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SUBSPACE FOLIATIONS AND COLLAPSE

OF CLOSED FLAT MANIFOLDS

RENATO G. BETTIOL, ANDRZEJ DERDZINSKI, ROBERTO MOSSA,
AND PAOLO PICCIONE

Abstract. We study relations between certain totally geodesic foliations of
a closed flat manifold and its collapsed Gromov–Hausdorff limits. Our main
results explicitly identify such collapsed limits as flat orbifolds, and provide
algebraic and geometric criteria to determine whether they are singular.

1. Introduction

Any sequence of closed flat n-manifolds with bounded diameter is (trivially)
precompact in Gromov–Hausdorff topology. Although the limit of such a (possibly
collapsing) sequence is known to be a closed flat orbifold [BDP18], aside from
low-dimensional cases, there seems to be no general method available to explicitly
identify this Gromov–Hausdorff limit, or to determine whether it is smooth. In the
present paper, we use certain naturally occurring Riemannian foliations of closed
flat manifolds, called subspace foliations, to provide such methods. This answers a
broad question of Fukaya [Fuk06, Problem 11.1] in the special case of flat manifolds.

It is well known that every closed flat n-manifold is of the form Mπ = Rn/π,
where π ⊂ Iso(Rn) is a Bieberbach group, i.e., a torsion-free crystallographic group.
By the classical Bieberbach Theorems [Bie11], see also [Cha86, Szc12, Wol11], the
maximal abelian subgroup Lπ ⊂ π is a lattice in Rn, and there is a short exact
sequence 0 → Lπ → π → Hπ → 0, where Hπ ⊂ O(n) is a finite group identified
with the holonomy group of Mπ. Remarkably, this orthogonal Hπ-representation
on Rn is always reducible [HS91], i.e., admits proper invariant subspaces W ⊂ Rn.
Every such Hπ-invariant subspace W ⊂ Rn induces a subspace foliation FW on Mπ,
whose leaves are the totally geodesic submanifolds

(1.1) FW (u) = Pπ(W + u), u ∈ W⊥,

where Pπ : R
n → Mπ is the covering map. These leaves are themselves flat mani-

folds, and are either all compact or noncompact. For instance, if W is a line with
irrational slope in R2, then the corresponding leaves FW (u) are dense in the 2-torus
R2/Z2, a flat manifold with trivial holonomy. More generally, the leaves (1.1) are
compact if and only if the subspace W is Lπ-generated, i.e., W = spanR(W ∩ Lπ),

see Proposition 4.2. Any Hπ-invariant subspace W ⊂ Rn has an Lπ-closure Ŵ ,
which is the smallest Lπ-generated subspace of Rn containing W , see Section 3 for

details. In the above example on the 2-torus, Ŵ = R2. In general, the Lπ-closure

Ŵ of any Hπ-invariant subspace W is also Hπ-invariant, and the corresponding
subspace foliation F

Ŵ
is the (foliation) closure of the subspace foliation FW , as
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shown in Propositions 3.11 and 4.3. Since the foliation F
Ŵ

is Riemannian, i.e., its
leaves are equidistant, the leaf space Mπ/FŴ

has a natural metric structure. More-
over, since F

Ŵ
is hyperpolar, i.e., there is a closed flat submanifold that intersects

all leaves orthogonally, it follows that Mπ/FŴ
is a flat orbifold.

In each dimension n ∈ N, there are only finitely many closed flat n-manifolds
(by the Bieberbach Theorems), hence, up to discarding finitely many elements, any
convergent Gromov–Hausdorff sequence of flat n-manifolds consists of a sequence
of flat metrics on a fixed closed flat n-manifold Mπ. Moreover, all flat metrics on
Mπ are obtained by rescaling a given flat metric in the directions tangent to each
different subspace foliation FWi

, provided the Hπ-representation has no repeated
irreducible summands [BDP18, Thm. B]. By a standard diagonal argument, any
such collapsing Gromov–Hausdorff limit is the same as one obtained collapsing along
a single (largest) subspace foliation FW . Note that the orthogonal directions can
be kept unchanged, up to replacing non-collapsing directions in the sequence with
their limits. Thus, with no loss of generality, we may fix an Hπ-invariant subspace
W , an arbitrary flat metric g on Mπ, and consider the family of flat metrics gsW ,
s > 0, realizing the collapse of g along the subspace foliation defined by W , that is,

(1.2) gsW = s2g|TFW
⊕ g|TF⊥

W
, s > 0.

The resulting collapsed limit as s ց 0 is explicitly identified in our first main result:

Theorem A. The Gromov–Hausdorff limit of the collapsing family of flat manifolds

(Mπ, g
s
W ) as s ց 0 is the leaf space Mπ/FŴ

, where Ŵ is the Lπ-closure of W .
Moreover, Mπ/FŴ

is a flat orbifold isometric to the orbit space of the action on

Ŵ⊥ ⊂ Rn of the crystallographic group given by the image of the homomorphism

π ∋ (A, v) 7−→
(
A|

Ŵ⊥ , PŴ⊥(v)
)
∈ Iso

(
Ŵ⊥

)
,

where P
Ŵ⊥ : Rn → Ŵ⊥ denotes the orthogonal projection, and (A, v) · x = Ax+ v.

Clearly, Theorem A refines our earlier result [BDP18, Thm. A]. Moreover, it
fits the general framework of collapsing manifolds with bounded curvature, whose
foundations were laid by Cheeger and Gromov [CG86, CG90] and Fukaya [Fuk87,
Fuk88, Fuk89]. Indeed, the collapsing family of metrics (1.2) corresponds to an
F -structure on Mπ. Nevertheless, results from the above references hold in far
too great generality to yield an explicit description of this F -structure, and of its
collapsed limit. Meanwhile, specializing only to flat manifolds, it becomes possible
to precisely identify these objects and describe them algebraically in terms of the
subspace foliation F

Ŵ
, as above. In addition, Theorem A sheds light on the inverse

problem of flat desingularization, i.e., that of constructing a collapsing sequence of
closed flat manifolds that converges to a prescribed closed flat orbifold.

In light of Theorem A, we shall henceforth assume (without loss of generality)
that the Hπ-invariant subspace W ⊂ Rn is Lπ-generated, up to replacing it with its

Lπ-closure Ŵ . Our next main result provides both geometric and algebraic criteria
to determine whether collapsing Mπ along a subspace foliation produces a singular
limit space:

Theorem B. Let Mπ be a closed flat manifold, and W ⊂ Rn be an Hπ-invariant
and Lπ-generated subspace. The following are equivalent:

(i) Mπ/FW is a smooth closed flat manifold, and Mπ → Mπ/FW is a fiber bundle;
(ii) All leaves of the subspace foliation FW are isometric;
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(iii) The subspace foliation FW contains no exceptional leaves;
(iv) PW⊥(v) 6∈ Im(A− Id) for all (A, v) ∈ π with A|W⊥ 6= Id.

The algebraic smoothness criterion given by the equivalence between (i) and (iv)
answers a question in [BDP18, p. 1250]. In the above, an exceptional leaf FW (u) is
one whose fundamental group is strictly larger than that of some other leaf FW (u′),
when seen (injected) inside the ambient fundamental group π, see Definition 6.1
for details. In the context of subspace foliations, this coincides with the standard
definition of exceptional leaf in foliation theory (of having nontrivial leaf holonomy,
cf. Remarks 4.10 and 6.3). It should be noted that (i), (ii), and (iii) are known to be
equivalent for any (regular) Riemannian foliation with totally geodesic leaves, see
e.g. [Mol88, Rad17]. However, we include them in Theorem B, since we shall supply
direct proofs of these equivalences, that are more accessible than and independent
of the arguments needed to establish them in full generality. In addition, we also
provide an elementary proof of the fact that if one (and hence all) of the equivalent
statements in Theorem B does not hold, then the set of points in Mπ that belong
to exceptional leaves of FW is meager, see Proposition 6.7.

Another interesting question is determining to how many different collapsed
limits can a given flat manifold converge. Since all closed flat manifolds Mπ admit
a pair of strongly transverse nontrivial subspace foliations with compact leaves (see
Corollary 4.7), a natural strategy is to show that collapsing Mπ along each of these
subspace foliations gives rise to different collapsed limits. Indeed, we are able to
distinguish these collapsed limits by means of an invariant defined in terms of their
rational holonomy representation, see Definition 2.5. In particular, combining this
invariant with a recent result of Lutowski [Lut] yields the following:

Theorem C. Every odd-dimensional closed flat manifold Mπ admits (at least) two
nontrivial collapsing limits Mπ/FW1

and Mπ/FW2
that are not affinely equivalent.

Aside from its intrinsic geometric relevance, the existence of different collapsed
limits of Mπ = Rn/π enables one to construct different π-periodic solutions in Rn

to several geometric variational problems. For instance, this method was used to
construct π-periodic solutions to the Yamabe problem on Sm ×Rn in [BP18].

