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1. Introduction

A symmetric (0,2) tensor field U n a Riemannian manifold (M, g) is said to be a
Codazzi tensor if it satisfies the Codazzi equation

for arbitrary vector fields X, Y, Z. In this case, the self-adjoint section B of End TM,
characterized by g(BX, Y) = b(X, Y), will also be called a Codazzi tensor. The
Codazzi tensor b will be called non-trivial if it is not a constant multiple of the metric.

The aim of the present paper is to study some geometric and topological
consequences of the existence of a non-trivial Codazzi tensor on a given Riemannian
manifold. Results of this type were obtained by Bourguignon [3], who proved that the
existence of such a tensor imposes strong restrictions on the curvature operator [3,
Theoreme 5.1 and Corollaire 5.3] and, as a consequence, obtained the following
theorem [3, Corollaire 7.3]: a compact orientable Riemannian four-manifold admit-
ting a non-trivial Codazzi tensor with constant trace must have signature zero. Our
main results consist in generalizing these theorems, in particular in seeing what can be
said when the assumption on the trace is dropped.

In § 2 of this paper we observe that, in the C°° category, every manifold admits a
Riemannian metric with a non-trivial Codazzi tensor (Example 7), so that topological
consequences may be expected only if some sort of analytic behaviour is assumed.
Section 3 is devoted to the particular consequences of the existence of a non-trivial
Codazzi tensor B for the structure of the curvature operator (Theorem \):for any point
x of the manifold M and arbitrary eigenspaces Vx, V^ ofBx, the span Vx A V^cz A2TXM
of all exterior products of elements of Vx and V^ is invariant under the curvature operator
Rx acting on 2-forms. As a consequence, we obtain in §4 a relation between the
eigenspaces of any Codazzi tensor and the Pontryagin forms (Propositions 3 and 4),
which, together with an extra argument for the case of a Codazzi tensor having only
two distinct eigenvalues (Lemma 1), implies that a compact orientable Riemannian
four-manifold (M, g) admitting a non-trivial Codazzi tensor b must have signature zero
unless the restriction ofb to some non-empty open subset ofM is a constant multiple ofg
(Theorem 2). Another consequence of Proposition 4 is that for any n-dimensional
Riemannian manifold with a Codazzi tensor having n distinct eigenvalues almost
everywhere, all the real Pontryagin classes are zero (Corollary 3).
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2. Examples of Codazzi tensors

Codazzi tensors appear in a natural way in many geometric situations.

EXAMPLE 0. The simplest Codazzi tensors are parallel ones; non-trivial (i.e., not
proportional to the metric) tensors of this type exist only in locally reducible
manifolds.

EXAMPLE 1. For a space (M, g) of constant sectional curvature K and any function/
on M, the formula b = Vdf+Kfg defines a Codazzi tensor. As shown by Ferus [8],
every Codazzi tensor in a space of constant curvature is, locally, of this type.

EXAMPLE 2. The second fundamental form of any hypersurface (M, g) in a space of
constant curvature is a Codazzi tensor (non-trivial, unless M is totally umbilic).

EXAMPLE 3. Let (M, g) be a conformally flat manifold, and let n = dim M ^ 3. Then
b = Ric-(2n-2)"1Scal.^f is a Codazzi tensor (non-trivial, unless {M,g) is of constant
curvature). In fact, for n = 3, the Codazzi equation for b is equivalent to the conformal
flatness of g, while, for n ^ 4, the Weyl conformal tensor W of any Riemannian n-
manifold satisfies the well-known divergence formula

(n-2)VWrkij = ( n - 3 ) ( V , ^ - V A , ) .

EXAMPLE 4. A Riemannian manifold is said to have harmonic curvature if SR = 0 (in
local coordinates, V/?rfclJ = 0). This happens if and only if the Ricci tensor Ric satisfies
the Codazzi equation. There exist various examples of compact manifolds with this
property and with V Ric # 0 [7, 5, 13]. In particular, such a metric always exists on
the product S1xN, N being any compact Einstein manifold of positive scalar
curvature.

