ON CONFORMALLY SYMMETRIC MANIFOLDS
WITH METRICS OF INDICES 0 AND 1.

By A. Derdziński and W. Roter.

§1. Introduction. An n-dimensional ($n \geq 4$) Riemannian manifold M with a
metric g_{ij} (which need not be positive definite) is said to be conformally symmetric
[1] if its Weyl's conformal curvature tensor

$$(1) \quad C^k_{\ ij\ k} = R^k_{\ ij\ k} - (g_{ij}R^k_k - g_{ik}R^j_j + \delta^k_j R_{ij} - \delta^k_j R_{ik}))/(n - 2)
+ R(\delta^k_ig_{ij} - \delta^k_ig_{ik})/(n - 1)(n - 2)$$

is parallel, i.e.

$$(2) \quad C^k_{\ ijk\ ,\ l} = 0 \ .$$

Clearly the class of conformally symmetric manifolds contains all conformally
flat as well as all locally symmetric manifolds of dimension $n \geq 4$. In this paper
we are interested in Riemannian manifolds which are essentially conformally sym-
metric, that is, lie beyond the two classes mentioned above. Their existence has
been proved by the second-named author in [5] (see also [6]). In Section 3 of this
paper we prove that essentially conformally symmetric n-manifolds ($n \geq 4$) cannot
have a positive definite metric (which has been proved in [6] by a similar argument
for $n \geq 5$). Section 4 is devoted to essentially conformally symmetric manifolds with
metrics of index one. Roughly speaking, we prove there that such a manifold always
admits a field of tangent isotropic lines. We recall the result of Tanno ([9], Theorem
6), which will be used below: Any non-conformally flat conformally symmetric
manifold has a constant scalar curvature.

Throughout this paper, by a manifold we shall mean a connected and paracompact
Hausdorff manifold of class C^∞ or analytic.

§2. Some lemmas.

Lemma 1. Let an (algebraic) tensor $A_{lmhk\ldots sp}$ of type $(0, P + 3)$ be symmetric in
(l, m) and skew-symmetric in (m, h). Then $A_{lmhk\ldots sp} = 0$.

Proof. Fix s_1, \ldots, s_p and set $B_{lmh} = A_{lmhk\ldots sp}$. We have $B_{lmh} = B_{mhl} = -B_{mlh} = -B_{hlm} = B_{hlm} = B_{ilm} = -B_{lhm}$, so $B_{lmh} = 0$, as desired.

Lemma 2. The Weyl's conformal curvature tensor satisfies the relations

$$(3) \quad C^h_{\ ijk\ h} = -C^h_{\ kih\ j} = -C^h_{\ jki\ h} = C^h_{\ jhi\ k} \ ,$$

$$(4) \quad C^h_{\ ijk} + C^h_{\ jki} + C^h_{\ kij} = 0 \ , \quad C^r_{\ ijr} = C^r_{\ rik} \ ,$$

$$(5) \quad C^r_{\ ijk\ ,\ r} = (n - 3)(R_{ij\ ,\ k} - R_{ik\ ,\ j} - R_{jik} - R_{jki} + g_{ij}g_{ik} - R_{k}g_{ij} - R_{i}g_{ik})/(n - 1)^2(n - 2) \ .$$

Lemma 3 ([4], Lemma 1). Every conformally symmetric Riemannian manifold

Received July 12, 1976.

1) Numbers in brackets refer to the references at the end of the paper.
satisfies the condition

\[(6) \quad R_{ij} R_{ijkl} + R_{ik} R_{ijl} + R_{il} R_{ijk} = 0.\]

Lemma 4. Every conformally symmetric Riemannian manifold satisfies the relations

\[(7) \quad R_{ij} C_{ijkl} + R_{ik} C_{ijl} + R_{il} C_{ijk} = 0,\]

\[(8) \quad R_{ijk} C_{ij} + R_{ikl} C_{ij} + R_{ilj} C_{ik} = 0.\]

The proof follows immediately from (6), (1) and (2).

Remark. Formulae (6) and (7) remain true under the assumption $C_{ijkl} = 0$ (see proof of Lemma 1 of [4]).

Lemma 5. Let M be a conformally symmetric manifold of constant scalar curvature. For any positive integer K we have

\[(9) \quad R_{ijkl} - C_{ijkl} = 0.\]

Proof. Differentiating (2) covariantly and making use of the Ricci identity, we obtain

\[(10) \quad C_{ijkl} R_{iklm} + C_{kijl} R_{iklm} + C_{kljm} R_{iklm} + C_{klij} R_{ik} = 0.\]

But the last relation, in virtue of

\[(11) \quad R_{ijkl} = (g_{ij} R_{k}^{l} - g_{ik} R_{jl} - g_{il} R_{jk} + g_{jk} R_{il})/(n - 2),\]

which is a consequence of (1) and $R = const$, leads immediately to

\[(12) \quad g_{kl} R_{ijkl} - g_{km} R_{ijkl} + R_{mk} C_{ijkl} - R_{km} C_{ijkl} - R_{in} C_{ijkl} - R_{ni} C_{ijkl} + R_{ijkl} - C_{ijkl} = 0.\]

