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Abstract. A tensor – meaning here a tensor field Θ of any type (p, q) on

a manifold – may be called integrable if it is parallel relative to some tor-

sion-free connection. We provide analytical and geometric characterizations
of integrability for differential q-forms, q = 0, 1, 2, n − 1, n (in dimension n),

vectors, bivectors, symmetric (2, 0) and (0, 2) tensors, as well as complex-di-

agonalizable and nilpotent tensors of type (1, 1). In most cases, integrability
is equivalent to algebraic constancy of Θ coupled with the vanishing of one

or more suitably defined Nijenhuis-type tensors, depending on Θ via a qua-
silinear first-order differential operator. For (p, q) = (1, 1), they include the

ordinary Nijenhuis tensor.

1. Introduction

We refer to a tensor field Θ of any type on a manifold M as algebraically
constant when, for any x, y ∈ M, some linear isomorphism TxM → TyM sends

Θx to Θy. The algebraic constancy amounts to being constant for functions, to
vanishing nowhere or everywhere in the case of vector fields and 1-forms, and to
having constant rank for symmetric or skew-symmetric (0, 2) and (2, 0) tensors.

We call a tensor field Θ integrable if some torsion-free connection makes it
parallel, and locally constant if it has constant components in suitable local coor-
dinates around each point. As one sees using a partition of unity, for integrability
of Θ it suffices that such torsion-free connections exist locally. Consequently,

(1.1) the local constancy of Θ implies its integrability (but not conversely),

counterexamples to the converse being nonflat pseudo-Riemannian metrics.
Given an algebraically constant tensor Θ on a manifold M and a distribution

D ⊆ TM naturally associated with it, as D is obviously ∇-parallel when ∇Θ = 0,

(1.2) the integrability of Θ implies the distribution integrability of D.
The local constancy of an algebraically constant tensor is nothing else than integra-
bility, in the sense of [17, Prop. 1.1], of the corresponding G-structure (Remark 6.1).

With a (1, 1) tensor Θ on a manifold M one associates its Nijenhuis tensor
N, introduced by Nijenhuis [21] and studied by many others [4, 5, 7, 11, 12, 14,

2010 Mathematics Subject Classification. Primary 53C15 and Secondary 53D17.

Key words and phrases. Integrable tensor field, Nijenhuis tensor.
Research supported in part by a FAPESP-OSU 2015 Regular Research Award (FAPESP

grant: 2015/50265-6). The third author was also supported by NSF DMS-2247747.

1



2 A. DERDZINSKI, P. PICCIONE, AND I. TEREK

16, 19, 28], which sends vector fields v, w to the vector field

(1.3) N(v, w) = Θ[Θv, w] + Θ[v,Θw] − [Θv,Θw] − Θ2[v, w].

As pointed out by several authors [7, Sect. 2.3], [4, Definition 2.2], N = 0 identically
whenever Θ is integrable since, for any torsion-free connection ∇ on M,

(1.4) N(v, w) = [Θ∇vΘ − ∇ΘvΘ]w + [∇ΘwΘ − Θ∇wΘ]v.

Various generalizations of the Nijenhuis tensor have been proposed [3, 18, 24, 25,
27]. Below, after stating Proposition F, we elaborate on such generalizations that
are of interest to us and have therefore been introduced in this paper.

Complex-diagonalizability of a linear endomorphism of a finite-dimensional real
vector space V means, as usual, diagonalizability of its complex-linear extension
to the complexification of V . Since any endomorphism of V is, uniquely, the sum
of a complex-diagonalizable and a nilpotent one [15, Sect. 4.2], it is natural to deal
with these two classes of endomorphisms separately.

In Sect. 5, 8–9, 11, 13, 14 and 15–16 we prove our six main results, stated below.
We begin with a fact due to Kurita [19, Theorem 9], which also easily follows (see
Sect. 3) from a theorem of Bolsinov, Konyaev and Matveev [4, Theorem 3.2]:

Remark A. For an algebraically constant complex-diagonalizable (1, 1) tensor
Θ on a manifold M of dimension n ≥ 1, the vanishing of N is equivalent to the
integrability of Θ, as well as to its local constancy.

Algebraically constant tensors Θ of type (1, 1) give rise to the vector sub-
bundles Zi = Ker Θi and Bi = Im Θi of TM, for integers i ≥ 0.

Theorem B. Given an algebraically constant nilpotent (1, 1) tensor Θ on a
manifold M of dimension n ≥ 1, the following four conditions are equivalent.

(i) N = 0 and Zi = Ker Θi is integrable for every i = 1, . . . , n.
(ii) In some commuting local frame e1, . . . , en around each point, Θ has the

Jordan normal form, with Θe1 = 0 and Θei = 0 or Θei = ei−1 if i > 1.
(iii) Θ is locally constant.
(iv) Θ is integrable.

The Jordan normal form of an algebraically constant nilpotent (1, 1) tensor
Θ may be represented by

(1.5) a weakly decreasing string d1. . . dm of positive integers,

each dq standing for a dq× dq Jordan block matrix with ones immediately above
the diagonal and zeros everywhere else. Of interest to us are the Jordan normal
forms d1. . . dm such that d1 = . . . = dm−1. In other words,

(1.6)
either all blocks have the same length, or they represent exactly
two different lengths, with the shorter one occurring just once.

We say that a given algebraic type of an algebraically constant nilpotent (1, 1)
tensor Θ is controlled by the Nijenhuis tensor if the vanishing of N implies, on
any underlying manifold, the local constancy of Θ.

Theorem C. Condition (1.6) imposed on the Jordan normal form of an al-
gebraically constant nilpotent (1, 1) tensor Θ on a manifold M of dimension
n ≥ 1 is necessary and sufficient for the algebraic type of Θ to be controlled by its
Nijenhuis tensor.
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Theorem C would be true as stated even if our definition of being controlled by
N referred to integrability rather than local constancy. Namely, Proposition 8.1
– our proof of the necessity of (1.6) – realizes any Θ not satisfying (1.6) as a
left-invariant tensor with N = 0 on a step 2 nilpotent Lie group, which fails the
integrability test (1.1) due to having nonintegrable Ker Θp for some integer p ≥ 1.

For nilpotent (1, 1) tensors Θ which are generic, that is, dim Ker Θ = 1 or,
equivalently, the Jordan normal form of Θ is the one-term string n (a single Jordan
block), the sufficiency of (1.6) in Theorem C is a result of Kobayashi [16, Sect. 3].
See also [12, Cor. 2.4], [28, Theorem 1], [5, Theorem 1.3, Cor. 1.5], [4, Theorem 4.6].
Kobayashi [16, Sect. 5] further illustrated the necessity of (1.6) by an example, with
n = 4 and the Jordan normal form 211, cited in [4, Example 2.1].

Sect. 10 exhibits a special case of Theorem C by means of an affine-bundle
construction, resulting in nonzero algebraically constant nilpotent (1, 1) tensors
Θ with N = 0, satisfying the condition Θ2 = 0 (equivalent to Im Θ ⊆ Ker Θ, that
is, to having the Jordan normal form 2 . . . 2 or 2 . . . 21 . . . 1).

For the normal form 2 . . . 2, also characterized by the equality Ker Θ = Im Θ,
corresponding to the almost-tangent structures [31], the assertion of Theorem C
is due to Goel [11, Theorem 2.4], while our affine-bundle construction becomes
that of Crampin and Thompson [9]. Our construction is “locally universal” (The-
orem 10.1), which generalizes the local version of [9, Theorem on p. 69].

We justify the following observation in Sect. 11.

Proposition D. The closedness of an algebraically constant differential q-
form on an n-manifold, q = 0, 1, 2, n− 1, n, implies its local constancy.

The converse implication (closedness from integrability, and hence also from
local constancy) is obviously true for forms of all degrees.

Even weakened by the replacement of local constancy with integrability – cf.
(1.1) – Proposition D fails to hold for differential forms of other degrees: as we
verify in Sect. 12, for any dimension n ≥ 5 and any q ∈ {3, . . . , n − 2}, in local
coordinates x1, . . . , xn, the following formula defines a differential q-form ζ which
is algebraically constant and closed, but not integrable:

(1.7) ζ = (dx1∧ dx2 + dx3∧ dx4) ∧ (dx5+ x1dx2− x3dx4) ∧ dx6∧ . . . ∧ dxq+2.

Constant-rank (skew)symmetric (0, 2) and (2, 0) tensors, being bundle morphisms
TM → T ∗M or T ∗M → TM, have well-defined unique kernels and images. The
next displayed condition uses the natural concept of projectability, presented in
Sect. 2: for the integrability of a constant-rank symmetric (0, 2) tensor g on a
manifold, it is necessary and sufficient – as we justify in Sect. 13 – that

(1.8) the distribution Ker g be integrable, and g projectable along Ker g.

