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We provide a coordinate-free version of the local classification, due to Walker
�Q. J. Math. 1, 69 �1950��, of null parallel distributions on pseudo-Riemannian
manifolds. The underlying manifold is realized, locally, as the total space of a fiber
bundle, each fiber of which is an affine principal bundle over a pseudo-Riemannian
manifold. All structures just named are naturally determined by the distribution and
the metric, in contrast with the noncanonical choice of coordinates in the usual
formulation of Walker’s theorem. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2209167�

. INTRODUCTION

In 1950, Walker1 described the local structure of all pseudo-Riemannian manifolds with null
arallel distributions. The present paper provides a coordinate-free version of Walker’s theorem.

Many authors, beginning with Walker himself,2 have invoked Walker’s 1950 result, often to
eneralize it or derive other theorems from it. In our bibliography, which is by no means complete,
efs. 3–16 all belong to this category. They invariably cite Walker’s result in its original, local-
oordinate form �reproduced in the Appendix�.

Such an approach, perfectly suited for the applications just mentioned, tends nevertheless to
bscure the geometric meaning of Walker’s theorem. In fact, Walker coordinates are far from
nique; choosing them results in making noncanonical objects a part of the structure.

To keep the picture canonical, some authors3,5 replace a single Walker coordinate system by a
hole maximal atlas of them. What we propose here, instead, is to use only ingredients such as
ber bundles, widely seen as more directly “geometric” than a coordinate atlas �even though one
ay ultimately need atlases to define them�.

In our description, the coordinate-independent content of Walker’s theorem amounts to real-
zing the underlying manifold, locally, as a fiber bundle whose fibers are also bundles, namely,
ffine principal bundles over pseudo-Riemannian manifolds. The bundle structures are all natu-
ally associated with the original null parallel distribution; the distribution and the metric can in
urn be reconstructed from them.

I. PRELIMINARIES

Throughout this paper, all manifolds, bundles, sections, subbundles, connections, and map-
ings, including bundle morphisms, are assumed to be of class C�. A bundle morphism may
perate only between two bundles with the same base manifold, and acts by identity on the base.

A bundle always means a C� locally trivial bundle and the same symbol, such as M, is used
oth for a given bundle and for its total space; the bundle projection M→� onto the base manifold
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is denoted by � �or, sometimes, p�. We let My stand for the fiber �−1�y� over any y��, while
er d� is the vertical distribution treated as a vector bundle �namely, a subbundle of the tangent
undle TM�.

For real vector bundles X ,Y over a manifold � and a real vector space V with dim V��, we
enote by Hom�X ,Y� the vector bundle over � whose sections are vector-bundle morphisms
→Y, and by ��V the product bundle with the fiber V, the sections of which are functions
→V. Thus, X *=Hom�X ,��R� is the dual of X.

We will say that a given fiberwise structure in a bundle M over a manifold � depends
�-differentiably on y ��, or varies C�-differentiably with y, if suitable C� local trivializations of

M make the structure appear as constant �the same in each fiber�.
The symbol � will be used for various connections in vector bundles. Our sign convention

bout the curvature tensor R=R� of a connection � in a vector bundle X over a manifold � is

R�u,v�� = �v�u� − �u�v� + ��u,v�� , �1�

or sections � of X and vector fields u ,v tangent to �. By the Leibniz rule, when � is the
evi-Civita connection of a pseudo-Riemannian metric g and u ,v ,w are tangent vector fields,
��wv ,u� equals17

dw�v,u� + dv�w,u� − du�w,v� + �v,�u,w�� + �u,�w,v�� − �w,�v,u�� , �2�

here dv is the directional derivative and �,� stands for g�,�.
Remark 2.1: Let � :M→� be a bundle projection. A vector field w on the total space M is

-projectable onto the base manifold � if and only if, for every vertical vector field u on M, the
ie bracket �w ,u� is also vertical. This well-known fact is easily verified in local coordinates for

M which make � appear as a standard Euclidean projection.

II. AFFINE PRINCIPAL BUNDLES

All principal bundles discussed below have Abelian structure groups G, so one need not
ecide whether G acts from the left or right.

