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Abstract Hiss and Szczepański proved in 1991 that the holonomy group of any
compact flat Riemannian manifold, of dimension at least two, acts reducibly on the
rational span of the Euclidean lattice associated with themanifold via the first Bieber-
bach theorem. Geometrically, their result states that such a manifold must admit a
nonzero proper parallel distribution with compact leaves. We study algebraic and
geometric properties of the sublattice-spanned holonomy-invariant rational vector
subspaces that exist due to the above theorem, and of the resulting compact-leaf
foliations of compact flat manifolds. The class consisting of the former subspaces,
in addition to being closed under spans and intersections, also turns out to admit
(usually nonorthogonal) complements. As for the latter foliations, we provide de-
scriptions, first – and foremost – of the intrinsic geometry of their generic leaves in
terms of that of the original flat manifold and, secondly – as an essentially obvious
afterthought – of the leaf-space orbifold. The general conclusions are then illustrated
by examples in the form of generalized Klein bottles.

1 Introduction

As shown by Hiss and Szczepański [10, the corollary in Sect. 1], on any compact flat
Riemannian manifold M with dimM = 𝑛 ≥ 2 there exists a parallel distribution
𝐷 of dimension 𝑘 , where 0 < 𝑘 < 𝑛, such that the leaves of 𝐷 are all compact.
In the Appendix we reproduce the original algebraic phrasing of their result and
mention a stronger version of it, established more recently by Lutowski [12], which
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implies that – unless M is a flat torus – there exist at least two distributions 𝐷 with
the above properties, having nonequivalent irreducible holonomy representations.
The present paper deals with geometric consequences of Hiss and Szczepański’s

theorem. We do not pursue analogous ramifications of Lutowski’s generalization.
Our main results are Theorems 1, 2, 3, 4, 5 and Corollary 2.
Theorem 1 describes geometries of the individual leaves M′ of a distribution 𝐷

on M having the properties mentioned above, in terms of the short exact sequence
𝐿 → Π → 𝐻 formed by the lattice 𝐿, holonomy group 𝐻 and Bieberbach group Π

associated with M, and its analog 𝐿′ → Π′ → 𝐻′ for M′. Specifically, according
to our Theorem 1(ii), Π′ (or, 𝐿′) may be treated as a subgroup of Π (or, of a certain
Euclidean vector space V), and 𝐻′ as a homomorphic image of a subgroup of 𝐻.
In Theorem 2 we establish the existence, on every compact flat Riemannian

manifold M of dimension 𝑛 ≥ 2, of two proper parallel distributions 𝐷 and �̂�
with compact leaves, complementary to each other in the sense that 𝑇M = 𝐷 ⊕ �̂�.
Corollary 2 states that, in any manifold M as above, the class of parallel distri-

butions with compact leaves is closed under spans and intersections.
Theorem 3 addresses the particularly simple form of the sequence 𝐿′ → Π′ → 𝐻′

described by Theorem 1(ii), arising in the case of leaves M′ which we call generic.
The union of all generic leaves is an open dense subset of M, they all have the
same triple 𝐿′,Π′, 𝐻′, and are mutually isometric. When all leaves of 𝐷 happen to
be generic, they form a locally trivial bundle with compact flat manifolds serving
both as the base and the fibre (the fibration case).
Theorems 4 and 5 describe the intersection numbers of the leaves of the two

mutually complementary foliations resulting from Theorem 2.
Aside from the holonomy group 𝐻′ of each individual leaf M′ of 𝐷, forming a

part of its intrinsic (submanifold) geometry, M′ also gives rise to two “extrinsic”
holonomy groups, one arising since M′ is a leaf of the foliation 𝐹M of M tangent
to 𝐷, the other coming from the normal connection of M′. Due to the flatness of
the normal connection, the two extrinsic holonomy groups coincide, and are trivial
for all generic leaves. In Sect. 12 we briefly discuss the leaf space M/𝐹M , pointing
out that (not surprisingly!) M/𝐹M is a flat compact orbifold which, in the fibration
case mentioned above, constitutes the base manifold of the bundle.
Our results are illustrated by examples (generalized Klein bottles, Sect. 15), where

both the fibration and non-fibration cases occur, depending on the choice of 𝐷.
In Sect. 16 we discuss certain analogs of the correspondence between Bieberbach

groups and compact flat manifolds: one provided by almost-Bieberbach groups and
infra-nilmanifolds, the other by the group Spin (𝑚, 1) acting on the orthonormal-
frame bundle of the hyperbolic 𝑚-space, leading to quotient manifolds that include
some compact locally symmetric pseudo-Riemannian Einstein manifolds.
An earlier version [7] of this paper is cited by [2], and therefore still available on

the arXiv. The presentation in [7] was – as we eventually realized – rather far from
reader-friendly, which prompted us to thoroughly rewrite the whole text.
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2 Preliminaries

Manifolds, mappings (except in Lemma 2) and tensor fields, such as bundle and cov-
ering projections, submanifold inclusions, and Riemannian metrics, are by definition
of class 𝐶∞. Submanifolds need not carry the subset topology, and a manifold may
be disconnected (although, being required to satisfy the second countability axiom,
it must have at most countably many connected components). Connectedness/com-
pactness of a submanifold always refers to its own topology, and implies the same
for its underlying set within the ambient manifold. Thus, a compact submanifold is
always endowed with the subset topology.
By a distribution on amanifold N wemean, as usual, a (smooth) vector subbundle

𝐷 of the tangent bundle 𝑇N. An integral manifold of 𝐷 is any submanifold L of
N with 𝑇𝑥L = 𝐷𝑥 whenever 𝑥 ∈ L. The maximal connected integral manifolds of
𝐷 will also be referred to as the leaves of 𝐷. If 𝐷 is integrable, its leaves form the
foliation associated with 𝐷. We call 𝐷 projectable under a mapping 𝜓 : N → N̂
onto a distribution �̂� on the target manifold N̂ if 𝑑𝜓𝑥 (𝐷𝑥) = �̂�𝜓 (𝑥) for all 𝑥 ∈ N.

Remark 1 The following facts are well known: (c) is the compact case of Ehres-
mann’s fibration theorem [8, Corollary 8.5.13]; (b) follows from (c). For (a), see [11,
pp. 43–44 and 61–62] – note that finiteness trivially implies proper discontinuity.

a. Free diffeomorphic actions of finite groups on manifolds are properly discontin-
uous, leading to covering projections onto the resulting quotient manifolds.

b. Any locally-diffeomorphic mapping from a compact manifold into a connected
manifold is a (surjective) finite covering projection.

c. More generally, the phrases ‘locally-diffeomorphic mapping’ and ‘finite covering
projection’ in (b) may be replaced with submersion and fibration.

Lemma 1 Given manifolds M̂ and M with distributions �̂� and 𝐷, let �̂� be pro-
jectable onto 𝐷 under a locally diffeomorphic surjective mapping 𝜓 : M̂ → M.

i. The 𝜓-image of any leaf of �̂� is a connected integral manifold of 𝐷.
ii. Integrability of �̂� implies that of 𝐷.
iii. For any compact leaf L of �̂�, the image L′ = 𝜓(L) is a compact leaf of 𝐷,

and the restriction 𝜓 : L → L′ constitutes a covering projection.
iv. If the leaves of �̂� are all compact, so are those of 𝐷.

Proof. Assertion (i) is immediate from the definitions of a leaf and projectability,
while (i) yields (ii) as integrability amounts to the existence of an integral manifold
through every point. Remark 1(b) and (i) give (iii). Now (iv) follows. ut

Lemma 2 Suppose that 𝐹 is a mapping from a manifold W into any set. If for
every 𝑥 ∈ W there exists a diffeomorphic identification of a neighborhood B𝑥 of
𝑥 in W with a unit open Euclidean ball centered at 0 under which 𝑥 corresponds
to 0 and 𝐹 becomes constant on each open straight-line interval of length 1 in the
open Euclidean ball having 0 as an endpoint, then 𝐹 is locally constant on some
open dense subset of W.
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Proof. We use induction on 𝑛 = dimW. The case 𝑛 = 1 being trivial, let us
suppose that the assertion holds in dimension 𝑛 − 1 and consider a mapping 𝐹 from
an 𝑛-dimensional manifold W, satisfying our hypothesis, along with an embedded
open Euclidean ball B𝑥 ⊆ M “centered” at a fixed point 𝑥, as in the statement
of the lemma. The constancy of 𝐹 along the fibres of the normalization projection
` : B𝑥r {𝑥} → S onto the unit (𝑛−1)-sphere S gives rise to a mapping 𝐺 with the
domain S and 𝐹 = 𝐺 ◦ `. Let us now fix 𝑠 ∈ S, any 𝑦 ∈ B𝑥 r {𝑥} with `(𝑦) = 𝑠,
and an embedded open Euclidean ball B𝑦 “centered” at 𝑦, such that 𝐹 is constant on
each radial open interval in B𝑦 . The obvious submersion property of ` allows us to
pass from B𝑦 to a smaller concentric ball and then choose a codimension-one open
Euclidean ball B ′

𝑦 arising as a union of radial intervals within this smaller version
of B𝑦 , for which ` : B ′

𝑦 → S is an embedding. The assumption of the lemma thus
holds when W and 𝐹 are replaced by S and 𝐺, leading to the local constancy
of 𝐺 (and 𝐹) on a dense open set in S (and, respectively, in B𝑥 r {𝑥}). Since the
union of the latter sets over all 𝑥 is obviously dense in W, our claim follows. ut

We have the following well-known consequence of the inverse mapping theorem
combined with the Gauss lemma for submanifolds.
Lemma 3 Given a compact submanifold M′ of a Riemannian manifold M, every
sufficiently small 𝛿 ∈ (0,∞) has the following properties.

a. The normal exponential mapping restricted to the radius 𝛿 open-disk subbundle
N
𝛿

of the normal bundle of M′ constitutes a diffeomorphi sm Exp⊥ : N
𝛿
→M ′

𝛿

onto the open submanifold M ′
𝛿

of M equal to the preimage of [0, 𝛿) under the
function dist(M′, · ) of metric distance from M′.

b. Each 𝑥 ∈ M ′
𝛿

has a unique point 𝑦 ∈ M′ nearest to 𝑥, which is simultaneously
the unique point 𝑦 of M′ joined to 𝑥 by a geodesic in M ′

𝛿
normal to M′

at 𝑦, and the resulting assignment M ′
𝛿
3 𝑥 ↦→ 𝑦 ∈ M′ coincides with the

composition of the inverse diffeomorphism of Exp⊥ : N
𝛿
→M ′

𝛿
followed by the

normal-bundle projection N
𝛿
→M′.

c. The Exp⊥ images of length 𝛿 radial line segments emanating from the zero
vectors in the fibres of N

𝛿
coincide with the length 𝛿 minimizing geodesic

segments in M ′
𝛿

emanating from M′ and normal to M′. They are also normal
to all the levels of dist(M′, · ) in M ′

𝛿
, and realize the minimum distance between

any two such levels within M ′
𝛿
.

Lemma 4 In a complete metric space, any countable union of closed sets with empty
interiors has an empty interior.

