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Meinershagen noted that (in the line) the fractal packing measure of

Tricot and Taylor can be considered to be a Henstock-Thomson gauge variation

(\method III") for an appropriate choice of derivation basis and set function. We

show that this point of view remains interesting in a general metric space.
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The best-known fractal measure is the Hausdor� measure. Tricot and Taylor

[13, 10] propose the use of an additional fractal measure known as the

. Fractals should be sets with some weak regularity properties, such as

self-similarity. Taylor proposes that the term \fractal" should mean a set where the

Hausdor� and packing measures both yield the same fractal dimension. A good

reference for the packing measure is [9]. For packing measure in general metric

spaces, see [2], [4].

Henstock [6] de�ned a family of \variation" set functions. Thomson [11] clari-

�ed the de�nition, calling it \method III" (following Munroe's methods I and II).

In [12], he notes that if the variation is computed starting from the set function

(diam ) , where 0 is a given positive number, then the resulting variation is

an outer measure with the properties appropriate for an -dimensional fractal mea-

sure. Thomson asked whether (in the line IR) this variation is the Hausdor� outer

measure. Meinershagen [8] answered that this measure (the \symmetric derivation

basis measure" computed with the set function (diam ) ) is the packing measure,

not the Hausdor� measure. Meinershagen did her computations on the line IR. In

this paper we show that in other metric spaces as well, the packing measure is a

Henstock-Thomson gauge variation.

I will discuss \covering measure" and \Hausdor� measure" from this point of

view in a subsequent paper.
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1A. Tricot's De�nition.

open ball

diameter

centered-ball packing

(1.1) De�nition.

-dimensional packing pre-measure

-dimensional packing outer measure

We begin with the de�nition of the packing measure

(see [13, 10, 9]). Let ( ) be a metric space. For and 0, the

is

( ) = : ( )

The of a set is

diam = sup ( ) :

Let be a set. A of is a countable disjoint

collection of open balls with center in :

( ) ( )

where and ( ) ( ) = for = .

Let be a positive number. For 0, de�ne

( ) = sup diam ( )

where the supremum is over all packings of by centered balls with diameter .

[Of course, in Euclidean space diam ( ) = 2 , but in a general metric space this

need not be true.] The of is

( ) = lim ( )

The is the outer measure de�ned

from the set function by method I. That is,

( ) = inf ( ) : is a countable cover of

Then is a metric outer measure on .

The de�nition is a bit awkward to use, because of the \method I" step added on

the end. But the set function is not countably subadditive, so this �nal step is

needed to obtain a genuine outer measure.

Here are a few observations about the de�nition:

(1.2) Finite packings su�ce. That is,

( ) = sup diam ( )

where the supremum is over all packings of by centered balls with

diameter .
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1B. Henstock's variation.
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(1.3) An open ball ( ) is the increasing union of a sequence ( ) of

closed balls, and diam ( ) diam ( ). In many metric spaces,

diam ( ) = diam ( ). If that is true, then the same value of is

obtained if we use packings by closed balls instead of open balls. From a

remark of Haase [4], it seems that this equality is false in general.

(1.4) If is a set, and is the closure of the set, then ( ) = ( ).

Indeed, on the one hand, any centered-ball packing of is also a centered-

ball packing of , so ( ) ( ). On the other hand, if ( ) is a ball

with , then there is a point as close as we like to and a radius

= ( ) so that ( ) ( ) and diam ( ) is as close as we

like to diam ( ). Thus, given a centered-ball packing ( ) of , we

may choose a centered-ball packing ( ) of with (diam ( ))

as close as we like to (diam ( )) . So ( ) = ( ).

(1.5) Since ( ) = ( ), in the de�nition

( ) = inf ( ) : is a countable cover of

of , it is enough to use covers consisting of closed sets. Because of this

fact, for any set , there is a Borel set (in fact an ) with

and ( ) = ( ).

(1.6) If be an increasing sequence of (possibly non-measurable) sets, then we

have lim ( ) = . Indeed, for each choose a Borel set

with the same outer measure, then consider .

(1.7) Given a set , there is a critical value [0 ] such that

( ) =
for all with ,

0 for all with .

This critical value is the of the set , which will be

written Dim = . At least in Euclidean space, the packing dimension

coincides with the of Wegmann [14, 3.3].

