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HARMONIC CURVATURE IN DIMENSION FOUR

Andrzej Derdzinski

Abstract. We provide a step towards classifying Riemannian four-man-

ifolds in which the curvature tensor has zero divergence, or – equiva-

lently – the Ricci tensor Ric satisfies the Codazzi equation. Every known
compact manifold of this type belongs to one of five otherwise-familiar

classes of examples. The main result consists in showing that, if such a
manifold (not necessarily compact or even complete) lies outside of the

five classes – a non-vacuous assumption – then, at all points of a dense

open subset, Ric has four distinct eigenvalues, while suitable local coordi-
nates simultaneously diagonalize Ric, the metric and, in a natural sense,

also the curvature tensor. Furthermore, in a local orthonormal frame

formed by Ricci eigenvectors, the connection form (or, curvature tensor)
has just twelve (or, respectively, six) possibly-nonzero components, which

together satisfy a specific system, not depending on the point, of homoge-

neous polynomial equations. A part of the classification problem is thus
reduced to a question in real algebraic geometry.

1. Introduction

One says that a Riemannian manifold has harmonic curvature if its curvature
tensor R satisfies the local-coordinate relation Rijk

p
,p = 0, that is,

(1.1) divR = 0.

See [3, Sect. 16.33]. Let us now consider the condition

(1.2)
(K+ c)3+ 3(K+ c)∆K− 6|dK|2 = r3,where
r, c ∈ IR and K+ c ̸= 0 at every point of Q,

imposed on the Gaussian curvature K of a Riemannian surface (Q, h), with
∆ = hij∇i∇j denoting the h-Laplacian and | | the h-norm.
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The following four-manifolds all have harmonic curvature (Remark 5.2).

(1.3)

a) Einstein manifolds of dimension four.
b) Conformally flat 4 manifolds of constant scalar curvature.
c) Riemannian products of a one dimensional manifold and a

conformally flat 3 manifold with constant scalar curvature.
d) Products of surfaces having constant Gaussian curvatures.
e) Warped products (Q×S, (h× hc)/(K+ c)2), where (Q, h)

and (S, hc) are Riemannian surfaces, (S, hc) is of constant
Gaussian curvature c, and (Q, h) satisfies (1.2).

In (1.3.e) we treat K as a function on Q× S, constant along the S factor.
Thus, 2(K+ c) equals the scalar curvature of the product metric h× hc.

All known examples of compact four-manifolds (M, g) with divR = 0 be-
long to the five (non-disjoint) local-isometry types (1.3) in the sense that

(1.4) each x ∈M has a neighborhood isometric to one of (1.3).

However, divR = 0 in some complete Riemannian four-manifolds not contain-
ing open submanifolds of types (1.3). See [8] and Remark 8.1.

This paper is a step towards classifying Riemannian four-manifolds with
harmonic curvature that lie outside of the five classes (1.3). The next section
states in full detail our two main results, here summarized only briefly.

According to the first of them, Theorem 2.2, at generic points of such a
manifold (M, g), its Ricci tensor Ric has four distinct eigenvalues, and suit-
able local coordinates simultaneously diagonalize g, Ric and R. Note that
the local orthonormal frame ei, i = 1, . . . , 4, obtained by normalizing the co-
ordinate vector fields, then gives rise to an orthogonal web of codimension-one
foliations or, equivalently, satisfies, for all distinct i, j ∈ {1, 2, 3, 4}, the Lie-
bracket relations

(1.5) [ei, ej ] = Fjiei − Fijej (no summation), with some functions Fji .

As shown by Tod [18], coordinate-diagonalizability of a metric, in dimension
four, generically imposes restrictions on the third derivative of the Weyl tensor.
Simplicity of the Ricci eigenvalues implies in turn that a harmonic-curvature
manifold satisfying the above assumptions cannot be a nontrivial warped prod-
uct with any fibre dimension p greater than one [8, Corollary 1.3], although
the case p = 1 does occur [8].

The second result, Theorem 2.3, states that the twelve functions Fji in (1.5)

and the six sectional-curvature functions Rijij = R(ei, ej , ei, ej) together form,
at every generic point x, a solution of a specific system, not depending on x,
of homogeneous polynomial equations. Thus, when these Fji and Rijij are
treated as the components of a mapping Φ from a neighborhood of a generic
point into IR18, the values of Φ lie in an explicitly defined real algebraic variety
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V ⊆ IR18. Consequently, Theorem 2.3 relates the classification of four-dimen-
sional Riemannian manifolds with divR = 0, different from the types (1.3), to
a problem in real algebraic geometry.

The text is organized as follows. Sections 2 and 8 provide detailed statements
of the main results and an outline of the proof of parts (a) - (b) in Theorem 2.2.
Preliminary and expository material, presented in Sections 3 through 7, and 9,
is followed by Section 10, describing the three a priori possible cases that arise
under the hypotheses Theorem 2.2. After the exclusion of two of these cases
(Sections 11-13), the conclusions about the third case lead, in Section 14, to
proofs of Theorem 2.2(a)-(b) and Theorem 2.3. The four final sections are
devoted to proving part (c) of Theorem 2.2.

2. Detailed statements of the main results

As shown by DeTurck and Goldschmidt [10], in suitable local coordinates,

(2.1) every metric with divR = 0 is real analytic.

For a fixed oriented Riemannian four-manifold (M, g) with divR = 0, let us
denote by r ∈ {1, 2, 3, 4} and w ∈ {1, 2, 3} the maximum number of distinct
eigenvalues of the Ricci tensor Ric acting on the tangent bundle TM and,
respectively, of the self-dual Weyl tensor W+ acting on the bundle of self-dual
bivectors (see Section 4). Due to (2.1), both maxima r and w are simultane-
ously attained at all points of a dense open subset of M.

Proofs of Lemma 2.1, (a), (b) in Theorem 2.2 along with Theorem 2.3, and
Theorem 2.2(c) are given, respectively, in Sections 5, 14 and 15 -18.

Lemma 2.1. For any oriented Riemannian four-manifold (M, g) with the
property that divR = 0, the following two conditions are equivalent:

(i) (M, g) belongs to one of the local-isometry types (1.3), as in (1.4),
(ii) g is locally reducible, or r ∈ {1, 2}, or w ∈ {1, 2}.

Theorem 2.2. Suppose that divR = 0 for the curvature tensor R of an
oriented Riemannian four-manifold (M, g) which does not satisfy (1.4). The
following conclusions then hold on some dense open set U ⊆M.

(a) Locally in U there exist functions Fji and real-analytic orthonor-

mal vector fields ei diagonalizing Ric, with the Lie brackets given by
[ei, ej ] = Fjiei − Fijej whenever i, j ∈ {1, 2, 3, 4} are distinct.

(b) ei also diagonalize R, in the sense of Section 4.
(c) r = 4 and Ric has four distinct eigenvalues at every point of U.

About the local-coordinate aspect of (a), mentioned in the Introduction, see
Remark 14.3.

Theorem 2.2 is non-vacuous (Remark 8.1) and, according to Lemma 2.1,
the assumptions made about (M, g) amount to its being locally irreducible,
four-dimensional, oriented and having divR = 0 along with

(2.2) (r,w)∈{3, 4}×{3} or, equivalently, r /∈ {1, 2} and w /∈ {1, 2}.
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The next theorem and the remainder of the paper, except Section 5, use the
convention that the indices i, j, k, l always range over {1, . . . , 4}, repeated
indices are not summed over and, unless stated otherwise,

(2.3)
if some of i, j, k, l appear in an equality, they are assumed
to be mutually distinct and preceded by a universal quantifier.

Thus, the presence of i, j, k will tacitly imply the preamble

(2.4) for all i, j, k ∈ {1, . . . , 4} with i ̸= j ̸= k ̸= i.

Rather than using the sectional-curvature functions Rijij = R(ei, ej , ei, ej) (see
the Introduction), it is more convenient to phrase our second main result in
terms of the analogous components σij =W(ei, ej , ei, ej) of the Weyl tensor W,

along with the scalar curvature s, and the eigenvalue functions λi = b(ei, ei)
of the traceless Ricci tensor b = Ric − sg/4. The latter are easily expressed
through the former, cf. equality (3.2) below, and vice versa:

(2.5) Rijij = σij +
1

2
(λi + λj) +

s

12
if i, j ∈ {1, 2, 3, 4} and i ̸= j.

See the line following formula (9.5) in Section 9.

Theorem 2.3. For (M, g), U, ei and Fji as in Theorem 2.2, Fji and the func-

tions σij , λi defined above satisfy the polynomial equations

λi+λj +λk +λl = σij −σji = σij −σkl = σij +σik +σil = 0,

[(λk − λl)σkl+ (λl − λi)σli+ (λi − λk)σik](FklFli+ FlkFki− FkiFli)

= [(λk − λl)σkl+ (λl − λj)σlj + (λj − λk)σjk](FklFlj + FlkFkj − FkjFlj),

with the conventions (2.3)-(2.4). Choosing the frame ei is to be positive ori-
ented, we may rewrite the second displayed equation as

(2.6) HjiZj = −HijZi whenever i, j ∈ {1, 2, 3, 4} and i ̸= j,

where Hij and Zl are uniquely characterized by Hij = FklFlj + FlkFkj − FkjFlj
when {i, j, k, l} = {1, 2, 3, 4} and Zl = (λi−λj)σij+(λj−λk)σjk+(λk−λi)σki
if (i, j, k, l) is an even permutation of (1, 2, 3, 4). The twelve functions Hij

are subject to a further system of polynomial equations, namely

(2.7) rank


H12 H13 H14 0 0 0 1
H21 0 0 H23 H24 0 1
0 H31 0 H32 0 H34 1
0 0 H41 0 H42 H43 1

 ≤ 3.
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3. Preliminaries

Manifolds, mappings and tensor fields are by definition C∞-differentiable.
Unless stated otherwise, a manifold is assumed connected. Our conventions
about the exterior derivative of a 1-form ζ and the curvature tensor R of a
Riemannian metric g are such that, for tangent vector fields u, v, w,

(3.1)
(dζ)(u, v) = du[ζ(v)] − dv[ζ(u)] − ζ([u, v]),

R(v, w)u = ∇w∇vu − ∇v∇wu + ∇[v,w]u.

The Ricci tensor Ric and scalar curvature s of g give rise to the Schouten
tensor Sch = Ric − [2(n − 1)]−1sg and the Weyl conformal tensor W =
R−(n−2)−1g∧Sch, in dimensions n ≥ 3, where ∧ is a natural bilinear pairing
of symmetric 2-tensors, valued in covariant 4-tensors [3, formula (1.116)]. In
coordinates, with Rij denoting the components of Ric,

(3.2)
Wijkl = Rijkl − (n− 2)−1(gikRjl + gjlRik − gjkRil − gilRjk)

+ (n− 1)−1(n− 2)−1 s(gikgjl − gjkgil).

A Codazzi tensor [3, Sect, 16.5] on a Riemannian manifold is a twice-covariant
symmetric tensor field b with db = 0 (in coordinates: bki,j = bkj,i).

As usual, by the warped product of the Riemannian manifolds (Q, h) (the
base) and (Σ, γ) (the fibre) with the warping function ϕ : Q → (0,∞) we
mean the Riemannian manifold

(3.3) (M, g) = (Q×Σ, h+ϕ2γ),

where h, γ, ϕ also denote the pullbacks of the original h, γ, ϕ to Q×Σ.

Remark 3.1. Since (3.3) amounts to (M, g) = (Q×Σ, ϕ2 [ϕ−2g+h]), a warped
product is the same as a Riemannian manifold conformal to a Riemannian
product in such a way that the conformal-factor function is constant along one
of the constituent manifolds.

4. Algebraic Weyl tensors and diagonalizability

Given a Euclidean vector space T of any dimension n, by an algebraic Weyl
tensor in T we mean a quadrilinear mapping A : T ×T ×T ×T → IR having
the usual symmetries of the Weyl conformal tensor (skew-symmetry in the first
and last pairs of arguments, the first Bianchi identity, and vanishing of the
Ricci contraction). If the Ricci-contraction requirement is relaxed, one calls A
an algebraic curvature tensor. Any such A also forms a linear endomorphism
A : T ∧2 → T ∧2 of the space T ∧2 of bivectors, with A(v ∧ w) = A(v, w, · , · )
lying in [T ∗]∧2 = T ∧2, where [T ∗]∧2 = T ∧2 due to the identification T ∗ = T
provided by the inner product [3, Sect. 1.108].

Following [3, Sect. 16.18], one says that an orthogonal basis e1, . . . , en of T
diagonalizes an algebraic curvature tensor A if A(ei, ej , ek, el) = 0 whenever

{i, j} ≠ {k, l} or, equivalently, if all the nonzero exterior products ei ∧ ej are
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eigenvectors of A : T ∧2→ T ∧2. Riemannian manifolds (M, g) whose curvature
tensor is diagonalized, at every point x, by some orthogonal basis of TxM, were
first studied by Maillot [12] and referred to by him as manifolds having pure
curvature operator.

An algebraic curvature tensor A and a symmetric bilinear form b on T
will be called simultaneously diagonalizable if some orthogonal basis of T di-
agonalizes both b (in the usual sense) and A.

For a proof of the next fact, see [4, Théorème 5.1], [9, Theorem 1].

Lemma 4.1. Let b be a Codazzi tensor on a Riemannian manifold (M, g),
and let vi ∈ TxM be eigenvectors of b(x) at a point x ∈M corresponding to
some eigenvalues λi, i = 1, 2, 3. The curvature tensor R = R(x) of (M, g)
at x then satisfies the relation R(v1, v2)v3 = 0 whenever λ1 ̸= λ3 ̸= λ2.

