the Cartan–Kähler theorem to prove that these three types are
actually realized in a ‘nonstandard’ way.

2020 Mathematics subject classification: primary 53C55; secondary 53C25.

Keywords and phrases: Ricci–Hessian equation, Kähler manifold.

1. Introduction

Following Maschler [17, page 367], one says that functions τ,α,σ on a Riemannian
manifold (M, g) with the Ricci tensor r satisfy a Ricci–Hessian equation if

α∇dτ + r = σg for some function σ : M → IR, (1-1)

∇ being the Levi–Civita connection of g. We call (1-1) special when

α∇dτ � 0 on a dense set, dim M = n > 2 and α is a C∞ function of τ. (1-2)

Conditions (1-1)–(1-2) are satisfied in several situations that have been studied (see
below), raising a natural question: Which functions τ �→ α can be realized in this way?
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The present paper provides an answer in the Kähler case, outside of the classes that
are already well understood; see Theorems D and E.

There are three well-known classes of examples leading to (1-1)–(1-2).

(I) Non-Einstein gradient Ricci almost-solitons [1, 20], including (non-Einstein)
gradient Ricci solitons [15]. Here, α is a nonzero constant.

(II) Conformally Einstein metrics g, with τ > 0 and α = (n − 2)/τ, the Einstein
metric being ĝ = g/τ2. Compare with [11, (6.2)].

(III) Special Kähler–Ricci potentials τ on Kähler manifolds, at points where r is not
a multiple of g. See [11, Remark 7.4].

A special Kähler–Ricci potential [11, Section 7] on a Kähler manifold (M, g)
with the complex-structure tensor J is any nonconstant function τ on M having a
real-holomorphic gradient v = ∇τ for which, at points where v � 0, all nonzero vectors
orthogonal to v and Jv are eigenvectors of both ∇dτ and r. Such triples (M, g, τ) are
completely understood, both locally [11] and in the compact case [12].

The classes (I)–(III) are far from disjoint: for instance [11, Corollary 9.3], in the
Kähler category, if n > 4, class (II) is a special case of class (III).

We are interested in M, g, τ,α,σ satisfying (1-1)–(1-2) and such that

2r(v, ·) = −dY for v = ∇τ and Y = Δτ. (1-3)

Here, and throughout the paper, we use the notational conventions

v = ∇τ, Q = g(v, v), Y = Δτ, n = dim M (1-4)

whenever (M, g) is a Riemannian manifold and τ : M → IR. As we point out near the
end of Section 2, with J denoting the complex-structure tensor,

for Kähler metrics g, conditions (1-1)–(1-2) imply (1-3),
and the gradient v = ∇τ is a real-holomorphic vector field
or, equivalently, Jv is a real-holomorphic g-Killing field.

(1-5)

Assuming (1-1)–(1-2), we may treat the derivatives α′ = dα/dτ and α′′ both as
functions of the real variable τ and as functions M → IR. In Sections 3 and 4, we
prove the following two results, as well as Theorem D, stated below.

THEOREM A. Under the hypotheses (1-1)–(1-3), at points where α′′ + αα′ � 0 and
dτ � 0, both Q = g(∇τ,∇τ) and Y = Δτ are, locally, functions of τ.

THEOREM B. Let functions τ,α,σ satisfy a special Ricci–Hessian equation (1-1),
with (1-2), on a Kähler manifold (M, g) of real dimension n ≥ 4. If α dα and dτ are
nonzero at all points of an open submanifold U of M, and:

(i) n > 4; or
(ii) n = 4 and dσ ∧ dτ = 0 identically in U; or finally,
(iii) dQ ∧ dτ = 0 everywhere in U, where Q = g(∇τ,∇τ),

then τ : U → IR is a special Kähler–Ricci potential on the Kähler manifold (U, g).
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With v, Q, Y as in (1-4), a function τ on a Riemannian manifold (M, g) has
dQ ∧ dτ = 0 if and only if Q is locally, at points where dτ � 0, a function of τ. This
amounts to requiring the integral curves of v to be reparameterized geodesics (since,
due to (2-2) below, the latter condition means that ∇vv is a functional multiple of v).
Such functions τ, called transnormal, have been studied extensively [3, 18, 21], and
are referred to as isoparametric when, in addition, dY∧ dτ = 0.

Theorem B renders the transnormal case dQ ∧ dτ = 0, as well as real dimen-
sions n > 4, rather uninteresting in the context of special Ricci–Hessian equations
(1-1)–(1-2) on Kähler manifolds, since at dα-generic points (see the end of Section 2),
one then ends up with examples (I) or (III) above, compare with Remark 4.3, of which
the former is the subject of a large existing literature, and the latter, as mentioned
earlier, has been completely described. This is why our next two results focus
exclusively on the real dimension four and functions τ with dQ ∧ dτ not identically
zero.

REMARK C. Equation (1-1), with (1-2), remains satisfied after τ and the function
τ �→ α = α(τ) have been subjected to an affine modification in the sense of being
replaced with τ̂ and τ̂ �→ α̂(τ̂) given by τ̂ = p + τ/c and α̂(τ̂) = cα(cτ̂ − cp) for real
constants c � 0 and p.

THEOREM D. If the special Ricci–Hessian equation (1-1) and (1-2) both hold for
functions τ,α,σ on a Kähler manifold (M, g) of real dimension four, while dQ ∧ dτ � 0
everywhere in an open connected set U ⊆ M, then the function α of the variable τ and
its derivative α′ = dα/dτ satisfy, on U, the equation

α′′ + αα′ = 0, that is 2α′+ α2 = 4ε with a constant ε ∈ IR. (1-6)

In addition, for Q and Y as in (1-4), and the scalar curvature s, the functions

2θ = αs + 4εY and κ = θψ + α−1Y − Q are both constant, (1-7)

ψ being given by 4εψ = τ − 2/α, if ε � 0, or 3ψ = 2/α3, when ε = 0. Furthermore, σ
in (1-1) and the function F of the variable τ characterized by

4εF = θ(2 − τα) + 4εκα for ε � 0 and F = κα − 2θ/(3α2) if ε = 0, (1-8)

and thus depending on the real constants θ, κ, satisfy the conditions

(a) Y− Qα = F, (b) 2σ = −(Qα′ + F′), (c) Δα = Fα′ = −F′′. (1-9)

Finally, up to affine modifications (see Remark C), the pair (α(τ), ε) is one of the
following five: (2, 1), (2/τ, 0), (2 tanh τ, 1), (2 coth τ, 1), (2 cot τ,−1).

THEOREM E. Each of the five options listed in Theorem D, namely,

(2, 1), (2/τ, 0), (2 tanh τ, 1), (2 coth τ, 1), (2 cot τ,−1),

is realized by a special Ricci–Hessian equation (1-1)–(1-2) on a real-analytic Kähler
manifold (M, g) of real dimension four such that, with v = ∇τ and Q = g(v, v), one has
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dQ ∧ dτ � 0 somewhere in M and Jv lies in a two-dimensional Abelian Lie algebra of
Killing fields.

For (2, 1) and (2/τ, 0), one can choose (M, g) to be compact and biholomorphic to
the two-point blow-up of CP2, where g is the Wang–Zhu toric Kähler– Ricci soliton
[22, Theorem 1.1] or respectively the Chen–LeBrun–Weber conformally-Einstein
Kähler metric [6, Theorem A].