EXAMPLE 5. Consider a Riemannian manifold (M, g) admitting a function / (not
identically zero) such that

(1) Vrf/ = / [ R i c - ( n - l ) - 1 S c a l . ^ ] , n = dimM.

It is well known ([4, 9], cf. also [14]) that such / exists if and only if the mapping
assigning to metrics on M their scalar curvature functions is not submersive at g.
Moreover, (1) is necessary and sufficient in order that the metric g + f2.dt2 on
(M\f~l(0))xSl be Einsteinian. There are some obvious examples for (1) (the
standard sphere M = S" c Un+l, with / linear; a Riemannian product M — Sl xN,
with N an Einstein space of positive scalar curvature, / being the composite of a linear
function on S1 a U2 with the projection S1 x N -*• Sl). Moreover, as shown by
Lafontaine [14], and, independently, by O. Kobayashi, for any Einstein manifold N
of positive scalar curvature (dimiV ^ 2 ) , the product SlxN admits a metric g
(essentially different from the obvious examples) such that (1) has a non-
trivial solution /. If n = 3 and / satisfies (1) on (M, g), then
b = / 2 R ic + ({| V / | 2 - i S c a l . / 2 ) 0 is a Codazzi tensor on (M,g) (in fact, the Codazzi
equation for b is just the integrability condition for (1) with n = 3).

EXAMPLE 6. Fix a basis X, Y, Z of left-invariant vector fields on the Lie group
S3 ~ SU{2), satisfying the bracket relations [X, 7] = Z, [ ^ Z ] = X, [Z,X] = Y.
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Given a number y > 0 and mutually distinct real numbers X, n, v, we define a left-
invariant metric g and a (1,1) tensor field B on S3 by

) = y(l-v)2, g(Z,Z) = y(/l-^)2,

and #X = AX, BY = piY, BZ = vZ. Then 5 is a Codazzi tensor on (S3, g). Conversely,
it is easy to show that if (M, g) is a three-dimensional, complete, locally irreducible
Riemannian manifold with a non-trivial Codazzi tensor B having constant eigen-
values, then the universal covering of the triple (M, g, B) is isometric to some (S3, g, B)
of the type just described.

EXAMPLE 7. Every manifold M carries a C00 metric g such that (M, g) admits a non-
trivial C00 Codazzi tensor b. In fact, let £ be a subset of M, diffeomorphic to a closed
ball in W, where n = dim M. Using a suitable embedding of E in Rn + * (cf. Example 2),
we can find a C00 metric ^ on E and a non-trivial Codazzi tensor b on (£,0X),
vanishing near dE. Setting b = 0 in M \ £ , we may choose our g to be any C00 metric
on M such that g = gi wherever b ^ 0.

EXAMPLE 8. For Riemannian manifolds (M,, gt), with i = 1,2, and a function / > 0
on Mi, one defines the warped product (M,g) = (Mi,gl)x /(M2,#2) by M = Mj x M2

and g = rc^ + ( / 2 o^1)7i|^2'7ri: M -> M,- being the natural projection (cf. [2,12]). If
b' is a Codazzi tensor of type (0,2) on (M2, #2), it is easy to verify that b = ( / o Ti^Tifb'
is a Codazzi tensor on (M, g) (for the Riemannian connection of f̂, see [2, p. 24]).

EXAMPLE 9. Let (M, g, J) be a Kahler manifold. If B is a Codazzi tensor of type (1,1)
on (M, g) which is Hermitian with respect to J, that is,BoJ — JoB, then JB is parallel.
In fact, the (1,1) tensor field ( = JoB is skew-adjoint and hence so is Vx£ for any
vector X; on the other hand, VJ = 0 yields {VXC)Y = J((VXB)Y) for arbitrary vectors
X, y. Thus, the expression <(Vx0Y, Z> is symmetric in X, Yand skew-symmetric in
Y, Z and therefore it must vanish identically (cf. [18]).