Proof. This is Baire’s theorem [9, p. 187] stating, equivalently, that the intersection
of countably many dense open subsets is dense. ut

3 Free Abelian groups

The following well-known facts, cf. [1, p. 2], are gathered here for easy reference.
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For a finitely generated Abelian group 𝐺, being torsion-free amounts to being
free, in the sense of having a ZZ-basis, by which one means an ordered 𝑛-tuple
𝑒1, . . . , 𝑒𝑛 of elements of 𝐺 such that every 𝑥 ∈ 𝐺 can be uniquely expressed as an
integer combination of 𝑒1, . . . , 𝑒𝑛. The integer 𝑛 ≥ 0, also denoted by dimZZ𝐺, is an
algebraic invariant of 𝐺, called its rank, or Betti number, or ZZ-dimension.
Any finitely generated Abelian group 𝐺 is isomorphic to the direct sum of

its (necessarily finite) torsion subgroup 𝑆 and the free group 𝐺/𝑆. We then set
dimZZ𝐺 = dimZZ [𝐺/𝑆]. A subgroup 𝐺 ′ (or, a homomorphic image 𝐺 ′) of such 𝐺,
in addition to being again finitely generated and Abelian, also satisfies the inequality
dimZZ𝐺

′ ≤ dimZZ𝐺, strict unless 𝐺/𝐺 ′ is finite (or, respectively, the homomorphism
in question has a finite kernel).

Lemma 5 A subgroup 𝐺 ′ of a finitely generated free Abelian group 𝐺 constitutes
a direct summand of 𝐺 if and only if the quotient group 𝐺/𝐺 ′ is torsion-free.

In fact, more generally, given a surjective homomorphism 𝜒 : 𝑃 → 𝑃′ between
Abelian groups 𝑃, 𝑃′ and elements 𝑥

𝑗
, 𝑦𝑎 ∈ 𝑃 (with 𝑗 , 𝑎 ranging over finite sets),

such that 𝑥
𝑗
and 𝜒(𝑦𝑎) happen to form ZZ-bases of Ker 𝜒 and, respectively, of 𝑃′,

the system consisting of all 𝑥
𝑗
and 𝑦𝑎 is a ZZ-basis of 𝑃 (and so 𝑃 must be free).

This is clear as every element of 𝑃′ (or, of 𝑃) then can be uniquely expressed as an
integer combination of 𝜒(𝑦𝑎) (or, consequently, of 𝑥𝑗 and 𝑦𝑎).

Lemma 6 For each finitely generated subgroup 𝐺 of the additive group of a fi-
nite-dimensional real vector space V, the intersection 𝐺 ∩ V′ with any vector
subspace V′ ⊆ V forms a direct-summand subgroup of 𝐺. Furthermore, the class
of direct-summand subgroups of 𝐺 is closed under intersections, finite or not.

Both claims are obvious from Lemma 5. Next, we have a straightforward exercise:

Lemma 7 If normal subgroups 𝐺 ′, 𝐺 ′′ of a group 𝐺 intersect trivially and every
𝛾′ ∈ 𝐺 ′ commutes with every 𝛾′′ ∈ 𝐺 ′′, then 𝐺 ′𝐺 ′′ = {𝛾′𝛾′′ : (𝛾′, 𝛾′′) ∈ 𝐺 ′× 𝐺 ′′}
is a normal subgroup of 𝐺, and the assignment (𝛾′, 𝛾′′) ↦→ 𝛾′𝛾′′ defines an iso-
morphism 𝐺 ′× 𝐺 ′′ → 𝐺 ′𝐺 ′′.

4 Lattices and vector subspaces

Throughout this section V denotes a fixed finite-dimensional real vector space, and

subspaces V′,V′′ ⊆ V with V = V′⊕ V′′ are called complementary (1)

to each other. As usual, we define a (full) lattice in V to be any subgroup 𝐿 of the
additive group of V generated by a basis of V (which must consequently also be
a ZZ-basis of 𝐿). The quotient Lie group V/𝐿 then is a torus, and we use the term
subtori when referring to its compact connected Lie subgroups.
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Definition 1 Given a lattice 𝐿 in V, by an 𝐿-subspace of V we will mean any
vector subspace V′ of V spanned by 𝐿 ∩V′. One may equivalently require V′ to
be the span of just a subset of 𝐿, rather than specifically of 𝐿 ∩V′.

Lemma 8 For a lattice 𝐿 in V, the parallel distribution on V tangent to any
prescribed vector subspace V′ projects onto a parallel distribution 𝐷 on the torus
group V/𝐿. The leaves of 𝐷 must be either all compact, or all noncompact, and
they are compact if and only if V′ is an 𝐿-subspace, in which case the leaf of 𝐷

through zero is a subtorus of V/𝐿.

Proof. The projectability assertion is obvious from the general fact, here applied
to the projection V → V/𝐿, that projectability of distributions under covering
projections amounts to their deck-transformation invariance. The first claim about
the leaves of 𝐷 follows as the leaves are one another’s translation images. For the
second, let N be the leaf of 𝐷 through zero. Requiring V′ to be (or, not to be)
an 𝐿-subspace makes 𝐿 ∩ V′, by Lemma 6, a direct-summand subgroup of 𝐿
spanning V′ or, respectively, yields the existence of a nonzero linear functional 𝑓
on V′, the kernel of which contains 𝐿 ∩ V′. In the former case N is a factor of a
product-of-tori decomposition of V/𝐿, in the latter 𝑓 descends to an unbounded
function on N. ut

Lemma 9 Given a lattice 𝐿 in V, the span and intersection of any family of 𝐿-sub-
spaces are 𝐿-subspaces. The same is true if one replaces the phrase ‘𝐿-subspaces’
with ‘𝐻-invariant 𝐿-subspaces’ for any fixed group 𝐻 of linear automorphisms of
V sending 𝐿 into itself.

Proof. The assertion about spans follows from the case of two 𝐿-subspaces, obvious
in turn due to the second sentence of Definition 1. Next, the intersection of the family
of subtori in V/𝐿, arising via Lemma 8 from the given family of 𝐿-subspaces,
constitutes a compact Lie subgroup of V/𝐿, so that it is the union of finitely many
cosets of a subtorus N. Since subtori are totally geodesic relative to the translation-
invariant flat affine connection on V/𝐿, while the projection V → V/𝐿 is locally
diffeomorphic, the tangent space of N at zero equals the intersection of the tangent
spaces of the subtori forming the family, and each tangent space corresponds to an
𝐿-subspace from our family. The conclusion is now immediate from Lemma 8. ut

Remark 2 For a lattice 𝐿 in V generated by a basis 𝑒1, . . . , 𝑒𝑛 of V, the translational
action of 𝐿 on V has an obvious compact fundamental domain (a compact subset
of V intersecting all orbits of 𝐿): the parallelepiped formed by all the combinations
𝑡1𝑒1 + . . . + 𝑡𝑛𝑒𝑛 with 𝑡1, . . . , 𝑡𝑛 ranging over [0, 1].

The next lemma is immediate from the first part of Lemma 6 and the well-known
fact [3, Chap. VII, Théorème 2] that lattices in V are precisely the same as discrete
subgroups of V, spanning V.

Lemma 10 For a lattice 𝐿 in V, a vector subspace V′⊆ V, and 𝐿′ = 𝐿 ∩V′,

a. 𝐿′ is a lattice in the vector subspace spanned by it, and
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b. 𝐿′ constitutes a direct-summand subgroup of 𝐿.

Lemma 11 Let W be the rational vector subspace of a finite-dimensional real
vector space V, spanned by a fixed lattice 𝐿 in V. Then the four sets consisting,
respectively, of all

i. 𝐿-subspaces V′ of V,
ii. direct-summand subgroups 𝐿′ of 𝐿,
iii. rational vector subspaces W ′ of W,
iv. subtori N ′of the torus group V/𝐿, that is, its compact connected Lie subgroups,

stand in mutually consistent, natural bijective correspondences with one another,
obtained by declaring V′ to be the real span of both 𝐿′ and W ′ as well as the
identity component of the preimage of N ′ under the projection homomorphism
V → V/𝐿. Furthermore, W ′ equals W ∩V′and, simultaneously, is the rational
span of 𝐿′, while N ′ = V′/𝐿′ and 𝐿′ = 𝐿 ∩ V′ = 𝐿 ∩ W ′. Finally, dimIRV′ =
dimZZ𝐿

′ = dimQW ′ = dimN ′.
‘Mutual consistency’ means here that the above finite set of bijections is closed

under the operations of composition and inverse.

Proof. The mappings (ii) → (i) and (iii) → (i), as well as (iv) → (i), de-
fined in the three lines following (iv), are all bijections, with the inverses given
by (𝐿′,W ′,N ′) = (𝐿 ∩ V′,W ∩ V′,V′/𝐿′). Namely, each of the three mappings
and their purported inverses takes values in the correct set, and each of the six map-
ping-inverse compositions is the respective identity. To be specific, the claim about
the values follows from Lemma 8 for (iv) → (i) and (i) → (iv), from Definition 1
and Lemma 6 for (ii)→ (i) and (i)→ (ii), while it is obvious for (i)→ (iii) and, for
(iii)→ (i), immediate from Definition 1, since we are free to assume that

(𝐿, W, V) = (ZZ𝑛, Q𝑛, IR𝑛) , where 𝑛 = dimV, (2)

and every rational vector subspace of Q𝑛 has a basis contained in ZZ𝑛. Next, the
compositions (ii)→ (i)→ (ii) and (i)→ (ii)→ (i) are the identity mappings – the
former due to the fact that 𝐿∩ spanIR𝐿

′ ⊆ 𝐿′ (which one sees extending a ZZ-basis of
𝐿′ to a ZZ-basis of 𝐿) – the opposite inclusion being obvious; the latter, as Definition 1
gives V′ = spanIR(𝐿 ∩ V′). Similarly for (iii)→ (i)→ (iii) and (i)→ (iii)→ (i),
as long as one replaces the letters 𝐿 and ZZ with W and Q, using (2) and the line
following it. Finally, (iv)→ (i)→ (iv) and (i)→ (iv)→ (i) are the identity mappings
as a consequence of Lemma 8, and the dimension equalities become obvious if one,
again, chooses a ZZ-basis of 𝐿 containing a ZZ-basis of 𝐿′. ut

In the next theorem, as 𝐻 is finite, all 𝐴 ∈ 𝐻 must have det 𝐴 = ±1, and so the
𝐿-preserving property of 𝐻 means that 𝐴𝐿 = 𝐿 (rather than just 𝐴𝐿 ⊆ 𝐿).

Proposition 1 For a lattice 𝐿 in a finite-dimensional real vector space V, a finite
group 𝐻 of 𝐿-preserving linear automorphisms of V, and an 𝐻-invariant 𝐿-sub-
space V′ of V, there exists an 𝐻-invariant 𝐿-subspace V′′of V, complementary
to V′ in the sense of (1).
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Proof. Let W ′ = W ∩V′, where W is the rational span of 𝐿 (see Lemma 11).
Restricted to W, the elements of 𝐻 act by conjugation on the rational affine space
P of all Q-linear projections W → W ′ (by which we mean linear operators
W → W ′ equal to the identity on W ′). The average of any orbit of the action of
𝐻 on P is an 𝐻-invariant projection W → W ′ with a kernel W ′′ corresponding
via Lemma 11 to our required V′′. ut

Corollary 1 If 𝐿,V, 𝐻 satisfy the hypotheses of Proposition 1, then every nonzero
𝐻-invariant 𝐿-subspace V′

0 of V can be decomposed into a direct sum of one or
more nonzero 𝐻-invariant 𝐿-subspaces, each of which is minimal in the sense of
not containing any further nonzero proper 𝐻-invariant 𝐿-subspace.