The paper is organized as follows. In Section 2, we recall basic facts about flat
manifolds and flat orbifolds, and prove some auxiliary results. Abstract lattice-
generated subspaces are studied in Section 3, together with the notion of L-closure
of a subspace, and their interactions with finite groups of orthogonal transforma-
tions. Some of the results in Sections 2 and 3 have also appeared in [DP, Sec. 4].
Section 4 discusses geometric and algebraic properties of subspace foliations and
their leaf spaces. In Section 5, we identify the Gromov–Hausdorff limit of a flat
manifold as it collapses along a subspace foliation, proving Theorem A. Singular-
ities of this collapsed limit and their relation to exceptional leaves are analyzed
in Section 6, where Theorem B is proven. Finally, Section 7 contains an abstract
criterion for the existence of two distinct collapsed limits, which implies Theorem C.
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2. Preliminaries

2.1. Conventions and notations. Throughout this paper, we shall assume:

(i) A (full) lattice in a finite-dimensional real vector space V is any subgroup L
of the additive group of V generated (as a group) by a basis of V , which then
must also be a Z-basis of L. In particular, L ⊂ V is discrete. If L′ ⊂ L is a
subgroup that spans V , then L′ has finite index in L.

(ii) Given a subspace W ⊂ Rn, we denote by W⊥ the orthogonal complement
of W relative to the Euclidean inner product, and by PW : Rn → W the
orthogonal projection onto W .

(iii) We identify elements (A, v) of the affine group Aff(Rn) = GL(n) ⋉ Rn with
the affine isomorphism Rn ∋ x 7→ Ax+ v ∈ Rn. In particular, given an affine
subspace W + u ⊂ Rn invariant under the affine map (A, v), we denote by
(A, v)|W+u the restriction of (A, v) to W +u which also takes values in W +u.

2.2. Closed flat manifolds and orbifolds. Denote by Aff(Rn) = GL(n)⋉Rn and
Iso(Rn) = O(n) ⋉Rn the affine group and the isometry group of Rn, respectively.
An n-dimensional crystallographic group is a discrete subgroup π of Iso(Rn) with
compact fundamental domain in Rn, i.e., such that there exists a compact subset
of Rn that intersects every orbit of its action

(2.1) π ×Rn ∋
(
(A, v), x

)
7−→ Ax+ v ∈ Rn.

An n-dimensional Bieberbach group is a torsion-free n-dimensional crystallographic
group. Note that a crystallographic group is torsion-free if and only if it acts
freely on Rn, see [Wol11, Thm. 3.1.3]. By the Clifford–Klein Theorem, closed
n-dimensional flat manifolds are precisely the orbit spaces Rn/π of the isometric
action (2.1) of n-dimensional Bieberbach groups π. Similarly, n-dimensional com-
pact flat orbifolds are precisely the orbit spaces Rn/π of the isometric action (2.1)
of n-dimensional crystallographic groups π, see e.g. [BDP18, p. 1251].

As discussed in the Introduction, from the Bieberbach theorems, see e.g. [BDP18,
Cha86, Szc12, Wol11, Bie11], if π ⊂ Iso(Rn) is a Bieberbach group, then π has a
maximal normal abelian subgroup Lπ of finite index, which is a lattice in Rn, and
0 → Lπ → π → Hπ → 0 is a short exact sequence. The finite group Hπ ⊂ O(n) is
identified with the holonomy group of Mπ = Rn/π, and the inclusion Hπ →֒ O(n)
is (identified with) its holonomy representation [Wol11, Thm. 3.4.5]. Moreover,
Lπ is Hπ-invariant, since Lπ is normal in π. It also follows from the Bieberbach
Theorems that (the isomorphism class of) the holonomy group of (Mπ, g) does not
depend on the choice of flat metric g on Mπ.

Remark 2.1. By the Bieberbach theorems, isomorphic crystallographic subgroups
π1, π2 ⊂ Iso(Rn) are conjugate in Aff(Rn), i.e., there exists (B, v) ∈ Aff(Rn) such
that (B, v)π1(B

−1,−B−1v) = π2. Denoting respectively by Lπi
and Hπi

, i = 1, 2,
the lattice and holonomy of πi, we have Lπ2

= B(Lπ1
) and BHπ1

B−1 = Hπ2
.
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2.3. Covering torus. The quotient Rn/Lπ, which is an n-torus, carries a free
isometric Hπ-action, whose quotient map is a k-sheeted Riemannian covering map
Rn/Lπ → Mπ. In order to describe this Hπ-action on Rn/Lπ via deck transforma-
tions, note that for all A ∈ Hπ, there exists v ∈ Rn such that (A, v) ∈ π, and v is
unique up to elements of Lπ, so the map

(2.2) Hπ ∋ A 7−→ vA ∈ Rn/Lπ

is well-defined, and (A, v) ∈ π if and only if v ∈ vA. For A ∈ Hπ, denote by
A : Rn/Lπ → Rn/Lπ the corresponding linear isometry of the torus Rn/Lπ. The
free isometric action of Hπ on Rn/Lπ is given by:

(2.3) (A, x) 7−→ Ax+ vA, A ∈ Hπ, x ∈ Rn/Lπ.

Moreover, (2.2) satisfies vAB = AvB + vA and vA−1 = −A
−1

vA, for all A,B ∈ Hπ.

2.4. Holonomy invariant subspaces. For all A ∈ Hπ , one has ker(A−Id) 6= {0}.
Indeed, if k ∈ N is the order of A and (A, v) ∈ π, then

(A, v)k =
(
Ak, (Id +A+ . . .+Ak−1)v

)
.

Since π is torsion-free, u = (Id+A+ . . .+Ak−1)v 6= 0 and clearly u ∈ ker(A− Id).
Moreover, by orthogonality, one has:

(2.4) ker(A− Id)⊥ = Im(A− Id).

Restricting Id+A+ . . .+Ak−1 to each summand in Rn = ker(A− Id)⊕ Im(A− Id),
we see that Id +A+ . . .+Ak−1 = k Pker(A−Id). In particular, if A ∈ Hπ commutes
with every other element of Hπ , then W = ker(A− Id) is a nontrivial Hπ-invariant
subspace of Rn. Remarkably, an invariant subspace always exists, even if Hπ has
trivial center, due to the following result about Bieberbach groups:

Theorem 2.2 (Hiss–Szczepański [HS91]). Let π ⊂ Iso(Rn), n ≥ 2, be any Bieber-
bach group. The rational holonomy representation of Hπ is not irreducible.

In the above, the rational holonomy representation is the Hπ-representation on
the rational vector space Lπ ⊗Z Q. The following generalization of Theorem 2.2
has been very recently obtained by Lutowski [Lut]:

Theorem 2.3 (Lutowski [Lut]). Let π ⊂ Iso(Rn), n ≥ 2, be a Bieberbach group
with nontrivial holonomy Hπ. The rational holonomy representation of Hπ has at
least two inequivalent irreducible subrepresentations.

Some geometric consequences of Theorem 2.3 are discussed in Section 7.

2.5. Affine equivalences of compact flat orbifolds. Recall that two compact
n-dimensional flat orbifolds are affinely equivalent if the corresponding crystallo-
graphic groups are conjugate in Aff(Rn). The following statement, which is useful in
the sequel, is a consequence of a more general algebraic result [Cha86, Thm. III.2.2].

Proposition 2.4. For i = 1, 2, let Ei
∼= Rn be Euclidean spaces, πi ⊂ Iso(Ei) a

crystallographic group with associated short exact sequence

0 −→ Li −→ πi −→ H(i) −→ 1,

where Li is a lattice in Ei, and H(i) ⊂ O(Ei). If the corresponding compact flat
orbifolds O1 = E1/π

1 and O2 = E2/π
2 are affinely equivalent, then the rational

holonomy representations of O1 and of O2 are equivalent, i.e., there exists an iso-
morphism of Q-vector spaces T : L1 ⊗Q → L2 ⊗Q such that H(2) = TH(1)T−1.
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Proof. Identify the lattices Li with subgroups of πi. Set n = dimE1 = dimE2,
choose isometries Ii : Ei → Rn, and set π̃i = IiπiI

−1
i , i = 1, 2. The orbifolds

Õi := Rn/π̃i
∼= Oi are affinely equivalent, i.e., there exists (B, v) ∈ Aff(Rn) such

that (B, v)π̃1(B
−1,−B−1v) = π̃2. The desired map T is induced by the group

isomorphism I−1
2 BI1 : L

1 → L2, see Remark 2.1. �

In particular, Proposition 2.4 implies that a subspace V1 ⊂ L1 ⊗ Q is H(1)-
invariant if and only if T (V1) is H(2)-invariant. Similarly, if V1 is H(1)-invariant,
then V1 is irreducible if and only if T (V1) is irreducible, motivating the following:

Definition 2.5. Given a completely reducible representation ρ : H → GL(V ) of a
group H on a finite-dimensional vector space V (over any field), the i-sequence of
ρ is the s-tuple of non-decreasing positive integers iρ = (n1, . . . , ns), where s ≥ 1 is
the number of distinct irreducible ρ-invariant subspaces V1, . . . , Vs, and ni = dimVi

for each 1 ≤ i ≤ s. The positive integer s is called the length of the sequence iρ.

Note that there may exist i 6= j such that Vi
∼= Vj are isomorphic. Furthermore,

if the i-sequence of ρ is iρ = (n1, · · · , ns), then clearly n1 + · · ·+ ns = dimV .
By the above, the i-sequence of the rational holonomy is an affine invariant:

Corollary 2.6. Rational holonomy representations of affinely equivalent compact
flat orbifolds have the same i-sequence.

Finally, note that Theorem 2.2 states that the i-sequence (n1, . . . , ns) of the
rational holonomy representation of any closed flat manifold Mπ has length s ≥ 2.
Meanwhile, the i-sequence of the rational holonomy representation of a flat orbifold
may have length s = 1, see [BDP18, Sec. 5.3] for examples where Hπ is irreducible.

