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SOME THEOREMS ON CONFORMALLY
SYMMETRIC MANIFOLDS.

By A. DerpziNskl and W. ROTER.

§1. Introduction. The present paper concerns with n-dimensional (n > 4) Rieman-
nian manifolds (not necessarily of definite metrics) which are conformally symmetric
[1}," i.e. satisfy the relation

(1) Ch"jk'l=0,
where

Chn = Rl — (giiR" — guR'; + SLR;; — G3Ry)/(n — 2)

+ R(Bkgs; — digadl(n — 1)(n — 2)
denotes the Weyl’s conformal curvature tensor of the manifold. More precisely, we
consider manifolds which are essentially conformally symmetric, that is, satisfy (1)
but are neither conformally flat nor locally symmetric. To investigate these mani-
folds we examine the behaviour of the parallel tensor field C,;;,C™™. Section 3
of this paper is devoted to essentially conformally symmetric manifolds which satisfy
the condition

(2) CrinnC™" =0
In Section 4 we consider the remaining case

(3) CainC™™ %0,
i.e. the case where C,,;;;C™*" does not vanish identically. We prove there (Theorem
6) that every essentially conformally symmetric manifold satisfying (3) is Ricci-re-
current. As a consequence, we obtain the following result (Corollary 1): Every
essentially conformally symmetric manifold with a metric of index one is Ricci-
recurrent. Finally, in Section 5 we state some general theorems on conformally
symmetric manifolds. We prove there that every essentially conformally symmetric
manifold admits a non-trivial null parallel distribution and satisfies the relations
R =0, Ruji,im — Raiji.mt =0, R{'R,; =0, R/R,; ;=0 and R; C";;; =0.

Throughout this paper, by a manifold we shall mean a connected Hausdorff
manifold of class C~. All manifolds considered below are of dimension n > 4.

§2. Preliminaries. The Weyl’s tensor satisfies the well-known relations which
we list here for convenience:
a) R = Chjy + (gi;R" — guRY; + 6iR:; — 3Ry /(n — 2)
— R(3Lgi; — Sigull(n — 1)(n — 2),
(4)  b) Cupu=—Cujn=—Chi; = Citns = Cijin »
c) Chu+Chis+ Chij=0, d) C4=Cliyj=CTy; =0,
e) Clijir=(n—3)Rijx — Rir.; — (Rugij — R jgu)/2(n — 1)]fin — 2) .
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Every essentially conformally symmetric manifold satisfies the relations

(5) R = constant , (see [8]), Theorem 6),
(6) Rije = Rixj »
which follows from (5) and (6),
(7) RYi = (9:iR .1 — guR";,0 + R — O5Ru,)(n — 2)

which is a consequence of (4)a), (1) and (5), and

a) Ri;R:=0, b) Ry Cua=0,

©) RyClaut + RuClitj + RuClijn =0,

d) Rt ,Camiix — Ram.sClisx + Rit,pChnjt — Rim,sCutik + Rjt,pChimi
— Rjm,pChite + Rit,;Chijm — Rim,pCriji =0

(see [2], formulae (19), (18), (7) and (20)).

(8)

Lemma 1. Every conformally symmetric manifold satisfies the relation

(9) RuCuist — RamClisx + RiutCiamjr — RimCuiji + RjtChime — RjnCirine
4 RuChrijm — RimCiist + gaiRn Crisi — gamRi Crijic + gitRn Chrji
— GinR Chrjie + itRn Crivk — 9imR Chive + guRn" Chijr — GamRi"Chijr
— R(guCmiit — FamCrijk + FitChmix — FimCnije + gjlchs’mk — FimChitk
4+ gutChijm — FemCris)f(n — 1)

= (N — 2)(Ci s Crijk + Cimi Crrjx + Cims Chirk + Cims Chijr) -
Proof. From (l) and Ricci identity we obtain
0 = Crije,mt — Chije.tm = Rutr Criji + Ruti' Chrje + Rumii Crirk + Rutr Chijr »

which, in view of (4)a), turns into

0 = Coin"Crijk + Crnti"Chrix + Cuii Chirk + Cate Chijr + [ginRim Crije — gutRi"Crisi
+ RuiCrijt — RemCrisi + 91iRm Chrji — 9niRi " Chrje + RtChmir — RinCuiji
+ 01;Ra Crirk — FmiRi Crirk + RjiChime — RimChitr + GuuRm’ Chijr
— gmeRi Chijr + RitChijm — RimChriji — R(@nComiix — OanCrist + gitCanm
— FimCtje + 95tChime — inChitke + IutCrijm — FrmCrin)/(n — 1)}f(n —2) .
This, together with (4)b), implies immediately our assertion.
Now we state four algebraic lemmas, which will be used in the next sections:

Lemma 2 ([2], Lemma 1). Let a tensor Ay, .. ., be symmetric in (I, m) and
skew-symmetric in (m, j). Then Ainj, . oy =0.