Proof. Induction on the possible values of dimV′
0 . The case dimV′

0 = 1 is trivial.
Assuming the claim true for subspaces of dimensions less than dimV′

0 , along with
non-minimality of V′

0 , we fix a nonzero proper 𝐻-invariant 𝐿-subspace V′ of V,
contained in V′

0 , and choose an 𝐻-invariant complement V
′′ of V′, guaranteed

to exist by Proposition 1. Since V′′ intersects every coset of V′ in V, including
cosets within V′

0 , the subspace V′
0 ∩ V′′ is an 𝐻-invariant complement of V′ in

V′
0 , as well as an 𝐿-subspace (due to Lemma 9). We may now apply the inductive
assumption to both V′ and V′

0 ∩V′′. ut

For geometric consequences of Corollary 1, see the end of Sect. 9, where we also
point out that a decomposition into minimal summands is in general nonunique.
Given a lattice 𝐿 in a finite-dimensional real vector space V and an 𝐿-subspace

V′ of V, the restriction to 𝐿 of the quotient-space projection V → V/V′ has
the kernel 𝐿′ = 𝐿 ∩ V′, and so it descends to an injective group homomorphism
𝐿/𝐿′→ V/V′, the image of which is a (full) lattice in an V/V′ (which follows if
one uses a ZZ-basis of 𝐿 containing a ZZ-basis of 𝐿′). From now on we will treat
𝐿/𝐿′ as a subset of V/V′. The discreteness of the lattice 𝐿/𝐿′ ⊆ V/V′ clearly
implies the existence of an open subset U ′ of V, containing V′ and forming a
union of cosets of V′, such that 𝐿 ∩U ′ = 𝐿′.

5 Affine spaces

In this section all the affine and vector spaces are real and finite-dimensional, we
denote by EndV the space of linear endomorphisms of a given real vector space
V, and scalars stand for the corresponding multiples of identity, so that the identity
itself becomes 1 ∈ EndV.
For an affine space E with the translation vector space V, let Aut E be the group

of all affine transformations (automorphisms) of E, and Aff E the set of all (possibly
nonbijective) affine mappings E → E. We have the inclusions Aut E ⊆ Aff E and
V ⊆ Aut E, the latter expressing the fact that Aut E contains the normal subgroup
consisting of all translations. Any vector subspace V′ of V gives rise to a foliation
of E, with the leaves formed by affine subspaces E′ parallel to V′, meaning
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the orbits of the translational action of V′ on E , (3)

which will also be referred to as the cosets of V′ in E. The resulting leaf (quotient)
space E/V′ constitutes an affine space having the translation vector space V/V′.
Clearly, for cosets E′ and E′′ of vector subspaces V′,V′′ in a vector space V,

the complementarity condition (1) implies that E′∩ E′′ is a one point set. (4)

A fixed inner product in V turns E into a Euclidean affine space, with the isometry
group Iso E ⊆ Aut E. If 𝛿 ∈ (0,∞), we define the 𝛿-neighborhood of an affine
subspace E′ of E to be the set of points in E lying at distances less that 𝛿 from
E′. Clearly, the 𝛿-neighborhood of E′ is a union of cosets of a vector subspace V′

of V (one of them being E′ itself), as well as the preimage, under the projection
E → E/V′, of the radius 𝛿 open ball centered at the point E′ in the quotient
Euclidean affine space E/V′ (for the obvious inner product on V/V′).
Given a Euclidean affine space E with the translation vector space V and an

affine subspace E′ ⊆ E parallel, as in (3), to a vector subspace V′ ⊆ V, (affine)
self-isometries Z of E such that Z (𝑥) = 𝑥 for all 𝑥 ∈ E′ are in an obvious one-to-
one correspondence with linear self-isometries 𝐴 of the orthogonal complement of
V′. In this case, for easy later reference (in the proof of Lemma 14),

we will call Z the affine extension of 𝐴 centered on E′. (5)

Definition 2 In an affine space E having the translation vector space V, given an
affine mapping 𝛾 ∈ Aff E with the linear part 𝐴 ∈ EndV, we define the transla-
tional-part coset of 𝛾 to be the subset 𝑏 +V̂ of V, where V̂ denotes the image of
𝐴−1, and 𝑏 ∈ V is the translational part of 𝛾 relative to a fixed origin 𝑜 ∈ E, in the
sense that 𝛾(𝑜+𝑣) = 𝑜+𝐴𝑣+𝑏 for all 𝑣 ∈ V. The coset 𝑏 +V̂ is clearly independent
of the choice of an origin 𝑜, as a new origin 𝑜 + 𝑤 results in the replacement of 𝑏
with 𝑏 + (𝐴 − 1)𝑤.

For an affine transformation 𝛾 ∈ Aut E of an affine space E with the translation
vector spaceV, and a vector subspace V′ of V, consider this condition:

the linear part 𝐴 of 𝛾 leaves V′ invariant and descends to
the identity transformation of V/V′, that is, (𝐴−1) (V) ⊆V′.

(6)

Lemma 12 If, in Lemma 3, M′ is a compact leaf of a parallel distribution 𝐷 on a
complete flat Riemannian manifold M, we get the following additional conclusions.

a. Every level of dist(M′, · ) in M ′
𝛿
, and M ′

𝛿
itself, is a union of leaves of 𝐷.

b. Restrictions of M ′
𝛿
3 𝑥 ↦→ 𝑦 ∈ M′ to leaves of 𝐷 in M ′

𝛿
are locally isometric.

c. The local inverses of all the above locally-isometric restrictions correspond via the
diffeomorphism Exp⊥ to all local sections of the normal bundle of M′ obtained
by restricting to M′ local parallel vector fields of lengths 𝑟 ∈ [0, 𝛿) that are
tangent to M and normal to M′, with 𝑟 equal to the value of dist(M′, · ) on
the leaf in question.
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This trivially follows from the fact the pullback of 𝐷 to the Euclidean affine space
E constituting theRiemannian universal covering space of M is a distributionwhose
integral manifolds are the affine subspaces parallel to V′, in the sense of (3), for
some vector subspace V′ of the translation vector space V of E.

6 Bieberbach groups and flat manifolds

Let E be a Euclidean affine 𝑛-space with the translation vector space V. By a Bie-
berbach group [4, p. 4, Definition 1.7] in E one means any torsion-free discrete sub-
group Π of Iso E for which there exists a compact fundamental domain (Remark 2).
Using the linear-part homomorphism 𝛼 : Aut E → AutV � GL (𝑛, IR), one defines
the lattice subgroup 𝐿 of Π and its holonomy group 𝐻 ⊆ IsoV � O (𝑛) by

𝐿 = Π∩V, 𝐻 = 𝛼(Π) . (7)

Thus, 𝐿 is the set of all translations lying in Π (which also makes it the kernel of
the restriction 𝛼 : Π → 𝐻), and 𝐻 consists of the linear parts of elements of Π.
Note that 𝐿 ⊆ V is a (full) lattice in the usual sense [4, p. 17, Theorem 3.1(ii)], as
defined in Sect. 4. The relations involving Π, 𝐿 and 𝐻 are conveniently summarized
by the short exact sequence

𝐿 → Π → 𝐻, where the arrows are the inclusion homomorphism and 𝛼. (8)

As the normal subgroup 𝐿 of Π is Abelian, the action of Π on 𝐿 by conjugation
descends to an action on 𝐿 of the quotient group Π/𝐿, identified via (8) with 𝐻.

This last action clearly coincides with the ordinary linear action of
𝐻 on V, restricted to the lattice 𝐿 ⊆ V, and so 𝐿 is 𝐻 invariant. (9)

Remark 3 The action of a Bieberbach group Π on the Euclidean affine space E
being always free and properly discontinuous [4, p. 3, Proposition 1.1], the quotient
M = E/Π, with the projected metric, forms a compact flat Riemannian manifold,
while 𝐻 must be finite [4, p. 17, Theorem 3.1(i)].

Remark 4 The assignment of M = E/Π to Π establishes a well-known bijective
correspondence [4, p. 65, Theorem 5.4] between equivalence classes of Bieber-
bach groups and isometry types of compact flat Riemannian manifolds. Bieberbach
groups Π and Π̂ in Euclidean affine spaces E and Ê are called equivalent here if
some affine isometry E → Ê conjugates Π onto Π̂. Furthermore, Π and 𝐻 in (8)
serve as the fundamental and holonomy groups of M, while Π also acts via deck
tranformations on the Riemannian universal covering space of M, isometrically
identified with E.
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Since the lattice subgroup 𝐿 of the fundamental group Π of M gives rise to a
covering projection E/𝐿 → M, Lemmas 8 and 9 combined with Remark 4 have the
following obvious consequence.
Corollary 2 In any compact flat Riemannian manifold, the class of parallel distri-
butions with compact leaves is closed under spans and intersections.

7 Lattice-reducibility

A Bieberbach group Π in a Euclidean affine space E (or, the compact flat Rieman-
nian manifold M = E/Π corresponding to Π, in the sense of Remark 4, will be
called lattice-reducible if, for V, 𝐻 and 𝐿 associated with E and Π as in Sect. 6,
there exists V′ such that

V′ is a nonzero proper 𝐻 invariant 𝐿 subspace of V. (10)

(See Definition 1.) To emphasize the role of V′ in (10), we also say that

the lattice reducibility condition (10) holds for (V, 𝐻, 𝐿,V′) . (11)

As shown by Hiss and Szczepański [10], every compact flat Riemannian manifold
of dimension greater than one is lattice-reducible. For details, see the Appendix.
Given a Bieberbach group Π in a Euclidean affine space E and an affine sub-

space E′ of E parallel, as in (3), to a vector subspace V′ of its translation space
V, satisfying (10) – (11), we denote by Σ′ the stabilizer group of E′ in Π, so that

Σ′ consists of all the elements of Π mapping E′ onto itself. (12)

Let 𝛾 ∈ Π. As the foliation of E formed by the cosets of V′ is Π-invariant, cf. (10),

𝛾 ∈ Σ′ if and only if 𝛾(E′) intersects E′. (13)

Theorem 1 For a lattice-reducible Bieberbach group Π in a Euclidean affine space
E and a vector subspace V′ of V with (10), the following conclusions hold.

i. The affine subspaces of dimension dimV′ in E, parallel to V′ in the sense of (3),
are the leaves of a foliation 𝐹E on E, projectable under the covering projections
pr : E → M = E/Π and E → T = E/𝐿 onto foliations 𝐹M of M and 𝐹T of
the torus T = E/𝐿, both of which have compact totally geodesic leaves, tangent
to a parallel distribution.

ii. The leaves M′ of 𝐹M coincide with the pr-images of the leaves E′ of 𝐹E , and
the restrictions pr : E′ → M′ are covering projections. The same remains true if
one replaces M and pr with T and the projection E → T. Any such M′, being
a compact flat Riemannian manifold, corresponds via Remark 4 to a Bieberbach
group Π′ in the Euclidean affine space E′. For 𝐿′, 𝐻′ appearing in the M′-analog
𝐿′ → Π′ → 𝐻′ of (8), with Σ′ defined by (12),
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a. Π′ consists of the restrictions to E′ of all the elements of Σ′,
b. 𝐻′ is formed by the restrictions to V′ of the linear parts of elements of Σ′,
c. 𝐿′ = Π′∩V′, as in (7), and 𝐿 ∩V′ ⊆ 𝐿′.

iii. The restriction homomorphism Σ′→ Π′ of (ii-a) is an isomorphism.