Condition (1.8), rephrased as £vg = 0 for every local section v of Ker g, is well
known to be an integrability test for g. To the best of our knowledge, this fact goes
back to Moisil [20] and Vrănceanu [30]. See also [8, 22, 26], [10, Theorem 5.1].

The sweeping recent result of Bandyopadhyay, Dacorogna, Matveev and Tro-
yanov [1, Theorem 4.4] provides a characterization of local constancy for (0, 2)
tensors without any symmetry/skew-symmetry assumptions. The criterion (1.8),
much more modest in scope, focuses on the symmetric case and integrability (as
opposed to local constancy); what we gain is simplicity of the resulting conditions.
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In contrast with 1-forms (Proposition D), the local constancy of a vector field
obviously follows just from its algebraic constancy. An analogous difference occurs
between symmetric (2, 0) tensors and symmetric (0, 2) tensors: the former – unlike
the latter – require no projectability condition to guarantee integrability.

Proposition E. The integrability of a constant-rank symmetric (2, 0) tensor
Θ on a manifold is equivalent to the integrability of Im Θ.

Such tensors Θ can be naturally identified (see Remark 2.3) with sub-pseu-
do-Riemannian metrics [13], which include the sub-Riemannian ones [2], such as
the Galilei spacetime metric.

For a bivector, that is, a skew-symmetric (2, 0) tensor Θ, assumed to have
constant rank, formula (2.7) defines the restriction of Θ to B = Im Θ, which is a
nondegenerate section of B∧2, thus giving rise to its inverse, a section of [B∗]∧2.

Proposition F. A constant-rank bivector Θ on a manifold is locally constant
or – equivalently – integrable if and only if the distribution Im Θ is integrable and
the inverse of the restriction of Θ to Im Θ is closed along each leaf of Im Θ.

The generalizations of the Nijenhuis tensor which are of interest to us are
motivated by Remark A, Theorem C and Proposition D: we want to associate with
a given tensor Θ one (or more) Nijenhuis-type tensor(s), each depending on Θ via
a quasilinear first-order differential operator, in such a way that, if Θ algebraically
constant, the vanishing of these tensors is equivalent to the integrability of Θ.

As an example, N given by (1.3) serves in this capacity for complex-diago-
nalizable (1, 1) tensors and nilpotent (1, 1) tensors with the property (1.6); its
quasi-linearity is immediate from (1.4). In the case of differential q-forms ζ in
dimension n, where q ∈ {0, 1, 2, n− 1, n} (but not – see (1.7) – for other degrees),
the exterior derivative dζ is a Nijenhuis-type tensor in our sense, while an analogous
role for vector fields is played by the zero tensor.

For any symmetric (0, 2) tensor g of constant rank r on a manifold M, we
introduce two Nijenhuis-type tensors N ′ and N ′′, both of type (0, 2r+ 3), defined
as follows: N ′ (or, N ′′) sends vector fields v, v1, . . . , vr (or, w, u, v1, . . . , vr) to the
(r + 2)-form, or (r + 1)-form

(1.9)
a) N ′(v, v1, . . . , vr) = d[g(v, · )] ∧ g(v1, · ) ∧ . . . ∧ g(vr, · ),
b) N ′′(w, u, v1, . . . , vr) = {[£g](w, u)} ∧ g(v1, · ) ∧ . . . ∧ g(vr, · ),

[£g](w, u) being treated here, formally, as a 1-form sending any vector field v to
the function [£vg](w, u). The word ‘formally’ reflects the fact that [£g](w, u) is
not tensorial in v. Nevertheless, in Sect. 16 we point out that N ′ and N ′′ are
well-defined tensors, and prove the following result.

Theorem G. The vanishing of both N ′ and N ′′ is necessary and sufficient for
the integrability of the given symmetric (0, 2) tensor g of constant rank r.

The lines following formula (15.3) in Sect. 15 provide a set of d1 Nijenhuis-type
tensors for an algebraically constant nilpotent (1, 1) tensor Θ with the Jordan
normal form d1. . . dm. This set consists of N – see (1.3) – and d1− 1 additional
tensors responsible for integrability of Ker Θi, 1 ≤ i < d1 (which makes them
redundant in the case (1.6), due to Theorem C).

Finally, formulae (15.4) – (15.5) in Sect. 15 define, for (skew)symmetric (2, 0)

tensors Θ of constant rank r, a Nijenhuis-type (2r + 3, 0) tensor N̂ such that
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N̂ = 0 if and only if Im Θ is integrable. When Θ is symmetric, vanishing of N̂
thus amounts, by Proposition E, to integrability of Θ. However, for a rank r bi-

vector Θ, the condition N̂ = 0, despite still being necessary, is not sufficient in
order that Θ be integrable. Obvious examples illustrating the last claim arise, cf.
Proposition F, on a product manifold M = Σ×Σ′, with Θ obtained as the trivial
extension to M of the inverse of a nonclosed nondegenerate 2-form on Σ.

2. Preliminaries

Manifolds (by definition connected) and mappings, including sections of bun-
dles, are always assumed to be smooth. Tensor fields will usually be referred to as
tensors. All vector spaces are real (except in Sect. 3) and finite-dimensional.

Given a manifold M and vector subbundles D,D′,D′′ of TM, we write

(2.1) [D,D′] ⊆ D′′

when [w,w′] is a local section of D′′ for any local sections w of D and w′ of D′.

Lemma 2.1. For M,D,D′ as above, suppose that D contains D′with codimen-
sion one, and [D,D′] ⊆ D. Then D is integrable.

Proof. As [D′,D′] ⊆ D, the relation [D,D] ⊆ D follows if we note that,
locally, sections of D have the form v+φw for various sections v of D′, functions
φ, and one fixed section w of D. �

Let π : M → Σ be a mapping between manifolds. We say that a vector field
w (or, a distribution Z) on M is π-projectable if dπxwx = uπ(x) or, respectively,

dπx(Zx) = Wπ(x) for all x ∈ M and some vector field u (or, distribution W) on

Σ. If this is the case,

(2.2) the integrability of Z implies that of W,
since π restricted to any leaf of Z is, locally, a submersion onto an integral manifold
of W. We also define π-projectability of a (0, q) tensor field Θ on M by requiring
Θ to be the π-pullback of a (0, q) tensor field on Σ.

Given an integrable distribution V on a manifold M, every point of M has a
neighborhood U such that, for some manifold Σ, the leaves of V restricted to U
are the fibres of a bundle projection π : U → Σ.

Let V be an integrable distribution on a manifold M. By V-projectability of
a vector field on an open set U ′ ⊆ M (or, of a distribution on U ′, or of a (0, q)
tensor field on U ′) we mean its π-projectability for any π, U,Σ as in the last
paragraph such that U ⊆ U ′. Then, for a vector field w on M,

(2.3)
w is V projectable if and only if, for every section
v of V, the Lie bracket [v,w] is also a section of V.

(This is obvious in local coordinates for M turning π as above into a Cartesian-
product projection.) It is also clear that, given a (0, q) tensor field Θ,

(2.4)
Θ is V projectable if and only if dv[Θ(w1, . . . , wq)] = 0 for all sec
tions v of V and all V projectable local vector fields w1, . . . , wq .

Lemma 2.2. For an integrable distribution V and any distribution Z on an
n-dimensional manifold M, the following two conditions are equivalent.

(a) Z is V-projectable,
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(b) Z ∩ V has a constant dimension and [V,Z] ⊆ V +Z.

Under the additional assumption that V ⊆ Z,

(c) Z is V-projectable if and only if [V,Z] ⊆ Z.

Proof. The equivalence of (a) and (b), once established, trivially implies (c)
when V ⊆ Z. We proceed, however, by first proving (c), in the case where V ⊆ Z.
It will then clearly follow from (c) that (a) and (b) are equivalent, since V-project-
ability of Z amounts to V-projectability of V +Z, and V ⊆ V +Z.

If V ⊆ Z and Z is V-projectable, onto some distribution W on a local
leaf space of V, then Z is spanned by V-projectable sections obtained as lifts of
sections of W (including sections of V, which are lifts of 0). As any section of Z
is a functional combination of V-projectable ones, (2.3) yields [V,Z] ⊆ Z.