Lemma 3. Let ¢;; and Ty be tensors, satisfying the conditions

a) e;=ey;, Tin+Tau; =0, b)) Tin+4Tii+ Twu;=0,
(10)  ©) enTij+ eqTh;+ €;Thns + enTiin =0,

d) enTmr;i — €amTiri + €itThkm — €nTart + €tTam; — €xnThi; =0.

Then they also satisfy



Some theorems on conformally symmetric manifolds. 13

(11) enTiie = euTyj -

Proof. Set q = ranke;;. By a suitable choice of coordinates we may check that
en #0,...,6,+ 0 and all other components of e;; vanish. Since our assertion is
obvious when T;; =0 or ¢;; =0, we shall assume that T;;,, #0 and ¢>1. We
adopt the following convention about indices: 4, i, j, k, I, m will index tensors,
while a, b, ¢, d will be used to denote their components in our coordinate system.
Thus ¢;; is a tensor, but e,, is a real number.

We have

(12) if Ty, #+ 0 for some particular indices a, 4, ¢, then the set {1, ..., g}
is contained in {a, b, ¢} .

In fact, conversely we could choose d with 1 <d<q and d+#a, d+b, d+c.
Setting in (10)c) A=I!=d and i=a, j=0b, k=c¢, we would obtain €;3T,. =0, a
contradiction.

Now we assert that ¢ = 1. To prove this, suppose ¢ > 2 and set (10)c) i = k =
I=1,j=2and h=a> 1. This yields T, + T2, =0, s0 Ty, =0 and, by
(10)a), Tpg= —T41p=Tqey for a>2. In view of (10)b), Tys + Tz + T1e2 =0,
hence Ty, = — T4y = 2T4s; = 2Ty, for a > 2. Therefore, setting in (10)d) A=k =
I=2, m=1 and j=a> 2, we have 0 = e;;T5, + €327 215 = 3€42T314, Which yields,
for @ > 2, Ty = Ts1a = Tare = Tast = Thaz = T3a1 = 0. From the above equalities
and (12) it follows that the only components of T,; which may not vanish are
Tyz = —Ty,,. Setting now in (10)d) h=j=1[=2, k = m = 1, we obtain e,,T,,, = 0,
so T;;: = 0, a contradiction. This shows that ¢ =1.

Settingin(10)c) h=j=1=1,i=a,k=0b,a,b> 1, we have e, Ty + ,T11c =
0, 50 Ty = —Ty, for a, b > 1. Therefore (10)b) implies, fora, b > 1, Tgyy = Thap +
Th10 = Tyap — T, which yields

(13) Tiab = 2Talb fOl‘ a, b > 1 .

Setting in (10)d) A=j=1I=1, k=a, m=2b, a,b> 1, we obtain 0= e,,Ty, +
enTio = —en(Thie + Tia)s 50, by (13), 0 = —3e,,Tyya, i.€. Tygp = Ty = Topy = 0 for
a,b>1. From (12) it follows now that

(14) Tope =0 whenever a > 1.

We are now in a position to verify (11). Both sides vanish unless { = 1. If
h, i> 1, then they vanish again. In the case #=i=1=1, both sides are equal to
€,;Ty;.. The remaining case reducesto k =1 =1,i > 1. The right-hand side vanishes
as ¢; = 0, the left-hand one does so by (14). This completes the proof.

Lemma 4. Let A; be a non-zero covariant vector and B ...y @ tensor, satisfying
the relation

(15) A,‘B’ = A,'B“z”_,“. .

.‘.2""1\' N

Then there exists a unique tensor D;,.. iy such that

(16) By iy =As Dy, iy -

Proof. For any contravariant vectors dj, ..., ay, (15) yields By zm‘-Na;’ oo adl =
2A4;, the (uniquely determined) scalar 2 being a multilinear function of our contra-
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. { iv . .
variant arguments, say 2 = D;,__;,@° --- a5 . Since these arguments are taken arP:-
N

trarily, (16) follows from the resulting equality B;.-z,,_;Naiz ceeaf = A;D;z,,_;ya;’ ceeay .
Lemma 5. Let A, :p and B; ;. be non-zero tensors satisfying the relation
(17) Ass,...igBi

Then (i) the space of covariant vectors contains a unique line L such that any vector v;
of the form
ix