2.6. Closed subgroups of vector spaces. A closed subgroup of a finite dimen-
sional vector space is the sum of a vector subspace and a discrete sugroup. For the
reader’s convenience, we include a precise statement and a short proof of this fact:

Proposition 2.7. Let V be a finite dimensional real vector space, and let Γ ⊂ V
be a closed subgroup of V . If Γ0 is the connected component of Γ containing 0, then
Γ0 is a vector subspace of V . Given any complement V ′ of Γ0 in V , Γ′ = V ′ ∩ Γ is
a discrete subgroup of V ′, and Γ = Γ0 + Γ′. If Γ spans V , then Γ′ spans V ′.

Proof. Although the first statement above has a short Lie-theoretic proof, see
e.g. [BDP18, Prop. 3.1], we now provide an elementary and direct argument. First,
observe that if Γ is discrete, then Γ is generated by an R-linearly independent subset
of V . In particular, Γ is a free abelian finitely generated group of rank ≤ dimV .

Now, if Γ is not discrete, then Γ contains a nonzero vector subspace of V . Namely,
if Γ is not discrete, then 0 is not isolated in Γ, and there is a sequence gk ∈ Γ \ {0}
with lim gk = 0. Up to taking subsequences, we may assume that lim gk/‖gk‖ =
v ∈ V , with ‖v‖ = 1. We claim that R · v ⊂ Γ. Indeed, if t > 0, set αk = t‖gk‖−1,
so that limαk = +∞ and limαk gk = tv. Defining nk = ⌊αk⌋, we have nk > 0 for
k large, so that 1 ≤ αk/nk ≤ 1 + 1/nk, and therefore limαk/nk = 1. This yields
limnkgk = limαkgk = t v. Since nkgk ∈ Γ and Γ is closed, it follows that t v ∈ Γ.
Clearly, also −t v ∈ Γ, i.e., R · v ⊂ Γ.

Since Γ is closed under taking sums, we may consider the largest subspace S
of V contained in Γ. Note that Γ/S is a discrete subgroup of V/S. Namely, if
P : V → V/S is the quotient map, since Γ is a closed P -saturated subset of V ,
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it follows that P (Γ) = Γ/S is closed in V/S. Moreover, the subgroup Γ/S does
not contain any nontrivial vector subspace of V/S, by the maximality of S. As we
proved above, Γ/S must then be discrete in V/S.

Since the quotient map Γ → Γ/S is continuous, S is open in Γ. Clearly, it is
also closed, and therefore S = Γ0 is the connected component of Γ containing 0. If
V ′ is a complement of Γ0, let PV ′ : V → V ′ be the projection corresponding to the
direct sum decomposition V = Γ0⊕V ′. Thus, Γ = Γ0+PV ′(Γ), and, by identifying
V ′ with V/S and using the previous statement, PV ′(Γ) is a closed and discrete
subgroup of V ′. Clearly, PV ′(Γ) = Γ ∩ V ′. As shown above, PV ′(Γ) is then the
Z-span of a linearly independent subset of V ′, so the last statement follows. �

3. Lattice-generated subspaces and lattice-closure

In this section, we develop some abstract elements in the theory of lattice-
generated subspaces, including the construction of the lattice-closure of a subspace.

Denote by V an n-dimensional real vector space, and by L ⊂ V a fixed lattice.

Definition 3.1. A subspace W ⊂ V is L-generated if W ∩ L spans W .

If W is L-generated, then L ∩ W is a lattice in W ; namely, it is discrete and
contains a basis of W . Clearly, the sum of a family of L-generated subspaces is also
L-generated. Less obvious is that the intersection of L-generated subspaces is also
L-generated, which we prove using the following characterization [DP, Lemma 4.2]:

Proposition 3.2. A subspace W ⊂ V is L-generated if and only if its projection
onto the quotient torus V/L is closed (equivalently, compact).

Proof. Choose an inner product in V and identify the quotient V/W with W⊥.
Clearly, the image of W in V/L is closed if and only if there exists ε > 0 such that
dist(0,W + ℓ) < ε for ℓ ∈ L implies ℓ ∈ W , i.e., if and only if PW⊥(L) is discrete.

Choose a Z-basis (ℓ1, . . . , ℓn) of L such that spanR(W ∩L) = spanR{ℓ1, . . . , ℓs},
with s ≤ dimW . Then, PW⊥(L) is freely generated by PW⊥(ℓs+1), . . . , PW⊥(ℓn).
If PW⊥(L) is discrete, then PW⊥(ℓs+1), . . . , PW⊥(ℓn) are linearly independent, and
therefore n− s ≤ dimW⊥ = n− dimW , i.e., s = dimW and spanR(W ∩ L) = W .
Conversely, if s = dimW , then since PW⊥(ℓs+1), . . . , PW⊥(ℓn) generate W⊥, they
must be linearly independent, and therefore PW⊥(L) is discrete. �

Note that, by Proposition 3.2, a subspaceW ⊂ V is L-generated if and only if the
associated foliation FW as in (1.1) on the torus M = V/L has compact leaves. In
particular, the following intersection property also holds, see also [DP, Lemma 4.4]:

Corollary 3.3. The intersection of a family of L-generated subspaces of V is also
L-generated.

Proof. Given L-generated subspacesW1 andW2 of V , the projections ofW1 andW2

onto V/L are compact totally geodesic submanifolds (in fact, tori). The intersection
of these projections is a compact subgroup of a torus, whose 0-connected component
is a closed, connected subgroup of a torus, hence a torus T itself. The tangent space
to T at 0 is the intersection W1 ∩ W2, and it follows from Proposition 3.2 that
W1 ∩W2 is L-generated. By induction, one easily obtains that the intersection of
a finite family of L-generated subspaces of V is also L-generated. Finally, given an
arbitrary family W = {Wα}α∈A of L-generated subspaces of V , if {Vα1

, . . . , Vαk
} is

a finite subfamily of W whose intersection has minimal dimension among all finite

subfamilies of W, then
⋂

α∈A Wα =
⋂k

j=1 Wαj
, hence

⋂
α∈A Wα is L-generated. �
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3.1. L-closure. With the above intersection property at hand, we may define:

Definition 3.4. The L-closure of a subspace W ⊂ V is the intersection of all
L-generated subspaces of V that contain W . In other words, the L-closure of W is
the smallest L-generated subspace containing W .

3.2. Construction of the L-closure. We now provide details of an explicit con-
struction of the L-closure of a subspace, and describe some of its properties.

Lemma 3.5. If G1, G2 are free abelian groups, ϕ : G1 → G2 is a surjective ho-
momorphism, and xj , ya ∈ G1 (with indices j, a ranging over finite sets) are such
that xj form a Z-basis of kerϕ and ϕ(ya) form a Z-basis of G2, then the family
consisting of all xj and ya forms a Z-basis of G1.

Proof. It is easy to see that every g ∈ G1 can be uniquely expressed as an integer
combination of xj and ya. �

Lemma 3.6. If G ⊂ V is a finitely generated (additive) subgroup, then for any
subspace W ⊂ V , the intersection G ∩W is a direct summand subgroup of G.

Proof. Since for a finitely generated abelian group G being free is equivalent to
being torsion-free, it follows from Lemma 3.5 that a subgroup G′ ⊂ G is a direct
summand of G if and only if the quotient G/G′ is torsion-free. This holds, in
particular, when G is a finitely generated subgroup of a finite-dimensional real
vector space V , and when G′ = G ∩W for some subspace W of V . �

Lemma 3.7. Let G be a finitely generated subgroup of the vector space V . If G is
dense in V , then every neighborhood of 0 in V contains a Z-basis of G.

Proof. We proceed by induction on the rank of G, denoted m = rkG ≥ 2. Note
that m > n = dim V , since G is dense in V . In particular, if m = 2 then n ≤ 1,
and the statement follows trivially. Assume the statement holds for all groups of
rank less than m. Fix a group G of rank m and an Euclidean norm in V . Replace
the neighborhood of 0 by an ε-ball around 0, and choose a Z-basis e1, . . . , em
of G such that 0 < |e1| < ε/2. Note that this Z-basis exists since we may choose
e1 ∈ G with this property and, dividing it by a suitable positive integer, ensure (via
Lemma 3.6) that it generates a direct-summand subgroup of G. Denote by P : V →
V/Re1 the quotient space projection. The images P (e2), . . . , P (em) generate a
dense subgroup G′ in V/Re1 of rank less than m, and so all elements of some
new Z-basis P (ê2), . . . , P (ês) of G′, with s ≤ m, have norm less that ε/2. The
desired Z-basis of G consists of e1 and ê2 + k2e1, . . . , ês + kse1 for suitable integers
k2, . . . , ks. More precisely, we project ê2, . . . , ês orthogonally onto e⊥1 , obtaining
ê2 + r2e1, . . . , ês + rse1 with some r2, . . . rs ∈ R. The desired k2, . . . , ks ∈ Z are
obtained by choosing any integers satisfying |kj − rj | ≤ 1 for 2 ≤ j ≤ s. �

Lemma 3.8. Let L ⊂ V be a lattice, and P : V → V/W be the quotient map. Then
W is L-generated if and only if P (L) is discrete in V/W .

Proof. If W is L-generated, let {ℓ1, . . . , ℓn} be a Z-basis of L, with {ℓ1, . . . , ℓk}
a basis of W . Then, P (L) is discrete if and only if P (ℓk+1), . . . , P (ℓn) ∈ V/W
are linearly independent. If

∑n
j=k+1 αjP (ℓj) = 0, then

∑n
j=k+1 αjℓj ∈ W , hence

αk+1 = . . . = αn = 0, so P (L) is discrete in V/W . The converse is trivial. �
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We are now in position to give an explicit construction (and establish further

structural properties) of the L-closure Ŵ of a subspace W .

