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ON CONFORMALLY SYMMETRIC MANIFOLDS
WITH METRICS OF INDICES 0 AND 1.

By A. DerpzINskI and W. ROTER.

§1. Introduction. An n-dimensional (n >4) Riemannian manifold M with a
metric g;; (which need not be positive definite) is said to be conformally symmetric
(11" if its Weyl’s conformal curvature tensor

(1) Chise = RPji — (iR — guR?; + bR — 8% Ry)/(n — 2)
+ R(3igs; — Shgid)ln — 1)(n — 2)
is parallel, i.e.
(2) Ch,"'k.'=0 .

Clearly the class of conformally symmetric manifolds contains all conformally
flat as well as all locally symmetric manifolds of dimension n > 4. In this paper
we are interested in Riemannian manifolds which are essentially conformally sym-
metric, that is, lie beyond the two classes mentioned above. Their existence has
been proved by the second-named author in [S] (see also [6]). In Section 3 of this
paper we prove that essentially conformally symmetric n-manifolds (n > 4) cannot
have a positive definite metric (which has been proved in [6] by a similar argument
for n > 5). Section 4 is devoted to essentially conformally symmetric manifolds with
metrics of index one. Roughly speaking, we prove there that such a manifold always
admits a field of tangent isotropic lines. We recall the result of Tanno ([9], Theorem
6), which will be used below: Any non-conformally flat conformally symmetric
manifold has a constant scalar curvature.

Throughout this paper, by a manifold we shall mean a connected and paracompact
Hausdorff manifold of class C* or analytic.

§2. Some lemmas.

Lemma 1. Let an (algebraic) tensor Aimys,...p of type (0, P + 3) be symmetric in
(I, m) and skew-symmetric in (m,h). Then Ay, . p = 0.

Proof. Fixsy, ...,spand set By, = Apnpsy.. op- Wehave By, = By = —Bpu =
~Bym1 = By = Biayy = — Byps, S0 By, = 0, as desired. '

Lemma 2. The Weyl's conformal curvature tensor satisfies the relations
(3) Cuise = —Cuinjr = —Crirj = Cirni »

(4) Chiii + Crui + Chis; =0, Clisp=Clip=C"5, =0,

(3) Cliser = (0 — MRijp — Rus,j — (Ragi; — R ;gu)/2(n — 1)]fin — 2) .

Lemma 3 ((4], Lemma 1). Every conformally symmetric Riemannian manifold
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satisfies the condition

(6) . R R+ RyR 4y + RuR i = 0.

Lemma 4. Every conformally symmetric Riemannian manifold satisfies the relations
(7) R ;CT + RpCip; + RyClijp = 0,

(8) R.;.,C i1 + R pCTatj + Rt pCTi5 =0

The proof follows immediately from (6), (1) and (2).

Remark. Formulae (6) and (7) remain true under the assumption C7; =0
(see proof of Lemma 1 of [4]).

Lemma 5. Let M be a conformally symmetric manifold of constant scalar curvature.
For any positive integer K we have

(9) Rrk.q...lxcfl"m =0.

Proof. Differentiating (2) covariantly and making use of the Ricci identity, we
obtain

(10)  CrijtRuim,p + CrrjtRitn.p + ChireR jim,p + CrijeRtin, = 0 .
But the last relation, in virtue of
(1) R* e p = (gisR s — quRYj 5 + 8iRij.p — OiRu (0 — 2)
which is a consequence of (1) and R = const., leads immediately to
(12)  guRen 5Ciit = GnmBRet,5CMisk + Rat,yCrmijx — Rim.5Cuijc — GitRrm . pChjt
+ GimRet,pChjk + Rit, pCamjt — Rim.oChiji + 51Rrm oC kai
— GimRet,5C i + Ryt pChimi — Rjm,sChite + FutRem,5C jin
= GiemBRet 5C 500 + Rit 5Chijm — Rim 5Caisi =0 .
Contracting now (12) with g** and applying (4), we find
(13) (n — 2R ,CTijk + Rei yC mik + Ry oClimp + Ryx pCliim
— 8imR” ;Crsi — GamR™ 3Crjiy =0 .
On the other hand, it follows easily from (5) and (2) that R;; , = Ry, ; which
together with (13) yields
(14) (n—2)R,p mCijt + Ry iClmjic + Rep, iClimi + Ret 3Ci5m
— 9inRep.iCe's — gimR™ ;Crjiy = 0. _
Contracting (14) with g”* and taking into account the obvious formulae