From Lemma 4.1 it is immediate that a Codazzi tensor b on a Riemannian
n-manifold (M, g) and the curvature tensor R are simultaneously diagonaliz-
able at each point x ∈ M where b has n distinct eigenvalues. On the other
hand, the condition of simultaneous diagonalizability of b and R at any given
point x clearly implies the same condition for b and the Ricci tensor Ric
(that is, the bundle endomorphisms of TM corresponding to b and Ric then
commute at x) and, consequently, also for b and the Weyl tensor W =W(x),
cf. (3.2). However, in dimension 4, even a weaker assumption on b yields the
same conclusion [7, proof of Lemma 2]:

Lemma 4.2. Let b be a Codazzi tensor on an oriented Riemannian four-mani-
fold (M, g). Then b and the Weyl tensor W are simultaneously diagonalizable
at every point at which b is not a multiple of g.

In an oriented Euclidean 4-space T , the Hodge star ∗ : T ∧2 → T ∧2 acting
on bivectors may be characterized by ∗(e1∧ e2) = e3∧ e4 whenever e1, . . . , e4 is
a positive-oriented orthonormal basis of T . This makes ∗ an involution, with
T ∧2 = L+⊕L−, where L+= Ker(∗ − Id) and L−= Ker(∗+ Id), the spaces of
self-dual and anti-self-dual bivectors, are the eigenspaces of ∗. Any e1, . . . , e4
as above clearly lead to a basis of L± formed by the bivectors

(4.1) e1 ∧ e2 ± e3 ∧ e4 , e1 ∧ e3 ± e4 ∧ e2 , e1 ∧ e4 ± e2 ∧ e3 ∈ L±.

Any algebraic Weyl tensor A : T ∧2→ T ∧2 leaves the subspaces L± invariant,
since [16, Theorem 1.3] it commutes with ∗, which results in

(4.2) the restrictions A± : L± → L±, both self adjoint and traceless.

If T = TxM, where (M, g) is an oriented Riemannian four-manifold and x
a point of M, we denote L± by Λ±xM, which leads to the vector subbundles
Λ±M of [TM ]∧2 = Λ+M ⊕ Λ−M. The restrictions W± : Λ±M → Λ±M of the
Weyl tensor W of (M, g) satisfy in view of (4.2) the conditions

(4.3) trW+ = trW− = 0.
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Lemma 4.3. Given an orthonormal basis of a Euclidean 4-space T which
diagonalizes an algebraic Weyl tensor A, let σij = σji be its eigenvalues, with

σij = A(ei, ej , ei, ej), where i, j ∈ {1, 2, 3, 4} and i ̸= j. If {i, j, k, l} =

{1, 2, 3, 4}, then, for either fixed orientation, A+ has the same eigenvalues
σij , σik, σil as A−, while σij = σkl and σij + σik + σil = 0.

Proof. With standard normalizations, A(ei ∧ ej) = σij ei ∧ ej (no summation).

If {i, j, k, l} = {1, 2, 3, 4} and we use the orientation determined by ei, ej , ek, el
then, by (4.1), ei∧ ej + ek ∧ el lies in L+, and so does its A-image σij ei∧ ej +
σklek ∧ el, equal to its own ∗-image σklei ∧ ej + σij ek ∧ el. This last equality

gives σij = σkl, while σij + σik + σil vanishes, being the trace of A(ei, · , ei, · ),
that is, a(ei, ei) for the Ricci contraction a of A. Now ei ∧ ej ± ek ∧ el ∈ L±

is an eigenvector of both A± with the eigenvalue σij = σkl, due to (4.1) with

A(ei ∧ ej) = σijei ∧ ej . □

Remark 4.4. The mapping that assigns to a positive-oriented orthonormal basis
e1, . . . , e4 of T the pair (4.1) of positive-oriented orthogonal bases of L+ and

L−, with all vectors of length
√
2 , is a two-fold covering, equivariant relative

to the two-fold covering homomorphism SO(4) → SO(3)× SO(3), while L±

are both canonically oriented [3, Sect. 16.58].

Remark 4.5. Let (M, g) be a Kähler manifold of real dimension four, with the
canonical orientation. Its self-dual Weyl tensor W+ acting on the bundle Λ+M
of self-dual bivectors then has fewer than three distinct eigenvalues at every
point [3, formula (16.64)].

Remark 4.6. In an oriented Riemannian four-manifold (M, g) with g confor-
mal to a product ĝ of surface metrics, the conclusion of Remark 4.5 applies to
both W+ and W−. (As a special case, (M, g) might be here a warped product
of two orientable Riemannian surfaces, cf. Remark 3.1.) This follows since ĝ
then is a Kähler metric for two local complex structures compatible with the
two mutually opposite orientations.

5. Harmonic curvature

For any Riemannian manifold, the second Bianchi identity implies the equal-
ity divR = − dRic, where the Ricci tensor Ric treated as a 1-form valued
in 1-forms. (Its coordinate version reads Rijk

p
,p = Rki,j − Rkj,i.) This leads

to equivalence between (1.1) and the Codazzi equation

(5.1) dRic = 0, that is, Rki,j = Rkj,i .

Consequently, divR = 0 if and only if Ric is a Codazzi tensor (Section 3).
Contracting the identity Rijk

p
,p = Rki,j −Rkj,i with gik one gets

(5.2) 2 div Ric = ds, that is, 2gjkRij,k = s,i
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for any Riemannian metric g. Therefore, from (5.1),

(5.3) whenever divR = 0 the scalar curvature s must be constant.

Since 2(n − 1)(n − 2) divW = −(n − 3)d[2(n − 1)Ric − sg] for Riemannian
metrics g in dimensions n ≥ 4, cf. [3, Sect. 16.3], (5.1) and (5.3) imply that

(5.4) divR = 0 if and only if divW = 0 and ds = 0.

As an obvious consequence of (1.1), a Riemannian product has harmonic curva-
ture if and only if so do both factor manifolds. For a surface metric, harmonic
curvature means constant Gaussian curvature, which follows from (5.3). In di-
mension n = 3 one always has W = 0, and conformal flatness amounts to the
condition d[2(n− 1)Ric− sg] = 0, cf. [3, Sect. 1.170], so that, by (5.1), having
harmonic curvature is the same as being conformally flat and of constant scalar
curvature.

Remark 5.1. A Riemannian product is conformally flat if and only if both
factors have constant sectional curvatures K,K ′ and K ′ = −K or one factor
is of dimension 1. See [19, Section 5], [3, Sect. 1.167].

Remark 5.2. Condition (1.1) for the manifolds (1.3.a)-(1.3.b), or (1.3.c)-(1.3.d),
or (1.3.e), follows from (5.1) and (5.4), or from the paragraph following (5.4)
or, respectively, from [7, Lemma 3(ii)].

Lemma 5.3. Let divR = 0 for a warped product (M, g) = (I×N, dt2+Fh) of
an open interval I ⊂ IR carrying the standard metric dt2 and a Riemannian
3-manifold (N,h), where F : I → (0,∞) and dt2, F, h are identified with
their pullbacks to M. Then (M, g) is of type (1.3.c) or (1.3.b), depending on
whether F is constant or not.

Proof. If F is nonconstant, h, being an Einstein metric [6, Lemma 4], has
constant sectional curvature. We can now use Remarks 3.1 and 5.1. □

For an oriented Riemannian four-manifold (M, g) having divR = 0, we
denote by w− ∈ {1, 2, 3} the maximum number of distinct eigenvalues of the
anti-self-dual Weyl tensor W− acting on the bundle Λ−M of anti-self-dual bi-
vectors (Section 4). This amounts to the analog of w, defined in Section 2, for
(M, g) with the opposite orientation, and

(5.5) if divR = 0, one has w− = w unless g is an Einstein metric.

Namely, (5.1) and Lemma 4.2 then imply simultaneous diagonalizability of Ric
and the Weyl tensor W at every point of an open dense subset of M, cf. (2.1),
and we can apply Lemma 4.3 to A =W(x) at any point x ∈M.

Lemma 5.4. A non-Einstein oriented 4-manifold (M, g) with divR = 0 has
w = 1, or w = 2, if and only if g is conformally flat or, respectively, every
point of M lies in an open submanifold of type (1.3.d)-(1.3.e).
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Proof. The claim about w =1 trivially follows from (4.3) and (5.5). The warp-
ed-product case of Remark 4.6 yields the ‘if’ part for w = 2 by showing that
w ≤ 2 (and w ̸= 1 since the relation K ̸= −c in (1.2) precludes conformal
flatness via Remark 5.1). Now let w = 2. By [7, Prop. 1], W+ ̸= 0 everywhere,
and we may consider the metric ĝ = |W |2/3g on M, conformal to g. Since
(5.4) gives divW = 0 whenever divR = 0, (5.5) and [7, Theorem 2] imply
that ĝ , restricted to some neighborhood of any point at which Ric ̸= sg/4,
is a product of surface metrics. Due to real-analyticity – see (2.1) – the same
must also be the case for points x having Ric = sg/4, as a simply connected
neighborhood U of x contains a nonempty open connected subset carrying
a ĝ -parallel two-dimensional distribution, and the distribution clearly admits
an extension to U. Some constant multiple of ĝ then has, locally, the form
h× hc of (1.3.e), with g = (h× hc)/(K+ c)2. Namely, as our hypotheses give
∇Ric ̸= 0 somewhere, this last claim follows from [7, Theorem 2 and Lemma
3(i)] for points with Ric ̸= sg/4, while real-analyticity of the metrics involved
(including the surface metrics h, hc defined, locally, at all points of M) allows
us to relax the requirement that Ric ̸= sg/4, completing the proof. □

Proof of Lemma 2.1. First, (i) leads to (ii). Namely, for (1.3.a) (or (1.3.b), or
(1.3.c)) one has r = 1 (or w = 1, or local reducibility). In (1.3.d) or (1.3.e),
the warped-product claim in Remark 4.6 and (2.1) give w ≤ 2.

Conversely, let (ii) hold. If g is locally reducible, we have (1.3.c) or (1.3.d),
cf. the paragraph following (5.4), while the case r =1 yields (1.3.a). Suppose
now that g is not locally reducible and r > 1. Thus, ∇Ric ̸= 0 somewhere.
If r = 2, it follows from [6, Theorem 1(i)], via Remark 3.1, that (M, g) has an
open submanifold conformal to the Riemannian product of an interval and a
three-manifold of constant sectional curvature, making g conformally flat due
to Remark 5.1 combined with (2.1), and so (5.3) then yields (1.3.b). This leaves
the cases w = 1 and w = 2, in which, since r > 1, Lemma 5.4 gives (1.3.b),
(1.3.d) or (1.3.e). □

6. The local types (1.3.a)-(1.3.d)

The focus of our discussion does not include the local types (1.3.a)-(1.3.d),
since each of them is of independent interest and has been studied extensively.
We list here some known facts about them, in the compact case.

The simplest examples of compact Einstein four-manifolds are, arguably,
spaces of constant curvature. Their complex counterparts (CP2, complex 2-
tori, and compact quotients of CH2) carry well-known Kähler-Einstein metrics,
as does any Riemannian product of two oriented surfaces having the same
constant Gaussian curvature.

Generally, for a compact complex manifold M to admit a Kähler-Einstein
metric, its Lie algebra h(M) of holomorphic vector fields must be reductive, as
shown by Matsushima [13], while c1(M) has to be negative, zero or positive.
Conversely, when c1(M) < 0, the Calabi conjecture, proved by Aubin [2] and
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Yau [20], guarantees that M carries a Kähler-Einstein metric, unique up to
a factor. Also, Yau’s proof [20] of another conjecture made by Calabi implies
in particular the existence of Ricci-flat Kähler metrics on K3 surfaces (which,
besides the complex 2-tori, are the only Kähler-type compact complex surfaces
having c1(M) = 0).

For del Pezzo surfaces (compact complex surfaces M with c1(M) > 0) the
analog of the Calabi conjecture is false. In fact, defining M to be the one-
point or two-point blow-up of CP2, one has c1(M) > 0, yet no Kähler-Einstein
metric exists on M, since h(M) is not reductive. However, these two surfaces
carry conformally-Kähler Einstein metrics: the former was constructed by Page
[14] back in 1978, the latter discovered, much more recently, by Chen, LeBrun
and Weber [5].

On the other hand, Tian [17] showed that all the remaining del Pezzo surfaces
do admit Kähler-Einstein metrics. Besides CP2 and CP1×CP1, these surfaces
arise as k-point blow-ups of CP2, for k ∈ {3, 4, . . . , 8}.

The class of conformally flat manifolds includes spaces of constant curvature,
as well as the Riemannian products listed in Remark 5.1, and is closed under
a family of connected-sum operations, cf. [15, p. 479]. As shown by Kuiper
[11, Theorem 6], a compact simply connected conformally flat manifold must
be conformally diffeomorphic to a standard sphere.

For any compact conformally flat manifold, the additional requirement that
the scalar curvature be constant can always be realized, according to Aubin’s
and Schoen’s solutions of the Yamabe problem [1,15], by a suitable conformal
change of the metric. In dimensions n ∈ {3, 4} relevant to us, this result is
due to Schoen [15].

7. Compact manifolds of the local type (1.3.e)

Following [7, Example 4], we now describe how (1.3.e) leads to compact
Riemannian four-manifolds (M, g) having divR = 0, with M obtained as
total spaces of flat SO(3) bundles of 2-spheres over closed surfaces.