EXAMPLE 10. For a smooth manifold M endowed with a linear connection V, the
(1,1) tensor fields B on M, satisfying the Codazzi equation (VXB)Y = (VYB)X for
arbitrary vectors X, Y can be called the Codazzi tensors on (M, V). They can be
interpreted as follows:

(a) denoting by dv the exterior differentiation operator on TM-valued forms in M,
determined by V, we see that a 7M-valued 1-form is a Codazzi tensor on (M, V)
if and only if it is rfv-closed (cf. [3]);

(b) considering a Codazzi tensor B on (M, V) in the case where M is compact, we
may always assume that B is non-degenerate everywhere, replacing it, if
necessary, by fl + t.Id for a sufficiently large t.

Any non-degenerate (1,1) tensor field B on M is a vector bundle automorphism
of TM, transforming V into the connection V = B*V characterized by
B(VXY) = VX(BY). The torsion tensors T, T of V and V then satisfy the relation [10]

B[T{X, Y)-T(X, Y)] = (S7XB)Y-(VYB)X.

Consequently, a section B of AutM(TM) satisfies the Codazzi equation with respect to
V if and only if V and V = B*V have equal torsion tensors; since, in this case,
V = (fl~')*V, it follows that B~l satisfies the Codazzi equation with respect to V.

5388.3.47 B
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From the above equality it also follows that a symmetric connection V on a compact
manifold M admits a Codazzi tensor which is not a constant multiple of Id if and only ifV
can be transformed into some symmetric connection by an M-automorphism of TM not
proportional to the identity.

It is clear that every Riemannian product carries non-trivial Codazzi tensors, which
are parallel. However, by suitably deforming any product metric, one can obtain
locally irreducible metrics on product manifolds, which still admit non-trivial Codazzi
tensors.

PROPOSITION 1. For arbitrary C°° {respectively, analytic) manifolds Ml 5. . . , Mk, with
k ^ 1, the product M = M1x... x Mk carries a C°° {respectively, analytic) locally
irreducible Riemannian metric g such that (M, g) admits a C°° {respectively analytic)
Codazzi tensor b which has precisely k distinct eigenvalues at every point, all the
eigenvalues being bounded on M, and whose eigenspace bundles coincide with the natural
foliations ofM coming from the product structure. Moreover, the metric induced by such
ag on any integral manifold of an eigenspace foliation of b can be prescribed arbitrarily
{unless k = \, in which case it must be locally irreducible).

Proof. We proceed by induction on k. For k = 1, our assertion is obvious. Suppose
now that we have already found a metric g' with a Codazzi tensor b' on
M' = Mt x.. . xMfc_l5 having the required properties. Adding to b' a suitable
constant multiple of g', we may assume that 0 is not an eigenvalue of/?' at any point.
For an arbitrary metric gk on Mk, we can clearly find a positive function / on Mk,
bounded away from zero and such that the warped product
{M, g) = {Mk,gk)xf{M',g') is locally irreducible. The Codazzi tensor b on (M, g),
defined in terms of b' and / as in Example 8, will then have k distinct and uniformly
bounded eigenvalues at each point, which completes the proof.

3. Consequences for the curvature

The following proposition, due to Hicks [10] (cf. also [19]), is the main step for
proving our Theorem 1. It reduces all the arguments involving differentiations of a
given Codazzi tensor to the mere fact that the curvature tensor of some new
Riemannian metric has the generally valid symmetries, which makes the proof of
Theorem 1 purely algebraic.

PROPOSITION 2 (Hicks). Let (M, g) be a Riemannian manifold, and let Bbea section of
End TM, non-degenerate at each point. Define a new Riemannian metric G and a linear

connection V on M by G{X, Y) = g{BX, BY) and VXY = VxY+B~l{{S7xB)Y), that is,
B{VXY) = VX{BY) for arbitrary vector fields X, Y, V being the Riemannian connection
of g. Then

(1) VG = 0 and the curvature tensor R of V is characterized by

G{R{X, Y)Z, U) = R{X, Y, BZ, BU),

(ii) if B satisfies the Codazzi equation {VXB)Y = {VYB)X, then V is the Riemannian
connection ofG and the curvature tensor RG {of type (0,4)) for (M, G) is given by

(2) RG{X, Y,Z,U) = R{X, Y, BZ, BU),
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(iii) if B is a (self-adjoint) Codazzi tensor on (M, g), then the symmetric tensor field b,
defined by b(X, Y) = g{BX, Y), is a Codazzi tensor on (M,g) as well as on

Proof. B is an automorphism (a 'gauge transformation') of the vector bundle TM
and our definitions of G and V can be written as G = B*g and V = B*V. Conse-
quently, VG = 0 and R = B*R, which implies (i). If, moreover, B is a Codazzi tensor
on (M, V), then V is torsion-free and B'1 is a Codazzi tensor on (M, V) (cf. Example
10), which, together with the fact that G(B~XX, Y) = g(X, BY), implies (ii) and (iii).
This completes the proof.