The variation can be de�ned for a general \derivation

basis" (Henstock [6]). Thomson [11] calls the construction \method III". Here we

will use only the \centered ball" basis, so reference to the basis will be supressed

from our notation and terminology.

Let ( ) be a metric space. A is a pair ( ), where is a

point, and is an open ball ( ) with center and positive radius . In many

metric spaces, the center is uniquely determined by the ball , but this fails in

some metric spaces (such as ultrametric spaces), so the intended center is included

as the second component of the constituent.

Let . A of is a countable set

= ( ) ( )

of constituents with for all and = for = . The term

by itself means a packing of the whole space . A on is a function

�: (0 ). If � is a gauge for and is a packing of , then we say is

� i� diam �( ) for all constituents ( ) of .
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Let be a positive number. For a gauge �, de�ne

( ) = sup diam

where the supremum is over all �-�ne packings of . As � decreases toward 0,

the value ( ) decreases. For the limit, write:

( ) = inf ( )

The positive constants are among the gauges, and if �( ) = for all , the

notation is consistent with the previous notation .

This time we get an outer measure without an extra \method I" step at the end.

This is a special case of the general theory of [11], but we will prove it here because

of its central importance.

The only packing of the empty set is the empty packing, so ( ) = 0 for

all �, and ( ) = 0.

If , any packing of is also a packing of , so ( ) ( ) for all �,

and thus ( ) ( ).

Suppose = . I must show that ( ) ( ). If the right-

hand-side is , there is nothing to prove, so suppose it is �nite. Fix 0. For

each , choose a gauge � on so that ( ) ( )+ 2 . De�ne � by:

�( ) = � ( ) if . Then � is a gauge on . Let be a �-�ne

packing of . Then for each ,

= ( ) :

is a � -�ne packing of . So

(diam ) = (diam )

( ) + ( )

Therefore ( ) ( ) + ( ). Let 0 to obtain ( )

( ).

Suppose have positive separation, dist( ) = 0. Let � be any

gauge with �( ) 2. Then the constituents of any �-�ne packing of are

disjoint from the constituents of any �-�ne packing of . So the union of the two

packings is a �-�ne packing of . Therefore ( ) = ( ) + ( ).

This is true for all su�ciently small gauges, so ( ) = ( ) + ( ).

Now in fact, the variation outer measure is just the packing outer measure

; the notation was introduced for temporary use.
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(1.10) Theorem.

(2.1) De�nition.
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0 ( ) = ( )

The positive constants are among the gauges, so

( ) = inf ( ) inf ( ) = ( )

If , then ( ) ( ) ( ). Take the

in�mum over all such covers to conclude that ( ) ( ).

On the other hand, suppose � is a gauge on a set . For each positive integer

let

= : �( )
1

The sets increase to . Now for each ,

( ) ( ) ( ) ( ) ( )

So by (1.6) we have ( ) ( ). This is true for all gauges �, so ( )

( ).

If is a nonnegative Borel function, then the integral of may be computed as

a variation.

Let be a nonnegative real-valued constituent function: that

is, for each constituent ( ), let ( ) [0 ). If � is a gauge, write

( ) = sup ( )

where the supremum is over all �-�ne packings of . (When � decreases, ( )

decreases.) The of is

( ) = inf ( )

where the in�mum is over all gauges �. When the constituent function is of the

special form

( ) = ( )(diam )

for some nonnegative point-function : [0 ), we will write ( ) = ( )

and ( ) = ( ). We will call ( ) the of .

The following is proved in the same way as Theorem (1.9), above. Thomson calls

a \method III" outer measure. We write 1l for the indicator function of a set

, and 1l for the constituent function

1l ( ) = ( ) 1l ( )
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(2.3) Proposition.

centered Vitali cover

the strong Vitali property

lower

-density

Let be a nonnegative real-valued constituent function. Then

de�ned by for all is a metric outer measure on .

Let , and let be a nonnegative real-valued Borel

function on . Then

h

� � A V h A S S

h f x B

s > f

S

V f f x dx :

A S V A

V A a f

V af aV f

V f

A a

f a V f f x dx

f f
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E x f x cf x

S V f cV f V f cV f c

V f V f

V f V f f x dx f x dx ;

A S A �

x A " > B; x � B "

� A

� A < � A � �

� A B :

� S x S

s � x

D x
� B x

B x
:

r > E <

E D x � E E D x :

( ) = ( 1l )

For special of the form ( )(diam ) , the variation is the integral with respect

to the packing measure .