The last inclusion of (ii-c) may be proper; see the end of Sect. 15.
We chose to format the proof Theorem 1 as the whole next section, since some

parts of it are of independent interest, and can in this way be more comfortably cited
later in the text (Sections 10 – 11, 13 – 14, 16).

8 Proof of Theorem 1

The projectability of the foliation 𝐹E under both covering projections pr : E → M
and E → T follows as a trivial consequence from the fact that, due to the 𝐻-invar-
iance of V′,

𝐹E is Π invariant and, obviously, 𝐿 invariant, (14)

while Lemma 1(ii) implies the integrability of the image distribution. Next,

pr is the composition E → T→M of two mappings: the
universal covering projection of the flat torus T = E/𝐿,
and the quotient projection for the action of Π on T,

(15)

the latter action clearly becoming free if one replaces Π with Π/𝐿 � 𝐻. Both factor
mappings, E → T and T → M, are covering projections – the first since 𝐿 is a
lattice in V, the second due to Remark 1(a). Parts (iii)–(iv) of Lemma 1, along with
Lemma 8, may now be applied to the foliations 𝐹T and 𝐹M of the torus T and of
M obtained as projections of 𝐹E , proving the last (compact-leaves) claim of (i), as
well as the first two sentences of (ii).
We now fix a leaf E′ of 𝐹E , and choose a leaf M

′ of 𝐹M containing pr(E
′), cf.

Lemma 1(i). It follows that

pr : E′ → M′ is a (surjective) covering projection, (16)

since (15) decomposes pr : E′ → M′ into the composition E′ → T ′ → M′, in
which the first mapping is the universal-covering projection of the torus T ′ = E′/𝐿′,
and the second one must be a covering due to Remark 1(b).
Two points of E′ have the same pr-image if and only if one is transformed into the

other by an element of the group Π′ described in assertion (ii-a); namely, the ‘only
if’ part follows since, given 𝑥, 𝑦 ∈ E′ with pr(𝑥) = pr(𝑦) in M = E/Π, the element
of Π sending 𝑥 to 𝑦 must lie in Σ′ by (13). Furthermore, Π′ acts on E′ freely since
Π does so on E (Remark 3). Thus, Π′ coincides with the deck transformation group
for the universal covering projection (16), and satisfies (ii-a). Next, (ii-b) and (ii-c)
are consequences of the definitions of 𝐻′ and 𝐿′.
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Finally, (iii) follows since nontrivial elements of Σ′, being fixed-point free (Re-
mark 3), have nontrivial restrictions to E′.

9 Geometric consequences of Lemma 8 and Proposition 1

Hiss and Szczepański’s result mentioned in the Introduction, combined with Re-
mark 4, Proposition 1 and Theorem 1, has the following immediate consequence.

Theorem 2 Every compact flat Riemannian manifold M of dimension 𝑛 ≥ 2
admits two proper parallel distributions 𝐷 and �̂� with compact leaves, which are
complementary to each other in the sense that 𝑇M = 𝐷 ⊕ �̂�.

Theorem 1(i), Lemma 8 and Corollary 1 also easily imply that the tangent bundle
𝑇M of any compact flat Riemannian manifold M admits a maximal direct-sum
decomposition into parallel subbundles (distributions) with compact leaves, maxi-
mality meaning that none of the summand subbundles can be further decomposed
in the same manner. Hiss and Szczepański’s result [10] guarantees that, unless
dimM < 2, at least two such summand distributions are present.
Decompositions just mentioned may be quite far from unique: when M is an

𝑛-torus, they stand in a bijective correspondence with decompositions of a 𝑛-di-
mensional rational vector space into a direct sum of lines. This is why one probably
should not expect them to have interesting general properties.

10 Geometries of individual leaves

Throughout this section we adopt the assumptions and notation of Theorem 1. The
Π-invariance of the foliation 𝐹E , cf. (14), trivially gives rise to the obvious

isometric action of Π on the quotient Euclidean affine space E/V′ (17)

(that is, on the leaf space of 𝐹E , whose points coincide with the affine subspaces
E′ of E parallel to V′). Whenever E′ ∈ E/V′ is fixed, its stabilizer group Σ′ in
(12) obviously coincides with the isotropy group of E′ for (17). The action (17) is
not effective, as the kernel of the corresponding homomorphism Π → Iso [E/V′]
clearly contains the group 𝐿′ = 𝐿 ∩V′ forming a lattice in V′, cf. Definition 1 and
Lemma 10(a). Now the 𝐻-invariance of 𝐿 – see (9) – combined with the 𝐻-invar-
iance of V′ shows that 𝐿′ = 𝐿 ∩ V′ is a normal subgroup of Π, which leads to a
further homomorphism Π/𝐿′ → Iso [E/V′] (still in general noninjective, cf. (24)
below). Let pr again stand for the covering projection E → M = E/Π.
Given E′ ∈ E/V′ and a vector 𝑣 ∈ V orthogonal to V′, we set M ′

𝑣 = pr(E′+ 𝑣),
so that, according to (16), M ′

0 = M′. Again by (16),

pr : E′+ 𝑣 → M ′
𝑣 is a locally isometric universal covering projection. (18)
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and M ′
𝑣 must be a (compact) leaf of 𝐹M . We also

choose 𝛿 as in Lemma 3 and Lemma 12 for the submanifold
M′= pr(E′) with (16) of the compact flat manifold M = E/Π,
and denote by Σ′

𝑣 ⊆ Π the stabilizer group of E′ + 𝑣, cf. (12).
(19)

Lemma 13 Under the above hypotheses, for any E′ ∈ E/V′ there exists 𝛿 ∈ (0,∞)
such that, whenever 𝑢 ∈ V is a unit vector orthogonal to V′ and 𝑟, 𝑠 ∈ (0, 𝛿), the
isometries E′+𝑟𝑢 → E′+ 𝑠𝑢 and E′+𝑟𝑢 → E′ acting via translations by the vectors
(𝑠 − 𝑟)𝑢 and, respectively, −𝑟𝑢, descend under the universal-covering projections
(18), with 𝑣 equal to 𝑟𝑢, 𝑠𝑢 or 0, to an isometry M ′

𝑟𝑢 → M ′
𝑠𝑢 or, respectively,

a 𝑘-fold covering projection M ′
𝑟𝑢 → M′, where the integer 𝑘 = 𝑘 (𝑢) ≥ 1 may

depend on 𝑢 – see the end of Sect. 15 – but not on 𝑟 .

Proof. For 𝛿 selected in (19) and any 𝑐 ∈ [0, 1], let 𝜓𝑐 :M𝛿
→M

𝛿
correspond,

via the Exp⊥-diffeomorphic identification of Lemma 3(a), to the mapping N
𝛿
→N

𝛿

which multiplies vectors normal to M′ by the scalar 𝑐. With 𝜙 denoting our iso-
metry E′+ 𝑟𝑢 → E′+ 𝑠𝑢 (or, E′+ 𝑟𝑢 → E′) we now have pr◦𝜙 = 𝜓𝑐◦ pr on E′+ 𝑟𝑢,
where 𝑐 = 𝑠/𝑟 (or, respectively, 𝑐 = 0) since, given 𝑥 ∈ E′, the pr-image of the line
segment {𝑥 + 𝑡𝑢 : 𝑡 ∈ [0, 𝛿)} in E is the length 𝛿 minimizing geodesic segment
in M ′

𝛿
emanating from the point 𝑦 = pr(𝑥) ∈ M′ in a direction normal to M′, and

pr ◦ 𝜙 sends 𝑥 + 𝑡𝑢, in both cases, to pr(𝑥 + 𝑐𝑡𝑢) = 𝜓𝑐 (pr(𝑥 + 𝑡𝑢)). The pr-image of
𝜙(𝑧), for any 𝑧 ∈ E′+ 𝑟𝑢, thus depends only on pr(𝑧) (by being its 𝜓𝑐-image), and
so both original isometries 𝜙 descend to (necessarily locally-isometric) mappings
M ′

𝑟𝑢 → M ′
𝑠𝑢 and M ′

𝑟𝑢 → M′, which constitute finite coverings (Remark 1(b)).
The former is also bijective, its inverse arising when one switches 𝑟 and 𝑠. As the
composition M ′

𝑠𝑢 → M ′
𝑟𝑢 → M′ clearly equals the analogous covering projection

M ′
𝑠𝑢 → M′ (with 𝑠 rather than 𝑟), the coverings M ′

𝑟𝑢 → M′ and M ′
𝑠𝑢 → M′

have the same multiplicity, which completes the proof. ut

Remark 5 Replacing 𝛿 of (19) with 1/4 times its original value, we can also require
it to have the following property: if 𝛾 ∈ Π and 𝑥 ∈ E are such that both 𝑥 and 𝛾(𝑥)
lie in the 𝛿-neighborhood of E′, defined as in Sect. 5, then 𝛾 ∈ Σ′ for the stabilizer
group Σ′ of E′ given by (12). In fact, letting E′′ be the leaf of 𝐹E through 𝑥, we see
from (14) that its 𝛾-image 𝛾(E′′) is also a leaf of 𝐹E , while both leaves are within the
distance 𝛿 from E′, which yields dist(E′′, 𝛾(E′′)) < 2𝛿 and so, due to the triangle
inequality, dist(E′, 𝛾(E′)) ≤ dist(E′, E′′) + dist(E′′, 𝛾(E′′)) + dist(𝛾(E′′), 𝛾(E′)) <
𝛿 + 2𝛿 + 𝛿 = 4𝛿. Thus, 𝑥 + 𝑟𝑢 ∈ 𝛾(E′) for some 𝑥 ∈ E′, some unit vector 𝑢 ∈ V
orthogonal to V′, and 𝑟 = dist(E′, 𝛾(E′)) ∈ [0, 4𝛿). Assuming now (19) with 𝛿
replaced by 4𝛿, one gets 𝑟 = 0, that is, 𝛾(E′) = E′ and 𝛾 ∈ Σ′. Namely, the
pr-image of the curve [0, 4𝛿) 3 𝑡 ↦→ 𝑥 + 𝑡𝑢 is a geodesic in the image of the
diffeomorphism Exp⊥ of Lemma 3(a), which intersects M′ only at 𝑡 = 0, while
M′ = pr(E′) = pr(𝛾(E′)), since M = E/Π.

Lemma 14 Let there be given V′, E′ as in Lemma 13, 𝛿 having the additional
property of Remark 5, any 𝑟 ∈ (0, 𝛿), and any unit vector 𝑢 ∈ V orthogonal to V′.
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a. The stabilizer group Σ′
𝑟𝑢 in (19) does not depend on 𝑟 ∈ (0, 𝛿).

b. The linear part of each element of Σ′
𝑟𝑢 keeps 𝑢 fixed.

c. Σ′
𝑟𝑢 is a subgroup of Σ′

0 with the finite index 𝑘 = 𝑘 (𝑢) ≥ 1 of Lemma 13,
d. pr : E → M maps the 𝛿-neighborhood E

𝛿
of E′ in E onto M ′

𝛿
of Lemma 3(a).

e. E
𝛿

and M ′
𝛿

are unions of leaves of, respectively, 𝐹E and 𝐹M .
f. The preimage under pr : E

𝛿
→ M

𝛿
of the leaf M ′

𝑟𝑢 = pr(E′+ 𝑟𝑢) of 𝐹M
equals the union of the images 𝛾(E′+ 𝑟𝑢) over all 𝛾 ∈ Σ′

0.

