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Abstract

Examples of “separation properties” for iterated function systems of similitudes in-
clude: the open set condition, the weak separation property, finite type. Alternate
descriptions for these properties and relations among these properties have been
worked out. Here we consider the same situation for “graph-directed” iterated func-
tion systems, and provide the definitions and proofs for that setting. We deal with
the case of strongly connected graphs. In many cases the definitions (and proofs) are
much like the one-node case. But sometimes we have found changes were needed.
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1 The Setting

Directed multigraph. Begin with a directed multigraph G = (V, E). So
V is a finite set (of “vertices” or “nodes”), E is a finite set (of “edges”), for
each u, v ∈ V , Euv ⊆ E is the set of edges from u to v. For convenience we
assume that E is the disjoint union of the sets Euv. If e ∈ Euv then e has
initial vertex u and final vertex v. Again for convenience we assume that
every node u is the initial vertex for at least one edge. Write E(k)

uv for paths of
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length k, say σ = e1e2 · · · ek where e1 has initial vertex u, the final vertex of
each ei matches the initial vertex of the next one ei+1, and the final vertex of
ek is v. Then E(∗)

uv =
⋃∞

k=0 E(k)
uv is the forest of all paths in G, ordered by the

“prefix” relation. If σ = e1e2 · · · ek, then its parent is σ− = e1e2 · · · ek−1. We
say that G = (V, E) is strongly connected if E(∗)

uv 6= ∅ for all u, v ∈ V .

The IFS. For each u ∈ V we have a metric space Xu. For now we will let all
Xu = Rd for a certain d. (But it still helps to think of Xu as separate spaces.)
For each e ∈ Euv we have a similitude Se : Xv → Xu, with contraction ratio
ρe:

|Se(x)− Se(y)| = ρe|x− y|.

Assume 0 < ρe < 1. Write ρmin = min { ρe : e ∈ E }, ρmax = max { ρe : e ∈ E }.
For σ = e1e2 · · · ek write Sσ = Se1 ◦ Se2 ◦ · · · ◦ Sek

and ρ(σ) = ρe1 · · · ρek
. This

formulation is found in [5,3].

The original version of an IFS, where no graph is specified, can be fit into this
scheme by using a graph G = (V, E) where V has exactly one element. Then
all edges are loops from that node to itself. To emphasize this case, we will
sometimes call it the one-node case.

The family (Se)e∈E is known as a (graph-directed) iterated function system
or IFS. There is a unique family {Ku : u ∈ V } of nonempty compact sets such
that

Ku =
⋃

v∈V

⋃
e∈Euv

Se(Kv)

for all u ∈ V [3, Theorem (4.3.5)]. These are the attractors or invariant
sets defined by the IFS (Se).

If R is a similitude, write ρ(R) for its contraction ratio. So in our setting,
ρ(Sσ) = ρ(σ).

Definitions. Here are a few additional definitions formulated in terms of a
graph-directed iterated function system. Let u, v ∈ V , 0 < a < b, I ⊆ R an
interval, 0 < r < 1, U ⊆ Xu bounded, M ⊆ Xv nonempty. Define

Ruv = {R : R is a similitude from Xv to Xu }
Ruv(I) = {R ∈ Ruv : ρ(R) ∈ I }
E(∗)

uv (]a, b]) =
{

σ ∈ E(∗)
uv : Sσ ∈ Ruv(]a, b])

}
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Fuv(]a, b]) =
{

Sσ : σ ∈ E(∗)
uv (]a, b])

}
Fuv(]a, b]) =

{
T−1 ◦ S : T, S ∈ Fuv(]a, b])

}
(These map Xv to itself.)

Fuv(r) =
⋃
b>0

Fuv(]rb, b])

Fuv =
⋃

0<a<b

Fuv(]a, b]) =
⋃

0<r<1

Fuv(r) =
{

S−1
τ ◦ Sσ : τ, σ ∈ E(∗)

uv

}
Fuv(]a, b], U, M) = {T ∈ Fuv(]a diam U, b diam U ]) : T (M) ∩ U 6= ∅ }
γuv(]a, b], M) = sup {#Fuv(]a, b], U, M) : U ⊆ Xu bounded }

Proposition 1.1 If E(∗)
wu 6= ∅ then Fuv(r) ⊆ Fwv(r) for all r. So if G is

strongly connected, then Fuv(r) is independent of u.

PROOF. Let σ ∈ E(∗)
wu. Any element of Fuv(r) belongs to Fuv(]rb, b]) for

some b > 0. So it has the form T−1 ◦ S where T, S ∈ Fuv(]rb, b]). Then
Sσ ◦ T, Sσ ◦ S ∈ Fwv(]rbρ(σ), bρ(σ)]), and (Sσ ◦ T )−1 ◦ (Sσ ◦ S) = T−1 ◦ S, so
T−1 ◦ S ∈ Fwv(]rbρ(σ), bρ(σ)]) ⊆ Fwv(r). 2

Proposition 1.2 Fuv(r) = Fuv ∩Ruv(]r, r
−1[ ).

PROOF. Let R ∈ Fuv(r). Then there is b so that R = T−1 ◦ S with T, S ∈
Fuv(]rb, b]). So ρ(R) = ρ(T )−1ρ(S) < (rb)−1b = r−1 and ρ(R) = ρ(T )−1ρ(S) >
b−1(rb) = r. So R ∈ Fuv ∩Ruv(]r, r

−1[).

Conversely, let R ∈ Fuv ∩ Ruv(]r, r
−1[). Say R = T−1 ◦ S. First take the case

ρ(T ) ≤ ρ(S). Let b = ρ(S) so that T, S ∈ Fuv(]rb, b]) and R ∈ Fuv(r). For the
other case ρ(T ) > ρ(S), let b = ρ(T ) and again R ∈ Fuv(r). 2

2 The Weak Separation Property

The weak separation property was formulated by Lau and Ngai [4] and
studied by Zerner [9]. Here we adapt [9] for the graph-directed setting.

Let us say that a set Y ⊆ Rd is in general position iff it is not contained in
a hyperplane. So if Y is in general position, then the only similitude R with
R(y) = y for all y ∈ Y is the identity.

Equivalent conditions. In [9], Zerner gave many equivalent formulations
for the definition of “weak separation property”. Here we have adapted them
for the graph-directed case. Let r ∈]0, ρmin]. Consider these conditions:
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(1a) For all v ∈ V , there exist x ∈ Kv and ε > 0 such that for all u ∈ V and
all R ∈ Fuv(r), either R is the identity or |R(x)− x| ≥ ε.

(1b) For all u ∈ V there exist x ∈ Xu and ε > 0 such that for all R ∈ Fuu(r),
either R(x) = x or |R(x)− x| ≥ ε.

(2a) For all u ∈ V there are {x0, · · · , xd} ⊆ Xu in general position and ε > 0
such that for all R ∈ Fuu(r) and all j, either R(xj) = xj or |R(xj)− xj| ≥ ε.