Proposition 3.9. Given a finite-dimensional real vector space V , a lattice L ⊂
V , and a vector subspace W ⊂ V , denote by P : V → V/W the quotient space
projection. Let L be the closure in V/W of the image P (L), and K be the connected

component of L that contains 0. Set Ŵ = P−1(K). Then the following hold:

(a) K and Ŵ are vector subspaces of, respectively, V/W and V ;
(b) L has a Z-basis of the form {wj , va, uλ}, with indices j, a, λ ranging over finite

sets, such that the vectors wj generate L∩W , while wj and va together span Ŵ ;

(c) Ŵ is an L-generated subspace of V , containing W , and spanned by the group

L′ = L ∩ Ŵ ;

(d) every L-generated subspace of V that contains W also contains Ŵ ;

(e) P (Ŵ ) = K, and K ∩ P (L) = P (L′) is a dense subset of K;
(f) the inclusions P (L) ⊆ L ⊆ V/W and P (L′) ⊆ K induce a group isomorphism

P (L)/P (L′) → L/K and an injective homomorphism L/K → (V/W )/K,
whose image is a full lattice in the quotient vector space (V/W )/K.

Furthermore, wj , va, uλ in (b) can be chosen so that {va}a ∪ {wj}j is a Z-basis
of L ∩ W , {P (va)}a is a Z-basis of P (L′), and {uλ + P (L′)}λ is a Z-basis of
P (L)/P (L′).

Proof. Part (a) follows readily from Proposition 2.7. The first equality of (e) is
obvious, and yields P (L′) ⊆ K ∩ P (L). For the reverse inclusion, note that any

element of K∩P (L) = P (Ŵ )∩P (L) may be expressed as P (v) = P (u) with v ∈ Ŵ

and u ∈ L, so that w = u − v ∈ W ⊆ Ŵ , and P (v + w) = P (u) ∈ P (Ŵ ) ∩ P (L).
The inclusions in (f) clearly descend to group homomorphisms, both of which are
injective as K ∩ P (L) = P (L′). The quotient L/K, forming a discrete subgroup of
the vector space (V/W )/K, is a full lattice. Indeed, it spans (V/W )/K, since L
and P (L) ⊆ L span V and V/W , respectively. Surjectivity of P (L)/P (L′) → L/K
follows; by the above-mentioned discreteness of L/K, each coset of K contained in
L coincides with the closure of its intersection with P (L), hence the intersection is
nonempty. In particular, 0 +K = K is the closure of K ∩ P (L). This completes
the proof of (e) and (f).

As a consequence of (f), we may choose vectors uλ ∈ L, whose image under
the composition of quotient space projections V → V/W → (V/W )/K, or un-
der P : L → P (L) followed by P (L) → P (L)/P (L′), form any prescribed Z-basis
of L/K or, respectively, of P (L)/P (L′). We also fix wj ∈ L and va ∈ L′ such
that wj , or P (va), constitute any given Z-basis of L ∩W or, respectively, P (L′).
Lemma 3.5 can now be applied first to the quotient-projection homomorphism
P (L) → P (L)/P (L′), and then to P |L : L → P (L), whose kernel is L ∩ W . The
two successive applications show that P (va), P (uλ) and wj , va, uλ are Z-bases of
P (L) and L. The first equality in (e) implies that P descends to a linear isomor-

phism V/Ŵ → (V/W )/K which, when preceded by the quotient-space projection

V → V/Ŵ , yields the surjective operator V → (V/W )/K with the kernel Ŵ send-
ing the vectors wj , va to 0 (as P (wj) = 0, while P (va) lie in P (L′) ⊆ K), and uλ

to a Z-basis of the full lattice L/K ⊆ (V/W )/K. Thus, wj and va span Ŵ . This
establishes (b), (c) and the final statement in the Proposition.
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Finally, to prove (d), consider an L-generated subspace V̂ of V containing W .
According to [DP, Rem 4.10], for some open set U ⊆ V equal to a union of cosets

of V̂ (and hence also of W ) one has L ∩ U = L ∩ V̂ . Thus, by (e) and Lemma 3.7,
the open set P (U) ⊆ V/W contains the Z-basis P (va) of P (L′), and by the last

statement in the Proposition, the vectors va, along with suitable wj ∈ W ⊆ V̂ ,

together span Ŵ . On the other hand, in view of the choice of U , all va lie in V̂ , so

V̂ contains Ŵ . �

By Proposition 3.9 (c) and (d), the subspace Ŵ above is the L-closure of W .

Remark 3.10. When V is endowed with an inner product, one can identify the quo-
tient V/W with the orthogonal complement W⊥ ⊂ V , and the quotient projection
P : V → V/W with the orthogonal projection PW⊥ : V → W⊥. Under these iden-

tifications, the subspace K is the connected component of the closure PW⊥(L) in

W⊥ that contains 0, while Ŵ is given by the direct sum W ⊕K, and the quotient

space (V/W )/K is identified with the orthogonal complement Ŵ⊥.

3.3. Invariance by finite subgroups of GL(V ). We now discuss how the L-
closure of subspaces behaves with respect to invariance under certain group actions.

Proposition 3.11. If H ⊂ GL(V ) is a group, L ⊂ V is an H-invariant lattice,
and W ⊂ V is an H-invariant subspace, then the L-closure of W is H-invariant.

Proof. For every h ∈ H and L-generated subspace W ′ ⊂ V that contains W , we
have that h(W ′) is L-generated because L is H-invariant, and contains W since W
is H-invariant. Thus, the family of all L-generated subspaces that contain W is H-
invariant, though each individual subspace need not be. Therefore, the intersection
of all members of the family, which is the L-closure of W , is also H-invariant. �

Lemma 3.12. If W ⊂ V is L-generated, and k = dimW , then there exists a
Z-basis {ℓ1, . . . , ℓn} of L such that {ℓ1, . . . , ℓk} is a basis of W .

Proof. Since L/(L ∩W ) is torsion-free, L ∩W is a direct summand in L. Take a
Z-basis of W ∩ L and complete it to a basis of L by joining it with a Z-basis of a
(direct sum) complement of W ∩ L in L. �

In particular, note that Lemma 3.12 implies that any L-generated subspace of
V admits a complement which is also L-generated. This can be refined as follows,
see also [DP, Thm 4.8]:

Proposition 3.13. Let H ⊂ GL(V ) be a finite group, and suppose L is H-invariant.
Given an L-generated and H-invariant subspace W ⊂ V , there exists a complement
W ′ of W in V which is L-generated and H-invariant.

Proof. Consider the rational vector space VQ = L⊗Q, and set WQ = (W ∩L)⊗Q,
which is a rational subspace of VQ. Consider the set S of all Q-linear projections
P : VQ → WQ. We know that S is nonempty from Lemma 3.12. Moreover, P 7→
kerP is clearly a bijection from S to the set of L-generated complements of W .
Since L is H-invariant, H acts on VQ. There is an action of H on S given by

H × S ∋ (h, P ) 7−→ Ph ∈ S,
where Ph(x) = h−1P (hx), for all x ∈ VQ. The average P = 1

|H|

∑
h∈H Ph is easily

seen to be an element of S. Since P is H-equivariant, its kernel is H-invariant, and
this is the desired H-invariant and L-generated complement of W . �
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4. Subspace foliations of flat manifolds

In this section, we study the geometry of subspace foliations FW of a flat man-
ifold Mπ = Rn/π, that is, partitions of Mπ into the totally geodesic submanifolds
FW (u) = Pπ(W +u), u ∈ W⊥, where Pπ : R

n → Mπ is the covering map, cf. (1.1).
Note that subspace foliations FW are hyperpolar, i.e., there exists a totally geodesic
flat submanifold Pπ(W

⊥) ⊂ Mπ that intersects all leaves of FW orthogonally.

Remark 4.1. It is straightforward to verify that the leaves FW (u) and FW (u′)
coincide if and only if there exists (A, v) ∈ π with Au+ v − u′ ∈ W .

While the leaves FW (u) of a subspace foliation are indexed with u ∈ W⊥, we
shall abuse notation and also write FW (u) = Pπ(W + u) for any u ∈ Rn.

4.1. Compactness. We begin by analyzing whether the leaves of FW are compact.

Proposition 4.2. The leaves of FW are compact if and only if W is Lπ-generated.

Proof. The projection Pπ : R
n → Mπ factors through the projections Rn → Rn/Lπ

and Rn/Lπ → Mπ. Thus, it suffices to show that, for all v0 ∈ Rn, the image of the
affine subspace W + v0 ⊂ Rn in the quotient Rn/Lπ is compact (or, equivalently,
closed) if and only if W is spanned by W ∩ Lπ. Clearly, it is sufficient to consider
the case v0 = 0; this is precisely the result of Proposition 3.2. �

A version of the above result (for the covering torus) appears in [DP, Lemma 4.2].

Proposition 4.3. The leaves of the subspace foliation F
Ŵ
, where Ŵ is the Lπ-

closure of the Hπ-invariant subspace W , are the closures of the leaves of FW .