Conversely, let V ⊆ Z and [V,Z] ⊆ Z. We choose local coordinates x1, . . . , xn

such that V is spanned by the coordinate vector fields ∂i, i = 1, . . . ,m, and a local
trivialization of the subbundle Z of TM having the form ∂1, . . . , ∂m, wm+1, . . . , ws.
Using the index ranges 1 ≤ i, j, k ≤ m < a, b, c ≤ s, we obtain, since [V,Z] ⊆ Z,

(2.5) [∂i, wa] = Γ jia ∂j + Γ biawb

for some functions Γ jia , Γ
b
ia . The wb-component of the Jacobi identity [∂i, [∂j , wa]] =

[∂j , [∂i, wa]], with [∂i, ∂j ] = 0, now implies symmetry of ∂iΓ
b
ja +Γ bic Γ

c
ja in i, j. This

symmetry amounts to the vanishing of the curvature, that is, flatness, for the linear
connection with the components Γ bia in a rank s−m vector bundle over a manifold
with the coordinates xi, i = 1, . . . ,m. The equations ∂iψ

b+Γ bic ψ
c = 0, stating that

ψa, with m < a ≤ s, are the components of a parallel section ψ, is thus locally
solvable with any prescibed initial value at a given point z. Let us choose such a
section ψa, for a = m+ 1, . . . , s, with the initial value (δ1

a, . . . , δ
m
a ) at z, so that

(2.6) ∂iψ
b
a + Γ bic ψ

c
a = 0, ψba(z) = δba .

Setting ua = ψbawb, we obtain a new local trivialization ∂1, . . . , ∂m, um+1, . . . , us
of Z while, by (2.5) and (2.6), [∂i, ua] are sections of Z. Therefore, due to (2.3),
our new local trivialization of Z consists of V-projectable sections, which makes
Z itself V-projectable. �

Given a symmetric or skew-symmetric (2, 0) tensor Θ in a vector space V ,
let Ker Θ and Im Θ be the kernel and image of V ∗ 3 ξ 7→ Θ(ξ, · ) ∈ V . By the
restriction of Θ to W = Im Θ we mean the (2, 0) tensor ΘW in W given by

(2.7)
ΘW (η, η′) = Θ(ξ, ξ′) for any η, η′ ∈W ∗ and
any extensions ξ, ξ′ : V → IR of η, η′ to V.

As ξ and ξ′ are unique up to adding elements of W ′ = Ker Θ ⊆ V ∗, the polar
space of W, the restriction is well defined. In other words, since W ′ = Ker Θ, the
bilinear form Θ on V ∗ descends to one on V ∗/W ′ = W ∗, which is our ΘW . (The
natural identification of W ∗ with V ∗/W ′ sends η ∈ W ∗ to the W ′-coset of any
extension of η to V .) In addition, Θ is the image of ΘW under the linear operator
W�2→ V �2 or W∧2→ V ∧2 induced by the inclusion W → V . Finally,

(2.8) the restriction ΘW is nondegenerate,

as any η ∈W r {0} has an extension ξ to V not lying in W ′ = Ker Θ, and hence
Θ(ξ, ξ′) 6= 0 for some ξ′ ∈ V ∗.



7

Remark 2.3. Constant-rank symmetric (2, 0) tensors Θ on a manifold M
are naturally identified with sub-pseudo-Riemannian metrics on M, that is, pseu-
do-Riemannian fibre metrics h on vector subbundles B of TM. In fact, one may
set B = Im Θ and, using (2.7) – (2.8), declare h to be the inverse of the restriction
of Θ to B. Thus, cf. the lines preceding (2.8), Θ is the image of the inverse of h
under the bundle morphism B�2→ [TM ]�2 induced by the inclusion B → TM.

The (r− 1)-fold contraction of two (r, 0)-tensors Θ,Π on a manifold with a
fixed Riemannian metric g, appearing in (i) below, is

(2.9) the (2, 0) tensor β given by β ij = Θii2...irΠjj2...jrgi2j2 . . . girjr .

Remark 2.4. Let V be a Euclidean n-space with the inner product 〈·, ·〉.
(i) The (r−1)-fold contraction (2.9) against itself of a nonzero decomposable

r-vector v1 ∧ . . .∧ vr ∈ V∧r yields a (2, 0) tensor which, viewed with the
aid of 〈·, ·〉 as an endomorphism of V , equals a nonzero multiple of the
orthogonal projection onto the span of v1, . . . , vr. (To see this, we are free
to assume that v1, . . . , vr are orthonormal.)

(ii) If V is oriented, ∗(e1 ∧ . . . ∧ er) = er+1 ∧ . . . ∧ en for the Hodge star

∗ : V∧r→ V∧(n−r) and any positive orthonormal basis e1, . . . , en of V .

Remark 2.5. In an s×(n−s) product n-dimensional manifold M with global
product coordinates xi, xa (index ranges 1 ≤ i ≤ s < a ≤ n), let the component
functions gij ,Θ

ij and Γ kij = Γ kji represent families of (0, 2) tensors, (2, 0) tensors
and torsion-free connections on the leaves of the integrable distribution spanned
by the coordinate vector fields ∂i. Suppose that each tensor is parallel relative
to the corresponding connection on the leaf: ∂igjk = Γ lij glk + Γ likgjl and ∂iΘ

jk =

−Γ jil Θlk−Γ kil Θjl. Setting gλµ = Θλµ = Γ νλµ = 0 whenever at least one of the indices

λ, µ, ν ∈ {1, . . . , n} is in the a range, we extend the above data to their analogs
defined on M, namely, a (0, 2) tensor g, a (2, 0) tensor Θ and a torsion-free
connection ∇, in such a way that, obviously, ∇g = ∇Θ = 0.

3. The complex-diagonalizable case

By (1.3), for a (1, 1) tensor field Θ and any a ∈ IR,

(3.1) Θ and Θ − aId have the same Nijenhuis tensor.

To justify Remark A, we invoke a result of Bolsinov, Konyaev and Matveev [4,
Theorem 3.2]. It states that, if a (1, 1) tensor Θ with N = 0 on a manifold M
has complex characteristic roots of constant (algebraic) multiplicities, then M and
Θ are, locally, decomposed into Cartesian products of factor manifolds/tensors with
N = 0, where each factor corresponds to (and realizes) a real eigenvalue function
of Θ, or a conjugate pair of its (nonreal) complex characteristic-root functions.

Under the assumption made in Remark A, the complex characteristic roots of
Θ are all constant. Let the symbols M and Θ now stand for one of of factor
manifolds/tensors with N = 0, mentioned above.

If the (constant) eigenvalue realized by this Θ is real, our claim follows: Θ
equals a constant multiple of Id.

Otherwise, the characteristic roots realized by Θ are a±bi, with a, b ∈ IR and
b 6= 0. Let J = b−1(Θ− aId). By (3.1), J still has N = 0, while the characteristic

roots of J (and hence those of its complexification Ĵ ) are i and −i. As Ĵ is
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diagonalizable – due to our assumption – we get Ĵ 2 = −Id. Thus, J 2 = −Id, and
the local constancy of Θ follows from the Newlander-Nirenberg theorem.

The more modest goal of establishing a weaker version of Remark A, with in-
tegrability of Θ replacing its local constancy, is easily achieved as follows. Rather
than invoking the Newlander-Nirenberg theorem, one shows that an almost-com-
plex structure J or, more generally, a (1, 1) tensor J with N = 0 and J 2 = cId,

where c ∈ IR r {0}, has ∇̂J = 0 for some torsion-free connection ∇̂.
We start from any torsion-free connection ∇. By (1.4), 4c[Bvw − Bwv] =

N(v, w) for Bvw given by 4cBvw = 2J [∇vJ ]w + J [∇wJ ]v + [∇JwJ ]v, that is,
4cBvw = (J [∇vJ ]w + J [∇wJ ]v) + (J [∇vJ ]w + [∇JwJ ]v). Thus, the vanishing of
N for J amounts to symmetry of Bvw in v, w, while [J,Bv] = ∇vJ since, J2

being parallel, ∇vJ anticommutes with J . This is precisely the relation ∇̂J = 0

for the torsion-free connection ∇̂ characterized by ∇̂v = ∇v +Bv.

The assignment ∇ 7→ ∇̂ = ∇+ B appearing above is a natural projection of
the affine space of all torsion-free connections on the manifold in question onto the
affine subspace formed by those connections which make J parallel.

The above conclusion is due to Clark and Bruckheimer [7, Theorem 6]. Our
argument is a concise version of one used, in a more general situation, by Hernando,
Reyes and Gadea [14, Theorems 3.4 and 7.1].

4. Tensors of type (1, 1)

For the reader’s convenience, we repeat here the definition, due to Nijenhuis
[21], of the Nijenhuis tensor (1.3) associated with a (1, 1) tensor Θ on a manifold:

(4.1) N(v, w) = Θ[Θv, w] + Θ[v,Θw] − [Θv,Θw] − Θ2[v, w].

