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SOME PROPERTIES OF CONFORMALLY
SYMMETRIC MANIFOLDS WHICH
ARE NOT RICCI-RECURRENT.

By A. DERDanSKI and W. ROTER.‘

1. Introduction. An r-dimensional (n > 4) Riemannian manifold M (whose metric
g:; need not be deﬁmte) is said to be conformally symmetrlc [1]” if its Weyl’
conformal curvature tensor: -

( 1 )‘r ey Cimqk = Rhuk = (91.:/th - gkahJ + ghkR-;j — Gi; Hc)/(n —2)
i + R(ghkgij - gikth)/(n — 1)(” — 2)
satisfies the condition -

(2) Cuijei =0,

where the comma indicates covariant differentiation with respect to the metrlc of
M. Clearly the class of conformally symmetnc manifolds contains all conformally
flat as well as all locally symmetric manifolds of dlmenswn n>4.

Since a conformally symmetric manifold with a posmve definite metric is neces-
sarily conformally flat or locally symmetric ([3], Theorem 2), a natural question
arises of the existence of essentially conformally symmetric manifolds, i.e., of con-
formally symmetric manifolds which lie beyond the two classes mentioned above.
The answer to this problem is affirmative and can be stated as follows (see [6],
Theorem 3 and [7], Theorem 1)

. Theorem 1. Let M denote the Euclidean n-space (n > 4) endowed with the metric
gi; given by
(3) ' gidxidx’ = p(dx') + kpdXdst 4 2dx'dx", g = (Qkay + €3 )xx"
where i, j=1,2,...,n, 4, p=2,3, ...,n—1, [ky,] is @ symmetric non-singular matrix
and [c;,) is a symmetric non-zero matrix satisfying k"‘cl‘,, 0, [k**] being the re-
ciprocal of [k,,], and Q is a non-constant function of x' only. : leen M is essenttally?
conformally symmetric. .

The metrics defined by (3) are, moreover, Ricci-recurrent ([6], Theorem 3);,' e,
for each point x € M such that R;;(x) + 0, there exists a tangent vector ¢; at x whlch
satisfies the condition

(4) . : Riju(x) = ¢kRij(x) .

The existence of essentially conformally symmetric non-Ricci-recurrent manifolds

has been estabhshed in [2] as follows:
$

Theorem 2. Let M denote the n-dimensional (n > 4) Eucl:dean space endowed wzth
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the metric g;; defined by ‘
expF; if idj=n+1
Gig =1 f i=j=1
0 otherwise ,

the functions F;= F,_;.,: M— R being given by

Fix'y cusy X = Fy(x', ooy 2 = 2b2° — gx' = elx'),
Fo(xh, ooy XM = Fog (6%, ooy X™) = 20(xY)? 4 2ax* — by :
RS S R = 2o 2 B = Brasugr—2

where a, b are any real numbers distinct from zero and ¢ is an arbitrary real number,
Then M is an essentially conformally symmetric non-Ricci-recurrent Riemannian mani-
fold for which the condition rank Ry; = 2 holds on some open dense subset of M.
For ¢ =0, this subset coincides with M.

In Section 2 of this paper it is shown (Theorem 3) that any essentially con-
formally symmetric manifold admits a unique function F such that

(5) FChijr = RyjRyy, — RyRy; .

Section 3.contains the main results of this paper. Theorem 4 states that any
essentially conformally symmetric non-Ricci-recurrent manifold admits a unique par-
- allel absolute exterior 2-form o satisfying

- Ciﬁjk = CWhiW iy,

with |e] = 1, rank = 2 and w;,0", = 0. :

Next we prove (Theorem 5) that every essentially conformally symmetric mani-
fold satisfies rank R;; < 2. In Theorem 6 we establish the existence of essentially
conformally symmetric non-Ricci-recurrent manifolds such that

(7) ' rank Ri; < 1.

At the end of Section 3 we observe (Theorem 8) that the curvature tensor of
. any essentially conformally symmetric manifold has a simple algebraic structure.

