UNFLAT CONNECTIONS IN 3 SPHERE BUNDLES OVER S^4

BY

ANDRZEJ DERDZIŃSKI1 AND A. RIGAS2

Abstract. The paper concerns connections in 3-sphere bundles over 4-manifolds having the property of unflatness, which is a necessary condition in order that a natural construction give a Riemannian metric of positive sectional curvature in the total space. It is shown that, as conjectured by A. Weinstein, the only 3-sphere bundle over S^4 with an unflat connection is the Hopf bundle.

1. Introduction. Suppose H is a closed subgroup of a compact connected Lie group G and let ω be a connection in a principal G-bundle $P \to M$. Following A. Weinstein [13] one can call ω H-unflat if, for any $p \in P$, the curvature form Ω_p restricted to the horizontal space at p has the property that its composite with any nonzero functional on the Lie algebra of G, annihilating the Lie algebra of H, is nondegenerate (cf. also [2]). (The term "fat" is used instead of "unflat" in [13].)

The motivation for this concept comes from a natural idea of constructing a metric on the total space $E = P \times_G G/H = P/H$ of the bundle with fibre G/H, associated to P, by means of a connection ω in P and a Riemannian metric h on the base manifold M. The construction consists in declaring the fibres orthogonal to the horizontal spaces, the former being isometric to G/H with a fixed normal homogeneous metric, while the latter carry the inner products pulled back from h. The H-unflatness of ω is then equivalent to the positivity of the sectional curvatures of all planes spanned by one horizontal and one vertical vector in E.

However, the condition of positivity of all sectional curvatures in E is much stronger. In fact, since the fibres of E are totally geodesic, the normal homogeneous space G/H must then have positive sectional curvature (unless $\dim G/H = 1$). The same must hold for (M, h) in view of the O'Neill formulae [10], as $E \to M$ is a Riemannian submersion. This imposes natural restrictions on the bases and fibres of bundles for which the construction of unflat connections could be a tool for finding new compact manifolds with positive curvature.

There are also examples of total spaces of principal G-bundles with G-invariant positively curved metrics, for which the corresponding connections are not $\{1\}$-unflat, in particular, the exceptional positively curved normal homogeneous space $Sp(2)/Sp(1)$ of Berger [3] fibers principally over S^4 with structure group S^3 acting
by isometries. In this case, the fibers are not totally geodesic and the connection that occurs is not unflat, which follows, e.g., from Corollary 1 below.

The results of this paper show that, in the case of 3-sphere bundles over four-manifolds, unflat connections appear to be scarce. Our argument is based on constructing a conformal structure in the base manifold, intrinsically associated to the given unflat connection. Namely, we prove (Theorem 2) that the characteristic numbers of a bundle with such a connection satisfy a certain inequality, which implies (Theorem 3) that the only principal \(SO(4) \)-bundle with an \(SO(3) \)-unflat connection over \(S^4 \) is the one that has the Hopf fibration \(S^7 \to S^4 \) as the associated 3-sphere bundle. This proves a conjecture of Weinstein [13], implying at the same time that the above procedure does not yield positively curved Riemannian metrics on exotic 7-spheres. However, it does, in some cases, yield Riemannian metrics of nonnegative sectional curvature ([11]; see also [4]).

The authors wish to thank Nigel Hitchin for helpful discussions concerning this paper.

2. Unflat forms. Let \(T \) and \(V \) be real vector spaces of positive dimensions, \(\Omega \) a \(V \)-valued exterior 2-form on \(T \). The form \(\Omega \) is called unflat if, for any nonzero functional \(f \in V^* \), the composite \(f \circ \Omega: T \wedge T \to \mathbb{R} \) is nondegenerate, that is, \(\text{rank}(f \circ \Omega) = \dim T \). This is clearly equivalent to saying that the map \(T \ni v \mapsto \Omega(u, v) \in V \) is surjective for any nonzero \(u \in T \) (cf. [13]).

