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ABSTRACT. We prove that the multifractal decomposition behaves as expected for a
family of sets K known as digraph recursive fractals, using measures p of Markov type.
For each value of a parameter a between a minimum on,ijz and maximum amax, we
define “multifractal components” K(®) of K, and show that they are fractals in the
sense of Taylor. The dimension f(a) of K(®) is computed from the data of the prob-
lem. The typical concave “multifractal f(«)” dimension spectrum curve results. Under
appropriate disjointness conditions, the multifractal components K (@) are given by:

1 B
K@ = { g e i i 281E@) 1
10 log diam B.(z)

i.e., K(®) consists of those points where p has pointwise dimension a.
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INTRODUCTION

It has been argued in the physics literature (for example Halsey, et. al. [9]) that
certain fractals carrying a natural measure may be analyzed in terms of the scaling
properties of the measure. The fractal K should contain “singularities of strength «”
for certain values of a parameter «; a fractal dimension f(«) describes how densely
those singularities are distributed. Computations show a typical concave shape for

this function f(«), sometimes known as a “dimension spectrum?”.

Here we attempt to provide a mathematical setting for this sort of “multifractal
deomposition”. We begin with a (possibly fractal) nonempty compact set K in Eu-
clidean space R™, and a measure y on K. For example, we might have a dynamical
system where, in the limit, the trajectories approach a (strange) attractor K, and the
ergodic time-averages along the process approach a corresponding measure p. Or we
might imagine an iterated function system, which approaches its attractor K as points
are chosen according to the “random method” or the “chaos game”; the time-averages

again converge to a natural measure on the attractor.

When a set K has fractal dimension d and supports a “natural” finite measure u,
we may expect “typically”, for z € K and € > 0, that the measure ,u(BE(x)) of the

ball of radius ¢ centered at z is roughly equal to (2¢)¢, the dth power of the diameter
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of the ball. This might mean that

B.
0 < limsup ,u( (x))

g <00
elo  (diam B.(z))

or, more generally, that

log (BE (a:))

=d
0 logdiam B, (x)

for all z € K. Multifractal decomposition will be interesting exactly when this does

not happen—for many different values of the parameter «, the set

. logp(Be(x))
K@ = K:1l =
{ TER I logdiam Bo(z)  ©

is non-trivial. The sets K(® may be thought of as the multifractal components of
K. (We use a slightly different definition below, however; it coincides with this when
there is a disjointness property.) The Hausdorff dimension of K(®) is called f(«); this
function describes the dimension spectrum.

It is important to note that we are using the Hausdorff dimension of K(®)  and not
the box dimension. Typically, all the sets K(®) are dense in K, so they all have box
dimension equal to the box dimension of K itself. But the Hausdorff dimension f(«)
varies with a.

There are some special cases (the “digraph recursive fractals”) when all of the
Hausdorff dimension computations can be carried out explicitly. Those computations
are carried out here. They do, indeed, show the characteristic convex multifractal
dimension spectrum curve f(«). The packing dimension and the Hausdorff dimension

of the multifractal component K(®) agree, so it is a “fractal” in the sense of Taylor
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[16]. The work here extends the case computed by Cawley & Mauldin [4]. It was,
in turn, suggested by the heuristics of Halsey, et. al. [9]. Some interesting digraph

recursive fractals are found in [3].

1. THE SETTING

We will describe here: the fractals K,, to be investigated, the “string models” Eq(f)
that will be used in the investigation, the measures fi, of Markov type used to define
multifractal components K of the K, and the functions B(q) and f(«) that describe
the properties (such as the fractal dimension) of these components. [Note that ((q)

is often called —7(q).]

1.1. The sets. First, a directed multigraph (V, F) should be fixed. The elements
v € V are the vertices of the graph; the elements e € E are the edges of the graph.
For u,v € V, there is a subset E,, of E, known as the edges from u to v. Each edge
belongs to exactly one of these subsets. We will sometimes write E, = J, Euv, the

set of all edges leaving the vertex wu.

We will often think of the set F as a set of “letters” that label the edges of the
graph, so we will talk about “words” or “strings” made up of these letters. A path
in the graph is a finite string v = ejes - - - e of edges, such that the terminal vertex
of each edge e; is the initial vertex of the next edge e;11. We write E'q(jf,) for the set
of all paths of length £ that begin at v and end at v; and quk) for the set of all paths
of length k that begin at u; and Eq(t*) for the set of all finite paths of any length that

begin at u; and E™) for the set of all finite paths.
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A path that begins and ends at the same node is called a cycle. A cycle with no
repeated nodes is a simple cycle. A cycle consisting of a single edge (from a node
back to itself) is a loop.

We will assume that the graph (V, E) is strongly connected, that is, there is a
path from any vertex to any other, along the edges of the graph (taken in the proper
directions). We will also assume that there are at least two edges leaving each node.
[We explain this assumption more fully below.]

Next, a ratio r(e) should be specified for each edge e € E. We will assume for
simplicity that 0 < r(e) < 1. (In the terminology of [5], it is “strictly contracting”.) So
if we write rmin = mine r(e) and ryax = max, r(e), then we have 0 < 7y < rmax < 1.
If vy = ejey - - - e is a path, write 7(y) = r(e1)r(es2) - - - r(ex)-

Let J, be nonempty compact subsets of Euclidean space R™ (one for each u € V).
The set J, should be equal to the closure of its interior. We assume for simplicity
that these seed sets have diameter 1. A digraph recursive fractal, or Mauldin-
Williams fractal, based on seed sets J, and ratios r(e) is one of the sets

k=0 e p(o

where the sets J(y) are chosen recursively:

(i) J(Ay) = Jy, where A, is the empty path from u to w.
(i) For v € E*®) with terminal vertex v, the set J(7) is geometrically similar to
J, with reduction ratio r(vy).
(iii) Fory € E (k) with terminal vertex v, the sets J (ve), e € E,, are nonoverlap-

ping subsets of J (7).
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(Note the word “nonoverlapping”. This means that they intersect at most in their
boundaries. Since the sets J(y) are similar to the original sets .J,,, they, too, are equal
to the closures of their interiors. Thus we are postulating the “open set condition”, as
in [12]: the interiors of the sets J(vy) are disjoint (for v of a given length), and their
closures are the J().) Notice that there are many choices of how the sets J(ye) may
be placed inside J(). For the “graph self similar” fractals (as in [5] or [10]), start

with similarities 6.: R® — R™, one for each edge e € E, and let

J(’Y) = 961962 o '96k [Jv]

where v = ejeq---ef € E®). The seed sets J,, must be chosen so that (iii) is satisfied.
Another possibility (as in [8]) is a scheme that places the subsets J(ye) inside J(v) at
random.

The terminology “Mauldin-Williams fractal” was introduced by the first author in
[5]; the second author first studied them as “graph-directed constructions” in [10].