(2b) For all u ∈ V there are {x0, · · · , xd} ⊆ Xu in general position and ε > 0
such that for all R ∈ Fuu(r), either R is the identity or |R(xj) − xj| ≥ ε for
some j.

(3a) For all u ∈ V , the identity is an isolated point of Fuu.

(3b) For all u ∈ V , the identity is an isolated point of Fuu(r).

(4a) For all u, v ∈ V , all bounded M ⊆ Xv, and all b > 0, we have

γuv(]rb, b], M) < ∞.

(4b) For all u, v ∈ V there exist nonempty M ⊆ Xv and b > 0 such that

γuv(]rb, b], M) < ∞.

(5a) For all u, v, w ∈ V and z ∈ Xw, there exists l ∈ N such that for any
τ ∈ E(∗)

vw and any b > 0, every ball in Xu with radius b contains at most l
elements of{

Sστ (z) : σ ∈ E(∗)
uv (]rb, b])

}
.

(5b) For all u, v ∈ V , there exist w ∈ V , z ∈ Xw and l ∈ N such that for
any τ ∈ E(∗)

vw and any b > 0, every ball in Xu with radius b contains at most l
elements of{

Sστ (z) : σ ∈ E(∗)
uv (]rb, b])

}
.

Next we will prove that these conditions are equivalent for strongly connected
graphs G. For the most part, our proof follows [9] with appropriate changes for
the graph case. Note that [9] cites [1,8] as sources for some of these arguments.

Lemma 2.1 Let u, v ∈ V . Assume (5b) holds, G is strongly connected, and
Kv is in general position in Xv = Rd. Let w, z, l be as in (5b). Then there is
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a constant C and τ ∈ E(∗)
vw such that for all y ∈ Xu, and all b > 0,

# {T ∈ Fuv(]br, b]) : T (Sτ (z)) = y } ≤ C.

PROOF. Because G is strongly connected, Kv is contained in the closure
of the set A =

{
Sτ (z) : τ ∈ E(∗)

vw

}
. Since Kv is in general position, so is

A. Let x0, · · · , xd ∈ A be such that a similitude defined on Xv is uniquely
determined by its values on x0, · · · , xd. Say xj = Sτj

(z) (0 ≤ j ≤ d). Let
t = max { |xj − x0| : 0 ≤ j ≤ d }, let ct be the number of balls of radius 1 re-
quired to cover a ball of radius t, write m = (d+1)ctl and C = m(m−1)(m−
2) · · · (m− d + 1).

Now let y ∈ Xu and b > 0 be given. The ball B(y, bt) is covered by ct balls of
radius b, so for each j ∈ {0, · · · , d}

#
{

T (xj) : T ∈ Fuv(]br, b]), T (xj) ∈ B(y, bt)
}

= #
({

Sστj
(z) : σ ∈ E(∗)

uv (]rb, b])
}
∩B(y, bt)

)
≤ ctl.

If T ∈ Fuv(]br, b]) and T (x0) = y, then |T (xj)− y| = |T (xj)− T (x0)| ≤ bt for
all j. So

# {T (xj) : T ∈ Fuv(]br, b]), j ∈ {0, · · · , d}, T (x0) = y } ≤ (d + 1)ctl = m.

And a similitude is determined by its values on {x0, · · · , xd}, so

# {T ∈ Fuv(]br, b]) : T (x0) = y } ≤ m(m− 1) · · · (m− d + 1) = C.

Since x0 has the form Sτ (z), this completes the proof. 2

Lemma 2.2 Let K be a nonempty closed set in Euclidean space Rd. Suppose
K is contained in the union of countably many hyperplanes. Then for some
x ∈ K, there is a neighborhood U of x such that K∩U is contained in a single
hyperplane.

PROOF. Say K ⊆ ⋃∞
n=1 Ln, for hyperplanes Ln. Note K is itself a complete

metric space, so by the Baire Category Theorem K is not a countable union
of sets nowhere dense in K. If no neighborhood in K is contained in K ∩ Ln,
then (since it is closed) K ∩ Ln is nowhere dense in K. 2

Corollary 2.3 Suppose no Kv is contained in a hyperplane. Then for all v ∈
V there is x ∈ Kv such that for all R ∈ ⋃

uFuv, either R is the identity or
R(x) 6= x.
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PROOF. Since no Kv is contained in a hyperplane, and every neighborhood
in every Kv contains a similar image of some Ku, by Lemma 2.2, Kv is not
contained in a countable union of hyperplanes. The sets Fuv are countable,
and for each R ∈ Fuv other than the identity, {x : R(x) = x } is contained in
a hyperplane. So we may choose x ∈ Kv such that R(x) = x for R ∈ ⋃uFuv,
only if R is the identity. 2

We say x ∈ Xv is generic for the IFS (Se) iff for all R ∈ ⋃uFuv, either R is
the identity or R(x) 6= x.

The following proof is adapted from [9], where parts of it are attributed to
[1,8,4].

Theorem 2.4 Suppose G is strongly connected, and all Ku are in general
position. Let r ∈]0, ρmin]. Then (1a)–(5b) are equivalent. Since (3a) in inde-
pendent of r, so are the others.

PROOF. (1a) =⇒ (1b), (2a) =⇒ (2b), (3a) =⇒ (3b), (4a) =⇒ (4b), (5a)
=⇒ (5b) are trivial.

(4a) =⇒ (5a): Assume (4a). Let u, v, w ∈ V and z ∈ Xw be given. Then the
set

M =
{

Sτ (z) : τ ∈ E(∗)
vw

}

is bounded. Let l = γuv(]r/2, 1/2], M) < ∞. Then for any τ ∈ E(∗)
vw , any b > 0,

and any ball U in Xu of radius b (and diameter 2b):

#
({

Sστ (z) : σ ∈ E(∗)
uv (]rb, b])

}
∩ U

)
≤ # {T ∈ Fuv(]rb, b]) : T (Sτ (z)) ∈ U }
≤ # {T ∈ Fuv(]rb, b]) : T (M) ∩ U 6= ∅ }
= #Fuv(]r/2, 1/2], U, M) ≤ l.

(5b) =⇒ (4b): Assume (5b). Let u, v ∈ V be given. Apply (5b) to get w ∈ V ,
z ∈ Xw, and l; then apply Lemma 2.1 to get x0 = Sτ (z) and C > 0. Let
c be the number of balls of radius 1 required to cover a set of diameter 2.
We claim that γuv(]r/2, 1/2], {x0}) ≤ cCl. Indeed, let U ⊆ Xu be a bounded
set. Write b = diam U . Now let B be a ball in Xu of radius b/2. Write Q =
{T (x0) : T ∈ Fuv(]rb/2, b/2]) } ∩B. Then #Q ≤ l, and
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# {T ∈ Fuv(]rb/2, b/2]) : T (x0) ∈ B }
=
∑
y∈Q

# {T ∈ Fuv(]rb/2, b/2]) : T (x0) = y } ≤ Cl.

Then since U can be covered by at most c balls of radius b/2,

#Fuv(]r/2, 1/2], U, {x0}) ≤ cCl.