Section 4 deals' with certain global properties of analytic essentially conformally
symmetric: manifolds. Such a manifold always admits a totally isotropic . parallel
distribution of dimension 1 or 2 (Theorem 9), so that it must admit a 2-dimensional
distribution of class C™ (Theorem 10). .

All manifolds considered below are assumed to be connected, paracompact and
- of class C” or analytic.

2. Preliminaries. In the sequel we shall need the following lemmas:

Lemma 1. The Weyl’s conformal curvature tensor satisfies the well-known relations
(8)  Gupe = ~Cag = —Chiks = Ciuni

(2) Chrisi + Chjri + Cuais =0, Cyr=Cli=Cp = 0.

Lemma 2 (see [6], Lemma 2). If a; and Py, are tensors satisfying

Pirmit = —Primij » 20;Plimir + @iPihmin + GPipgs; =0,
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then aJ-_-:O or Ph.ukl =0 :

Lemma 3. Any essennally conformally symmetric manifold satisfies the followmg
relations (see [4], formulae (5), (62) and (63))

(10) a) R”'k = R,,,‘, . b) R=0, ¢) R,Cim = 0,
(11) R,R"; =0, ’
(12) 'Rhlcmwk - Rhmchjk + R; Ichmjk el Rtmchl:k

+ RJlChimk = Rgmchdk + Rklchijm - ka;chijl = 0
(13) Chuk - Rhljk e (gt:th =" gthhJ + ghkRu - giu tk)/(n i 2)

The last relation is an immediate consequence of (1) and (10)b)

By an absolute r-form on a manifold we shall mean ‘an r-form, defined at each
point up to a sign (see [8], p.- 204). il

It is clear how to define smoothness and parallehty of absolute forms

Lemma 4. Let M be an essentially conformally symmetric -manifold. Then the
following three conditions are equivalent () There exists xe M and exterior 2-forms
A and B at x such that Cyiu(x) = A,,,B_,,c (ii) C;,,,,k = eWh;Wj, where lej=1 and
o is a (umquely determined) parallel absolute exterior 2-form of rank 2 on M. (m)
Chul.:clmpq - Chtpqclmgk ]

Proof. By (11), (1) 1mp11es AniBj, = ApByi, 50 that By, = cA,,c for some ¢ == 0,
since Ciyj, # 0. Hence Cj5(x) = eDy;D;,, where |e| = 1, and e(DJk) = Cjr(x) shows

that Dy, is unique up to a sign. Since Cy;jy is parallel its algebraic shape must be -

the same at each point of M, which implies (6). Parallelity of w;; follows from
that of Cj; together with the uniqueness of w;;. Rank w = 2 since wAw = 0, which
is immediate from (9). Thus (ii) follows from (i). The implication (ii)— (iii) is
trivial, Assume now (iii) and choose xe M and vectors a, b, ¢, d at x such that
a"b’c’d*Cyiz(x) = 1. Transvecting (iii) with a"6°c’d* we obtain (i), as desired. -

Theorem 3. Any essentially conformally symmetric manifold M admits a unique
function F such that R,JRM--R,,,R;,,__FCM,,, Clearly, F(x) =0 if and only if
rank R;;(x) < 1.

Proof. Our assertion is trivial (Fz 0) if rank R;; < 1 everywhere. Suppose
now that xe M and -

(14). E rank Ry(x) > 1.
We mé.y choose a vector u at x such that #'u'R,, = e, |e| = 1. Setting :
'dj =WR,(X), By=Bu=uuCi(x), Sy=uCuulx),
so that 8;;, = —S8;;; and | A
(15) Siik + Siks -+ Sku =0,

and transvecting (12) with u*4', we obtain
(16) Cmi:k — e(d Suk + d; S'mk: + d Sikm ’l" dk imj + ka 173 RJmBik) )