Example 7.1. Given c, r ∈ (0,∞), a metric hc of constant Gaussian curvature
c on S2, a closed Riemannian surface (Q, h) with the Gaussian curvature K
satisfying (1.2) as well as having K+c > 0 everywhere in Q, and a group homo-

morphism φ : π → SO(3), for π = π1Q, we define (M̃, g̃) to be the manifold
obtained when, in (1.3.e), one sets S = S2 and, instead of (Q, h), uses its

Riemannian universal covering space (Q̃, h̃). Then g̃ descends to a metric g

on the quotient manifold M = M̃/π, the free properly discontinuous action of

π on M̃ = Q̃× S2 by g̃-isometries [7, Example 4] being given by γ(x, y) =

(γ(x), [φ(γ)](y)) whenever (γ, x, y) ∈ π × Q̃× S2, with γ(x) corresponding to

the action of π on Q̃ via deck transformations.

An obvious question that arises is whether Example 7.1 really gives rise to
anything interesting, which here means manifolds not belonging to the local
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types (1.3.a), (1.3.b), (1.3.c) or (1.3.d). As explained below, the answer is
known to be ‘yes’ for Q homeomorphic to S2, or IRP2, or a closed orientable
surface of genus greater than 1.

According to [7, Proposition 4] (or, [7, Proposition 2]), on the closed ori-
entable surface of any genus p > 1 (or, respectively, on IRP2) there exists an
uncountable set E of pairwise nonhomothetic metrics h having the proper-
ties required in Example 7.1 (and, in the case of IRP2, rotationally invariant).
The set E is homeomorphic to IR6p−5 and contains a codimension-one subset
formed by metrics of constant Gaussian curvature; or, respectively, E is the
union of a countably infinite family of subsets homeomorphic to IR which all
contain a fixed constant-curvature metric, and are otherwise mutually disjoint.

Any h as above on IRP2 can obviously be pulled back to S2.
The metrics h just mentioned all give rise, as in Example 7.1, to compact

manifolds of the local type (1.3.e) which do not simultaneously represent any
of the local types (1.3.a), (1.3.b) or (1.3.c) [7, Theorems 4 and 5]. However,
all such nonflat metrics known to exist on the torus or Klein bottle lead to
four-manifolds that also belong to type (1.3.c). See [7, Example 5].

8. Outline of proof of Theorem 2.2(a)-(b)

For a fixed oriented Riemannian four-manifold (M, g) with divR = 0, let
r ∈ {1, 2, 3, 4} and w± ∈ {1, 2, 3} denote the maximum number of distinct
eigenvalues of the Ricci tensor Ric (acting on the tangent bundle TM) and,
respectively, of the (anti)self-dual Weyl tensor W±, acting on the bundle Λ±M
of (anti)self-dual bivectors. See Section 4. For simplicity we write w instead
of w+. Note that, by (5.5), w− = w unless (M, g) is an Einstein manifold. In
view of DeTurck and Goldschmidt’s result (2.1), there is a dense open subset
of M consisting of generic points, meaning

(8.1) points at which the maxima r, w are simultaneously attained.

Four possible cases may occur:

(A) r = 1: an Einstein manifold – type (1.3.a).
(B) r > 1 and w =1: type (1.3.b), as a consequence of Lemma 5.4.
(C) r > 1 and w = 2: locally, type (1.3.d) or (1.3.e) – see Lemma 5.4.
(D) r > 1 and w = 3. By Lemma 9.1(i), some neighborhood U of any

generic point x admits orthonormal analytic vector fields e1, . . . , e4
which diagonalize both W (in the sense of Section 4), and Ric.

In case (D), let d ∈ {0, 1, 2, 3, 4} denote the maximal number of integers
l ∈ {1, 2, 3, 4} for which there exist i, j, k with {i, j, k, l} = {1, 2, 3, 4} and
g(∇ei

ej , ek) ̸= 0 somewhere in U. As shown in Lemma 10.2 and Section 12,

d /∈ {2, 3, 4}, so that there are just two possible subcases:

(D1) d = 1: according to Theorem 13.3, (M, g) is, locally, of type (1.3.c).
(D0) d = 0, that is, g(∇ei

ej , ek) = 0 on U whenever i ̸= j ̸= k ̸= i.
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Subcase (D0) clearly yields assertions (a)-(b) in Theorem 2.2, under the as-
sumption (equivalent, by Lemma 2.1, to the hypotheses of Theorem 2.2) that
(M, g) contains no open submanifolds of types (1.3.a)-(1.3.e). With Lemma 5.4
already established, (a)-(b) in Theorem 2.2 will thus follow from Lemmas 9.1(i),
10.2, the claims made in Section 12, and Theorem 13.3.

Remark 8.1. According to [8, the lines following formula (0.3)], there exist com-
plete, locally irreducible, non-Ricci-parallel Riemannian four-manifolds (M, g),
which are not conformally flat, having – in addition to some further proper-
ties – harmonic curvature and r = 4. (Their local-isometry types form a
five-dimensional moduli space.) All those manifolds satisfy the hypotheses of
our Theorem 2.2. In fact, w must equal 3, as the case w ≤ 2 would, by
Lemma 5.4, lead to the local type (1.3.d) or (1.3.e), making (M, g), locally, a
warped product with a two-dimensional fibre and harmonic curvature. Conse-
quently [8, Corollary 1.3], its Ricci tensor would have a multiple eigenvalue at
every point, contrary to the relation r = 4.

It is not known whether the above class contains any compact manifolds.

9. The Codazzi-Weyl simultaneous diagonalizability

Unlike in Section 3, from now on repeated indices are not summed over.

Lemma 9.1. Let there be given an oriented Riemannian four-manifold (M, g)
with a Codazzi tensor field b on (M, g) having 4b ̸= (trgb)g everywhere and an
algebraic Weyl tensor field A such that divA = 0, while A, b are simultane-
ously diagonalizable at each point in the sense of Section 4, and the bundle mor-
phism A+ : Λ+M → Λ+M arising as the restriction of A : [TM ]∧2 → [TM ]∧2

to self-dual bivectors, cf. (4.2), has three distinct eigenvalues at every point.
The above hypotheses imply the following conclusions.

(i) An orthonormal frame e1, . . . , e4 diagonalizing both A and b at any
x ∈ M is unique up to permuting and/or changing signs of ei and,
passing to a finite covering of M if necessary, we may assume that ei
are C∞ vector fields on M.

(ii) The directional derivative Di in the direction of ei and the functions
Γ k
ij , λi, σij given, with i, j, k, l ranging over {1, 2, 3, 4}, by

(9.1) Γ k
ij = g(∇ei

ej , ek), λi = b(ei, ei) σij = A(ei, ej , ei, ej),

satisfy, whenever {i, j, k, l} = {1, 2, 3, 4}, the conditions

(9.2)

a) Γ k
ij + Γ j

ik = 0 and σij ̸= σik ̸= σil ̸= σij ,
b) σij = σji = σkl and σij + σik + σil = 0,

c) (λj − λk)Γ
k
ij = (λk − λi)Γ

i
jk = (λi − λj)Γ

j
ki ,

d) (σij − σik)Γ
k
ij = (σjk − σji)Γ

i
jk = (σki− σkj) Γ

j
ki ,

e) Diλj = (λj − λi)Γ
i
jj ,

f) Djσij = (σij − σik)Γ
j
kk + (σij − σil)Γ

j
ll .
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(iii) At any point of M, the morphism A+ : Λ+M → Λ+M has the same
eigenvalues, including multiplicities, as A− : Λ−M → Λ−M.

Proof. Both (iii) and (9.2.a)-(9.2.b) trivially follow from Lemma 4.3 and the
fact that ei are orthonormal, while (i) is immediate from Remark 4.4 along
with the essential uniqueness of eigenvectors of A±, which itself is due to the
assumption about eigenvalues. Equalities (9.2.c)-(9.2.f) amount in turn to the
Codazzi equation for b and the relation divA = 0. □

Suppose now that an oriented Riemannian four-manifold (M, g) has

(9.3) divR = 0 with r >1 and w = 3,

r and w being defined as at the beginning of Section 8 (or Section 2). The
hypotheses of Lemma 9.1 are then satisfied by A equal to the Weyl confor-
mal tensor W and the traceless Ricci tensor b = Ric − sg/4 of g, on any
fixed connected component of the dense open set of generic points, defined
as in (8.1). This follows from (5.1), (5.4), Lemma 4.2 with r > 1, and the
equality w = 3. (The same would be true if we set b = Ric instead.) The
conclusions of Lemma 9.1 thus hold as well, which makes (5.5) a consequence
of Lemma 9.1(iii). Furthermore, (9.3) also implies that, whenever i ̸= j,

(9.4) σij ̸= 0 everywhere in some dense open subset of M.

Otherwise, let σij = 0 on a nonempty open set; since σij is an eigenvalue

function of both W+ and W−, using [3, Proposition 16.72] one then gets
W= 0 on that set, even though w = 3. Finally, setting

(9.5) Rijkl = g(R(ei, ej)ek, el) for i, j, k, l ∈ {1, 2, 3, 4},

we obtain (2.5) from (3.2) and (9.1) for A =W and b = Ric − sg/4. Also,

(9.6) Rijkl = 0 unless {i, j} = {k, l} ⊆ {1, 2, 3, 4} is a 2element set,

as Rijkl = 0 in (3.2) when {i, j, k, l} has more than two elements, it being

clearly the case for all the other terms of (3.2), where the components refer this
time to the frame in Lemma 9.1(i), for (A, b) = (W, Ric− sg/4).

Next, we may define the functions Sl and yl , l = 1, 2, 3, 4, by

(9.7) Sl = (σij − σik)Γ
k
ij , yl = (λj − λk)Γ

k
ij with {i, j, k, l} = {1, 2, 3, 4},

since, due to (9.2.a)-(9.2.d), the definition is correct, namely, Sl and yl do not
depend on the choice of i, j and k.

Remark 9.2. If {i, j, k, l} = {1, 2, 3, 4}, then λi, λj , λk are all equal (or, all

distinct) wherever Sl ̸= 0 = yl (or, respectively, Sl ̸= 0 ̸= yl). In fact, (9.7)
with Sl ̸= 0 gives Γ k

ij ̸= 0, and so, again by (9.7), the relation yl = 0 (or,

yl ̸= 0) yields λi = λj = λk (or, λi ̸= λj ̸= λk ̸= λi).
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Lemma 9.3. Under the hypotheses of Lemma 9.1, let l ∈ {1, 2, 3, 4} and
x ∈ M be such that Sl(x) ̸= 0 ̸= yl(x) in (9.7). Then the function α defined
on a neighborhood of x by

(9.8) α = Sl/yl ̸= 0,

satisfies, for any i, j, k with {i, j, k, l} = {1, 2, 3, 4}, the relations

(i) σij − σik = (λj − λk)α,

(ii) 3σij = (λi + λj − 2λk)α,

(iii) Dkσik = Dkσlj = [(λk − λj)Γ
k
jj + (λi − λj)Γ

k
ll ]α,

(iv) Diσjk = Diσli = [(λj − λi)Γ
i
jj + (λk − λi)Γ

i
kk]α,

(v) Dkσjk = Dkσli = [(λk − λi)Γ
k
ii + (λj − λi)Γ

k
ll ]α,

(vi) Diσik = Diσjl = [(λi − λj)Γ
i
jj + (λk − λj)Γ

i
ll ]α,

(vii) Dlσik = Dlσjl = [(λk − λj)Γ
l
ii + (λi − λj)Γ

l
kk]α,

(viii) Dlσjk = Dlσil = [(λk − λi)Γ
l
jj + (λj − λi)Γ

l
kk]α,

(ix) Diα = 2αΓ i
ll ,

(x) Diλi = (λi − λj)Γ
i
jj + (λi − λk)Γ

i
kk + (λj + λk − 2λi)Γ

i
ll ,

(xi) (λi − λj)(Dlα− 2αΓ l
kk) = α(2λi + 2λj − trgb)(Γ

l
jj − Γ l

ii),

(xii) Di(trgb) = (trgb − 4λi)Γ
i
ll .

(xiii) σki − σkj = (λi − λj)α, which is the i, j version of (i).

Proof. Fix i, j, k, l with {i, j, k, l} = {1, 2, 3, 4} and Slyl ̸= 0 at x. Then
(i) is obvious from (9.8) and (9.7), while adding (i) to its version obtained
by interchanging i, j and using (9.2.b) we get (ii). Next, (9.2.f), with j, k
switched, (9.2.b), (i) and (xiii) yield (iii). Similarly, (9.2.f) for l, i rather than
i, j, (9.2.b), (i) and (xiii) imply (iv). Invariance of our assumptions under
permutations of i, j, k gives (v) and (vi) from (iii) by switching i with j,
or i with k, and using (9.2.b). Next, (vii) follows since Dlσik = Dlσjl =

(σjl−σji)Γ l
ii+ (σjl−σjk)Γ l

kk due to (9.2.b) and (9.2.f), while σjl−σji = σik−σij =
(λk − λj)α and σjl − σjk = σki − σkj = (λi − λj)α by (9.2.b), (i) and (xiii).

Switching i with j in (vii), we obtain (viii). Applying Dk or Di to (xiii),
we now see that Dkσik −Dkσjk − (λi − λj)Dkα − α(Dkλi −Dkλj) = 0 as well

as αDiλi = Diσik − Diσjk − (λi − λj)Diα + αDiλj . The first of these two

equalities becomes (λj − λi)[Dkα − 2αΓ k
ll ] = 0 if one replaces the directional

derivatives with the corresponding right-hand sides in (iii), (v) and (9.2.e).
As yl ̸= 0 in (9.7), Remark 9.2 now yields (ix). Analogously, (v), (iv), (ix)
and (9.2.e) combined with the second equality give (x) multiplied by α, which
implies (x), since α ̸= 0 by (i) and (9.2.a). Also, Dl applied to (xiii) gives
(λi − λj)Dlα = Dlσki−Dlσkj +[(λj −λl)Γ l

jj +(λi − λl)Γ
l
ii ]α, where Dlλj and

Dlλi have been replaced with the expressions provided by (9.2.e). Using (vii)
and (viii), we now easily get (xi). Finally, as trgb = λi + λj + λk + λl, (x) and
(9.2.e) yield (xii), completing the proof. □
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10. Three a priori possible cases

Throughout this section we assume the hypotheses of Lemma 9.1 and use
the notations of its conclusions. Let d ∈ {0, 1, 2, 3, 4} be the maximum value
in M of the function ζ assigning to x ∈ M the number ζ(x) of indices
i ∈ {1, 2, 3, 4} with Si(x) ̸= 0 in (9.7). Obviously, ζ = d on some nonempty
open subset of M.