Let N be a G-principal bundle over a base manifold L, where G is an Abelian Lie group. By
he N-prolongation of the tangent bundle TL we mean the vector bundle F over L whose fiber Fc

ver c�L is the space of all G-invariant vector fields tangent to N along Nc �and defined just on

c�, with Nc denoting, as usual, the fiber of N over c. A vector subbundle G�F now can be
efined by requiring Gc, for any c�L, to consist of all G-invariant vector fields defined just on Nc

hich are vertical �i.e., tangent to Nc�. Since each Gc is canonically isomorphic to the Lie algebra
of G, the vector bundle G is naturally trivialized, that is, identified with the product bundle

�g. Therefore

L � g = G � F . �3�

he quotient bundle F /G is in turn naturally isomorphic to TL, via the differential of the bundle
rojection N→L.

An affine space is a set A with a simply transitive action on A of the additive group of a vector
pace V. One calls V the vector space of translations of the affine space A.

An affine bundle M over a manifold � is a bundle with fibres My, y��, carrying the
tructures of affine spaces whose vector spaces Xy of translations form a vector bundle X over �,
alled the associated vector bundle of M. We also require the affine-space structure of My to vary
�-differentiably with y��, in the sense of Sec. II.

If, in addition, X=��V, that is, the associated vector bundle of M happens to be a product
undle, then M is also a V-principal bundle, with the obvious action of the additive group of the
ector space V. Such affine principal bundles are distinguished from arbitrary affine bundles by
aving a structure group that, instead of general affine transformations of a model fiber, contains

nly translations.
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V. PARTIAL METRICS AND EXTENSIONS

Let C, D, and E be real vector bundles over a manifold Q. By an E-valued pairing of C and D
e mean any vector-bundle morphism � :C � D→E. This amounts to a C� assignment of a
ilinear mapping ��z� :Cz�Dz→Ez to every z�Q. An E-valued partial pairing of C and D
onsists, by definition, of two vector subbundles C��C and D��D, of some codimensions k and
, along with pairings � :C � D�→E and � :C� � D→E which coincide on the subbundle C� � D�
and so may be represented by the same symbol � without risk of ambiguity�. One can obviously
estrict a given pairing � :C � D→E to C � D� and C� � D, so that a partial pairing � is obtained;
e will then say that � is a total-pairing extension of �.

Lemma 4.1: For any fixed partial pairing �, with C, D, E, C�, D�, k, l, and Q as above, and
ith m denoting the fiber dimension of E, the total-pairing extensions of � coincide with sections
f a specific affine bundle of fiber dimension klm over Q, whose associated vector bundle is
om�C /C� � D /D� ,E�.

Proof: Our � is nothing else than a vector-bundle morphism X→E, where X�C � D is the
ubbundle spanned by C � D� and C� � D. The affine bundle in question is the preimage of the
ection � under the �surjective� restriction morphism Hom�C � D ,E�→Hom�X ,E�. �

As usual,5 by a pseudo-Riemannian fiber metric g in a vector bundle T over a manifold M we
ean any family of nondegenerate symmetric bilinear forms g�x� in the fibers Tx that constitutes
C� section of the symmetric power �T *��2. Equivalently, such g is a pairing of T and T valued

n the product bundle M �R, symmetric and nondegenerate at every point of M.
Let T again be a vector bundle over a manifold M. We define a partial fiber metric in T to be

triple �P ,P�,	� formed by vector subbundles P and P� of T along with a pairing 	 :P� � T
M �R, valued in the product bundle M �R, such that

�i� T ,P, and P� are of fiber dimensions n ,r and, respectively, n−r for some n ,r with 0

r
n /2, while P�P�,

�ii� at every x�M the bilinear mapping 	�x� :Px��Tx→R has the rank n−r, its restriction
to Px��Px� is symmetric, and its restriction to Px��Px equals 0.

y a total-metric extension of �P ,P�,	� we then mean any pseudo-Riemannian fiber metric in T
hose restriction to P� � T is 	.

Lemma 4.2: The total-metric extensions g of any partial fiber metric �P ,P�,	�, with r ,M as
bove, coincide with the sections of a specific affine bundle of fiber dimension r�r+1� /2 over M.
or every such g the subbundle P is g-null and P� is its g-orthogonal complement.