In contrast with the final clause of Theorem E, we do not know whether the
remaining three options, (2 tanh τ, 1), (2 coth τ, 1), and (2 cot τ,−1), may be realized
on a compact Kähler surface. An analytic-continuation phenomenon described below
(Section 13) may hint at the plausibility of trying to obtain such compact examples via
small deformations of the Wang–Zhu or Chen–LeBrun–Weber metric, combined with
suitable affine modifications.

For the pairs (2, 1) and (2/τ, 0) in Theorem D, the constancy conclusions of (1-7)
are well known: [7, page 201], [9, page 417, Proposition 3(i) and page 419, (40)].

The paper is organized as follows. Section 2 contains the preliminaries. Conse-
quences of special Ricci–Hessian equations, leading to proofs of Theorems A, B
and D, are presented in the next two sections. Sections 5–12 are devoted to proving
Theorem E: we rephrase it as solvability of the system (6-1) of quasi-linear first-order
partial differential equations, subject to the additional conditions (6-2), which allows
us to derive our claim from the Cartan–Kähler theorem for exterior differential
systems.

2. Preliminaries

All manifolds and Riemannian metrics are assumed to be of class C∞. By definition,
a manifold is connected. We use the symbol δ for divergence.

On a manifold with a torsion-free connection ∇, the Ricci tensor r satisfies the
Bochner identity r(·, v) = δ∇v − d[δv], where v is any vector field. Its coordinate form
Rjkvk = vk

, jk − vk
, kj arises via contraction from the Ricci identity vl

, jk − vl
,kj = Rjkq

lvq.
(We use the sign convention for R such that Rjk = Rjqk

q.) Applied to the gradient v of a
function τ on a Riemannian manifold, this yields

δ[∇dτ] = r(v, ·) + dY with v = ∇τ and Y = Δτ. (2-1)

Also, given a function τ on a Riemannian manifold,

2[∇dτ](v, ·) = dQ, where v = ∇τ and Q = g(v, v), (2-2)

as one sees noting that, in local coordinates, (τ,kτ,k),j = 2τ,kjτ
,k. We can rewrite the

relations (2-1)–(2-2) using the interior product ıv, and then they read

(a) δ[∇dτ] = ıvr + dY , (b) 2ıv[∇dτ] = dQ with (1-4). (2-3)

Finally, for the Ricci tensor r and scalar curvature s of any Riemannian metric,

2δr = ds, (2-4)
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which is known as the Bianchi identity for the Ricci tensor. Its coordinate form
2gklRjk,l = s, j is immediate if one transvects with (‘multiplies’ by) gkl the equality
Rjkl

q
,q = Rjl,k − Rkl,j obtained by contracting the second Bianchi identity.

The harmonic-flow condition for a vector field v on a Riemannian manifold (M, g),
meaning that the flow of v consists of (local) harmonic diffeomorphisms, is known
[19] to be equivalent to the equation

g(Δv, ·) = −r(v, ·), (2-5)

the vector field Δv having the local components [Δv]j = vj,k
k. See also [14, Theorem

3.1]. When v = ∇τ is the gradient of a function τ : M → IR,

the harmonic-flow condition (2-5) amounts to (1-3). (2-6)

In fact, by (2-1), 2r(v, ·) + dY = δ[∇dτ] + r(v, ·) = g(Δv, ·) + r(v, ·), as [Δv]j = vj,k
k =

τ,jk
k = τ,kj

k = τ,kj
k = (δ[∇dτ])j.

Furthermore (see, for example, [11, Lemma 5.2]), on a Kähler manifold (M, g),

conditions (1-1)–(1-2) imply real-holomorphicity of the
gradient v = ∇τ, while Jv is then a holomorphic Killing
field, due to the resulting Hermitian symmetry of ∇dτ.

(2-7)

Since holomorphic mappings between Kähler manifolds are harmonic, every holo-
morphic vector field on a Kähler manifold satisfies (2-5); see also [14, Remark 3.2].
Now, (1-5) follows from (2-6). In other words, as observed by Calabi [5], on Kähler
manifolds, one has

(1-3), with (1-4) for all real-holomorphic gradients v = ∇τ . (2-8)

Given a tensor field θ on a manifold M, we say that a point x ∈ M is θ-generic if x has
a neighborhood on which either θ = 0 identically, or θ � 0 everywhere. Such points
clearly form a dense open subset of M.

3. Ricci–Hessian equations

As a consequence of (1-1), for the scalar curvature s, with (1-4),

nσ = Yα + s, where n = dim M. (3-1)

Applying 2ıv or 2δ to (1-1), we obtain, from (2-3)–(2-4) and (1-4),

(i) αdQ + 2r(v, ·) = 2σdτ,
(ii) 2[∇dτ](∇α, ·) + 2α[r(v, ·) + dY] + ds = 2dσ. (3-2)

In the case where (1-1)–(1-2) hold along with (1-3), one may rewrite (3-2) as

(i) αdQ − dY = 2σdτ,
(ii) 2[∇dτ](∇α, ·) + αdY + ds = 2dσ, (3-3)
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which, in view of (2-2) and (3-1), amounts to nothing other than

(i) d(Qα − Y) = (Qα′ + 2σ)dτ,
(ii) d[Qα′ + (n − 2)σ] = (Qα′′ + Yα′)dτ, (3-4)

as the assumption, in (1-2), that α is a C∞ function of τ allows us to write

dα = α′dτ, ∇α = α′v, 2[∇dτ](∇α, ·) = α′dQ, where α′ = dα/dτ, (3-5)

since (2-2) gives 2[∇dτ](∇α, ·) = 2α′[∇dτ](v, ·) = α′dQ. Due to (3-4), conditions
(1-1)–(1-3) imply that, locally, at points at which dτ � 0,

Qα − Y and Qα′ + (n − 2) σ are functions of τ, with
the respective τ-derivatives Qα′ + 2σ and Qα′′ + Yα′,
which, consequently, must themselves be functions of τ.

(3-6)

PROOF OF THEOREM A. At the points in question, using (3-6) to equate both Qα − Y
and Qα′′ + Yα′ to some specific functions of τ, we obtain a system of two linear
equations with the nonzero determinant α′′ + αα′, imposed on the unknowns Q,Y, and
our assertion follows since α′′ + αα′ is also a function of τ. �

Assuming only (1-1), for n = dim M, with the aid of (3-1), we rewrite (3-2) as

n[αdQ + 2r(v, ·)] − 2(Yα + s)dτ = 0,
2n{[∇dτ](∇α, ·) +αr(v, ·)}+ 2[(n − 1)αdY−Ydα] + (n − 2)ds = 0.