(18) a) v = Aiiz...ixu;z cee Uy or b) v;= Bii,...i_,.;w;z e Wil
w;=B; if N=1),

ipeeiine = AjigeiigBiig..in -

where u;, w3, ... elc. are contravariant vectors, lies in L; (ii) if, moreover, A; __ .p is
symmetric in all indices, then A; ;. = 20;, -+ Uiy, ¥; being any non-zero vector of L
and 2 a certain scalar. '

Proof. 1In view of (17) any two vectors of types (18), respectively, are collinear.
Since our tensors are both non-zero, (i) is clear. To prove (ii) we may proceed by
induction on K. The inductive step in based on the equality A; ., = D; . g Vig
for some symmetric tensor D;, .. .ig,» which can be obtained as follows: By (i) and
the assumption of symmetry we have, for arbitrary covariant vectors uj, ..., ui_,,
A.-I._,,-Ku{'l PP el 2;,, where 1 depends on these vectors multilinearly, say 2 =
D,-ln_,-K_xui‘ .- 45 The inductive hypothesis, applied to D; ;. ,, completes the
proof.

A Riemannian manifold M is said to be Ricci-recurrent provided that for each
x & M such that R;;(x) # 0, there exists a tangent vector A4, at x, which satisfies the
condition '

(19) R;j'k(X) = A;‘R"j(X) .

The existence of essentially conformally symmetric Ricci-recurrent manifolds can
be established (see [6], Theorem 3 and Lemma 6, and [7], Theorem 1) as follows:

Theorem 1. Let M denote the Euclidean n-space (n > 4) endowed with the metric
g:; given by

(200  giidxidd = o(dx")? + kydxidx" 4 2dx'dx™ , @ = (Aky, + ay)x’x"
where i,j,...=1,...,nand 2, p,a,8, ... =2,...,n— 1 and A is a non-constant
function of x' only, [k,,] and [a,,) are non-zero symmetric matrices such that [kiy) is

non-singular and k*a,, = 0, [k**] being the reciprocal of [k:.]- Then M is an essentially
conformally symmetric Ricci-recurrent Riemannian manifold.

Remark 1. For a metric g;; of the form (20) we have
(210) index of [g;;] = index of [k;,] -+ 1,

the index of a symmetric matrix being understood as the number of negative entries
in its diagonal form. In fact, it is sufficient to verify (21) at the point x with coor-
dinates x' = ... =x*=0. Denoting by X,,..., X, the basis of T,M determined
by our coordinate system and by (..., ...) the inner product induced by g;(x), we
have (X, X,) = {X;, X}) = (X, X)) = (X, Xy =0, (X, Xp) =1, (X, X =k
Setting now Y, =2"(X, + X,), Y, =2"Y%X, - X,), we obtain a new basis Y,,
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Xz ooy Xooy, Y, for ToM and (21) follows immediately from the relations (Y,, ¥,) =
—Y, Yoy =1, Y, YY) =(Y,,Y) =(Y,, Y)=0.

Remark 2. In view of (21), essentially conformally symmetric Riemannian
metrics may assume all indices from the range {1, 2, ..., n — 1}, n being the dimen-
sion of the underlying manifold. On the other hand, such metrics are never definite
([2]), Theorem 2).

Lemma 6. A Riemannian metric g;; of the form (20) satisfies (2) if and only if
(22) k*aza,,=0.

Proof. It is easy to verify (see [6], p. 93) that the only components of Ci;j,
which may not vanish, are those related to

Cum = $0,0,0 — ki, (k*?3,0,0)/2(n — 2) = a,, ,

and that the reciprocal tensor g* of g;; is given by g"* =1, g" =g" =g¢" =0,
g =k, g" = —p. Our assertion can now be obtained by an explicit computation
of Cmukcmm = g‘mclijkcmnt-

In the sequel, we shall use the notion of distribution in the sense explained in
([4], p- 10). A distribution on a Riemannian manifold will be called null if any
vector u; of the distribution satisfies the relation wu’ = 0.

§3. The case C,;;C™™* = 0. This section is devoted to essentially conformally
symmetric manifolds which satisfy (2). First we establish their existence:

Theorem 2. Foreachn >4 andeach qe{2, ..., n — 2} there exists an n-dimensional
essentially conformally symmetric Riemannian manifold with a metric g;; of index gq,
which satisfies (2).

Proof. We define the metric g;; by (20), setting ky; = -+« = k¢y = — 1, kgs1,q41 =
e =kygna=1, k), =0 for 2 p and ap =a; 4y = Ayy,; = gy ,qy =1 and
a;, = 0 for other values of 2 and p. It is easy to see that k*a,, = 0 and to verify
(22). Our assertion follows now from Theorem 1, Lemma 6 and (21).