Proof. By (16) and (19), M ′
𝑣 = (E′+ 𝑣)/Π′

𝑣 , if one lets Π′
𝑣 denote the image of Σ′

𝑣

under the injective homomorphism of restriction to E′, cf. Theorem 1(iii). Fixing
𝑠 ∈ [0, 𝛿) and 𝑟 ∈ (0, 𝛿) we therefore conclude from Lemma 13 and (13) that,
whenever 𝑥 ∈ E′+ 𝑟𝑢 and 𝛾 ∈ Σ′

𝑟𝑢 , there exists �̂� ∈ Σ′
𝑠𝑢 satisfying the condition

𝛾(𝑥) + 𝑣 = �̂�(𝑥 + 𝑣) , where 𝑣 = (𝑠 − 𝑟)𝑢, and �̂� = 𝛾 when 𝑠 = 𝑟, (20)

the last clause being obvious since 𝛾, �̂� ∈ Π and the action of Π is free. With
𝑢 and 𝛾 fixed as well, for each given �̂� ∈ Σ′

𝑠𝑢 the set of all 𝑥 ∈ E′+ 𝑟𝑢 having
Property (20) is closed in E′+ 𝑟𝑢 while, as we just saw, the union of these sets
over all �̂� ∈ Σ′

𝑠𝑢 equals E′ + 𝑟𝑢. Thus, by Baire’s theorem (Lemma 4), some
�̂� ∈ Σ′

𝑠𝑢 satisfies (20) with all 𝑥 from some nonempty open subset of E′+ 𝑟𝑢, and
hence – by real-analyticity – for all 𝑥 ∈ E′+ 𝑟𝑢. In terms of the translation 𝜏𝑣 by
the vector 𝑣, we consequently have �̂� = 𝜏𝑣 ◦ 𝛾 ◦ 𝜏−1𝑣 on E′+ 𝑠𝑢, so that, due to
Theorem 1(iii), 𝛾 uniquely determines �̂�, while the assignment 𝛾 ↦→ �̂� is a homo-
morphism Σ′

𝑟𝑢 → Σ′
𝑠𝑢 ⊆ Π, and Z = �̂� ◦ 𝜏𝑣 ◦ 𝛾−1◦ 𝜏−1𝑣 equals the identity on E′+ 𝑠𝑢.

If we now allow 𝑠 to vary from 𝑟 to 0, the resulting curve 𝑠 ↦→ Z consists of affine
extensions, defined as in (5), of linear self-isometries of the orthogonal complement
of V′, and �̂� = Z ◦ 𝜏𝑣 ◦ 𝛾 ◦ 𝜏−1𝑣 on E. As Π is discrete, the curve 𝑠 ↦→ �̂� ∈ Π, with
𝑣 = (𝑠 − 𝑟)𝑢, must be constant, and can be evaluated by setting 𝑠 = 𝑟 (or, 𝑣 = 0).
Thus, �̂� = 𝛾 on E from the last clause of (20), and so Σ′

𝑟𝑢 ⊆ Σ′
𝑠𝑢 . For 𝑠 > 0,

switching 𝑟 with 𝑠 we get the opposite inclusion, and (a) follows. Also, taking the
linear part of the resulting relation 𝛾 = Z ◦ 𝜏𝑣 ◦ 𝛾 ◦ 𝜏−1𝑣 , we see that Z equals the
identity, for all 𝑠. Hence 𝛾 = 𝜏𝑣 ◦ 𝛾 ◦ 𝜏−1𝑣 , that is, 𝛾 commutes with 𝜏𝑣 which, by (9),
amounts to (b). Setting 𝑠 = 0, we obtain the first part of (c): Σ′

𝑟𝑢 ⊆ Σ′
0. Assertion (d)

is clear as pr, being locally isometric, maps line segments onto geodesic segments.
Lemma 12(a) for 𝐷 = 𝐹M gives (e). With pr : E → M = E/Π in Theorem 1(i), the
additional property of 𝛿 (Remark 5) yields (f). Finally, for 𝑘 = 𝑘 (𝑢), the geodesic
[0, 𝑟] 3 𝑡 ↦→ pr(𝑥 + 𝑡𝑢), normal to M′ at 𝑦 = pr(𝑥), is one of 𝑘 such geodesics
[0, 𝑟] 3 𝑡 ↦→ pr(𝑥 + 𝑡𝑤), joining 𝑦 to points of its preimage under the projection
M ′

𝑟𝑢 → M′ of Lemma 13, where 𝑤 ranges over a 𝑘-element set R of unit vectors in
V, orthogonal to V′. The union of the corresponding subset 𝐶 = {E′+ 𝑟𝑤 : 𝑤 ∈ R}
of the leaf space of 𝐹E equals the preimage in (f) – and hence an orbit for the action
of Σ′

0 – as every leaf in the preimage contains a point nearest 𝑥. Due to the al-
ready-established inclusion Σ′

𝑟𝑢 ⊆ Σ′
0 and (19), Σ

′
𝑟𝑢 is the isotropy group of E′+ 𝑟𝑢

relative to the transitive action of Σ′
0 on 𝐶, and so 𝑘 , the cardinality of 𝐶, equals

the index of Σ′
𝑟𝑢 in Σ′

0, which proves the second part of (c). ut
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11 The generic stabilizer group

Given aBieberbach group Π in a Euclidean affine space E with the translation vector
space V, let us fix a vector subspace V′ of V satisfying (10) for 𝐿, 𝐻 introduced
in (8). As long as dim E ≥ 2, such V′ always exists (Sect. 7). An element E′

of E/V′, that is, a coset of V′ in E, will be called generic if its stabilizer group
Σ′ ⊆ Π, defined by (12), equals

the kernel of the homomorphism Π → Iso [E/V′] corresponding to (17). (21)

The pr-images of generic cosets of V′ will be called generic leaves of 𝐹M .
Still using the symbols 𝐿, 𝐻 and pr for the groups appearing in (7) – (8) and the

universal-covering projection E → M = E/Π, let us also

denote by 𝐾 ′⊆ 𝐻 the normal subgroup consisting of all elements of
𝐻 that act on the orthogonal complement of V′ as the identity, and
by U ′ the subset of E/V′ formed by all generic cosets of V′ in E .

(22)

Theorem 3 For Σ′ equal to (21), under the assumptions preceding (21), with the
notation of (22), one has the following conclusions.

i. U ′ in (22) constitutes an open dense subset of E/V′.
ii. The normal subgroup Σ′ of Π is contained as a finite-index subgroup in the

stabilizer group of every E′ ∈ E/V′ for the action (17), and equal to this stabilizer
group if E′ ∈ U ′.

iii. The pr-images M′,M′′ of any E′, E′′ ∈ U ′ are isometric to each other.
iv. If one identifies E with its translation vector space V via a choice of an origin,

Σ′ becomes the set of all the elements of Π having, for 𝐾′ given by (22), the form

V 3 𝑥 ↦→ 𝐴𝑥 + 𝑏 ∈ V, in which 𝑏 ∈V′and the linear part 𝐴 lies in 𝐾′. (23)

v. Whenever E′ ∈ U ′, the homomorphism which restricts elements of the generic
stabilizer group Σ′ to E′ is injective, and the resulting isomorphic image Π′ of
Σ′ constitutes a Bieberbach group in the Euclidean affine space E′. The lattice
subgroup of Π′ and its holonomy group 𝐻′ are the intersection 𝐿′ = 𝐿 ∩V′ and
the image 𝐻′ of the group 𝐾′ defined in (22) under the injective homomorphism
of restriction to V′.

Proof. Lemma 14(a) states that the assumptions of Lemma 2 are satisfied by the
Euclidean affine space W = E/V′ and the mapping 𝐹 that sends E′ ∈ E/V′ to
its stabilizer group Σ′ with (12). The assignment E′ ↦→ Σ′ is thus locally constant
on some open dense set U ′ ⊆ E/V′. Letting Σ′ be the constant value of this
assignment assumed on a nonempty connected open subset W ′ of U ′, and fixing
𝛾 ∈ Σ′, we obtain 𝛾(E′) = E′ for all E′ ∈ W ′, and hence, from real-analyticity, for
all E′ ∈ E/V′. Thus, our Σ′ is contained in the stabilizer group of every E′ ∈ E/V′.
Since the same applies also to another constant value Σ′′ assumed on a nonempty
connected open set, Σ′′= Σ′ and the phrase ‘locally constant’ may be replaced with
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constant. By Lemma 14(c), any such Σ′ must be a finite-index subgroup of each
stabilizer group. As Σ′ consists of the elements of Π preserving every E′ ∈ U ′,
real-analyticity implies that they preserve all E′ ∈ E/V′, and so Σ′ coincides with
(21), which also shows that Σ′ is a normal subgroup of Π, and (i) – (ii) follow.
Next, (iv) holds since the set of all 𝛾 ∈ Aut E satisfying (6) clearly constitutes

a subgroup of Aut E containing, as a normal subgroup, the set of all 𝛾 with (6)
such that translational-part coset of 𝛾 (see Definition 2) is contained in V′. To
verify this claim, note that the latter set is a normal subgroup, being the kernel of
the obvious homomorphism from the subgroup of all 𝛾 having the property (6) into
the translation subgroup V/V′ of Aut [E/V′]. More precisely, 𝛾 represented by
the pair (𝐴, 𝑏) (as in Definition 2) preserves each element of E/V′ if and only if
𝐴𝑣+𝑏 differs from 𝑣, for every 𝑣 ∈ V, by an element of V′ or, equivalently (as one
sees setting 𝑣 = 0), V′ contains both 𝑏 and (𝐴 − 1) (V).
Finally, Theorem 1(ii)-(iii) yields (v), while (v) implies (iii) via Remark 4. ut

The example provided by a compact flat manifold M = E/Π which is a Rieman-
nian product M =M′×M′′ with E = E′×E′′ and Π = Π′×Π′′ for two Bieberbach
groups Π′,Π′′ in Euclidean affine spaces E′, E′′ having the translation vector spaces
V′,V′′, while M′ is not a torus, shows that, in general,

an element of Π acting trivially on E/V′ need not lie in 𝐿′. (24)

Namely, the 𝐻-invariant subspace V′×{0} then gives rise to the M′ factor foliation
𝐹E of the product manifold M, and the action of the group Π′×{1} on its leaf space
is obviously trivial, even though not all elements of Π′× {1} are translations.

Lemma 15 Using any given E′ ∈ U ′ in Theorem 3, where V′ satisfying (10) is
fixed, let us identify Σ′ with Π′ and 𝐻′ with 𝐾′ via the isomorphisms Σ′ → Π′

and 𝐾′ → 𝐻′ resulting from Theorem 3(v), which turns Π′ and 𝐻′ into subgroups
of Π and 𝐻. These subgroups Π′ ⊆ Π and 𝐻′ ⊆ 𝐻 do not depend on the choice
of E′ ∈ U ′, and neither does the mapping degree 𝑑 = |𝐻′ | of the 𝑑-fold covering
projection T ′→M′ = T ′/𝐻′ analogous to those mentioned in (15).

Proof. Our claims about Π′ and 𝐻′ are immediate from (21) and (22). ut

Any lattice 𝐿 in the translation vector space V of a Euclidean affine space E is,
obviously, a Bieberbach group in E. In the case of a fixed vector subspace V′ of V
with (10), all the general facts established about any given Bieberbach group Π in
E, the compact flat manifold M = E/Π, and the leaves M′ of 𝐹M (see Theorem 1)
thus remain valid for the torus T = E/𝐿 and the leaves T ′ of 𝐹T . Every coset of
V′ is generic if we declare the lattice 𝐿 of Π to be the new Bieberbach group.
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12 The leaf space

We again adopt the assumptions and notation of Theorem 1. Not surprisingly, the
leaf space M/𝐹M has the following property (discussed below): M/𝐹M forms

a flat compact orbifold, canonically identified with the quotient of the
torus [E/V′]/[𝐿 ∩V′] under the isometric action of the finite group 𝐻. (25)

By a crystallographic group [13] in a Euclidean affine space one means a discrete
group of isometries having a compact fundamental domain, cf. Remark 2.