If (1-3) holds as well, replacing 2r(v, ·) here with −dY , we obtain n(αdQ − dY) −
2(Yα + s)dτ = 0 and 2n[∇dτ](∇α, ·) + (n − 2)(αdY+ ds) − 2Ydα = 0. Thus, when
(1-1)–(1-3) are all satisfied, (3-5) gives

(a) n(αdQ − dY) − 2(Yα + s)dτ = 0,
(b) nα′dQ + (n − 2)(αdY + ds) − 2Yα′dτ = 0. (3-7)

4. Ricci–Hessian equations on Kähler manifolds

The goal of this section is to prove Theorems B and D.
In any complex manifold, dω = 0 and ω(J·, ·) is symmetric if ω = i∂∂τ, that is,

if 2ω = −d [J∗dτ] for a real-valued function τ, with the 1-form J∗dτ = (dτ)J, which
sends any tangent vector field v to dJvτ. Our exterior-derivative and exterior-product
conventions, for 1-forms ξ, ξ′ and vector fields u, v, are

[dξ](u, v) = du[ξ(v)] − dv[ξ(u)] − ξ([u, v]),
[ξ ∧ ξ′](u, v) = ξ(u)ξ′(v) − ξ(v)ξ′(u). (4-1)

For a torsion-free connection ∇, (4-1) gives [dξ](u, v) = [∇uξ](v) − [∇vξ](u), so that, if
in addition ∇J = 0, on an almost-complex manifold,

2i∂∂τ = [∇dτ](J·, ·) − [∇dτ](·, J·). (4-2)
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In the case of a Kähler metric g on a complex manifold M, (1-1) implies that

iα∂∂τ + ρ = σω, (4-3)

ω, ρ being the Kähler and Ricci forms, with both terms on the right-hand side of (4-2)
equal, as the Hermitian symmetry of ∇dτ follows from those of ρ and ω.

REMARK 4.1. As an obvious consequence of the last line in (2-7), if g is a
Kähler metric, conditions (1-1)–(1-2) are equivalent to (4-3) along with (1-2) and
real-holomorphicity of the gradient v = ∇τ.

REMARK 4.2. For the Kähler form ω of a Kähler manifold (M, g) of real dimension
n ≥ 4, the operator ζ �→ ζ ∧ ω acting on differential q-forms is injective if q = 2 and
n > 4, or q = 1. Namely, the contraction of ζ ∧ ω against ω yields a nonzero constant
times (n − 4)ζ + 2〈ω, ζ〉ω (if q = 2), or times (n − 2)ζ (if q = 1). In the former case,
ζ with ζ ∧ ω = 0 is thus a multiple of ω, and hence is 0.

REMARK 4.3. Whenever (4-3) with a constant α holds on a Kähler manifold of real
dimension n ≥ 4, constancy of σ follows (from Remark 4.2, as dσ ∧ ω = 0).

We have the following result, due to Maschler [17, Proposition 3.3].

LEMMA 4.4. Condition (1-1) on a Kähler manifold (M, g) of real dimension n > 4
implies that dσ ∧ dα = 0. Equivalently, wherever dα is nonzero, σ must, locally, be a
function of α.

PROOF. By (4-3), 0 = dρ = dσ ∧ ω − dα ∧ i∂∂τ, so that dα ∧ dσ ∧ ω = 0, and our
assertion is immediate from Remark 4.2. �

PROOF OF THEOREM B. In all three cases (i)–(iii), dσ ∧ dτ = 0. For case (i), this
follows from Lemma 4.4 while, when dQ ∧ dτ = 0 on U, we see that, in view of the
equality α′dQ + αdY = d(2σ − s) arising from (3-3ii) and (3-5), Y and 2σ − s are,
locally, functions of τ, and hence so is σ, as a consequence of (3-1) with n ≥ 4. Now,
[11, Corollary 9.2] yields our claim. �

PROOF OF THEOREM D. As dQ ∧ dτ � 0 everywhere in U, Theorem A implies (1-6)
and, consequently, also the final clause about the five possible pairs.

Next, in (1-6), 4dθ = 2d[αs + (2α′ + α2)Y] = 2[αds + sdα + (2α′ + α2)dY], which,
as n = 4, equals, in view of (3-5),

α[nα′dQ + (n − 2)(αdY + ds) − 2Yα′dτ] − α′[n(αdQ − dY) − 2(Yα + s)dτ],

and hence vanishes due to (3-7). However, the function ψ of τ defined in the theorem
is an antiderivative of 1/α2, meaning that

ψ′ = 1/α2. (4-4)

Namely, by (1-6), 4εψ′ = 1 + 2α′/α2 = (2α′ + α2)/α2 = 4ε/α2 if ε � 0, and 3ψ′ =
−6α′/α4 = 3/α2 when ε = 0, as 2α′ = −α2.
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Furthermore, d(θψ + α−1Y − Q) = 0. In fact, dα = α′dτ in (3-5), and similarly for ψ,
so that, from (4-4), d(θψ) = θdψ = θψ′dτ = θα−2dτ, and αd(α−1Y) = dY − α−1Yα′dτ.
Also, 2(θ − Yα′) = (Yα + s)α from (1-6)–(1-7). These relations yield

−4αd(θψ + α−1Y − Q) = 4[(αdQ − dY) − (θ − Yα′)α−1dτ]

= n(αdQ − dY) − 2(Yα + s)dτ,

with n = 4, which equals 0 by (3-7a).
Finally, (1-8) and the second relation in (1-7) easily give (1-9a). Thus, by (1-4)

and (3-5), (Qα′ + F′)Q = (Qα′ + F′)dvτ = Qdvα + dvF, which, due to (1-9a), equals
dvY− αdvQ. At the same time, −ıv applied to (3-3i) yields dvY− αdvQ = −2Qσ. We
thus get (1-9b). To obtain (1-9c), note that, from (1-4), Δα = Qα′′ + Yα′, which, by
(1-6) and (1-9a), equals (Y− Qα)α′ = Fα′ = −F′′, where the last equality trivially
follows from (1-8). �

Theorem D has a partial converse: if a nonconstant function τ with real-holomorphic
gradient v = ∇τ on a Kähler surface (M, g) and a function α of the real variable τ satisfy
(1-6) and (1-7), then they must also satisfy the Ricci–Hessian equation (1-1) with σ
given by (3-1) for n = 4.

In fact, b(v, ·) = 0, where b denotes the traceless Hermitian symmetric 2-tensor field
α∇dτ + r − σg. Namely, (1-3)–(1-5) and (2-3b) yield 4b(v, ·) = 2α dQ − 2dY− 4σdτ

which, due to (3-1) and (3-5), equals 2α dQ − 2dY− (Yα + s)dτ, and so −4αb(v, ·) =
2α2d(θψ + α−1Y− Q) + (αs + 4εY− 2θ)dτ. (Note that, by (1-6) and (4-4), 4ε = 2α′+
α2 and 2α2d(θψ) = 2θdτ.) Thus, b = 0, since b corresponds, via g, to a complex-linear
bundle morphism TM → TM.