Theorem 3, Let M be an n-dimensional essentially conformally symmetric Rieman-
nian manifold with a metric of index q. If M satisfies the relation Cp;; C™™ =0,
then it admits a null parallel distribution 4 such that

(23) 2<dimd<min(q,n—¢q)<in.

Proof. Given xe M, define D_ to be the set of all vectors w; of the form w; =
Ci;ua’b®c’, where a', b, ¢ run through T,M. In view of (2) and two vectors of D,
are isotropic and mutually orthogonal. From (1) it now follows easily that by as-
signing to each x ¢ M the linear span 4, of D,, we define a null parallel distribution
4 on M,

Now fix xe M and choose vectors @', b* tangent at x so that Cija*d’' = F;; # 0.
Since Fy; is an exterior 2-form, we have rank F;; > 2. It is clear that 4, contains
all vectors d; of the form d; = F;;c’, where ¢’ runs through T,M, and that these
vectors form a subspace of T.M of dimension rank F;;. This shows that dim 4 > 2.
The remaining inequality follows, in a purely algebraic manper (see [5], p. 362,
Corollary 2 and [3], p. 229, Problem 3) from the fact that 4 is null. This com-
pletes the proof.
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Lemma 7. Let M be an essentially conformally symmetric manifold satisfying (2).
Then M satisfies the relations

a) R=0 ’ b) Ri'Rrj =0 ’ C) Ri'Rfj,k =0 » d) RirC'jH =0 ’
(24)  e) RuCijt — RuuCrijt + RiuChmjk — RimChijt + RjtChimr — RinCrite
+ R1iChijm — RimCrisi = 0.

Proof. By (2), the right-hand side of (9) vanishes. Contracting (9) with g*' and
using (4)b), d) and the obvious formula R™C,,;; =0, we obtain

(25) RC i+ (n — DR, CTiji + RieC ik + 9 R Criry — GimR ' Crijs
+ RiiCimi + RiClijn + Rt Clikj 4+ Rno(Clirj + Cliji + Cliia)
— R{(n — 1)Crist + Cimes + Cijim + Cikmjilf(n—1)=0.

In view of (4)c) and (8)c) we have R;,C";ni + RiyClijm + RayClitj = 0, Ciys + Cliji +
C;i:=0 and Cinji + Cijim + Citnj = 0, so (25) takes the form

(26) (" — DR, C ik + RiyCl ik + GimR Crire — GimnR"Crija = 0.

Transvecting (26) with C",,,, and using (2) we obtain C,u,R"C,;j;, = 0, which yields
R"C"'j, = 0. Now (26) turns into (n —_ I)Rm,Cr‘jk + R.‘,C'm,'k = 0, i.e. R.‘,Crm,'k =
(1 — MR C"sjr = (1 — n)®R;,C5n, which clearly implies (24)d).

Transvecting now (9) with C*,,, and using (2) and (24)d), we obtain R(CipuChijm —
CopstCriji) = 0. Therefore the tensor A,z = RCippChijn satisfies the hypothesis
of Lemma 2. Hence RCy,,Ciijm = 0, which implies (24)a), since M is not con-
formally flat.

In virtue of (2), (24)a) and (24)d), equality (9) takes the form (24)c).

Transvecting (24)c) with R, and using (24)d), we see that R,’RyChmix = R, RimChijk-
Hence, applying Lemma 2 to A, = R,"R”Chm-k, we conclude that R,"R.-,C,m,-,‘ =0,
which obviously implies (24)b). To prove (24)c), we use the same procedure, i.e.
transvect (24)e) with R,* , taking into account (8)b), and then apply Lemma 2 to
Arbprit = R,‘_,R‘-,C,,,,,-,‘. This completes the proof.

§4. The case C,;;;C™"™ £ 0. In this section we consider essentially conformally
symmetric manifolds which satisfy (3). First we prove that this class contains all
essentially conformally symmetric Riemannian metrics of index 1 (and n—1) and
some metrics of other indices.

Theorem 4. (i) Every essentially conformally symmetric Riemannian manifold with
a metric of index | (or n — 1) satisfies the relation Cn;;,C™™ # 0. (ii) For each n > 4
and any g€ {2, ..., n— 2} there exists an n-dimensional essentially conformally symmetric
Riemannian manifold with a metric g;; of index q, which satisfies (3).