which, in view of C,,”_,,c = C,km; and by a further transvectlon ‘with u’ yxelds
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(17) Siemi + Simi = €(d;Buy, + d4Bp; — 2d,,By,) .
In. virtue of (16) and (17), relation. Cosis — Cis, itms = 0 'can be written as
Bii(Rim — edid,) = Bip(Ri; — edd;) '
which yields, by (14), | o |
s Biy = G(Ry; — edyd))
for some real G. This turns (17) into
Stet t Sips = G, i + dR,i — 2d,Ry)
which states that the tensor ‘ |
. 3 Tkm's = Stmi — eG(d er oy d Rke)

is skew-symmetric in all indices. By (15), 3T%p: = Tim: + Toir + Tc,m = 0 “which

together with (16) and (18), implies Ci5p, = eG(R,,Rm,, — RyR,,;)at x. Since C,,,,,k # 0
we have G # 0, which completes the proof, ; P

’

3

Lemma 5 Let M be an essentzally conformally symmetric mamjold such thar

(19) P Chkm + AnChitn + @ Cippmy = 0
for some field a; of non-zero vectors. If Chiji is not af the form (6), then
(20) £ % A ay ;= Ay

for a certam vector ﬁeld A on M Moreover if

(21) " : ' " ‘a,‘,,-;—_a_,,-,,-

Ithen rankR = 1.

- Proof. Choose a vector: field vt such that v a, ='1. Transvecting (19) which »*
and then with v/, we find b e ; : : -

2 (22). v ot Epgares amvrcrhkj == ahvrcrmkj )
23y V" Crtrm = QuSip — @S »
where S;; = §j; = v"0'C,y,. Substituting (23) into (22), we obtain

: (24) ’ v Cjkhm = akaksmj - ah.a"S k + a,a 'Shk - amakshj .

Differentiating now (19) covariantly and’ transvectmg the resulting equality with |

v'v?, we get _
Apv Crkhm =a, pShk = ah Smk ]
where 4, = v"a, ,. By (23), this yields
(25) (ah,p e Apah)Smkr = (am,p = Apam)shk .
If a3, — A,a;, did not vanish identically,‘then, by (25), we would have rank S <1

at some point xe M, say S;;(x) = ecic;, lef = 1. In view of (24) and Lemma 4, this
would imply (6), a contradiction. Thus we obtain (20).

Assume now:(21). Contracting (19) with g’ and using (9), we obtain

S
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(26) g arcfkhm =0,

whxch by a transvection of (19) with a', implies a"a, = 0. Transvecting (19) with
R we obtam by (10)c),

N B . 4R, =0,
By (20) and (21) we have a; ; = ba,‘a,-' for some function 5.  ‘Hence Ricci identity
implies a,R";;,;, = (b4, — b ,a)a;, which, in view ‘of (13), (26). and (27), can be
written as :
ay(Rj, — (n — 2)a;b,;) = ap(Ryy — (n — 2)a;b,;)
so that Ry, = (n — 2)a;b ; + c¢;a, for some vector field ¢;. By Theorem 3,
(n — 2)(asc, — ciah)(b Bk _"aa k) = Fchu'l;:
If we had rank R;; > 1 at some point x, then F(x) % 0 ‘and, by Lemma 4, we would
obtain (6), a contradlctlon This completes the proof.

3. Main results.

Lemma 6. Let M be an essentially conformally symmetric non-Ricci-recurrent mari-
fold whose Ricci tensor satisfies rankR,J <l Then its Weyl conformal curvature
tensor is of the form (6). ' ' I

Proof. Alternating (12) in &, I, m, we obtain
2R:;Chmsi + RimCiiir + RisCiit) + Rim(Crin = B
+ Ri(Crimk — Cumink) + Ref(Cumiti' — Crimi) + Rut(Crijm — Cmuh)
+ Riu(Crisn — Chist) + Ren(Criji — Crijm) =0,

“which, by (9), yields

" (28) 2(RitChmit + RimCihit + RisCrmisr) + RinCurir
+ RjChmir + RijComiik + RitChmsis + RimCuiji + RenCuiji = 0.

In view of our assumption, we may choose xe€ M such that' R;;(x) =0 and (4)'is
not satisfied by any vector ¢. Thus, in some neighbourhood of x we have .