This is true for all U , so γuv(]r/2, 1/2], {x0}) ≤ cCl.

(4b) =⇒ (4a): Assume (4b). Let u, v ∈ V . There exist M0 6= ∅ and b0 > 0
with γuv(]rb0, b0], M0) < ∞. Then since M0 6= ∅, there is y0 ∈ M0 with
γuv(]rb0, b0], {y0}) < ∞.

We claim now that γuv(]rb, b], {y0}) < ∞ for all b > 0. Indeed, let c be the
number of balls of diameter b required to cover a set of diameter b0. Given
a bounded set U ⊆ Xu, write k = diam U , cover it by c balls Vi of diameter
kb/b0. Then

Fuv(]rb, b], U, {y0}) = {T ∈ Fuv(]rbk, bk]) : T (y0) ∈ U }

=
⋃
i

{
T ∈ Fuv

(]
rb0

kb

b0

, b0
kb

b0

])
: T (y0) ∈ Vi

}
,

so #Fuv(]rb, b], U, {y0}) ≤ cγuv(]rb0, b0], {y0}). Taking supremum on U , we
conclude

γuv(]rb, b], {y0}) ≤ cγuv(]rb0, b0], {y0}).

Now we are ready to prove (4a). Let M ⊆ Xv be bounded, and let b > 0. We
claim there exists b′ > 0 such that

γuv(]rb, b], M) ≤ γuv(]rb
′, b′], {y0}).

To see this: let k = diam(M ∪ {y0}), and b′ = b/(1 + 2bk). Let U ⊆ Xu be a
bounded set. Define U ′ = B(U, bk diam U), the open set of all points within
distance less than bk diam U of the set U . So diam U ′ = diam U+2bk diam U =
(1 + 2bk) diam U . We claim that

Fuv(]rb, b], U, M) ⊆ Fuv(]rb
′, b′], U ′, {y0}).

Indeed, let T ∈ Fuv(]rb, b], U, M). So ρ(T ) ∈]rb diam U, b diam U ] and T (M) ∩
U 6= ∅. So there exists y ∈ M with T (y) ∈ U . Now |y − y0| ≤ k, and
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|T (y)− T (y0)| ≤ bk diam U , so T (y0) ∈ U ′. Also

ρ(T ) ∈
]

rb

1 + 2bk
diam U ′,

b

1 + 2bk
diam U ′

]
.

Thus T ∈ Fuv(]rb
′, b′], U ′, {y0}), as required. Now we have

#Fuv(]rb, b], U, M) ≤ #Fuv(]rb
′, b′], U ′, {y0}) ≤ γuv(]rb

′, b′], {y0}).

This is true for all U , so

γuv(]rb, b], M) ≤ γuv(]rb
′, b′], {y0}) < ∞.

This completes the proof of (4a).

(2b) =⇒ (4a): Let M ⊆ Xv be bounded, and let b > 0. Then apply (2b)
with node v to get {x0, · · · , xd} in general position in Xv and ε > 0. Let
k = diam (M ∪ {x0, · · · , xd}). We must show γuv(]rb, b], M) < ∞. Let U ⊆
Xu be bounded. Recall Fuv(r) = Fvv(r) by Proposition 1.1. Now if T, S ∈
Fuv(]rb, b], U, M), and T 6= S, then there exists j = j(S, T ) ∈ {0, · · · , d}
with |T−1(S(xj)) − xj| ≥ ε, and thus |S(xj) − T (xj)| ≥ rbε diam U . This
choice of j(S, T ) is a “coloring” of all pairs from Fuv(]rb, b], U, M) in d + 1
colors. Ramsey’s Theorem asserts that if supU #Fuv(]rb, b], U, M) = ∞, then
supU #F ′

U = ∞ as well, for some choice of F ′
U ⊆ Fuv(]rb, b], U, M) such that

all pairs T, S ∈ F ′
U have the same color. But suppose all pairs in F ′

U have
color j. Then the balls B(T (xj), (rbε/2) diam U), T ∈ F ′

U , are disjoint, and all
their centers have distance at most bk diam U from U . So these balls are all
contained in a ball of radius (1 + bk + rbε/2) diam U . Comparing volumes we
see that #F ′

U ≤ (1 + bk + rbε/2)d/(rbε/2)d, a bound independent of U . So in
fact γuv(]rb, b], M) = supU #Fuv(]rb, b], U, M) < ∞.

(4a) =⇒ (1a): Assume (4a). For each v ∈ V , apply Corollary 2.3 to get generic
yv ∈ Kv. Now by (4a), for all u, v ∈ V we have γuv(]r, 1], {yv}) < ∞. There
are finitely many u, v, so there is a single bound for all u, v. Now for v ∈ V
write Uv = B(yv, 1/2); for S ∈ Fuv write US = S(Uv) = B(S(yv), ρ(S)/2). For
u, v ∈ V and S ∈ Fuv, define

Iuv(S) = {T ∈ Fuv(]rρ(S), ρ(S)]) : T (yv) ∈ US } .

Note Iuv(S) = Fuv(]r, 1], US, {yv}), so supu,v,S #Iuv(S) < ∞.

Choose u0, v0 ∈ V , T0 ∈ Fu0v0 so that

#Iu0v0(T0) = sup {#Iuv(T ) : u, v ∈ V, T ∈ Fuv } . (1)
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For all u ∈ V and all T ∈ Fuu0 we claim Iuv0(TT0) = TIu0v0(T0). We first prove
⊇. Let S ∈ Iu0v0(T0), so that rρ(T0) < ρ(S) ≤ ρ(T0) and S(yv0) ∈ UT0 . Then
TS ∈ Fuv0 , rρ(TT0) < ρ(TS) ≤ ρ(TT0), and T (S(yv0)) ∈ T (UT0) = UTT0 .
Thus TS ∈ Iuv0(TT0). So we have TIu0v0(T0) ⊆ Iuv0(TT0). Since T is one-to-
one, we have #(TIu0v0(T0)) = #Iu0v0(T0) ≥ #Iuv0(TT0) by the maximality
(1). So by counting, we conclude that the subset is the whole thing, that is

Iuv0(TT0) = TIu0v0(T0). (2)

Now let x0 = T0(yv0), x0 ∈ Ku0 . Let

ε1 = min { |T ′(yv0)− x0| : T ′ ∈ Iu0v0(T0), T
′(yv0) 6= x0 } .

This is positive since Iu0v0(T0) is finite. Let ε2 = ρ(T0)/2 and ε0 = min{ε1, ε2}.
Now we claim: for any u ∈ V and R ∈ Fuu0(r), either R is the identity or
|R(x0)−x0| ≥ ε0. Now R = T−1◦S for some b and some T, S ∈ Fuu0(]rb, b]). We
may assume ρ(S) ≤ ρ(T ), since in the other case we may apply the following
to S−1 ◦ T and note that |T−1(S(x0))− x0| > |x0 − S−1(T (x0))| ≥ ε0.