Proposition 2 Under the assumptions listed in the first line of Sect. 11, with Σ′

denoting the normal subgroup (21) of Π, the quotient group Π/Σ′ acts effectively
by isometries on the quotient Euclidean affine space E/V′ and, when identified with
a subgroup of Iso [E/V′], it constitutes a crystallographic group.

Proof. A compact fundamental domain exists since Π/Σ′ contains the lattice sub-
group 𝐿/𝐿′ of V/V′ (see the end of Sect. 4). To verify the discreteness of Π/Σ′,
suppose that, on the contrary, some sequence 𝛾

𝑘
∈ Π , 𝑘 = 1, 2 . . . , has terms

representing mutually distinct elements of Π/Σ′ which converge in Iso [E/V′].
As 𝐿′ is a lattice in V′, fixing 𝑥 ∈ E and suitably choosing 𝑣

𝑘
∈ 𝐿′ we achieve

boundedness of the sequence �̂�
𝑘
(𝑥) = 𝛾

𝑘
(𝑥) + 𝑣

𝑘
, while �̂�

𝑘
represent the same

(distinct) elements of Π/Σ′ as 𝛾
𝑘
. The ensuing convergence of a subsequence of �̂�

𝑘

contradicts the discreteness of Π. ut

The resulting quotient of E/V′ under the action of Π/Σ′ is thus a flat compact
orbifold [5], which may clearly be identified both with the leaf space M/𝐹M , and
with the quotient of the torus [E/V′]/[𝐿 ∩ V′] mentioned in (25). The latter
identification clearly implies the Hausdorff property of the leaf space M/𝐹M .
On the other hand, for an 𝐻-invariant subspace V′′ of V not assumed to be an

𝐿-subspace, there exists an 𝐿-closure of V′′, meaning the smallest 𝐿-subspace V′

of V containing V′′, which is obviously obtained by intersecting all such 𝐿-sub-
spaces (Lemma 9). The leaf space M/𝐹M corresponding to V′ then forms a natural
“Hausdorffization” of the leaf space of V′′, and may also be described in terms of
Gromov-Hausdorff limits. See the recent paper [2].

13 Intersections of generic complementary leaves

Throughout this section Π is a given Bieberbach group in a Euclidean affine space
E of dimension 𝑛 ≥ 2, while V′,V′′ are two mutually complementary 𝐻-invar-
iant 𝐿-subspaces of the translation vector space V of E, in the sense of (1) and
Definition 1, for 𝐿 and 𝐻 associated with Π via (7). We also fix generic cosets E′

of V′ and E′′ of V′′ (see the beginning of Sect. 11), which leads to the analogs
𝐿′ → Π′ → 𝐻′ and 𝐿′′ → Π′′ → 𝐻′′ of (8), described by Theorem 1(ii) and, E′, E′′
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being generic, Theorem 3(v) yields 𝐿′ = 𝐿 ∩ V′ and 𝐿′′ = 𝐿 ∩ V′′. Furthermore,
for these Π,Π′,Π′′, 𝐿, 𝐿′, 𝐿′′, 𝐻, 𝐻′, 𝐻′′,

the conclusions of Lemma 7 hold if we replace 𝐺 with Π, 𝐿 or 𝐻, (26)

since so do the assumptions of Lemma 7, provided that one uses Lemma 15 to treat
Π′ and Π′′ (or, 𝐻′ and 𝐻′′) as subgroups of Π (or, respectively, 𝐻). In fact, (23)
and the description of 𝐾′ in (22) show that all 𝐴 ∈ 𝐾′ (and, among them, the linear
parts of all elements of Σ′ = Π′) leave invariant both V′ and V′′, and act via the
identity on the latter. (We have the obvious isomorphic identifications of V/V′ with
V′′ on the one hand, and with the orthogonal complement of V′ in V on the other,
while such 𝐴 descend to the identity automorphism of V/V′.) The same is clearly
the case if one switches the primed symbols with the double-primed ones, while
elements of Σ′ now commute with those of Σ′′ in view of (23). This yields (26) and,
consequently, allows us to form

the quotient groups Π̂ = Π/(Π′Π′′) , �̂� = 𝐿/(𝐿′𝐿′′) , �̂� = 𝐻/(𝐻′𝐻′′) . (27)

Finally, let pr : E → M = E/Π and M′,M′′,T ′,T ′′ denote, respectively, the
covering projection of Theorem 1(i), the pr-image M′ of E′ (or, M′′ of E′′), and
the tori E′/𝐿′ and E′′/𝐿′′, contained in the torus T = E/𝐿 of (15). Note that M′ and
M′′ are (compact) leaves of the parallel distributions arising, due to Theorem 1(i),
on M = E/Π, which itself is a compact flat Riemannian manifold (Remark 3).
For a homology interpretation of parts (a) and (c) below, see Theorem 5.

Theorem 4 Under the above hypotheses, the following conclusions hold.

a. M′ ∩M′′, or T ′∩ T ′′, is a finite subset of M, or T, and stands in a bijective
correspondence with the quotient group Π̂ or, respectively, �̂�, of (27),

b. The projection T → M in (15) maps T ′∩ T ′′ injectively into M′ ∩M′′.
c. The cardinality |M′ ∩M′′| of M′ ∩M′′ equals |T ′∩ T ′′| times |�̂� |.
d. The claim about T ′∩ T ′′ in (a) remains true whether or not E′, E′′ are generic.
e. The two bijective correspondences in (a)may be chosen so that, under the resulting

identifications, the injective mapping pr : T ′∩T ′′ → M′∩M′′ of (b) coincides
with the group homomorphism �̂� → Π̂ induced by the inclusion 𝐿 → Π.

Proof. We first prove (a) for M′ ∩ M′′. The finiteness of M′ ∩ M′′ follows as
M′,M′′, and hence also M′ ∩ M′′, are compact totally geodesic submanifolds of
M, while M′ ∩ M′′, nonempty by (4), has dim(M′ ∩ M′′) = 0 due to (1). The
mapping Ψ : Π → M′∩M′′ with pr(E′∩𝛾(E′′)) = {Ψ(𝛾)} is well defined in view
of (4) applied to 𝛾(E′′) rather than E′′, and clearly takes values in both M′ = pr(E′)
and M′′ = pr(E′′) = pr(𝛾(E′′)). Surjectivity of Ψ follows: if pr(𝑥 ′′) ∈ M′ ∩M′′,
where 𝑥 ′′ ∈ E′′ then, obviously, pr(𝑥 ′′) = pr(𝑥 ′) and 𝑥 ′ = 𝛾(𝑥 ′′) for some 𝑥 ′ ∈ E′

and 𝛾 ∈ Π, so that 𝑥 ′ ∈ E′∩ 𝛾(E′′) and pr(𝑥 ′′) = pr(𝑥 ′) equals Ψ(𝛾), the unique
element of pr(E′ ∩ 𝛾(E′′)). Furthermore, Ψ-preimages of elements of M′ ∩M′′

are precisely the cosets of the normal subgroup Π′Π′′ of Π (which clearly implies
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(a) for M′∩M′′). Namely, the left and right cosets coincide, and so elements 𝛾1, 𝛾2
of Π lie in the same coset of Π′Π′′ if and only if

𝛾′ ◦ 𝛾1 = 𝛾2 ◦ 𝛾
′′ for some 𝛾′ ∈ Π′ and 𝛾′′ ∈ Π′′. (28)

Now let 𝛾1, 𝛾2 lie in the same coset of Π
′Π′′. For 𝛾′, 𝛾′′ with (28), 𝛾′(E′) = E′

and 𝛾′′(E′′) = E′′ by the definition (12) of Σ′,Σ′′ and their identification with
Π′,Π′′ (see above). Thus, {Ψ(𝛾1)} = pr(E′ ∩ 𝛾1 (E

′′)) = pr(𝛾′(E′ ∩ 𝛾1 (E
′′))) =

pr(𝛾′(E′) ∩ 𝛾′(𝛾1 (E
′′))) = pr(E′ ∩ 𝛾′(𝛾1 (E

′′))) = pr(E′ ∩ 𝛾2 (𝛾
′′(E′′))), and so

{Ψ(𝛾1)} = pr(E′ ∩ 𝛾2 (E
′′)) = {Ψ(𝛾2)}. Conversely, if 𝛾1, 𝛾2 ∈ Π and Ψ(𝛾1) =

Ψ(𝛾2), the unique points 𝑥1 of E′ ∩ 𝛾1 (E
′′) and 𝑥2 of E′ ∩ 𝛾2 (E

′′) both lie in
the same Π-orbit, and hence 𝑥2 = 𝛾(𝑥1) with some 𝛾 ∈ Π. For 𝛾′ = 𝛾 and
𝛾′′ = 𝛾−12 ◦ 𝛾 ◦ 𝛾1, the image 𝛾

′(E′) (or, 𝛾′′(E′′)) intersects E′ (or, E′′), the
common point being 𝑥2 = 𝛾(𝑥1) or, respectively, 𝛾

−1
2 (𝑥2) = 𝛾

−1
2 (𝛾(𝑥1)). From (13)

we thus obtain 𝛾′ ∈ Σ′ = Π′ and 𝛾′′ ∈ Σ′′ = Π′′, which yields (28).
Now (a) for T ′∩ T ′′, and (d), follow as special cases; see the end of Sect. 11.
Except for the word ‘injective’ the claim made in (e) is immediate if one uses the

mapping Ψ : Π → M′ ∩M′′ defined above and its analog 𝐿 → T ′∩ T ′′ obtained
by replacing Π,M′,M′′ and pr with 𝐿,T ′,T ′′ and the projection E → T = E/𝐿.
This yields (b), injectivity of the homomorphism �̂� → Π̂ being immediate: if an
element of 𝐿 lies in Π′Π′′ (and hence has the form 𝛾′◦𝛾′′, where (𝛾′, 𝛾′′) ∈ Π′×Π′′),
(23) implies that 𝛾′, 𝛾′′ are translationswith 𝛾′ ∈ 𝐿′ = 𝐿∩V′ and 𝛾′′ ∈ 𝐿′′ = 𝐿∩V′′

(see the lines preceding (26)); in other words, 𝛾′ ◦ 𝛾′′ represents zero in �̂�.
Finally, �̂� identified as above with a subgroup of Π̂ is the kernel of the clearly-

surjective homomorphism Π̂ → �̂�, induced by Π → 𝐻 in (8) (which, due to (e),
proves (c)). Namely, �̂� contains the kernel (the other inclusion being obvious): if
the linear part of 𝛾 ∈ Π lies in 𝐻′𝐻′′, and so equals the linear part of 𝛾′ ◦ 𝛾′′ for
some (𝛾′, 𝛾′′) ∈ Π′× Π′′, then 𝛾 = _ ◦ 𝛾′ ◦ 𝛾′′, where _ ∈ 𝐿. ut

14 Leaves and integral homology

This section once again employs the assumptions and notation of Theorem 1, with
dimV = 𝑛 and dimV′ = 𝑘 , where 0 < 𝑘 < 𝑛. As the holonomy group 𝐻 ⊆
IsoV � O (𝑛) is finite (Remark 3), det(𝐻) ⊆ {1,−1}. In other words, the elements
of 𝐻 have the determinants ±1. Using the covering projection T → M = T/𝐻, cf.
(15) and the line following it, we see that

the image of 𝐻 under det equals {1} if and only if M is orientable. (29)

By Theorem 3(iii), the generic leaves of 𝐹M , defined as in the line following (21),
are either all orientable or all nonorientable.