Applying Θi to both sides, with any integer i ≥ 0, one obviously obtains

(4.2) Θi+1(Θ[v, w]− [v,Θw]) = Θi(Θ[Θv, w]− [Θv,Θw]) − Θi[N(v, w)].

Let N = 0. For any vector fields v, w and integers i, j ≥ 0,

(4.3) if Θiv = 0, then Θi also annihilates Θj[v, w]− [v,Θjw].

Namely, let R(i, j) be the assertion (4.3), and R(j) the claim that R(i, j) holds
for all i ≥ 1. Now R(1, 1) is immediate from (4.1), while, assuming R(i, 1), and
choosing any v with 0 = Θi+1v = ΘiΘv, we get, from R(i, 1) for Θv (not v), zero
on the right-hand side of (4.2), and hence also on the left-hand side, which yields
R(i+1, 1) and, by induction on i, establishes R(i, 1) for all i ≥ 1, that is R(1). If
we now assume R(j), and use any i ≥ 1, we see that Θi[v,Θj+1w] = Θi+1[v,Θjw]
when Θiv = 0 (from R(i, 1) applied to Θjw rather than w), which in turn equals
Θi+j+1[v, w] (due to R(i+ 1, j), a consequence of R(j)). One thus has R(j + 1),
which completes the proof of (4.3).

When, again, N = 0 in (4.1) and i, j, k are nonnegative integers,

(4.4)
a) [Bi,Bi] ⊆ Bi, b) [Zi,Bj ] ⊆ Zi+ Bj, c) [Zi,Zj ] ⊆ Zi+j,
d) [Zi,Zk] ⊆ Zk if Zi is integrable and k ≥ i

– notation of (2.1) – with Θ assumed algebraically constant. In fact, (4.4-a), that
is, the integrability of each Bi, follows via induction on i, from (4.1) with N = 0
and with v, w replaced by Θiv,Θiw. (The third Lie bracket in (4.1) then is a
section of Bi+1, once we assume that [Bi,Bi] ⊆ Bi.) For (4.4-b), note that the Lie
bracket of sections v of Zi and Θjw of Bj equals, by (4.3), Θj[v, w] plus a section
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of Zi. Finally, (4.4-c) and (4.4-d) are further consequences of (4.3): given sections
v of Zi and w of Zj, (4.3) reads Θi+j[v, w] = 0, while (4.3) with j = k − i, for
sections v of Zi and w of Zk (which makes Θjw and [v,Θjw] sections of Zi –
the latter due to the assumed integrability of Zi), yields Θk[v, w] = 0.

The conclusion (4.4-a) is due to Bolsinov, Konyaev and Matveev [4, Cor. 2.5.].

5. Proof of Theorem B

We use induction on the dimension, with the following induction step.

Lemma 5.1. Let Θ be an algebraically constant (1, 1) tensor with N = 0 in
(1.3) on a manifold M such that the distribution Z = Ker Θ is integrable.

(a) Θ-images of Z-projectable local vector fields in M are themselves Z-pro-

jectable, so that Θ naturally descends to a (1, 1) tensor Θ̂ on any local

leaf space Σ of Z, and Θ̂ also has N = 0.
(b) If local vector fields v, w, and hence also Θv,Θw, are Z-projectable and

the projected images of v, w,Θv,Θw all commute, then [Θv,Θw] = 0.
(c) Nilpotency of Θ, or integrability of the distributions Ker Θi for all i ≥ 1,

implies the same property for Θ̂.

Proof. Applying (1.3) to v with Θv = 0 and w projectable along Z, we
obtain Θ[v,Θw] = 0, as Θ[v, w], and hence Θ2[v, w], vanishes due to projectability
of w and (2.3). By (2.3), this proves the first part of (a), with an obvious definition

of Θ̂. Evaluating (1.3) on projectable vector fields, or applying Θ to them, we get

N = 0 for Θ̂ or, respectively, the claim about nilpotency in (c).
Under the assumptions of (b), [Θv, w], [v,Θw] and Θ[v, w] are – by (a) – pro-

jectable onto 0, which makes them sections of Z = Ker Θ, so that (1.3) with N = 0
yields [Θv,Θw] = Θ([Θv, w] + [v,Θw]−Θ[v, w]) = 0.

If the distributions Zi = Ker Θi are all integrable, projectable vector fields that

project onto sections of Ker Θ̂i span the distribution Zi+1 (the Θi-preimage of the
vertical distribution Z). Projectability of each Zi+1, immediate from that of Θ,
or from (4.4-d) and Lemma 2.2(c), combined with (2.2), proves (c). �

The assertion N = 0 in (a) is also a special case of [4, Prop. 2.4].

Proof of Theorem B. As the implications (ii) =⇒ (iii) =⇒ (iv) =⇒ (i)
are obvious – the last two from from (1.1), (1.2) and (1.4) – we now just proceed to
show that (ii) holds whenever (i) does, using induction on n ≥ 1. The case n = 1
being trivial, we now fix n > 1 and assume that (i) implies (ii) in dimensions less

than n, while (i) is satisfied on an n-manifold M, with Θ 6= 0. Using Θ̂ and
a local leaf space Σ arising from Lemma 5.1(a), and replacing M by a suitable
neighborhood of a given point, we get a bundle projection π : M → Σ with the

vertical distribution Z = Ker Θ, while (i), and hence (ii), holds for Θ̂, on Σ, since

dimΣ < n. The resulting commuting Jordan-form frame for Θ̂ is split into Θ̂-or-
bits u1, . . . , ud of various lengths d ≥ 1, with the initial vector (field) u1 lying in

Ker Θ̂, the final vector ud outside of Im Θ̂, and ui = Θ̂d−iud for i = 1, . . . , d.

We now associate with every given Θ̂-orbit u1, . . . , ud the corresponding Θ-or-
bit v0, v1, . . . , vd of length d+ 1 in M. First, we choose each final vector field vd,
on M, so that it projects onto ud under π, and set vi = Θd−ivd, i = 0, . . . , d− 1.
We call v0 the pre-initial vector. Our vd is only unique up to adding sections of
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Z = Ker Θ (and will be modified later); this is also the obvious reason why the
nonfinal vectors v0, v1, . . . , vd−1 are uniquely determined. Due to π-projectability

of Θ onto Θ̂ in Lemma 5.1(a), the resulting Θ-orbit, with the pre-initial vector

removed, projects onto the original Θ̂-orbit, while the pre-initial vectors are sections
of Z ∩ Im Θ, projecting onto zero. Also, by Lemma 5.1(b), the nonfinal vectors
from the union of all the Θ-orbits commute with one another (which includes the
pre-initial ones). Denoting by k the total number of these commuting vectors, we
see that they generate

(5.1) a free local action of IRk in M.

The union of all the Θ-orbits forms a linearly independent system at every point:
the non-pre-initial ones project onto a frame in Σ, which makes them linearly
independent over Z = Ker Θ (meaning linear independence of their images in
TM/Z), while the pre-initial ones, lying in Z, are linearly independent, being the
Θ-images of the initial vectors, linearly independent over Z.

Next, we modify – as announced above – the final vectors ea chosen in M,
and augment the union of all the Θ-orbits with some sections eλ, so as to obtain
a commuting frame in M which, automatically, will be a Jordan-form frame for

Θ̂. (The indices a, λ have some appropriate ranges.) To this end, we identify M,
locally, with a Cartesian product of a horizontal factor (our leaf space Σ) and a
vertical factor, tangent to Z. Our ea and eλ are suitable systems of commuting
vector fields on the factor manifolds, trivially extended to vector fields in M (which
causes ea to commute with eλ). In a first step, for ea we choose the final vectors

of our Jordan-form frame for Θ̂, and for eλ some vertical coordinate vector fields
chosen, locally, so as to be linearly independent over Z∩ Im Θ and represent, under
the quotient-bundle projection, a local trivialization of Z/(Z ∩ Im Θ). Let Q now
be one leaf of the integrable distribution spanned by all ea and eλ. Thus, Q has
codimension k in M and is transverse to the orbits of the local free action (5.1).
We now modify all ea and eλ further, by using the action (5.1) to spread their
restrictions to Q from Q to a neighborhood of Q in M. Due to equivariance
of π relative to the action (5.1) and the analogous free action in Σ generated by

the nonfinal vectors from the union of all the Θ̂-orbits, and the invariance of the
final vectors in Σ under the latter action, the modified ea still project onto the
final vectors (and eλ onto 0, as the action leaves Z invariant). Finally, ea and eλ
commute both with the nonfinal vectors from the union of the Θ-orbits, and with
one another: the former follows from their IRk-invariance, the latter since their
restrictions to Q commute. This completes the proof. �

6. Algebraic constancy and connections

Given a real vector bundle E of rank k over a manifold M and integers
p, q ≥ 0, we say that a smooth section Θ of E⊗p⊗ [E∗]⊗q is algebraically constant
when, for any x, y ∈ M, some linear isomorphism Ex → Ey sends Θx to Θy. In

this case, fixing z ∈M and an ordered basis e = (e1, . . . , ek) of Ez, let us

(6.1) denote by eΘz the system of components of Θz in the basis e,

that is, the (p, q) tensor in IRk arising as the image of Θz under the linear isomor-
phism Ez→ IRk associated with e. We now define two objects, the first being the
matrix group G ⊆ GL(k, IR) formed by all transition matrices between e and all
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ordered bases ē of Ez such that ēΘz = eΘz. In other words, G is the isotropy
group of eΘz for the obvious action of GL(k, IR) on (p, q) tensors in IRk.