5. The local Kähler potentials

This and the following seven sections are devoted to proving Theorem E.
In an open set M ⊆ IR4 with the Cartesian coordinates x, x′, u, u′ arranged into the

complex coordinates (x + ix′, u + iu′) for the complex plane C2 = IR4 carrying the
standard complex structure J, one has J∗dx = −dx′ and J∗du = −du′, so that, if a C∞

function f on M only depends on x and u, the relation 2i∂∂ f = −d [J∗d f ] yields, with
subscripts denoting partial differentiations,

2i∂∂ f = fxx dx ∧ dx′ + fxu(dx ∧ du′ + du ∧ dx′) + fuu du ∧ du′,

since d f = fx dx + fu du. Furthermore, we set

v = ∂x and w = ∂u (the real coordinate vector fields). (5-1)

For the Kähler metric g on M having the Kähler form ω = 2i∂∂φ, where the function
φ : M → IR is assumed to depend on x and u only, 2φ is a Kähler potential [2, page 85]
of g, and the above formula for 2i∂∂ f , with f = φ, becomes

ω = φxx dx ∧ dx′ + φxu(dx ∧ du′ + du ∧ dx′) + φuu du ∧ du′. (5-2)
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Generally, for a skew-Hermitian 2-form ζ = Qdx ∧ dx′ + S(dx ∧ du′ + du ∧ dx′) +
Bdu ∧ du′ and the Hermitian symmetric 2-tensor field a with ζ = a(J · , ·), one has

a = Q(dx ⊗ dx + dx′ ⊗ dx′) + S(dx ⊗ du + du ⊗ dx + dx′ ⊗ du′ + du′ ⊗ dx′)
+ B(du ⊗ du + du′ ⊗ du′),

due to (4-1), and so the components of a relative to the coordinates (x, x′, u, u′) form
the matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Q 0 S 0
0 Q 0 S
S 0 B 0
0 S 0 B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ with the determinant (QB − S2)2. (5-3)

When a = g, (5-2) with ζ = ω gives (Q, S, B) = (φxx, φxu, φuu). Thus,

φxx > 0 and Π > 0 for Π = φxxφuu − φ2
xu, (5-4)

which amounts to Sylvester’s criterion for positive definiteness of g, namely, positivity
of the upper left subdeterminants of (5-3). From now on, we set

(τ, λ, Q, S, B) = (φx, φu, φxx, φxu, φuu), so that
Q > 0 and Π = QB − S2 > 0 due to (5-4). (5-5)

With div, Δ denoting the g-divergence and g-Laplacian, for τ, λ, Q in (5-5):

(a) the functions τ, λ have the holomorphic g-gradients v = ∂x and w = ∂u;
(b) the other coordinate fields Jv and Jw are holomorphic g-Killing fields;
(c) Q = g(v, v) and Δτ = div v = [logΠ]x, while Δλ = div w = [logΠ]u.

Namely, (5-1) and (5-3) yield item (a). Also, item (b) follows since φ only depends on x
and u. Finally, (5-3) has the determinantΠ2, and soΠ dx ∧ dx′ ∧ du ∧ du′ is the volume
form of g, on which £v, £w act (see (5-1)) via partial differentiations ∂x, ∂u of the Π
factor. Thus, div v = [logΠ]x and div w = [logΠ]u, compare with [16, page 281].
Finally, by item (a), (5-1) and (5-5), g(v, v) = dvτ = ∂xτ = ∂xφx = φxx = Q.

For our (τ, λ) = (φx, φu), the mapping (x, u) �→ (τ, λ) is locally diffeomorphic due to
(5-4), which makes (Q, S, B) = (φxx, φxu, φuu), locally, a triple of real-valued functions
of the new variables τ, λ. Thus, from the chain rule, in matrix form,

(i)
[
∂x ∂u

]
=
[
∂τ ∂λ

] [Q S
S B

]
, (ii)

[
dτ

dλ

]
=

[
Q S
S B

] [
dx
du

]
, and so

(iii) (QB − S2)
[
∂τ ∂λ

]
=
[
∂x ∂u

] [ B −S
−S Q

]
,

(iv) (QB − S2)

[
dx
du

]
=

[
B −S
−S Q

] [
dτ

dλ

]
.

(5-6)
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With subscripts still denoting partial differentiations, the obvious integrability condi-
tions Qu − Sx = Su − Bx = 0 and (5-5) give, due to (5-6i),

SQτ + BQλ = QSτ + SSλ, SSτ + BSλ = QBτ + SBλ, Q > 0, QB > S2. (5-7)

Conversely, if functions Q, S, B of the variables τ, λ satisfy (5-7), then, locally:

(d) (Q, S, B) = (φxx, φxu, φuu) for a function φ, with (5-4), of the variables x, u related
to τ, λ via (τ, λ) = (φx, φu), and Q, S, B determine each of φ, x, u uniquely up to
additive constants.

In fact, the equalities in (5-7) state precisely that the vector fields Q∂τ + S∂λ and
S∂τ + B∂λ commute or, equivalently, the 1-forms

(QB − S2)−1(Bdτ − Sdλ) and (QB − S2)−1(Q dλ − Sdτ),

dual to them, are closed, and we may declare these vector fields (or 1-forms) to
be ∂x, ∂u or respectively dx, du. Now that, locally, x, u are defined, up to additive
constants, we obtain φ by solving the system (φx, φu) = (τ, λ), where τ, λ are treated
as functions of x, u via the resulting locally diffeomorphic coordinate change
(τ, λ) �→ (x, u). Closedness of τ dx + λ du and the equality (Q, S, B) = (φxx, φxu, φuu)
are obvious: our choice of dx and du gives (5-6iv), and hence (5-6ii), so that
dτ ∧ dx + dλ ∧ du = 0.

The g-Laplacians of τ and λ can also be expressed as:

(e) Δτ = Qτ + Sλ and Δλ = Sτ + Bλ; while
(f) Πx = (Qτ + Sλ)Π and Πu = (Sτ + Bλ)Π for Π = QB − S2.

To see this, first note that, by (5-6i), (QB − S2)x = Q(QB − S2)τ + S(QB − S2)λ =
Q(QBτ + SBλ − SSτ) − S(QSτ + SSλ − BQλ) − S2Sλ + QBQτ. Using (5-7) to replace the
two three-term sums in parentheses by BSλ and SQτ, we thus obtain the first part
of item (f). For the second one, we similarly rewrite (QB − S2)u = S(QB − S2)τ +
B(QB − S2)λ as S(QBτ − BSλ − SSτ) − S2Sτ + B(BQλ + SQτ − SSλ) + QBBλ, and use
analogous three-term replacements based on (5-7). Now item (e) follows from item (c),
(5-5), and item (f).

THEOREM 5.1. In C2 with the complex coordinates (x + ix′, u + iu′), given an open
subset M and a function φ : M → IR of the real variables x, u, having the property
(5-4), let g be the Kähler metric on M with the Kähler potential 2φ. The following two
conditions are equivalent.

(i) The special Ricci–Hessian equation (1-1)–(1-2) holds on M for τ = φx, and
dQ ∧ dτ � 0 everywhere in M, with Q = g(∇τ,∇τ). Thus, by Theorem D, one has
(1-6) and (1-9a), where Y = Δτ and F is the function of τ characterized by (1-8)
for the constants θ, κ in (1-7).
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(ii) The triple (Q, S, B) = (φxx, φxu, φuu) of functions of the new variables (τ, λ) =
(φx, φu) satisfies (5-7) with Qλ � 0 everywhere, as well as the equations
Sτ + Bλ = Sα + G, Qτ + Sλ = Qα + F, Gτ = −Sα′, Gλ = Qα′ + F′ for some
function G and ( )′ = d/dτ.