As observed by Weinstein [13], the property of unflatness is very restrictive: Given an unflat form \(\Omega: T \wedge T \to V \), choose an inner product in \(T \) and let \(S \) be the unit sphere. Then the maps \(\Omega(u, \cdot): T \to V, u \in S \), define a vector bundle epimorphism of \(TS \) onto \(S \times V \), i.e., \(TS \) contains a trivial subbundle of dimension \(\dim V \). In particular, if \(\dim V > 1 \), then \(\dim T \equiv 0 \pmod 4 \).

EXAMPLES. (1) Unflat forms \(\Omega: T \wedge T \to \mathbb{R} \) are just symplectic structures in \(T \).

(2) Let \(V = \text{Im} \mathbf{H} \), the 3-dimensional space of pure quaternions. For \(T = \mathbf{H}^k \), the space of \(k \)-tuples of quaternions, an unflat form \(\Omega: T \wedge T \to \mathbb{R} \) can be defined by

\[
\Omega((x_1, \ldots, x_k), (y_1, \ldots, y_k)) = \text{Im}(x_1y_1 + \cdots + x_ky_k),
\]

where \(\text{Im} \) denotes the pure quaternion part.

(3) If \(\Omega: T \wedge T \to V_1 \) is unflat and \(F: V_1 \to V_2 \) is an epimorphism, then \(F \circ \Omega: T \wedge T \to V_2 \) is unflat.

From an obvious dimension argument, we obtain

Lemma 1. For real vector spaces, \(T, V \) with \(\dim T = \dim V + 1 \), a form \(\Omega: T \wedge T \to V \) is unflat if and only if \(\Omega(u, v) \neq 0 \) for every pair of independent vectors \(u, v \in T \).

For the remainder of this section, we assume that \(T \) and \(V \) are real vector spaces with \(\dim T = 4 \), \(\dim V = 3 \).

The formula

\[
\det[a_{ij}] = (a_{12}a_{34} + a_{13}a_{42} + a_{14}a_{23})^2,
\]

valid for any skew-symmetric \(4 \times 4 \)-matrix (cf. [9, p. 309]), together with the definition of unflatness, yields
Lemma 2. If $\Omega: T \wedge T \to V$ is unflat, then the assignment

$$V^* \ni f \mapsto [\det(f \circ \Omega)]^{1/2} \in \mathbb{R}$$

is a positive definite quadratic form in V^*, determined by Ω up to a scaling factor (since \det is not well defined).

Thus, (2) defines a conformal structure in V^*, and hence also in V. Having in mind the latter, we shall call a basis of V Ω-conformal if it is orthonormal for some inner product within the conformal structure.

For later convenience, let us introduce some notations. Given a vector space W, denote by LW the set of all bases of W. For $e = (e_1, \ldots, e_n) \in LW$ and $0 = t \in \mathbb{R}$, set $te = (te_1, \ldots, te_n)$. Finally, for vector spaces T, V with $\dim T = 4, \dim V = 3$, a form $\Omega: T \wedge T \to V$ and bases $e \in LT, x \in LV$, we shall write, by abuse of notation,

$$\Omega(e) = x$$

instead of

$$\Omega(e_1, e_2) = \Omega(e_3, e_4) = x_1,
\Omega(e_1, e_3) = \Omega(e_4, e_2) = x_2,
\Omega(e_1, e_4) = \Omega(e_2, e_3) = x_3.$$

Lemma 3. If $\Omega: T \wedge T \to V$ is unflat and $X \in LV$ is Ω-conformal, then for any nonzero vector $e_i \in T$ there exist unique vectors $e_2, e_3, e_4 \in T$ and a unique real number $\lambda \neq 0$ such that $e = (e_1, e_2, e_3, e_4) \in LT$ and $\Omega(e) = \lambda X$. Moreover, the orientation of V determined by λX depends only on Ω, i.e., Ω distinguishes an orientation in V.