Proof. Clearly, each leaf of FW is contained in a leaf of F
Ŵ
, which is closed by

Proposition 4.2. As in the proof of Proposition 4.2, the result follows if we show
that the projection of the affine subspace W+v0 on the torus Rn/Lπ is dense in the

projection of Ŵ + v0. As before, it suffices to consider v0 = 0. The closure of the
projection of W on Rn/Lπ is a closed subgroup of Rn/Lπ, which hence corresponds

to an Lπ-generated subspace W ′ ⊂ Rn that contains W . Since the projection of Ŵ

is a closed subgroup containing the projection ofW , we haveW ′ ⊂ Ŵ . On the other

hand, Ŵ is the smallest Lπ-generated subspace containing W , so W ′ = Ŵ . �

Remark 4.4. In foliation theory, the closure F of a (possibly singular) Riemannian
foliation F on M is defined as the partition of M into the closures of leaves of F ,
and this partition is again a (possibly singular) Riemannian foliation [Mol88, AR17].
Thus, Proposition 4.3 can be restated as FW = F

Ŵ
. Note that subspace foliations

of flat manifolds are always regular, i.e., all of its leaves have the same dimension.

Remark 4.5. Since the leaves of the subspace foliation F
Ŵ

are compact, of the
same dimension, and equidistant, the leaf space Mπ/FŴ

has the metric structure
of a compact Riemannian orbifold. Namely, distances on Mπ/FŴ

are such that

Ŵ⊥ ∋ v 7→ F
Ŵ
(v) ∈ Mπ/FŴ

is a local isometry, i.e., a Riemannian covering map.
Furthermore, since F

Ŵ
is hyperpolar, the Riemannian orbifold Mπ/FŴ

is flat.

Remark 4.6. Recall from Subsection 2.3 that the projection Pπ : R
n → Mπ factors

as Rn → Rn/Lπ → Mπ, and the latter projection identifies Mπ with (Rn/Lπ)/Hπ,

cf. (2.3). Both W and its Lπ-closure Ŵ give rise to subspace foliations on the
torus Rn/Lπ, which we also denote by FW and F

Ŵ
, respectively. These subspace
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foliations of Rn/Lπ are invariant under the translational action of Rn/Lπ on itself,
and the leaves of F

Ŵ
are pairwise isometric tori, see Proposition 4.2 and also

[DP, Lemma 4.2]. Moreover, their images under the projection Rn/Lπ → Mπ are
precisely the leaves of the subspace foliation F

Ŵ
on Mπ, cf. [DP, Thm 7.1(ii)].

As claimed in the Introduction, every closed flat manifold Mπ of dimension n ≥ 2
admits nontrivial subspace foliations FW with compact leaves, as a consequence of
Theorem 2.2 and Proposition 4.2. More precisely, there is a basis {ℓ1, . . . , ℓn} of Lπ

and 1 ≤ k ≤ n−1 such that {ℓ1, . . . , ℓk} spans anHπ-invariant subspaceW . Indeed,
by Theorem 2.2, one can find {ℓ1, . . . , ℓk} ⊂ Lπ whose Q-span is Hπ-invariant, so
the claim follows from Lemma 3.12. Moreover, Proposition 3.13 yields an even
stronger conclusion, as W has an Hπ-invariant and Lπ-generated complement W ′.

Corollary 4.7. Every closed flat manifold Mπ admits a pair of nontrivial strongly
transversal subspace foliations FW and FW ′ with compact leaves, that is, such that
for all p ∈ Mπ, TpMπ is the direct sum of the tangent spaces to the leaves through
p of each of these foliations.

4.2. Flat structure of leaves. Henceforth, up to replacing W by its Lπ-closure,
assume that W ⊂ Rn is Hπ-invariant and Lπ-generated. In particular, the leaves
FW (u), u ∈ W⊥, are compact and totally geodesic submanifolds of Mπ, and hence
closed flat manifolds themselves. Thus, intrinsically, each leaf FW (u) is isometric
to W/πW (u), for some Bieberbach group πW (u) ⊂ Iso(W ), which we now identify.

Proposition 4.8. For all u ∈ Rn, the Bieberbach group of FW (u) is isomorphic
to the subgroup GW (u) ⊂ π that preserves the affine subspace W + u, namely

(4.1) GW (u) =
{
(A, v) ∈ π : (A− Id)u + v ∈ W

}
.

Proof. A straightforward computation shows that (4.1) is the subgroup of π con-
sisting of elements that preserve W + u. We now argue that GW (u) is isomorphic
to the fundamental group of FW (u). First, note that if (A, v) maps some point
in W + u to some other point in W + u, then (A, v) ∈ GW (u). Namely, since A
preserves W , (A, v) maps W + u to some affine subspace of Rn which is parallel to
W . Thus, (A, v) preserves W + u, since two distinct parallel affine subspaces are
disjoint.

Clearly, the action of GW (u) on W +u is properly discontinuous, and restricting
the projection Pπ to W + u gives a continuous surjection Pπ : (W + u) → FW (u).
Two points w+u,w′+u ∈ W+u have the same image under Pπ if and only if there is
(A, v) ∈ π with A(w+u)+v = w′+u, i.e., if and only if w′ = Aw+(A−Id)u+v. From
the above, such (A, v) must belong to GW (u). Therefore, Pπ : (W + u) → FW (u)
is a covering map and GW (u) is the group of deck transformations. Since W + u is
simply-connected, this shows that the fundamental group of FW (u) is isomorphic
to the image of the restriction map:

(4.2) GW (u) ∋ (A, v) 7−→ (A, v)|W+u ∈ Iso(W + u).

Since π acts without fixed points, (4.2) is an injective map, concluding the proof. �

We remark that a version of the above result appears in [DP, Thm 7.1 (ii) (a)].

Corollary 4.9. The closed flat manifold FW (u), u ∈ Rn, is isometric to the orbit
space W/πW (u) of the Bieberbach group πW (u) on the Euclidean space W , where

πW (u) =
{(

A|W , (A− Id)u+ v
)
∈ Iso(W ) : (A, v) ∈ GW (u)

}
.
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Proof. Follows readily using conjugation with the isometry (Id, u) : W → W+u. �

We now identify the corresponding lattice LW (u) ⊂ W , and holonomy group
HW (u) ⊂ O(W ), such that 0 → LW (u) → πW (u) → HW (u) → 0 is the short exact
sequence yielded by the Bieberbach theorems applied to FW (u) = W/πW (u).

Remark 4.10. We shall refer to HW (u) ⊂ O(W ) as the holonomy group of FW (u),
since it is identified with its holonomy group as a closed flat manifold. This is not
to be confused with the leaf holonomy group Holp(FW (u)), which is generated by
parallel transports along loops based at p ∈ FW (u) of vectors normal to FW (u).
More precisely, Holp(FW (u)) is the image of π1(FW (u), p) ∼= GW (u) in the group
of linear isometries of the normal space νp(FW (u)) ∼= W⊥, see [Mol88, Rad17].

From Corollary 4.9, it is easy to give an abstract characterization of the holonomy
HW (u) and the lattice LW (u) of πW (u). More precisely, HW (u) is the image of
the map GW (u) ∋ (A, v) 7→ A|W ∈ O(W ), while LW (u) =

{
v ∈ W : ∃ (A, v) ∈

GW (u), with A|W = Id
}
. In particular, Lπ ∩W ⊂ LW (u) for all u; namely, for all

v ∈ Lπ ∩W , (Id, v) ∈ GW (u). It also follows that, given u, u′ ∈ Rn,

(4.3) GW (u) ⊂ GW (u′) =⇒ HW (u) ⊂ HW (u′), and LW (u) ⊂ LW (u′),

and, if u, u′ ∈ W⊥,

(4.4) GW (u) ⊂ GW (u′) =⇒ (A− Id)u = (A− Id)u′, for all (A, v) ∈ GW (u).

4.3. Algebraic description of the leaf space. We now describe the leaf space
Mπ/FW as a compact flat orbifold, i.e., as the orbit space of a crystallographic group.

Lemma 4.11. If W ⊂ Rn is Lπ-generated, then PW⊥(Lπ) is a lattice in W⊥.

Proof. Choose a basis ℓ1, . . . , ℓn as in Lemma 3.12, so that

PW⊥(Lπ) = spanZ
{
PW⊥(ℓk+1), . . . , PW⊥(ℓn)

}
.

Since spanR
{
ℓk+1, . . . , ℓn

}
is a complement of W , {PW⊥(ℓk+1), . . . , PW⊥(ℓn)

}
is a

basis of W⊥, which concludes the proof. �

Proposition 4.12. Let W ⊂ Rn be an Hπ-invariant Lπ-generated subspace. Then

(4.5) π ∋ (A, v) 7−→
(
A|W⊥ , PW⊥(v)

)
∈ Iso(W⊥)

is a group homomorphism, and its image is a crystallographic subgroup of Iso(W⊥).