PROOF. By (1-9b), Equation (1-1) is, in case (i), equivalent to

2α∇dτ + 2r = −(Qα′ + F′)g, (5-8)

where all the terms are Hermitian symmetric 2-tensor fields, and hence correspond,
via g, to complex-linear bundle morphisms TM → TM. Thus, (5-8) amounts to:

(f) equalities of the images of both sides in (5-8) under ıv and ıw.

The equality of the ıv-images is, by (2-3b) and (1-3), the result of applying d, via (3-5),
to the relation (1-9a) in item (i): Y− Qα = F. This last relation and item (e), with
Y = Δτ due to (1-4), show that condition (i) implies the equality Qτ + Sλ = Qα + F in
item (ii). Defining G to be Sτ + Bλ − Sα, we get Sτ + Bλ = Sα + G. Next, the equality
of the ıw-images in (5-8) reads

α dS − dΔλ = −(Qα′ + F′) dλ. (5-9)

In fact, the first term equals α dS since, for the two commuting gradients v = ∇τ
and w = ∇λ, one has 2∇wdτ = d[g(v, w)] or, in local coordinates, 2wkv,jk = wkv,jk +

vkw,jk = (vkwk),j and S = φxu = g(v, w) by (5-3) and (5-1). The second term is −dΔλ
due to item (a) and (2-8). By item (e), G = Sτ + Bλ − Sα = Δλ − Sα, and so (5-9)
becomes α dS − d(G + Sα) = −(Qα′ + F′) dλ, that is, according to (3-5),

dG = (Qα′ + F′) dλ − Sdα = (Qα′ + F′) dλ − Sα′dτ

or, in other words, Gτ = −Sα′ and Gλ = Qα′ + F′. Consequently, condition (i) implies
condition (ii), since (5-7) arises as the integrability conditions Qu − Sx = Su − Bx = 0
combined with (5-4), and the equality dQ = Qτ dτ + Qλdλ yields dQ ∧ dτ =

−Qλdτ ∧ dλ.
Conversely, assuming condition (ii), we get condition (i) from item (f). Namely,

as we saw above, the equality of the ıv-images in (5-8) arises by applying d to
Y− Qα = F, that is—compare with item (e)—to Qτ + Sλ = Qα + F. Also, (5-9) follows
from condition (ii) and item (e):

α dS − dΔλ = α dS − d(Sτ + Bλ) = α dS − d(Sα + G) = −dG − Sdα = −dG − Sα′ dτ

= Gτ dτ − dG = −Gλ dλ = −(Qα′ + F′) dλ.

This completes the proof. �

Note that items (e), (f), Theorem 5.1(ii) and (5-1) give

Δτ = Qα + F, Δλ = Sα + G, dvΠ = ΠΔτ, dwΠ = ΠΔλ.
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6. Some linear algebra

We now proceed to discuss the first-order system equivalent, as we saw in the
last section (Theorem 5.1), to the Kähler-potential problem, the solution of which
amounts to proving Theorem E. The main result established here, Theorem 6.3, will
lead—in Section 9—to a unique-extension property of integral lines, which results in
applicability of the Cartan–Kähler theorem to our situation.

Theorem 5.1 reduces constructing local examples of special Ricci–Hessian
equations (1-1)–(1-2) with dQ ∧ dτ � 0, on Kähler surfaces, which is a fourth-order
problem in the Kähler potential 2φ, to solving the following system of quasi-linear first-
order partial differential equations, with subscripts representing partial derivatives:

(a) Qτ + Sλ − Qα − F = 0,
(b) Sτ + Bλ − Sα − G = 0,
(c) QBτ + SBλ − SSτ − BSλ = 0,
(d) SQτ + BQλ − QSτ − SSλ = 0,
(e) Gτ + Sα′ = 0,
(f) Gλ − Qα′ − F′ = 0,

(6-1)

on which one imposes the additional conditions

QB > S2, Q > 0, Qλ � 0 everywhere. (6-2)

Generally, if Q, S, B are real-valued functions of the real variables τ, λ and subscripts
denote partial differentiations, writing d[(QB−S2)−1(Bdτ − Sdλ)] = Φ dτ ∧ dλ and
d[(QB−S2)−1(Sdτ −Q dλ)] = Ψ dτ ∧ dλ at points where QB � S2, one easily verifies
that [

Φ
Ψ

]
=

[
S B
Q S

] [
QBτ + SBλ − SSτ − BSλ
SQτ + BQλ − QSτ − SSλ

]
. (6-3)

For the remainder of this section, we treat the letter symbols in (6-1)–(6-2) as real
variables, so as to derive some consequences of conditions (6-1)–(6-2) just by using
linear algebra.

LEMMA 6.1. If (Q, S, B, G, Qτ, Sτ, Bτ, Gτ, Qλ, Sλ, Bλ, Gλ) ∈ IR12 satisfies the conditions
(6-1a)–(6-1d), with some (α, F) ∈ IR2, then

(i) QBτ + BQτ − 2SSτ − (QB − S2)α − BF + SG = 0,
(ii) QBλ + BQλ − 2SSλ − QG + SF = 0. (6-4)

PROOF. The left-hand side of (6-4i) is, obviously,

(QBτ + SBλ − SSτ − BSλ) + (Qτ + Sλ − Qα − F)B − (Sτ + Bλ − Sα − G)S,

and each sum in the parentheses vanishes due to (6-1). Similarly, (6-4ii) has the
left-hand side

(SQτ + BQλ − QSτ − SSλ) + (Sτ + Bλ − Sα − G)Q − (Qτ + Sλ − Qα − F)S = 0 + 0 + 0.

�
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With subscripts denoting partial differentiations, (6-1e–f) and (6-4) read

(i) dG = −Sα′dτ + (Qα′ + F′) dλ,
(ii) dΠ = (Πα + BF − SG) dτ + (QG − SF) dλ for Π = QB − S2. (6-5)

Since dΠ = Π [(Qτ + Sλ) dx + (Sτ + Bλ) du] due to item (f), one can also obtain (6-5ii)
from (5-6iv), with Π = QB − S2, and (6-1a–b).

LEMMA 6.2. Let (τ̇, λ̇, Q, S, B, G) ∈ IR6 have (τ̇, λ̇) � (0, 0) and QB > S2.

(a) QB > 0 and Ψ � 0, where Ψ = Bτ̇2 − 2Sτ̇λ̇ + Qλ̇2.
(b) (0, 0, 0, 0, 0, 0) is the only vector (Qτ, Sτ, Bτ, Qλ, Sλ, Bλ) ∈ IR6 with

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0
0 1 0 0 0 1
0 −S Q 0 −B S
S −Q 0 B −S 0
τ̇ 0 0 λ̇ 0 0
0 τ̇ 0 0 λ̇ 0
0 0 τ̇ 0 0 λ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qτ

Sτ

Bτ

Qλ

Sλ
Bλ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(c) The first four rows of the above 7 × 6 matrix are linearly independent.

PROOF. Assertion (a) follows as Ψ is positive or negative definite in (τ̇, λ̇). Next, one
easily verifies that, for Ψ as in assertion (a), and the rows ri of the above matrix,

(Bτ̇ − Sλ̇)λ̇r1 + Ψr2 + λ̇
2r4 − Bλ̇r5 + (2Sλ̇ − Bτ̇)r6 = (0, 0, 0, 0, 0,Ψ ).