0

( ) = ( ) ( )

First, by the respective de�nitions, if we have (1l ) = ( ) and

(1l ) = ( ). Clearly, if 0 is a constant and 0 is a function, then

( ) = ( ).

Now both and ( 1l ) are metric outer measures, so Borel sets are mea-

surable. If are disjoint Borel sets and 0 are constants, then the simple

function = 1l satis�es ( ) = ( ) ( ).

Finally, if is a nonnegative Borel function, then there is a sequence of

nonnegative Borel measurable simple functions that increases to . If 1, then

the sets

= : ( ) ( )

increase to . But ( ) ( 1l ), so lim ( ) ( ). Let 1 to

conclude that ( ) ( ). Therefore we have

( ) = lim ( ) = lim ( ) ( ) = ( ) ( )

as required.

Let be a set. A of is a set of constituents

such that for every and every 0, there is ( ) with diam .

A Borel measure has i� for any Borel set with

( ) , and any centered Vitali cover of , there is a packing with

= 0

In many metric spaces, every Borel measure has the strong Vitali property. Besi-

covitch [1] proved this for Euclidean space (see also [5, p. 114]).

Let be a �nite Borel measure on the metric space . For any , the

of at is

( ) = lim inf
( )

diam ( )

In this de�nition, the same lower density is obtained if we use closed balls rather

than open balls; and the lim inf is unchanged if we remove any countable set of

0. Saint Raymond and Tricot [9] prove that, in Euclidean space, if ( ) ,

then

( ) inf ( ) ( ) ( ) sup ( )

Here is a strengthened form of the result.
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Let be a �nite Borel measure on the metric space . For any

Borel set , we have

Equality holds if has the strong Vitali property, , and on

.

� S

E S

� E D x dx :

� E < D x <

E

E U E

c < x E x >

x < x; S U

� B x

B x
cD x r < x

E � E

D x B
c

� B
c
� U :

V D V D =c � U

U E c < V D � E D

D x dx � E :

� E

E < E E < " >

B; x x E; B x ;
� B

B
D x "

E � E

� E B :

� E � B D x " B V D " E :

" � E V D

S ; � ;

< s < D x x � S >

E <

( ) ( ) ( )

( ) ( )

Let be a Borel set. Let be an open neighborhood of it, and let

1 be a positive constant. For each , there is �( ) 0 so that

�( ) dist( )

and
( )

diam ( )
( ) for all �( ).

So � is a gauge on . If is a �-�ne packing of , then

( ) (diam )
1

( )
1

( )

Therefore ( 1l ) ( 1l ) (1 ) ( ). Take the in�mum over all open

and all 1 to obtain ( 1l ) ( ). But is a Borel function, so

this means

( ) ( ) ( )

Now suppose has the strong Vitali property and let be a Borel set with

( ) . Let � be a gauge on such that ( ) and let 0. Then

( ) constituent : diam �( )
( )

(diam )
( ) +

is a centered Vitali cover of . So we may choose from it a packing of with

= 0

Then we have

( ) ( ) ( ) + (diam ) 1l + ( )

Take the in�mum over � and to obtain ( ) 1l .

Consider the example where = [0 1], is Lebesgue measure on [0 1], and

0 1. Then ( ) = 0 for all , but ( ) 0. This shows that the hypothesis

( ) cannot be dropped in the theorem.
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The point of view exploited here suggests other questions.

What fractal measures will we get if we compute the Henstock gauge variation,

using these same constituent functions, but other common di�erentiation bases?

For example:

(4.1) Pairs ( ), where is an open ball and (but possibly not the

center).

(4.2) Pairs ( ), where is an open ball, and is a point, possibly not in

at all; \�-�ne" means that ( ) (McShane basis).

(4.3) In Euclidean space, pairs ( ) where is a cube with sides parallel to the

axes.

Hundreds of other bases can be found in [5].

C. Cutler [2] argues that the \radius packing" measure is superior to the \diam-

eter packing" measure that has been used here.

(4.4) Carry out this study for the \radius packing" measure. This should be done

by replacing the set-function ( ) (diam ( )) with the set-function

( ) (2 ) .
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