Remark 10.1. The invariant d is still well-defined if, instead of the hypotheses
of Lemma 9.1, one assumes (9.3): we then just take the maximum of ζ over
the (possibly disconnected) dense open set of generic points, cf. (8.1).

Lemma 10.2. Under the hypotheses of Lemma 9.1, d ∈ {0, 1, 2}. In other
words, for the functions Si given by (9.7) we have SiSjSk = 0 whenever i, j, k

are all distinct, that is, at any point of M at least two of Si must be zero.
Furthermore, with λi and yi as in (9.1) and (9.7),

(10.1)
a) SkSl(λi + λj − λk − λl) = 0 if {i, j, k, l} = {1, 2, 3, 4},
b) yk/Sk = −yl/Sl whenever k ̸= l and SkSl ̸= 0.

Proof. Fix i, j, k, l with {i, j, k, l} = {1, 2, 3, 4}. To prove (10.1), suppose that
SkSl ̸= 0 at some x ∈M. Then, from (9.7) and (9.2.b), at x,

λi − λk
σji−σjk

=
yl
Sl

=
λi − λj
σki−σkj

= −
λi − λj
σli−σlj

= −yk
Sk

= −
λj − λl
σij−σil

=
λl − λj
σji−σjk

,

the denominators being nonzero by (9.2.a). Now (10.1) follows.
As for the first claim, suppose on the contrary that {i, j, k, l} = {1, 2, 3, 4}

and SiSjSk ̸= 0 in an open subset U ′ of M. Then, by (10.1.a), λi + λj =

λk+λl, λj +λk = λi+λl, and λi+λk = λj +λl everywhere in U ′. This gives

λi = λj = λk = λl, even though Lemma 9.1 assumes that 4b ̸= (trgb)g. □

We now restrict our discussion to any fixed connected component U of the
nonempty open subset of M in which ζ = d. Also, let us rearrange Si (that
is, the orthonormal vector fields ei) so as to make those among S1, S2, S3, S4
which vanish on U precede those which do not. In view of Lemma 10.2, one of
three cases must occur:

(10.2)
a) d = 2 and S1 = S2 = 0 ̸= S3S4 everywhere in U,
b) d = 1 and S1 = S2 = S3 = 0 ̸= S4 at each point of U,
c) d = 0 and S1 = S2 = S3 = S4 = 0 identically in U.

In view of (9.2.a) and (9.7), there are the following implications.

(10.3)

Case (10.2.a): Γ k
ij = 0 if i ̸= j ̸= k ̸= i and 3, 4 ∈ {i, j, k}.

Case (10.2.b): Γ k
ij = 0 if i ̸= j ̸= k ̸= i and 4 ∈ {i, j, k}.

Case (10.2.c): Γ k
ij = 0 whenever i, j, k are distinct.

It is immediate from (10.1.a) with S3S4 ̸= 0 that

(10.4) in case (10.2.a), trgb = 2(λ1 + λ2) = 2(λ3 + λ4).
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Here are some more consequences of (10.2.a). First, as S3S4 ̸= 0, we have

(10.5) y3y4 ̸= 0 everywhere in U,

or else Remark 9.2 would make three of λ1, λ2, λ3, λ4 equal to one another and,
by (10.4), they would all be equal, contrary to the assumption that 4b ̸= (trgb)g
in Lemma 9.1. We may thus apply Lemma 9.3(i) to both l ∈ {3, 4}, and then,
in view of (9.2.a),

(10.6) λk ̸= λl for k, l ∈ {1, 2, 3, 4}, unless k = l or {k, l} = {3, 4}.

Also, by (10.1.b) and (9.8), α3 = −α4 = −α if α = α4 as in Lemma 9.3, for
l = 4. Thus, (i)-(x) in Lemma 9.3 remain valid for l = 3, provided that α is
everywhere replaced with −α and so, from Lemma 9.3(ix),

(10.7) Diα = 2αΓ i
kk if k ∈ {3, 4} and i ̸= k.

Finally, due to (10.4), assertion (xii) in Lemma 9.3 with {i, l} = {3, 4} becomes
Di(λi + λl) = (λl − λi)Γ

i
ll which, by (9.2.e), equals Diλl, giving

(10.8) D3λ3 = D4λ4 = 0 everywhere in U.

11. Further consequences of (10.2.a)

The following theorem is used in Section 12 to show that, in the case of
harmonic curvature, d ̸= 2 (cf. Section 8); it only describes the curvature
components needed for this purpose. The theorem is valid in a more general
situation, which is why, for the sake of completeness and a possible reference,
the remaining components are listed in the Appendix.

Theorem 11.1. Let tensor fields A and b on an oriented Riemannian four-
manifold (M, g) satisfy the hypotheses of Lemma 9.1 and (10.2.a). If trgb = 0

and σ12 ̸= 0 everywhere in M, then the following holds at each point for some
function λ, some constant µ, and α = S4/y4 as in (9.8).

(a) The eigenvalue functions λi of b and σij of A± are given by λ1 =

λ = −λ2, λ3 = µ = −λ4 and 3σ12 = 3σ34 = −2µα, 3σ13 = 3σ24 =
(µ+ 3λ)α, 3σ14 = 3σ23 = (µ− 3λ)α.

(b) σ12, µ and α are nonzero constants, while λ1 ̸= λ2 ̸= λ3 ̸= λ4 ̸= λ1.
(c) ∇e3e3 = ∇e3e4 = ∇e4e3 = ∇e4e4 = 0 and R(e3, e4)e3 = R(e3, e4)e4 = 0.

(d) Whenever {i, j} = {1, 2} and {k, l} = {3, 4}, one has

Rikik =
DkDkλi
λi − λk

− 2(Dkλi)
2

(λi − λk)
2
+

y2l
λi(λi + λk)

,

(λi + λk)Rikil = DkDlλi −
2λi(Dkλi)Dlλi

λ2i − λ2k
+

(λ2i + λ2k)ykyl
λi(λ

2
i − λ2k)

,

[ei, ej ] =−
Djλi
2λi

ei +
Diλi
2λi

ej +
2λi

λ2k − λ2i
(ylek + ykel),
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(λi − λk)Rijik = DjDkλi −Diyl + (λ2i + 2λiλk − λ2k)
ylDiλi − (Dkλi)Djλi

λi(λ
2
i − λ2k)

(λ2k − λ2i )Rijkl = 2(ykDkλi − ylDlλi),

with yk, yl , Rijkl as in (9.7), (9.5) and (3.1), and λi(λ
2
i − λ2k) ̸= 0.

Proof. As trgb = 0, (10.4) means nothing else than

(11.1) λ1 + λ2 = λ3 + λ4 = 0.

Our assumption (10.2.a) leads to (10.5), and so S3S4y3y4 ̸= 0 everywhere. We
may thus use Lemma 9.3(xii) which, with trgb = 0, yields λ1Γ

1
33 = λ2Γ

2
33 =

λ1Γ
1
44 = λ2Γ

2
44 = 0. Since λ1λ2 ̸= 0 (for otherwise (11.1) would give λ1 =

λ2 = 0, contradicting (10.6)), we thus get Γ i
33 = Γ i

44 = 0 for i = 1, 2. On the
other hand, by (10.8), (11.1) and (9.2.e), 0 = −Dkλk = Dkλl = (λl − λk)Γ

k
ll

whenever {k, l} = {3, 4}. Therefore, Γ 3
44 = Γ 4

33 = 0, or else we would have
λ3 = λ4 and, by (11.1), λ3 = λ4 = 0 which, due to Lemma 9.3(ii) and (11.1),
would yield σ12 = 0, even though we assumed that σ12 ̸= 0. Finally, (10.3)
implies that Γ i

34 = Γ i
43 = 0 for i = 1, 2. Consequently, by (9.2.a),

(11.2)
i) Γ i

33 = Γ i
44 = Γ i

34 = Γ i
43 = 0 for all i = 1, 2, 3, 4,

ii) Γ l
ik = Γ i

kl = Γ l
ki = 0 if k, l ∈ {3, 4}.

In view of (9.1) and (3.1), relations (11.2.i) prove (c). Also, using (9.2.e),
(11.1), (11.2) and (10.8), we easily conclude that λ3 and λ4 are constant. By
(11.1), this yields (a), with the function λ = λ1 and constant µ = λ3, as one
sees evaluating 3σ12, 3σ13, 3σ14 from Lemma 9.3(ii) applied to i, j, k, l such that
{i, j, k} = {1, 2, 3}, while l = 4, and then invoking (9.2.b). Now (b) follows
from (10.6), (10.7), (11.2) and (a), as σ12 ̸= 0.

Next, let us fix i, j, k, l with {i, j} = {1, 2} and {k, l} = {3, 4}.
Due to (9.1), (11.2.ii) and (9.7), with λ1 ̸= λ2 by (10.6),

(11.3)

∇ekei = Γ j
kiej = (λi − λj)

−1ylej ,

∇eiek = −Γ k
ii ei + Γ j

ikej ,

g(∇ei∇ekei, ek) = (λi − λj)
−1ylΓ

k
ij = (λi − λj)

−1(λj − λk)
−1y2l ,

g(∇ei∇ekei, el) = (λi − λj)
−1ylΓ

l
ij = (λi − λj)

−1(λj − λl)
−1ykyl .

From (9.1), with ∇ekek = ∇ekel = 0 in (c), g(∇ek∇eiei, ek) = Dk[g(∇eiei, ek)] =

DkΓ
k

ii and g(∇ek∇eiei, el) = Dk[g(∇eiei, el)] = DkΓ
l

ii . Since (9.2.e) and (10.6) give

Γ k
ii = (λi − λk)

−1Dkλi and Γ l
ii = (λi − λl)

−1Dlλi, we get g(∇ek∇eiei, ek) =

Dk[(λi − λk)
−1Dkλi] and g(∇ek∇eiei, el) = Dk[(λi − λl)

−1Dlλi]. Thus, with λk
and λl both constant, cf. (b),

(11.4)
g(∇ek∇eiei, ek) = (λi − λk)

−1DkDkλi − (λi − λk)
−2(Dkλi)

2,

g(∇ek∇eiei, el) = (λi − λl)
−1DkDlλi − (λi − λl)

−2(Dkλi)Dlλi .
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By the first line of (11.3), [ei, ek] = ∇eiek− ∇ekei = −Γ k
ii ei + (Γ j

ik − Γ j
ki)ej . Now

(9.1) yields g(∇[ei,ek]
ei, ek) = −(Γ k

ii )
2 + (Γ j

ik − Γ j
ki)Γ

k
ji and g(∇[ei,ek]

ei, el) =

−Γ k
ii Γ

l
ii + (Γ j

ik − Γ j
ki)Γ

l
ji. Consequently, from (9.2.e) and (9.7),

(11.5)

g(∇[ei,ek]
ei, ek) =− (λi − λk)

−2(Dkλi)
2

+ (λk − λi)
−1[(λi − λj)

−1− (λk − λj)
−1]y2l ,

g(∇[ei,ek]
ei, el) =− (λi − λk)(λi − λl)(Dkλi)Dlλi

+ (λl − λi)
−1[(λi − λj)

−1− (λk − λj)
−1]ykyl .

Relations (11.3)-(11.5), (3.1), (9.5) and (11.1) prove the first two lines of (d).
Also, ∇ejei = −Γ i

jjej + Γ k
jiek + Γ l

jiel, from (9.1) and (9.2.a), so that

(11.6) ∇ejei = (λi − λj)
−1(Diλj)ej + (λi − λk)

−1ylek + (λi − λl)
−1ykel

by (9.2.e) and (9.7). The third line of (d) now follows if one switches i, j
in (11.6), subtracts, and uses (b) to replace λj , λl with −λi,−λk. On the

other hand, (9.1) yields ∇eiei = Γ j
ii ej + Γ k

ii ek + Γ l
iiel, and so, from (11.2.ii),

g(∇ej∇eiei, ek) = Γ j
iiΓ

k
jj + DjΓ

k
ii . Similarly, ∇ejei = −Γ i

jjej + Γ k
jiek + Γ l

jiel, in the

line preceding (11.6), and hence g(∇ei∇ejei, ek) = −Γ i
jjΓ

k
ij + DiΓ

k
ji , while the

third line of (d) and (11.2.ii) give 2λig(∇[ei,ej ]
ei, ek) = −Γ k

iiDjλi + Γ k
jiDiλi.

Replacing Γ j
ii , Γ

k
jj , Γ

k
ii , Γ

i
jj , Γ

k
ij , Γ

k
ji , in the right-hand sides of the three just-

derived relations of the form g(∇ · · · , ek) = · · · , with the expressions provided
by (9.2.e) and the second equality of (9.7), and noting that, in (a), λj = −λi
and λl = −λk is constant, we obtain the fourth line of (d). Finally, ∇eiek =

−Γ k
ii ei + Γ j

ikej in (11.3). Thus, g(∇ej∇eiek, el) = −Γ k
ii Γ

l
ji + Γ j

ikΓ
i

jj and, with i, j

switched, g(∇ei∇ejek, el) = −Γ k
jj Γ

l
ij+Γ

i
jkΓ

j
ii , while g(∇[ei,ej ]

ek, el) = 0 by (11.2.ii).