Theorem 5 Let M be orientable. Then all the generic leaves M′ of 𝐹M may be
oriented so as to represent the same nonzero 𝑘-dimensional real homology class
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[M′] ∈ 𝐻
𝑘
(M, IR), while the first two cardinalities in Theorem 4(c) equal the

intersection numbers of the real homology classes [M′], [M′′], or [T ′], [T ′′].

Proof. A fixed orientation of V′, being preserved, due to (22) – (23) and (29), by the
generic stabilizer group Σ′, gives rise to orientations of all the leaves T ′ of 𝐹T and
all the generic leaves M′ of 𝐹M , so as to make the covering projections T

′→M′

in the line following (16) orientation-preserving. Since the torus group V/𝐿 acts
transitively on the oriented leaves T ′, they all represent a single real homology class
[T ′] ∈ 𝐻

𝑘
(T , IR), equal to the image of the fundamental class of T ′ under the

inclusion T ′ → T. At the same time, for generic leaves M′, the 𝑑-fold covering
projection T ′ → M′ (where 𝑑 = |𝐻′ | does not depend on the choice of M′, cf.
Lemma 15) sends the fundamental class of T ′ to 𝑑 times the fundamental class of
M′. Thus, by functoriality, 𝑑 [M′] ∈ 𝐻

𝑘
(M, IR) is the image of [T ′] ∈ 𝐻

𝑘
(T , IR)

under the covering projection T → M, which makes it the same for all the generic
leaves M′. Finally, [M′] ≠ 0, since a fixed constant positive differential 𝑘-form on
the oriented space V′ descends, in view of the first line of this proof, to a parallel
positive volume form on each oriented generic leaf M′ which yields a positive value
when integrated over [M′]. ut

Note that the final clause in Theorem 5 is, not surprisingly, consistent with the
fact that – by Theorem 4(a) and Lemma 15 – the intersection numbers depend just
on the two mutually complementary 𝐻-invariant 𝐿-subspaces V′,V′′ of V, and
not on the individual generic leaves M′,M′′,T ′ or T ′′.

15 Generalized Klein bottles

This section presents some known examples [4, p. 163] to illustrate our discussion.
The symbols IR𝐻, ZZ𝐻 used below follow the set-theoretical notational convention:

𝑌𝑋 is the set of all mappings 𝑋 → 𝑌, not the fixed-point set of some group action.
Let 𝑆1 and 𝑟

\
: 𝑆1 → 𝑆1 denote the unit circle in C and the rotation by angle

\ (multiplication by 𝑒𝑖 \ ). For a fixed integer 𝑛 ≥ 2 and the group 𝐻 = ZZ𝑛 ⊆ 𝑆1

of 𝑛th roots of unity, ZZ𝐻 � ZZ𝑛 is a lattice in the Euclidean space V = IR𝐻 � IR𝑛
with the ℓ2 inner product, and ZZ𝐻

0 = {𝜓 ∈ ZZ𝐻 : 𝜓avg = 0} is a subgroup of ZZ𝐻

isomorphic to ZZ𝑛−1, where ( )avg denotes the averaging functional V → IR. Setting
Π = [(1/𝑛)ZZ] × ZZ𝐻

0 , one easily sees that the assignment

((𝑡, 𝜓), 𝑓 ) ↦→ 𝑓 ◦ 𝑟2𝜋𝑡 + 𝑡 + 𝜓, where (𝑡, 𝜓) ∈ Π and 𝑓 ∈ V = IR𝐻, (30)

defines an affine isometric action on V by Π treated as a group with the group
operation (𝑡, 𝜓) (𝑡 ′, 𝜓 ′) = (𝑡 + 𝑡 ′, 𝜓 ′◦ 𝑟2𝜋𝑡 + 𝜓). The term 𝑡 in (30) is the constant
function 𝑡 : 𝐻→ IR. Note that, in the right-hand side of (30), as (𝑡, 𝜓) ∈ Π,

𝑡avg = 𝑡 , 𝜓avg = 0, ( 𝑓 ◦𝑟2𝜋𝑡 )avg = 𝑓avg . (31)
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Proposition 3 These 𝐻,V and Π have the following properties.

i. The action of Π on V is effective and free.
ii. Π is a Bieberbach group in the underlying Euclidean affine 𝑛-space of V.
iii. The holonomy group and lattice subgroup of Π are our 𝐻 � ZZ𝑛, acting on V

linearly by 𝐻 ×V 3 (𝑒𝑖 \, 𝑓 ) ↦→ 𝑓 ◦ 𝑟
\
∈ V, and 𝐿 = ZZ ×ZZ𝐻

0 .
iv. As a transformation of V, each (𝑡, 𝜓) ∈ 𝐿 equals the translation by 𝑡 + 𝜓.
v. 𝐿 consists of all translations by vectors 𝜓′ ∈ ZZ𝐻 such that 𝜓′

avg ∈ ZZ.

An example of two mutually complementary 𝐻-invariant 𝐿-subspaces of V, in
the sense of (1) and Definition 1, is provided by the line V′ of constant functions
𝐻 → IR and the hyperplane V′′ consisting of all 𝑓 : 𝐻 → IR with 𝑓avg = 0. The
generic stabilizer groups Σ′,Σ′′ ⊆ Π associated via (21) with V′ and V′′ are the
translation groups ZZ ×{0} and {0}× ZZ𝐻

0 , both contained in 𝐿. Furthermore,

a. under the obvious identifications of V/V′ with V′′ and V/V′′ with V′, the
quotient actions of Π become Π ×V′′ 3 ((𝑡, 𝜓), 𝑓 ) ↦→ 𝑓 ◦ 𝑟2𝜋𝑡 + 𝜓 ∈ V′′ and,
respectively, Π ×V′ 3 ((𝑡, 𝜓), 𝑓 ) ↦→ 𝑓 + 𝑡 ∈ V′,

b. every coset of the 𝐿-subspace V′′ is generic, as defined in Sect. 11,
c. nongeneric cosets of V′ are precisely those cosets containing 𝑓 : 𝐻 → IR such

that 𝑓 ◦ 𝑟2𝜋𝑡 − 𝑓 is integer-valued for some 𝑡 ∈ [(1/𝑛)ZZ] r ZZ,
d. the obvious homomorphism Π = [(1/𝑛)ZZ] × ZZ𝐻

0 → (1/𝑛)ZZ maps the stabilizer
group of each coset of V′ isomorphically onto a subgroup of (1/𝑛)ZZ,

e. the subgroups of (1/𝑛)ZZ resulting from (c) have the form (𝑑/𝑛)ZZ, where 𝑑 is
a positive divisor of 𝑛 or, equivalently, are the preimages, under the homomor-
phism IR 3 𝑡 ↦→ 𝑒2𝜋𝑖𝑡 ∈ 𝑆1, of subgroups of the group 𝐻 = ZZ𝑛 ⊆ 𝑆1 formed by
the 𝑛th roots of unity.

Proof. First, Π acts on V freely: if 𝑓 ◦ 𝑟2𝜋𝑡 + 𝑡 +𝜓 = 𝑓 , cf. (30), with 𝑓 : 𝐻 → IR,
applying ( )avg to both sides, we get, by (31), 𝑡 = 0, and hence 𝑓 ◦ 𝑟2𝜋𝑡 = 𝑓 , so that
the equality 𝑓 ◦ 𝑟2𝜋𝑡 + 𝑡 + 𝜓 = 𝑓 reads 𝜓 = 0. Secondly, 𝐻 and 𝐿 defined by (iii)
arise from Π as required in (7): the claim about 𝐻 is obvious, and so are (iv) –
(v), showing that 𝐿 ⊆ Π∩V. Conversely, Π∩V ⊆ 𝐿. To verify this, suppose that
𝑓 ◦ 𝑟2𝜋𝑡 + 𝑡 + 𝜓 = 𝑓 + 𝜓′ for all 𝑓 ∈ V = IR𝐻, some (𝑡, 𝜓) ∈ Π, and some 𝜓′ ∈ V.
Taking the linear parts of both sides, we see that 𝑡 ∈ ZZ and (𝑡, 𝜓) ∈ 𝐿, as required.
Our Π has a compact fundamental domain in V, since so does the lattice 𝐿 ⊆ Π.

Also, Π is torsion-free: Π 3 (𝑡, 𝜓) ↦→ 𝑡 ∈ IR being a group homomorphism, any
finite-order element (𝑡, 𝜓) of Π has 𝑡 = 0, and so, by (30), it acts via translation
by 𝜓, which gives 𝜓 = 0. Next, to establish the discreteness of the subset Π of
IsoV (and, consequently, (ii)), suppose that a sequence (𝑡

𝑘
, 𝜓

𝑘
) ∈ Π with pairwise

distinct terms yields, via (30), a sequence convergent in IsoV. Evaluating (30) on
𝑓 = 0, we get (𝑡

𝑘
, 𝜓

𝑘
) → (𝑡, 𝜓) in IR × IR𝐻 as 𝑘 → ∞, for some (𝑡, 𝜓) and,

since (𝑡
𝑘
, 𝜓

𝑘
) ∈ [(1/𝑛)ZZ] × ZZ𝐻

0 , the sequence (𝑡
𝑘
, 𝜓

𝑘
) becomes eventually constant,

contrary to the fact that its terms are pairwise distinct.
As for V′ and V′′, note that, by (iv), a ZZ-basis of 𝐿 ∩ V′ (or, 𝐿 ∩ V′′) may

be defined to consist just of the constant function 1 (or, respectively, of the 𝑛 − 1
functions 𝜓𝑞 : 𝐻 → ZZ, labeled by 𝑞 ∈ 𝐻 r {1}, where 𝜓𝑞 (𝑞) = 1 = −𝜓𝑞 (1) and
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𝜓𝑞 = 0 on 𝐻 r {1, 𝑞}). Specifically, 𝜓′ =
∑

𝑞 𝜓
′(𝑞)𝜓𝑞 whenever 𝜓 ′ ∈ ZZ𝐻 and

𝜓′
avg = 0. Our descriptions of Σ′ and Σ′′ are in turn immediate from (a), which itself
is a trivial consequence of (30) – (31), and easily implies (b) – (c). Now (d) follows
as the relation 𝑓 ◦ 𝑟2𝜋𝑡 + 𝜓 = 𝑓 , with fixed 𝑓 ∈ V′′, uniquely determines 𝜓, once
𝑡 is given. Finally, we have (e) since the first assignment in (a) only depends on 𝑡
through 𝑒2𝜋𝑖𝑡, which completes the proof. ut