We will assume that our directed multigraph (V, E) has the property that each
node has at least two edges leaving it. We claim that this restriction does not change
the fractals K, that can be constructed. If the entire graph is a simple cycle, then
the sets K, are singletons; so to ensure the system is nontrivial, we assume there is
some node with two edges leaving.

Now suppose in (V, E, r) there is some node ug with only one edge eg leaving. Since
the graph is strongly connected, that edge goes to some node other than wug. Define
a new directed multigraph as follows: V' = V' \ {ug}; the edges E’ are of two kinds:

the edges e € E that neither begin nor end at ug, and the paths eey, where e is
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an edge ending at ug. The ratios r’ are given by r'(e) = r(e) in the first case, and
r'(eep) = r(e)r(ep) in the second case. The new system (V' E’, ') constructs the same
sets as (V, E,r), but has ug deleted. Continuing in this way, we never remove a node
with two or more edges leaving, but (by the finiteness of V') the process eventually
ends. When it does, we have a graph where every node has at least two edges leaving.

The Hausdorff dimension for digraph recursive fractals was computed in [10], see
[5, Theorem 6.4.8]. This is done as follows: For each positive number s we define a
square matrix A(s), with rows and columns indexed by the set V: the entry in row u

and column v is

eCEyy

The Hausdorff dimension d of all the sets K, is the unique nonnegative number d such

that the matrix A(d) has spectral radius 1.

1.2. The models. We will use some “string models” in our investigation of these
fractals. Write Eq(f) for the set of all infinite strings, using symbols from F, where the
initial vertex of the first edge is v and the terminal vertex of each edge is the initial
vertex of the next edge. These sets are naturally compact metric spaces. For each
v € E® | the cylinder [v] is the set of all infinite strings o € E(“) that begin with
7. Then the set {[y]:v € E } is the base for the topology on E). For o € B
and a positive integer k, the restriction o[k is the finite string made up of the first
k letters of . The same notation [k is used for finite strings v when k is less than
the length of v. As a special case of this: if v has length k, then the parent of v is

~~ =v](k — 1), obtained by omitting the last letter of ~.
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There is a model map hy: ES” — R™ for each u, defined so that hy (o) is the

unique element of the set

Then clearly K, = h, [E&w)}. If h,(0) = x, then we say that the string o is the
address of the point z. In the case when the sets J(ye) that constitute J(vy) are
actually disjoint (not merely nonoverlapping), the model maps h, are one-to-one.

That means each point has a unique address.

1.3. Measures of Markov type. We begin with positive numbers p(e), one for
each edge e € E. They are to be called transition probabilities. The probabilities
of all edges leaving a given node u must sum to 1:

Z Z p(e) = 1.

VEV e€EEy,

(Since each node has at least two edges leaving it, this implies that p(e) < 1 for all
edges e.) Then we define products, which are to be thought of as probabilities of

paths: if y € E®), say v = ejeq - - - ey, then
p(7) = ple1)p(e2) - - -plex).

These numbers satisfy an additivity condition: if v € EQ([:,), then

p(v) =Y p(ve).

ecE,

Therefore, for each v € V, there is a unique measure fi, on Eq(f) with

i ([V]) = p(7)
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forally € Eq(t*) . Measures of this kind will be called measures of Markov type. Dis-
cussion of them can be found under the heading “Markov chains” in many probability
books. For example [2, Section 1.8], [14, Chapter 4].

We may think of this in more “probabilistic” language. Imagine a particle moving
(at random) on our graph. At each tick of the clock, it traverses one of the edges (in
the direction of the arrow) from one vertex to another. The number p(e) gives the
probability that the edge e will be chosen, among all the edges emanating from the
vertex that is occupied at the present time. We have a sequence (Xj)22, of random
variables with values in V. Given that X, = wu, the conditional probability that

Xk_;’_l =0 is

> ple).

e€Ey,y

(We keep a bit more information than is conventional. There may be several edges
from u to v; we will not combine them into a single edge, so that we know not only
where X moved to, but also which edge it traversed to get there. If necessary, this
can be thought of as a larger Markov chain, where E is the set of states. In [10] there
is at most one edge from one node u to another v. But here we allow several edges
from u to v as in [5].) So this means: If Xy = u, then the conditional probability
that the process traverses edges e, eg, - - - , e in the first k steps is 0 unless the string

vy = ejes - - - e belongs to E&k), and in that case the conditional probability is

k

p(7) = [ [ p(es)-

=1

The measure fi, on Eq(f) corresponds to a measure p, on K, C R": For F' C

R™, define p,(F) = i, (hy'[F]). Another way to think of this measure involves the
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construction of K, using the sets J(v). We begin by assigning mass 1 to the set J,.
Then that mass is distributed among the subsets J(e), e € E,, so that J(e) has mass
p(e). Once the mass for a set J(y) has been assigned, then it is distributed among

the subsets J(vye), according to the values of p(e).

1.4. Hausdorff and packing dimensions. The two fractal dimensions that we will
be concerned with here are the Hausdorff dimension and the packing dimension.
We briefly review their definitions.

Let FF C R™ be a set. Fix positive real numbers s and €. Define
HE(F) = inf Y " (diam 4;)*,
where the infimum is over all countable farznilies {A;}52, of sets with |, 4; O F and
diam A; < e for all 2. Define the s-dimensional Hausdorff outer measure of F
by:

H(F) = lim 9 (F) = sup 3¢ (F).
€l0 e>0

There is a unique critical value d, with 0 < d < n, such that
o ifs<d
H(F) =
0 ifs>d.

This critical value d is called the Hausdorff dimension of the set F'; we will write
d = dim F. For more complete discussions, see [1, Section 5.4], [5, Section 6.1], [6,
Section 2.1]. We will need to know that H* is a countably-additive measure on the
Borel sets of R™.

Let ' C R™ be a set. Fix positive real numbers s and . Define

P.(F) =sup » (2€:)°,
=1
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where the supremum is over all countable disjoint families {B., (xz)}zl of balls with

g; < € and x; € F. Define the s-dimensional packing pre-measure of F' by:

P (F) =lmT(F) = inf P (F).

Then define the s-dimensional packing outer measure of F' by:
P(F) =inf Y P(F),
=1

where the infimum is over all countable families {F;}$2; of sets with |, F; O F. There
is a unique critical value d, with 0 < d < n, such that
oo ifs<d

P(F) =
0 if s >d.

This critical value d is called the packing dimension of the set F'; we will write
d = Dim F. For more complete discussions, see [5, Section 6.5], [6, Section 3.4]. We
will need to know that P’ is a countably-additive measure on the Borel sets of R™.
For any set FF C R™, we have dim F < Dim F. (For example, [5, Proposition
6.5.7].) Taylor [16] has proposed that the term “fractal” be used for a set ' C R”
with dim F' = Dim F. We will prove that the “multifractal components” Kq(f‘) of our

digraph recursive fractals satisfy this criterion.