First consider the case ST0 ∈ Iuv0(TT0). By (2), ST0 = TT ′ for some T ′ ∈
Iu0v0(T0). Hence |T−1(S(x0)) − x0| = |T−1(ST0(yv0)) − x0| = |T ′(yv0) − x0|.
Either this is ≥ ε1 or it is 0 and T−1 ◦ S is the identity.

Next consider the case ST0 6∈ Iuv0(TT0). This means ST0(yv0) 6∈ UTT0 , or
|ST0(yv0)− TT0(yv0)| ≥ ρ(TT0)/2. Thus |T−1(S(x0))− x0| ≥ ρ(T0)/2 = ε2.

Finally, we must show that the same thing holds for any vertex v in place of
u0. Because G is strongly connected, there is S ′ ∈ Fvu0 . Let x = S ′(x0), so
x ∈ Kv. Let ε = ρ(S ′)ε0. Now suppose R ∈ Fuv(r). Then R = T−1 ◦ S for
T, S ∈ Fuv(]rb, b]). Then TS ′, SS ′ ∈ Fuu0(]bρ(S ′)r, bρ(S ′)]). And

|T−1(S(x))− x|= |T−1(SS ′(x0))− S ′(x0)|
= ρ(S ′)|(TS ′)−1((SS ′)(x0))− x0| ≥ ρ(S ′)ε0 = ε,

unless (TS ′)−1 ◦ (SS ′) is the identity, and then TS ′ = SS ′ and T = S, so R is
also the identity.

(1b) =⇒ (2a): Assume (1b). Let u ∈ V be given. By (1b) we get x ∈ Xu, and
ε > 0. Because G is strongly connected, Ku is contained in the closure of the
set A =

{
Sτ (x) : τ ∈ E(∗)

uu

}
. Since Ku is in general position, so is A. So there

exist {x0, · · · , xd} ⊆ A in general position. Say xj = Sτj
(x) for 0 ≤ j ≤ d.

Define ε′ = ε minj ρ(τj). Let R ∈ Fuu(r) and j ∈ {0, · · · , d}. Then R = T−1◦S
with T, S ∈ Fuu(]rb, b]) for some b. So T ◦ Sτj

, S ◦ Sτj
∈ Fuu(]rbρ(τj), bρ(τj)])
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and (T ◦ Sτj
)−1 ◦ (S ◦ Sτj

) ∈ Fuu(r), so

|T−1(S(xj))− xj| = ρ(τj) |(T ◦ Sτj
)−1 ◦ (S ◦ Sτj

)(x)− x| ≥ ε′

if it is not zero.

(2b) =⇒ (3a): Assume (2b). Let u ∈ V be given. Note that Ruu(]r, r
−1[) is an

open neighborhood of the identity in Ruu and Fuu(r) = Fuu ∩ Ruu(]r, r
−1[).

Let {x0, · · · , xd} and ε be as in (2b). The set

{R ∈ Fuu(r) : |R(xj)− xj| < ε for all j } = {id}

is an open neighborhood of the identity. So the identity is an isolated point of
Fuu.

(3b) =⇒ (2b): Assume (3b). Let u ∈ V be given. Then there exists a finite set
Y ⊆ Xu and ε′ > 0 such that for all R ∈ Fuu(r) \ {id}, there is y ∈ Y with
|R(y) − y| ≥ ε′. Let {x0, · · · , xd} be a set in general position. Then the map
R 7→ (R(x0), · · · , R(xd)) is a homeomorphism since it is bijective and affine
from one Euclidean space onto another [from the set of affine maps on Rd to
(Rd)d+1]. So in particular for each y the value R(y) is a continuous function
of (R(x0), · · · , R(xd)). Thus there exists ε > 0 so that for all R ∈ Fuu, if
|R(xj)− xj| < ε for all j, then |R(y)− y| < ε′ for all y ∈ Y . 2

Definition. Let (Se) be an IFS with G strongly connected and Ku in general
position for all u. We say (Se) satisfies the weak separation property (WSP)
iff one of the equivalent conditions in the theorem holds.

Notes. For a graph that is not strongly connected, the conditions stated
here need not all be equivalent. We intend to consider that case in a future
paper.

The hypothesis of “general position” may be omitted in the following way.
For each u ∈ V , let Xu be the smallest affine subspace that contains Ku. By
strong connectivity, each Ku contains a similar copy of all the others, so all
of these spaces Xu have the same dimension, and may therefore be identified
with Rd for the same d. In practice, what this means is that for e ∈ Euv, the
maps Se should be restricted to the subspace Xv.

10



3 The Open Set Condition

The IFS (Se) satisfies the open set condition (OSC) iff there exist nonempty
open sets Ωu ⊆ Xu such that (i) for all u, v ∈ V and e ∈ Euv,

Ωu ⊇ Se(Ωv)

and (ii) for all u, v, v′ ∈ V , e ∈ Euv, and e′ ∈ Euv′ with e 6= e′,

Se(Ωv) ∩ Se′(Ωv′) = ∅.

We will say an IFS (Se) distinguishes paths provided

for all u, v ∈ V and all σ, τ ∈ E(∗)
uv , if σ 6= τ, then Sσ 6= Sτ . (3)

Proposition 3.1 Let G be strongly connected, and Ku in general position
for u ∈ V . Then OSC holds for (Se) if and only if (Se) has WSP and (Se)
distinguishes paths.

PROOF. (=⇒) Suppose that the OSC holds, with open sets Ωu. We claim
(1b) holds. Let u ∈ V and r > 0 be given. Choose any x ∈ Ωu. Then there is

η > 0 so that B(x, η) ⊆ Ωu. Also A =
{

α ∈ E(∗)
uu : ρ(α) ≥ r

}
is finite. Let

η′ = min { |Sα(x)− x| : α ∈ A, Sα(x) 6= x } .

Let ε = min{η, η′} > 0. Now let R ∈ Fuu(r). We must show that either
R(x) = x or |R(x) − x| ≥ ε. Now there is b so that R = S−1

τ ◦ Sσ for some
τ, σ ∈ E(∗)

uu (]rb, b]). Take three cases: (a) σ and τ are incomparable; (b) σ is a
prefix of τ ; (c) τ is a prefix of σ.

(a) Since σ and τ are incomparable, the two images Sσ(Ωu), Sτ (Ωu) are disjoint.
So Sσ(x) is not in the ball Sτ (B(x, η)) = B(Sτ (x), ρ(τ)η). Thus

|R(x)− x| = |S−1
τ (Sσ(x))− x| = ρ(τ)−1|Sσ(x)− Sτ (x)| ≥ η.

(b) Say τ = σα. Note ρ(α) = ρ(τ)/ρ(σ) ≥ r, so α ∈ A. Then

|R(x)− x| = |S−1
τ (Sσ(x))− x| = |S−1

α (x)− x| = ρ(α)−1|x− Sα(x)| ≥ η′

if it is not zero.
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(c) is similar to (b): σ = τα, α ∈ A,

|R(x)− x| = |S−1
τ (Sσ(x))− x| = |Sα(x)− x| ≥ η′

if it is not zero.