Using Proposition 2, we can now prove our basic result on the structure of the
curvature tensor R of a Riemannian manifold (M,g) admitting a non-trivial Codazzi
tensor B. For any point x e M and eigenvalues X, pi of Bx, we shall denote by Vx,
V^ <= TXM the corresponding eigenspaces and by Vx A V^a \2TXM the subspace
spanned by all exterior products X A Y with X e Vx and Ye V^. The curvature tensor
R will be viewed, in the obvious way, as an operator acting on 2-forms.

THEOREM 1. Let B be a Codazzi tensor on a Riemannian manifold (M,g). For any
x £ M and arbitrary eigenvalues X, pi of Bx, the subspace Vx A V^ of A2TXM is invariant
under the curvature operator Rx e End A2TXM. In other words, given eigenvalues X, pi,
v of Bx and vectors X e Vx, Ye V^, Z e Vv, we have

R(X, Y)Z = 0

provided that X,pi, v are mutually distinct or X = pi # v.

Proof. Replacing B by fl + t.Id for a suitable constant t, we may assume that B is
non-degenerate in a neighbourhood of x. Consider eigenvalues X, pi, v, £ of Bx and
vectors X e Vk, Ye KM, Z e Vv, U e V^. Using (2), we obtain

v£R(X, Y, Z, U) = RG(X, Y, Z, U) = RG(Z, U,X,Y) = XpiR(X, Y, Z, U)

and, similarly, (pi£-Xv)R(X,Z, U, Y) = (piv -X^)R(X, U, Y,Z) = 0. In view of (2), we
also have

0 = RG(X, Y,Z, U) + RG(X,Z, U, Y) + RG(X, U, Y,Z)
, Y,Z, U) + pi£R(X,Z, U, Y) + pivR(X, U, Y,Z),

so that the preceding equalities, together with piv£ # 0, yield the matrix equation

X

V

. 1

X

1

V

X

1

R(X,Y,Z,U)

R(X,Z,U,Y)

R(X,U,Y,Z)

Suppose that R(X, Y,Z,U)¥:0. Then, the coefficient matrix above is of rank at most
2, which implies the cofactor relations

-v-Z) = 0.



2 0 ANDRZEJ DERDZINSKI AND CHUN-LI SHEN

If we now had X ^ n, X ^ v, and X ^ £, these relations would give a contradiction
(X = \i = v = £). Consequently, R(X, Y, Z, U) can be non-zero only if A is equal to one
of \i, v, £. The symmetries of R imply now that, for arbitrary eigenvectors X x,..., XA

of Bx, R(Xl,X2,X3,X4) can be non-zero only if Xx,...,X± belong to at most two
distinct eigenspaces. On the other hand, if X, Ye Vx, Z e Vv, and X # v, (2) yields

0 = B[RG(X, Y)Z + RG(Y,Z)X + RG(Z,X)r\

= R(X, Y){BZ) + R(Y,Z)(BX) + R{Z,X)(BY)

= (v-X)R(X,Y)Z.

This completes the proof.

Any two self-adjoint (1,1) tensor fields A, B on a Riemannian manifold (M, g) give
rise to a section A ® B of End A2TM defined by

(A®B)(X A y) = i(AX" A fly + BX A ,47).

Thus, (2) can be rewritten as RG = {B®B)oR, where RG is viewed as a section of
End A2TM with the aid of g. The Weyl conformal tensor Wof(M,g) acting on 2-
forms, is given by

« - l ) - 1 ( n - 2 ) - 1 S c a l . I d ® I d , where n = dimM.