1.5. Multifractal decomposition. Now consider the digraph recursive fractals K,
defined above, and the measures fi,, on the model spaces Er,(f). The “balls” in Eq(f)
are the cylinders [vy]; the measure of a cylinder is i, ([y]) = p(vy); the diameter of a

cylinder may be considered to be r(7). (The diameter of the image hy, [[v]] is < r(v)
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and > cr(y) for some constant c.) Given a real number «, we will be interested in
the sets

- . logp(alk)
K = E®): lim 22— =
v {U SR log (o |k) “

K@® = h, [Kga)} .

They will be called the multifractal components of K, (with respect to fi,.). Note
that K is a Borel set (actually, an Fys-set). KS* is at least an analytic set.

At least in a special case, there is another (more natural) description of the multi-
fractal components. Suppose the K, exhibit “graph self-similarity”: there is a simi-

larity .: R™ — R™ for each edge e € E, such that for y = ejeq---e € Eq(jf,),
J('Y) = 961962 T eek[Ju]-

Suppose that, for each u € V, the sets J(e) for e € E, are disjoint. Then the

multifractal components Kq(f‘) defined above satisfy

1 B
Kq(f’) =< zxe K, :lim Og'l,j’( (a:)) = .
el0 log diam B, (z)

Indeed, two disjoint compact sets are separated by positive distance. Let
c=min {dist (J(e),J(¢)) :u€ V,e,e € Ey,e#¢€'}.
Then, for o, 7 € Eq(f) we have

cr(y) < [hu(e) = hu(7)| < r(v),
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where «y is the longest common prefix of o and 7. [This can be proved by induction

on the length of v.] Now if z = h, (o) € K,, and € > 0, then we have
K, N Be(x) C J(olk1)

where k is the largest integer with ¢ < ¢r(o k1), and
B.(z) O K, N J(oko),

where kg is the least integer with ¢ > r(olkg). Writing rpi, = mingr(e), we may

deduce that

log p(a ko) _ logpu(Be(®)) _  logp(alks)
IOg ((2/Tmin)7‘(0- fk'o)) - log diam BE(SIT) N log (2crmin7‘(0- rkl)) -

These inequalities show that

_logp(olk) _ . log i (Be(x))
lim ————~ = lim -
k—oo logr(olk) =0 logdiam B.(z)

whenever one of these limits exsits.

The Hausdorff dimensions of the multifractal components may be computed as
follows. (Details are given below, in Section 3.) Let A(q,3) be a square matrix with
rows and columns indexed by V. The entry in row u, column v, is

Au(q,8) = > ple)ir(e)”.
e€Eyy
For given ¢, there is a unique g3 so that A(q, 8) has spectral radius 1. This defines
as an analytic function of ¢q. Define & = —df/dq and f = gqa 4+ . We note that in

much of the literature, what we call 3 is known as —.
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1.6. Theorem. Let (V,E) be a strongly connected directed multigraph. Let r(e),
0 < r(e) <1, be a system of ratios for the graph, and let p(e), 0 < p(e) < 1, be a
system of transition probabilities for the graph, defining measures fi, of Markov type
on the string models Er,sw). Let q, 8, a, f be four numbers related as above. Then for

each uw € V', the multifractal component Kq(ta) 18 a fractal with dimension f:
dim K{® = Dim K™ = f.

This theorem is proved below, in Section 4.

2. AN EXAMPLE

Let us consider a particular example, before we proceed to the general case. The
“two-part dust” (Figure 1) is from [5, Section 6.4]. It is related to the graph shown
in Figure 2. The set of vertices is {U,V}. The set of edges is {a,b, c,d}. The ratios
are given by: r(a) = 1/2, r(b) = 1/4, r(c) = 1/2, and r(d) = 3/4. The two digraph
recursive fractals Ky and Ky are fractals with dimension d = 1 (both Hausdorff and

packing dimension).

Figure 1. The two-part dust. Figure 2. The directed graph.

Now consider the natural measures iy, jiy of Markov type, obtained by assigning

p(e) = 1/2 for all edges e; for our Markov chain, at each step, we use each of the two
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possible edges leaving the present node with equal probability. Then the matrix A

becomes
B B
Ao =[G G Q)
’ q q
()" (2" ()" @3)
We want the spectral radius to be equal to 1. So ¢ and 3 must satisfy the equation

det(A—1)=0,or
(1) 2—2q—3,@3ﬂ _ 2_q_ﬁ _ 2_q_2ﬁ3:6 + 1 — 2_2q_3ﬂ = O

This may be considered a quadratic equation for 27¢. It may be solved for g. We have

chosen the appropriate one of the two roots:

_log (2781 4327271 4 2726-1/226 3PP +1 1 326 4 26 +2)

e log 2

Figure 3. Graph of §(q). Figure 4. Graph of f(a).
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Then « = —df/dg, so (differentiating (1) implicitly) « =

(27P—a 4 3P2-26-a 4 2-36-2a+1(_35 4 1)) log2
(2=B—a 4 3F2-20~q+1 4 3.2-30-2¢(—30 + 1)) log2 + 36 (—2-2~4 + 2-3F~24) Jog 3~

As usual, f = qga + (.

Here are some special values:
gq=0,06=1,a=6log2/(10log2 — 3log3) ~ 1.1439 and f = 1.
g=1,06=0,a=f=41log2/(6log2 —log3) ~ 0.90599.
q— 00, f — —00, @ = Qin = 2/3 and f — 0.
q — —00, = 00, & = Qmax = log2/(21log2 — log 3) ~ 2.4094 and f — 0.

The graph of 3(q) shows that it is decreasing and convex, with oblique asymptotes
at both ends. The graph of f(a) shows the typical concave “dimension spectrum”

shape, with maximum value 1 = dim Ky = dim Ky at a = 1.1439 (and ¢ = 0).

3. AUXILIARY FUNCTIONS

Now we consider more carefully how the auxiliary functions 8 and a behave. Let

A(q, B) be as above. The entry in row u, column v, is

Auv(Qa /8) = Z p(e)qr(e)ﬁ'

e€Eyy

Let ®(q, 3) be the spectral radius of A(q, 3). The arguments dealing with ®(q, ) rely
on the theory of nonnegative matrices, known as Perron-Frobenius theory: see for
example [7], [11], [14]. Here are the basic properties of the function &:

3.1. Proposition.

(i) @: R x R — (0,00) is continuous (in fact, analytic).
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(i) @ is strictly decreasing in each variable separately; that is: if ¢1 < qa, then
®(q1,0) > ®(q2,0); and if By < B2, then ®(q, 1) > P(q, Fa).
(iii) For fized ¢ we have limg_,oc ®(q, 8) = 0 and limg_, _, (g, 3) = co. For fixred
B we have limg_, o (g, 8) = 0 and lim,_,_, ®(q, f) = 0.

(iv) @ is log-convex; that is: if q1,q2, 1,02 € R, a1,a2 > 0, a1 + ag = 1, then

®(a1q1 + a2qz, a1B1 + a2B2) < (g1, 81) " @ (g2, B2) .