Next suppose σ, τ ∈ E(∗)
uv and σ 6= τ . Certainly if one is a prefix of the other

then Sσ, Sτ have different contraction ratios, so Sσ 6= Sτ . And if σ, τ are
incomparable, then Sσ(Ωv) ∩ Sτ (Ωv) = ∅, so again Sσ 6= Sτ .

Conversely, suppose that WSP holds and (Se) distinguishes paths. Fix an r ∈
]0, 1] with r ≤ ρmin. By (4a), for all v ∈ V we have γuv(]r, 1], Kv) < ∞. There
are finitely many pairs u, v, so there is a single bound for all γuv(]r, 1], Kv).
Now for v ∈ V write

Uv = B(Kv, 1/2) = {x ∈ Xv : dist(x, Kv) < 1/2 } ;

for σ ∈ E(∗)
uv write Kσ = Sσ(Kv) and Uσ = Sσ(Uv) = B(Kσ, ρ(σ)/2). For

u, v ∈ V and σ ∈ E(∗)
uv , define

Iuv(σ) =
{

τ ∈ E(∗)
uv (]rρ(σ), ρ(σ)]) : Kτ ∩ Uσ 6= ∅

}
= { τ : Sτ ∈ Fuv(]r, 1], Uσ, Kv) } .

By (3) we have #Iuv(σ) = #Fuv(]r, 1], Uσ, Kv), so supu,v,σ #Iuv(σ) < ∞.

Choose u0, v0 ∈ V , τ0 ∈ E(∗)
u0v0

so that

#Iu0v0(τ0) = sup
{

#Iuv(τ) : u, v ∈ V, τ ∈ E(∗)
uv

}
. (4)

For all u ∈ V and all τ ∈ E(∗)
uu0

we claim Iuv0(ττ0) = τIu0v0(τ0). We first
prove ⊇. Let σ ∈ Iu0v0(τ0), so that rρ(τ0) < ρ(σ) ≤ ρ(τ0) and Kσ ∩ Uτ0 6= ∅.
Then τσ ∈ E(∗)

uv0
, rρ(ττ0) < ρ(τσ) ≤ ρ(ττ0), and Kτσ ∩ Uττ0 = Sτ (Sσ(Kσ)) ∩

Sτ (Uτ0) 6= ∅. Thus τσ ∈ Iuv0(ττ0). So we have τIu0v0(τ0) ⊆ Iuv0(ττ0). So
#(τIu0v0(τ0)) = #Iu0v0(τ0) ≥ #Iuv0(ττ0) by the maximality (4). So by count-
ing, we conclude that the subset is the whole thing, that is

Iuv0(ττ0) = τIu0v0(τ0). (5)

Let u ∈ V , e ∈ Euv, e
′ ∈ Euv′ , e 6= e′, τ ∈ E(∗)

vu0
. We claim dist(Ke′ , Keττ0) ≥

ρ(eττ0)/2. Let x ∈ Ke′ . Then, because r ≤ ρmin, there is w ∈ V and τ ′ ∈ E(∗)
vw

so that x ∈ Ke′τ ′ and

rρ(eττ0) < ρ(e′τ ′) ≤ ρ(eττ0).
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Now by (5) we know that e′τ ′ 6∈ Iuv0(eττ0) since e 6= e′. So by the definition
of Iuv0(eττ0) we have Ke′τ ′ ∩ Ueττ0 = ∅. So dist(x, Keττ0) ≥ ρ(eττ0)/2. This is
true for all x ∈ Ke′ , so

dist (Ke′ , Keττ0) ≥
ρ(eττ0)

2
. (6)

We are now ready to define the open sets for the OSC. Choose x ∈ Kτ0 ⊆ Ku0 .
For v ∈ V and σ ∈ E(∗)

vu0
write Gσ = Sσ(B(x, ρ(τ0)/4)) = B(Sσ(x), ρ(στ0)/4).

For all u ∈ V define

Ωu =
⋃

τ∈E
(∗)
uu0

Gτ .

We claim that the OSC holds using these open sets.

Let u, v ∈ V and e ∈ Euv. We must show that Se(Ωv) ⊆ Ωu. Let y ∈ Ωv. Then
y ∈ Gτ for some τ ∈ E(∗)

vu0
, so eτ ∈ E(∗)

uu0
and Se(y) ∈ Se(Gτ )) = Geτ so that

Se(y) ∈ Ωu.

Let u, v, v′ ∈ V , e ∈ Euv, e′ ∈ Euv′ , e 6= e′. We must show that Se(Ωv) ∩
Se′(Ωv′) = ∅. Suppose y ∈ Se(Ωv)∩ Se′(Ωv′). Then y ∈ Geτ for some τ ∈ E(∗)

vu0

and y ∈ Ge′τ ′ for some τ ′ ∈ E
(∗)
v′u0

. Assume without loss of generality that
ρ(e′τ ′) ≤ ρ(eτ). Then z = Seτ (x) ∈ Keττ0 with |y − z| < ρ(eττ0)/4 and
z′ = Se′τ ′ ∈ Ke′τ ′τ0 ⊆ Ke′ with |y − z′| < ρ(e′τ ′τ0)/4. So

|z − z′| < ρ(eττ0)

4
+

ρ(e′τ ′τ0)

4
≤ ρ(eττ0)

2
,

and this contradicts (6). So, in fact, Se(Ωv) ∩ Se′(Ωv′) = ∅. 2

4 Similarity and Growth Dimensions

The similarity dimension α of the graph-directed IFS (Se) is defined as
follows [5]. For each t ≥ 0 let A(t) be a square matrix with rows and columns
indexed by V , and the entry in row u column v is∑

e∈Euv

ρt
e.

Let Φ(t) be the spectral radius of A(t). Then Φ is continuous, strictly decreas-
ing, Φ(0) ≥ 1 and limt→∞ Φ(t) = 0. So there is a unique α ∈ [0,∞) with
Φ(α) = 1. This α is called the similarity dimension of the IFS.
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Suppose for each u, v ∈ V we have a finite set Luv of similitudes. Then we
may consider this to be a new IFS with the same nodes V but new sets of
edges. But still the above definition of similarity dimension makes sense. In
particular, we will write αb for the similarity dimension obtained from the sets
Fuv(]rb, b]). That is, if matrix Ab(t) has entry∑

T∈Fuv(]rb,b])

ρ(T )t

in row u column v, and its spectral radius is called Φb(t), then Φb(αb) = 1.

The “growth dimension” β for the iterated function system (Se) may be com-
puted in several ways. Write

F••(]a, b]) =
⋃

u,v∈V

Fuv(]a, b])

F−
uv(b) =

{
Sσ : σ ∈ E(∗)

uv , ρ(σ) ≤ b < ρ(σ−)
}

.

F−
••(b) =

⋃
u,v∈V

F−
uv(b).

The following proof is adapted from the one-node case in [9].

Proposition 4.1 Suppose G is strongly connected. Then there is a constant
r0 > 0 such that for all r ∈]0, r0],

β = lim
b→0

log #F••(]rb, b])

− log b

exists and is independent of r. Also, for all u, v ∈ V and all r ∈]0, r0],

β = lim
b→0

log #Fuv(]rb, b])

− log b
= lim

b→0

log #F−
••(b)

− log b
= lim

b→0
αb.