The second one, a G-principal bundle P over M, is contained in the GL(k, IR)-
principal bundle Q over M naturally associated with E, and the fibre of P over
any x ∈M consists of the ordered bases ẽ of Ex having ẽΘx = eΘz.

Smoothness of P follows since P is the preimage of the point eΘz under the
submersion Φ : Q → Σ sending any ordered basis ê of Ex, at any x ∈ M, to
êΘx, with Σ denoting the GL(k, IR)-orbit of eΘz viewed, again, as a (p, q) tensor
in IRk. The submersion property of Φ is obvious: even the restriction of Φ to
any fibre Qx of Q is a submersion, diffeomorphically equivalent to the projection
GL(k, IR)→ GL(k, IR)/G.

Thus, a smooth section Θ of E⊗p⊗ [E∗]⊗q is parallel relative to some linear
connection ∇ in E if and only if it is algebraically constant [19, Theorems 1-
2], the ‘only if’ (or, ‘if’) claim being obvious since M is assumed connected or,
respectively, since ∇ induced by any principal G-connection in P clearly makes Θ
parallel. Such connections are precisely the linear connections in E characterized
by vanishing of their inner torsion in the sense of [23, Sect. 5].

Remark 6.1. Our construction depends on the choice of z ∈M and an ordered
basis e of Ez. However, different choices lead to equivariantly equivalent objects.
The case of importance to us is E = TM, where P is the G-structure associated
with the given algebraically constant (p, q) tensor Θ. When (p, q) = (1, 1) and Θ
is nilpotent, we will always use z and e realizing the Jordan normal form d1. . . dm
of Θ, defined as in (1.5).

7. The Lie brackets of a local Jordan frame

Recall our convention (1.5) about representing the Jordan normal forms of
nilpotent (1, 1) tensors in dimension n as weakly decreasing strings d1. . . dm of
positive integers, so that d1 + . . .+dm = n, and Θ = 0 has the Jordan normal form
1 . . . 1, each 1 being the 1× 1 block matrix [0], while n is the single-block Jor-
dan normal form of a generic nilpotent (1, 1) tensor in dimension n. The Jordan
normal form 2 . . . 2 characterizes the case Ker Θ = Im Θ.

If an algebraically constant nilpotent (1, 1) tensor Θ on an n-manifold has
the Jordan normal form d1. . . dm, then each subbundle Ker Θi clearly has the fibre
dimension min(i, d1) + . . .+ min(i, dm), and hence

(7.1) rank Θi = n − min(i, d1) − . . . − min(i, dm).

Let us fix an algebraically constant nilpotent (1, 1) tensor Θ on an n-manifold
M and a local frame field realizing the Jordan normal form d1. . . dm of Θ. (See
Remark 6.1.) We focus on three (not necessarily distinct) Θ-orbits

(7.2) (e1, . . . , ep), (ẽ1, . . . , ẽq), (ê1, . . . , êr),

by which we mean portions of our frame field corresponding to three of the entries
d1, . . . , dm. Setting ei = ẽj = êk = 0 for nonpositive integers i, j, k, we obtain

(Θei,Θẽj ,Θêk) = (ei−1, ẽj−1, êk−1) for all integers i, j, k not exceeding, respec-

tively, p, q or r. Finally, we denote by Cki,j the coefficient of êk in the expansion

of the Lie bracket [ei, ẽj ] as a (functional) combination of our fixed frame, and also

set Cki,j = 0 if k > r or one of i, j, k is nonpositive; thus Cki,j is well defined for
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integers i, j, k with i ≤ p and j ≤ q. Now N = 0 in (1.3) if and only if

(7.3) Cki,j + Ck−2
i−1,j−1 = Ck−1

i−1,j + Ck−1
i,j−1 whenever k ≥ 3, i ≤ p and j ≤ q,

with Cki,j = 0 for k > r. Namely, N(ei, ẽj) evaluated from (1.3), and then

projected onto the span of (ê1, . . . , êr), obviously equals

(7.4) (Cki−1,j+ Cki,j−1)êk−1− Cki−1,j−1êk − Cki,j êk−2 summed over all k ≤ r.

The vanishing of the terms involving êr (or êr−1, if r ≥ 2) means that C r
i−1,j−1 = 0

(or, respectively, C r−1
i−1,j−1 = C r

i−1,j + C r
i,j−1), both of which are special cases of

(7.3), with k ∈ {r+1, r+2}. Leaving these terms aside, we see that the equality in
(7.3) multiplied by êk−2 follows if we shift the summation index from k or k−1 to

k − 2 in the first two terms of (7.4), which yields (7.3) as êk−2 = 0 unless k ≥ 3.

In terms of Esi,j = C i+j−s+1
i,j , or Cki,j = E i+j−k+1

i,j , (7.3) can be rewritten as

(7.5) Esi,j + Esi−1,j−1 = Esi−1,j + Esi,j−1 if i+ j ≥ s+ 2, i ≤ p and j ≤ q,

while Esi,j = 0 whenever i + j ≥ s + r. The reason why we prefer to switch from
the integer variables i, j, k to i, j, s with s = i + j − k + 1, or k = i + j − s + 1,
is that (7.5) uses a fixed value of s, allowing us to treat different values of s as
completely unrelated. Our conclusions may be summarized as follows.

Lemma 7.1. Given Θ and the frame field as above, the Nijenhuis tensor (1.3)
vanishes if and only if, for any ordered triple of not necessarily distinct Θ-orbits
(7.2), one has (7.5) along with

(7.6)
Esi,j = 0 if i+ j < s, or i+ j ≥ s+ r, or i ≤ 0, or j ≤ 0, and
our Esi,j are defined for all i, j, s ∈ ZZ such that i ≤ p and j ≤ q.

Proof. We already saw that (7.5) is equivalent to (7.3), while (7.6) is clearly
nothing else than the obvious boundary conditions (Cki,j = 0 if k ≤ 0, or k > r, or

i ≤ 0, or j ≤ 0) coupled with our convention about when Cki,j makes sense. �

Next, Z l = Ker Θl is integrable (which may or may not be the case) if and
only if Cki,j = 0 whenever i, j ≤ l < k, that is,

(7.7) Esi,j = 0 for all i, j, s with i, j ≤ l and i+ j ≥ s+ l,

and for all ordered triples of (not necessarily distinct) Θ-orbits (7.2). With the last
clause repeated, the integrability of Z l = Ker Θl for all l ≥ 0 clearly amounts to

(7.8) Esi,j = 0 whenever i, j ≥ s,

since the condition i, j ≤ i+ j − s is nothing else than i, j ≥ s.

Remark 7.2. The equality in (7.5) obviously holds, for all i, j, s ∈ ZZ, if Esi,j
is a function of i alone, or of j alone, or equals i+ j plus a function of s.

8. Proof of Theorem C: the necessity of (1.6)

For the Jordan normal form of an algebraically constant nilpotent (1, 1) tensor,
not being of type (1.6) clearly means that it

(8.1) contains three different Jordan blocks of lengths p, q, r with p ≤ q < r.
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Proposition 8.1. In any dimension n ≥ 1, the condition (8.1), imposed on
the Jordan normal form of an algebraically constant nilpotent (1, 1) tensor Θ,
implies that the algebraic type of Θ is not controlled by the Nijenhuis tensor (1.3).
More precisely, Θ can be realized as a left-invariant (1, 1) tensor on a Lie group,
in such a way that N = 0, but Ker Θp is nonintegrable for some integer p ≥ 1.
One may choose p to be the shortest block length in the Jordan normal form of Θ.