Proof. (i) Each entry Ay, (g, 3) is continuous (analytic). The largest zero of a polyno-
mial is an analytic function of the coefficients of the polynomial in the region where
that zero is a simple zero. Since the graph is strongly connected, the matrix A(q, ()
is irreducible, so the spectral radius ®(q, ) is a simple zero of the characteristic poly-
nomial.

(ii) Fix 3, and let ¢; < ¢2. There is a positive Perron-Frobenius eigenvector (py)ycv
for the matrix A(qq, 8) with

S 3 p(e)r(e) s, = Blar, ) pu
v e€Ey,
for all u € V. Now p(e) < 1, so p(e)? > p(e)?. Therefore
S ple)=r(e)fo, <Y Y ple)r(e)’py = 0(q1, B) pu-
v e€Eyy v e€Eyy

This is a strict inequality since there is a nonzero entry in row u. Therefore (as in the
Perron-Frobenius theorem), we conclude ® (g2, 3) < ®(g1, 0).

The proof that ®(q, 3) is strictly decreasing in [ is the same.
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(iii) Fix g. When 8 — oo, all of the entries of A(q,3) approach 0, so ®(¢, 5) — 0.
Similarly, when we let  — —oo, the nonzero entries of A(q, ) approach oo; there is
at least one nonzero entry in each row of A(q, 3), so also ®(q,3) — cc.

The proof of the other case is the same.

(iv) Fix values ¢1, 2, 51, B2 € R and a1, a2 > 0 with a; +as = 1. There are positive
eigenvectors (p1,) and (pg,) with

> > = ©(qi; i) piu
v e€Eyue

for all u € V, i = 1,2. Write ¢ = a1q1 + a2q2, 8 = a181 + a22. Let p, = piLps2 for

uw € V. Then (using Hélder’s inequality):

D> p@r(@)’oy =YY (ple)r(e) pr,)™ (p(e)2r(e)® pay)™
v eCE,,
< (Z > ple)r(e)? pm) (Z > p(e)®r )@

= (P(q1,51) p1u)*" (P(q2; B2) p2u)™
= é(qla /Bl)alé(Q%ﬁ?)(mpu'

Now the vector (p,) is positive, so by Perron-Frobenius theory we conclude ®(q, 5) <

O(q1, 1) D(ga, B2)*>. O

Now for fixed g, the function ®(g, ) is a continuous function of 5. Its values range
from 0 (when 8 — oc0) to co (when  — —o0). Therefore by the intermediate value

theorem there is a real number (3 such that

(g, B) = 1.
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The solution 3 is unique, since ® is a strictly decreasing function of 3. This defines 3
implicitly as a function of q.

Here are a few useful properties of this function:

3.2. Proposition. Let = [(q) be defined by ®(q,3) = 1. Then
(i) B is an analytic function of the real variable q.
(ii) B is strictly decreasing; that is: if ¢1 < qa2, then B(q1) > B(q2).

(iii) limg— oo B(g) = 00 and lim,_, o B(g) = —o0.

(iv) B is a convex function; that is: if a;,a2 > 0 and a1 + a2 = 1, then

B(arqr + a2g2) < a1B(q1) + a28(q2).

Proof. (i) ® is an analytic function of its two variables. Neither of its partial derivatives
vanishes. Therefore by the implicit function theorem, 3 is an analytic function of g.

(ii) Let ¢1 < g2. We must show that 3(¢q1) > B(g2). Suppose not: B(q1) < B(g2).
Then 1 = ®(q1, B(q1)) > ®(q2, B(q1)) > ®(q2, B(g2)) = 1, a contradiction.

(iii) follows from Proposition 3.1(ii).

(iv) Let g1, g2,a1,as be given with a1,a2 > 0 and a1 + ap = 1. Write 81 = [(q1)

and [y = (q2). Then

®(a1q1 + a2q2,a161 + a202) < D(q1, £1)* D(ga, B2)*?

=1%11% = |

= ®(a1q1 + a2q2, Blarqr + a2q2)).

Therefore a151 + asf2 > B(a1q1 + a2q2), as claimed. O
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Note that the probabilities p(e) were postulated to satisfy
) ple)=1
VEV €€y,
for all uw € V. So by the Perron-Frobenius theorem, the spectral radius of A(1,0) is 1.
So (1) = 0. As noted above, the Haudorff (and packing) dimensions of the sets K,
are the number d with ®(0,d) = 1. So 8(0) = d.
Now let us consider the derivative 3'(q). We know that ¢ and [ satisfy the equation
®(q,B) = 1. The matrix is irreducible, so there is a one-dimensional eigenspace for
eigenvalue 1 in the matrix A(q, ). We normalize to obtain a unique vector (py),ev

satisfying

Z Z p(e)ir(e)Ppy, = p, for all u € V;

veEV e€FE,y
E py = 1.
veV

Cramer’s rule shows that the entries p, are analytic functions of g. The graph is
strongly connected, so the matrix is irreducible; so by the Perron-Frobenius theorem,
py» > 0 for all v. Similarly, there exists a left eigenvector A\, for the matrix. This time

we will normalize slightly differently:

Z Z Aup(e)ir(e)? = X, forallv € V;

u€V ecE,,
E Aupy = 1.
ueV

Again, the entries A\, are positive analytic functions of q.

To simplify the notation, we use a prime ’ for derivative with respect to g. First
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note

Z)\upuzl

ueVv
/
(Z Auﬂu) =0
uev
Z )‘upu + Z )\up; = 0.
ueV u€eV

Consider the expression

S = ZZ Z)\up )r(e

v e€E,,

Then, of course S = A,p, = 1. Differentiating, we obtain

0= ZZ > Ap(e)™r(e) pU+ZZ D Auple)?(logp(e))r(e)® py

v e€Ey, v ecE,,
55 3P SRV ETTE(MERIZES o) SRS
v e€EFyu, v e€Ey,

—Z/\ pu+zzz )?py) (log p(e) + B logr(e +Z/\UPU

—ZZ Z U)(logp(e) + 3 logr(e)).
Therefore
F() = 2w 2w DoceR,, (Mup(e)?(e)’py) logp(e)

D ou 2w ey, (Mup(e)tr(e)Ppy)logr(e)

So we conclude that #'(¢) < 0, agreeing with Proposition 3.2(ii).

We will write « = —d3/dg. Thus « > 0, and

_ 2wy 2eem,, (Mup(e)?r(e)’p) logp(e)
You 0 een,, (Aup(e)mr(e)?py)logr(e)

(2)

21
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Computations below will use some other numerical parameters. If y = ejeq---e €

E®) is a path, let

Write

Nmin = mMin {7n(¢) : ¢ is a simple cycle }
Nmax = max {n(¢) : ¢ is a simple cycle } .
We will see below that a ranges from 7y t0 Ymax-
The last auxiliary function is f = qa + (8. Its behavior depends on the behavior
of 8. Now 3 is a convex function of ¢, so d?3/dg*> > 0, and therefore da/dq < 0.

Actually, there are two rather different possibilities: [ is a linear function or 3 is a

strictly convex function.