Proof. By unflatness, there exist $u_2, u_3, u_4 \in T$ such that $\Omega(e_1, u_{i+1}) = X_i, i = 1, 2, 3$, and they complete e_1 to a basis of T. Let $\Omega = \Sigma_i \Omega_i X_i$. Setting $v_2 = u_2 - \Omega_2(u_2, u_3)e_1, v_3 = u_3 + \Omega_1(u_2, u_3)e_1, v_4 = u_4 + \Omega_1(u_2, u_4)e_1$, we obtain

$$\Omega(e_1, v_{i+1}) = X_i, \quad i = 1, 2, 3, \quad \Omega(v_2, v_3) = \delta X_3,$$

for some $\alpha, \beta, \gamma, \delta, \epsilon, \zeta$. On the other hand, since X is Ω-conformal, (1) and (5) yield

$$\mu(x^2 + y^2 + z^2)^2 = \det(x\Omega_1 + y\Omega_2 + z\Omega_3)$$

for some $\mu > 0$ and arbitrary real x, y, z, the determinant being calculated in the basis e_1, v_2, v_3, v_4. Therefore $\alpha = -\beta = \delta \neq 0$ and $\gamma = \zeta = \epsilon = 0$. Our assertion is now satisfied by $e_{i+1} = \alpha^{-1}v_{i+1}, i = 1, 2, 3$, and $\lambda = \alpha^{-1}$. To prove the uniqueness statement, assume $\Omega(e) = \lambda X, \Omega(e') = \lambda' X$ and $e'_1 = e_1$. Since Ω is unflat, the kernel of $T \ni u \mapsto \Omega(e_1, u) \in V$ is spanned by e_1, which implies (cf. (4)) that $e'_{i+1} = \lambda\lambda^{-1}e_{i+1} + t_i e_i$ for some real $t_i, i = 1, 2, 3$. Evaluating now $\Omega(e'_i, e'_j), 2 < i < j < 4$, we obtain $\lambda' = \lambda$ and $t_i = 0, i = 1, 2, 3$, as desired. Finally, to show that the
orientation of \(\lambda X \) depends only on \(\Omega \), it is sufficient to observe that the map
\((e_1, X) \mapsto \lambda X \) is continuous and sends \((e_1, -X) \) to \((-\lambda(-X) = \lambda X \). This completes the proof.

For an unflat form \(\Omega: T \wedge T \to V \), let us denote by \(C_\Omega V \) the set of all \(\Omega \)-conformal bases \(X \in LV \), compatible with the orientation determined by \(\Omega \), i.e., satisfying (3) for some \(e \in LT \), and by \(C_\Omega T \) the set of all bases \(e \in LT \) such that

\[
\Omega(e, e) = \Omega(e_\kappa, e_\eta)
\]

(6)

for any even permutation \((i, j, k, \ell)\) of \((1, 2, 3, 4)\), i.e., satisfying (3) for some \(X \in LV \).

Remark 1. The matrix group \(SO(4) \) acts on \(LT \) from the left in the obvious way, which gives rise to an action of its universal covering \(Spin(4) = S^3 \times S^3 \). The latter can be described as follows: \(S^3 \times S^3 \times LT \ni (q_1, q_2, e) \mapsto q_1e_\ell q_2 \in LT \), the left (resp. right) action of the unit quaternions on \(LT \) being given, for \(e = (e_1, e_2, e_3, e_4) \in LT \), by \(ie = (-e_2, e_1, -e_4, e_3) \), \(je = (-e_3, e_4, e_1, -e_2) \), \(ke = (-e_4, -e_3, e_2, e_1) \) (resp. by \(ei = (-e_2, e_1, e_4, -e_3) \), \(ej = (-e_3, -e_4, e_1, e_2) \), \(ek = (-e_4, e_3, -e_2, e_1) \)) and then extended linearly. In terms of the obvious left action of \(SO(3) \) on \(LV \) and the covering homomorphism \(\varphi: S^3 \to SO(3) \), it is easy to verify that, given an unflat form \(\Omega: T \wedge T \to V \), a real number \(t \neq 0 \), \(q \in S^3 \) and \(e \in LT \), \(X \in LV \) such that \(\Omega(e) = X \), we have

\[
\Omega(te) = t^2X, \quad \Omega(eq) = X, \quad \Omega(qe) = \varphi(q)X.
\]

(7)

Lemma 4. Let \(\Omega: T \wedge T \to V \) be unflat. Then, for any fixed \(X \in C_\Omega V \), the set of all \(e \in LT \) satisfying (3) forms precisely one orbit of the right action of \(S^3 \) on \(LT \).