Proof: For any fixed point x�M, let us choose a basis e1 , . . . ,en of Tx such that

1 , . . . ,er�Px and e1 , . . . ,en−r�Px�. The matrix of g�x�, for any total-metric extension g of our
artial fiber metric, then is the matrix appearing in Walker’s original theorem �see the Appendix�,
ith det A�0, and with the two occurrences of I replaced by some nonsingular r�r matrix C and

ts transpose C�. The submatrices A ,H ,C �and H� ,C�� are prescribed, while the freedom in
hoosing g�x� is represented by an arbitrary symmetric r�r matrix B. �

. WALKER’S THEOREM

Suppose that the following data are given:

�a� Integers n and r with 0
r
n /2.
�b� An r-dimensional manifold �.
�c� A bundle over � with some total space M, whose every fiber My , y��, is a

Ty
*�-principal bundle over a �n−2r�-dimensional manifold Qy �cf. the last paragraph of

Sec. III�.
�d� A pseudo-Riemannian metric hy on each Qy ,y��.
We assume that all y-dependent objects in �c� and �d�, including the principal-bundle structure,
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ary C�-differentiably with y�� �in the sense of Sec. II� and, in particular, the Qy are the fibers
f a bundle over � with a total space Q of dimension n−r. When r=n /2, each hy is the “zero
etric” on the discrete space Qy, cf. Sec. VIII.

Let F be the vector bundle over Q whose restriction to Qy, for each y��, is the
My-prolongation of the tangent bundle TQy �see Sec. III� for the Ty

*�-principal bundle My over Qy.
elation �3� now yields p*�T*���F, where p:Q→� denotes the bundle projection. In other
ords, p*�T*�� may be treated as a vector subbundle of F.

Furthermore, the quotient-bundle identification following formula �3� yields F /p*�T*��
Ker dp �the vertical subbundle of TQ, for the projection p:Q→��.

We define a partial pairing � of F and TQ valued in the product bundle Q�R, as in Sec. IV,
or our Q along with C=F, D=TQ, E=Q�R, C�=p*�T*�� and D�=Ker dp. Namely, given
�Q, we set ��� ,��=��dpz�� for ��Ty

*�= �p*�T*���z and ��TzQ, with y=p�z���, as well as
�u ,��=hy��u� ,�� for u�Fz and ��Ker dpz, where u� �u� denotes the surjective vector-bundle
orphism F→Ker dp with the kernel p*�T*��.

Our construction has two steps involving arbitrary choices.
Step 1: We choose � :F � TQ→Q�R to be any total-pairing extension of �.
According to Lemma 4.1, such � is just an arbitrary section of an affine bundle of fiber

imension �n−2r�r over Q. For the meaning of the above discussion in Walker’s original lan-
uage, see the Appendix.

The remainder of our construction proceeds as follows. Using �, we define a partial metric
P ,P�,	� in the tangent bundle TM. Specifically, T ,P ,P� and n ,r with the properties listed in �i�
nd �ii� of Sec. IV are chosen so that T=TM, while n ,r are the integers in �a� above, P is the
ubbundle of TM whose restriction to My �M, for each y��, is the vertical distribution on the

y
*�-principal bundle My over Qy, and P�=Ker d� is the vertical distribution of the bundle pro-

ection � :M→�. We also set 	�u� ,w�=��u ,�� for any x�M and any vectors w�TxM ,
��Px�=TxMy with y=��x���, where u is the Ty

*�-invariant vector field tangent to My along the

y
*�-orbit of x and having the value u� at x, while � is the image of w under the differential at x
f the bundle projection M→Q.

Step 2: We select an arbitrary total-metric extension g of �P ,P�,	� restricted to U, where U
s any fixed nonempty open subset of M.

The construction just described gives a null distribution P of dimension r on the
-dimensional pseudo-Riemannian manifold �U ,g�. This is clear from Lemma 4.2, which also
mplies that such metrics g are just arbitrary sections of some affine bundle over U.