Proof. (i) Let M be an essentially conformally symmetric manifold with a metric
of index g such that C,;;C™* =0. By (23) we have 2<q<n — 2, which proves
our assertion. (ii) Define the metric g;; by (20) with matrices {k,,] and [a,,] given
by kypy=-- =ky=—1, kqsyqn=-++ =kyy =1, ks =0 for 2 # p and a,, =
@n-1,n-1 = 1 and a,, =0 for other values of 2 and g. Clearly, k”'a;,, =0, so in view
of Theorem 1 and (21), g;; is an essentially conformally symmetric Riemannian
metric of index ¢. We have k"’a;,a,,g = k*a,a,, = —1, hence our assertion follows
from Lemma 6. This completes the proof.
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Theorem 5. Let M be an essentially conformally symmetric Riemannian manifold
such that the parallel tensor field C,;;,C™"** does not vanish identically on M. For xe M,
denote by L. the set of all vectors v; at x of the form v; = winCT " a'b¥c d,e,, where
a, b, ¢, d*, & run through T.M. Then the assignment x+ L. defines a null parallel
1-dimensional distribution L on M. Distribution L has the following property: If xe M
and N is a positive integer, then L, contains all vectors w; of the type

i Pi PN
¥1)) Wi = Rijp . oyt coc UN
where u*, ui, ..., uy are vectors tangent at Xx.

Proof. Transvecting (8)d) with C™** and with C**, respectively, and using
(8)b), we obtain

Rit ,CrmistC™™ 4+ Rit ;CoartiC™** + Rit ,CotaiC™™" + Ry, pCmjinC™" =0,
Rt pCimiiC™ — Rim ,CittiC™ + Rjt ,CinkmC’™** — Rjm, oCirrtC™**
+ Ryt sCitmiC*™* — Rim ,Cint;C7* =0.

Now fix p, 7, s, t and set e;; = Ry; 50 Tiju = CaisuC™™*'. From the above equalities
it follows immediately that e;; and T';;, satisfy (10). By Lemma 3, they satisfy (11), i.e.

(28) Rt ,CristC™" = Ryt yCrasuC™"" .

Now choose x € M such that R;; . (x) # 0. From (28) and (i) of Lemma 5 it follows
that L, is a line in T_M. Moreover, L. is null in view of Lemma 5 and (8)a). By
(1), the same holds for each xe M, which proves that L is a null parallel 1-dimen-
sional distribution on M.

Differentiating (28) covariantly, we obtain Ry p, .. pyCaiitC™™ = Rit,p,...p4Crbjk X
C™. It follows now from Lemma 5 that L contains all vectors of the form (27),
which completes the proof.

Remark 3. By (i) of Theorem 4, Theorem 5 is a generalization of Theorem 4
of (2] (the distribution, constructed there, clearly coincides with L).
Using Theorem 5, we shall prove

Lemma 8. Let M be an essentially conformally symmetric manifold satisfying (3).
Then M satisfies the relation

(29) Cian Crijie + Cini'Chrjk + Cimi Chirk + Cimi Crize =0 .

Proof. We restrict our consideration to a fixed point x of M. Choose a non-
zero vector w; of L,. By Theorem S5 we have CpC™,,a'b"c"d’e’ = w; for any
vectors a*, b°, ¢, d°, €' of T M, 2 being a 5-linear real function of these vectors,
say 2= Gjpna’b’c’d’e’. Thus we have CpniuC™y = W;Gjir. The obvious equality
CrijtC"st = CpnentC™;jx can now be written as

(30) wo‘ijnt = Wer‘jl: .
Set ij,..‘ = ijnt —_ G“r,'k- By (30) we have
(31 Will jivse = —W,H jpi0e -

Now choose a vector ¢ at x such that ¢‘w; = 1. Transvecting (31) with ¢!, we obtain

(32) Hikrcl = —-W,.CkH’-",,, )
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s0 (31) yields —wyw,c*Hper = WiH jipse = —WoH juior = Wwic " Hjipe. Hence ¢*Hjppy = 0
and, by (32), Hji,ee = 0. Thus we have G.pe = Gayrjis 50 (30) takes the form w,G iy, =
W,Gjris- From Lemma 4 we obtain Gji.e = WK, for some tensor Ky, i.e.
CriikC st = WiW, K. Using (4)b), we now compute

Cimi Criji + Cimi Carjt + Cimi Chirk + Crani Chijr = CrijsClamt — CraiaClimt

+ CriniC it — CriniClimi = WiWiKiimi — WaWiKjint + WiWiKiimi — WWiKpimi =0,
which completes the proof.

Lemma 9. Let M be an essentially conformally symmetric manifold satisfying (3).
Denote by U the open subset of M consisting of points at whxch Rij #+ 0. Then there
exists a unique C™ vector field v; on U such that

(33 R = V5050, .

Moreover, v; spans the distribution L (defined in Theorem 5) at each point of U and
we have

(34) a) Ri,v"=Ryi2(n—1), b) Rijun=0:00:01P,
for some (uniquely determined) vector field P; on U.