3.3. Proposition. Let (z,),cv be the “Perron numbers”: z, > 0 and

Z Z r(e)dzd = 24, forallu e V.

veEV e€E,y

(A) Suppose p(e) = (z;lr(e)x,)? for all u,v € V and e € Ey,. Then:
(i) B is a linear function: $(q) = d — dgq.
(ii) o =d is constant.

(iii) f =d is constant.

(iv) K9 =K, and K = @ for all o # d.
(B) Suppose p(e) # (x; r(e)x,)? for at least one edge e. Then:

(i) B is a strictly conver function of q.
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(ii) « is a strictly decreasing function of q, so we may consider q as a function of
a defined on an interval (Qmin, ¥max)-
(iii) f is a strictly concave function of .
(iv) Kq(ft) # & if and only if Nmin < @ < Nmax-
(v) The function B(q) + Nming s nonincreasing and has a limit > 0 as ¢ — oo; the
Junction B(q) + Mmaxq is nondecreasing and has a limit > 0 as ¢ — —oc. And

a 1s a decreasing function of q, with & — Nmin as ¢ — 00 and & — Nmax aS

q — —OQ. (SO Omin = T)min and Omax = nmax')

Proof. The Perron numbers z,, > 0 exist by the Perron-Frobenius theorem. So if we
write Tyin = min, £, and Tymax = Max, T,, then we have 0 < Tpin < Tmax < 00.
(A)(i) Let ¢ be given. We claim that 3(q) = d — dg. If we write p, = 24794, then

we have

Yo @)Y oy =YY w M r(e)Mwiir ()t ag Y
v e€Fy,
— a3 Y (o) = ot = p,.

Therefore ®(q,d — dq) = 1, so B(q) = d — dq.
(ii) Differentiate the result of (i): @ = —dB/dq = d.
(iii) f =qa+ B =d.
(iv) Let v = e1e2 - - - e be a path in ng,) Since the terminal vertex of each edge e;

is the initial vertex of the following edge e;;1, most of the x,’s cancel in the product

= (z3'r(y)z)"
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so that

log p(7) log (/%)
log 7(7y) 4 (1 - ) '

logr(7)
Note that log(x,/x,) is bounded above by log(Zmax/Zmin) and bounded below by

log(Zmin/Tmax)- Now let o € Eq(f). If we write v = ok, we have

logp(olk) _ G
logr(olk) d (1 - logr(afk)) ’

where Cj, remains bounded as k — oo, while logr(c[k) — —o0 as k — oo. This shows
that log p(c [k)/logr(c k) — d. Therefore E&) = KV, so K, = K{?.

(B) On the other hand, suppose that p(e) # (z;'r(e)z,)?® for some edge e. We
claim that [ is a strictly convex function of ¢q. Since (3 is real-analytic, if 3 is linear
on some interval, then it is linear everywhere. That is, if equality holds in Proposition

3.2 (iv) for some ¢q; # ¢o, then it holds for all. So suppose equality holds for ¢; = 0,

g2 = 1. Now ((0) = d and (1) = 0. The right eigenvectors p;, are:

d
p].U = ‘CL‘UJ

P2y = L.

Equality in Proposition 3.2 (iv) means equality in Holder’s inequality in the proof of

Proposition 3.1 (iv); thus there are constants a, with
p(e)’r(e)?zd = a,p(e)'r(e)’1 for e € Ey,.

Summing over v € V and e € E,,,, we get a:ﬁ = q,. Therefore
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for all u,v € V and e € E,,. So we are in case (A).
(i) Thus, in case (B), 3 is strictly convex. (ii) It follows that « is strictly decreasing.
And (iii)
f'=a+qgd —a=qd.
So df /da = f'/a' = q. In the graph of f as a function of « (as in Figure 4) the
parameter ¢ is the slope of the tangent line to the curve. At the endpoints, where

q — oo and ¢ — —oo, the graph has vertical tangent lines. Also,

2f dg 1 -1

&f _da _ _ 0.
do? ~da  dajdg  &pjdg

So f(«) is a strictly concave function.

(iv) Suppose & < Nmin. We must show that Kq(f‘) = @, or equivalently that

1
lim inf 128P(7 1K)

> Tmin
k—oo logr(olk) — &

for all o € Eq(f). Now for all simple cycles ¢ we have logp(¢)/logr(¢) > Nmin, SO

log p(¢) < Nminlogr(¢), and thus

p(¢) < r(Q)Mmin.

Now any cycle may be partitioned into finitely many simple cycles. Indeed, if a
cycle ( is not simple, some node is repeated, so it contains a shorter cycle; the shortest
cycle contained in ( is a simple cycle. When this simple cycle is removed from {, what
remains is a cycle shorter than (. Thus, if ( = ejes--- e, then the indices 1,--- ,k

may be partitioned as a disjoint union
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so that {e; : 4 € I; } is a simple cycle (; for each j.

Now if ( is any cycle, partition it into simple cycles (1, (2, ,(m. Then

PO = B(G0) ++P(Gn) < 7(G) ™ - 1(G) ™ = Q).

Therefore 7(¢) > Nmin-
There are only finitely many nodes in the graph; say there are N nodes. The same
argument as above shows that any finite path v may be partitioned into cycles plus

at most N edges. Thus, if C = max{1,p(e)/r(e)™i~ :e € E}, then

p(y) < r(y)™nCV.

Now for given o, we have r(c k) — 0 and p(c|k) — 0, so the term N log C disappears

in the limit, and

lim inf 128P(7 1K)
k—oco logr(olk)

2 Tmin
as required.
A similar argument shows that K9~ gifas Dmax-

Now there is a cycle (o with 7({p) = Nmin and a cycle {3 with 7((1) = Nmax- The

infinite path ¢ = (y(o- - obtained by repeating (y achieves

log p(o[k)

lim = Tmin-
k) "

k—oo log (o

The path obtained by repeating (; achieves 7max. And any value of a between Nmin
and 7max is achieved by an infinite path that intersperses the two cycles (y and (7 in

the proper proportions. So K\ # @ for such a.
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(v) Now we analyze the asymptotic properties of 3(¢): when ¢ — oo, and f — —o0,

we claim that a decreases t0 fyin and S+9ming is nonincreasing. (The other asymptote
g — —oo may be done similarly.)