Contracting now (12) with g^{kl} and applying (4), we find

\[(13) \quad (n - 2)R_{ijkl} - R_{ijkl} + R_{ij} C_{ik} - R_{ij} C_{ik} - R_{ik} C_{ij} = 0.\]

On the other hand, it follows easily from (5) and (2) that $R_{ijkl} = R_{ijkl}$, which together with (13) yields

\[(14) \quad (n - 2)R_{ijkl} + R_{ij} C_{ik} + R_{ij} C_{ik} + R_{ik} C_{ij} - g_{lm} R_{ijkl} - g_{km} R_{ijkl} = 0.\]

Contracting (14) with g^{ik} and taking into account the obvious formulæ $R_{ijkl} = 0$ and $R_{ijkl} = R_{ijkl}$, we obtain

\[(15) \quad (n - 3)R_{ijkl} + R_{ij} C_{ik} + R_{ij} C_{ik} = 0.\]

whence

\[(16) \quad (n - 3)R_{ijkl} + R_{ij} C_{ik} + R_{ij} C_{ik} = 0.\]

But in view of (8) and $R = const$, $R_{ijkl} R_{ijkl} = R_{ijkl} R_{ijkl}$, which reduces (16) to

\[(n - 2)R_{ijkl} + R_{ij} C_{ik} = 0,\]

that is, $R_{ijkl} = (2 - n)R_{ijkl} = (2 - n)R_{ijkl} = (2 - n)R_{ijkl}$.

A. Derdziński and W. Roter.
so \(n > 3 \) yields

\[
R^r_{s,t}C_{rlij} = 0.
\]

Substituting (17) into (13) and using (8) we obtain (\(n - 1 \))\(R_{r,m}C_{rijkl} - R_{ri,p}C_{rjkm} = 0 \),

hence \(R_{ri,p}C_{rjkm} = (1 - n)R_{r,m}C_{rijkl} = (1 - n)^2 R_{ri,p}C_{rjkl} \), which implies

\[
R_{ri,p}C_{rjkm} = 0.
\]

This proves (9) in view of (2).

§ 3. Conformally symmetric manifolds with positive definite metrics.

Theorem 1. Let \(M \) be a conformally symmetric Riemannian manifold. If \(M \) is not conformally flat, then

\[
R_{r,s,t,...}^{i,j,...} = 0
\]

for arbitrary integers \(K, N \geq 1 \).

Proof. Since \(R = \text{const.} \), Lemma 5 works. Substituting (18) into (12) we obtain

\[
R_{j_l,p_l,...,p_N}C_{mijk} - R_{km,p_l,...,p_N}C_{mijk} + R_{i_l,p_l,...,p_N}C_{kmjk} - R_{im,p_l,...,p_N}C_{hiljk} + R_{j_l,p_l,...,p_N}C_{kimk} - R_{jm,p_l,...,p_N}C_{hilk} + R_{ki,p_l,...,p_N}C_{khjm} - R_{km,p_l,...,p_N}C_{khjl} = 0
\]

for \(N = 1 \), which extends to arbitrary \(N \) in view of (2). Define the tensor \(A \) of type \((0, K + N + 6)\) by \(A_{imkn,...,p_N} = R_{i_l,...,l_r, p_l,...,p_N}C_{mjk} \). Transvecting now (20) with \(R_{r,s,...}^{i,j,...} \) and using (9) and Lemma 2, we conclude that \(A \) satisfies the hypotheses of Lemma 1. Therefore \(A = 0 \), which implies our assertion, since \(M \) is not conformally flat.

Theorem 2. Let \(M \) be a conformally symmetric \(n \)-dimensional \((n \geq 4)\) Riemannian manifold with a positive definite metric. Then either \(M \) is conformally flat or \(M \) is locally symmetric.

Proof. Suppose \(M \) is not conformally flat. For \(K = N = 1 \) (19) yields \(R_{i,j,k} = 0 \), so

\[
R_{i,j,k} = 0
\]

and \(M \) is locally symmetric by (11).

Theorem 3. Suppose that a Riemannian manifold \(M \) satisfies the relation

\[
C_{kijk,...,r_p} = 0
\]

for some \(P \geq 1 \). If the metric of \(M \) is positive definite, then either \(M \) is conformally flat or \(M \) is locally symmetric.

Proof. By the result of Tanno ([9], Theorem 2), (22) leads to (2) and our assertion reduces to Theorem 2.

Generalizing a result of Simon ([7], Theorem 1) we obtain (cf. [6], Theorem 3)

Corollary 1. Let \(M \) be a complete simply connected conformally symmetric \(n \)-manifold \((n \geq 4)\) with a positive definite metric. If \(M \) is not conformally flat, then either \(M \) is a symmetric Einstein manifold or it is a product of such manifolds.
The proof can be obtained from Theorem 2 and (21) by standard de Rham decomposition techniques.

§ 4. Conformally symmetric manifolds with metrics of index one.