The reader is again referred to the Appendix for a description of what the above steps corre-
pond to in Walker’s formulation.

We can now state a coordinate-free version of Walker’s theorem.
Theorem 5.1: If g and P are obtained as above from any prescribed data �a�–�d�, then g is a

seudo-Riemannian metric on the n-dimensional manifold U, and P is a g-null, g-parallel distri-
ution of dimension r on U.

Conversely, up to an isometry, every null parallel distribution P on a pseudo-Riemannian
anifold �M ,g� is, locally, the result of applying the above construction to some data �a�–�d�. The
ata themselves are naturally associated with g and P.

A proof of Theorem 5.1 is given in the next two sections.

I. PROOF OF THE FIRST PART OF THEOREM 5.1

By Lemma 4.2, P is g-null and P� is its g-orthogonal complement. That P is g-parallel will
e clear if we establish the relation ��wv ,u�=0, where � is the Levi-Civita connection of g and �,�
tands for g�,�, while v ,u ,w are any vector fields tangent to M such that v is a section of P and

is a section of P�. We may further require w to be projectable under both bundle projections
M→Q and � :M→�. Finally, we may also assume that v restricted to each Ty

*�-principal bundle
pace My is an infinitesimal generator of the action of Ty

*�, while u restricted to each My is
*

y�-invariant, �Locally, such w ,v ,u span the vector bundles TM ,P and P�.�
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First, �w ,v� is a section of P and �u ,w� is a section of P� �from Remark 2.1 applied to both
undle projections�, while �v ,u�=0 by Ty

*�-invariance of u. The last three terms in �2� thus all
qual zero.

Our claim will follow if we show that the first three terms in �2� vanish as well. To this end,
ote that dw�v ,u�=0 since �v ,u�=0. Next, dv�w ,u�=0. Namely, �w ,u�=	�u ,w�=��u ,��, for
,� ,� described in Sec. V, is constant in the direction of v �and, in fact, constant along each leaf
f P�: at a point x�My �M we obtain � as the projection image of w�x�, while u is Ty

*�-invariant,
o that, due to projectability of w, both u and � depend only on the image of x under the bundle
rojection M→Q, rather than x itself. Finally, du�w ,v�=0 as �w ,v�=��w̃� is a function �→R,
hat is, a function M→R constant along P�. Here � is the section of T*� corresponding to v under
he inclusion p*�T*���F of Sec. V, while w̃ is the vector field on � onto which w projects;
herefore, �w ,v�=��w̃�, since in Sec. V we set ��� ,��=��dpz��.

II. PROOF OF THE SECOND PART OF THEOREM 5.1

For any null parallel distribution P of dimension r on an n−dimensional pseudo-Riemannian
anifold �M ,g�, the g-orthogonal complement P� is a parallel distribution of dimension n−r. If

he sign pattern of g has i− minuses and i+ pluses, it follows that

r 
 min�i−,i+� , �4a�

P � P�, �4b�

r 
 n/2. �4c�

n fact, P is null, which gives �4b� and r
n−r, that is �4c�, while �4a� follows since, in a
seudo-Euclidean space with the sign pattern as above, i− �or, i+� is the maximum dimension of a
ubspace on which the inner product is negative �or, positive� semidefinite.

Every null parallel distribution P satisfies the curvature relations

R�P,P�,− ,− � = 0, �5a�

R�P,P,− ,− � = 0, �5b�

R�P�,P�,P,− � = 0, �5c�

5a� meaning that R�v ,u ,w ,w��=0 whenever v ,u ,w ,w� are vector fields, v is a section of P, and
is a section of P�. �Similarly for �5b� and �5c�.� In fact, for such v ,u ,w ,w�, �1� implies that

�w ,w��v is a section of P, and so it is orthogonal to u. This proves �5a�; �5a� and �4b� yield �5b�,
hile �5a� and the first Bianchi identity give �5c�.

We now show how a null parallel distribution P on a pseudo-Riemannian manifold �M ,g�
ives rise to objects �a�–�d� in Sec. V.