Depending on whether λ̇ � 0 (or λ̇ = 0 and hence τ̇ � 0), the 6 × 6 matrix with the
rows r1, r2, r3 + Sr2, r4 − Sr1 + Qr2 followed by r6 − τ̇r2 (or respectively by r5 − τ̇r1),
and then by (0, 0, 0, 0, 0,Ψ ) displayed above, is upper triangular, with the diagonal
entries 1, 1, Q, B, λ̇,Ψ or respectively 1, 1, Q, B,−τ̇,Ψ , all nonzero by assertion (a).
These six new rows thus form a basis of IR6 (so that the matrix has rank 6), while
the first four are linear combinations of the first four original rows, which proves both
assertions (b) and (c). �

THEOREM 6.3. Given vectors (τ̇, λ̇, Q, S, B, G) ∈ IR6 and (α, F,α′, F′) ∈ IR4 with
(τ̇, λ̇) � (0, 0) and QB > S2, the set of all

(Qτ, Sτ, Bτ, Gτ, Qλ, Sλ, Bλ, Gλ) ∈ IR8 (6-6)

satisfying (6-1) forms a two-dimensional affine subspace A of IR8. Furthermore, the
restriction toA of the linear operator Φ : IR8→ IR4 sending (6-6) to

(Q̇, Ṡ, Ḃ, Ġ) = (Qττ̇ + Qλλ̇, Sττ̇ + Sλλ̇, Bττ̇ + Bλλ̇, Gττ̇ + Gλλ̇) (6-7)
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is an affine isomorphism Φ : A → L onto the two-dimensional affine subspace L of
IR4 consisting of all (Q̇, Ṡ, Ḃ, Ġ) such that

Ġ = −Sα′τ̇ + (Qα′ + F′)λ̇,
QḂ + BQ̇ − 2SṠ = [(QB − S2)α + BF − SG]τ̇ + (QG − SF)λ̇. (6-8)

PROOF. That A ⊆ IR8, or L ⊆ IR4, if nonempty, is an affine subspace, clearly follows
since (6-1), or (6-8), is a system of nonhomogeneous linear equations imposed on
(6-6) or respectively (Q̇, Ṡ, Ḃ, Ġ). Also,A is nonempty, and two-dimensional, being the
pre-image of (Qα + F, Sα + G, 0, 0,−Sα′, Qα′ + F′) under the obvious linear operator
IR8→ IR6. Namely, this operator is surjective: it equals the direct sum of the identity
operator IR2→ IR2, acting on (Gτ, Gλ), and an operator IR6→ IR4, which has rank
4 due to Lemma 6.2(c). Next, Φ maps A into L, which one sees adding (6-1e),
or (6-4i), times τ̇ to (6-1f), or (6-4ii), times λ̇, and then using (6-7). Thus, L is
nonempty, and dimL = 2, the matrix of the homogeneous system associated with
(6-8) having rank 2 since Lemma 6.2(a) gives Q � 0. Let A′ ⊆ IR8 and L′ ⊆ IR4 now
be the vector subspaces parallel to A and L. Our assertion will thus follow once we
establish injectivity of Φ : A → L, that is, injectivity of its linear part Φ : A′ → L′.
Equivalently, we need to show that zero is the only vector (6-6) lying in A′ and
having the Φ-image (0, 0, 0, 0) or, in other words, the only solution to the matrix
equation in Lemma 6.2, with (Ġ, Gτ, Gλ) = (0, 0, 0). This, however, is precisely what
Lemma 6.2(b) states. �

7. The existence of solutions

After the preceding foray into linear algebra, we now return to treating (6-1) as
a system of quasi-linear first-order partial differential equations with four unknown
real-valued functions Q, S, B, G of the real variables τ, λ, subject to the additional
conditions (6-2).

Subscripts again denote partial differentiations, while α and F are functions of the
variable τ, also depending on three fixed real constants ε, θ, κ, so that

2α′ + α2 = 4ε, where ( )′ = d/dτ,
4εF = θ(2− τα) + 4εκα if ε � 0,
F = κα − 2θ/(3α2) when ε = 0.

(7-1)

In addition, it is natural to assume here that

τ ranges over the domain of α (which is also the domain of F). (7-2)

Consequently, α and F satisfy the ordinary differential equations

α′′ + αα′ = 0, F′′ = −Fα′. (7-3)

THEOREM 7.1. For any fixed α, F as in (7-1)–(7-2), real-analytic solutions
Z = (Q, S, B, G) to (6-1)–(6-2) exist, locally, on a neighborhood of any (τ, λ) ∈ IR2

with the property (7-2).
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More precisely, one obtains a locally unique such solution Z by prescribing Z
and the partial derivatives Zτ, Zλ real-analytically along an arbitrary real-analytic
embedded curve t �→ (τ, λ) ∈ IR2, so as to satisfy (6-1), (6-2), (7-2), and the condition
Ż = τ̇Zτ + λ̇Zλ, where ( )̇ = d/dt.

We prove Theorem 7.1 at the end of Section 10. As we point out in Remark 10.2,
there is an infinite-dimensional freedom of choosing the data described in the second
paragraph of Theorem 7.1.

8. The associated exterior differential system

By an exterior differential system on a manifold M, one means an ideal I in
the graded algebra Ω∗M, closed under exterior differentiation; its integral manifolds
(or integral elements) are those submanifolds of M (or subspaces of its tangent spaces)
on which every form in I vanishes [4, pages 16 and 65]. When such objects have
dimension 1 or 2, we call them integral curves/surfaces or lines/planes.

If E ⊆ TzM is a p-dimensional integral element of I, one sets [4, pages 67–68]:

H(E) = {v ∈ TzM : ζ(v, e1, . . . , ep) = 0 for all ζ ∈ I ∩ Ωp+1M}
and r(E) = dim H(E) − (p + 1), for any basis e1, . . . , ep of E, (8-1)

so that H(E) is a vector subspace of TzM, not depending on e1, . . . , ep since

H(E) = {v ∈ TzM : span(v, E) is an integral element of I}. (8-2)

For fixed real constants ε, θ, κ, let the open subset Y of IR6 consist of all points
(τ, λ, Q, S, B, G) ∈ IR6 such that Q and QB − S2 are both positive, while τ lies in the
domains of α and F, chosen so as to satisfy (7-1). Consider now

the exterior differential system I on this Y generated
by the two 1-forms dG + Sα′dτ − (Qα′ + F′) dλ and
d(QB−S2) − [(QB − S2) α+BF−SG]dτ−(QG−SF)dλ,
the 2-form dQ ∧ dλ + dτ ∧ dS − (Qα + F) dτ ∧ dλ,
the 2-form dS ∧ dλ + dτ ∧ dB − (Sα + G) dτ ∧ dλ,
their exterior derivatives, and the exterior derivatives of
(QB−S2)−1 (Bdτ − Sdλ) and (QB−S2)−1 (Sdτ − Q dλ).