Proof. This map is a group homomorphism since PW⊥ commutes with all A ∈ Hπ.
Its image contains the lattice PW⊥(Lπ), hence its action on W⊥ is cocompact. To
show it is discrete, it suffices to show that (IdW⊥ , 0) is isolated. Suppose (Ak, vk) ∈
π is a sequence such that

(
Ak|W⊥ , PW⊥(vk)

)
converges to (IdW⊥ , 0). Since Hπ is

finite, we may assume that Ak = A for all k, with A ∈ Hπ such that A|W⊥ = IdW⊥ .
We may also assume that vk = v + ℓk, where (A, v) ∈ π and ℓk ∈ Lπ for all k.
Then, PW⊥(vk) = PW⊥(v) + PW⊥(ℓk), and the set

{
PW⊥(ℓk) : k ∈ N

}
is closed

in W⊥. It follows that PW⊥(v + ℓk) = 0 for sufficiently large k, i.e., the sequence(
Ak|W⊥ , PW⊥(vk)

)
eventually becomes constant, so (IdW⊥ , 0) is isolated. �

Theorem 4.13. Let Mπ = Rn/π be a closed flat manifold, and W ⊂ Rn be an
Hπ-invariant and Lπ-generated subspace. The leaf space Mπ/FW is isometric to
the flat orbifold W⊥/π⊥, where π⊥ ⊂ Iso(W⊥) is the crystallographic group given
by the image of the homomorphism (4.5).
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Proof. From Remark 4.1, two elements u, u′ ∈ W⊥ define the same leaf if and only
if there exists (A, v) ∈ π such that Au − u′ + v ∈ W , i.e.,

(
A|W⊥ , PW⊥(v)

)
u = u′.

Thus, the map l : W⊥/π⊥ → Mπ/FW that carries the π⊥-orbit of u ∈ W⊥ to the
leaf FW (u) is a well-defined bijection, and a local isometry by Remark 4.5, hence
an isometry. �

Corollary 4.14. The holonomy group H⊥ ⊂ O(W⊥) and lattice L⊥ ⊂ W⊥ asso-
ciated to the flat orbifold Mπ/FW = W⊥/π⊥ by the Bieberbach Theorems are:

(i) H⊥ ⊂ O(W⊥) is the image of the map Hπ ∋ A 7→ A|W⊥ ∈ O(W⊥);
(ii) L⊥ ⊂ W⊥ is the image of the map LW ∋ (A, v) 7→ PW⊥(v) ∈ W⊥, where

LW =
{
(A, v) ∈ π : A|W⊥ = IdW⊥

}
. This is a lattice in W⊥ which contains

PW⊥(Lπ) as a finite index subgroup, and therefore L⊥ ⊗Q = PW⊥(Lπ)⊗Q.

Proof. The identifications of the holonomy and lattice of W⊥/π⊥ with H⊥ and L⊥

respectively follow from Theorem 4.13. Clearly, L⊥ contains PW⊥(Lπ), which by
Lemma 4.11 is also a lattice in W⊥. Thus, PW⊥(Lπ) has finite index in L⊥. �

5. Collapse of flat manifolds

In this section, we give a proof of Theorem A stated in the Introduction by
combining Theorem 4.13 with an identification of the Gromov–Hausdorff limit of
the collapsing sequence of flat manifolds (Mπ, g

s
W ) as s ց 0.

Recall that, given compact metric spaces (X, dX) and (Y, dY ), an ε-approximation
from X to Y is a map f : X → Y such that

∣∣dX(x1, x2)− dY
(
f(x1), f(x2)

)∣∣ < ε for
all x1, x2 ∈ X , and such that Y is in the ε-neghborhood of f(X). It is well known
that a sequence of compact metric spaces (Xn, dn) converges in Gromov–Hausdorff
sense to a compact metric space (X∞, d∞) if and only if for all ε > 0 there exists
Nε ∈ N and ε-approximations f ε

n : Xn → X∞ and gεn : X∞ → Xn for all n ≥ Nε.

Lemma 5.1. Let ρs, s ∈ (0, 1], be distance functions on M , and let Φ : M → Q be
a map onto the metric space (Q, δ) such that

δ(Φ(x), Φ(y)) ≤ ρs(x, y) ≤ δ(Φ(x), Φ(y)) + d(s)

for all x, y ∈ M , where (0, 1] ∋ s 7→ d(s) ∈ [0,∞) is a function such that d(s) → 0
as s ց 0. Then the Gromov–Hausdorff limit of (M,ρs) as s ց 0 is (Q, δ).

Proof. Given ε > 0, a pair of ε-approximations between (M,ρs) and (Q, δ) is pro-
vided, when d(s) < ε, by Φ : M → Q and any map θ : Q → M with θ ◦ Φ = IdM .
Note that θ need not be continuous, and exists by the Axiom of Choice. �

The following result is a crucial step in the proof of Theorem A.

Theorem 5.2. Let W ⊂ Rn be an Hπ-invariant subspace, Ŵ be its Lπ-closure,

and L̂ be the lattice in Ŵ given by L̂ = Lπ ∩ Ŵ . Consider the Riemannian metric

induced by 〈·, ·〉s = s2〈·, ·〉|W ⊕ 〈·, ·〉|W⊥ on the torus Ŵ/L̂, and denote by ρs the

corresponding distance function. Then its diameter d(s) = diam(Ŵ/L̂, ρs) satisfies
lim
sց0

d(s) = 0. Moreover, the limit ρ0 of these distance functions vanishes identically.

Proof. For each s ∈ (0, 1], we have the Euclidean norm | · |s on Ŵ defined by
|w+w′|2s = s2|w|2+ |w′|2 for all w ∈ W and w′ ∈ W⊥, where W⊥ is the orthogonal
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complement of W in Ŵ . Since points in Ŵ/L̂ are cosets of L̂ in Ŵ and their ρs-
distance is the | · |s-distance between the corresponding cosets, our assertion follows
if we establish the existence, for any ε > 0, of some sε ∈ (0, 1] satisfying:

(5.1) for every ŵ ∈ Ŵ and s ∈ (0, sε] , there exists λ̂ ∈ L̂ with |ŵ − λ̂|s < ε.

Note that, by homogeneity, we may assume that one of the two cosets is L̂ itself.

To prove the above, identify Ŵ/W with the orthogonal complement W⊥. By

Proposition 3.9(e), see also Remark 3.10, PW⊥(L̂) is a dense additive subgroup of

W⊥. Let K ⊆ Ŵ be a fixed compact fundamental domain for the translational

action of L̂. Density of PW⊥(L̂) in W⊥ and compactness of PW⊥(K) allow us to

choose an integer m ≥ 1, points w1, . . . , wm ∈ PW⊥(K), and λ1, . . . , λm ∈ L̂ such
that each PW⊥(λi), i ∈ {1, . . . ,m}, lies in the open ball in W⊥ centered at PW⊥(wi)
of radius ε/4, while the union of these m open balls contains PW⊥(K). Let R/2 be

the radius of an open ball in Ŵ centered at 0 containing K ∪ {λ1, . . . , λm}. Then

(5.1) holds if we define sε by 2Rsε =
√
3ε. Namely, fix ŵ ∈ Ŵ . Since K is a fun-

damental domain, we may fix λ0 ∈ L̂ such that ŵ − λ0 ∈ K. Generally, whenever
w′ ∈ K, the open ball in W⊥ centered at PW⊥(w′) with radius ε/2 contains one of
the m open balls radius ε/4 (that to which PW⊥(w′) belongs) and, along with it,
one of PW⊥(λi), i = 1, . . . ,m. Applied to w′ = ŵ − λ0, this yields the existence of

i ∈ {1, . . . ,m} with |PW⊥(ŵ − λ̂)| < ε/2, where λ̂ = λ0 + λi ∈ L̂. Our choice of R

makes the norms of both ŵ− λ̂ = (ŵ− λ0)− λi and its W -component less than R,

and so |ŵ − λ̂|2s < (sR)2 + ε2/4, while (sR)2 + ε2/4 ≤ ε2 when s ∈ (0, sε].
Finally, ρ0 ≡ 0. Namely, Proposition 4.3 implies that the leaves of the subspace

foliation FW are dense in the torus Ŵ/L̂. If x, y ∈ Ŵ/L̂ and ε > 0, let y′ in the
leaf through x be such that ρ1(y, y′) < ε. Since ρ0(x, y′) = 0, and ρ0 ≤ ρ1, the
triangle inequality for ρ0 implies ρ0(x, y) < ε, concluding the proof. �

Proof of Theorem A. For all s > 0, denote by ρs : Mπ × Mπ → R the distance
function on Mπ induced by the Riemannian metric gsW as in (1.2). Similarly,

replacing W by its Lπ-closure Ŵ , one may define a Riemannian metric gs
Ŵ
, for all

s > 0; and its distance function is denoted ρ̂s. Note that both gsW and gs
Ŵ

are

flat metrics on Mπ, that, in the limit s = 0, degenerate into positive-semidefinite
symmetric 2-tensors. Accordingly, the limits of the distance functions ρs and ρ̂s are
pseudo-distances ρ0 and ρ̂0 onMπ. Let Φ : Mπ → Mπ/FŴ

be the natural projection
map, and δ be the quotient metric on the leaf space Mπ/FŴ

, see Remark 4.5.

Claim 5.3. For all x, y ∈ Mπ and s ∈ (0, 1], we have that

(5.2) δ(Φ(x), Φ(y)) ≤ ρ̂s(x, y) ≤ ρs(x, y) ≤ δ(Φ(x), Φ(y)) + 2d(s),

where d(s) is as in Theorem 5.2. Moreover,

(5.3) δ(Φ(x), Φ(y)) ≤ ρ̂0(x, y) ≤ ρ0(x, y) ≤ δ(Φ(x), Φ(y))

or, in other words, δ(Φ(x), Φ(y)) = ρ0(x, y) = ρ̂0(x, y).