Now if v € E(¥) is a path of length k, it may be partitioned into cycles (1, Ca, -+ , (m

plus at most N additional edges. Then, as before

log p(Y) < Nmin log () + N log C,

logp(v) ) NlogC NlogC

log7(7) ) = Tmin k108 "max

Now if we write for each &

nk=min{n(v):7€E(’“)},

we may conclude

NlogC

> ; _ .
M 2 Memin + k108 Tmax

But klog rpmax — —00 as k — 00, so we have
lim inf 7, > Tmin-
k—o0

On the other hand, for given large k, we may construct a path v of length £ by
repeating the simple cycle (p (which achieves 7yi,) many times, followed by the first
few edges of {p. Now if ¢ = min{1,p(e)/r(e)™i» : e € E }, we have

Nlogc

77('7) < Mmin + 7———3
log7(7)

thus
Nlogc

< ; —_—.
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This shows
lim 7g = Mmin-
k—o0

For a given positive integer k, the power A(q, J6] (q))k of the matrix also has spectral
radius 1 with the same left and right eigenvectors. So for each node u,
(3) =2 Z (0)r(y

Thus (as in the case k = 1) we have

BRI 3 ) DEFCIUIN

v yeB)

and may differentiate to conclude

2w 2w et (Aup(1)fr(7)Ppy) log p(v)
> 2w 2oty (Mup(1)77 ()P py) logr(v)

B'(q) = -

But for all y with length &, () > ng, so p(y) = ()" < 7(¥)™, and thus log p(y) <

Nk log (7). Therefore we have

) < =20 o Doty Qupr ()P pu) logr ()
= DI 276E1(/3)> (Aup(1)97r(7)Ppy) logr(y) M-

Take the limit as & — oo to obtain 4'(¢) < —7min. This implies that & > nmin; and
also B + Mming is a nonincreasing function of q.
Next we claim that 3(q) + 7ming converges to a finite nonnegative limit as ¢ — oo.

If ¢ € ES) is a simple cycle, then from (3) we have

pu > p(Q)r(¢)PDp,
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The inequality is strict since there is more to the graph than this single simple cycle.

Therefore ()8 < 1, 50 gn(¢) + B(g) > 0. This holds for all simple cycles, so

Now since ¢nmin + 3(q) converges to a finite limit, its graph has a horizontal asymp-
tote. But its derivative nmin — a(q) is negative and increasing, so that derivative must
converge to 0. Therefore a(q) — Nmin as ¢ — 0o0. That iS, Gmin = Nmin-

The asymptotic properties as ¢ — —oo are proved in the same way. [J

4. PROOF OF THE DIMENSION THEOREM

We now come to the proof of Theorem 1.6. Fix a real number q. There are
corresponding values (3, o, f as above. For each u € V' we will prove that the set Kq(ta)

is a fractal with dimension f:
dim K{* = Dim K™ = f.

The proof is divided into the “upper bound” Dim Kz(fl) < f and the “lower bound”
dim K > f. Since the inequality dim F < Dim F is true for any set F C R”, these
two bounds suffice to prove the result.

Before we proceed with the proof, we will consider the auxiliary measures.

The matrix A(q, 8) has spectral radius 1. So (as above) there exist positive right

and left eigenvectors: p,, A, with

Z Z p(e)?r(e)Pp, = p, forallu e V;

vEV e€E,,

Z Z Aup(e)ir(e)? =X, forallveV.

u€EV e€Ey,
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By the Perron-Frobenius theorem, A,,p, > 0. So if we write ppin = min, p, and

Pmax = MaX, Py, then 0 < ppin < Pmax- 1f we let

P(e) = py 'p(e)™r(e)’ py

for all e € E,,, then we have

Y ) Ple)=1

VvEV e€E .,
for all u € V. These can be used as transition probabilities for some measure of

Markov type, called ﬂ&q). Equivalently, for v € E'q(jf,), the cylinder [v] is given measure

19 ([7]) = pg tp(7) 2 (v)P po.

There is a corresponding measure pi? on K., defined by p'@(F) = i@ (R t[FY).

4.1. Lemma. Let u € V. The measure ﬂ&q) 18 concentrated on the set I/{'qsa),' that 1s,

P (RE) = 1.

Proof. Consider the Markov chain (Xj) with transition probabilities P(e), as above.
In probabilistic language, we are required to prove that (conditioned on Xy = u) the
“trajectory” of the Markov chain (that is, the string made up of the successive edges
traversed by the process) almost surely belongs to f(}j’).

Now the numbers m, = A\, p,, constitute a “stationary distribution” for the Markov
chain. That is, for every v € V,

> mPle) =,

u€EV e€Eyy
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We next apply the ergodic theorem for Markov chains: [7, Theorem 11’, p. 95] or [14,
Theorems 4.1, 4.2]. The graph (V, E) is strongly connected, so the Markov chain is
ergodic; thus 7, is the unique stationary distribution, and it occurs as the long-run
frequencies of the process. This means that, in the long run, each state v is visited a
fraction 7, of the time. Consequently, for each edge e € E,, the fraction m, P(e) of all
edge traversals occur on the edge e. Precisely, if g: E — R is any function, then for
almost all o € Eq(f),
L
i Zg(ai) — Z Z Z muP(e)g(e) as k — oo.
=1 u€EV vEV e€Ey,
We have written o; for the ith letter of the string o.
Now let us apply this with g(e) = logp(e). Then Zle log p(o;) = log Hle p(o;) =
logp(o k). We conclude: for almost all o,

%logp(afk) — Z Z Z muP(€) logp(e)

u€EV veV e€E,,

=32 > dup(e)ir(e)’py logp(e).
u€V veV ecE,,
Similarly,
%log r(olk) — Z Z Z Aup(e)?r(e)P py log 7 (e).

u€V veV e€E,,

Therefore, for almost all o € Eq(f), we have the ratio limit

10gp(0- rk) — ZuEV ZUEV ZeeEm, )\up(e)qr(e)ﬂpv logp(e) .
log T(U fk) Zuev Zyev ZGGEW )\up(e)qr(e)ﬂpv log 7‘(6)

by (2). That is, 0 € K. O
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4.2. Proposition (upper bound). Let u € V. The packing dimension inequality

Dim K < f holds.

Proof. (i) First, in the case ¢ = 0, we have f = = d; this is the usual computation of
the packing dimension of a digraph recursive fractal, for example [5, Theorem 6.5.10].

(ii) Next, consider the case ¢ > 0. Fix § > 0. Define

g0 = { ;e oy, losplolk) 01
log (o k) q

7 = [ 5P,
k=N
T = 1, [TE0].

Then we have
o0
R ¢ U F(N)
N=1

K = p, [Kg@} c J ™.
N=1
We will show Dim T < f + 6. This is true for all N, so Dim K{® < f + 4. And
this is true for all § > 0, so Dim Kq(f) < f, as claimed.

So fix N and consider the (f + J)-dimensional packing measure of TN . Let e > 0

be so small that e < r(y) for all vy € EM . Let
B, (z;), 1=1,2,---

be a countable disjoint collection of balls with z; € T&N) and ¢; < . There exist

o; € ﬁSN) fori=1,2,--- so that hy(0;) = x;. Let k; € N be such that r(o]k;) < &; <
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r(o[(k;i —1)). Then k; > N by the choice of e. Now o; € S5 so:

log p(0i[k:)
10g T‘(O’i rkz)

logp(o; ki) > <a + g) log r(o; [k;)

]
<a+ -
q

p(oilki) > r(o; [ki)a+5/q
p(oi k)9 > r(og ki) @9+

p(oi ki) (o3 lk:)’ > r(oilk:)TH0.
By the choice of the k;, the cylinders [ai [ki} are disjoint. Now

diam Bei (.CEZ) = 262‘ S 27‘(0’1' r(kz — 1)) S (2/Tmin)7“(0'i sz)

Thus
(752)" X 0" < S renlh) 0 < Stk e k)
< (5=2) S (et
- (tm=) it (o) = (=)
This shows

- f+o
?g-l-&(TQSN)) < (pma,x) ( 2 ) .