Proof. Suppose \(\Omega(e) = X \). If \(e' = eq \), then \(\Omega(e') = X \) by (7). Conversely, if \(\Omega(e') = X \), then we can clearly find \(q \in S^3 \) such that \(e' = \mu(eq)_1 \) for some \(\mu > 0 \). Since, by (7), \(\Omega(e') = X \) and \(\Omega(\mu eq) = \mu^2X \), the uniqueness statement of Lemma 3 implies \(\mu^2 = 1 \) and \(e' = \mu eq \), i.e., \(e' = eq \). This completes the proof.

The group \(GL(V) \) of all automorphisms of \(V \) acts from the left on the set of all unflat forms \(T \wedge T \to V \) by \((A\Omega)(u, v) = A(\Omega(u, v)) \), \(A \in GL(V) \), \(u, v \in T \).

Given real vector spaces \(T, W \) with dim \(T = 4 \), suppose that \(T \) is endowed with an **oriented conformal structure**, i.e., an orientation together with a homothety class of inner products. The Hodge star operator acting on \(\bigwedge^2T = T \wedge T \) is then defined by * \((e_1 \wedge e_2) = e_3 \wedge e_4, e_1, \ldots, e_4 \) being an arbitrary oriented conformal basis of \(T \). A 2-form \(\Omega: T \wedge T \to W \) is called **self-dual** if \(\Omega \circ * = \Omega \).

Lemma 5. (i) For any unflat form \(\Omega: T \wedge T \to V \), the set \(C_\Omega T \) of all bases \(e \in LT \) satisfying (6) is an orbit of the natural action of \(\text{Conf}^+(4) = \mathbb{R}_+ \times SO(4) \) on \(LT \). In other words, \(\Omega \) defines an oriented conformal structure in \(T \).

(ii) Every unflat form \(\Omega: T \wedge T \to V \) is self-dual with respect to the oriented conformal structure which it determines in \(T \).

(iii) The oriented conformal structure in \(T \), determined as above by any unflat form \(T \wedge T \to V \), is invariant under the natural action of \(GL(V) \) on unflat forms.
Proof. We use the conventions introduced in Remark 1.

(i) If \(e \in C_T \), say \(\Omega(e) = X \), and \(e' = tq_1 e q_2 \), \(t \in \mathbb{R}^+ \), \(q_1, q_2 \in S^3 \), then, by (7), \(\Omega(e') = t^2 \varphi(q_1)X \), hence \(e' \in C_T \). Conversely, if \(e, e' \in C_T \), say, \(\Omega(e) = X \), \(\Omega(e') = X' \), then \(X, X' \in C_V \). Therefore \(X' = t^2 \varphi(q_1)X \) for some \(t > 0 \) and \(q_1 \in S^3 \), which implies \(\Omega(tq_1 e) = X' = \Omega(e') \) in view of (7). Lemma 4 now yields \(e' = tq_1 e q_2 \) for some \(q_2 \in S^3 \), as required.

(ii) Our assertion is immediate from the fact that the bases \(e \in LT \) compatible with the oriented conformal structure determined by the unflat form \(\Omega \) are characterized by (6).

(iii) If \(e \in C_T \) and \(A \in \text{GL}(V) \), say, \(\Omega(e) = X \), then \((A\Omega)(e) = AX = (AX_1, AX_2, AX_3) \), so that \(e \in C_{AT} \). This completes the proof.