First, n and r are the dimensions of M and P. By �4c�, r
n /2.
Being parallel, the distribution P� is integrable. Since our discussion is local, we will assume,

rom now on, that M is the total space of a bundle over some r-dimensional base manifold �,
hose fibers My, y��, are all contractible and coincide with the leaves of P�. As P is parallel,

he Levi-Civita connection � induces a connection in the vector bundle obtained by restricting P
o any given submanifold N of M. In the case where N=My is a leaf of P�, we have, for each

y��, the following conclusion.

Ty
*� is naturally isomorphic to the space Vy of those sections of the restriction
of P to My which are parallel �along My� . �6�
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nstead of establishing �6� directly, we will show that sections of T*� can be naturally identified
ith sections of P parallel along P�, using an identification which is clearly valuewise, i.e.,
onsists of operators Vy→Ty

*� ,y��. To this end, we denote by � the bundle projection M→�.
very vector field on � is the �-image �d��w of some �-projectable vector field w on M. Let v
ow be a section of the vector bundle P over M, parallel in the direction of P�. Our identification
ssociates with v the cotangent vector field � on � that sends each vector field �d��w to g�v ,w�
reated as a function �→R. Note that � is well defined: two �-projectable vector fields w on M
ith the same �-image �d��w differ by a section of P�=Ker d�, necessarily orthogonal to v, so

hat g�v ,w� is the same for both choices of w. Also, g�v ,w� :M→R actually descends to a
unction �→R, i.e., is constant along the fibers My �leaves of P��. In fact, du�g�v ,w��=0 for any
ection u of P�, as �uv=0 in view of the assumption about v, and �uw= �u ,w�+�wu, while �u ,w�
or �wu� is a section of P� by Remark 2.1 �or, since P� is parallel�.

Injectivity of the above assignment v�� is obvious, since �-projectable vector fields w span
M. Surjectivity of the resulting operators Vy→Ty

*� now follows: both spaces have the same
imension, as the connections induced by � in the restrictions of P to the leaves My are flat in
iew of �5c� �cf. �1��. This proves �6�.

Flatness of the induced connections also implies that the leaves of P contained in any given
eaf My of P� are the fibers of a Vy-principal bundle with the total space My over some base
anifold Qy. �Here M should be replaced with an open subset, if necessary.� Since each Ty

*� is
dentified with Vy by �6�, we thus obtain the data �c� of Sec. V.

Next, we define the metric hy on each Qy, required by �d� in Sec. V, so that it assigns the
unction g�u ,u�� to two vector fields on Qy which are images, under the Ty

*�-principal bundle
rojection My→Qy, of Ty

*�-invariant vector fields u ,u� on My. Constancy of g�u ,u�� along the

y
*�-orbits, meaning that dv�g�u ,u���=0 for any section v of P defined on My and parallel along
�, now follows: as v is P�-parallel and u is Ty

*�-invariant, we have �uv= �v ,u�=0, cf. �6�, so
hat �vu=0. For the same reason, �vu�=0.

Finally, a suitable version of the construction in Sec. V, applied to the data �a�–�d� defined
bove, leads to the original g and P, which is a consequence of how the identification �6� and the
efinition of hy use g. The choices of the total-pairing and total-metric extensions, required in Sec.
, are provided by g as well. For instance, � in Step 1 is given by ��u ,��=g�u ,w�, where u is a
ection of P� commuting with every section v of P that is parallel along P�, and � is a vector
eld on Q �the union of all Qy�, while w is any vector field on M projectable onto � under the
undle projection M→Q. That g�u ,w� depends just on u and � �but not on w� is clear: two choices
f w differ by a section of P. Also, g�u ,w� is constant in the direction of P �and so it may be
reated as a function Q→M�. Namely, dv�g�u ,w��=0 for any section v of P parallel along P�,
hich follows as �vu=�uv=0 �note that �u ,v�=0�, while �vw= �v ,w�+�wv, and �v ,w� �or �wv�

s a section of P by Remark 2.1 �or, respectively since P is parallel�. This completes the proof of
heorem 5.1.