Pmin T'min

33

~f+0
Let & — 0 to obtain P’ (TM) < (pmax/prmin) (2/rmin)+8 < 00 and P+ (M) <

0. So Dim T\ < f+0.

Therefore, as noted above, we have Dim Kq(f') < f.
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(iii) Finally, consider the case ¢ < 0. Fix § > 0. (So §/q < 0.) Define

§£k):{U€E(w>.MZa+§}’

“ logr(alk) q
o0
7 = ) 89,
k=N

T = n, [TV].

As in the previous case, Kq(f‘) C Un=1 TéN). The rest of the proof proceeds as before.
With the reversed inequality in the definition of §1(Lk) and ¢ < 0, we again obtain the
estimate

p(oi k) tr(o3 k)P > r(os k) 0. O

4.3. Proposition (lower bound). Let u € V. The Hausdorff dimension inequality

dim K > f holds.

Proof. (i) First, in the case ¢ = 0, we have f = = d. So the Hausdorff dimension
inequality is essentially the computation of Mauldin and Williams. (Recall that we
assume the open set condition.) See [5, Theorem 6.4.8] or [10, Theorem 3|. The
measure ﬂq(?) is the measure used in these references, and the set I?q(f‘) supports this
measure, so the computation actually shows dim Kq(ﬂ) > d; indeed, FH? (K&a)) is
positive and finite.

(ii) Next, consider the case ¢ > 0. We must show that dim K > f. More
generally, let F be any (Borel) set in R" with ,u,q(f’) (F) = a > 0. We will show that

dim F' > f. [That is, in terminology discussed below, we show that dim uq(tq) > f.]

Let § > 0 be given. We will investigate the (f — §)-dimensional Hausdorff measure of
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the set F'. Write F' = hZ![F]. Then let

~ ~ logp(olk) J
(k)— = 2> — —
S {JGF'Iogr(o[k)_a e

79 = [ 59
k=N
1, [£49].
Now F' is contained in the increasing union Un=1 7N and /lq(tq) (ﬁ’) =a > 0, so by

the countable additivity of the measure,
i 7(@) (T(N)Y —
lim /i, (Tu ) a.

Choose N so large that ;L(Lq) (ﬁEN)) > a/2, then choose € > 0 so small that € < r(y)
for all v € Eq(LN).
Now suppose that {A;} is a countable cover of F' by sets with diam A; < e. For

each 1, let
H; = {’)’ € E'Q(‘*) :7r(y) < diam A4; < T(q/_),hu[hﬂ NA,NF £ } .

There is a geometrical lemma ([10, Lemma V] or [5, pp. 172-3]) that shows there
is a finite constant C' such that each set H; has at most C elements. If we write
H = Uf; Hi, then

Z r(y)f=0 < C’Z(diam A0,

Y€EH

Now {[y]:v € H} covers F D TN, We need to construct a cover of 75" more
efficient than H. First, there is no need for the sets that do not meet T;EN); let

H = {'y € H:[y]N T + O } Also, we need to cover the set only once: if two
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cylinders [y] are not disjoint then one of them is contained in the other, so we may
discard the smaller one. So there is a set H” C H' such that {[y]:v€ H" } is a
disjoint cover of ﬁSN).

Now for each v € H" there exists o € ﬁSN) and k£ > N so that o[k = ~. Then

o€ §£k), SO

p()ir(v)P < r(y)f=o.

Thus, if y € H” and v € ng,), then

2D (7)) = pi p(7) 2 (7)P py < 222X () F=0,

Pmin

Now

<o (T) <@ | U bl | = 3 w2 ()
’YEH” ’YEH”
S <pmax> Z r('y)f_5 S (pmax) ZT(’Y)f_(S
Pmin ~EH" Pmin ~yeH
< (Cvpprfla){) Z(diam A)To.

Thus we have 3/ ? (ﬁ) > Pmin@/2C pmax > 0. So dim F' > f — 4. This is true for all

0 > 0, so we have dim F' > f, as required.
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(iii) Finally, consider the case ¢ < 0. Let § > 0 be given, so §/¢ < 0. Define now

. ~ logp(ok) 5
(k) — F: OBPVITIE) 8
S {"E ogr(alk) ~ " qJ’

7 = () 59,
k=N

T = b, [T)].

Then proceed as in the previous case. The reversed inequality and ¢ < 0 mean that

the estimate
p()r()? <r(v)7°

remains correct. [

5. OTHER REMARKS

5.1. Hausdorff dimension of a measure. Some of the proofs given here actually
deal with the Hausdorff dimension of a measure in order to estimate the Hausdorff
dimension of a set. The proof of Proposition 4.3 shows not only that dim Kq(ft) > f,
but that dim F > f for any set F with ugﬂ) (F) > 0. This may be interpreted as
saying that the “Hausdorff dimension” of the measure ,uq(f) is at least f.

There is more than one possible definition for the “Hausdorff dimension of a mea-
sure”. We will show here that two of them coincide.

Let S be a metric space, and let y be a finite measure defined on the Borel subsets
of S. The Hausdorff dimension of the measure p is the minimum of the dimensions

of the sets that support u:

dim; g =inf{dim F: FCS, u(S\F)=0}.
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There is another natural definition. Fix positive real numbers s and €. Define
H:(p) = inf Z(diam A;)?,

where the infimum is over all countable families {A4;}$2, of sets with diam A; < ¢ for

all 7 that almost cover S in the sense that

m (S\LiJAi) = 0.

Define

HC () = lim 3 (i) = sup F ().
€l0 e>0

There is a unique critical value sg such that

oo if s < 59
H(p) =
0 if s > sq.

This critical value sg is called the Hausdorff dimension of the measure u; we will

write sg = dimg p.

Proposition. Let S be a metric space, and let u be a finite measure defined on the

Borel subsets of S. Then dim; p = dimg p.

Proof. Let F C S with u(S\F) = 0. To estimate the s-dimensional Hausdorff measure
of F', cover F"

FclJ4,  diam4;<e.