3. Relative unflatness. Let \(T \) and \(W \) be real vector spaces of positive dimensions. Given a subspace \(V \) of \(W \) and a 2-form \(\Omega: T \wedge T \to W \), one says that \(\Omega \) is \(V \)-unflat (cf. [13]) if the composite \(T \wedge T \to W \to W/ V \) of \(\Omega \) with the natural projection is unflat in the sense of §2.

Suppose now that \(\dim T = 4 \), \(\dim V = 3 \), \(W = V + V \) and that an inner product has been chosen in \(V \). Let \(SO(V) \) be the group of orientation preserving linear isometries of \(V \). We are interested in \(D \)-unflat forms \(T \wedge T \to V + V \), where \(D = \{(X, X): X \in V \} \subset V + V \) is the diagonal. The group \(SO(V) \times SO(V) \) acts then on 2-forms \(\Omega: T \wedge T \to V + V \) by \(((A, B)\Omega)(u, v) = (A\Omega_1(u, v), B\Omega_{-1}(u, v)) \), \(\Omega_1 \) and \(\Omega_{-1} \) being the components of \(\Omega \) in \(V + V \). This action does not, in general, preserve \(D \)-unflatness, since \(D \) is not invariant under \(SO(V) \times SO(V) \).

Lemma 6. Let \(\dim T = 4 \), \(\dim V = 3 \). Suppose \(V \) is endowed with an inner product. For a 2-form \(\Omega = (\Omega_1, \Omega_{-1}): T \wedge T \to V + V \), the following three conditions are equivalent:

(i) Every 2-form in the \(SO(V) \times SO(V) \)-orbit of \(\Omega \) is \(D \)-unflat, \(D \subset V + V \) being the diagonal.

(ii) For every pair of independent vectors \(u, v \in T \), \(|\Omega_1(u, v)| \neq |\Omega_{-1}(u, v)| \).

(iii) For some \(\varepsilon \in \{1, -1\} \), \(\Omega_{-\varepsilon} \) is unflat (as a \(V \)-valued form) and we have

\[
|\Omega_\varepsilon(u, v)| < |\Omega_{-\varepsilon}(u, v)|
\]

whenever \(u, v \in T \) are independent.

Proof. By Lemma 1, \(D \)-unflatness of \(\Omega = (\Omega_1, \Omega_{-1}) \) is equivalent to \(\Omega_1(u, v) \neq \Omega_{-1}(u, v) \) for arbitrary independent \(u, v \in T \). Thus, the orbit of \(\Omega \) consists of \(D \)-unflat forms if and only if \(A\Omega_1(u, v) \neq B\Omega_{-1}(u, v) \) for all \(A, B \in SO(V) \) and arbitrary independent \(u, v \in T \), which is obviously equivalent to (ii). Assume now (ii). From a connectivity argument we obtain (8) for some \(\varepsilon \in \{1, -1\} \) and any independent \(u, v \in T \). By Lemma 1, \(\Omega_{-\varepsilon} \) is unflat, which completes the proof.

4. Unflatness in principal bundles. Let \(P \to M \) be a differentiable principal \(G \)-bundle, \(G \) being a Lie group with Lie algebra \(g \). By a horizontal tensorial 2-form on \(P \) we shall mean a \(g \)-valued 2-form \(\Omega \) on \(P \) such that \(\Omega(u, \cdot) = 0 \) for any vertical tangent vector \(u \) and \(\Omega(ua, va) = ad a^{-1} \cdot \Omega(u, v) \) for \(a \in G \) and \(u, v \in TP \), \(ad \) being the adjoint representation. For example, these conditions are satisfied by the
curvature form of any connection in P. A horizontal tensorial 2-form Ω in P is called *unflat* if, for any $p \in P$, Ω_p restricted to a complement of the vertical subspace at p is unflat.