The last line of (d) now follows if one replaces Γ k
ii , Γ

l
ji, Γ

j
ik, Γ

i
jj , Γ

k
jj , Γ

l
ij , Γ

i
jk, Γ

j
ii as

before, using (9.2.e) and (9.7). □

12. Exclusion of case (10.2.a) when divR = 0

We now proceed to derive a contradiction from the assumption that (10.2.a)
holds and (A, b) = (W, Ric − sg/4). We are allowed to invoke Theorem 11.1,
since σ12 ̸= 0 as a consequence of (9.4).

First, s = 8µα, from Theorem 11.1(a) and (2.5) for (i, j) = (3, 4), where
Rijij = 0 in (2.5) by Theorem 11.1(c). Thus, by (2.5) and Theorem 11.1(a),

R1212 = 0,

R1313 = (α+ 1/2)(µ+ λ),

R1414 = (α− 1/2)(µ− λ),

R2323 = (α+ 1/2)(µ− λ),(12.1)
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R2424 = (α− 1/2)(µ+ λ),

R3434 = 0.

Choosing (i, k) in the first equality of Theorem 11.1(d) to be (1, 3), (2, 3),
(2, 4) or, respectively, (1, 4), we get

(12.2)

D3D3λ

λ− µ
− 2(D3λ)

2

(λ− µ)2
+

y24
λ(λ+ µ)

= (α+ 1/2)(µ+ λ),

D3D3λ

λ+ µ
− 2(D3λ)

2

(λ+ µ)2
+

y24
λ(λ− µ)

= (α+ 1/2)(µ− λ),

D4D4λ

λ− µ
− 2(D4λ)

2

(λ− µ)2
+

y23
λ(λ+ µ)

= (α− 1/2)(µ+ λ),

D4D4λ

λ+ µ
− 2(D4λ)

2

(λ+ µ)2
+

y23
λ(λ− µ)

= (α− 1/2)(µ− λ).

The linear combinations of the first (or, last) two lines of (12.2) with the coef-
ficients µ− λ and µ+ λ yield

(12.3)
4µ[(D3λ)

2+ y24 ] = −(2α+ 1)(λ2− µ2)2,
4µ[(D4λ)

2+ y23 ] = −(2α− 1)(λ2− µ2)2.

On the other hand, Theorem 11.1(a)-(b) and (10.5) imply that

(12.4) λµ(λ2− µ2)y3y4 ̸= 0 everywhere.

The last equality of Theorem 11.1(d), for (i, j, k, l) = (1, 2, 3, 4), combined
with (9.6) and (12.4), gives y4D4λ = y3D3λ. Thus, at every point, the vectors
(D4λ, y3) and (D3λ, y4), both nonzero due to (12.4), are linearly dependent in
IR2, and so (D4λ, y3) = (qD3λ, qy4) for some function q without zeros. Now,
by (12.3), (2α − 1) = (2α + 1)q2. Thus, as both sides of both equalities in
(12.3) are nonzero, cf. (12.4),

(12.5) (D4λ, y3) = (qD3λ, qy4), where q is a nonzero constant

in view of Theorem 11.1(b). However, according to Theorem 11.1(a),

(12.6) (λ1, λ2, λ3, λ4) = (λ,−λ, µ,−µ).

Therefore, the fourth equality of Theorem 11.1(d), with the left-hand side equal
to 0 by (9.6), applied to fixed i, j with {i, j} = {1, 2} and (k, l) replaced by
(3, 4) or, respectively, (4, 3), reads

DjD3λi −Diy4 + (λ2+ 2λiµ− µ2)
y4Diλi − (D3λi)Djλi

λi(λ
2 − µ2)

= 0,

DjD4λi −Diy3 + (λ2− 2λiµ− µ2)
y3Diλi − (D4λi)Djλi

λi(λ
2 − µ2)

= 0.

Replacing (D4λi, y3) in the second equality above by (qD3λi, qy4), cf. (12.5),
and subtracting the result from q times the first equality, we obtain

(12.7) 4qλiµ[y4Diλi − (D3λi)Djλi] = 0 whenever {i, j} = {1, 2},
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due to constancy of q established in (12.5). We have two matrix equalities

(12.8) a)

[
D3λ y4
−y4 D3λ

] [
D1λ
D2λ

]
=

[
0
0

]
, b)

[
y3 −y4
y4 y3

] [
D3λ
D4λ

]
=

[
0
0

]
,

with both determinants nonzero in view of (12.4). Namely, (12.8.a) follows if
one lets (i, j) be (1, 2) or (2, 1) in (12.7), and uses (12.4)-(12.6). By (12.8.a),
D1λ = D2λ = 0. Thus, the last equality of Theorem 11.1(d), (9.6) and (12.4)
give y4D3λ+ y3D4λ = 0. Now (12.8.b) follows: y4D4λ = y3D3λ, as we saw in
the second line after (12.4).

Both determinants in (12.8.b) being nonzero, we conclude that λ is constant,
which in turn contradicts the second equality of Theorem 11.1(d), since y3y4 ̸=
0 = Rikil by (12.4) and (9.6).

13. Case (10.2.b)

In this section we show that four-manifolds with harmonic curvature, having
d = 1 (see Section 8) are locally of type (1.3.c).

For the Levi-Civita connections ∇ and ∇̂ of conformally related metrics g
and ĝ = |β|1/2g on a manifold, with a nowhere-zero function β, one has

(13.1) ∇̂vw = ∇vw +
dvβ

4β
w +

dwβ

4β
v − g(v, w)

∇β
4β

,

cf. [3, p. 58], v, w, dv and ∇β being, respectively, any two vector fields, the
v-directional derivative, and the g-gradient of β.

Lemma 13.1. Let A, b, (M, g) satisfy the assumptions of Lemma 9.1 and
(10.2.b). If trgb = 0, then there exists a dense open set U ⊆M such that, on
every connected component U ′ of U, with some function β : U ′ → IR \ {0},
and ei as in Lemma 9.1(i),

(13.2) ∇e4e4 = 0, 4β∇eie4 = −(D4β)ei , Diβ = 0 for i = 1, 2, 3.

Proof. It suffices to exhibit β : U ′ → IR \ {0} having

(13.3)
i) Γ i

44 = Diβ = 0,

ii) 4βΓ i
i4 = −D4β whenever i ∈ {1, 2, 3}.

Namely, the last equality in (13.2) follows from (13.3.i), the first two – from

(13.3) and (9.1), as Γ 4
44 = 0 by (9.2.a), while Γ j

i4 = 0 whenever {i, j, k} =
{1, 2, 3} due to (10.2.b) and (10.3).

Let U ⊆ M be the open dense set of points x such that y4(x) ̸= 0 or
y4 = 0 on a neighborhood of x. For any connected component U ′ of U, one
of the following two conditions holds throughout U ′ (see Remark 9.2):

(a) λ1 = λ2 = λ3 and y4 = 0, for the eigenvalue functions λi of b,
(b) λ1 ̸= λ2 ̸= λ3 ̸= λ1 and y4 ̸= 0.
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We thus need to show that either of (a)-(b) implies (13.3) on U ′.
First, in case (a), since trgb = 0, setting β = λi, i = 1, 2, 3, we get λ4 =

−3β. Also, β ̸= 0 everywhere, for otherwise we would have b = 0, even
though Lemma 9.1 assumes that 4b ̸= (trgb)g. Thus, from (9.2.e), Diβ = 0

and Diλ4 = 0. However, (9.2.e) with Diλ4 = 0 gives −4βΓ i
44 = 0, i = 1, 2, 3,

proving (13.3.i). Finally, (9.2.e) with i = 4, any j ∈ {1, 2, 3}, and λ4 = −3β
reads D4β = 4βΓ 4

jj , and (9.2.a) yields (13.3.ii).
Suppose now that condition (b) holds. Note that

(13.4)
i) R1424 = 0,

ii) Rij4k = 0 whenever {i, j, k} = {1, 2, 3}

with the notation of (9.5). Namely, Lemma 4.1 and (b) give R(ei, ej)ek = 0,

as well as R(e1, e4)e2 = 0 (or, R(e2, e4)e1 = 0) at points where λ2 ̸= λ4 (or,
respectively, λ1 ̸= λ4), so that the usual symmetries of R imply (13.4).

Let us now fix x ∈ U ′. By (b), at least two of λ1(x), λ2(x), λ3(x) are
nonzero. Rearranging e1, e2, e3, we may assume that λ1λ2 ̸= 0 at x. Then,
from Lemma 9.3(xii) with l = 4 and trgb = 0, on a neighborhood of x,

(13.5) Γ 1
44 = Γ 2

44 = 0.

In view of (10.2.b) and (10.3), relations (9.1), (9.2.a) and (13.5) yield

(13.6)

∇ei
ej = Γ i

ijei + Γ k
ij ek if {i, j, k} = {1, 2, 3},

∇e4e1 = ∇e4e2 = 0,

∇e4e3 = −Γ 3
44e4

as g(∇e4ei, e4) = 0 for i = 1, 2 by (13.5). From (9.1), (9.2.a) and (10.3),

(13.7)
i) ∇eie4 = −Γiei for i = 1, 2, 3, where

ii) Γi = Γ 4
ii = −Γ i

i4 .

By (13.6), we thus have [e4, e1] = Γ1e1 and so g(∇[e4, e1]
e2, e4) = 0. Also, from

(13.6), g(∇e4∇e1e2, e4) = −Γ 3
12Γ

3
44 and ∇e1∇e4e2 = 0. Combining the last three

equalities with (3.1) and noting that y4 = (λ2 − λ3)Γ
3
12 in (9.7), we now get

(λ3 − λ2)g(R(e1, e4)e2, e4) = y4Γ
3
44. Thus, by (13.4) and (b), Γ 3

44 = 0, which,
along with (13.5), proves the first part of (13.3.i), while the second part then
follows from Lemma 9.3(ix) for l = 4 if we set, this time, β = α2, where α is
given by (9.8) with l = 4. In view of (13.7.ii), since trgb = 0, Lemma 9.3(xi)
can be rewritten as

(13.8) (λi − λj)(D4α − 2αΓk) = 2α(λi + λj)(Γj − Γi)

for i, j, k with {i, j, k} = {1, 2, 3}. Furthermore, Rij4k evaluated from (3.1),

(13.6), (13.7) and the resulting relation [ei, ej ] = Γ i
ijei − Γ j

jiej + (Γ k
ij − Γ k

ji)ek,

valid if {i, j, k} = {1, 2, 3}, equals (Γj − Γk)Γ
k
ij − (Γi − Γk)Γ

k
ji . As Rij4k = 0

in (13.4), this means that y4[(λi − λk)
−1(Γi − Γk) − (λj − λk)

−1(Γj − Γk)] = 0
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whenever {i, j, k} = {1, 2, 3}, cf. (9.7). Thus, as y4 ̸= 0 in (b). for some
function ψ not depending on the choice of i, j ∈ {1, 2, 3}, one has

(13.9) Γi − Γj = (λi − λj)ψ.

In view of (b) and (13.9), relation (13.8) now becomes

Γk =
D4α

2α
+ (λi + λj)ψ if {i, j, k} = {1, 2, 3}.

Hence Γk − Γj = (λj − λk)ψ is the opposite of the value in (13.9), implying,

via (b), that ψ = 0. The last displayed equality now yields D4α = 2αΓi for
i = 1, 2, 3 and, as β = α2, (13.3.ii) follows from (13.7.ii). □

Lemma 13.2. Under the hypotheses of Lemma 13.1, for the function β in
(13.2), (M, g) is locally isometric to a warped product (I×N, dt2+ |β|−1/2h),
with the notation of Lemma 5.3, where β is constant in the N direction.

In fact, (13.1) and (13.2) give ∇̂ê4 = 0, where ê4 = |β|−1/4e4 and ∇̂ is
the Levi-Civita connection of the metric ĝ = |β|1/2g, conformal to g, Thus,
(M, ĝ) is locally isometric to a Riemannian product of an interval I and a
Riemannian 3-manifold (N,h). Since Diβ = 0 for i = 1, 2, 3 by (13.2), our
claim follows.

Theorem 13.3. Given an oriented non-Einstein Riemannian four-manifold
(M, g) with divR = 0 such that W+ : Λ+M → Λ+M has three distinct eigen-
values at some point of M, let d be the invariant mentioned in Remark 10.1.
If d = 1, then (M, g) is locally of type (1.3.c).

This is immediate from Lemmas 13.2 and 5.3, as the assumption on W+

precludes conformal flatness of (M, g).

14. Case (10.2.c)

This section discusses, in some detail, four-manifolds with harmonic curva-
ture such that d = 0 (notation of Section 8).

Lemma 14.1. Let A, b and (M, g) satisfy the hypotheses of Lemma 9.1 and
(10.2.c), with ei, Γ

i
ij , λi, σij as in Lemma 9.1(i) and (9.1). Setting

(14.1) Fji= Γ i
ij and Hji = FklFli+ FlkFki− FkiFli if {i, j, k, l} = {1, 2, 3, 4},

one has the following relations, valid as long as {i, j, k, l} = {1, 2, 3, 4}.

(14.2)

a) ∇eiei = −Fjiej − Fkiek − Fliel , ∇ei
ej = Fjiei ,

b) Diλj = (λi − λj)Fij ,
c) Dkσij = (σkj − σij)Fki + (σki− σij)Fkj ,

d) [ei, ej ] = Fjiei − Fijej ,
e) DiFij + DjFji + F 2

ij + F 2
ji + FkiFkj + FliFlj = −Rijij ,

f) DiFjk − (Fji−Fjk)Fik = Rkijk .
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In the case where trgb is constant and {i, j, k, l} = {1, 2, 3, 4},

(14.3) Dkλk = (λl − λk)Fkl + (λi − λk)Fki + (λj − λk)Fkj .