R uC'”i =0 and R".mcrjs'a = R".mcﬂ'iﬂ we obtain

e,
(ls) (n - 3)R,’.mcri;‘| + R'..icrmjl + R'.,jcﬂ'ms =0 ’
whence -
(16) (n - 3)er.acrt'j’ + Rn,icrmj' + Rrj,acrim’ =0,

But in view of (8) and R = conmst., R,;,Cin"' = R™ ,.C,ij.. which reduces (16) to
(n—2)R".mCr{j¢+ R"."Crmjl =0, that iS, R",icrmj: = (2—")R",mcrijc = (z—n)aR".icrm;'n
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so n > 3 yields
{an R” . Crijy=0.
Substituting (17) into (13) and using (8) we obtain (n — DR m.,CTiik + Rei,pCmje = 0,
hence Ry ;Clmjx = (1 — MRy ;C7i56 = (1 — n)*Ry; ;€7 pjie Which implies
(18) Re )Cmin=0.
This proves (9) in view of (2).
§3. Conformally symmetric manifolds with positive definite metrics.
Theorem 1. Let M be a conformally symmetric Riemannian manifold. If M is
not conformally flat, then
(19) R xRty oy =0
for arbitrary integers K, N > 1.
Proof. Since R = const., Lemma 5 works. Substituting (18) into (12) we obtain
(20) Rit sy .pxComisk — Ram.py...oxCrije + Rit g1, .oyCimit — Rim,py...05Chtjx
+ Rt ... pxChimk — Rjm.py...onChite + Ritpy...5nChijm
— Rim,py...onChist =0

for N =1, which extends to arbitrary N in view of (2). Define the tensor 4 of type
(0, K + N + 6) b)’ Almhq...axm...y‘vrjk = R‘r,q...sxRt’l.m...pNChmjk- Tfansveﬂing now
(20) with R%, ,  ,. and using (9) and Lemma 2, we conclude that 4 satisfies the
hypotheses of Lemma 1. Therefore 4 = 0, which implies our assertion, since M is

not conformally fat. !

Theorem 2. Let M be a conformally symmetric n-dimensional (n > 4) Riemannian
manifold with a positive definite metric. Then either M is conformally flat or M is
locally symmetric.

Proof. Suppose M is not conformally flat. For K=N=1 (19) yields R"**R;; ,=0,
50

@1 Riju=0
and M is locally symmetric by (I1).

Theorem 3. Suppose that a Riemannian manifold M satisfies the relation

(22) Chiseoryerp =0

Jor some P > 1. If the metric of M is positive definite, then either M is conformally
Sflat or M is locally symmetric.

Proof. By the result of Tanno ({9], Theorem 2), (22) leads to (2) and our asser-
tion reduces to Theorem 2.

Generalizing a result of Simon ({7], Theorem 1) we obtain (cf. [6], Theorem 3)

'Corollary 1. Let M be a complete simply connected conformally symmetric n-
manifold (n > 4) with a positive definite metric. If M is not conformally flat, then
either M is a symmetric Einstein manifold or it is a product of such manifolds.



258 A. Derdzinski and W. Roter.

The proof can be obtained from Theorem 2 and (21) by standard de Rham
decomposition techniques.

§4. Conformally symmetric manifolds with metrics of index one.

Lemma 6. Let H be an analytic tensor field of type (P, Q) on the analytic manifold
M and let xeM. If H,=0 and (F¥H), = 0 for each N > 1, then H vanishes iden-
tically on M.