PROOF. We will prove several claims.

(i) Claim. There is u0 ∈ V and r0 ∈]0, ρmin] such that #Fu0u0(]r0b, b]) increases
as b decreases. For any u ∈ V there exist σ ∈ E(∗)

uu with ρ(σ) ≤ ρmin. Let

r0 = max
{

ρ(σ) : σ ∈ E(∗)
uu for some u ∈ V and ρ(σ) ≤ ρmin

}
.

Then let u0 ∈ V and σ0 ∈ E(∗)
u0u0

be such that r0 = ρ(σ0). Now if T ∈ Fu0u0

then T ◦ Sσ0 ∈ Fu0u0 and ρ(T ◦ Sσ0) = r0ρ(T ). Also Sσ0 is bijective. So as b
decreases, #Fu0u0(]r0b, b]) increases.

14



(ii) Claim. For any u, v, u′, v′ ∈ V there is γ > 0 such that for all b > 0 and all
r > 0, we have #Fuv(]rb, b]) ≤ #Fu′v′(]rbγ, bγ]). Since G is strongly connected,

there exist σ ∈ E
(∗)
u′u and τ ∈ E

(∗)
vv′ . Write γ = ρ(σ)ρ(τ). If T ∈ Fuv(]rb, b]),

then SσTSτ ∈ Fu′v′(]rbγ, bγ]). Both Sσ and Sτ are bijective, so

#Fuv(]rb, b]) ≤ #Fu′v′(]rbγ, bγ]).

(iii) Claim. For any u, v ∈ V there is c > 0 such that if cb1 ≥ b2 then
#Fuv(]r0b1, b1]) ≤ #Fuv(]r0b2, b2]). Choose γ so that

#Fuv(]rb, b]) ≤ #Fu0u0(]rbγ, bγ]).

Choose γ′ so that #Fu0u0(]rb, b]) ≤ #Fuv(]rbγ
′, bγ′]). Let c = γγ′.

#Fuv(]r0b1, b1])≤#Fu0u0(]r0b1γ, b1γ])

≤#Fu0u0(]r0b2γ/c, b2γ/c]) ≤ #Fuv(]r0b2, b2]).

(iv) Claim. There is c > 0 such that if cb1 ≥ b2 then #F••(]r0b1, b1]) ≤
#F••(]r0b2, b2]). Apply (iii) for each u, v, then take the minimum c.

(v) Claim. For b1, b2 > 0 we have

#F••(]r0b1b2, b1b2]) ≤ 2#F••(]r0b1, b1])#F••(]r0b2c, b2c]).

If ρ(σ) ∈]r0b1b2, b1b2], then write σ = σ1σ2 where ρ(σ1) ≤ b1 < ρ(σ−1 ). Then
ρ(σ2) ∈]r0b2, r

−1
0 b2]. Now both b2 and r−1

0 b2 are ≥ b2c, so applying (iv) we get
the inequality claimed.

(vi) Claim. The limit

β = lim
b→0

log #F••(]r0b, b])

− log b

exists. Write H(b) = #F••(]r0b, b]). So H(b1b2) ≤ 2H(b1)H(b2c). For a, b ∈
]0, c[, let k = blog b/ log(a/c)c+ 1, so that b > (a/c)k. Then

H(b) ≤ H

(
ak

ck−1

)
≤ 2H(a)H

(
ak−1

ck−2

)
≤ · · · ≤ 2k−1H(a)k ≤ (2H(a))k.

So
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H(b) ≤ (2H(a))log(b)/ log(a/c)+1

H(b)−1/ log b ≤ (2H(a))−1/ log(a/c)−1/ log b

lim sup
b→0

H(b)−1/ log b ≤ (2H(a))−1/ log(a/c)

Therefore

lim sup
b→0

H(b)−1/ log b≤ inf
a

(2H(a))−1/ log(a/c)

≤ lim inf
a→0

H(a)−1/ log(a/c) = lim inf
a→0

H(a)−1/ log a.

So limb→0 H(b)−1/ log b exists. Its logarithm is the limit claimed.

(vii) Claim. For all r ∈]0, r0],

lim
b→0

log #F••(]rb, b])

− log b
= β.

Choose k ∈ N so that rk
0 ≤ r. Then for all b we have ]rb, b] ⊆ ⋃

1≤i≤k ]ri
0b, r

i−1
0 b].

So

F••(]r0b, b]) ⊆ F••(]rb, b]) ⊆
⋃

1≤i≤k

F••(]r
i
0b, r

i−1
0 b])

#F••(]r0b, b]) ≤ #F••(]rb, b]) ≤
∑

1≤i≤k

#F••(]r
i
0b, r

i−1
0 b])

#F••(]r0b, b]) ≤ #F••(]rb, b]) ≤ k max
1≤i≤k

#F••(]r
i
0b, r

i−1
0 b])

log #F••(]r0b, b]) ≤ log #F••(]rb, b]) ≤ log k + max
1≤i≤k

log #F••(]r
i
0b, r

i−1
0 b])

log #F••(]r0b, b])

− log b
≤ log #F••(]rb, b])

− log b

≤ log k

− log b
+ max

1≤i≤k

− log(ri
0b)

− log b

log #F••(]r
i
0b, r

i−1
0 b])

− log(ri
0b)

.

Now as b → 0, log k/(− log b) → 0 and log b/ log(ri
0b) → 1 for all i, so both

extremes converge to

lim
b→0

log #F••(]r0b, b])

− log b
= β

and therefore the middle quantity also converges to β.
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(viii) Claim. For any u, v,

lim
b→0

log #Fuv(]r0b, b])

− log b
= β.

By (ii) and (iii), there exists c so that for all u, v, u′v′ we have #Fu′v′(]r0b, b]) ≤
#Fuv(]r0bc, bc]). So #Fuv(]r0b, b]) ≤ #F••(]r0b, b]) ≤ (#V )2#Fuv(]r0bc, bc]).
Take logarithm, divide by − log b and let b → 0 to get the result.

(ix) Claim. For any u, v, r,

lim
b→0

log #Fuv(]rb, b])

− log b
= β.

The same argument as (vii).

(x) Claim. For r ∈]0, ρmin] there is a constant C so that for all b1, b2, if b1 > b2 ≥
rb1, then #F−

••(b2) ≤ C#F−
••(b1). Let C = # {Sσ : ρ(σ) ≥ rρmin }. It is enough

to observe that every T ∈ F−
••(b2) can be written (perhaps not uniquely) as

T = T1T2 with T1 ∈ F−
••(b1) and ρ(T2) ≥ rρmin. If T = Sσ, write σ = σ1σ2

with ρ(σ1) ≤ b1 < ρ(σ−1 ), then ρ(σ2) = ρ(σ)/ρ(σ1) ≥ b2ρmin/b1 ≥ rρmin.

(xi) Claim.

lim
b→0

log #F−
••(b)

− log b
= β.