For a four-manifold M endowed with an oriented conformal structure, the Hodge star operator is a vector bundle endomorphism $*: \bigwedge^2M \to \bigwedge^2M$ with $*^2 = 1$. Therefore \bigwedge^2M splits as the direct sum $\bigwedge^+_M + \bigwedge^-_M$ of the 3-dimensional subbundles of *self-dual* and *anti-self-dual* forms, constituted by the ± 1-eigenspaces of $. Clearly, the bundles \bigwedge^\pm_M do not essentially depend on the conformal structure, i.e., they are determined up to equivalence by the *oriented* 4-manifold M alone. The principal $SO(3)$-bundle associated to \bigwedge^\pm_M will be denoted by $P \bigwedge^\pm_M$. More generally, replacing the tangent bundle TM by any oriented 4-plane bundle ξ over any paracompact space N, one can similarly define the oriented 3-plane bundles $\bigwedge^\pm\xi$ over N by means of an arbitrary fibre metric (or conformal structure) in ξ. We have the following formulae for characteristic classes, the coefficient field being, respectively, \mathbb{R} or \mathbb{Z}_2:

$$p_1(\bigwedge^+\xi) = p_1(\xi) + 2e(\xi), \quad (9)$$

$$w_2(\bigwedge^+\xi) = w_2(\xi). \quad (10)$$

In fact, (9) follows immediately from the curvature description of characteristic classes [9, pp. 308, 311], while (10) can be easily obtained with the aid of a splitting map for ξ [6, p. 235].

Remark 2. Suppose we are given an unflat horizontal tensorial 2-form Ω in a principal G-bundle $P \to M$, where $\dim M = 4$ and $G = SO(3)$ or $G = S^3$. For any $x \in M$ and any $p \in \pi^{-1}(x)$, the horizontal form Ω_p projects onto a $\mathfrak{so}(3)$-valued unflat form on T_xM and, since Ω is tensorial, the oriented conformal structure in T_xM defined by Ω_p is independent of $p \in \pi^{-1}(x)$ (cf. Lemma 5). Thus, Ω defines an oriented conformal structure on M. With respect to this structure, Ω_p is self-dual when viewed as a form on $T_{\pi(p)}M$, i.e., $f \circ \Omega_p \in \bigwedge^+_M(\pi(p))$ for any $f \in \mathfrak{so}(3)^*$. In other words, considering Ω as a 2-form on M valued in the adjoint bundle $ad P = P \times_{ad} \mathfrak{so}(3)$ of Lie algebras, we have $\Omega \circ * = \Omega$.

The following theorem can be viewed as a special case of Weinstein’s Theorem 7.2 of [13] (cf. Remark 3).

Theorem 1. Let $\pi: P \to M$ be a principal $SO(3)$-bundle over a four-manifold M. If P admits an unflat horizontal tensorial 2-form Ω, then M admits an orientation such that P is isomorphic to $P \bigwedge^+_M$.

Proof. Fix a basis X_1, X_2, X_3 of $\mathfrak{so}(3)$ and set $\Omega = \Sigma_i \omega_i X_i$. Viewing the forms ω_i and $\omega_i(p)$ as defined in $T_{\pi(p)}M$, it is clear from Remark 2 that $\Psi(p) = (\omega_1(p), \omega_2(p), \omega_3(p))$ is a basis of $\bigwedge^+_M(\pi(p))$ for any $p \in P$, the oriented conformal structure involved being the one determined by Ω. It is now immediate that the map $\Psi: P \to B$ is $SO(3)$-equivariant, B being the principal $GL(3)$-bundle of \bigwedge^+_M. This completes the proof.