If x e M and Vx, V^ <= TXM are the eigenspaces corresponding to the eigenvalues X, \i
of Bx, then the restriction of (Id ® J5)x to Vx A F̂  equals i(/l + ^) t i m e s t n e identity.
Suppose now that B is a Codazzi tensor. If X e Vx and Ye V^, where /I, /* are distinct
eigenvalues of Bx, then Theorem 1 yields R(X, Z,Y,Z) = 0 for any eigenvector Z of
Bx. Therefore Ric(X, Y) = 0. Hence the Ricci tensor commutes with B and, since
A2TXM is spanned by all the Vk A V^, Theorem 1 implies that the endomorphisms R,
Id ® Ric, and W of A2TM commute with I d ® B . Consequently, we obtain the
following commutation theorem, due to Bourguignon [3, Theoreme 5.1]; note that
this result implies our Theorem 1 except for the case where Bx has two distinct pairs
{X,n}, {v,£} of eigenvalues with X + n = v + £: in this case, Vx A V^ and Vv A V^ are
proper subspaces of some eigenspace of (Id © B)x and so their Rx-invariance is not an
algebraic consequence of the fact that the endomorphisms commute.

COROLLARY 1 (Bourguignon). Let B be a Codazzi tensor on a Riemannian manifold
(M,g). Then

(i) B commutes with the Ricci tensor Ric,
(ii) the endomorphisms R, Id ® Ric, and W of A2TM commute with Id ® B.

Let us now consider a non-trivial Codazzi tensor B on a Riemannian manifold
(M,g). Given a point x e M, it is natural to study the components of the curvature
tensor Rx with respect to an orthonormal basis of eigenvectors of Bx. According to
Theorem 1, there are, essentially, only two types of these components, which may be
non-zero: they have the form R(X, Y, Z, U) with X,Z e Vx and Y, U e V^, X, n being
eigenvalues of Bx such that either

(I) X = fi,

or

(II) A # ti.
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The obvious question that arises is whether the Codazzi equation for B imposes any
algebraic restrictions on these components, which are not consequences of the general
curvature symmetries. For the components of Type (I), the answer is negative, the
simplest examples being the parallel tensors on Riemannian product manifolds;
moreover, the same situation occurs when the underlying manifold is assumed locally
irreducible. In fact, restricting our consideration to the connected components of
some open dense subset of M, we may view the eigenvalues of the given self-adjoint
(1,1) tensor field B as smooth functions, while the eigenspaces of B form differentiate
distributions. If B is a Codazzi tensor, these distributions must be integrable and their
leaves are totally umbilic in M ([7, Lemma 2]; more general results can be found in
[11]). The curvature components of Type (I) are, thus, closely related to the intrinsic
curvatures of the leaves, which, by Proposition 1, may be completely arbitrary also in
the locally irreducible case. On the other hand, for a Riemannian manifold with a
non-trivial Codazzi tensor, the curvature components of Type (II) must have some
special algebraic properties, at least in the case of a Codazzi tensor with only two
distinct eigenvalues. Namely, we have

LEMMA 1. Let (M, g) be a Riemannian manifold with a Codazzi tensor B which has, at
each point x e M, exactly two distinct eigenvalues X(x), n(x), with X(x) < n(x). This
gives rise to smooth eigenvalue functions A, \i and eigenspace distributions Vx, V^on M.
For any point x E M and arbitrary eigenvectors X, Z e Vx(x), Y,U e VJ^x), we have

(3) tt-fi)2R(X, 7, Z, U) = -g(VX, VvWX, Z)g(Y, U)

+ g(X,Z)Afl(Y, U) + Ax(X,Z)g(Y, U),

Ax (respectively, AJ being the symmetric bilinear form on Vx (respectively, on
KM), obtained by restricting the bilinear form (fi — X)^dfi — 2dfi®dfi + dX®dfi to
Vx (respectively, by restricting (X — n)VdX — 2dX®dX + dn®dX to VJ. Conse-
quently, there exist orthonormal bases e1,...,em of Vx(x), em + l,...,en of V^x) (where
m = dim Vx, n = dim M) such that, for certain real numbers cu ..., cn,

(4) R(eh ea, ejt eb) = (c, + ca)5u5ab

whenever 1 ̂  i, j < m < a,b ^ n.