Then certainly {4;} almost covers S. So HZ(p) < > (diam Ai)s. Therefore H: (u) <
HI(F). Let € — 0 to obtain H*(p) < H*(F). If s > dim F, then H*(F) = 0, so

H*(p) = 0. Thus dimy g < dim F. This shows that dimy p < dim; p.
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For the reverse inequality, let s > dimg p, so that H*(u) = 0. Given n € N, find an
almost cover {Ay;}2; of S with diam A,; < 27" and ), (diam A,;)® < 27". Then
the set
n 1
satisfies (S \ ) = 0. But for each n, the family {A4,;}$2, covers F. So
2 (F) <277,

so that H*(F) = 0. Therefore dim F < s, so dim; g < s. This is true for every
s > dimg i, so we have dim; g < dimg p. U

Use of measures such as u,q(bq) in our proof of Theorem 1.6 is suggested in [4] by

Cawley and Mauldin; they consider the case corresponding to a graph with one node.
An independent calculation of the dimension of such a measure was done in [15] by
Strichartz; he considers the case corresponding to a graph with one node, using a fixed
family of similarity transformations, and the case ¢ = 1, so that =0, and f = « is

a ratio like (2).

5.2. Cross-cuts. Suppose C, is a cross-cut of ES”. That is, when E{" is given
the structure of a tree, C, is a maximal antichain in ES”. Or, the cylinders [v] for
v € C,, are disjoint and their union is dense in Eq(f). If C,, is infinite, we assume also

that

1= 3 W ()

v€Cy

So if we write Cyy = Cy, N ESY). then

(4) 1=>"Y" oo (1)’ py

vEV YECyy
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or

pu=Y_ >, p(V) ()’ po.

vEV 7€Cuy
Of course the sets ES”) used for (3) are cross-cuts. We may deduce formulas from the

general (4) in the same way as from (3); for example

L=3"3" > A7) p0

v yECyy

o= 2w Dyec,, Pup(V)r(7)°py) logp(7)
> ou Yw Yovee,, (Aup(7)r(7)Ppy) logr(y)

Our graph (V, E) is strongly connected, so almost every o € E (@) returns eventually

to its starting node. Thus
Zu={yEeEG) vk g B for 1 <k < ||}

is a cross-cut consisting only of cycles. Then the eigenvectors drop out of (4): for all

1= p(¢)r(¢)".
lez,

So we have

ez, P(Q)r(¢)P logp()
N ZCEZu p(Q)er(¢)Plogr(¢)

«

Another example of a cross-cut: fix € > 0, and let

Cuz{’)’EE&*)ZT(’)’)§€<T(’)’_)}.

This is useful for study of decomposition of K, into sets of the same size.
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5.3. Questions. There are several questions suggested by this work that we do not
answer here. For example:

(a) When ¢ — oo, is there some sort of “limiting construction”, with dimension
f(@min)? In [4], where the case of a graph with one node is considered, the limiting
construction is composed of those edges e with equality 7(e) = Nmin. Perhaps in our
case one should delete everything except the simple cycles ¢ with (¢) = Nmin- In
particular, if there is a unique such cycle (p, then the limiting construction consists
only of that cycle, so its attractors are single points when w lies on (. How are these
points related to the components K *=in)?

(b) What happens when the graph is not strongly connected (so the matrix is
reducible)? Reading [10] would suggest that we should analyze all of the the strongly

connected components of the graph, and then take the maximum of these dimensions.

(c) Is there a completeness theorem? Does

U

aminsasamax
have measure 17
(d) Under what (disjointness) conditions, on the sets J(v) in the construction of
the fractals K,, can we replace the sets Kq(f) = hy, [I?qsa)] used in this paper with the

more naturally defined sets

{:UEKu:lim log,u(BE(a:))) =a} ?

10 logdiam B.(x

We have seen above that this can be done when we use a fixed family 6. of similarities
and have a strong disjointness property. (It was shown to be true in [4] in the case

corresponding to a graph with a single node.) Is the open set condition enough?
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(e) In Proposition 3.3, we see in case (B) that: g is a strictly convex function of g,
« is a strictly decreasing function of ¢, f is a strictly concave function of . Thus, we

have strict inequalities:

423 do a2 f
— <0 —= <0
dq <5 da? <

except possibly at isolated points where equality occurs. Do these strict inequalities

in fact hold everywhere?

(f) It would be interesting to investigate the relations between the computations in
this paper and the “thermodynamic formalism” for dimension spectra. For example,
D. A. Rand [13] investigates the dimension spectrum for “cookie-cutter” Cantor set

fractals.

Consider these two classes of fractals: the cookie-cutter fractals and the digraph
recursive fractals. Neither class contains the other: The digraph recursive fractals
utilize only affine transformations, while the cookie-cutter fractals allow non-affine
transformations. The cookie-cutter fractals are constructed in the line R, while digraph
recursive fractals are in Euclidean space of any dimension. The graph directing the
construction of a cookie-cutter fractal is the graph with one node and two loops; while
digraph recursive fractals may be defined by more general graphs.

For sets that are both digraph recursive fractals and cookie-cutter fractals, Rand’s
results agree with ours: Compare our Theorem 1.6 with Rand’s Theorem 1. This
agreement should extend much farther. Can the spectral radius ®(q, 3) be considered

(the logarithm of) a “pressure” for the general digraph recursive fractal?



W N =

10.

11.
12.

13.

14.
15.

16.

MULTIFRACTAL DECOMPOSITIONS OF DIGRAPH RECURSIVE FRACTALS 43

REFERENCES

M. F. Barnsley, Fractals Everywhere, Academic Press, 1988.

P. Billingsley, Probability and Measure, Wiley-Interscience, 1979.

K. M. Brucks, Hausdorff dimension and measure of basin boundaries, Advances in Math. T8
(1989), 168-191.

R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals, Advances in Math.
(to appear).

G. A. Edgar, Measure, Topology, and Fractal Geometry, Undergraduate Texts in Mathematics,
Springer-Verlag New York, 1990.

K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley &
Sons, 1990.

F. R. Gantmacher, The Theory of Matrices, Volume 2, Chelsea, 1959, Chapter XIII: Matrices
with non-negative elements.

S. Graf, R. D. Mauldin, and S. C. Williams, The exact Hausdorff dimension in random recursive
constructions, Memoirs of the A. M. S. 381, American Mathematical Society, 1988.

T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, B. Shraiman, Fractal measures and their singu-
larities: The characterization of strange sets, Phys. Rev. A 83 (1986), 1141-1151.

R. D. Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions, Trans.
Amer. Math. Soc. 309 (1988), 811-829.

H. Minc, Nonnegative Matrices, Wiley, 1988.

P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Phil.
Soc. 42 (1946), 15-23.

D. Rand, The singularity spectrum f(a) for cookie-cutters, Ergodic Theory and Dynamical Sys-
tems 9 (1989), 527-541.

E. Seneta, Non-Negative Matrices, Wiley, 1973.

R. Strichartz, Self-similar measures and their Fourier transforms, I, Indiana Univ. Math. J. 39
(1990), 797-817.

S. J. Taylor, The measure theory of random fractals, Math. Proc. Camb. Phil. Soc. 100 (1986),
383-406.

DEPARTMENT OF MATHEMATICS, THE OHIO STATE UNIVERSITY, CoLUMBUS, OH 43210-1174
E-mail address: edgar@mps.ohio-state.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, DENTON, TX 76203-3886
E-mail address: MAULDINQUNTVAX