(8-3)

The choice of I is justified as follows. We want I to consist of differential forms
that are expected to vanish on all graphs of solutions to (6-1) with (6-2). Since such
a graph is horizontal (in the sense that dτ ∧ dλ � 0 on it), forms generating I will
result from multiplying by dτ ∧ dλ the left-hand sides in (6-1), along with those in
its consequence (6-4), as including the latter changes nothing except for enriching
the differential system. Each of the terms ΞZτ, or ΞZλ, or Θ, where Z ∈ {Q, S, B, G}
(with various Ξ depending on Q, S, B, G, and Θ which may further depend also on
α, F,α′, F′) then becomes Ξ dZ ∧ dλ, or Ξ dτ ∧ dZ, or simply Θ dτ ∧ dλ.

The 2-forms in the fourth and fifth lines of (8-3) arise as above from (6-1a)
and (6-1b), the exterior derivatives of the 1-forms in the last line—from (6-1c)
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and (6-1d) via (6-3). The rest of (8-3) is based on an additional principle: if our
exterior differential system ends up containing ξ ∧ dτ and ξ ∧ dλ, for some 1-form
ξ, we are free to include ξ among the system’s generators, as the horizontal integral
surfaces/planes then obviously remain unaffected. The 1-form ξ in the second, or third,
line of (8-3) corresponds in this way to (6-1e–f) or respectively (6-4).

Instead of invoking the general ‘additional principle’, one can also justify the second
and third lines in (8-3) directly from the fact that (6-5) is a consequence of (6-1), which
causes the two 1-forms to vanish on all graphs of solutions to (6-1).

9. The unique-extension theorem

In IR6 with the coordinates τ, λ, Q, S, B, G, given a subspace E ⊆ IR6,

we call E horizontal when (dτ, dλ) : E → IR2 is injective. (9-1)

REMARK 9.1. If E1 is an integral line of I in (8-3) and E1 ⊆ E2 for a unique horizontal
integral plane E2, then E2 is the only integral plane containing E1. Namely, another
such plane E′2, being nonhorizontal, would intersect the kernel of (dτ, dλ) along a
line. As E3 ⊆ H(E1) for the vector subspace H(E) in (8-2) and the three-dimensional
span E3 of E2 and E′2, all planes in E3 containing the line E1, other than E′2, would be
horizontal integral planes, making E2 nonunique.

REMARK 9.2. The only 1-forms in I are, obviously, the functional combinations of
those in the second and third lines of (8-3). Due to their linear independence at every
point, the simultaneous kernel of these two 1-forms is a codimension-two distribution
D on Y, that is, a vector subbundle of TY, and its fiber at any (τ, λ, Q, S, B, G) ∈ Y
consists of all (τ̇, λ̇, Q̇, Ṡ, Ḃ, Ġ) ∈ IR6 with (6-8). Hence,

vectors (τ̇, λ̇, Q̇, Ṡ, Ḃ, Ġ) at (τ, λ, Q, S, B, G) spanning horizontal
integral lines of I are characterized by (6-8) and (τ̇, λ̇) � (0, 0), (9-2)

where α, F,α′, F′ satisfy (7-1)–(7-2).

THEOREM 9.3. Every horizontal integral line of the system I defined by (8-3) is
contained in a unique integral plane of I, and this unique plane is also horizontal.

PROOF. Any horizontal plane in IR6 has, by (9-1), a unique basis of the form

(1, 0, Qτ, Sτ, Bτ, Gτ), (0, 1, Qλ, Sλ, Bλ, Gλ). (9-3)

The span of (9-3) is an integral plane of I if and only if all the 1-forms (and 2-forms)
listed in (8-3) yield the value 0 when evaluated on both vectors in (9-3) or respectively
on the pair (9-3). Due to the two final paragraphs of Section 8, and (6-3), this is
equivalent to (6-1) and (6-4), and hence (Lemma 6.1) just to (6-1).

Every vector in (9-2) is a linear combination of a unique pair (9-3) satisfying
(6-1): as the coefficients of the combination must be τ̇ and λ̇, this is immediate from
Theorem 6.3. In other words, every horizontal integral line of I lies within a unique
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horizontal integral plane. Remark 9.1 now allows us to drop the last occurrence of the
word ‘horizontal’, completing the proof. �

10. Existence of integral surfaces

The next fact—used below to derive our Theorem 7.1—is a special case of the
celebrated Cartan–Kähler theorem [4, pages 81–82]. Since our phrasing differs from
that of [4], we devote the next section to clarifying how our version amounts to
adapting the one in [4] to our particular case.

The symbols Y,I and D stand here for more general objects than those in
Sections 8–9. The definition (9-1) of horizontality, for integral elements, is used more
generally, as well as extended, in an obvious fashion, to integral manifolds.

THEOREM 10.1. Let real-analytic functions τ, λ and 1-forms ξ1, . . . , ξq on a manifold
Y, where 0 < q < dimY, have the property that dτ, dλ, ξ1, . . . , ξq are linearly inde-
pendent at every point. Denoting by D and I the distribution on Y arising as the
simultaneous kernel of the 1-forms ξ1, . . . , ξq and respectively the exterior differential
system on Y generated by ξ1, . . . , ξq and, possibly, some higher-degree forms, along
with their exterior derivatives, let us suppose that

every horizontal integral line of I, at any point
of Y, is contained in a unique integral plane of I. (10-1)

Then, every horizontal real-analytic integral curve of I is contained, locally, in a
locally-unique horizontal real-analytic integral surface. Examples of such curves are
provided by unparameterized integral curves of any real-analytic vector field without
zeros forming a horizontal local section of the vector bundleD over Y. Also,

integral lines of I are the same as lines tangent toD. (10-2)

REMARK 10.2. Due to Theorem 9.3, our Y and I, introduced in Section 8, satisfy
the hypotheses of Theorem 10.1, with q = 2, the coordinate functions τ, λ, and the
two 1-forms in the second and third lines of (8-3). Therefore, ourD (see Remark 9.2)
then corresponds toD in Theorem 10.1, and hence satisfies (10-2). Horizontal integral
curves of our I thus are, by (9-2), precisely those curves that have parameterizations
t �→ (τ, λ, Z) = (τ, λ, Q, S, B, G) ∈ Y with (6-8), where ( )̇ = d/dt, and (τ̇, λ̇) � (0, 0)
for all t. Choosing such a curve as in the sentence preceding (10-2), we obtain
the additional data Zτ, Zλ required in Theorem 7.1 by applying to Ż the inverse
of the affine isomorphism Φ : A → L of Theorem 6.3. This clearly results in the
infinite-dimensional freedom of choices mentioned at the end of Section 6.

PROOF OF THEOREM 7.1. The image of the mapping t �→ (τ, λ, Z) ∈ Y in the second
paragraph of Theorem 7.1 is a horizontal real-analytic integral curve of I. In fact,
horizontality follows since t �→ (τ, λ) is an embedding, while, as Ż = τ̇Zτ + λ̇Zλ, the
resulting tangent directions are integral lines of I as an immediate consequence of
Theorem 9.3 combined with (9-2).
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The integral surface of I arising in Theorem 10.1, being horizontal (Theorem 9.3),
forms, locally, the graph of a function (τ, λ) �→ Z = (Q, S, B, G), which is a solution
to (6-1) according to the description of I in (8-3) and the paragraph following
(8-3). To realize the condition Qλ � 0 required in (6-2), we solve (6-1), at a given
point (τ, λ, Q, S, B, G) ∈ Y, by setting (Qτ, Qλ) = (0, 1), which uniquely determines
Sτ, Bτ, Gτ, Sλ, Bλ, Gλ, and then choosing the quadruple (6-7), with fixed (τ̇, λ̇) � (0, 0),
associated with the resulting octuple (6-6). �

Under the assumptions of Theorem 10.1, let k = dimY. For all p-dimensional
horizontal integral elements E = Ep of I, with p ∈ {0, 1}, and for r(E) = dim H(E) −
(p + 1) in (8-1):

(a) the integer r(E) has a fixed nonnegative value, namely,
(b) dim H(E0) = k − q and r(E0) = k − q − 1 when p = 0,
(c) dim H(E1) = 2 and r(E1) = 0 in the case where p = 1.