(29) R,"' = ea‘:a" 5 |el= 1 » ’

a; being a C* vector field. Substituting (29) into (28), we obtain
zat(alchmgk + @nCuihji + GCmis) + 2;(@Chmir + anCurir + ahcmhk)
+ ak(alchm_"i + amClh_u + ahcmht) = O

which, in view of Lemma 2 implies

(30) ‘ v alCh'nuk + @nCuiji + HComiji = 0. P
If Cp;j, were not of the form (6), Lemma 5 wou]d yield (20) and (4) would follow
with ¢; = 24,, a contradiction, This completes the proof.

Lemma 7. Let M be an essentially conformally symmetric manifold. " If the func-
tion F determined in Theorem 3 is not constant, then Cygjy. is of the form (6).
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Proof. Differentiating (5) covariantly, we obtain
@ ctersel, = Rij,oRix + RijRur,p — Ry Ry — RuRyj,p .

Alternating this in P» J, k and using (10)a), we obtain (19) with a; = F ;. Choose an
open submanifold U of M such that F = 0 and F; # 0 everywhere in U. If Chije
‘were ‘not. of the form (6), then Lemma 5 applied to the manifold U would yield (7)
in U, contradicting F - 0., This completes the proof. s

Lemma 8. Let M be an essentially conformally symmetric manifold, If the func-
tion F determined in Theorem 3 satisfies F = constant # 0, then Cyyjy, is of the Sform (6).

Proof. Formula (31) yields - ; ’ ‘

(32) Rij pRik + RyiRyy = Ry, pRhj + RyuRyj .

Choose an open subset U of M and a vector field u* on U such that
33 : Ry 0

everywhere in U and #"u’R,, = e, le] = 1. Setting
dj = il"R,.j 5 kav = Dpk. = M'.R,rk'p % TJ' = llr.D,.j ; T = u'T,. %

and transvecting" (32) with u's’, we obtain, by (10)a),

(34) 'R’ik.l’ == E(dkap + d;?th — TpRMg) §
- which implies, by transvection with u’,
(35) , Dy = e(Tth + Twd, — TRy,) .

Substituting this into (34), we obtain

(36)  Runp = 2T,didy + Tydyd, + Tydyd, — eT, Ry, — TdiRy, — Td\R,, ,
which, in view of (10)a), yields

dAuTudy — Tydy) = d(Td, — eT )Ry, — d(Td), — eT)R,, .

Alternating the last relation in Js h, we obtain

B7)  (Tdy— eT,)d;Ry, — dyRy) = (T, — eTy)(d,R,, — d,R
which, by transvection with #/, implies

(Td, — eT, )Ry, — edyd,) = (Td,, — eTy)(Ry, — edyd,) .

In the case where Td, — eT, + 0 at some x e M, this yields R;; = edd; + de;e;
for some vector ¢ (d] = 1) and (6) follows from (5) combined with Lemma 4,
Suppose therefore :

(38) T, gl ),
Then (35) takes the form Dy = T(2d,d), — eR),kj. Substituting this into
e 55 ‘ D}thk' o+ RijDyy, = Dy Rij + RyDy; ‘

which is an obvious conséquent:e of (32), USing'(S) and noting that 7 = 0 by - (36)
a_nyzd_(3~.’:),‘we‘obtain inU :

(39) 5 Fchijk = e(didehk + dhdkRij — d,'dkR;u- — dhdeik) .

.ip)
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Suppose now that our assertion: fails. Multiplyin'g. (39) by d, and alternating
the resulting equality in p, &, i, we obtain d,Cy;j + dyCipjr + diCpajr = 0 and, by
LemmaS o 3 - ’

(40) = e e i = Ay
for some vector field 4; in U.