The compact flat Riemannian manifold V/Π arising here from our Bieberbach
group Π as in Sect. 6 is called the 𝑛-dimensional generalized Klein bottle [4, p. 163].
The linear functional V 3 𝑓 ↦→ 𝑓avg ∈ IR is equivariant, due to (31), with respect
to the actions of Π and ZZ (the latter, on IR, via translations by multiples of 1/𝑛),
relative to the homomorphism Π 3 (𝑡, 𝜓) ↦→ 𝑡 ∈ (1/𝑛)ZZ. Thus, it descends, in view
of Remark 1(c), to a bundle projection V/Π → IR/[(1/𝑛)ZZ], making V/Π a bundle
of tori over the circle. The fibres of this bundle are, obviously, the images, under the
projection pr : V → V/Π, of cosets of the 𝐿-subspace V′′ ⊆ V mentioned in
Proposition 3(b), all of them generic. On the other hand, V′ has some nongeneric
cosets – by Proposition 3(c), an example is V′ itself, with the stabilizer group easily
seen to be [(1/𝑛)ZZ] ×{0}. The pr-images of the cosets of V′ are embedded circles,
forming the leaves of the foliation 𝐹M of M = V/Π arising as in Theorem 1.
For the foliation 𝐹M of M = V/Π obtained in the general case of Theorem 1,

the stabilizer group of a leaf M′ of 𝐹M is only defined as a conjugacy class of sub-
groups of Π (the subgroups being the stabilizer groups Σ′ of leaves E′ of 𝐹E with
pr(E′) = M′). Genericity of M′, mentioned in the line following (21), amounts to
genericity of all such E′, and Σ′ is then uniquely associated with M′ (due to its
being the generic stabilizer group, normal in Π). In the subsequent discussion Σ′

is also treated as uniquely defined, for a different reason: each Σ′ is replaced by its
image under a homomorphism from Π into the Abelian group (1/𝑛)ZZ.
We denote by | the divisibility relation in the set Δ𝑛 of all positive divisors of

𝑛 and by M the 𝑛-dimensional generalized Klein bottle V/Π. Let us also use
Proposition 3(d)-(e) and the final sentence of the last paragraph to treat

the stabilizer groups of leaves of 𝐹M as subgroups
of (1/𝑛)ZZ having the form (𝑑/𝑛)ZZ, where 𝑑 ∈ Δ𝑛.

(32)

Proposition 4 There exists a family {M[𝑑] : 𝑑 ∈ Δ𝑛} of compact connected
immersed submanifolds of M with the following properties, for all 𝑑, 𝑑 ′ ∈ Δ𝑛.

i. Each M[𝑑] has the dimension 𝑑 and is foliated by circle leaves of 𝐹M .
ii. M[𝑑 ′] ⊆ M[𝑑] whenever 𝑑 ′|𝑑.
iii. M[𝑑] r⋃𝑘M[𝑘], with 𝑘 ranging over Δ

𝑑
r {𝑑}, equals the union of all leaves

of 𝐹M having the stabilizer group (𝑑/𝑛)ZZ.
iv. M[𝑛] = M and M[1] = pr(V′).
v. If 𝑛 is prime, M[1] = pr(V′) is the only nongeneric leaf of 𝐹M .

Proof. The zero-average functions ℎ : 𝐻 → IR/ZZ, from the group 𝐻 = ZZ𝑛 ⊆ 𝑆1 of
𝑛th roots of unity into the circle IR/ZZ, form a manifold [IR/ZZ]𝐻 diffeomorphic to



24 Andrzej Derdzinski and Paolo Piccione

the torus 𝑇𝑛−1, and the covering projection V′′ → [IR/ZZ]𝐻, sending a zero-average
function 𝑓 : 𝐻 → IR to its composition ℎ with the projection IR → IR/ZZ, is
obviously equivariant relative to the first action in Proposition 3(a),

the action of 𝐻 on [IR/ZZ]𝐻 given by (𝑞, ℎ) ↦→ ℎ ◦ 𝑟2𝜋𝑡 , (33)

for 𝑡 ∈ (1/𝑛)ZZ with 𝑞 = 𝑒2𝜋𝑖𝑡, and the homomorphism Π 3 (𝑡, 𝜓) ↦→ 𝑒2𝜋𝑖𝑡 ∈ 𝐻.
Thus, (33) is the translational action of 𝐻 = ZZ𝑛 onmappings 𝐻 → IR/ZZ, and the pre-
images of its isotropy groups under the homomorphism (1/𝑛)ZZ 3 𝑡 ↦→ 𝑒2𝜋𝑖𝑡 ∈ 𝐻 are
precisely the stabilizer groups in (32). We now define M[𝑑], for any 𝑑 ∈ Δ𝑛, to be
the union of circle leaves of 𝐹M having stabilizer groups contained in (𝑑/𝑛)ZZ. Thus,
M[𝑑] is the image under the quotient projection pr : V → V/Π of the union of all
cosets 𝑣 +V′ for vectors 𝑣 ∈ V′′ which the covering projection V′′ → [IR/ZZ]𝐻
sends to (zero-average) functions ℎ : 𝐻 → IR/ZZ having ℎ ◦ 𝑟2𝜋𝑑/𝑛 = ℎ. Since such
ℎ form a manifold diffeomorphic to the torus 𝑇𝑑−1, via the assignment to ℎ of the
zero-sum 𝑑-tuple consisting of ℎ(𝑒2𝜋𝑖𝑘/𝑛) ∈ IR/ZZ, with 𝑘 = 0, 1, . . . , 𝑑 − 1, all our
claims about M[𝑑] easily follow from the fact that both projections just mentioned
are locally diffeomorphic. ut

The 𝑛-dimensional generalized Klein bottle, for any 𝑛 ≥ 2, is an example illus-
trating the fact that the last inclusion of Theorem 1(ii-c) may be proper. In fact, the
stabilizer group [(1/𝑛)ZZ] × {0} of V′, mentioned six lines before Proposition 4,
although not contained in the lattice 𝐿, acts on V′ by translations. Also, unless
𝑛 is prime, Proposition 4(iii) shows that the dependence on 𝑢 in the last line of
Lemma 13 is actually possible, as it occurs for M′= M[𝑘], with any 𝑘 ∈ Δ𝑛 r {𝑛}.

16 Remarks on holonomy

The correspondence between Bieberbach groups and compact flat manifolds men-
tioned in Remark 4 has an extension to almost-Bieberbach groups and infra-nilman-
ifolds [6] obtained by using – instead of the translation vector space of a Euclidean
affine space – a connected, simply connected nilpotent Lie group G acting simply
transitively on a manifold E, and replacing the Bieberbach group with a torsion-free
uniform discrete subgroup Π of Diff E contained in a semidirect product (canoni-
cally transplanted so as to act on E) of G and amaximal compact subgroup of AutG.
Here ‘uniform’ means admitting a compact fundamental domain, cf. Remark 2. The
analogs of (8) and (15) remain valid, reflecting the fact that any infra-nilmanifold is
the quotient of a nilmanifold under the action of a finite group 𝐻.
A somewhat similar picture may arise in some cases where G is not assumed

nilpotent. As an example, let G � Spin (𝑚, 1) be the universal covering group of
the identity component G/ZZ2 � SO

+(𝑚, 1) of the pseudo-orthogonal group of
an (𝑚 + 1)-dimensional Lorentzian vector space L, 𝑚 ≥ 3. Here E is the (two-
fold) universal covering manifold of the orthonormal-frame bundle of the future unit
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pseudosphere S ⊆ L, isometric to the hyperbolic 𝑚-space, and G/ZZ2 acts on S
via hyperbolic isometries, leading to an action of G on E. The orthonormal-frame
bundles of compact hyperbolic manifolds obtained as quotients of S give rise to the
required torsion-free uniform discrete subgroups Π.
The resulting compact quotient manifolds M = E/Π can be endowed with

various interesting Riemannian metrics coming from Π-invariant metrics on E. For
Π and E of the preceding paragraph, a particularly natural choice of an invariant
indefinite metric is provided by the Killing form of G, turning M into a compact
locally symmetric pseudo-Riemannian Einstein manifold.
Outside of the Bieberbach-group case, however, these metrics are not flat, and

finite groups 𝐻 such asmentioned above cannot serve as their holonomy groups. The
holonomy interpretation of 𝐻 still makes sense, though, if – instead of metrics – one
uses either of the two Π-invariant flat connections, with (parallel) torsion, naturally
distinguished on E. Here E is, again, a manifold on which a connected, simply
connected Lie group G acts simply transitively. Two natural bi-invariant connections
with the stated properties exist on G, rather than E, and are characterized by the
requirement that they make all the left-invariant (or, right-invariant) vector fields
parallel. Due to their naturality, these two connections on G are also invariant under
all the Lie-group automorphisms of G. It is the two connections on G that induce,
in an obvious way, the ones on E, mentioned six lines earlier.

Appendix: Hiss and Szczepański’s reducibility theorem

Consider an abstract Bieberbach group, that is, any torsion-free group Π containing
a finitely generated free Abelian normal subgroup 𝐿 of finite index, which is at the
same time a maximal Abelian subgroup of Π. As shown by Zassenhaus [14], up
to isomorphisms these groups coincide with the Bieberbach groups of Sect. 6, we
again summarize their structure using the short exact sequence

𝐿 → Π → 𝐻, where 𝐻 = Π/𝐿. (34)

For Abelian groups 𝐺1, 𝐺2 and 𝐺
′ one has canonical isomorphisms

ZZ⊗𝐺 � 𝐺, (𝐺1⊕𝐺2) ⊗𝐺
′ � (𝐺1⊗𝐺

′) ⊕ (𝐺2⊗𝐺
′) , 𝐿⊗Q � Hom (𝐿∗,Q) , (35)

where 𝐿∗ = Hom (𝐿, ZZ) and, for simplicity, 𝐿 is assumed to be finitely generated
and free. In the last case, with a suitable integer 𝑛 ≥ 0, there are further noncanonical
isomorphisms

a) 𝐿 � ZZ𝑛, b) 𝐿 ⊗ Q � Q𝑛, (36)

while, using the injective homomorphism 𝐿 3 _ ↦→ _ ⊗ 1 ∈ 𝐿 ⊗ Q to treat 𝐿 as a
subgroup of 𝐿 ⊗Q, we see that, under suitably chosen identifications (36),

the inclusion 𝐿 ⊆ 𝐿 ⊗ Q corresponds to the standard inclusion ZZ𝑛 ⊆ Q𝑛. (37)
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Finally, if 𝐿 as above is a (full) lattice in an finite-dimensional real vector space V,
a further canonical isomorphic identification arises:

𝐿 ⊗ Q � SpanQ𝐿, (38)

that is, we may view 𝐿 ⊗ Q as the rational vector subspace of V spanned by 𝐿.
Let Π now be an abstract Bieberbach group. Hiss and Szczepański [10, the

corollary in Sect. 1] proved that, if 𝐿 in (34) satisfies (36.a) with 𝑛 ≥ 2, then the
(obviously Q-linear) action of 𝐻 on 𝐿 ⊗ Q must be reducible, in the sense of
admitting a nonzero proper invariant rational vector subspace W.
Next, using (37), we may write 𝐿 = ZZ𝑛 ⊆ Q𝑛 = 𝐿 ⊗ Q, so that W ⊆ Q𝑛 ⊆ IR𝑛,

and the closure V′ of W in IR𝑛 has the real dimension dimQW (any Q-basis of
W being, obviously, an IR-basis of V′). By clearing denominators, one can replace
such a Q-basis with one consisting of vectors in 𝐿 = ZZ𝑛, and so, by Lemma 10(a),
the intersection 𝐿′ = 𝐿 ∩W = 𝐿 ∩V′ is a lattice in V′. We thus obtain (11).
A stronger version of Hiss and Szczepański’s reducibility theorem, established

more recently by Lutowski [12], states that the rational holonomy representations
of any compact flat manifold other than a torus has at least two nonequivalent
irreducible subrepresentations.
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