Remark 3. In [13] A. Weinstein proved the following (Theorem 7.2): “Let P be a principal $SO(4)$-bundle over a compact orientable 4-manifold M. Denote by ξ the
four-plane bundle associated to P. If P admits an $SO(3)$-unflat connection, then, for properly chosen orientations in ξ and M, $\wedge_+ \xi$ is isomorphic to $\wedge_+ M$". Note that, for a fixed base manifold, the functors \{oriented 4-plane bundles\} $\ni \xi \mapsto \wedge_+ \xi \in \{oriented 3-plane bundles\}$ correspond, on the principal bundle level, to \{principal $SO(4)$-bundles\} $\ni P \mapsto P/S^3 \in \{principal SO(3)$-bundles\}, $\epsilon = \pm 1$. Here S^3 denotes the unique connected proper normal subgroups of $SO(4)$, both isomorphic to S^3. In terms of the unique connected proper normal subgroups of $SO(4)$, both isomorphic to S^3. In terms of the covering homomorphism $F: \text{Spin}(4) = S^3 \times S^3 \to SO(4)$, which assigns to $(q_1, q_2) \in S^3 \times S^3$ the isometry $x \mapsto q_1 x q_2$ of $H = \mathbb{R}^4$, we have $S^3_1 = F(\{1\} \times S^3)$ and $S^3_{-1} = F(S^3 \times \{1\})$. The assertion of Weinstein's theorem says precisely that, for some $\epsilon \in \{1, -1\}$ and a suitable orientation of M, $P \wedge_+ M$ is isomorphic to P_ϵ.

Remark 4. Let $P \to M$ be a principal $SO(3)$-bundle over an oriented compact four-manifold M with a fixed conformal structure. For any connection in P, the curvature form Ω can be viewed as a 2-form on M, valued in the adjoint bundle $\text{ad} P = P \times_{ad} so(3)$ of Lie algebras. Using any Riemannian metric on M, compatible with the conformal structure, and the bi-invariant metric on $SO(3)$, we have the Chern-Weil formula

$$c_4 \int_M \langle \Omega, \Omega \circ * \rangle = p_1(P)[M],$$

where c_4 is a universal constant and $p_1(P)$ denotes the first Pontryagin class of $\text{ad} P$. Moreover, the Schwartz inequality yields

$$|p_1(P)[M]| \leq c_4 \int_M |\Omega|^2$$

with equality if and only if Ω is self-dual or anti-self-dual, i.e., $\Omega \circ * = \pm \Omega$ (cf. [1]).

For a closed subgroup H of a Lie group G and a connection ω in a principal G-bundle $P \to M$, Weinstein's definition of unflatness was given in §1. If $G = SO(4)$ and $H = SO(3)$ is embedded in $SO(4)$ in the obvious way as the set of all orthogonal 4×4 matrices keeping the vector $(1, 0, 0, 0)$ fixed, then ω is H-unflat if and only if, for any $p \in P$, the curvature form Ω_p, restricted to the horizontal space at p, is D-unflat, D being the diagonal subspace of $so(4) = so(3) + so(3)$.

In the notations of Remark 3, we have

Theorem 2. Let $\pi: P \to M$ be a principal $SO(4)$-bundle with an $SO(3)$-unflat connection ω over a compact four-manifold M. Then there exist an orientation in M and $\epsilon \in \{1, -1\}$ such that

(i) P_ϵ is isomorphic to $P \wedge_+ M$, and

(ii) $0 \leq |p_1(P)[M]| < 3\tau(M) + 2\chi(M)$, $\tau(M)$ being the signature and $\chi(M)$ the Euler characteristic of M.

Proof. As in Remark 3, we can form the quotient principal $SO(3)$-bundles P_ϵ, $\epsilon = \pm 1$, with equivariant projections $\pi_\epsilon: P \to P_\epsilon$. Now ω projects onto connections $\hat{\omega}_\epsilon$ in P_ϵ with curvature forms Ω_ϵ such that $\pi_\epsilon^* \Omega_\epsilon = \Omega_\epsilon$, $\epsilon = \pm 1$, where Ω_1, Ω_{-1} are the components of Ω in $so(3) + so(3)$ [7, pp. 79–80]. On the other hand, for any $p \in P$, Ω_p may be viewed as a form in $T_{\pi(p)}M$ and it is easy to see that it satisfies
the hypotheses of Lemma 6. Therefore, for some $\epsilon \in \{1, -1\}$, $\Omega_{-\epsilon}$ is unflat and (8) holds for any independent vectors u, v tangent to M. Thus, the curvature form $\Omega_{-\epsilon}$ in $P_{-\epsilon}$ is unflat and hence self-dual with respect to the oriented conformal structure that it induces in M (cf. Remark 2), while $P_{-\epsilon}$ is isomorphic to $P \setminus _+ M$ by Theorem 1. In view of (9), (8), Remark 4 and Hirzebruch's signature theorem [9, p. 224], we have