If A =W and b = Ric − sg/4 then, whenever {i, j, k, l} = {1, 2, 3, 4},

(14.4)

i) DiFjk = (Fji−Fjk)Fik ,
ii) (σki − σli)(DkFlk − DlFkl) = 3(Hji − Hij)σij ,
iii) (λk − λl)(DkFlk − DlFkl) = (λk + λl − 2λi)Hji

+ (λk + λl − 2λj)Hij ,
iv) DiDkFlk + 2FikDkFlk = (Fli− Flk)DkFik ,
v) DiDkFkl + (Fik+ Fil)DkFkl = FilDkFki + (Fki− Fkl)Hjl .

Proof. Assertions (14.2.a)-(14.2.c) are obvious from (9.1) and (9.2.a) with
(10.2.c) and (10.3) or, respectively, (9.2.e)-(9.2.f), while (14.2.d) is immedi-
ate from (14.2.a). Evaluating Rijij and Rkijk from (9.5), (3.1) and (14.2.d),

we easily obtain (14.2.e)-(14.2.f).
If trgb = λi + λj + λk + λl is constant, (14.2.b) implies (14.3).
The assumptions made in the line preceding (14.4) yield (14.4.i) as a conse-

quence of (14.2.f), since Lemma 4.2 applied to b = Ric − sg/4 gives Rkijk = 0.
Relations (14.4.ii)-(14.4.iii), or (14.4.iv)-(14.4.v), then follow in turn from the
equalities DiDjσil − DjDiσil = Dwσil and DkDlλk − DlDkλk = Dwλk, where

w = [ei, ej ] or w = [ek, el] (or, respectively, DiDkFlk − DkDiFlk = DwFlk
and DiDkFkl −DkDiFkl = DwFkl, where w = [ei, ek]), combined with (14.2.d),
(14.2.b), (14.4.i) and (14.3). □

Proof of Theorem 2.2(a)-(b). Due to (2.2), w = 3 and r ∈ {3, 4}. The as-
sumptions of Lemma 9.1 thus hold for (A, b) = (W, Ric− sg/4). Lemma 10.2
now gives d ∈ {0, 1, 2}, and so d = 0, the cases d = 2 and d = 1 being
excluded by the argument in Section 12 and, respectively, Theorem 13.3. As-
sertions (a) and (b) of Theorem 2.2 are now immediate from (14.2.d) and the
choice of ei in Lemma 9.1(i). □

Proof of Theorem 2.3. The first displayed equation is obvious from (9.2.b) and
the definition of λi. Next, adding λl−λk times (14.4.ii) to (14.4.iii) multiplied
by σki−σli, we obtain 0 = 2(HijZklj −HjiZkli), where 2Zklj = 3(λk−λl)σij +
(λk + λl − 2λj)(σki− σli) and

2Zkli = 3(λk − λl)σji + (λk + λl − 2λi)(σkj − σlj)

= 3(λk − λl)σij + (λk + λl − 2λi)(σli− σki).

(By (9.2.b), (σji, σkj , σlj) = (σij , σli, σki).) Thus, as σij = σkl and σki = σik
in (9.2.b), the last displayed line gives 2Zkli = 3(λk − λl)σkl + (λk + λl −
2λi)σli + (2λi − λk − λl)σik, that is, 2Zkli = 2(λk − λl)σkl + (λk − λl)σkl +
2(λl −λi)σli+(λk −λl)σli+2(λi −λk)σik +(λk −λl)σik. Due to (9.2.b), or the
definition of Zj in Theorem 2.3, the second, fourth and sixth (or, first, third

and fifth) terms in the last six-term sum add up to 0 or, respectively, to 2Zj ,
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if (i, j, k, l), and hence (k, l, i, j), is an even permutation of (1, 2, 3, 4). Thus,
Zkli = Zj while, the permutation (k, l, j, i) being odd, Zklj = −Zi , and so

the equality HijZklj = HjiZkli obtained above amounts to (2.6). Furthermore,

Zi + Zj + Zk + Zl = 0 if (i, j, k, l) is an even permutation of (1, 2, 3, 4), since

the term (λi − λj)σij in Zl = (λi − λj)σij + (λj − λk)σjk + (λk − λi)σki gets

cancelled by (λj − λi)σji in Zk, as a consequence of (9.2.b) and evenness of
the permutation (j, i, l, k). Therefore,

(14.5) Z1 + Z2 + Z3 + Z4 = 0 = λ1 + λ2 + λ3 + λ4 ,

the second relation in (14.5) being a part of the already-established first dis-
played equation in Theorem 2.3. From (2.6) and (14.5) we get

(14.6)
[
Z1 Z2 Z3 Z4

]
H =

[
0 0 0 0 0 0

]
,

where H denotes the 4×7 matrix in (2.7). With λ4 replaced by −λ1−λ2−λ3,
cf. (14.5), the definition of Zj gives

(14.7)

Z1

Z2

Z3

 =

 σ24−σ43 2σ24−σ32−σ43 σ24+σ32− 2σ43
σ13+σ34− 2σ41 σ34−σ41 2σ34−σ13−σ41
2σ14−σ21−σ42 σ21+σ14− 2σ42 σ14−σ42

λ1λ2
λ3

.
Due to (9.2.b), the 3× 3 matrix appearing in (14.7) equalsσ13−σ12 3σ13 −3σ12

−3σ14 σ12−σ14 3σ12
3σ14 −3σ13 σ14−σ13

,
and so it has the determinant −8(σ13−σ12 )(σ12−σ14)(σ14−σ13), nonzero ac-
cording to (9.2.a). while (2.2) and (14.5) give (λ1, λ2, λ3) ̸= (0, 0, 0). Thus,
(Z1, Z2, Z3) ̸= (0, 0, 0) in (14.7), and (2.7) follows from (14.6). □

Remark 14.2. Let the tangent bundle TM of an n-dimensional manifold M be
trivialized by vector fields e1, . . . , en satisfying the Lie-bracket relations (1.5).
Then, for the Levi-Civita connection ∇ of the metric g on M such that
e1, . . . , en are g-orthonormal,

(14.8) ∇ei
ej = Fjiei if i ̸= j, ∇ei

ei = −
∑
k ̸=i

Fkiek .

In fact, the connection defined by (14.8) is torsion-free and makes g parallel.

Remark 14.3. The assumptions of Remark 14.2 will still hold if e1, . . . , en are
replaced by ϕ1e1, . . . , ϕnen, for any functions ϕi without zeros.

Locally, such ϕi may then be chosen so that ϕiei commute, as one sees
setting ϕiei = ∂i, where ∂i are the coordinate vector fields for local coordinates
xi, with each xi constant along the integrable distribution Span{ej : j ̸= i}.
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Remark 14.4. Let the objects appearing in Remark 14.2 also have the property
that [ei, ek] = 0 for some fixed m ∈ {1, . . . , n−1} and all i, k with i ≤ m < k.
Then the distributions V = Span{e1, . . . , em} and H = Span{em+1, . . . , en}
are g-parallel. Namely, whenever i ≤ m < k, Remark 14.2 with Fik = Fki = 0
implies that ek is g-parallel along ei, and vice versa. Thus, V and H are
g-parallel along each other. Hence V =H⊥ is g-parallel along V as well.

15. Proof of Theorem 2.2(c): part one

We will prove Theorem 2.2(c) by assuming its negation which, by (2.2),
means that r = 3, and – at the end of Section 18 – obtaining a contradiction.

Throughout this and the next three sections (M, g) is a fixed oriented Riem-
annian four-manifold with divR = 0, belonging to class (D0) of Section 8 and
having r = 3, while U denotes the set of all generic points (Section 8) at
which σijσikσil ̸= 0, that is, the eigenvalues of W+ and W− are all nonzero.
The indices i, j, k, l are always assumed to satisfy the condition

(15.1) {i, j} = {1, 2}, {k, l} = {3, 4}.
By (9.4) and (2.1), U is an open dense subset of M. We use the notation of
Lemma 14.1, for A = W and b = Ric − sg/4, cf. the lines following (9.3), so
that, without loss of generality, on every connected component U ′ of U, for
some function λ,

(15.2)
a) λ1 = λ2 = λ ̸= λ3 ̸= λ4 ̸= λ,
b) λ3 + λ4 = −2λ

everywhere in U ′. Setting σ = σ12, we also define the function

(15.3) Gk = (λk − λ)−1Dkλ for k ∈ {3, 4},
and a metric ĝ on U ′ by requiring ĝ -orthonormality of ê1, . . . , ê4, where

(15.4) êi = σ−1/3ei if i = 1, 2 and êk = (λk− λ)−1ek if k = 3, 4.

Assuming (15.1), we now obtain from (14.2.d), as in Remark 14.3,

(15.5)

i) [êi, êj ] = F̂jiêi − F̂ij êj , [êk, êl] = F̂lkêk − F̂klêl ,

ii) [êi, êk] = F̂kiêi − F̂ikêk , where

iii) F̂ik = σ−1/3(Fik −Di log |λk− λ|−1),

iv) F̂ki = (λk − λ)−1(Fki−Dk log |σ|−1/3),

v) F̂ij = σ−1/3(Fij −Di log |σ|−1/3),
vi) F̂kl = (λk − λ)−1(Fkl−Dk log |λl− λ|−1).

Lemma 15.1. Under the hypotheses (15.1)-(15.5), for Gk, ĝ as above,

(a) Diλ = DiGk = 0 and Hji = Hij = FlkGk + FklGl − GkGl,

(b) Fki = Gk = Dk log |σ|−1/3 and −2Fkl = Dk log |σ−1/3(σil− σjl)|,
(c) DkFlk = DlFkl, (FlkGk + FklGl − GkGl)λ = 0, and Hlj = FikGk,

(d) Fik = Di log |λk− λ|−1 and Hlj − Hkl = (Fik − Fil)(Gk − Fkl),
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(e) êk is ĝ-parallel along êi, and vice versa, so that [êi, êk] = 0,
(f) ĝ is, locally, a Riemannian product of two surface metrics, with the

factor distributions V = Span{e1, e2} and H = Span{e3, e4},
(g) F̂kl = (λl− λ)−1(Fkl−Gk) and DiF̂kl = DkF̂ij = 0,

(h) Diλk is nonzero on a dense open set, and (Dkλ+ 4λFkl)Gl = 0.

Proof. By (14.2.b) and (15.2), Diλ = Diλj = (λ − λ)Fij = 0 and Dkλ =

Dkλi = (λk − λ)Fki. Therefore Diλ = 0, while Fki = Gk does not depend on
i ∈ {1, 2}, so that (14.4.i) yields DiGk = DiFkj = (Gk −Gk)Fij = 0. Combined

with (14.1), this proves (a) and the first equality in (b). Since, by (9.2.b),
σkj + σki = −σkl = −σij = −σ, (14.2.c) similarly gives

Dkσ = Dkσij = (σkj − σij)Gk + (σki− σij)Gk = −3σGk

as well as Dk(σil−σjl) = (σjl−σil)(Gk+2Fkl), and the remainder of (b) follows.

Now (14.4.iii) reads (λk− λl)(DkFlk − DlFkl) = 8λ(GkGl − FlkGk − FklGl ), cf.
(15.2). Thus, (c) is clear from (14.4.ii), (a) and (14.1). By (a), (15.2) and
(14.2.b), Di(λk− λ) = Diλk = (λ − λk)Fik. This, along with (14.1), (b) and
(c), implies (d). Next, (15.5.i)-(15.5.ii) and Remark 14.4 lead to (e)-(f), since

F̂ik = F̂ki = 0 from (15.5.iii)-(15.5.iv), (b) and (d).
Also, by (e), êi commutes with [êk, êl] and êk with [êi, êj ], which in view of

(15.5.i) yields DiF̂lk = DkF̂ij = 0, and consequently (g): from (15.2), (14.2.b)

and (15.3), (λl− λ)Dk log |λl− λ|−1 = Dk(λ− λl) = (λk− λ)Gk − (λk− λl)Fkl,

and thus (λk− λ)(λl− λ)F̂kl equals (λk− λ)(Fkl −Gk) according to (15.5.vi),
while λk ̸= λ (see (15.2.a)).

To prove the first claim in (h), we may suppose that, on the contrary, Diλk =
0 for both k = 3, 4 and both i = 1, 2 since, according to (15.2.b) and (a),
Diλ3 = 0 if and only if Diλ4 = 0. In view of (a) and (d), Fik = 0, so that (9.2.b)
and (14.2.c) give Diσ = Diσij = Diσkl = 0. Thus, as a consequence of (a),

Di[(λk− λ)σ−1/3] = 0 and, as σ−1/3ek = (λk− λ)σ−1/3êk, the relation [êi, êk] =

0 in (e) yields [êi, σ
−1/3ek] = 0, that is, [σ−1/3ei, σ

−1/3ek] = 0. Applying

Remarks 14.3 and 14.4 to the vector fields σ−1/3ei, σ
−1/3ek and to the metric

σ2/3g making them orthonormal, we see that g is, locally, conformal to a
Riemannian product of two surface metrics. Therefore w ∈ {1, 2} by Remark
4.6, contradicting the definition of class (D0) in Section 8, which includes the
requirement that w = 3.

By (15.2.b), λl− λ = −(λk+ 3λ), and so (g) implies that

(15.6)
i) Flk = Gl + (λk− λ)F̂lk , Fkl = Gk − (λk+ 3λ)F̂kl ,

ii) (F̂lkGk − F̂klGl)λλk = (F̂lkGk + 3F̂klGl)λ
2 − λGkGl ,

(15.6.ii) being the result of using (15.6.i) to rewrite the second equality in (c).