Proof. From (28), (6) and (ii) of Lemma 5 we obtain (33). Clearly, v; spans
L on U. Since L is parallel and null, we have

(35) v, ;= S;
for a certain vector field S; on U and

(36) v;0' =0, v; 0.
From (33) we obtain

(37) Ry = 3005,

which yields, in view of Ricci identity and (4)a),
(38) 3000 — 1;S:) = Riju— Riju
= Rui'R,;; + Ritj Rir = Coti" Ry + Cuj Rie
+ (guRR,; — guR'R,; + g Ry Rir — g5 R R;,)/(n — 2)
— R(gaRji + giRix — guRj — gaRa)l(n — 1)(n — 2) .
Now set
(39) u; = Ry, V" .
Differentiating (38) covariantly and using (35), (39) and (8)b), we obtain
40)  300,(30.8,Sn — 30,5:Sn + VSt — 1Sk, ) = Rijetm — Rijtim
= (guiViVm + JarVilliVn — Jirti¥i0m — GirViliUn + GjiiViVn
+ GililtiV; — GV — GiiltiVn)/(n — 2)
— R(guv¥s0m — Gux¥iVi¥m + G500V — FaVili¥n)/(n — 1)(n — 2).
Transvecting (40) with * and taking into account (36), we have
(41) WOV, + VGO0, — WOV, — VU0, =0 .

Contracting this with ¢'*, we obtain (2 — myv'uv, =0, i.e. v'u; =0. Therefore
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(41) takes the form (u,v; — w0 )v;0,, = 0, so that we have

(42) H; = uy;
for some C” function # on U. Now (40) turns into

43) 3v0,30.8:Sn — 30,5:Sn + iSt,m — UiSt,m) = Rijrin — Rijtin

= (2u — Rf(n — DXGuti¥s¥m — Fuli¥iVn + FitViVsVm — I¥iliVn)/(n — 2) .

We assert that

(44) u=Rj2n—1).
In fact, suppose that (2u — R/(n — 1))/(n —2) =Q #0. Fix a vector b* such that
v:6'=1. For any vector ¢! orthogonal to v* we obtain, by transvecting (43) with
Hb*b™ct, Oc; + ¢;6'v;) = iv; for some scalar 2, so v; and ¢; are collinear. Thus any
vector orthogonal to v; is collinear to v;, a contradiction, which proves (44). Now
(34)a) is an immediate consequence of (39), (42) and (44). From (43) and (44) we
obtain (35S, + Si.m) = Vi(3SiSp + Si.n), Which yields, by Lemma 4,

(45) 35S + Si,m = 401 Pn
for a certain vector field P; on U. Differentiating (37) covariantly and using (35),
we obtain (34)b), which completes the proof.

Lemma 10. Ler M be an essentially conformally symmetric manifold satisfving (3).
Then M satisfies the relations
(46) a) R=0 N b) R.-rR,-j,g =0.
Proof. We usc the notations of Lemma 9. First, we assert that M satisfies the
relation
(47) R"R,j,x = RR;;f2An — 1) .
In fact, (47) holds on the open subset U in view of (34)a) and (33). On the other
hand, it is trivially satisfied outside of U, i.e. at points where R;;, vanishes.
From (34)b) -and Ricci identity we obtain, using (4)a),
(48) V00 (V1P — VnPy) = Rijitm — Rijamt
= Rini'Rejk + Rimj Rir,k + Rimi"Rij,r
= —R(#inRjt,i — GuRjt,m + GimRir,1 — GitRix,m + GinRij1
— guRij ) 2(n — 1)(n — 2) + (RinRji,i — RuRji,m
+ RjaRir,it — RjtRit,m + ReaRijt — RuRij n)/(n —2) .
Contracting (48) with ¢g*™ and making use of (36) and (47) we have v*Pwu.v, =
Rvv.v,/2(n — 1), i.e,
(49) v'P;=R/2(n — 1).

Transvecting now (48) with v™, using (33), (36), (34)a) and (49), we obtain Rv,v;v.v, +
2(n — 1) =0, so R vanishes on U. From (5) we obtain (46)a), which in turn im-
plies (46)b) in view of (47). This completes the proof.

Lemma 11. Ler M be an essentially conformally symmetric manifold satisfying (3).
Then M satisfies the relations
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(50) a) RirRrj =0 » b) R"Cﬂ'js =0.