Proof. We identify a local frame field for Θ, chosen as in Sect. 7, with a basis
of a Lie algebra g formed by left-invariant vector fields on a Lie group G. This
is achieved by requiring (7.3) and the boundary conditions (Cki,j = 0 if k ≤ 0,

or k > r, or i ≤ 0, or j ≤ 0) to be satisfied by constants Cki,j or, equivalently,
finding constants Esi,j with (7.5) – (7.6). (Our choice will cause all brackets to lie
in the center, thus implying the Jacobi identity.) Our Θ then becomes a left-in-
variant (1, 1) tensor field on G acting as an endomorphism of the tangent bundle
which sends each frame vector field either to the preceding one, or to zero. As a
consequence of (8.1), our local frame contains

(8.2) three different Θ orbits (7.2) of lengths p, q, r with p ≤ q < r.

Fixing such Θ-orbits, we now set, in the discussion of Sect. 7, Esi,j = 0 for all inte-
gers i, j, s, with the exception of (i, j, p) from the set [1, p]× [1, q]×{p} contained
in the range [1, p]× [1, q]× [1, r] corresponding to our three Θ-orbits (8.2).

E = 0

E = 1

E = 1

E = 2

E = p

(1, 1)

E = p−1(1, p−1)

i(p−1, 1) (p, 1)

(1, p)

(1, q)

(p, p)

(p, q)

j
E = 2 E = p−1

· · ·

· · ·

Figure 1. Values of E = Epi,j

Given integers i ≤ p and j ≤ q, we define Epi,j by

(8.3) Epi,j = max(0, i + min(0, j − p)).
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Speaking below of rectangles, triangles, lines and line segments, we always mean
their intersections with ZZ2, while (sub)rectangles are occasionally reduced to seg-
ment or single points. Restricted to (i, j) ranging over the rectangle [1, p]× [1, q],
our Epi,j equals 0 on the triangle with vertices (1, 1), (1, p− 1), (p− 1, 1) (treated

as the empty set when p = 1, or the single point (1, 1) for p = 2), and Epi,j = p

on the segment {p} × [p, q] (a point when p = q); the latter claim is obvious, the
former immediate from the equality

(8.4) i + min(0, j − p) = min(i, i+ j − p).

If p > 1, then, for any l ∈ {1, . . . , p − 1}, we have Epi,j = l on the two-seg-

ment broken line joining the points (l, q), (l, p), (p, l) (reduced to a segment when
p = q > 1); cf. (8.4). (This is particularly simple for p = q = 1, with E1

1,1 = 1.)
The corresponding Nijenhuis tensor (1.3) vanishes identically, by Lemma 7.1,

since – as we now proceed to show – our Epi,j satisfy (7.5) and (7.6). First, (7.6)

holds, as nonpositivity of i, j or i + j − s = i + j − p in (8.3) yields Epi,j = 0, by

(8.4), and the remaining implication is vacuous: i+ j ≤ p+ q = s+ q < s+ r.
Next, (7.5) “essentially” follows from Remark 7.2: Epi,j = max(0, i), which is

a function of i, on the subrectangle [1, p] × [p, q] (a segment when p = q). On
[1, p] × [1, p], (8.3) in turn gives Epi,j = max(0, i + j − p), which coincides with
i+ j − p on the subtriangle given by i+ j ≥ s+ 2 = p+ 2.

To dispel any doubts, we now establish (7.5) rigorously, for s = p. Of interest
to us are integers i, j with i + j ≥ p + 2, i ≤ p and j ≤ q. We are also free to
assume that i, j ≥ 1, since otherwise, by (7.6), all four terms in (7.5) equal 0. If
j > p, (8.3) gives Epi,j = Epi,j−1 = i for all i ≥ 0. Now the four terms in (7.5)

are i, i − 1, i − 1, i (whenever i ≥ 1), and the required equality follows. When
j ≤ p (and hence j − 1 < p), given i ∈ ZZ, (8.3) reads Epi,j = max(0, i + j − p)
and, similarly, Epi,j−1 = max(0, i + j − p − 1) with j replaced by j − 1. In the

case of interest to us, i+ j ≥ p+ 2 (see the beginning of this paragraph), so that
Epi,j = i + j − p and Epi,j−1 = i + j − p − 1, for all i, and we get the equality in

(7.5): (i+ j − p) + (i− 1 + j − 1− p) = (i− 1 + j − p) + (i+ j − 1− p).
Finally, since Epp,p = p 6= 0, (7.7) applied to i = j = s = l = p shows that

Ker Θp is not integrable. �

9. Proof of Theorem C: the sufficiency of (1.6)

We now show that, given an algebraically constant nilpotent (1, 1) tensor Θ
on a manifold M of dimension n ≥ 1, with N = 0, and with the Jordan normal
form d1. . . dm satisfying condition (1.6), Θ must also have the property (i) in
Theorem B, and hence be locally constant. To this end, we choose a local frame
field realizing the Jordan normal form of Θ. See Remark 6.1.

In the first case of (1.6), d1 = . . . = dm = d for some d ≥ 1, and our local
frame field splits into disjoint Θ-orbits of the form v1, . . . , vd, all of length d, while
vi = Θd−ivd for i = 1, . . . , d−1, and the final vector vd lies outside of Im Θ. Thus,
Zi, i ≥ 0, is obviously equal to either TM (when i ≥ d), or to Bd−i (if 1 ≤ i < d),
and (4.4-a) yields our claim.

Consider now the second case of (1.6): d1 = . . . = dm−1 = d > d′ = dm for

some d, d′ ≥ 1, with m > 1, leading to Θ-orbits v1, . . . , vd of length d, of which
there are m− 1, and to one Θ-orbit of length d′.
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We first prove the integrability of Zi when 1 ≤ i ≤ d′, using induction on i.
As Z1 is spanned by the m initial vectors from all Θ-orbits, taken one from each,
and Bd−1 by the m − 1 initial vectors from all Θ-orbits of length d, the latter
subbundle of TM is contained in the former with codimension one. Thus, (4.4-b)
and Lemma 2.1 yield the integrability of Z1. For the induction step, if 1 ≤ i < d′

and Zi is integrable, Zi+1 is spanned by m(i+1) vectors: v1, . . . , vi+1 from all the

Θ-orbits combined (if one writes the Θ-orbits as v1, . . . , vd or v1, . . . , vd′), and so
Zi+1 contains, with codimension one, the span Zi+ Bd−i−1 of Zi and Bd−i−1. By
(4.4-b) and (4.4-d) [Zi + Bd−i−1,Zi+1] ⊆ Zi+1 + Bd−i−1 ⊆ Zi+1, and Lemma 2.1
completes the induction step.

Finally, let d′ < i < d and k = d′− 1. This time Zi contains Zk+ Bd−i with
codimension one: the former is spanned by (m− 1)i+d′ vectors (the initial i ones
from all Θ-orbits of length d, plus the whole Θ-orbit of length d′), the latter –
by the same vectors except the last one in the length d′ orbit. Once again, (4.4-b)
and (4.4-d) give [Zk + Bd−i,Zi] ⊆ Zi + Bd−i ⊆ Zi, and we can use Lemma 2.1.

10. Generalized almost-tangent structures

The following construction provides – as shown below – a local description of
all algebraically constant (1, 1) tensors Θ such that Θ2 = 0 and the Nijenhuis
tensor (1.3) vanishes identically.

Given a distribution D on a manifold Σ, let M be the total space of an
affine bundle over Σ associated with the quotient vector bundle TΣ/D. Using
the bundle projection π : M → Σ and the quotient-bundle projection morphism
TΣ 3 v 7→ [v] ∈ TΣ/D, we define a (1, 1) tensor Θ on M by

(10.1) Θxv = [dπxv] ∈ TyΣ/Dy = TxMy, if x ∈My = π−1(y),

whenever x ∈ M and v ∈ TxM. Then Θ2 = 0, since all Θ-images are vertical.
Also, N = 0 in (1.3). In fact, Im Θ is the vertical distribution V = Ker dπ.
Evaluating (1.3), withous loss of generality, on π-projectable vector fields, we see
that, by (2.3), the first, second and fourth terms on the right-hand side of vanish as
Θ2 = 0. So does the third term: Θv, Θw restricted to each fibre are affine-space
translations, and consequently commute.

Theorem 10.1. Every algebraically constant (1, 1) tensor Θ with Θ2 = 0
and vanishing Nijenhuis tensor (1.3) arises, locally, from the above construction,
and the fibre dimension of D equals the codimension of Im Θ in Ker Θ, while

(10.2) Θ is integrable if and only if so is the distribution D.

Proof. Suppose that Θ2 = 0 and N = 0 in (1.3). By (4.4-a), Im Θ is an
integrable distribution, while Im Θ ⊆ Ker Θ. Due to (2.3) and (1.3) with Θ2 = 0,

(10.3) any two (Im Θ) projectable vector fields have commuting Θ images.