Note that Claim 5.3 and Lemma 5.1 imply that the Gromov–Hausdorff limits of
both (Mπ, ρ

s) and (Mπ, ρ̂
s) are isometric to

(
Mπ/FŴ

, δ
)
. Thus, to finish the proof

of Theorem A, replace W with Ŵ if necessary, and apply Theorem 4.13.
We are only left with proving Claim 5.3. First, for all s ∈ [0, 1], we clearly have

ρ̂s ≤ ρs, while δ(Φ(x), Φ(y)) ≤ ρ̂s(x, y), which implies the two leftmost inequalities
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of both (5.2) and (5.3). To see that δ(Φ(x), Φ(y)) ≤ ρ̂s(x, y), consider any piecewise
C1 curve in Mπ, of ρ̂

s-length ℓs, joining x to y. Lifting this curve to Rn, then
replacing it by its orthogonal projection onto an affine subspace parallel to the

orthogonal complement of Ŵ (which is, consequently, also orthogonal to W ) and,
finally, projecting this last curve back into Mπ, we obtain a new curve joining the
F

Ŵ
-leaves through x and y, with ρs-length and ρ̂s-length equal to one another and

not exceeding ℓs. Therefore, δ(Φ(x), Φ(y)) ≤ ρ̂s(x, y), as desired.
Second, join the F

Ŵ
-leaves through x and y by a shortest geodesic in Mπ, which

hence has ρ1-length δ(Φ(x), Φ(y)) and is orthogonal to both leaves. Lifted to Rn,

this geodesic becomes a line segment orthogonal to Ŵ , and hence to W , so that
the ρ̂s-length and ρs-length of the geodesic are all equal to δ(Φ(x), Φ(y)). For
its endpoints x′, y′, with Φ(x′) = Φ(x) and Φ(y′) = Φ(y), we have that ρs(x′, y′) ≤
δ(Φ(x), Φ(y)), and the triangle inequality gives ρs(x, y) ≤ ρs(x, x′)+δ(Φ(x), Φ(y))+
ρs(y′, y) ≤ δ(Φ(x), Φ(y)) + 2d(s). By Theorem 5.2, since d(s) → 0 as s ց 0, this
implies that (5.2) and (5.3) hold, completing the proof of Claim 5.3. �

Remark 5.4. The collapsing deformation of a flat manifold Mπ along a subspace fo-
liation FW as formulated in (1.2) coincides with the notion of collapse of flat metrics
from [BP18, BDP18]. Namely, the latter formulation is in terms of a deformation
of the original Bieberbach group π ⊂ Aff(Rn) through (isomorphic) Bieberbach
groups πs = As · π · A−1

s ⊂ Aff(Rn), s ∈ (0, 1], where As = s PW + PW⊥ ∈ GL(n),
and W ⊂ Rn is an Hπ-invariant subspace. Since PW and PW⊥ commute with
Hπ, the holonomy and lattice associated to πs are respectively Hπs

= Hπ and
Lπs

= As(Lπ). Denote by Mπs
= Rn/πs the corresponding flat Riemannian man-

ifold, that is, such that the quotient map Pπs
: Rn → Mπs

is a Riemannian cover-
ing. We claim that Mπs

is isometric to (Mπ, g
s
W ). Indeed, the linear isomorphism

As : R
n → Rn is equivariant with respect to the actions of π on the domain and of

πs on the codomain, and hence descends to a diffeomorphism Ãs : Mπ → Mπs
. For

all z ∈ Rn, ‖dÃs(z)‖2 = s2‖PW (z)‖2 + ‖PW⊥(z)‖2 = gsW (z, z), which means that

Ãs is an isometry between (Mπ, g
s
W ) and Mπs

, as claimed above.

6. Singularities of the leaf space

In this section, we analyze different types of leaves of subspace foliations, and
their relation with singularities of the leaf space, leading to the proof of Theorem B.
We assume throughout that W ⊂ Rn is an Hπ-invariant Lπ-generated subspace.

6.1. Principal and exceptional leaves. Recall that the Bieberbach group of a
leaf FW (u) ⊂ Mπ is isomorphic to the subgroup GW (u) ⊂ π given by (4.1).

Definition 6.1. The leaf FW (u) is exceptional if there exists u′ ∈ Rn and (A, v) ∈
GW (u) such that (A, v) 6∈ GW (u′), i.e., if GW (u) 6⊂ GW (u′) for some u′ ∈ Rn.
Leaves that are not exceptional are called principal leaves.

Lemma 6.2. The leaf FW (u) is principal if and only if A|W⊥ = Id and v ∈ W for
all (A, v) ∈ GW (u).

Proof. Using (4.1), it is readily seen that if (A, v) ∈ π satisfies A|W⊥ = Id and
v ∈ W , then (A, v) ∈ GW (u′) for all u′ ∈ Rn. Thus, if all (A, v) ∈ GW (u) satisfy
A|W⊥ = Id and v ∈ W , then FW (u) must be principal. Conversely, if FW (u) is
principal, assume u ∈ W⊥ (otherwise replace u with u − PW (u)), and (4.4) must
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hold for every u′ ∈ W⊥. In particular, setting u′ = 0 we get that (A − Id)u = 0
for all (A, v) ∈ GW (u), which again implies (A− Id)u′ = 0 for all u′ ∈ W⊥. In this
situation, it follows easily from (4.1) that v ∈ W for all (A, v) ∈ GW (u). �

Remark 6.3. The above shows that Definition 6.1 agrees with the usual notions for
(regular) foliations; namely, a leaf FW (u) is exceptional if and only if its leaf holo-
nomy Holp(FW (u)) is nontrivial, and principal if and only if Holp(FW (u)) is trivial,
see e.g. [Mol88, Rad17]. From Remark 4.10, the leaf holonomy Holp(FW (u)) is the
image of π1(FW (u), p) ∼= GW (u) in O

(
νp(FW (u))

) ∼= O(W⊥). Thus, Lemma 6.2
states precisely that FW (u) is principal if and only if Holp(FW (u)) is trivial, see
also [DP, Thm 10.1 (ii), (iv)].

Corollary 6.4. If FW (u) is principal, then the map HW (u) ∋ A 7→ A|W ∈ HW (u)
is injective, and LW (u) = Lπ ∩W .

The general result in foliation theory that the closest-point projection is a cov-
ering map can be easily obtained in the context of subspace foliations as follows:

Proposition 6.5. Given u, u′ ∈ W⊥, such that FW (u) is a principal leaf, the
translation Tu′−u : W + u → W + u′ induces a covering map FW (u) → FW (u′).

Proof. The projections Pπ : W+u → FW (u) and Pπ : W+u′ → FW (u′) are covering
maps, with deck transformation groups GW (u) and GW (u′) respectively, see Propo-
sition 4.8. Since FW (u) is principal, GW (u) ⊂ GW (u′). In order to conclude, it suf-
fices to note that for all (A, v) ∈ GW (u), one has Tu′−u

(
(A, v)x

)
= (A, v)

(
Tu′−u(x)

)

for all x ∈ W + u. This follows immediately from A|W⊥ = Id, see Lemma 6.2. �

Remark 6.6. It follows from the proof of Proposition 6.5 that the homomorphism
between fundamental groups GW (u) → GW (u′) induced by the above covering map
FW (u) → FW (u′) is the inclusion.

Moreover, in the realm of subspace foliations, the proof that exceptional leaves
constitute a meager set is also relatively simple. Given A ∈ Hπ, recall that the
restriction (A− Id)|ker(A−Id)⊥ is an isomorphism, since ker(A− Id)⊥ = Im(A− Id)
by (2.4). We denote its inverse by

SA : ker(A− Id)⊥ −→ ker(A− Id)⊥.

Define πsing
W to be the following subset of the Bieberbach group π:

(6.1) πsing
W =

{
(A, v) ∈ π : A|W⊥ 6= Id, and PW⊥(v) ∈ ker(A− Id)⊥

}
.

It is interesting to observe that for all u ∈ Rn, if (A, v) ∈ GW (u) and A|W⊥ 6= Id,

then (A, v) ∈ πsing
W ; namely:

(A, v) ∈ GW (u)
(4.1)
=⇒ (A− Id)u+ v ∈ W

=⇒ PW⊥(v) = −PW⊥

(
(A− Id)u

)
= −(A− Id)

(
PW⊥(u)

)
.

Thus, we have a well-defined map:

πsing
W ∋ (A, v) 7−→ u(A,v) := SA

(
PW⊥(v)

)
∈ ker(A− Id)⊥.

Note that u(A,v) ∈ W⊥ for all (A, v) ∈ πsing
W , since W⊥ is preserved by A− Id.
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Proposition 6.7. The set EW =
{
u ∈ Rn : FW (u) is exceptional

}
is the union of

a countable family of proper affine subspaces of Rn, more precisely

EW =
⋃

(A,v)∈π
sing

W

(
(A− Id)−1(W )− u(A,v)

)
.

Remark 6.8. Note that if (A, v) ∈ πsing
W , then Im(A− Id)∩W⊥ 6= {0}, because W⊥

is A-invariant, and A|W⊥ 6= Id. In particular, Im(A − Id) 6⊂ W , which says that

the inverse image (A− Id)−1(W ) is a proper subspace of Rn for all (A, v) ∈ πsing
W .