Fix r and C as in (x), and s so that 1 > s ≥ ρmax > 0. Let k ∈ N be such that
sk < r. Then

F−
••(b) ⊆ F••(]rb, b]) ⊆

k−1⋃
i=0

F−
••(s

ib).

Now by (x), for 0 ≤ i ≤ k − 1 we have #F−
••(s

ib) ≤ C#F−
••(b), so

#F−
••(b) ≤ #F••(]rb, b]) ≤ kC#F−

••(b).

Then as usual, take logarithm, divide by − log b, and let b → 0.

(xii) Claim. β = limb→0 αb. Let t ∈ [0,∞). The matrix A(t) has entry∑
T∈Fuv(]rb,r])

ρ(T )t,
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in row u column v. This lies between

(br)t#Fuv(]rb, r]) and bt#Fuv(]rb, r]).

Suppose t < β, so that there is δ > 0 with t + δ < β. Then for b close to 0 we
have

t + δ <
log #Fuv(]rb, b])

− log b

so rtb−δ < (br)t#Fuv(]rb, r]). Now rtb−δ → ∞ as b → 0, so all entries of the
matrix A(t) go to ∞. If b is close enough to 0 then all entries are > 1, so
Φ(t) > 1 and thus t < αb. This is true for all t < β, so we get β ≤ lim infb αb.

Suppose t > β, so that there is δ > 0 with t− δ > β. Then for b close to 0 we
have

t− δ >
log #Fuv(]rb, b])

− log b

so bδ > bt#Fuv(]rb, r]). Now bδ → 0 as b → 0, so all entries of the matrix A(t)
go to 0. If b is close enough to 0 then all entries are < 1/#V , so Φ(t) < 1 and
thus t > αb. This is true for all t > β, so we get β ≥ lim supb αb.

Therefore limb→0 αb = β. 2

The growth dimension for the IFS provides an estimate for the dimension of
the attractors Ku. If G is strongly connected, then each Ku contains a similar
copy of all others, so they all have the same dimension. Here we will use “dim”
for the upper box dimension. In fact, many types of dimension all coincide for
the self-similar sets Ku, in particular the upper box dimension agrees with the
lower box dimension, the packing dimension, the Hausdorff dimension.

The next three proofs are adapted from [9].

Theorem 4.2 Suppose G is strongly connected. Let β be the growth dimension
of the IFS (Se). For any u ∈ V we have dim Ku ≤ β.

PROOF. Let r ∈]0, r0], let c = maxv∈V diam Kv, and choose xv ∈ Kv for
each v. Now Kv ⊆ B(xv, c), so

Ku =
⋃

v∈V

⋃
T∈Fuv(]rb,b])

T (Kv) ⊆
⋃

v∈V

⋃
T∈Fuv(]rb,b])

B(T (xv), cb).
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Thus Ku is covered by at most #F••(]rb, b]) sets of diameter 2cb. This is true
for all b > 0, so the upper box dimension dim Ku satisfies

dim Ku ≤ lim sup
b→0

log #F••(]br, r])

− log(2cb)
= β. 2

Theorem 4.3 Suppose G is strongly connected, Ku is in general position, and
the IFS (Se) has the WSP. Then for all u ∈ V , we have dim Ku = β.

PROOF. Let v ∈ V and r ∈]0, ρmin]. Choose x ∈ Kv and ε > 0 as in (1a)
and let k = rε/2. So if u ∈ V and S, T ∈ Fuv(]rb, b]) and S 6= T , then
|S(x)− T (x)| ≥ rbε = 2kb. So in any cover of Ku by sets of diameter kb, the
points T (x) must lie in different sets. Thus such a cover must contain at least
#Fuv(]rb, b]) sets. So the upper box dimension satisfies

dim Ku ≥ lim sup
b→0

log #Fuv(]rb, b])

− log b
= β. 2

The relation between the growth dimension β and the similarity dimension α
is next. Recall that (Se) distinguishes paths means

for all u, v ∈ V and all σ, τ ∈ E(∗)
uv , if σ 6= τ, then Sσ 6= Sτ .

Proposition 4.4 Let G be strongly connected. In general β ≤ α. Equality
holds if and only if (Se) distinguishes paths.

PROOF. Recall that the similarity dimention α is the exponent so that ma-
trix A(α) has spectral radius 1. That is, by Perron-Frobenius, there exist
pu > 0 so that∑

v∈V

∑
e∈Euv

ρα
e pv = pu

for all u ∈ V . Now for b > 0, write E−
uv(b) =

{
σ ∈ E(∗)

uv : ρ(σ) ≤ b < ρ(σ−)
}
.

Then this forms a “cross-cut” of the forest of paths, so it follows that∑
v∈V

∑
σ∈E−

uv(b)

ρ(σ)αpv = pu

for all u ∈ V . Therefore 1 is the spectral radius for the matrix A−
b (α) with

entry ∑
σ∈E−

uv(b)

ρ(σ)α
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in row u column v. Now of course deleting repeated terms produces the matrix
Ab(α) with entry in row u column v given by∑

T∈F−
uv(b)

ρ(T )α ≤
∑

σ∈E−
uv(b)

ρ(σ)α. (7)

So the matrices are related Ab(α) ≤ A−
b (α) entrywise, and therefore the

spectral radius of Ab(α) is ≤ 1. So Φb(α) ≤ 1 and thus αb ≤ α. Therefore
β = limb αb ≤ α.

In case (Se) distinguishes paths, we have equality in (7), and therefore in the
rest of the argument, so β = α.

Conversely, suppose Sτ = Sσ for some σ 6= τ . Let b = ρ(σ) = ρ(Sσ) for such a
pair. then for that b, the matrix with entry∑

T∈F−
uv(b)

ρ(T )α (8)

in row u column v has at least one entry strictly smaller than matrix A−
b (α).

Because G is strongly connected, these matrices are irreducible, so we conclude
the spectral radius of (8) is < 1. The IFS with maps F−

uv(b) then has similarity
dimension strictly less than α. But the previous reasoning still shows β ≤ that
dimension. So we have β < α. 2

5 Finite Type

Another way has been proposed for computing the dimension for overlapping
iterated function systems in certain cases, known as “finite type” in Ngai &
Wang [6]. This has also been adapted to graph-directed IFSs by Das & Ngai
[2]. For one-node IFSs, Nguyen [7] showed that finite type implies WSP. We
will verify this for graph-directed IFSs here.

The actual definition for finite type will not be needed here. We mention just
a few definitions and a consequence of the definition that we will use.

A new (infinite) graph G = (V , E) is defined. Fix a value r with 0 < r ≤ ρmin.
For k ∈ N,

Vk =
{
v = (Sσ, u, v, k) : u, v ∈ V, σ ∈ E(∗)

uv , ρ(σ) ≤ rk < ρ(σ−)
}

,

V =
∞⋃

k=0

Vk.
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For notation: if v = (Sσ, u, v, k), write Sv = Sσ. We will not need the definition
of E .