Thus, λF̂lkGk = λF̂klGl, or else, in an open set on which λF̂lkGk ̸= λF̂klGl, the
formula for λk arising from (15.6.ii) would, by (a) and (g), show that Diλk = 0
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for both i = 1, 2, contradicting the second part of (h). Since λF̂lkGk = λF̂klGl,
(15.6.ii) reads

(15.7) 4λ2F̂lkGk = 4λ2F̂klGl = λGkGl .

By (15.6), (15.7) and (15.3), 4λ2FklGl = 4λ2GkGl− 4(λk+ 3λ)λ2F̂klGl, that is,
4λ2FklGl = (λ−λk)λGkGl = −λGlDkλ. This proves the second equality in (h),
as it obviously holds on any open set on which λ = 0. □

Remark 15.2. Assuming (15.1), we have Fki = Gk and λ = λi in view of
Lemma 15.1(b) and (15.2.a), while σ = σij = σkl by (9.2.b), so that combining

(14.2.e) with (2.5) we obtain DiFij+DjFji+F
2
ij +F

2
ji +G

2
k+G

2
l = −σ−λ−s/12

along with DiFik+DkGk+ F 2
ik +G2

k + FjiFjk+GlFlk = −σik − (λ+ λk + s/6)/2

and, from (15.2.b), DkFkl+DlFlk+ F 2
kl + F 2

lk + FikFil+ FjkFjl = −σ + λ− s/12.

16. Proof of Theorem 2.2(c): part two

Throughout this section, again, {i, j} = {1, 2} and {k, l} = {3, 4}. Accord-
ing to (15.2.b) and (9.2.b), there exist functions µ, τ , not depending on the
choice of i ∈ {1, 2} and k ∈ {3, 4}, such that, with σ = σij ,

(16.1)

a) λk = (−1)kµ− λ,
b) σik = (−1)i+kτ − σ/2,
c) σij = σkl = σ,
d) − 2Fkl = Dk log |µ|+ [1− 2(−1)kλ/µ]Gk ,

where (16.1.d) follows from (16.1.a) and (15.3), since Dkλl = (λk − λl)Fkl,
cf. (14.2.b). Note that µ ̸= 0 (and (16.1.d) holds) on an open set which is
nonempty (and therefore dense, by (2.1)), or else (16.1.a) would give λ3 = λ4,
contradicting (15.2.a). In view of Lemma 15.1(g) and (16.1),

(16.2) 2(−1)kF̂kl = [Dk log |µ| + {3 − 2(−1)kλ/µ}Gk]/[µ+ 2(−1)kλ].

Using (9.2.b), Lemma 15.1(b) and equations (14.2.b)-(14.2.c), we see that

(16.3)
a) 2Diσ = −3(Fik + Fil)σ − 2(−1)i+k(Fik − Fil)τ ,
b) 4Diτ = −3(−1)i+k(Fik − Fil)σ − 2[4Fij + Fik + Fil]τ ,
c) Dkσ=−3Gkσ, Dkτ =−(2Fkl+Gk)τ , Dkλ=[(−1)kµ−2λ]Gk ,

the last equality in (16.3.c) being due to (15.3) and (16.1.a). As Diλ = 0, cf.
Lemma 15.1(a), from Lemma 15.1(d) and (16.1.a) we get

(16.4)

Fik + Fil = Dilog |µ2− 4λ2| = 2(µ2− 4λ2)−1µDiµ,

(−1)i+k(Fik − Fil) = Dilog |[µ+ 2(−1)iλ]/[µ− 2(−1)iλ]|
= −4(−1)i(µ2− 4λ2)−1λDiµ.
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The functions Pi, Qi given by 2Pi = (−1)k(Fik−Fil) and 2Qi = −(Fik+Fil) are
clearly independent of the choice of k, l with {k, l} = {3, 4}. Also,

(16.5)

i) Fik = (−1)kPi − Qi , −Fil = (−1)kPi + Qi ,
ii) Diσ = 3Qiσ − 2(−1)iPiτ ,
iii) Diτ = (Qi− 2Fij)τ − 3(−1)iPiσ/2,
iv) Diµ = 2λPi+ µQi ,
v) µPi+ 2λQi = 0.

Namely, (16.5.i) is obvious, and (16.5.ii)-(16.5.iii) follow from (16.3). On the
other hand, (−1)kDiµ = Diλk = (λ−λk)Fik by (16.1.a), Lemma 15.1(a), (14.2.b)
and (15.2.a); simultaneously, (16.1.a) and (16.5.i) give (λ − λk)Fik = [2λ −
(−1)kµ][(−1)kPi −Qi]. Hence Diµ = [2λ − (−1)kµ][Pi − (−1)kQi], that is, Diµ =
2λPi+µQi − (−1)k(µPi+2λQi), which holds for both k ∈ {3, 4}, thus implying
(16.5.iv) and (16.5.v). Next,

(16.6)

DiPi = 2PiQi− FjiPj − (−1)iτ − µ/2

−(−1)k(DkGk −DlGl +G2
k −G2

l +GlFlk −GkFkl)/2,

DiQi = P 2
i +Q2

i − FjiQj − (σ − s/6)/2

+ (DkGk +DlGl +G2
k +G2

l +GlFlk +GkFkl)/2.

This is immediate from the definitions of Pi and Qi, (16.5.i), and the second
conclusion of Remark 15.2, the right-hand side of which is equal, by (16.1.a)
and (16.1.b), to −(−1)i+kτ + [σ − (−1)kµ− s/6]/2. Furthermore,

(16.7)
λ is nonzero everywhere in some dense open set and, whenever
it is constant, Fki = Gk = Dkσ = 0 for all (i, k) ∈ {1, 2}×{3, 4}.

In fact, the second claim is obvious from (15.3) and Lemma 15.1(b). As for the
first, let λ = 0 on a nonempty open set. On such a set, with (15.1), the last
equality in (16.4) gives Fik = Fil or, in the notation of (16.5), Pi = Pj = 0. Since

Gk = Gl = 0 by (16.7), the first formula in (16.6) now reads (−1)iτ = −µ/2.
This being the case for both i ∈ {1, 2}, it follows that τ = µ = 0. Consequently,
as λ = 0, (16.1.a) yields λ3 = λ4 = 0, contradicting (15.2.a).

Subtracting from (16.6) its version obtained by switching i, j and noting
that (−1)j = −(−1)i, we get

(16.8)
DiPi− 2PiQi− FijPi − (DjPj − 2PjQj − FjiPj) = −2(−1)iτ ,
DiQi− P 2

i −Q2
i − FijQi = DjQj− P 2

j −Q2
j − FjiQj .

Since λi = λj = λ and Fki = Fkj = Gk, cf. (15.2.a) and Lemma 15.1(b), the
second displayed equation in Theorem 2.3 with i and l switched takes, by
(16.5.i) and (16.1.a)-(16.1.c), the form

(16.9)
[(2Fkl − Gk)Pi − (−1)kQiGk][4λτ + 3(−1)iµσ]

= [(−1)kPiGk − QiGk][4(−1)kλτ − 2µτ ].
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17. Proof of Theorem 2.2(c): part three

We continue making the same assumptions as in Lemma 15.1.

Lemma 17.1. One has G3G4 = 0 everywhere.

Proof. Suppose that, on the contrary, neither G3 nor G4 is identically 0. As
λ ̸= 0 somewhere by (16.7), using (2.1) we may restrict our discussion to a
dense open set, at every point of which

(17.1) λG3G4 ̸= 0.

With (15.1), for some functions C3, C4, E3, E4,Π and ε = sgnλ ∈ {1,−1},

(17.2)

i) Fkl= Dk log |λ|−1/4, ii) DkCl = 0,
iii) λ = ε(C3+ C4)

2, iv) ε(C3+ C4) > 0,
v) λ− λk= 4ε(C3+ C4)Ck, vi) λk= ε(C3+ C4)(Cl − 3Ck),

vii) Di(C3+ C4) = 0, viii) Fik = −Di log |Ck|,
ix) Ck= Ek + (−1)kΠ, x) DkEl = DiEk = DkΠ = 0,
xi) DiCk= (−1)kDiΠ, xii) Π is nonconstant.

In fact, (17.1) and the second claim in Lemma 15.1(h) imply (17.2.i). Setting
Ck = |λ|−1/2(λ − λk)/4 and using (15.2.b) we obtain (17.2.ii) (since (14.2.b),
(17.2.i) and (15.2.b) give 4λDkλl = (λl− λk)Dkλ = 2(λ+ λl)Dkλ), as well as
(17.2.iii)-(17.2.v), while subtraction of (17.2.v) from (17.2.iii) yields (17.2.vi).
Equality (17.2.vii) is a consequence of (17.2.iii) and Lemma 15.1(a). Similarly,
(17.2.v), (17.2.vii) and Lemma 15.1(d) lead to (17.2.viii). For ∂i, ∂k chosen
as in Remark 14.3, the relations ∂kCl = ∂i(Ck + Cl ) = 0, due to (17.2.ii)
and (17.2.vii), show that the function ∂iCk = −∂iCl is constant along H =
Span{e3, e4}, and so Ck, for k = 3, 4, equals a function constant along H plus
a function constant along V = Span{e1, e2}. Combined with (17.2.vii), this
proves the existence of E3, E4 and Π satisfying (17.2.ix)-(17.2.xi). Finally, if
Π were constant, (17.2.xi) and (17.2.vi) would give DiCk= Diλk= 0 for both
i = 1, 2 and both k = 3, 4, contradicting the first claim in Lemma 15.1(h).

Due to (15.3) and (17.2.ii)-(17.2.v), Lemma 15.1(b) gives Dk log |σ|−1/3 =

Dk log |Ck|−1/2, where Ck ̸= 0 in view of (17.2.v) and (15.2.a). Thus, by

(17.2.ii), Dk(|C3C4|−3/2σ) = 0, and so, for the function L = |C3C4|−3/2σ,

(17.3) σ = |C3C4|3/2L and DkL = 0 whenever k ∈ {3, 4}.
By (17.2.i), 2Fkl= Dk log |λ|−1/2. Adding this to the second equality in Lemma

15.1(b), one gets DkS = 0 for S = (−1)i+k|λ|−1/2σ−1/3(σik − σjk), with (15.1),

and k = 3, 4, where, in view of (9.2.b), S does not depend on the choice of
i, j, k, l satisfying (15.1). As (9.2.b) with σ = σij also yields σik−σjk = 2σik+σ,
the definition of S amounts to

(17.4) 2σik = −σ + (−1)i+k|λ|1/2σ1/3S with (15.1) and DkS = 0.

Next, (14.2.c) and (9.2.b) give Diσ = Diσkl = (σil−σ)Fik+(σik−σ)Fil. Replac-
ing σik, σil and Fik, Fil with the expressions provided by (17.4) and (17.2.viii),
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we easily verify that 2Diσ = (−1)i+k|λ|1/2σ1/3SDi log |Ck/Cl |+3σDi log |CkCl |.
Also, from (17.3), 2Diσ = 2|CkCl |3/2DiL+3σDilog |CkCl |. Since, by (17.2.iii)-

(17.2.iv), |λ|1/2 = ε(Ck + Cl ), while Di log |Ck/Cl | = (−1)k(C−1
k + C−1

l )DiΠ, cf.

(17.2.xi), and σ1/3 = |C3C4|1/2L1/3 from (17.3), equating the two expressions
for 2Diσ one gets, from (17.2.iv),

(17.5) (C−1
k + C−1

l )2 = 2|DiL|/|SL1/3DiΠ|
on a nonempty open set U ′′, where (17.2.xii) allows us to choose i ∈ {1, 2}
so that |DiΠ| > 0 on U ′′. Since, for ∂i, ∂k as in Remark 14.3, |DiL|/|DiΠ| =
|∂iL|/|∂iΠ|, and so ∂k applied to the right-hand side of (17.5) yields 0 in view

of (17.4), (17.3) and (17.2.x), we have, from (17.2.ii), 0 = Dk(C
−1
k + C−1

l ) =

−C−2
k DkCk. Thus, by (17.2.ii)-(17.2.iii), Dkλ = 0. Combined with (15.3) and

(17.1), this leads to a contradiction, proving that G3G4 = 0. □

Assume (15.1). In view of (14.2.a), for any function θ we have

(17.6) (∇dθ)(ei, ej) = DiDjθ − FjiDiθ.

By Lemma 15.1(d), Fik = Diθk, where θk = log |λk− λ|−1. Now (14.4.i) reads
DiDjθk = (Fji − Djθk)Diθk, and so, with θ = θk, from (17.6), (∇dθ)(ei, ej) +
(Djθ)Diθ = 0, that is, (∇deθ)(ei, ej) = 0. In other words, for ψk = (λk− λ)−1,

(17.7) (∇dψk)(ei, ej) = (∇dψl)(ei, ej) = 0 if {k, l} = {3, 4}.

When k, l such that {k, l} = {3, 4} are fixed, setting ψ = ψk we obtain ψl =
−(4λ+1/ψ)−1 from (15.2.b). Now (17.6) applied to θ = ψl and θ = ψk yields
−(4λψ+1)3(∇dψl)(ei, ej) = (4λψ+1)(∇dψ)(ei, ej)−8λ(Djψ)Diψ, with ψ = ψk,

as Diλ = 0 (see Lemma 15.1(a)). In view of (17.7), this gives (Djψk)Diψk = 0,

since λ ̸= 0 by (16.7). Using (16.1.a) and, again, the relation Diλ = 0 in
Lemma 15.1(a), we see that

(17.8) (Djµ)Diµ = 0 if {i, j} = {1, 2}.
From now on the symbols • stand for any indices for which the expression
makes sense. For instance, j, •, • in Hj•• are mutually distinct.