Proof of Proposition 6.7. Assume that u ∈ (A−Id)−1(W )−u(A,v) for some (A, v) ∈
πsing
W , i.e., (A− Id)(u+ u(A,v)) ∈ W . Then:

(A− Id)u+ v = (A− Id)(u + u(A,v))− (A− Id)u(A,v) + v

= (A− Id)(u + u(A,v))− PW⊥(v) + v ∈ W,

i.e., (A, v) ∈ GW (u). Moreover, since (A, v) ∈ πsing
W , then A|W⊥ 6= Id, and hence

there exists u′ ∈ (A− Id)−1(W⊥ \ {0}). A direct computation shows that

(A− Id)(u + u′) + v = (A− Id)u′ + (A− Id)u+ v = (A− Id)u′ + PW (v) 6∈ W,

i.e., (A, v) 6∈ GW (u+ u′). Therefore, FW (u) is exceptional.
Conversely, assume FW (u) is exceptional, and let (A, v) ∈ π, u′ ∈ Rn with

(A− Id)u + v ∈ W, and (A− Id)u′ + v 6∈ W.

By the above, we get PW⊥(v) = −PW⊥(A− Id)u, and

0 6= PW⊥(A− Id)u′ − PW⊥(v) = PW⊥(A− Id)(u′ + u) = (A− Id)PW⊥(u′ + u),

which implies that A|W⊥ 6= Id. Moreover:

Pker(A−Id)

(
PW⊥(v)

)
= −Pker(A−Id)

(
(A− Id)PW⊥(u)

) (2.4)
= 0,

i.e., PW⊥(v) ∈ ker(A− Id)⊥, and so (A, v) ∈ πsing
W . Moreover, we have that

PW⊥(A− Id)
(
u+ u(A,v)

)
= −PW⊥(v) + (A− Id)SA

(
PW⊥(v)

)
= 0,

i.e., u ∈ EW , which concludes the proof. �

6.2. Characterizing singularities. We now describe the singularities of the leaf
space Mπ/FW , relating them with exceptional leaves of FW . Once again, although
these results hold in far greater generality for totally geodesic Riemannian foliations,
we provide simple and explicit proofs in the context of subspace foliations, see also
[DP, Thm 10.1 (iii)].

Lemma 6.9. Any two principal leaves are isometric. More generally, if GW (u) =
GW (u′), then FW (u) and FW (u′) are isometric.

Proof. Assume u, u′ ∈ W⊥, and GW (u) = GW (u′) By (4.4), (Id−A)u = (Id−A)u′,
i.e., A(u − u′) = u − u′, for all (A, v) ∈ GW (u) = GW (u′). This means that the
isometry (Id, u′ −u) : W + u → W + u′ is equivariant with respect to the actions of
GW (u) = GW (u′) on W + u and on W + u′. Thus, (Id, u′ − u) induces an isometry
from FW (u) to FW (u′). �

A partial converse to the above statement is given as follows:
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Proposition 6.10. The subspace foliation FW has no exceptional leaves if and
only if all of its leaves are isometric.

Proof. By Lemma 6.9, if FW has no exceptional leaves, then all the leaves are iso-
metric. Conversely, assume that FW (u) is exceptional for some u ∈ Rn, and choose
u′ ∈ Rn such that FW (u′) is principal, which is possible by Proposition 6.7. Since
FW (u) and FW (u′) are isometric, they have the same volume. Thus, the covering
map from Proposition 6.5 is a diffeomorphism, and hence induces an isomorphism
GW (u) → GW (u′) between fundamental groups. By Remark 6.6, this isomorphism
is the inclusion GW (u) ⊂ GW (u′), which implies that GW (u) = GW (u′), yielding
the desired contradiction. �

We are now in position to prove Theorem B stated in the Introduction.

Proof of Theorem B. The equivalence between (ii) and (iii) is proven in Propo-
sition 6.10. From Theorem 4.13, the leaf space Mπ/FW is isometric to the flat
orbifold W⊥/π⊥. In order to show that (i) and (iii) are equivalent, we first claim
that a point in W⊥/π⊥ = Mπ/FW is singular if and only if the corresponding
leaf is exceptional. By definition, the singularities of W⊥/π⊥ correspond to or-
bits of the π⊥-action on W⊥ with nontrivial stabilizer. Fix u ∈ EW , and choose
(A, v) ∈ πsing

W such that (A − Id)(u + u(A,v)) ∈ W , see Proposition 6.7. Let

x = −u(A,v) ∈ W⊥∩ker(A−Id)⊥, so that Ax = x−PW⊥(v), and hence the (nontriv-

ial) element
(
A|W⊥ , PW⊥(v)

)
∈ π⊥ is in the stabilizer of x. Conversely, if (A, v) ∈ π,

x ∈ W⊥ are such that
(
A|W⊥ , PW⊥(v)

)
∈ π⊥ is nontrivial, Ax+ PW⊥(v) = x, i.e.,

PW⊥(v) = −(A− Id)x, then clearly PW⊥(v) ∈ ker(A− Id)⊥ = Im(A − Id). More-
over, A|W⊥ 6= Id, for otherwise PW⊥(v) = 0, contrary to the assumption that(
A|W⊥ , PW⊥(v)

)
is a nontrivial element in π⊥. Therefore, πsing

W 6= ∅ by (6.1), and
hence EW 6= ∅ by Proposition 6.7. This proves the above claim, i.e., Mπ/FW is
smooth if and only if FW has no exceptional leaves. When this is the case, by
Proposition 6.5, the map Mπ → Mπ/FW is a fiber bundle whose fibers are the
leaves FW (u) for any u ∈ Rn, hence (i) and (iii) are equivalent. Finally, the
equivalence between (iii) and (iv) follows from Proposition 6.7, since FW has no

exceptional leaves if and only if πsing
W = ∅, which is equivalent to (iv) by (6.1). �

7. Existence of at least two nontrivial collapses

Whenever needed, we implicitly identify the rational vector space Lπ ⊗Z Q with
the Q-subspace of Rn spanned by Lπ. By Maschke’s Theorem (see also Proposi-
tion 3.13), the rational holonomy representation is completely reducible, so there
is a decomposition of the rational vector space Lπ ⊗Z Q of the form

(7.1) Lπ ⊗Z Q = V
(1)
1 ⊕ · · · ⊕ V (1)

a1
⊕ . . .⊕ V

(k)
1 ⊕ · · · ⊕ V (k)

ak
,

where the V i
j are pairwise distinct Q-irreducible Hπ-invariant subspaces, with V

(i)
j

equivalent to V
(i′)
j′ if and only if i = i′. Thus, the integers ai represent the multi-

plicity of each irreducible component, and Ṽi := V
(i)
1 ⊕ · · · ⊕ V

(i)
ai are the isotypic

components of the rational holonomy representation. By Theorem 2.3, we have

that k ≥ 2. Set dj = dim(V
(j)
1 ), for j = 1, . . . , k. If the Ṽj ’s are arranged with

dimensions in nondecreasing order, i.e., dj ≤ dj+1 for all 1 ≤ j ≤ k − 1, then the
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i-sequence of the rational holonomy representation of Hπ is given by:

iπ =
(
d1, . . . , d1︸ ︷︷ ︸
a1 times

, · · · , dk, . . . , dk︸ ︷︷ ︸
ak times

)

Let us now show that the i-sequence of the rational holonomy representation of
a flat orbifold obtained by collapsing a flat manifold Mπ is a subsequence of the
i-sequence of the rational holonomy representation of Mπ.

Lemma 7.1. Consider the decomposition (7.1), and fix integers 0 ≤ bj ≤ aj,
j = 1, . . . , k. Let W be the Hπ-invariant and Lπ-generated subspace given by the

real span of the rational vector subspace V
(1)
1 ⊕ · · ·V (1)

b1
⊕ . . . ⊕ V

(k)
1 ⊕ · · · ⊕ V

(k)
bk

.

The rational holonomy representation of the flat orbifold Mπ/FW = W⊥/π⊥ has
i-sequence given by:

iπ⊥ =
(
d1, . . . , d1︸ ︷︷ ︸

(a1−b1) times

, · · · , dk, . . . , dk︸ ︷︷ ︸
(ak−bk) times

)
.

Proof. The restriction of the orthogonal projection

PW⊥ : V
(1)
b1+1 ⊕ · · ·V (1)

a1
⊕ . . .⊕ V

(k)
bk+1 ⊕ · · · ⊕ V (k)

ak
−→ PW⊥(Lπ)⊗Q

is an isomorphism of Hπ-modules. Using Corollary 4.14, it is easy to see that the

image of each V
(j)
i in this decomposition corresponds to an irreducible subspace of

the rational holonomy representation of Mπ/FW = W⊥/π⊥. �

In fact, Lemma 7.1 also shows that any subsequence of the i-sequence of the
rational holonomy representation of Mπ is the i-sequence of the rational holonomy
of some collapse of Mπ. With this, we are finally ready to prove the following:

Proposition 7.2. If the i-sequence iπ of the rational holonomy representation of
Mπ is not of the form (k, k), then Mπ admits at least two nontrivial collapsed limits
that are not affinely equivalent.

Proof. When iπ is not of the form (k, k), then one can find two distinct and nontriv-
ial subsequences of iπ. By Lemma 7.1, such subsequences correspond to nontrivial
flat collapses of Mπ that are not affinely equivalent, cf. Corollary 2.6. �

In particular, Theorem C stated in the Introduction follows directly from Propo-
sition 7.2, since the sum of all the elements of the i-sequence of the rational holo-
nomy representation is equal to the dimension n of the flat manifold Mπ.

Remark 7.3. Note that if the Hπ-representation on W⊥ is irreducible, then so is
the holonomy representation of the collapsed limit Mπ/FW , which hence is not
smooth, see Theorem 2.2 and Corollary 4.14. In particular, this implies that the
two collapsed limits in Proposition 7.2 can be chosen to be nonsmooth flat orbifolds.
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