An invariant system of bounded open sets consists of a nonempty bounded
open set Ωu ⊆ Xu, one for each node u ∈ V , such that Se(Ωv) ⊆ Ωu for all
e ∈ Euv and all u, v ∈ V . Write Ω = (Ωu)u∈V for the system of open sets. For
u = (Sσ, u, v, k), u′ = (Sσ′ , u

′, v′, k) ∈ Vk, define u and u′ are neighbors iff
u = u′ and Sσ(Ωv) ∩ Sσ′(Ωv′) 6= ∅. The neighborhood Ω(u) is the set of all
neighbors of u.

From finite type we conclude: there is an invariant system Ω and a bound
M < ∞ so that #Ω(u) ≤ M for all u (see [2]). This is the only consequence
of finite type we need in this proof. It is not equivalent to finite type (we will
provide a counterexample elsewhere).

The proof for the following theorem is adapted from the one-node case in [7].
Alternatively, note that [2, Lemma 3.1] is a proof that finite type implies (4a).

Theorem 5.1 Assume G is strongly connected and all Kv are in general po-
sition. Let Ω be an invariant system of open sets, and let r ∈]0, ρmin]. Assume
(Se) has finite type with respect to Ω and r. Then (Se) satisfies the weak sep-
aration property.

Assume finite type with data Ω and r. We will prove (5a). Fix u, v, w ∈ V ,
z ∈ Xw. Since any r is the same, use the one in the finite type. Let

M1 = sup { diam Ωu′ : u′ ∈ V } ,

M2 = sup
{
|Sτ (z)− x| : τ ∈ E(∗)

vw , x ∈ Ωv

}
.

For future use, write M0 = 2M1 + 2M2 + 2.

Lemma 5.2 There exist x0 ∈ Ωv and δ > 0 so that for all b > 0 and all
σ ∈ E(∗)

uv (]rb, b]),
Sσ(Ωv) ⊇ B(Sσ(x0), δb).

PROOF. Take any x0 ∈ Ωv, then choose δ > 0 so that B(x0, r
−1δ) ⊆ Ωv.

Now let σ ∈ E(∗)
uv (]rb, b]). We claim B(Sσ(x0), δb) ⊆ Sσ(B(x0, r

−1δ)) ⊆ Sσ(Ωv).

Note Sσ is a similitude with ratio ρ(σ), so

B(Sσ(x0), r
−1δρ(σ)) = Sσ(B(x0, r

−1δ)).

Now σ satisfies rb < ρ(σ) ≤ b, so

B(Sσ(x0), δb) ⊆ B(Sσ(x0), δr
−1ρ(σ)) ⊆ Sσ(Ωv). 2
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For any τ ∈ E(∗)
vw and b > 0, consider a ball B of radius b in Xu = Rd. Let

F =
{

Sστ (z) : σ ∈ E(∗)
uv (]rb, b])

}
∩B.

We are to show that there is an l, independent of b, B, τ , so that #F ≤ l. But
it is enough to do it for b of the form b = rk since any interval of the type
]rb, b] is contained in at most two intervals of this form where b is a power of
r. Say b = rk.

Let

F̂ = {v = (Sσ, u, v, k) ∈ V : Sστ (z) ∈ F } .

Then #F̂ ≥ #F . From finite type we get a bound M on the size of all
neighborhoods.

Lemma 5.3 There is Ĝ ⊆ F̂ such that #Ĝ ≥ #F̂ /M and the family{
Su(Ωv) : u ∈ Ĝ

}

is pairwise disjoint.

PROOF. Take any u1 ∈ F̂ and consider

J(u1) =
{
u ∈ F̂ : Su(Ωv) ∩ Su1(Ωv) 6= ∅

}
.

Then take u2 ∈ F̂ \ J(u1) and consider

J(u2) =
{
u ∈ F̂ : Su(Ωv) ∩ Su2(Ωv) 6= ∅

}
.

Then take u3 ∈ F̂ \ (J(u1) ∪ J(u2)) and so on. Continuing until

F̂ \ (J(u1) ∪ · · · ∪ J(um)) = ∅,

we obtain a set

Ĝ = {u1, · · · ,um} ⊆ F̂ .

By definition of neighbor, each J(ui) ⊆ Ω(ui), and thus has at most M ele-
ments. So we get #F̂ ≤ mM , or #Ĝ ≥ #F̂ /M . 2
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Proposition 5.4 #F ≤ MMd
0 δ−d.

PROOF. Apply Lemma 5.2 to get x0 and δ; then apply Lemma 5.3 to get
Ĝ. For each u = (Sσ, u, v, k) ∈ Ĝ, we have B(Sσ(x0), δb) ⊆ Sσ(Ωv), so these
balls are disjoint. For any u = (Sσ, u, v, k) ∈ Ĝ and any y ∈ Sσ(Ωv),

|y − Sστ (z)| ≤ |y − Sσ(x0)|+ |Sσ(x0)− Sσ(Sτ (z))|
≤ ρ(σ) M1 + ρ(σ) M2 ≤ (M1 + M2)ρ(σ) ≤ (M1 + M2)b.

Now let

H =
⋃

u∈Ĝ

B(Su(x0), δb).

If y1, y2 ∈ H, then there exist u1 = (Sσ1 , u, v, k),u2 = (Sσ2 , u, v, k) ∈ Ĝ with
|y1−Sσ1τ (z)| ≤ (M1 +M2)b, |y2−Sσ2τ (z)| ≤ (M1 +M2)b. By the definition of
F , both Sσ1τ (z) and Sσ2τ (z) are in the ball B, so their distance is at most 2b.
So the diameter of H is at most (2M1+2M2+2)b = M0b, so H is contained in a
ball of radius M0b. So we have #Ĝ disjoint balls of radius δb contained inside
one ball of radius M0b. Comparing volumes, we get #Ĝ ≤ (M0b)

d/(δb)d =
Md

0 δ−d. Therefore #F ≤ #F̂ ≤ M#Ĝ ≤ MMd
0 δ−d. 2

This completes the proof of (5a).

Finite type. Finite type can be used as follows. Begin with an IFS consisting
of similitudes, but failing the OSC. This means there are “overlaps” and it
could happen that the attractors Ku have dimension strictly smaller than
the similarity dimension α for the IFS. If the IFS has “finite type” then the
construction provides a new (finite) “induced graph” GΩ = (VΩ, EΩ). (This
construction is in [6] for the one-node case, and [2] for the graph-directed
case.) Even if G is a one-node graph, the result GΩ need not be. And we get a
corresponding induced IFS. The attractors of the original IFS are finite unions
of the attractors of the new IFS. We believe that the new IFS does satisfy the
OSC (if it is interpreted properly in case GΩ is not strongly connected; we
will deal with that case in a future paper). So the dimension of the original
attractors may be computed as the similarity dimension for the induced IFS.

We had originally hoped to find cases where the finite type construction would
yield new examples of IFSs with overlap that can be analyzed. But Theorem
5.1 shows that any dimension computed by the finite type construction also
comes under the WSP. There could be cases where the finite type construction
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gives us a more explicit computation than the growth dimension, but it will
not yield completely new cases.
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