(10-3)

This is obvious from (10-2) or respectively (10-1).

11. Where Theorem 10.1 comes from

Here is the Cartan–Kähler theorem, cited verbatim from [4, pages 81–82]:
Let I ⊂ Ω∗(M) be a real analytic differential ideal. Let P ⊂M be a connected,

p-dimensional, real analytic, Kähler-regular integral manifold of I.
Suppose that r = r(P) is a nonnegative integer. Let R ⊂M be a real analytic

submanifold of M which is of codimension r, which contains P, and which satisfies
the condition that TxR and H(TxR) are transverse in TxM for all x ∈ P.

Then, there exists a real analytic integral manifold of I, X, which is connected
and (p + 1)-dimensional and which satisfies P ⊂ X ⊂ R. This manifold is unique in the
sense that any other real analytic integral manifold of I with these properties agrees
with X on an open neighborhood of P.

As we verify in the following paragraphs, the hypotheses of our Theorem 10.1 imply
those listed above, for (p, r) = (1, 0), the manifolds M, R above which are both replaced
by our Y, and the same ideal I as ours. By our Y and I, we mean the ‘general’ ones
(see the three lines preceding Theorem 10.1), rather than the very special choices of
Y and I made in Section 8.

Furthermore, P mentioned above is our (arbitrary) horizontal real-analytic integral
curve of I. The resulting manifold X corresponds to the horizontal real-analytic
integral surface of I claimed to exist in Theorem 10.1.

We now proceed to explain why our horizontal integral curve must automatically be
Kähler-regular [4, page 81], meaning that its tangent lines are all Kähler-regular in the
sense of [4, page 68, Definition 1.7]. To verify this last claim, we first apply Cartan’s
test [4, page 74, Theorem 1.11]. Namely, in the notation of [4, page 74, Theorem 1.11],
n = 1 (as we are dealing with tangent lines). Due to the relation dim H(E0) = k − q in
(10-3b), and (10-2), H(E0) is of codimension q in the tangent space of Y containing
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it, which is the same as the codimension, in the (2k − 1)-dimensional Grassmann
manifold Gr1Y of lines tangent to Y, of the (2k − q − 1)-dimensional submanifold
V1(I) formed by all integral lines of I. Cartan’s test thus shows that every line E1
tangent to our horizontal integral curve is ordinary [4, page 73, Definition 1.9].
The Kähler-regularity of E1 now trivially follows, as r in [4, pages 67–68] has the
constant value 0 according to (10-3c). This is also the value r = r(P) in the italicized
statement cited above from [4] (compare with [4, pages 81–82, the lines preceding
Theorem 2.2]).

12. Proof of Theorem E

Let ∇ (or g) be a connection (or a pseudo-Riemannian metric) on a C∞ manifold M.
We call ∇ or g real-analytic if, in a suitable coordinate system around every point of
M, its components Γ l

jk (or gjk) are real-analytic functions of the coordinates. The C∞

structure of M then contains a unique real-analytic structure (maximal atlas) making
∇ or g real-analytic. (The atlas consists of all coordinate systems just mentioned; their
mutual transition mappings are real-analytic due to real-analyticity of affine mappings,
or isometries, between manifolds with real-analytic connections/metrics, which fol-
lows since such mappings appear linear in geodesic coordinates.) Real-analyticity of a
metric g obviously implies that of its Levi–Civita connection ∇ (and vice versa, since
∇g = 0).

For a real-analytic (Riemannian) Kähler metric g on a complex manifold M,
the unique real-analytic structure described above coincides with that induced by
the complex structure of M. In fact, local holomorphic coordinate functions, being
g-harmonic, must be real-analytic relative to the former structure, as a consequence
of the standard regularity theory of elliptic partial differential equations applied to the
g-Laplacian Δ.

PROOF OF THEOREM E. Combining Theorems 7.1 and 5.1, we obtain the first
assertion of Theorem E.

For the second one, we invoke the existence results of [6, 22]. In both cases,
dQ ∧ dτ � 0 somewhere, and the metric is real-analytic. The former claim follows,
for instance, since a compact Kähler surface with a nontrivial holomorphic gradient
∇τ having dQ ∧ dτ = 0 identically for Q = g(∇τ,∇τ) must necessarily [10, Section 1]
be biholomorphic to CP2 or a CP1 bundle over CP1 (rather than the two-point blow-up
of CP2). The latter, in the case of [22], is due to a general reason: all Ricci solitons
are real-analytic [8, Lemma 3.2]. So are, however, all Riemannian Einstein metrics
[13, Theorem 5.2], and the Chen–LeBrun–Weber metric of [6] is conformal to an
Einstein metric ĝ, while again, for a general reason [9, page 417, Proposition 3(ii)], the
conformal change leading from ĝ to g has a canonical form (up to a constant factor,
it is the multiplication by the cubic root of the norm-squared of the self-dual Weyl
tensor). This causes g to be real-analytic as well. �
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13. The analytic-continuation phenomenon

We elaborate here on the plausibility of small deformations mentioned in the
lines following Theorem E, beginning with the coth-cot analytic continuation. The
real-analytic function IR � y �→ y−1tanh y, with the value 1 at y = 0, being even, has
the form Σ(y2) for some real-analytic function Σ. Now, (ε, τ) �→ βε(τ) = τΣ(ετ2) is
a real-analytic function on an open subset of IR2 and βε(τ) equals ε−1/2 tanh(ε1/2τ),
or τ, or |ε|−1/2 tan(|ε|1/2τ), depending on whether ε > 0, or ε = 0, or ε < 0. For
αε(τ) = 2/βε(τ), the analogous expressions are

2ε1/2 coth(ε1/2τ) (if ε > 0), 2/τ (if ε = 0), 2|ε|1/2 cot(|ε|1/2τ) (if ε < 0).

All αε with ε > 0, as well as those with ε < 0, are thus affine (in fact, linear)
modifications (see Remark C) of α1 or respectively α−1, and α0(τ) = 2/τ.

For a tanh-coth analytic-continuation argument, we define (t, τ) �→ αt(τ) by
αt(τ) = 2(eτ − te−τ)/(eτ + te−τ). Thus, with q such that 2q = log |t|, if t > 0 (or t < 0),
αt(τ) = 2 tanh(τ − q) or respectively αt(τ) = 2 coth(τ − q). Again, all αt for t > 0, or
those with t < 0, are affine (this time, translational) modifications of α1, or of α−1,
while α0(τ) = 2.
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