Proof. The vector bundle decomposition TM = Vx®Vfl together with the
Riemannian connection V in TM gives rise to the connections V \ V in Vx, V^,
respectively, defined in the obvious way. On the other hand, for arbitrary local
sections X, Z of Vx and Y, U of V^, we have

(by Lemma 2 of [7], Vx is integrable, so that both sides of this equality are symmetric
in X, Z, while the equality holds for X = Z by (ii) of Lemma 1 of [7]), and, similarly,
(jji-A)g(yYU,X) = g(Y, U)Vxfi:Consequently, for X, Y,Z, U as above,

VXZ =
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^ being the KM component of VA. This implies

g ( U , V y V x Z ) = ( X - f i ^ 2

and
-0 (1 / ,

and

g{U, VIX,nZ) = (A-

Adding up the last relations and using the obvious equalities

,, I/) = ^(VyVA, U)-g(VY(VX)Vi, U)

5̂ V/i)

and

we obtain (3). The symmetry of y4A and A^, immediate from the Bianchi identity for R
together with Theorem 1, can also be verified as follows: the only term of Ax which is
not obviously symmetric is the restriction of dl ® d\i to Vk\ however, by Lemma 2 of
[7], X is constant along Vx unless dim Vx = 1. Finally, (4) can be obtained by
diagonalizing Ax and A^, which completes the proof.

REMARK 1. Assuming in Lemma 1 that dim Vk ^ 2 and dim V^ ^ 2, we can reduce
formula (3) to the simpler form

q>R(X, Y, Z, U) = -g(X,Z)Vdcp(Y, U)-Wq>(X, Z)g(Y, U)
+ q>-l\V<p\2g(X,Z)g{Y,U)

for X,Ye Vx and Y,Ue V^, where cp = (X — n)~l. In fact, the constancy of X and n
along Vx and V^, respectively [7, Lemma 2] yields g{VX, V/i) = 0 and

while

WX(X, Z) = -dX{VxZ) = -dX{{VxZ)v).

Since (X — fi)(WxZ)v = g(X,Z)S?X (cf. the first equality in the proof of Lemma 1), we
obtain

AX{X, Z) = - q> ~ 3 Vd<p(X, Z) +1 VX 12g(X, Z)

and, similarly,

AJJ, U) = -cp-3Wcp(Y, U) + \ Vn\29(Y, U),

so that our assertion is immediate from (3).
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4. Codazzi tensors and Pontryagin forms

Given a Riemannian manifold [M,g) and a positive integer k, one defines the /cth
Pontryagin form Pk = Pk(M,g) of (M,g), which is a closed 4/c-form on M, obtained,
locally, by applying some standard homogeneous polynomials of degree 2k to the
local curvature components [17, p. 308] and represents, in the de Rham cohomology
of M, the real Pontryagin class pk e H4fc(M, U). By the Pontryagin algebra of
{M,g) we shall mean the graded subalgebra of F(AM) (sections of
AM = A°T*M + ... + A T * M , where n = dimM, with pointwise exterior multi-
plication), generated by all the Pk. It is sometimes more convenient to consider,
instead of Pk, another system Qk(k = 1,2,...) of generators for the Pontryagin algebra
of (M,g), described as follows: Qk is the 4/c-form on M, obtained by alternating
(taking the skew-symmetric part of) the tensor field cok of type (0,4k) on M, given by

(5) cofc(X1,...,X4fc) = Trace[R(X1A X2)oR(X3 A ^ C . G / ? ^ . , A X4k)],

the curvature tensor R of (M,g) being viewed as a homomorphism
A2TM -> End TM. Every Pontryagin form can be obtained by applying some
universal polynomial to the Qk.

Consider now a finite-dimensional real vector space T. A fixed inner product < , >
allows us to identify T with its dual T*, T ® T with T ® T* = End T, and A2T with
a subspace of End T. Thus, for vectors X, Y, Z, U e T, we have

(6) Trace(AT ® Y) = <X, Y>

and

(7) (X® Y)o(Z® U) = (Y,Z}.X®U.