In fact, for any local chart at x we have H ;‘,’_‘_’,‘,?z(x) =0and 9, ... d,,H ;-‘,’,'_'_',-’;(x) =0,
N > 1. Since M is connected, our assertion follows from analyticity of H.

Lemma 7. Let M be an analytic conformally symmetric Riemannian manifold. If
xeM and M is neither conformally flat nor locally symmetric, then (i) there exists
N> 1 such that Ry;,  .u(x)#0, (ii) for K,N>1 and any vectors u,u,, ..., Uig,
v, 0y, ..., 05 €T .M, the vectors a, b given by

— Em PK
(23) a; = Rij py. ppt’ui' ... U}y
and b; = Ry ,,.. ., Nv"v:‘ ... UyN, are isotropic and mutually orthogonal.

Proof. (i): Conversely, we would have (21) in view_of Lemma 6, so M would
be locally symmetric by (11). (ii): By Theorem 1, a‘a; = a'b; = b°%; = 0, which
completes the proof.

Using Theorem 1 of [6] it is easy to see that essentially conformally symmetric
manifolds may have metrics of index one. In the sequel, the notion of distribution
will be used in the sense explained in [3], p. 10.

Theorem 4. Let M be a conformally symmetric analytic Riemannian manifold with
a metric of index one. Suppose M is neither conformally flat nor locally symmetric.
Then the assignment to each xe M of the set L, of all vectors ae T,M of the form
(23), where u, u,, ..., ux € T,M and K runs through positive integers, defines an analytic
L-dimensional isotropic distribution L on M.

Proof. By our assumption on the index and (ii) of Lemma 7, any two vectors
of L, are collinear. Hence L, is a vector space of dimension at most one. Fur-
thermore, by (i) of Lemma 7, L, # 0. Thus L is an isotropic l-dimensional dis-
tribution. Now suppose that a vector a = 0 of L, is defined by (23). Extending
u,uy, ..., ug to analytic vector fields in a neighbourhood of x we define, again by
(23), an analytic extension of a to a vector field which spans L at all points suf-
ficiently near to x. Therefore L is analytic, which completes the proof.

Corollary 2. Any essentially conformally symmetric analytic manifold M with a
metric of index one admits two l-dimensional C distributions which are distinct at each
point of M.

Proof. 1t is well-known that any Riemannian manifold with a metric of index
1 admits a 1-dimensional C™ distribution  which is nowhere isotropic (for a standard
argument see e.g. {2], proof of Lemma 3). Our assertion is now satisfied by L and V.

Corollary 3. Every essentially conformally symmetric analytic manifold M with a
metric of index one admits a 2-dimensional C™ distribution.
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Theorem 5. Let S be the standard sphere of dimension n=2q, ¢ =2, or n=
49 + 1, ¢ = 1. Then S admits no analytic, essentially conformally symmetric Riemannian

metric.

Proof. Conversely, suppose that S admits an analytic, essentially conformally
symmetric Riemannian metric g;;. By Theorem 2 g;; must be indefinite. Even-
dimensional spheres do not admit indefinite metrics ([8], Theorem 40.11, p. 207 and
Theorem 27.18, p. 144), so we may restrict ourselves to spheres of dimension n =
4q + 1. Since such spheres admit indefinite metrics of indices 1 and n — 1 only ([8],
l. cit.), we may assume index one by changing the sign of g;; if necessary. Now
Corollary 3 contradicts Theorem 27.18 of [8], p. 144, which states that the spheres
considered above do not admit 2-dimensional distributions. This completes the proof.

Theorem 6. Suppose M is an analytic, essentially conformally symmetric Riemannian
manifold of dimension n =4 or n=5. Then M admits a 2-dimensional C” distribution.

Proof. Changing the sign of the metric, if necessary, and using Theorem 2, we
may restrict our consideration to metrics of indices 1 and 2. For index | our asser-
tion follows from Corollary 3, for index 2 it is clear (see e.g. Theorem 40.11 of (8],
p- 207, in the compact case).
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