By (4.4-b) for i = j = 1 and Lemma 2.2(c), on an open set M ′ ⊆ M with a
bundle projection π : M ′→ Σ having Im Θ as the vertical distribution, Ker Θ is
π-projectable onto a distribution D on Σ, with (10.2) obvious from Theorem B
and (2.2). Any π-projectable lift, along the fibre π−1(y), of any vector w tangent
to Σ at y ∈ Σ, is mapped by Θ onto the “vertical lift” of w, a vector field tangent
to π−1(y), which vanishes precisely when w is tangent to D. By (10.3) the vertical
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lifts of any w,w′ ∈ TyΣ commute. This turns π−1(y), locally, into an affine space

having the translation vector space TyΣ/Dy, with Θ given by (10.1). �

Theorem 10.1 illustrates a special case of Theorem C: the condition Θ2 = 0
corresponds to the Jordan normal forms 2 . . . 2 and 2 . . . 21 . . . 1 (plus 1 . . . 1, for
Θ = 0). Of these, only 2 . . . 2, 2 . . . 21 and 1 . . . 1 satisfy (1.6), reflecting the fact
that D is necessarily integrable only if it has the fibre dimension 0, 1 or dimΣ.

When Ker Θ = Im Θ, that is, D is the zero distribution, our construction gives
rise to what is referred to as almost-tangent structures [31, 11], and Theorem 10.1
becomes the local version of [9, Theorem on p. 69].

11. Differential q-forms on an n-manifold, q = 0, 1, 2, n− 1, n

We now prove Proposition D. Let ζ be an algebraically constant differential
q-form on an n-dimensional manifold, q = 0, 1, 2, n − 1, n, with dζ = 0 (the last
condition being obviously redundant if q = n or – as ζ is constant – if q = 0).

The cases q = 0 and q = 1 are obvious: the 1-form ζ (if nonzero), being
locally exact, equals dx1 in suitable local coordinates x1, . . . , xn.

When q = 2, algebraic constancy amounts to constant rank, and our claim
follows as Darboux’s theorem [6, p. 40] gives ζ = dx1∧ dx2 + . . .+ dx2r−1∧ dx2r in
some local coordinates x1, . . . , xn, with 2r = rank ζ ≥ 0.

If q = n and ζ 6= 0, we have, in suitable local coordinates x1, . . . , xn,

(11.1) ζ = dx1∧ dx2∧ . . . ∧ dxn, where x2, . . . , xn can be arbitrary,

as long as dx2∧ . . .∧ dxn 6= 0. In fact, starting from ζ = φdx1∧ dx2∧ . . .∧ dxn for
a function φ without zeros, and choosing ψ with ∂1ψ = φ, we see that dψ equals
φdx1 plus a functional combination of dx2, . . . , dxn and so ζ = dψ∧dx2∧ . . .∧dxn.

Finally, let q = n − 1. Assuming ζ to be nonzero, and fixing a nonzero n-
form ω, we get ζ = ω(v, · , . . . , · ), for a unique (nonzero) vector field v. Then,
by (11.1), ω = dx1∧ dx2 ∧ . . . ∧ dxn in some local coordinates x1, . . . , xn, with
x2, . . . , xn chosen so that dx2(v) = . . . = dxn(v) = 0. Now ζ = χdx2∧ . . . ∧ dxn
for χ = dx1(v), and ∂1χ = 0 as dζ = 0. Our ζ, being thus a top-degree form in
n−1 variables, equals, by (11.1), dy2∧ . . .∧dyn in suitable coordinates y1, . . . , yn.

12. Differential forms of other degrees

We now proceed to verify the statement preceding formula (1.7). The algebraic
constancy of ζ is clear as ζ = (ξ1∧ ξ2 + ξ3∧ ξ4) ∧ ξ5 ∧ . . . ∧ ξq+2, with linearly
independent 1-forms ξ1, . . . , ξq+2, and its closedness since dζ is the exterior prod-
uct of (dx1∧ dx2 + dx3∧ dx4) ∧ (dx1∧ dx2− dx3∧ dx4) (obviously equal to 0) and
dx6∧ . . .∧dxq+2. Being algebraically constant, ζ gives rise to the vector subbundle
F of T ∗M such that the sections of F are those 1-forms ξ for which ξ ∧ ζ = 0.
The sections ξ of F also coincide with functional combinations of the 1-forms

(12.1) η, dx6, . . . , dxq+2, where η = dx5+ x1dx2− x3dx4.

In fact, writing ξ = ξidx
i, we see that ξ ∧ ζ contains no contributions from the

terms ξidx
i (no summation) with 6 ≤ i ≤ q + 2 (making ξ6, . . . , ξq+2 completely

arbitrary) while for θ = (dx1∧ dx2 + dx3∧ dx4) ∧ (dx5+ x1dx2− x3dx4) one has

θ = dx1∧ dx2∧ dx5 + dx3∧ dx4∧ dx5− x3dx1∧ dx2∧ dx4 + x1dx2∧ dx3∧ dx4.
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and so each term ξidx
i (no summation, again) with q + 2 < i ≤ n contributes to

ξ ∧ ζ the expression ξidx
i∧ θ∧dx6∧ . . .∧dxq+2 (no summation) comprising all the

terms in ξ ∧ ζ involving the factor dxi. Linear independence of the differentials
dx1, . . . , dxn now gives ξi = 0 whenever q + 2 < i ≤ n. Finally, the exterior
products of ξ1dx

1, ξ2dx
2, ξ3dx

3, ξ4dx
4, ξ5dx

5 with θ are

(12.2)

ξ1(dx1∧ dx3∧ dx4∧ dx5 + x1dx1∧ dx2∧ dx3∧ dx4),
ξ2(dx2∧ dx3∧ dx4∧ dx5),
ξ3(dx1∧ dx2∧ dx3∧ dx5− x3dx1∧ dx2∧ dx3∧ dx4),
ξ4(dx1∧ dx2∧ dx4∧ dx5),
ξ5(x3dx1∧ dx2∧ dx4∧ dx5− x1dx2∧ dx3∧ dx4∧ dx5).

The condition ξ ∧ ζ = 0 means, after the cancellation of dx6∧ . . . ∧ dxq+2, that
the sum of the five lines of (12.2) equals 0. Writing [ijkl] for dxi∧ dxj∧ dxk∧ dxl,
we see that [1345] and [1235] occur just once each, giving ξ1 = ξ3 = 0, while the
sum of the remaining three lines equals (ξ4 +ξ5x

3)[1245]+(ξ2−ξ5x
1)[2345]. Thus,

ξ4 + ξ5x
3 = 0 = ξ2− ξ5x

1, and the sum of ξidx
i over i = 1, . . . , 5 equals a function

times the 1-form η in (12.1), proving our claim about (12.1).
If ζ were integrable, so would be – according to (1.2) – the simultanous kernel

of the 1-forms (12.1) (that is, of all sections of F), naturally determined by ζ.
This is not the case, as dη ∧ η ∧ dx6 ∧ . . . ∧ dxq+2 is nonzero, being equal to
(dx1∧dx2∧dx5−dx3∧dx4∧dx5−x3dx1∧dx2∧dx4−x1dx2∧dx3∧dx4)∧dx6∧. . .∧dxq+2.

13. Symmetric (0, 2) and (2, 0) tensors

Necessity and sufficiency of (1.8). Let g be integrable, with ∇g = 0 for
a fixed torsion-free connection ∇. The integrability of the distribution V = Ker g,
due to (1.2), allows us to choose local coordinates and index ranges for i, a, λ, µ, ν
as in Remark 2.5, so that V is spanned by the coordinate vector fields ∂a. As
V is obviously ∇-parallel, Γ kia = Γ kab = 0, while gia = gab = 0, so that ∂agij =

Γ kai gkj + Γ kaj gik = 0, and projectability of g along V follows from (2.4).
Conversely, suppose that g is projectable along the integrable distribution

V = Ker g. As before, we invoke Remark 2.5, selecting local coordinates with index
ranges for i, a, λ, µ, ν so as to make V the span of the coordinate fields ∂a. As pro-
jectability of g along V gives ∂agij = 0, while gia = gab = 0, the components gij
represent a pseudo-Riemannian metric in the factor manifold with the coordinates
xi. Denoting by Γ kij the components of its Levi-Civita connection, we now use
Remark 2.5 to define the required torsion-free connection ∇ with ∇g = 0. �

Proof of Proposition E. Integrability of the former implies that of the lat-
ter by (1.2). Conversely, let the distribution B = Im Θ be integrable. Using Re-
mark 2.5, we fix local coordinates and index ranges for i, a, λ, µ, ν so that B is the
span of the coordinate fields ∂i. Thus, Θia = Θab = 0, as the 1-forms dxa annihi-
late each ∂i, and hence are sections of the subbundle Ker Θ ⊆ T ∗M. On each leaf
of B, the restriction of Θ is nondegenerate – see (2.8) – and so it is the reciprocal
of a pseudo-Riemannian metric on the leaf. Its Levi-Civita connection, with the
components Γ kij (possibly depending on the variables xa), makes the restriction
of Θ parallel. Thus, we may again invoke Remark 2.5 to obtain a torsion-free
connection ∇ such that ∇Θ = 0. �
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14. Local constancy of bivector fields

Proof of Proposition F. The ‘only if’ part is immediate: for a torsion-free
connection ∇ on the given manifold having ∇Θ = 0, the distribution B = Im Θ is
∇-parallel and hence integrable, cf. (1.2), and the torsion-free connections induced
by ∇ on the leaves of B make the restriction of Θ to each leaf parallel, which
implies the same (and hence also closedness) for their inverses.