Lemma 6. Let \(H \) be an analytic tensor field of type \((P, Q)\) on the analytic manifold \(M \) and let \(x \in M \). If \(H_x = 0 \) and \((P^N)H_x = 0 \) for each \(N \geq 1 \), then \(H \) vanishes identically on \(M \).

In fact, for any local chart at \(x \) we have \(H_{i_1 \ldots i_P} \equiv 0 \) and \(\partial_{i_1} \ldots \partial_{i_P} H_{j_1 \ldots j_Q}(x) = 0 \), \(N \geq 1 \). Since \(M \) is connected, our assertion follows from analyticity of \(H \).

Lemma 7. Let \(M \) be an analytic conformally symmetric Riemannian manifold. If \(x \in M \) and \(M \) is neither conformally flat nor locally symmetric, then (i) there exists \(N \geq 1 \) such that \(R_{i_1 \ldots i_N}(x) \neq 0 \), (ii) for \(K, N \geq 1 \) and any vectors \(u, u_1, \ldots, u_K \), \(v, v_1, \ldots, v_N \in T_xM \), the vectors \(a, b \) given by

\[
\begin{align*}
 a_i &= R_{i j_1 \ldots j_K} u^j_1 u^j_1 \ldots u^j_K \\
 b_i &= R_{i j_1 \ldots j_N} v^j_1 v^j_1 \ldots v^j_N,
\end{align*}
\]

are isotropic and mutually orthogonal.

Proof. (i): Conversely, we would have (21) in view of Lemma 6, so \(M \) would be locally symmetric by (11). (ii): By Theorem 1, \(a^t a = b^t b = 0 \), which completes the proof.

Using Theorem 1 of [6] it is easy to see that essentially conformally symmetric manifolds may have metrics of index one. In the sequel, the notion of distribution will be used in the sense explained in [3], p. 10.

Theorem 4. Let \(M \) be a conformally symmetric analytic Riemannian manifold with a metric of index one. Suppose \(M \) is neither conformally flat nor locally symmetric. Then the assignment to each \(x \in M \) of the set \(L_x \) of all vectors \(a \in T_xM \) of the form (23), where \(u, u_1, \ldots, u_K \in T_xM \) and \(K \) runs through positive integers, defines an analytic 1-dimensional isotropic distribution \(L \) on \(M \).

Proof. By our assumption on the index and (ii) of Lemma 7, any two vectors of \(L_x \) are collinear. Hence \(L_x \) is a vector space of dimension at most one. Furthermore, by (i) of Lemma 7, \(L_x \neq 0 \). Thus \(L \) is an isotropic 1-dimensional distribution. Now suppose that a vector \(a \neq 0 \) of \(L_x \) is defined by (23). Extending \(u, u_1, \ldots, u_K \) to analytic vector fields in a neighbourhood of \(x \) we define, again by (23), an analytic extension of \(a \) to a vector field which spans \(L \) at all points sufficiently near to \(x \). Therefore \(L \) is analytic, which completes the proof.

Corollary 2. Any essentially conformally symmetric analytic manifold \(M \) with a metric of index one admits two 1-dimensional \(C^\infty \) distributions which are distinct at each point of \(M \).

Proof. It is well-known that any Riemannian manifold with a metric of index 1 admits a 1-dimensional \(C^\infty \) distribution \(V \) which is nowhere isotropic (for a standard argument see e.g. [2], proof of Lemma 3). Our assertion is now satisfied by \(L \) and \(V \).

Corollary 3. Every essentially conformally symmetric analytic manifold \(M \) with a metric of index one admits a 2-dimensional \(C^\infty \) distribution.
Theorem 5. Let S be the standard sphere of dimension $n = 2q$, $q \geq 2$, or $n = 4q + 1$, $q \geq 1$. Then S admits no analytic, essentially conformally symmetric Riemannian metric.

Proof. Conversely, suppose that S admits an analytic, essentially conformally symmetric Riemannian metric g_{ij}. By Theorem 2 g_{ij} must be indefinite. Even-dimensional spheres do not admit indefinite metrics ([8], Theorem 40.11, p. 207 and Theorem 27.18, p. 144), so we may restrict ourselves to spheres of dimension $n = 4q + 1$. Since such spheres admit indefinite metrics of indices 1 and $n - 1$ only ([8], l. cit.), we may assume index one by changing the sign of g_{ij} if necessary. Now Corollary 3 contradicts Theorem 27.18 of [8], p. 144, which states that the spheres considered above do not admit 2-dimensional distributions. This completes the proof.

Theorem 6. Suppose M is an analytic, essentially conformally symmetric Riemannian manifold of dimension $n = 4$ or $n = 5$. Then M admits a 2-dimensional C^∞ distribution.

Proof. Changing the sign of the metric, if necessary, and using Theorem 2, we may restrict our consideration to metrics of indices 1 and 2. For index 1 our assertion follows from Corollary 3, for index 2 it is clear (see e.g. Theorem 40.11 of [8], p. 207, in the compact case).

REFERENCES