III. THE MID-DIMENSIONAL CASE

For an r-dimensional null parallel distribution P on a pseudo-Riemannian manifold �M ,g� of
imension n=2r, the discussion in Sec. V amounts to nothing new: implicitly at least, it is already
resent in Sec. �6� of Walker’s original paper.1 See also Sec. 9 in Ref. 3. �A related global result
s Theorem 5 in Ref. 5.� In this section we point out how the construction may be simplified when
=2r.

Let P and �M ,g� be as above, with n=2r2. The relations i−+ i+=n and �4a� imply that g has
he neutral sign pattern: i−= i+=r=n /2. In �c� and �d� of Sec. V, each Qy is a 0-dimensional
discrete� manifold, and hy is the “zero metric” on Qy. Also, the choice of a total-pairing extension

in Step 1 of Sec. V is now unique: the affine bundle having � as a section is of fiber dimension
. The construction in Sec. V can therefore be rephrased as follows. Given

�a� an even integer n2,

�b� a manifold � of dimension r=n /2,
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�c� an affine bundle over � with some total space M, for which T*� is the associated vector
bundle �Sec. III�,

e define a partial metric �P ,P�,	� in the tangent bundle TM by choosing P=P� to be the vertical
istribution Ker d� for the bundle projection � :M→�, and setting 	�� ,w�=��d�x w� for any x
M ,��Px=Ty

*�, where y=��x�, and w�TxM. Selecting any total-metric extension g of
P ,P�,	� on a fixed nonempty open set U�M, we now obtain an n-dimensional pseudo-
iemannian manifold �U ,g� on which P is a g-null, g-parallel distribution of dimension r=n /2.

Conversely, up to an isometry, every null parallel distribution P of dimension r1 on a
seudo-Riemannian manifold �M ,g� with dim M =2r arises, locally, from the above construction
pplied to some data �a�–�c�, themselves naturally determined by g and P.

CKNOWLEDGMENT

The authors wish to thank Zbigniew Olszak for helpful comments.

PPENDIX: WALKER’S ORIGINAL STATEMENT

Walker stated his classification result as follows.1

Theorem 1: A canonical form for the general Vn of class C� �or C�� admitting a parallel null
-plane is given by the fundamental tensor

�gij� = �O O I

O A H

I H� B
� ,

here I is the unit r�r matrix and A ,B ,H ,H� are matrix functions of the coordinates, of the same
lass as Vn, satisfying the following conditions but otherwise arbitrary:

�i� A and B are symmetric, A is of order �n−2r�� �n−2r� and nonsingular, B is of order
r�r, H is of order �n−2r��r, and H� is the transpose of H.

�ii� A and H �and therefore H�� are independent of the coordinates x1 , . . . ,xr.

A basis for the parallel null r-plane is the set of vectors �1
i ,�2

i , . . . ,�r
i .

Here is how the coordinates and matrix functions appearing above correspond to the objects
sed for the construction in Sec. V. Walker’s coordinates xi , i=1, . . . ,n, serve as a coordinate
ystem for the manifold M of Sec. V. Coordinates for other manifolds appearing in Sec. V are
btained from xi by restricting the range of the index i, to i�n−r �for ��, i�r �for Q�, i
n−r
for each My� and r� i
n−r �for each Qy�. The center submatrix A in Walker’s matrix corre-
ponds to the family hy ,y��, of pseudo-Riemannian metrics ��d� in Sec. V� and, consequently,
lso to the formula for ��u ,��, while the last two matrices O I in the first row represent the
efinition of ��� ,��. The Walker-matrix counterpart of the extension � chosen in Step 1 is the
n−r�� �n−r� submatrix with the rows O I and A H, so that the freedom in choosing � amounts
o arbitrariness in the selection of H �and H is independent of the coordinates xi , i=1, . . . ,r, which
ranslates into the fact that � is a morphism of vector bundles over the manifold Q with the
oordinates xi , i�r�. Once chosen, � is used in Sec. V to define P ,P� and 	. In terms of Walker’s
oordinates and matrix functions, P �or, P�� is spanned by the xi coordinate directions with

r �or, respectively, i
n−r�, while the analog of 	 is the �n−r��n submatrix with the rows

O I and O A H. Finally, the extension in Step 2 is nothing else than augmenting this last

ubmatrix by a third row, I H�B, in which B is completely arbitrary.
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