Let us now assume that B = Im Θ is integrable and the inverses of the restric-
tions of Θ to the leaves of B are all closed. These inverses are symplectic forms ζ
on the leaves, and the Darboux theorem with parameters [1, Lemma 3.10] allows
us to choose functions xi which, restricted to each leaf, form local coordinates with
ζ = dx1∧ dx2 + . . . + dx2r−1∧ dx2r, where 2r = rank ζ = rank Θ. We may also
choose functions xa, with the index ranges 1 ≤ i ≤ 2r < a ≤ dimM, such that
the differentials dxa form a local trivialization of the subbundle Ker Θ ⊆ T ∗M.
In the resulting product coordinates xi, xa the components of Θ are all constant:
Θia = Θab = 0, while Θij = 1 (or, Θij = −1) if (j, i), or (i, j), is one of the pairs
(1, 2), (3, 4), . . . , (2r − 1, 2r), and Θij = 0 otherwise. �

15. Integrability of the kernels and images

For any vector bundle L over a manifold M and a vector-bundle morphism
Θ : TM → L∗ of constant rank r into its dual L∗, the resulting dual morphism

Θ∗ : L → T ∗M, which also has rank Θ∗ = r, gives rise to a tensor-like object Ñ
(specifically, a section of Hom (L⊗L∧r, [T ∗M ]∧(r+2))), sending sections v, v1, . . . , vr
of L to the (r + 2)-form

(15.1) Ñ(v, v1, . . . , vr) = [d(Θ∗v)] ∧ Θ∗v1 ∧ . . . ∧ Θ∗vr .

Here d[Θ∗(fv)] = fd(Θ∗v) + df ∧Θ∗v for a function f. However, Ñ itself is tenso-
rial: the nontensorial term df ∧Θ∗v in the last equality has zero exterior product
with Θ∗v1 ∧ . . . ∧ Θ∗vr, since rank Θ∗= r. Furthermore,

(15.2) Ñ = 0 identically if and only if Ker Θ is integrable.

In fact, as Ker Θ is the simultanous kernel of the 1-forms Θ∗v, for all sections v
of L, its integrability amounts to d-closedness of the ideal generated by all such

1-forms which, as rank Θ∗= r, is nothing else than the vanishing of Ñ.
In the case of L = TM and a (possibly nonsymmetric) (0, 2) tensor g of

constant rank r on M, treated as a morphism Θ : TM → T ∗M sending a vector
field w to the 1-form g( · , w), the dual Θ∗ acts via v 7→ g(v, · ). Then

(15.3) Ñ in (15.1) becomes N ′ in (1.9 a), so that N ′ is tensorial.

Let Θ now be an algebraically constant nilpotent (1, 1) tensor on an n-manifold
with the Jordan normal form d1. . . dm, cf. (1.5). Integrability of Θ, as well as
its local constancy, is equivalent, by Theorem B, to the simultaneous vanishing of
the Nijenhuis tensor N in (1.3) along with further d1− 1 Nijenhuis-type tensors
N i, where 1 ≤ i < d1, such that N i = 0 if and only if Zi = Ker Θi is integrable.

Specifically, this follows from (15.2) if we define N i to be Ñ in (15.1) with L = TM
and Θ replaced by Θi, where r equals (7.1), and a fixed Riemannian metric on
M has been used to identify TM with T ∗M, thus turning each Θi separately into
a vector-bundle morphism TM → T ∗M = L∗.
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Finally, given a (skew)symmetric (2, 0) tensor Θ of constant rank r on a

manifold M, we associate with Θ a Nijenhuis-type (2r + 3, 0) tensor N̂, testing
the integrability of the image distribution V = Im Θ ⊆ TM. (Note that Θ is a

bundle morphisms T ∗M → TM acting via ξ 7→ Θξ = Θ( · , ξ).) To define N̂, we
again fix a Riemannian metric on M, which allows us to use contractions and the
Hodge star operator ∗ (as the latter enters our formula quadratically, M need not
be oriented). With Θξ = Θ( · , ξ) as above, for 1-forms ξ on M, we set

(15.4) N̂(ξ, ξ1, . . . , ξr, η, η1, . . . , ηr) = Ω[Θξ,Θη],

where ξ, ξ1, . . . , ξr, η, η1, . . . , ηr are any 1-forms on M, and

(15.5)
Ω denotes the result of an (r − 1) fold contraction
(2.9) of ∗(Θξ1∧ . . . ∧Θξr) against ∗(Θη1∧ . . . ∧Θηr).

Clearly, at points where the r-tuples Θξ1, . . . ,Θξr and Θη1, . . . ,Θηr of vector fields
are both linearly independent, Ω is, by Remark 2.4, a nonzero functional multiple
of the orthogonal projection onto the orthogonal complement of V and, applied to
the Lie brackets [Θξ,Θη], tests the integrability of V.

16. Twice-covariant symmetric tensors

The tensoriality of N ′ in (1.9-a) was established in (15.3). For N ′′, since

(16.1) [£φvg](w, u) = φ[£vg](w, u) + (dwφ)g(v, u) + (duφ)g(w, v)

for any function φ on the given manifold M, the resulting nontensorial contribution
to (1.9-b) equals the sum (dwφ)g(u, · ) + (duφ)g(w, · ) of the last two terms in
(16.1). Its exterior product with g(v1, · ) ∧ . . . ∧ g(vr, · ) vanishes, being a sum of
(r + 1)-fold exterior products of sections of a rank r subbundle of T ∗M, namely,
the image of the morphism sending each vector field v to g(v, · ).

Proof of Theorem G. We derive our conclusion from (1.8), by showing that
the vanishing of N ′ (or N ′′), is equivalent to the integrability of the distribution
V = Ker g (or, respectively, to projectability of g along V).

The first of these claims is obvious from (15.2) and (15.3). It thus obviously
suffices to show that the second equivalence holds if V is integrable.

Clearly, with V = Ker g from now on assumed integrable,

(16.2)
N ′′= 0 if and only if N ′′(w, u, v1, . . . , vr) = 0 for all
local vector fields w, u, v1, . . . , vr projectable along V.

Although [£g](w, u) in (1.9-b) is not a genuine 1-form on the manifold M in
question, we now artificially turn it into one, by fixing a local trivialization of TM,
containing a local trivialization of V, and declaring [£g](w, u) to be 1-form acting
by v 7→ [£vg](w, u) on our selected (finitely many) vector fields v trivializing TM.
As [£vg](w, u) = dv[g(w, u)] − g([v, w], u) − g(w, [v, u]), projectability of w, u and
(2.3) imply that

(16.3) [£vg](w, u) = dv[g(w, u)] whenever v is a section of V = Ker g.

If N ′′= 0, the (r + 1)-form ζ = N ′′(w, u, v1, . . . , vr) vanishes, and hence so does
dv[g(w, u)] in (16.3), for sections v of V, as ζ(v, · , . . . , · ) equals dv[g(w, u)] times
the the exterior product g(v1, · )∧. . .∧g(vr, · ) (and the latter r-form may be chosen
nonzero since rank g = r). Thus, by (2.4), g is projectable along V.
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Conversely, let us assume projectability of g along V. Now in (16.2) – (16.3)
dv[g(w, u)] = 0, and hence [£vg](w, u) = 0 for all sections v of V. The 1-form
[£g](w, u) vanishes on V = Ker g, and so obviously do g(v1, · ), . . . , g(vr, · ) in
(16.2). As rank g = r, the 1-forms vanishing on V constitute a vector subbundle
of fibre dimension r in T ∗M. Thus, N ′′= 0 by (16.2). �
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