For subspaces K V of T, we define V ® 7 ' c T ® T to be the span of all tensor
products X ® X' with X e V, X' e V. In an analogous way, we define K A K' <= A2T
and, for subspaces P, P' of End T, the subspaces PoP' and P + P'.

LEMMA 2. Suppose we are given a finite-dimensional real vector space T with an inner
product, a subspace V of T, and an endomorphism R of A2T leaving the subspaces
V A V, V A V1, and V1 A V1 invariant. For any sequence Xl,...,X2r (r ^ 1) of
vectors, containing exactly m elements of V and 2r — m elements of V1, we have

(i) R(XV A X2)oR(X3 A X4)o...oR(X2r.1 A X2r)

(V ® V) + (V1 ® V1), if m is even,

®V1) + (V1®V), if mis odd,

(ii) Trace[/?(Ar
1 A X2)O... O / ^ X , , . ! A X2r)] = 0 if m is odd.

Proof. Set Vl = V,V_l = Vx, and

P(l) = (V ® V) + (V1 ® V1), P ( - 1) = (V® V^ + iV1 ® V).

By (7) and our hypothesis on R, P{S) o P(e) c P(de) and i?(K5 A Ve) cz Vd A Ve c= P(<5e)
whenever <5,e = ± 1. Therefore, if X{ e VSi, for i = 1,..., 2r, then

A JT2)o...

which proves (i). Assertion (ii) is now immediate from (6), which completes the proof.



2 4 ANDRZEJ DERDZINSKI AND CHUN-LI SHEN

As an immediate consequence of Theorem 1 and Lemma 2, we obtain

PROPOSITION 3. Let (M, g) be a Riemannian manifold with a Codazzi tensor B, let x be
a point of M, and let Vk a TXM be the eigenspace corresponding to an eigenvalue X of
Bx. Given a positive integer k, an odd integer m (0 ^ m ^ 4/c), and arbitrary vectors
Xl,...,X4.k e TXM such that X1,...,Xm e Vx and Xm + l,...,X^k e V\, every element Q
of degree 4/c in the Pontryagin algebra of {M,g) satisfies the relation

Q(Xl,...,XJ = 0.

In particular, if X is a simple eigenvalue of Bx and X e Vx, then

ixPk = Pk(X,•,...,) = ()

for each Pontryagin form Pk, with k ^ 1.

Proof In view of Theorem 1, we can apply Lemma 2 to T = TXM and V = Vx.
Consequently, the tensor a)k given by (5) has the property that (ok(X1,...,Xu) = 0
whenever, for some odd integer m, the sequence Xy,...,XAk contains melements of Vx

and 4/c — m elements of V\. The same must hold for the alternation Qk ofojk and hence
for all forms in the Pontryagin algebra of (M,g), which completes the proof.

From Proposition 3 we now obtain the following sufficient conditions for the
vanishing of certain Pontryagin forms.

PROPOSITION 4. Let (M, g) be a Riemannian manifold with a Codazzi tensor B, and let
x be a point of M. If Bx has exactly p distinct eigenvalues Xy,...,Xp of multiplicities
m1,....,mp, respectively, then every homogeneous element of degree greater than

2 t ftmj
i = i

in the Pontryagin algebra of (M,g) vanishes at x, [^m,] being the integer part of\m{.

Proof. Let Q be a homogeneous element of degree Ar in the Pontryagin algebra of
(M,g) such that Qx ̂  0. Thus, Q(X1,...,X4.r) # 0 for some sequence X1,...,X4.r of
linearly independent eigenvectors of Bx. By Proposition 3, for any eigenvalue A, of Bx,
the number of times that eigenvectors corresponding to A, occur among the Xlt ...,X4r

is even and not greater than the multiplicity m,, that is, it does not exceed 2Qm,].
Consequently, Qx # 0 implies that degfil = 4r ̂  2£f=1[|m,-], which completes the
proof.