Proof. In view of (46)b) and (8)b), R;"R,; and R™C,;; are both symmetric,
parallel tensor fields on M. Therefore we may restrict our reasoning to the open
subset U, using the notations of Lemma 9. By (34)a) and (46)a), we have R;v" =0,
so by transvecting (48) with R,¥ we obtain, in virtue of Lemma 10, 0 = (R,"R,‘,,,R,-,-,, -
RJER,R;; 2)/(n — 2), which yields, in view of (ii) of Lemma §,

(51) R,"R,.j =fv;l),-

for some function f.
Now suppose R;'R,; # 0. Hence, by (52),

(52) O=fow;,=f wiv; +2fSww;, ie. fo+2fS,=0, f#=0.
Therefore S, is a local gradient, so S; , = S, ;. In view of (44) we have

(53) P, =v,P;,
which yields, in view of (48) and (46)a),

(54) 0= RiuRj,1 — RuRji,m + RjnRip,1 — RjRik,m + RinRiji — RuRijm

Transvecting (54) with R,” and using (46)b), we obtain 0 = R,™R;nRjs,1 + Rs" RjnRix.1 +
R,"RynR;j 1, which, in view of (51) and (33), turns into 0 = 3fvv;v,0,v,. Therefore
f =0, which contradicts (52). This proves (50)a).

In view of (46)a) and (50)a), formula (38) yields

(55) Ivoi(v,S, — v,5:) = Coi"Ryj + Cryi Ry,
Contracting (55) with ¢* and using (36), we obtain
(56) C,.“,Rr’ = —BUrSrv,'U; .

Now suppose R™C,;; # 0. Setting /= —3v,5" we have, by (56), R"°C,;;, = fv,v;.
As in the preceding part of the proof, we obtain (52), (53) and (54). Transvecting
(54) with C*,,™ and using (8)b), we obtain C‘,,"‘R,-,,,R,-,‘, 1 = 0, which yields R™C;rom =
0, a contradiction. Thus we obtain (50)b), which completes the proof.

Lemma 12. Let M be an essentially conformally symmetric manifold satisfying
(3). Then M satisfies the relations

(57) R,-,.er“ =0 ’

(58) Rhlcml'jk - Rhmch’jk + Rilchmjk - RimChljk + leclnimk - ijchilk

+ RuChijn — RimCrin =0.

Proof. In virtue of (29) the right-hand side of (9) vanishes. Contracting (9)
with g* and using (46)a), (4)b),d), (50)b) and the obvious equality R™C,,;= 0,
we obtain

(n — DR Cijt + RiyClrji + RinrCli; + RirCijn + R Clinie
+ RarCTatj + Ciji + CTy) =0,
which, in view of (4)c) and (8)c), reduces to (n — 1)R,,,C";j; + RiyC rji = 0. There-
fore R;;C'aj = (1 — M)Rp,C"yji = (1 — n)°R;,C" 53, Which yields (57). Formula (58)
is an immediate consequence of (9), (57), (52) and (29). This completes the proof.
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We are now in a position to prove the main result of this section.

Theorem 6. Ler M be an essentially conformally symmetric Riemannian manifold.
If the parallel tensor field C,;; C™™* does not vanish identically on M, then M is
Ricci-recurrent.

Proof. Transvecting (58) with C™' and with C'"*, respectively, and using (57),
we obtain

RuCpiitC™™ + RiuCrpsiC™"™ + RitCrutniC™™ + RyuConjsC"™ =0,
Rhlcimkjcir“ _ RthiujC‘."t + R,-;Cu..mC"“ _ ijcihucmt
+ Rklcihmjci"‘ — kaC;,,,jC"" =0.
For a moment, fix r, s, ¢ and set e;; = Ry;, Tijp = CmijC™*. From the above

formulae it follows immediately that e;; and T7; satisfy (10). By Lemma 3, they
satisfy (I1), i.e.

(39) RuCrmiinC™"*" = RiyCrasiC™™ .

Since the vector field »; spans distribution L (see Lemma 9), it follows now from
(ii) of Lemma 5 that

(60) R.',' = fv;v,-
for some function f on U.

Let xeM and R;{x)# 0. If xeU, then relation (19), with A, = v, (x)if(x),
follows immediately from (60) and (33). If x ¢ U, then (19) is satisfied by -, =0,

which completes the proof.
From Theorem 6 and (i) of Theorem 4 we conclude immediately

Corollary 1. Every essentially conformally symmetric Riemannian manifold with a
metric of index one is Ricci-recurrent.

Remark 4. It has been shown in [6] (Theorem 3) that for any point x of an
essentially conformally symmetric Ricci-recurrent manifold M such that

(61) Rifx)#0, Riux)+0,
a coordinate system in a neighbourhood of x may be chosen so that the metric takes
the form (20) (note that the definition of Ricci-recurrency in [6] differs slightly from
the ours). Therefore Corollary 1 implies that for an essentially conformally sym-
metric manifold M with a metric of index one, the metric of M is of type (20) in
a large (determined by (61)) open subset of M (e.g. if M is analytic, then this sub-
set is dense).