On the other hand (36) and (38) 1mply

@a1) - Rigp = —Td,Ry, + diRyy + iRy, — ded dhdk)
Dlﬁ'erentlatmg (3% covanantly and making use of (40) and (41), we easdy obtam
(24, — Td,)(dd;Ryy, + dydpRi; — d;d Ry, — didiRy;5) = 0. )

Since FCjij, # 0, this implies 4; = $7d;, so that (40) yields d; ; = d; ;.- From Lemma
5 it follows now that rank R;; < 1 ie, F=0 in U, a contradiction. This completes
the proof.

We are now in a posxtnon to state the main results of this section.

Theorem 4. Let M be an essentially conformally symmetric manifold. If M is
not Ricci-recurrent, then Chij, = ewpiwj; Where le| =1 and o is a (uniquely determmed)
parallel absolute 2- form satisfying

@y ' " rank 0 =2 and w,,m ;i=0.

In fact all possxble cases (F =0, F = constant # 0 and F non-constant F de-
termined by (5)) are covered by Lemmas 6, 8 and 7. Relations (42) are obvious

~ algebraic consequences of (6) (cf. Lemma 4).

Theorem 5. Every essenttally conformally symmetric manifold satzsﬁe.s' the relation
rank R;; < 2.

_ Proof. If M is Ricci-recurrent, then at points where R, ; # 0 we obtain, from
(4) and (10)a), rank R;; < 1, which extends to the whole of M by an elementary
boundary argument. In the non-Ricci-recurrent case, let xeM. If Ryi(x) + 0, we
may choose a vector #* at x such that R,u'w’ =d, |d| = 1. Then we have, by (6),
FCh,,kuu = —eFww;, where w;=u"o0,.; and (RijRyp — RyR ,,,)uu =dR;; — dd;,
where d; = u"R,;. Hence, by (5), Ry; =dd,d; — edFw, sw;, which completes the proof

As shown in the above proof, if a given essentially conformally symmetric
manifold is Ricci-recurrent, then the assertion of Theorem 5 can be strengthened to
the form rank R;; < 1. The converse statement, however, fails in general, which
can be seen as follows ‘

Theorem 6. Let M denote the Euchdean four-space R* endowed w:tk the Rzemannmn
metric g,, whose components at any point (x,y, z,u) are given by

gu =12 = ‘gzz =gu=0, gi1s = g2=1, Ju= 3z, Q’sar"—" 18A}" s
g =X+ 6Ayz, gy =3xz--4y--24yz* — 2exp(—2u), ‘

where A is a fixed non-zero real number. Then M is an essentially conformally sym-
metric manifold which is not Ricci-recurrent but satisfies the condition rank Ry; = 1.

Proof. The contravariant metric tensor g* is clearly given by -
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f‘,gu-—‘—'- —].SAy 3t gm:,-‘—‘x i glra'.:g“: l‘, gzs= —-&-Z, -
¢ g22 = —4y + 28Xp (—2u), gu = g“ ="g34 = g“ =0. - S

It is easy to see that the only non-zero components of the Riemannian connection,
curvature tensor, Ricci tensor and Weyl’s tensor are those related to

=%, Tu=94, Tu=34z, TIh=94x, TIi= 64y + 34dxz,
Ti=d4dyz+gx+ ax®, Th=3%, I'l=%z, TIi=3%,
ri = 184y — 184 exp (¥—2u) g Fha=4r4 6Ayz — 6Azexp (—2u) ,
y & dxz 8y + 2Ayz? — 242" exp (—2u) kd % exp (—2u), '
I‘g3=3AZ,~‘ ‘§4=—%+A22‘," ]”34:’__%2-[-%A23,1
,F§3=.—9A,, F§4=—3Az,; F:4=—%—AZZ;
i Résa‘ = 6A, ) R2434 = 2Az , R3434 —_— —8Ay '—- 6A exp (—2”) ; i "

43) U Rg=124, Ry=44z, R, =4ds, ‘
and, respe‘ctiveiy, :

44 Copze = —184 exp (—2u) . _

It is now easy to verify (2). Moreover, M is not conformally flat by (44). Thus,
the relations Ry, ; = 0 and Ryy,3 = 84 show that M is essentially conformally sym-
metric and non-Ricci-recurrent, Now (43) yields RyRys — RyyRy; = 0. - This com-
pletes the proof, =~ = ' : 7 ' e

. Theorem 7. Every essentially conformally symhzetri; ménzfola' M satisfies the relation

45) RupChiji + RunCipji + Rmicpﬁjk =0.