In particular, we have

COROLLARY 2. Let {M,g) be an n-dimensional Riemannian manifold with a Codazzi
tensor B, and let x be a point of M. If Bx has exactly k simple eigenvalues, where
0 ^ k ^ n, then every homogeneous element of degree greater than n — k in the
Pontryagin algebra of (M,g) vanishes at x.

Proof. Let m^ ^ ... ̂  mp be the multiplicities of the distinct eigenvalues of Bx, so
that mx = ... = mk = 1. Our assertion follows now from Proposition 4 together with
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the fact that

COROLLARY 3. Let B be a Codazzi tensor on an n-dimensional Riemannian manifold
(M, g). If, for some x e M,BX has n distinct eigenvalues, then all the Pontryagin forms
of (M,g) vanish at x.

REMARK 2. It seems useful to consider the following concept, introduced by Maillot
[15, 16]: a Riemannian manifold (M,g) is said to have pure curvature operator at a
point x e M if, for some orthonormal basis Xl,...,Xn of TXM, each exterior product
Xt A Xj (1 ^ i<j ^n = dim M) is an eigenvector of RxeEnd A2TXM. This happens,
for example, if Rx = £a/4a ® #« with mutually commuting self-adjoint (1,1) tensors
Aa, Ba, so that the simplest examples where the curvature operator is pure at each
point are provided by conformally flat manifolds and by submanifolds of space forms
having flat normal connection. As observed by Maillot, pure curvature operator at a
point x implies that all the Pontryagin forms vanish at x (this is also immediate from
Lemma 2 applied to V = span(X,), for i = 1,..., n). By Theorem 1, if B is a Codazzi
tensor on an n-dimensional Riemannian manifold (M,g) and, for some point x, Bx

has n distinct eigenvalues, then (M, g) has pure curvature operator at x (cf. Corollary
3).

For Codazzi tensors on four-dimensional manifolds, the preceding results imply
the following theorem.

THEOREM 2. Let B be a Codazzi tensor on a four-dimensional Riemannian manifold
(M,g). The Pontryagin form PY of {M,g) then satisfies the relation

Px ®(B-iTrace B. Id) = 0.

Proof We shall prove that Px(x) = 0 at all points x at which the number of
eigenvalues of B is locally constant and greater than 1; the set of these points is dense
in the subset of M defined by B # \Trace B. Id. For such an x, the number of
eigenvalues of JB^ may equal 2 (multiplicities: {1,3} or {2,2}), 3 (multiplicities:
{1,1,2}), or 4 (multiplicities: {1,1,1,1}). By Corollary 2, ^ (x ) = 0 unless the
distribution of multiplicities is {2,2}. However, in the latter case formula (4), together
with Theorem 1, implies that (M,g) has pure curvature operator, which again yields
Pt(x) = 0 (Remark 2). This completes the proof.

In the case of compact oriented four-manifolds, Theorem 2, together with
Hirzebruch's signature formula 3T(M) = JMPl 5 yields

COROLLARY 4. Let {M,g) be a compact, orientable, analytic four-dimensional
Riemannian manifold admitting a non-trivial analytic Codazzi tensor. Then, the
signature of M is zero.

An oriented Riemannian four-manifold {M,g) is called self-dual [1] if Wo * = W,
the Weyl tensor W and the Hodge star * being viewed as endomorphisms of A2TM.
For any compact self-dual manifold {M,g), the signature T(M) ^ 0, the inequality
being strict unless W = 0 identically (see [1]). On the other hand, one can define the
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divergence 3W of W by the local coordinate formula (SW)ijk = —VWrijk. Corollary 4
now gives a new proof of the following result [6, Proposition 7; 3, Proposition 9.1].

COROLLARY 5. Let (M,g) be a compact, analytic, oriented Riemannian four-
manifold. If (M,g) is self-dual and SW = 0, then (M,g) is conformally flat or
Einsteinian.

Proof. The condition 8W = 0 means that b = Ric—^Scal.g is a Codazzi tensor
(Example 3). If T(M) = 0, then W = 0 in view of self-duality. On the other hand, if
T(M) # 0, Corollary 4 implies that b is a multiple of g, that is, gr is an Einstein metric,
which completes the proof.
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