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Abstract. Every analytic real closed proper subfield of R has Hausdorff dimension zero.
Equivalently, every analytic set of real numbers having positive Hausdorff dimension con-
tains a transcendence base for R.

How large can a proper subfield of the real numbers be? Of course, before attempting to
answer this question, we must make sense of what we should mean by “large”—cardinality,
measure, Baire category, and so on—but there is another implicit question: What kinds
of subfields of R should we consider? