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Abstract The term “special biconformal change” refers, basically, to the situation where a
given nontrivial real-holomorphic vector field on a complex manifold is a gradient relative
to two Kähler metrics, and, simultaneously, an eigenvector of one of the metrics treated,
with the aid of the other, as an endomorphism of the tangent bundle. A special biconfor-
mal change is called nontrivial if the two metrics are not each other’s constant multiples.
For instance, according to a 1995 result of LeBrun, a nontrivial special biconformal change
exists for the conformally-Einstein Kähler metric on the two-point blow-up of the complex
projective plane, recently discovered by Chen, LeBrun and Weber; the real-holomorphic
vector field involved is the gradient of its scalar curvature. The present paper establishes
the existence of nontrivial special biconformal changes for some canonical metrics on Del
Pezzo surfaces, viz. Kähler-Einstein metrics (when a nontrivial holomorphic vector field
exists), non-Einstein Kähler-Ricci solitons, and Kähler metrics admitting nonconstant Kil-
ling potentials with geodesic gradients.
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1 Introduction

By a metric-potential pair on a complex manifold M with dimCM ≥ 2 we mean any pair
(g,τ) formed by a Kähler metric g on M and a nonconstant Killing potential τ for g, that is,
a function τ : M→ IR such that J(∇τ) is a nontrivial Killing field on the Kähler manifold
(M,g). Another metric-potential pair (ĝ, τ̂) on the same complex manifold M is said to
arise from (g,τ) by a special biconformal change if

i) ĝ = f g − θ (dτ⊗dτ + ξ ⊗ξ ), ii) ∇̂τ̂ = ∇τ (1.1)
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for ξ = g(J(∇τ), ·) and some C∞ functions f ,θ : M → IR. The equality in (1.1.ii) states
that the ĝ-gradient of τ̂ coincides with the g-gradient of τ .

A special biconformal change as above will be called trivial if f is a positive constant,
θ = 0, and τ̂ equals f τ plus a constant.

Ganchev and Mihova [10, Section 4] studied biconformal changes of a more general
type. In their approach, τ : M→ IR is not required to be a Killing potential.

The existence of nontrivial special biconformal changes has already been established
for some metric-potential pairs (g,τ). LeBrun [14] proved it when g is a Kähler metric on
a compact complex surface, conformal to a non-Kähler Einstein metric, and τ is the scalar
curvature of g. Both the one-point and two-point blow-ups of CP2 are known to admit
metrics with the properties just listed (the latter, due to a recent result of Chen, LeBrun and
Weber [3]; see also Section 9). On the other hand, Ganchev and Mihova [10] exhibited a
nontrivial special biconformal change leading from (g,τ), for any nonflat Kähler metric g
of quasi-constant holomorphic sectional curvature, and suitable τ , to a metric-potential pair
(ĝ, τ̂) in which the Kähler metric ĝ is flat.

This paper addresses the existence question for nontrivial special biconformal changes
of metric-potential pairs in complex dimension 2. It is not known whether all metric-po-
tential pairs (g,τ) on compact complex surfaces admit such changes. However, nontrivial
special biconformal changes of (g,τ) always exist locally, at points where dτ 6= 0 (Remark 2
at the end of Section 5).

Biconformal changes of a more general kind than those defined above are introduced in
Section 12, where it is also shown that such a generalized biconformal change exists between
any two U(2)-invariant Kähler metrics on CP2 or on the one-point blow-up of CP2.

Theorems 1 and 3, stated and proved in Sections 6 and 14, provide two general mecha-
nisms allowing one to construct examples of nontrivial special biconformal changes. They
are based on criteria for the existence of such changes that are, in addition, required to sat-
isfy a certain functional dependence relation, or to yield a metric in the same Kähler class;
in the former case the criterion amounts to a Laplacian condition.

The first main result of the paper, derived from Theorem 1, is the existence of nontrivial
special biconformal changes of various canonical metrics on Del Pezzo surfaces. Specifi-
cally, they are shown to exist for all metric-potential pairs (g,τ) with suitably chosen τ , on
compact complex surfaces M, such that g is

(i) any Kähler-Einstein metric with positive scalar curvature (and M admits a nontrivial
holomorphic vector field), or

(ii) any non-Einstein Kähler-Ricci soliton, or
(iii) any Kähler metric admitting a special Kähler-Ricci potential τ .

The second main result is Theorem 2, establishing the existence of nontrivial special bi-
conformal changes of (g,τ) whenever (M,g) is a compact Kähler surface and the integral
curves of ∇τ are reparametrized geodesics. Being a special Kähler-Ricci potential is suf-
ficient for τ to have this last property, but it is not necessary; more general examples are
described in the Appendix.

Two Kähler metrics on a given complex surface cannot be nontrivially conformal. The
relation of “general biconformal equivalence” is not of much interest here either, since it
holds locally, almost everywhere, for any two Kähler surface metrics (Section 5). On the
other hand, on compact complex surfaces, a special biconformal change between two given
metric-potential pairs exists sometimes, though not very often, and if it does exist, it amounts
to an explicit description of one Kähler metric in terms of the other. For instance, as shown at
the end of Section 13, the one-point blow-up of CP2 admits a biconformal change of a more
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general type, introduced in Section 12, leading from the Kähler-Ricci soliton constructed
by Koiso [13] and, independently, Cao [2], to one of Calabi’s extremal Kähler metrics [1],
conformal to the non-Kähler, Einstein metric found by Page [17].

2 Preliminaries

All manifolds and Riemannian metrics are assumed to be of class C∞. A manifold is by
definition connected.

Given a Riemannian manifold (M,g), the divergence of a vector field w or a bundle
morphism A : TM→ TM is defined as usual, by div w = tr∇w and div A = ξ , for the 1-
form ξ sending any vector field w to the function ξ (w) = div(Aw)− tr(A∇w). The inner
product 〈 ,〉 of 2-forms is characterized by 2〈σ ,σ〉 = −trA2, where A : TM→ TM is the
bundle morphism with g(Aw, ·) = σ(w, ·) for all vector fields w. In coordinates, div w =

w j
, j, (div A) j = Ak

j,k and 2〈σ ,σ〉= σ jk σ jk. Also, for any 2-form σ and vector fields w,w′,

〈σ ,α ∧α
′〉 = σ(w,w′), where α = g(w, ·), α

′= g(w′, ·). (2.1)

Lemma 1 Suppose that δ ,ε ∈ (0,∞) and τ,ψ : (−δ ,ε)→ IR are C∞ functions such that,
if the dot stands for the derivative with respect to the variable t ∈ (−ε,ε),

a. τ̇(0) = 0 6= τ̈(0) and τ̇ τ̈ 6= 0 everywhere in (−δ ,0)∪ (0,ε),
b. τ : (−δ ,0)→ IR and τ : (0,ε)→ IR both have the same range I⊂ IR,
c. ψ(t) = G(τ(t)) for some function G : I→ IR and all t ∈ (−δ ,0)∪ (0,ε).

Then G has a C∞ extension to the half-open interval I ∪ τ(0).

Proof One can view τ as a new C∞ coordinate on both (−ε,0) and (0,ε). Thus, G : I→ IR
is of class C∞, and so are all the derivatives dkG/dτk treated as functions on I. Let us
prove by induction on k ≥ 0 that dkG/dτk is a C∞ function of the variable t ∈ (−ε,ε)
(and, in particular, has a limit at the endpoint τ(0) of I). The induction step: by (b) – (c),
χ = dkG/dτk treated as a C∞ function on (−δ ,ε) has the same range on (−δ ,0) as on
(0,ε), which also remains true when δ ,ε are replaced with suitably related smaller positive
numbers δ ′,ε ′, and such δ ′,ε ′ may be chosen arbitrarily close to 0. Hence χ̇(0) = 0. As τ̇ is
a new C∞ coordinate on (−ε,ε), vanishing at 0, smooth functions on (−ε,ε) that vanish at
0 are smoothly divisible by τ̇ . Consequently, dk+1G/dτ k+1 = dχ /dτ = χ̇ /τ̇ is a smooth
function of t ∈ (−ε,ε). ut

Remark 1 Let F be a C∞ function U×D→ IR, where U ⊂ IRk is an open set and D⊂ C
is a disk centered at 0. If F(y,0) = 0 and F(y,zq) = F(y,z) for all (y,z,q) ∈ IRk×C2 with
|q|= 1, then F(y,z) = |z|2h(y,z) for some C∞ function h : U×D→ IR. If, in addition, the
Hessian of F is nonzero everywhere in U×{0}, then so is h.

In fact, for r ∈ IR close to 0, the function (y,r) 7→ F(y,r) is smooth and vanishes when
r = 0, so that it is smoothly divisible by r (due to the first-order Taylor formula). The same
applies to (y,r) 7→ F(y,r)/r. The last claim holds since, on U×{0}, the Hessian of F
equals 2h times the Euclidean metric of C.

We will use the connectivity lemma for Morse-Bott functions τ on compact manifolds M,
stating that, if the positive and negative indices of the Hessian of τ at every critical point
are both different from 1, then the τ-preimage of every real number is connected. See [16,
Lemma 3.46 on p. 124].
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3 Kähler manifolds

Let M be a complex manifold. Its complex-structure tensor is always denoted by J. Given
a real 1-form µ on M, the symbol µJ stands for the 1-form J∗µ , so that

(µJ)x = µx ◦ Jx : TxM→ IR (3.1)

at any point x ∈ M. If g is a Kähler metric on M, the Kähler form of g is ω = g(J · , ·),
while ∇ denotes both the Levi-Civita connection of g and the g-gradient. Real-holomor-
phic vector fields on M are the sections v of TM such that £v J = 0, which, for any fixed
Kähler metric g on M, is equivalent to [J,∇v] = 0. The commutator [ , ] is applied here to
J and ∇v treated as vector-bundle morphisms TM→ TM, the latter acting on vector fields
w by (∇v)w = ∇wv. The fact that

2i∂∂ψ = (∇dψ)(J · , ·) − (∇dψ)( · ,J ·) (3.2)

for any Kähler metric g on M, and any C2 function ψ : M→ IR, will be used below and in
Section 14. In the following (well-known) lemmas, ıvb = b(v, · , . . . , ·) for vector fields v
and covariant tensor fields b, while [d(dvψ)]J is defined by (3.1) with µ = d(dvψ).

Lemma 2 In a Kähler manifold (M,g) one has 2ıv(i∂∂ ψ) = d(dJvψ)− [d(dvψ)]J for
any real-holomorphic vector field v on M and any C2 function ψ : M→ IR.

Proof Let us set u = Jv and µ = 2ıv(i∂∂ ψ). By (3.2), µJ = [ıu(∇dψ)]J + ıv(∇dψ). In
coordinates, this reads (µJ)k = ψ,pqvsJp

s Jq
k +ψ,skvs. However, ψ,pqvsJp

s = (ψ,pvs),qJp
s −

ψ,pvs
,qJp

s , while, as v is real-holomorphic, vs
,qJp

s = Js
qvp

,s. Hence (µJ)k = (ψ,pvsJp
s ),qJq

k +

ψ,sv
s
,k +ψ,skvs= {[d(duψ)]J+d(dvψ)}k. ut

Lemma 3 Let there be given C∞ functions τ,ψ : M→ IR on a complex manifold (M,g) and
two Kähler metrics g, ĝ on M such that the Kähler forms ω of g and ω̂ of ĝ are related
by ω̂ = ω +2i∂∂ ψ . If the the g-gradient v of τ is real-holomorphic and dJvψ = 0, then
v is also the ĝ-gradient of τ̂ = τ +dvψ .

Proof By (3.1), (ıvω)J = ω(v,J ·) = g(Jv,J ·) = g(v, ·) = dτ . Consequently, (ıvω̂)J =
ĝ(v, ·). Lemma 2 now yields ĝ(v, ·) = (ıvω̂)J = d (τ +dvψ). ut

Here is another well-known lemma.

Lemma 4 A differentiable 2-form η on a Kähler surface (M,g) is closed if and only if
d〈ω,η〉=−divJA, where J is the complex structure, ω denotes the Kähler form of g, and
A : TM→ TM is the bundle morphism with g(Av, ·) = η(v, ·) for all vector fields v.

Proof The operator ıω sending every differential 3-form ζ on M to the 1-form ıω ζ such
that (ıω ζ )(v) = 〈ω, ζ (v, · , ·)〉 for all vector fields v is, by dimensional reasons, an iso-
morphism, since ıω(ξ ∧ω) = ξ for any 1-form ξ . The assertion now follows from the
local-coordinate formula 2(ıω dη) j = ω kl(ηkl, j+ηl j,k+η jk, l). ut
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4 Killing potentials

Let τ be a Killing potential on a compact Kähler manifold (M,g). As usual, this means that
τ is a C∞ function M→ IR and J(∇τ) is a Killing field on (M,g). In other words, ∇τ is a
real-holomorphic vector field, or, equivalently, the 2-tensor field ∇dτ is Hermitian. Using
the notation

v = ∇τ , u = Jv, ξ = g(u, ·), Q = g(v,v), Y = ∆τ , (4.1)

here and and throughout the paper, one then has

a) 2 Ric(v, ·) =−dY, b) 2∇dτ(v, ·) = dQ. (4.2)

In fact, (4.2.b) holds for any C∞ function τ on a Riemannian manifold, provided that v and
Q are still given by (4.1). The identity (4.2.a) is well known, cf. [1].

Lemma 5 Let there be given a Kähler surface (M,g) with the Kähler form ω , a Killing
potential τ on (M,g), and C∞ functions f ,θ : M→ IR. Then, in the notation of (4.1), the
2-form η = f ω +θ ξ ∧dτ is closed if and only if d( f−Qθ)+(dvθ +θY )dτ+(duθ)ξ = 0.

Proof For A corresponding to η as in Lemma 4, JA = θ(ξ ⊗ u + dτ ⊗ v)− f , where
f stands for f times Id. Also, div(ξ ⊗ u) = ∇uξ and div(dτ ⊗ v) = Y dτ + ∇vdτ , so
that div(ξ ⊗ u + dτ ⊗ v) = Y dτ . (Note that ∇uξ = g(∇uu, ·), which is the opposite of
∇vdτ = g(∇vv, ·), as ∇uu = ∇u(Jv) = J∇uv = J∇vu = ∇v(Ju) = −∇vv.) Thus, divJA =
θY dτ +(duθ)ξ +(dvθ)dτ−d f . As 〈ω,η〉= 2 f −Qθ by (2.1), Lemma 4 yields our claim.

ut

Given a nonconstant Killing potential τ on a compact Kähler manifold (M,g) and a C∞

function ψ : M→ IR, one may refer to ψ as a C∞ function of τ if ψ = G(τ) for some C∞

function G : [τmin,τmax]→ IR. Note that

ψ is a C∞ function of τ if and only if dψ ∧dτ = 0. (4.3)

In fact, let M′⊂M be the open set on which dτ 6= 0. It is well-known that M′ is connected
and dense in M, and that Killing potentials are Morse-Bott functions (cf. [8, Remark 2.3(ii)
and Example 11.1]). The relation dψ ∧ dτ = 0 clearly means that ψ restricted to M′ is,
locally, a C∞ function of τ . Consequently, the word ‘locally’ can be dropped, since the
connectivity lemma, mentioned at the end of Section 2, now implies connectedness of the
τ-preimages of all real numbers. Also, due to the Morse-Bott property of τ , its critical
manifolds are compact and isolated from one another, so that their number is finite, and, as
τ is constant on each of them, τ has a finite set Γ of critical values. Next, we show that the
function G : [τmin,τmax]rΓ → IR with ψ = G(τ) on M r τ−1(Γ ) has a C∞ extension to
[τmin,τmax]. To this end, we fix τ∗ ∈ Γ and a point x ∈M such that τ(x) = τ∗ and dτx = 0.
The nullspace of the Hessian of τ at x coincides with the tangent space at x of the critical
manifold of τ containing x (cf. [8, Remark 2.3(iii-d)]). One may thus choose δ ,ε ∈ (0,∞)
and a C∞ curve (−ε,ε) 3 t 7→ x(t) in M with x(0) = x, for which the assumptions, and
hence the conclusion, of Lemma 1 are satisfied if one lets the symbols τ and ψ stand for
the functions τ(x(t)) and ψ(x(t)) of the variable t.
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5 Special biconformal changes

Two Riemannian metrics g, ĝ on a manifold M are sometimes referred to as biconformal
[9,10] if there exist vector subbundles V and H of TM with TM = V ⊕H such that,
for some positive C∞ functions f ,χ : M→ IR,

ĝ = f g on H , ĝ = χ g on V , g(H ,V ) = ĝ(H ,V ) = {0}. (5.1)

This kind of biconformality is of little interest in the case of two Kähler metrics on a given
complex surface M, since, locally, in a dense open subset of M, (5.1) always holds, due to
the existence of eigenspace bundles of ĝ relative to g.

The special biconformal changes defined in the Introduction represent a particular case
of the situation described above. Namely, relation (1.1.i), in the open set M′ ⊂ M where
dτ 6= 0, amounts to (5.1) with χ = f −Qθ , V = SpanIR(v,u) and H = V ⊥ (notation of
(4.1)), so that TM′= V ⊕H , while

f and f −Qθ are the eigenvalue functions of ĝ relative to g. (5.2)

Given a Kähler manifold (M,g) with a nonconstant Killing potential τ and C∞ func-
tions f ,θ : M → IR, let a twice-covariant symmetric tensor field ĝ on M be Hermitian
relative to the underlying complex structure J. Thus, ω̂ = ĝ(J · , ·) is a 2-form. Then (1.1.i)
holds, for ξ = g(J(∇τ), ·), if and only if

ω̂ = f ω + θ ξ ∧ dτ . (5.3)

A nontrivial special biconformal change (1.1) of a metric-potential pair (g,τ), if it exists,
is never unique. Namely, it gives rise to a three-parameter family of such changes, leading
to the metric-potential pairs (pĝ + qg, pτ̂ + qτ + s), with any constants p,q,s such that
pĝ + qg is positive definite (for instance, p,q may both be positive). In fact, (1.1) holds if
one replaces ĝ, f,θ and τ̂ by g′= pĝ +qg, p f +q, pθ and τ ′= pτ̂ +qτ + s. (Specifically,
(1.1.ii) for τ ′ is immediate as ıvg′ = pıvĝ + qıvg, for v = ∇τ .) In addition, g′ is a Kähler
metric, since the 2-form ω ′= g′(J · , ·) equals pω̂ +qω , and so d ω ′= 0.

The existence of a special biconformal change (1.1) for a pair (g,τ), with prescribed f
and θ , obviously amounts to requiring ĝ given by (1.1.i) to be a Kähler metric such that
v = ∇τ is the ĝ-gradient of some C∞ function τ̂ . The following lemma describes a condi-
tion equivalent to this in the case of Kähler surfaces; a similar result, valid in all complex
dimensions, was obtained by Ganchev and Mihova [10, the text following Definition 4.1].

Lemma 6 Given a metric-potential pair (g,τ) on a compact complex surface M and C∞

functions f ,θ , τ̂ : M→ IR, one has (1.1) for a metric-potential pair of the form (ĝ, τ̂) on
M if and only if, in the notation of (4.1),

i. τ̂ = P(τ) for some C∞ function P : [τmin,τmax]→ IR,
ii. f −Qθ = H(τ), with H = dP/dτ ,

iii. duθ = 0 and dvθ +θY =−H ′(τ), where H ′ = dH/dτ ,
iv. f > max(Qθ ,0).

Sufficiency of (i) – (iv) remains true without the compactness hypothesis.

Proof Necessity: first, (1.1) implies (i). In fact, dτ̂ = ıvĝ = ( f −Qθ)dτ in view of (1.1),
so that (4.3) gives (i) and (ii). Next, by Lemma 5, (5.3) and (ii), [dvθ + θY +H ′(τ)]dτ +
(duθ)ξ = 0, and (iii) follows since ξ is orthogonal to dτ . Finally, (iv) amounts to positive
definiteness of ĝ, cf. (5.2).
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Sufficiency: conditions (ii) – (iv) combined with Lemma 5 and (5.3) show that ĝ defined
by (1.1.i) is a Kähler metric. Also, in view of (1.1.i) and (4.1), ıvĝ = ( f −Qθ)dτ , which,
according to (i) and (ii), equals dτ̂ . This proves (1.1.ii). ut

Remark 2 For any metric-potential pair (g,τ) on a Kähler surface, nontrivial special bicon-
formal changes of (g,τ) exist locally, at points where dτ 6= 0, and the C∞ function P of the
variable τ , such that τ̂ = P(τ) for the resulting pair (ĝ, τ̂), may be prescribed arbitrarily,
as long as dP/dτ > 0. (Cf. Lemma 6(i)-(ii) and (5.2).) This is clear from the final clause of
Lemma 6, since conditions (iii) and (iv) in Lemma 6 can be realized by solving an ordinary
differential equation, with suitably chosen initial data, along each integral curve of v.

6 One general construction

The following theorem provides a method of constructing examples of nontrivial special
biconformal changes in complex dimension 2. In the next four sections this method will be
applied to four specific classes of Kähler surface metrics.

Theorem 1 Given a nonconstant Killing potential τ on a compact Kähler surface (M,g),
the following two conditions are equivalent:

a. (g,τ) admits a nontrivial special biconformal change as in (1.1), with θ which is a C∞

function of τ ,
b. ∆ [S(τ)] = −H ′(τ) for some nonconstant C∞ functions S,H : [τmin,τmax]→ IR and

H ′ = dH/dτ .

Then, up to additive constants, H in (b) coincides with H appearing in Lemma 6, while θ

in (a) and S in (b) are related by θ = dS/dτ .

Proof Assuming (a) and using Lemma 6(iii), one obtains (b) for any S with dS/dτ = θ .
Conversely, (b) easily implies condition (iii) in Lemma 6(iii) for θ = dS/dτ . Adding a
suitable constant to H, one also gets (iv) in Lemma 6 for P, f and τ̂ chosen so as to satisfy
(ii) and (i) in Lemma 6. ut

7 Kähler-Einstein surfaces

On any compact Kähler-Einstein manifold (M,g) such that the constant λ with Ric = λg
is positive and M admits a nontrivial holomorphic vector field, there exists a nonconstant
Killing potential. In fact, by Matsushima’s theorem [15], h= g⊕Jg for the spaces h and g
of all real-holomorphic vector fields and, respectively, all real-holomorphic gradients, where
Jg consists of all Killing fields on (M,g).

Using Theorem 1 one sees that a nontrivial special biconformal change of (g,τ) exists
whenever g is a Kähler-Einstein metric with positive Einstein constant λ on a compact
complex surface M and τ is a nonconstant Killing potential on (M,g). Namely, by (4.2.a),
∆τ = a− 2λτ for some a ∈ IR. Thus, condition (b) in Theorem 1 holds for S(τ) = τ and
H(τ) = λτ2−aτ .
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8 Kähler-Ricci solitons

A Ricci soliton [11] is a Riemannian manifold (M,g) with the property that, for some con-
stant λ , the tensor field λg−Ric is the Lie derivative of g in the direction of some vector
field. Perelman [18, Remark 3.2] proved that, if M is compact, such a vector field must
be the sum of a Killing field and a gradient, or, equivalently, there exists a C∞ function
τ : M→ IR with

∇dτ + Ric = λg for a constant λ . (8.1)

If a C∞ function τ : M→ IR satisfies (8.1), then [4, p. 201]

c = ∆τ − g(∇τ,∇τ) + 2λτ (8.2)

is a constant. In fact, adopting the notation of (4.1) except for the formulae involving J, and
applying to both sides of (8.1) either−2div, or trg followed by d, or, finally, 2ıv, one obtains
−2dY−2 Ric(v, ·)−d s = 0, dY+d s = 0, and, by (4.2.b), dQ+2 Ric(v, ·) = 2λ dτ . (Here
s denotes the scalar curvature, while div∇dτ = dY + Ric(v, ·) by the Bochner identity,
which has the coordinate form vk

, jk = vk
,k j +R jkvk, and divRic = d s/2 in view of the

Bianchi identity for the Ricci tensor.) Adding these three equalities produces the relation
d [∆τ−g(∇τ,∇τ)+2λτ] = 0.

By a Kähler-Ricci soliton one means a Ricci soliton which is at the same time a Kähler
manifold [19,20]. A function τ with (8.1) then is a Killing potential. (Since g and Ric are
Hermitian, so must be ∇dτ as well.) Also, (8.2) can be rewritten as ∆e−τ = (2λτ− c)e−τ.
Thus, by Theorem 1, for every non-Einstein compact Kähler-Ricci soliton (M,g) of complex
dimension 2, the pair (g,τ), where τ is a function satisfying (8.1), admits a nontrivial
special biconformal change. Specifically, condition (b) in Theorem 1 then holds for S(τ) =
e−τ and H(τ) = [2λ (τ +1)− c]e−τ.

9 Conformally-Einstein Kähler surfaces

Let (M,g) be a conformally-Einstein, non-Einstein compact Kähler surface. The scalar cur-
vature s of g then is a nonconstant Killing potential, and so g is an extremal Kähler metric
[1], while s > 0 everywhere and s3+6sY−12Q = 12c for some constant c > 0 (notation
of (4.1)). See [5, Prop. 4 on p. 419 and Theorem 2 on p. 428], [14, Lemma 3 on p. 169].

Conformally-Einstein, non-Einstein Kähler metrics are known to exist on both the one-
point and two-point blow-ups of CP2. The former, found by Calabi [1], is conformal to the
Page metric [17], for reasons given in [5, the top of p. 430]; the existence of the latter is a
result of Chen, LeBrun and Weber [3].

Theorem 1 implies that for every conformally-Einstein, non-Einstein compact Kähler
surface (M,g), the pair (g,τ), with τ = s, admits a nontrivial special biconformal change.
In fact, the equality s3+6sY−12Q = 12c yields condition (b) in Theorem 1 for τ = s and
S(τ) =−τ−1, with H(τ) = cτ−2+ τ/6. The existence of such a biconformal change in this
case was first discovered by LeBrun [14, p. 171, the end of the proof of Prop. 2], who proved
that, with ρ and ω standing for the Ricci and Kähler forms of g,

ρ + 2i∂∂ log s = [(Q+ c)s−2 + s/6]ω + s−2
ξ ∧ d s (9.1)

(notation of (4.1). Equality (9.1) easily implies (1.1.i) with a new Kähler metric ĝ. Namely,
the right-hand side of (9.1) coincides with ω̂ in (5.3), for suitable f and θ , while the Her-
mitian 2-tensor field ĝ characterized by ω̂ = ĝ(J · , ·) is positive definite, cf. Lemma 6(iv);
at the same time, the left-hand side of (9.1) is a closed 2-form.
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10 Special Kähler-Ricci potentials

A special Kähler-Ricci potential [7] on a compact Kähler surface (M,g) is any nonconstant
Killing potential τ : M→ IR such that both Q = g(∇τ,∇τ) and Y= ∆τ are C∞ functions of
τ . This definition, although different from the one given in [7, § 7] for all complex dimen-
sions m ≥ 2, is equivalent to it when m = 2, as a consequence of (4.2) and (4.3). Special
Kähler-Ricci potentials on compact Kähler manifolds (M,g) of any given complex dimen-
sion m ≥ 2 were classified in [8]. They turn out to be biholomorphic to CPm or to holo-
morphic CP1 bundles over complex manifolds admitting Kähler-Einstein metrics. If m≥ 3,
there are other natural conditions which imply the existence of a Kähler-Ricci potential [7,
Corollary 9.3], [12, Theorem 6.4].

If (M,g) is a compact Kähler surface with a special Kähler-Ricci potential τ , any non-
constant C∞ function S : [τmin,τmax] → IR satisfies condition (b) in Theorem 1. Conse-
quently, by Theorem 1, the pair (g,τ) then admits a nontrivial special biconformal change
(1.1), in which θ may be any prescribed C∞ function of τ other than the zero function.

11 Geodesic gradients

We say that a nonconstant Killing potential τ on a compact Kähler manifold (M,g) has a
geodesic gradient if all the integral curves of ∇τ are reparametrized geodesics. By (4.3),
this amounts to requiring that Q = g(∇τ,∇τ) be a C∞ function of τ , since (4.2.b) gives
2∇vv = ∇Q (notation of (4.1)).

Thus, every special Kähler-Ricci potential (Section 10) has a geodesic gradient. Further
examples, which are not special Kähler-Ricci potentials, are described in the Appendix.

Theorem 2 For every nonconstant Killing potential τ with a geodesic gradient on a com-
pact Kähler surface (M,g), other than a special Kähler-Ricci potential, there exists a non-
trivial special biconformal change (1.1) of the pair (g,τ), for which H, defined in Lemma 6,
can be, up to an additive constant, any prescribed nonconstant C∞ function of the variable
τ ∈ [τmin,τmax] such that H ′ = dH/dτ is L2-orthogonal to linear functions of τ .

For a proof, see the final paragraph of the Appendix.

12 Biconformal changes defined on an open submanifold

The last five sections described examples of nontrivial special biconformal changes that
naturally arise in certain classes of compact Kähler surfaces. As we will see below and in
Section 14, there are also circumstances in which, for a given metric-potential pair (g,τ)
on a compact complex surface M, one naturally obtains a nontrivial special biconformal
change (1.1) of (g,τ) restricted to the dense open submanifold M′ characterized by the
condition dτ 6= 0, while the functions f ,Qθ , τ̂ in (1.1), cf. (4.1), and the metric ĝ, all have
C∞ extensions to M. The only difference between this case and the standard one (defined in
the Introduction) is that θ , unlike Qθ , may now fail to have a C∞ extension to M.

To provide an example of such a situation, we let M stand either for CP2 or for the one-
point blow-up of CP2, so that M is a simply connected compact complex surface with an
effective action of U(2) by biholomorphisms. For any U(2)-invariant Kähler metric g on
M, a fixed vector field u generating the action of the center U(1)⊂ U(2) is a U(2)-invariant
g-Killing field. Thus, u = J(∇τ) for some nonconstant Killing potential τ on (M,g). (Cf.
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[7, Lemma 5.3].) One may say that such τ is associated with g. As the principal orbits of
the U(2) action are three-dimensional, every U(2)-invariant C∞ function M → IR is, by
(4.3), a C∞ function of τ . Applied to the functions Q = g(∇τ,∇τ) and Y = ∆τ , this shows
that τ then is a special Kähler-Ricci potential on (M,g), cf. Section 10.

Lemma 7 For M and M′ ⊂ M as above, any U(2)-invariant Kähler metrics g, ĝ on M,
and nonconstant Killing potentials τ, τ̂ associated with them, the pair (ĝ, τ̂) restricted to
M′ arises from (g,τ) by a biconformal change (1.1). If, in addition, M is the one-point
blow-up of CP2, then the functions f and Qθ in (1.1), as well as the corresponding eigen-
space bundles V and H , introduced in Section 5, all have C∞ extensions to M such that
f > max(Qθ ,0) on M, cf. (4.1).

Proof Let us denote by V the complex-line subbundle of TM′, spanned by v = ∇τ (that is,
by u = Jv). The g-orthogonal complement H = V ⊥ of V in TM′, relative to any U(2)-
invariant Kähler metric g, does not depend on the choice of such a metric. In fact, being
g-orthogonal to v =−Ju, the subbundle H is contained in the real three-dimensional sub-
bundle tangent to the orbits of the U(2) action. (As v is the g-gradient of the U(2)-invariant
function τ , it is orthogonal to the orbits.) Independence of H from g now follows since a
real three-dimensional subspace of a complex two-dimensional vector space contains only
one complex subspace of complex dimension 1.

For any two U(2)-invariant Kähler metrics g, ĝ, one clearly has (5.1) with some positive
C∞ functions f ,χ : M′→ IR. Defining θ , on M′, by χ = f −Qθ , we now obtain (1.1.i) on
M′, while (1.1.ii) is obvious as ∇̂τ̂ = −Ju = ∇τ . Finally, if M is the one-point blow-up of
CP2, then V (and hence H as well) has a C∞ extension to a subbundle of TM, due to the
fact that M is a holomorphic CP1 bundle over CP1 and V is tangent to the fibres. ut

13 More on U(2)-invariant Kähler metrics

Let us consider the one-point blow-up M of CP2, with the effective action of U(2) by bi-
holomorphisms. By central automorphisms of M we mean transformations that belong the
holomorphic action of C∗ on M, generated by the action of the center U(1)⊂ U(2). They all
commute with the action of U(2). Thus, the pullback of any U(2)-invariant Kähler metric
on M under any central automorphism of M is again a U(2)-invariant Kähler metric on M.

Suppose, in addition, that g, ĝ are U(2)-invariant Kähler metrics on M, and let τ, τ̂
denote the nonconstant Killing potentials associated with them (Section 12). According to
the final clause Lemma 7 and (5.2), one has (5.1) with positive C∞ functions f ,χ : M→ IR,
where χ = f −Qθ . Both f and χ are constant on either of the two exceptional orbits Σ±

of the U(2) action, biholomorphic to CP1. (In fact, f and χ are U(2)-invariant, since so are
both metrics.) Let the constants f± and χ± be the values of f and χ on Σ±. The positive
real number

d(g,ĝ) = χ
+

χ
−/( f+ f−) (13.1)

is an invariant which remains unchanged when one of the metrics g, ĝ is replaced with its
pullback under any central automorphism of M (since the pair (χ+,χ−) then is replaced by
(rχ+,r−1χ−) for some r ∈ (0,∞)). On the other hand, d(g,ĝ) = 1 when (ĝ, τ̂) arises from
(g,τ) by a special biconformal change: in fact, f±= χ±, as χ = f −Qθ and Q = 0 on Σ±.

This shows that (b) implies (a) in the following proposition.

Proposition 1 For any U(2)-invariant Kähler metrics g, ĝ on the one-point blow-up of
CP2, and nonconstant Killing potentials τ, τ̂ associated with them in the sense of Section 12,
the following two conditions are equivalent:
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a. d(g,ĝ) = 1,
b. (ĝ, τ̂) arises by a special biconformal change from the pullback of (g,τ) under some

central automorphism of M.

Proof It suffices to verify that (a) leads to (b). Because of how χ± change under the action
of a central automorphism (see above), one may use a pullback as in (b) to replace χ+ with
the value f+. As d(g,ĝ) = 1, (13.1) now gives χ− = f− as well. Since χ = f −Qθ , it
follows that Qθ = 0 on Σ±.

In view of the final clause of Lemma 7, the assertion will follow if one shows that θ

(and not just Qθ ) has a C∞ extension to M. To this end, fix a point x ∈ Σ± and identify a
neighborhood of x in M diffeomorphically with U×D, so that the flow of u consists of
the rotations (y,z) 7→ (y,zq), where q ∈ C and |q| = 1 (notation of Remark 1, for k = 2).
According to Remark 1, both Q and Qθ is smoothly divisible by |z|2, while Q/|z|2 is
positive on U×{0}, and so θ = [(Qθ)/|z|2]/(Q/|z|2) is smooth everywhere in U×D. That
the Hessian of Q is nonzero everywhere in Σ± follows since the same is true of the Hessian
of τ , cf. [7, Remark 5.4]. Namely, differentiating (4.2.b) one sees that the former Hessian
equals twice the square of the latter, if both are identified with morphisms TM→ TM as in
the lines preceding (2.1). ut

Let g and ĝ denote the two distinguished U(2)-invariant Kähler metrics on the one-point
blow-up of CP2, mentioned at the end of the Introduction. According to Lemma 7, the cor-
responding pairs (g,τ) and (ĝ, τ̂) arise from each other by the weaker version of a bicon-
formal change, described at the beginning of Section 12. The value of d(g,ĝ) in this case
is not known; if that value turns out to be 1, a stronger conclusion will be immediate from
Proposition 1.

14 Another construction

In contrast with Theorem 1, the following result may lead to biconformal changes of a more
general kind, introduced at the beginning of Section 12.

Theorem 3 Suppose that τ is a nonconstant Killing potential on a compact Kähler surface
(M,g) and a Kähler metric ĝ on M represents the same Kähler cohomology class as g.
Using the notation of (4.1), let us fix a C∞ function ψ : M→ IR such that the Kähler forms
ω of g and ω̂ of ĝ are related by ω̂ = ω +2i∂∂ ψ , and denote by M′ the open subset of
M on which dτ 6= 0.

If there exists a special biconformal change of (g,τ) leading to a pair (ĝ, τ̂), for some
nonconstant Killing potential τ̂ on (M, ĝ), then

dvψ is a C∞ function of τ and duψ = 0. (14.1)

Conversely, if (14.1) holds, then, for some nonconstant Killing potential τ̂ on (M, ĝ),
the pair (ĝ, τ̂), restricted to M′, arises from (g,τ) by a special biconformal change on M′,
and, on M′, one has (1.1) with

f = ∆ψ +1− d(dvψ)/dτ , θ = [∆ψ−2d(dvψ)/dτ]/Q, τ̂ = τ +dvψ . (14.2)

Proof Let some special biconformal change, applied to (g,τ), produce (ĝ, τ̂). Since u is a
Killing field for both g and ĝ (Section 2), the Lie derivatives £uω and £uω̂ both vanish,
while £u commutes with ∂∂ as u is holomorphic. Thus, duψ lies in the kernel of ∂∂ and



12

vanishes at points where dτ = 0, which is only possible if duψ = 0 identically. Now, by
(1.1.ii) and Lemma 3, dτ̂ = dτ +d (dvψ). Consequently, Lemma 6(i) yields (14.1).

Conversely, let us assume (14.1) and define f ,θ , τ̂ by (14.2). Lemma 3 gives ĝ(v, ·)−
g(v, ·) = dτ̂ − dτ = d(dvψ), so that ĝ(v, ·) equals the function 1+ d(dvψ)/dτ = f −Qθ

times dτ = g(v, ·). Hence v is, at every point of M′, an eigenvector, for the eigenvalue
f −Qθ , of ĝ treated, with the aid of g, as a bundle morphism TM′→ TM′. The Hermitian
2-tensor field π = (dτ ⊗ dτ + ξ ⊗ ξ )/Q (notation of (4.1)) is, obviously, the orthogonal
projection onto the complex-line subbundle V of TM′, spanned by v, provided that one
identifies π , as in the lines preceding (2.1), with a morphism A : TM′→ TM′. Similarly,
g−π is the orthogonal projection onto H = V ⊥. The other eigenvalue of ĝ, corresponding
to eigenvectors in H , is f. (In fact, the sum of the two eigenvalues is trgĝ/2, which equals
2+∆ψ , as one sees noting that, by (3.2), the relation ω̂ = ω + 2i∂∂ ψ amounts to ĝ =
g+∇dψ +(∇dψ)(J ·,J ·).) The spectral decomposition ĝ = f (g− π)+ ( f −Qθ)π now
implies (1.1.i), on M′, while Lemma 3 yields (1.1.ii), completing the proof. ut

15 The integral obstruction

One can ask whether a nontrivial special biconformal change exists for every metric-po-
tential pair (g,τ) on a compact complex surface M. Here are two comments related to this
existence question.

First, due to compactness of M, for such a special biconformal change (1.1), the func-
tions f and θ are uniquely determined by H : [τmin,τmax]→ IR appearing in Lemma 6.
Namely, the zero function is the only C∞ solution φ : M→ IR to the homogeneous equa-
tion dvφ + φY = 0, associated with the equation imposed on θ in Lemma 6(iii). In fact,
the Killing potential τ has a finite number of critical manifolds (see the lines following
(4.3)). At the same time, Y = ∆τ is negative at points where τ = τmax, since the Hessi-
an ∇dτ is negative semidefinite and nonzero at such points (cf. [7, Remark 5.4]). Thus,
there exist δ ,ε ∈ (0,∞) with the property that dτ 6= 0 and Y ≤ −δ everywhere in the
open set U on which 0 < τmax− τ < ε . Any integral curve [0,∞) 3 t 7→ x(t) of v = ∇τ

with τ(x(0)) ∈ U lies entirely in U. A solution φ to dvφ + φY = 0, if not identically
zero along the integral curve, may be assumed positive everywhere on the curve, and then
d [log φ(x(t))]/dt =−Y (x(t))≥ δ > 0, so that φ(x(t))→∞ as t→∞, contrary to compact-
ness of M. Thus, H determines θ , and hence f, cf. Lemma 6(ii).

Secondly, let us fix a metric-potential pair (g,τ) on a compact complex surface M. In an
attempt to find a nontrivial special biconformal change of (g,τ), one might begin by select-
ing a nonconstant C∞ function H : [τmin,τmax]→ IR, which would then become the function
H corresponding to such a biconformal change as in Lemma 6(ii). (It is nonconstant as we
want the change to be nontrivial, cf. the preceding paragraph.) Using the notation of (4.1),
we consider an arbitrary maximal integral curve IR3 t 7→ x(t) of v=∇τ , and set ( )̇ = d/dt
(which is applied to functions restricted to the curve). Our initial task is to find conditions
on W =−dH/dτ and Y= ∆τ , restricted to the curve, necessary and sufficient for the linear
ordinary differential equation

θ̇ + θY = W (15.1)

to have a solution θ : IR→ IR with finite limits θ(±∞). Such θ , if it exists, must be unique.
This is obvious from the preceding paragraph (which actually shows more: namely, there is
at most one solution θ with a finite limit at ∞, and at most one with a finite limit at −∞).
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Writing
∫ b

a [h] instead of
∫ b

a h(t)dt whenever h : IR→ IR is a continuous function and
a,b ∈ IR∪{∞,−∞}, we see that the condition∫

∞

−∞
[ζW ] = 0, where ζ = eZ and Z : IR→ IR is an antiderivative of Y, (15.2)

is necessary for the existence of a bounded solution θ to (15.1), as well as sufficient for
(15.1) to have a solution θ with finite limits θ(±∞). (Under our assumptions, ζ is al-
ways integrable, and hence so is ζW , while the equality in (15.2) remains unchanged if one
replaces Z by another antiderivative of Y.) In fact, necessity of (15.2) follows since, multi-
plying both sides of (15.1) by ζ , we can rewrite (15.1) as (ζ θ )̇ = ζW, while boundedness
of θ implies that ζ θ has limits equal to 0 at both ∞ and −∞, so that integrating the last
equality we get (15.2). For sufficiency, note that, in view of l’Hospital’s rule, θ(±∞) =
W (±∞)/Y (±∞) if one defines the solution θ to (15.1) by θ(t) = [ζ (t)]−1 ∫ t

−∞
[ζW ].

The requirement that (15.2) hold along every maximal integral curve of v, as a restriction
on the choice of a nonconstant C∞ function H : [τmin,τmax]→ IR that would become the
function H of Lemma 6(ii) for a nontrivial special biconformal change of (g,τ), is therefore
necessary for such a biconformal change to exist. How restrictive this requirement is depends
on (g,τ). For instance, if τ is a special Kähler-Ricci potential on (M,g), (15.2) states that
W, as a function of τ ∈ [τmin,τmax], should be L2-orthogonal to just one specific function
of τ . In general, however, the dependence of τ on t varies with the integral curve, so that
(15.2) amounts to a much stronger L2-orthogonality condition.

16 Remarks on the Ricci form and scalar curvature

Let g be a Kähler metric on a complex manifold M of complex dimension m≥ 2. The Ricci
form of g then is given by ρ = Ric(J · , ·). The Ricci forms of two Kähler metrics g, ĝ on
M are related by ρ̂ = ρ− i∂∂ logγ , where ω̂ ∧m = γ ω ∧m, that is, γ : M→ (0,∞) is the ratio
of the volume elements. If (g,τ) and (ĝ, τ̂) are metric-potential pairs on M, with a special
biconformal change (1.1), this yields

ρ̂ = ρ − (m−1)i∂∂ log f − i∂∂ log( f −Qθ), (16.1)

since γ = ( f −Qθ) f m−1, cf. (5.2).
When m = 2, we have γ = ( f −Qθ) f, as well as 4ρ ∧ ω = sω ∧ ω , while 4(i∂∂ ψ)∧

ω = (∆ψ)ω∧ω for any function ψ , and 4ρ∧ ξ ∧ dτ =−(Qs+ dvY )ω∧ω . The last three
relations are direct consequences of the easily-verified formula

4ζ ∧α ∧ ξ = [(trIRA)g(v,v)−2g(Av,v)]ω ∧ ω (16.2)

valid whenever (M,g) is a Kähler surface, ω stands for its Kähler form, v is a tangent
vector field, A : TM→ TM is a bundle morphism commuting with the complex structure
tensor J and self-adjoint at every point, while ζ = g(JA· , ·), α = g(v, ·) and ξ = g(Jv, ·).
Note that (16.2) gives 4ζ ∧ ω = (trIRA)ω ∧ ω . Hence, by (16.1) with m = 2 and (5.3), the
scalar curvatures s of g and ŝ of ĝ satisfy the relation

γ ŝ = ( f − Qθ)(s−∆ logγ) + θ dv(dv logγ−Y ). (16.3)

The equalities γ = ( f −Qθ) f and f−Qθ = H(τ) (see Lemma 6(ii)) make it possible to
rewrite (16.3) in a number of ways.
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Appendix: Killing potentials with geodesic gradients

The following construction generalizes that of [8, §5] (in the case m = 2), and gives rise to
compact Kähler surfaces (M,g) with nonconstant Killing potentials τ , which have geodesic
gradients, but need not be special Kähler-Ricci potentials.

One begins by fixing a nontrivial closed interval I = [τmin,τmax], a constant a∈ (0,∞), a
compact Kähler manifold (N,h) of complex dimension 1 (or, equivalently, a closed oriented
real surface N endowed with a Riemannian metric h), C∞ mappings I 3 τ 7→ Q ∈ IR and
c : N→ IRP1r I such that Q = 0 at the endpoints τmin,τmax and Q > 0 on the open interval
I◦= (τmin,τmax), while Q′ = 2a at τmin and Q′ = −2a at τmax. The use of the symbol
c conforms to the notations of [8, §5], where c ∈ IRr I ⊂ IRP1r I was a real constant.
Here and below, ( )′= d/dτ and IR is treated as a subset of IRP1 via the usual embedding
τ 7→ [τ,1] (the brackets denoting, this time, the homogeneous coordinates in IRP1). For
algebraic operations involving ∞ = [1,0] ∈ IRP1 and elements of IR ⊂ IRP1, the standard
conventions apply; thus, ∞−1= 0. Since we need a canonically selected point τ∗ in I, we
choose τ∗ to be the midpoint of I.

In addition, let us fix a C∞ complex line bundle L over N along with an Hermitian fibre
metric 〈 ,〉 in L , and a connection in L making 〈 ,〉 parallel and having the curvature
form Ω = −a(τ∗− c)−1ω(h), where ω(h) is the Kähler form of (N,h). (Thus, Ω = 0 at
points at which c = ∞.) The symbol L also denotes the total space of the bundle, while
V and H stand for the vertical distribution Ker dπ and the horizontal distribution of our
connection, π being the projection L → N. Treating the norm function r : L → [0,∞) of
〈 ,〉, simultaneously, as an independent variable ranging over [0,∞), we finally select a C∞

diffeomorphism I◦ 3 τ 7→ r ∈ (0,∞) such that dr/dτ = ar/Q.
The above data allow us to define a Riemannian metric g on M′ = L rN, where N

is identified with the zero section, by g = (τ∗− c◦π)−1(τ− c◦π)π∗h or g = π∗h on H ,
g = (ar)−2QRe〈 ,〉 on V , and g(H ,V ) = {0}. On H , the first formula is to be used in the
π-preimage of the set in N on which c 6= ∞, and the second one on its complement. Note
that, due to the fixed diffeomorphic correspondence between the variables τ and r, we may
view τ (and hence Q) as a function M′→ IR, while C∞-differentiability of the algebraic
operations in IRP1, wherever they are permitted, implies that g is of class C∞.

The vertical vector field v on L , the restriction of which to each fibre of L equals
a times the radial (identity) vector field on the fibre, is easily seen to have the property
that dv = Qd/dτ , with both sides viewed as operators acting on C∞ functions of τ . Hence
v = ∇τ , that is, v is the g-gradient of τ .

Clearly, (M′,g) becomes an almost Hermitian manifold when equipped with the unique
almost complex structure J such that the subbundles V and H of TM′ are J-invariant and
Jx restricted to Vx, or Hx, for any x ∈M′, coincides with the complex structure of the fibre
Lπ(x) or, respectively, with the dπx-pullback of the complex structure of N.

If M now denotes the CP1 bundle over N obtained as the projective compactification of
L , then g,τ and J have C∞ extensions to a metric, function and almost complex structure
on M, still denoted by g,τ and J. In addition, g is a Kähler metric, that is, ∇J = 0, while
τ is a Killing potential with a geodesic gradient on the compact Kähler surface (M,g), but,
unless the function c : N→ IRP1r I is constant, τ is not a special Kähler-Ricci potential.
For details, see [6].

Proof of Theorem 2 The following classification theorem was established in [6]:
Let τ be a nonconstant Killing potential with a geodesic gradient on a compact Kähler

surface (M,g). If τ is not a special Kähler-Ricci potential on (M,g), then, up to a bihol-
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omorphic isometry, the triple (M,g,τ) arises from the above construction applied to some
data I,a,N,h,L ,〈 ,〉,H ,c and τ 7→ Q with the required properties, such that the function
c : N→ IRP1r I is nonconstant.

We may thus assume that (M,g) and τ are the objects constructed above. For H as
in the statement of Theorem 2 and any fixed y ∈ N, let Fy : [τmin,τmax]→ IR be the an-
tiderivative, vanishing at τmin, of the function −[τ − c(y)]H ′(τ) of the variable τ . Thus,
Fy = 0 at both endpoints τmin,τmax. Due to the boundary conditions imposed on Q and the
first-order Taylor formula, Fy is is smoothly divisible by Q on the whole closed interval
[τmin,τmax], that is, QEy(τ) = Fy(τ) for some C∞ function Ey, and we may define a C∞

function θ : M→ IR by θ(x) = Ey(τ)/[τ − c(y)]. (Here τ stands for τ(x), and y = π(x),
with π : M→ N denoting the bundle projection.)

Next, Y = ∆τ is given by Y = (τ − c ◦ π)−1Q+ dQ/dτ (see [6]). Since, as we noted
above, dv = Qd/dτ , condition (iii) of Lemma 6 follows. Adding a constant to H, we also
obtain (iv) in Lemma 6, if P, f and τ̂ are chosen so as to satisfy (ii) and (i) in Lemma 6.
This completes the proof. ut

Acknowledgements The author thanks Gideon Maschler for helpful comments and suggestions, including
the italicized observation at the end of Section 10.

References

1. Calabi, E.: Extremal Kähler metrics. In: Yau, S.-T. (ed.) Seminar on Differential Geometry, pp. 259–290.
Annals of Math. Studies 102, Princeton Univ. Press, Princeton, NJ (1982)

2. Cao, H.-D.: Existence of gradient Kähler-Ricci solitons. In: Chow, B., et al. (eds.) Elliptic and Parabolic
Methods in Geometry, Minneapolis, MN, 1994, pp. 1–16. A.K. Peters, Wellesley, MA (1996)

3. Chen, X., LeBrun, C., Weber, B.: On conformally Kähler, Einstein manifolds. J. Amer. Math. Soc. 21,
1137–1168 (2008)

4. Chow, B.: Ricci flow and Einstein metrics in low dimensions. In: LeBrun, C., Wang, M. (eds.) Surveys
in Differential Geometry, Vol.VI, pp. 187–220. Internat. Press, Boston, MA (1999)
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