§S. The general case. Combining the results of Sections 3 and 4, we shall
obtain in this section some general statements on essentially conformally symmetric
Riemannian manifolds. First we strengthen a result of Tanno ([8], Theorem 6):

Theorem 7. Every essentially conformally symmetric Riemannian manifold M satis-
fies the relation

(62) R=0,

i.e. the scalar curvature of M vanishes identically.
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Proof. According as M satisfies (2) or (3), our assertion follows from (24)a) or
(46)a), respectively.

Theorem 8. Every essentially conformally symmetric Riemannian manifold M satis-
fies the relations
a) R'R,;=0, b) R'R;,=0, ¢ RCju=0,
d) RuCriji — RunCiijt + RiChmjr — RimCaije + RjiChime — RjmChitx

+ RiiChijm — RemCrii=0,

€) RyCominC™™ = RyComppnC™""* .
Proof. If M satisfies (2), then (63)a)-d) follow from Lemma 7 and (63)e) is

obvious. Now assume (3). In this case (63) follow from (50)a), (46)b), (57), (58)
and (59), respectively.

(63)

Theorem 9. Every essentially conformally symmetric Riemannian manifold M satis-
fies the relation

(64) Rhijk.lm - Rlziils,mt =0.

Proof. In view of Ricci identity we have R 1n — Rij mt = Rimi"Rej + Rimi Ryi.
From (4)a), (63)c), (62), (63)a) we obtain R;,;"R,; = (RinRji — RjnRi1)/(n — 2), which
yields R;; 1, — Rij,mi = 0. Equality (64) follows now directly from (7).

Remark 5. Relation (64) often occurs in the literature in the case of definite
metrics. It is usually written in the form R(X, Y)R =0.

Theorem 10. Let M be an essentially conformally symmetric n-dimensional Rieman-
nian manifold with a metric of index q. Then M admits a null parallel distribution 4
such that | < dim J < min(g, n — q) < nj2.

Proof. In the case (2) our assertion follows from Theorem 3. Now assume (3).
Then we may set 4 = L (see Theorem 5). This completes the proof.

We do not know whether or not every essentially conformally symmetric mani-
fold is Ricci-recurrent. Certain sufficient conditions for Ricci-recurrency are given
by Theorem 6 and Corollary 1. Here we give a condition which is both sufficient
and necessary.

Theorem 11. Let M be an essentially conformally symmetric Riemannian manifold.
Then the following two conditions are equivalent: (i) M is Ricci-recurrent, (ii) For each

point x of M which satisfies (61), there exists a non-zero parallel vector field on some
neighbourhood of x.

Proof. 1f M is Ricci-recurrent, then (ii) follows immediately from Theorem 2
of [6]. Now assume (ii) and fix xe M such that R;(x)# 0. If R;; «(x) =0, then

(19) is satisfied by A, =0. In the case R;; ,(x) # 0 choose a neighbourhood W of
x and a non-zero parallel vector field v; on W. From Ricci identity we obtain
Rty = ;. — u; ;= 0, which yields

(65) Ry =0.
Therefore, in view of the expression of C*;;, and (62), we have

(66) UCpij = (u;iRy; — u R /(n—2).
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We consider two a priori possible cases: the parallel tensor field T;; = u"C,;;, does
or does not vanish. If T;; =0, then (66) yields usR;; — #;R;; = 0. Differentiating
this covariantly, we obtain uyR;; . — #;Rsj, = 0. From (6) and Lemma 5 it follows
now that R;(x) = iuy(x)ui{x) and R;; i(x) = pu;(x)u{x)u,(x) for some scalars 2 and g,
which implies (19) with A, = (g/2)u,(x).

In the remaining case T; + 0, we obtain, transvecting (63)d) with «™ and with
u*, respectively, and using (65),

RuTij + RyTpej + RjyTppi + RyTjp =0,
RuTuri — RumTik; + RjThim — RjmTazi + RetTams — RemTa; =0 .

Applying Lemma 3 to e;; = R;; and to T;y, we have RyT:; = RyT,; and, since
Tije.p =0, RutpTije = RupTaje- Now choose vectors o', &' at x such that T;;a'd* =
w; # 0. In view of Lemma 5 and (6), the above equalities yield R;;(x) = 2w;w; and
R;j (x) = pw;ww, for some scalars 2 and g, so (19) is satisfied by A, = (p/)w,.
This completes the proof.
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