Proof. Let xe M. If F(x) 0, then our assertion is an immediate consequence
of (5) and of R;; = daa; + eb;b;, (where |d| = |e] =-1), which follows . immedijately,
from Theorem 5, ‘ . S

In the case F(x) == 0, (45) is an obvious cdns_e;qﬁence of (29) and (30).

_ Theo're‘m 8. Let M “be an essentially conformally symmetric non-Ricci-recurrent
manifold. Then at each x & M such that R;(x) + 0 we have a relation of the form

(46) - Ruije = Ri;Bu + RyBij — RyiBy, — RyuBy;
for some symmetric tensor B;; at x. ' |

Proof. By Theorem 5, we have two cases. If rank Rij(x) = 1, say Ry; = daa;,
where |d|'= 1 and a is a non-zero 1-form, then (45) and (6) yield aAw = 0, so that
@ = aAb for some 1-form 5. From (I13) we obtain (46) with B, — Tnef(n — 2) —
edb,b,. Assume now rank R;j(x) = 2. In this case relation (46) with By = Ry, J2F +
9u/(n — 2) follows immediately from (13) and (5). This completes the proof.

Remark. An analogous statement holds in the Ricci-recurrent case ([6], Lemma 5).

4. Some global propertics. We are now going to derive some consequences of
the above results. ; ; ,

-

B I s S

e O



S —

i i e A . it Pt

Some properties of conformally symmetric manifolds which are not Ricci-recurrent. 19:

Theorem 9.. Let M be an essentially conformally symmetric manifold. (i) If M
is analytic and Ricci-recurrent, then it admtts a parallel ﬁeld L of tangent isotropic
lines such that any vector d; of the form - *

@7 : . d;, =u'R,;

lies in L, (ii) If M is not chcz-recurrent then it admits a parallel ﬁeld P of totally‘

zsotroplc tangent 2-planes which contains all vectors of the form
(48) | d; = C,,k,a’b" o

Proof. (i) Let M be the Riemannian universal covering of M, so that M = M/['
I' being a group of isometries. Choose x e M with R;;(x) # 0 and R;; ,(x) = 0. By
Theorem 3 of [6] the metric of M is of type (3) in some connected neighbourhood
U of x. By an easy computation we verify that the isotropic vector field v with
components (0, ...,0,1) (in the chart determined in (3)) is the unique (up to a
factor) parallel vector field in U and that any vector of type (47) is a multiple of
v (cf. [6], p. 93). Thus v, is left invariant by the local holonomy group of M at
x and therefore it is invariant by the whole holonomy group ([5], Theorem 10.8, p.
101) so that v extends to a parallel isotropic vector field on M, denoted again by
v. For any isometry f of M onto itself we have f,v = tv in U for some real ¢,

since f,v is parallel. By analyticity, the same remains true on M, so that the

parallel line field determined by v is invariant under the action of I" and therefore
it defines a line field in M. ;

(i) Define P to be the set of all vectors of type (48). By (6), and (42), P is
a parallel totally isotropic field of 2-planes on M. For any vector d of the form
(47), formulae (6) and (45) yield d Aw = 0 which means, geometrically, that d is in
the image of . This completes the proof.

Theorem 10. Every analytic essentially conformally symmetric manifold M admits
a C” field D of tangent 2-planes.

Proof. Let M be Ricci-recurrent and denote by L the isotropic line field de-
termined in (i) of Theorem 9. Choose a positive definite C* Riemannian metric by
on M. Define a line field K by assigning to xe M the set X, of all vectors W ==

"'Iz,,d’ where d* runs through L,. We have dw* £ 0 if d* 5= 0, which proves that
K, # L, for any x, Setting D = K 4 L we obtain our assertion.
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