Lemma 17.2. One can fix i, j ∈ {1, 2} and a nonempty open connected set
U ′′, so that, whenever {k, l} = {3, 4},

(a) Djµ = 0 ̸= Diµ everywhere,

(b) Diλ = Djλ = DiGk = DjGk = GlGk = 0,

(c) Fj• = 0 and Hj•• = H•j• = 0,

(d) Djλk = Djσ = Djσ•• = DjFij = 0.

Proof. Lemmas 15.1(a) and 17.1 imply (b) for i, j ∈ {1, 2}. Thus, by real-ana-
lyticity, cf. (2.1), and (17.8), Djµ = 0 everywhere for one choice of j (but not

for both, since that would, in view of (b) and (16.1.a), yield Diλk= 0 whenever
i ≤ 2 < k, contradicting Lemma 15.1(h)). Now (a) follows. From (a), (b),
(16.1.a) and Lemma 15.1(d) we in turn obtain Djλk = Fjk = 0, although, as
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we just saw, Diλk ̸= 0. (Here and below, i, j ∈ {1, 2} are fixed, so as to satisfy
(a), and {k, l} = {3, 4}.) Next, (17.7) and (17.6), for θ = ψk = (λk− λ)−1,
give DiDjθ = FjiDiθ, while Djθ = 0 ̸= Diθ by (b) with Djλk = 0 ̸= Diλk.

Hence Fji = 0, that is, Fj• = 0, as required in (c), and the rest of (c) is obvious

from (14.1). Also, combining (c) with the equality (σjk− σik)(DjFij −DiFji) =

3(Hlk − Hkl)σkl, which is a special case of (14.4.ii) or, respectively, with the
expression for Djσ•• resulting from (14.2.c), we obtain (d), since σjk ̸= σik and

σ = σij = σkl according to (9.2.a) and (9.2.b), while we already saw, in the fifth

line of the proof, that Djλk = 0. □

18. Proof of Theorem 2.2(c): conclusion

Fixing i, j with {i, j} = {1, 2} and U ′′ as in Lemma 17.2, for µ, σ, τ, Pi,
Qi appearing in (16.1) - (16.5), let us set P = Pi and Q = Qi. We have

(18.1)

i) µP + 2λQ = 0,
ii) Pj = Qj = Fji = Diλ = DiGk = 0,
iii) DiP = 2PQ + PFij − 2(−1)iτ ,
iv) DiQ = P 2 + Q2 + QFij .
v) 2λ(P 2 − Q2) = (−1)iµτ ,
vi) 2(−1)i(2Fijµ − 5λP )τ = 3λQσ.

In fact, (16.5.v) amounts to (18.1.i); the definitions of Pj , Qj preceding (16.5)
and Lemma 17.2(b)–(c), and (16.5.v) yield (18.1.ii); also, (18.1.iii)-(18.1.iv) are
trivial consequences of (16.8) and (18.1.ii). Next, (18.1.v) follows if one applies
Di to (18.1.i), uses (16.5.iv), (18.1.iii), (18.1.ii), (18.1.iv), and simplifies, with
the aid of (18.1.i), the resulting equality

(Fij + 3Q)(µP + 2λQ) + 2[2λ(P 2−Q2)− (−1)iµτ ] = 0.

Finally, by (18.1.ii)-(18.1.iv) and (16.5.iii)-(16.5.iv), Di applied to (18.1.v)
shows that the left-hand side of (18.1.vi) coincides with

3λQσ − 2(Fij +Q)[2λ(P 2−Q2)− (−1)iµτ ]− 3(µP + 2λQ)σ/2.

Thus, (18.1.v) and (18.1.i) give (18.1.vi). By (15.2.a) and Lemma 15.1(b),

(18.2) λi = λj = λ and Fki = Fkj = Gk, while Pi = P and Qi = Q.

Now, from (16.5.i) and (18.2), along with (14.4.i) and (18.1.iii)-(18.1.iv),

(18.3)

Fik = (−1)kP − Q,
DkFij = [(−1)kP − Q−Fij ]Gk ,
DiFik = (−1)k[2PQ+ PFij − 2(−1)iτ ]− (P 2+ Q2+QFij),
DiFkl = [(−1)kP + Q](Fkl−Gk).
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By Lemma 17.1, restricting our discussion to an nonempty open subset of U ′′,
we may fix k, l with {k, l} = {3, 4} and Gl = 0 everywhere. Then

(18.4)
either Gk vanishes identically on U ′, or Gk ̸= 0
at all points of some open dense subset of U ′,

as a consequence of real-analyticity, cf. (2.1). Furthermore,

(18.5)

i) DiFij = −(F 2
ij + G2

k + σ + λ + s/12),
ii) PFij = (−1)iτ − µ/2,
iii) QFij + (σ − s/6)/2 = GkFkl .

Namely, (18.5.i) is due to the first conclusion of Remark 15.2 with Fji = 0, cf.

(18.1.ii), and Gl = 0. To prove (18.5.ii)-(18.5.iii) we begin by observing that
(16.6) and (18.1.ii)-(18.1.iv) easily give

(a) DkGk + G2
k + GkFkl = 2QFij + σ − s/6,

(b) (−1)k(DkGk + G2
k − GkFkl) = 2[PFij − (−1)iτ ] + µ,

(c) QFij − GkFkl + (σ − s/6)/2 = (−1)k[PFij − (−1)iτ + µ/2],

(c) arising when one subtracts (b) multiplied by (−1)k from (a). Next, apply-
ing (14.4.v) to the triple (k, i, j) rather than (i, k, l), one obtains the equality
DkDiFij + (Fki+ Fkj)DiFij = FkjDiFik + (Fik − Fij)Hlj . Equivalently, due to

(18.2), DkDiFij = [(Fik − Fij)Fik +DiFik − 2DiFij ]Gk, as (14.1) and (18.2) give

Hlj = FikGk. With Fik, DiFik, DiFij replaced by the expressions in (18.3) and

(18.5.i), this shows that DkDiFij equals 2Gk times

F 2
ij +G2

k − (−1)i+kτ + λ+ σ + s/12.

Simultaneously, by (18.5.i), DkDiFij = −Dk(F
2
ij + G2

k + σ + λ + s/12) which,

evaluated via (18.3), (a), (16.3.c) and (5.3), equals 2Gk times

F 2
ij +G2

k −QFij +GkFkl− (−1)k[PFij + µ/2] + λ+ (σ − s/3)/2.

Equating the two displayed expressions, one easily gets

(18.6) [QFij −GkFkl+ (σ − s/6)/2 + (−1)k{PFij − (−1)iτ + µ/2}]Gk = 0.

In the first case of (18.4), (a)-(b) clearly yield (18.5.ii) and (18.5.iii). In the
second case, the two equal sides of (c) are, by (18.6), also each other’s opposites,
and so both vanish, proving (18.5.ii)-(18.5.iii).

Lemma 18.1. Each of the following seven functions:

(−1)kP −Q, 2(−1)iτ + 3(−1)kσ, λ, µ, P, Q, Diµ

is nonzero everywhere in some open dense subset of U ′.

Proof. Due to real-analyticity, cf. (2.1), it suffices to show that none of the
seven functions can vanish on a nonempty open subset U ′′ of U ′. For λ,Diµ
(and, consequently, µ) this is clear from (16.7) and Lemma 17.2(a). If P were
identically zero on U ′′, so would be τ , and hence µ, by (18.1.iii) and (18.5.ii),
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contrary to what we just showed about µ. Thus, Q ̸= 0 on U ′′ from (18.1.i)
with µP ̸= 0. In view of (18.1.i), vanishing of (−1)kP − Q on U ′′ would give
2(−1)kλP = 2λQ = −µP on U ′′ and, as P ̸= 0, the equality µ = −2(−1)kλ
would follow, even though Diµ ̸= 0 = Diλ, cf. (18.1.ii). Finally, suppose that
2(−1)iτ+3(−1)kσ = 0 on U ′′. Using, successively, (9.2.b), (16.1.c) and (16.1.b),
we now get σij − σil = σij + (σij + σik) = 2σ + σik = 2σ + (−1)i+kτ − σ/2 =

(−1)k[2(−1)iτ + 3(−1)kσ]/2 = 0, so that σij = σil, which contradicts (9.2.a). □

Lemma 18.2. The second case of (18.4) cannot occur.

Proof. Let us assume that, on the contrary, Gk ̸= 0 everywhere in a dense
open set, and apply Di to (18.5.iii), using (18.5.i), (18.1.iv), (16.5.ii) with
(18.2), (5.3), (18.1.ii) and (18.3). We consequently get

(−1)k(Gk − Fkl)PGk + [QFij −GkFkl+ (σ − s/6)/2]Q

+ [PFij − (−1)iτ + µ/2]P − (µP + 2λQ)/2 = 0

which, by (18.5.iii), (18.5.ii) and (18.1.i), amounts to (Gk − Fkl)PGk = 0. As
Lemma 18.1 now gives PGk ̸= 0, one has Gk = Fkl. Replacing, in (16.9), the
triple (Pi , Qi , Fkl) with (P,Q,Gk), we easily obtain the equality [(−1)kP −
Q][2(−1)iτ + 3(−1)kσ]Gkµ = 0. This contradicts Lemma 18.1. □

Lemma 18.2 and the line preceding (18.4) give Gk = Gl = 0, and so, by
(16.3.c), Lemma 17.2(b), and the first claim in (16.7)

(18.7) λ is a nonzero constant,

if U ′′ is connected (or replaced by a connected component). Also,

(18.8)

a) µP + 2λQ = 0,

b) PFij = (−1)iτ − µ/2,

c) QFij = −(σ − s/6)/2,

d) 2(−1)i(2Fijµ − 5λP )τ = 3λQσ,

e) [(−1)iτ − µ/2]µ = (σ − s/6)λ,

f) (−1)i(Fijµ − 2λP )τ = (2λ + σ − s/6)λQ,

g) (−1)iFijµτ = (10λ + 2σ − 5s/6)λQ,

h) 4(−1)iλτ + (8λ + σ − 2s/3)µ = 0.

In fact, (18.8.a)-(18.8.d) are just certain parts of (18.1) and (18.5), with Gk = 0
in (18.5). Equality (18.8.e) arises in turn due to (18.8.a), if one adds (18.8.b)
multiplied by µ to (18.8.c) times 2λ. Let us now apply Di to (18.8.e), using
(18.7), (5.3), (16.5) and (18.2). The resulting relation

2(−1)i(Fijµ − 2λP )τ + (2λ + 3σ/2)(µP + 2λQ)

− 2(2λ+ σ − s/6)λQ + 2{(σ − s/6)λ− [(−1)iτ − µ/2]µ}Q = 0
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becomes (18.8.f) when combined with (18.8.a) and (18.8.e), while (18.8.g) is
just the side-by-side difference of (18.8.f) multiplied by 5 and (18.8.d). Next,
subtracting (18.8.d) from 4 times (18.8.f) and cancelling the factor λ, as al-
lowed due to (18.2), we get 2(−1)iPτ = (8λ + σ − 2s/3)Q. Multiplying this
by µ and then replacing µP with −2λQ, cf. (18.8.a), we see that Q times
the left-hand side of (18.8.h) equals zero, and so (18.8.h) follows, since Q ̸= 0
according to Lemma 18.1.

Now (18.1.vi) times µ, with µP replaced by −2λQ as above, is nothing else
than 4(−1)iFijµ2τ = [3µσ−20(−1)iλτ ]λQ, while (18.8.g) multiplied by 4µ yields

4(−1)iFijµ2τ = (10λ+2σ− 5s/6)µλQ. As Q ̸= 0 in Lemma 18.1, equating the

two right-hand sides, we easily get µσ = 20(−1)iλτ + (10λ− 5s/6)µ. However,
from (18.8.h), µσ = −4(−1)iλτ − (8λ − 2s/3)µ. Equating, again, the two new
right-hand sides, we see that, due to (5.3) and (18.7) (that is, constancy of both
λ and s), τ = cµ for some constant c, and so µσ is a constant multiple of µ
as well. By Lemma 18.1, σ must be constant. We have four further equalities:

(i) 2(−1)iPτ − 3Qσ = 0,
(ii) µP + 2λQ = 0,
(iii) 4(−1)iλτ + 3µσ = 0,
(iv) (10λ + σ − 2s/3)µ2 + 4(σ − s/6)λ2 = 0.

Here (i) follows from constancy of σ, by (16.5.ii) and (18.2), while (ii) is nothing
else than (18.1.i), repeated here for convenience, and (iii) amounts to vanishing
of the determinant of the system (i)-(ii), due to nontriviality of its solution
(P,Q) (see Lemma 18.1). Finally, (iv) is the result of subtracting (18.8.e)
multiplied by 4λ from (18.8.h) multiplied by µ.

Using (iii) to replace 4(−1)iλτ in (18.8.h) with −3µσ, and then cancelling
the factor µ, cf. Lemma 18.1, we see that σ = 4λ − s/3, which allows us to
rewrite (iv) as (14λ − s)µ2 + 2(8λ − s)λ2 = 0 By (18.7) and (5.3), this last
equality implies that µ is constant, which contradicts the assertion about Diµ
in Lemma 18.1.

Appendix: The other curvature components in Theorem 11.1

Whenever {i, j} = {1, 2} and {k, l} = {3, 4}, with yl as in (9.7),

Rijij =
DiDiλi +DjDjλi

2λi
− 3

(Diλi)
2+ (Djλi)

2

4λ2i

− (Dkλi)
2+ (Dlλi)

2+ y2k + y2l
λ2i − λ2k

,

Rikij =
DkDjλi
2λi

+ (λk − 2λi)
(Dkλi)Djλi
2λ2i (λi − λk)

+
(λi + 3λk)ylDiλi
4λ2i (λi + λk)

− Diyl
2λi

,

Rklij = Dl

yl
2λi

− Dk

yk
2λi

,

Rklik = Rklkl = 0.
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