$$0 < |p_1(P_{-\epsilon})[M]| < c_4 \int_M |\Omega_{-\epsilon}|^2 < c_4 \int_M |\Omega_{-\epsilon}|^2$$

$$= p_1(P_{-\epsilon})[M] = p_1(\setminus _+ M)[M] = 3\tau(M) + 2\chi(M),$$

which completes the proof.

Remark 5. By Theorem 2, the condition

$$3\tau(M) + 2\chi(M) > 0 \quad (11)$$

for an oriented compact 4-manifold M is necessary in order that some principal $SO(4)$-bundle over M admit an $SO(3)$-unflat connection (inducing the given orientation of M). However, (11) follows merely from the fact that $\setminus _+ M$ carries a nonflat self-dual connection (which leads to $p_1(\setminus _+ M)[M] > 0$, cf. [1]). For instance, (11) is satisfied by any oriented, compact, non-Ricci-flat Einstein 4-manifold: for such a manifold, the Riemannian connection of $\setminus _+ M$ is self-dual and nonflat (see [1]). Since (11) holds now for both orientations of M, we obtain the Thorpe-Hitchin inequality $|\tau(M)| < \frac{2}{3}\chi(M)$ (cf. [5]).

We can now use Theorem 2 to prove a conjecture of Weinstein [13].

Theorem 3. Let P be a principal $SO(4)$-bundle over S^4 with an $SO(3)$-unflat connection. Then P is isomorphic to the principal $SO(4)$-bundle, associated with the Hopf 3-sphere bundle $S^7 \to S^4 = HP^1$.

Proof. By (i) of Theorem 2, one of the quotient $SO(3)$-bundles of P, say, $P_{-\epsilon}$, is isomorphic to $P \setminus _+ S^4$. This is nothing but the principal Hopf bundle $RP^7 \to S^4$. In fact, the standard metric of RP^7 comes from the construction described in §1, so that the Hopf bundle carries a $\{1\}$-unflat connection and Theorem 1 works. On the other hand, since principal $SO(3)$-bundles over S^4 are pull-backs of the Hopf bundle, we have $p_1(P_{-\epsilon})[S^4] \equiv 0 \pmod{4}$ (cf. (9) and [12, p. 256]) and, by (ii) of Theorem 2, $P_{-\epsilon}$ is trivial. Our assertion follows now immediately from the classification of principal $SO(4)$-bundles over S^4.

Remark 6. A principal $SO(n)$-bundle $P \to M$ admits a spin structure, i.e., a double equivariant covering by a principal Spin(n)-bundle over M if and only if its second Stiefel-Whitney class $w_2 = 0$ [8, p. 199]. On the other hand, given a principal Spin(n)-bundle $Q \to M$, one can use the normal subgroup Z_2 of Spin(n) to form the quotient principal $SO(n)$-bundle $P = Q/Z_2 \to M$ with an equivariant projection $Q \to P$.

For $n = 3$, we can apply Theorem 1 to $P = Q/Z_2$ and use (10) to obtain
Corollary 1. Let $Q \to M$ be a principal S^3-bundle over a four-manifold M. If Q admits an unflat horizontal tensorial 2-form, then

(i) M is an orientable spin manifold, i.e., $w_1(M) = w_2(M) = 0$, and

(ii) Q is a spin structure over $P \wedge_+ M$ for a suitable orientation of M.

Similarly, one can prove a statement analogous to Theorem 2 for principal Spin(4) (= $S^3 \times S^3$)-bundles with (diagonal S^3)-unflat connections over a compact four-manifold M. As in Corollary 1, we have in this case $w_2(M) = 0$.

References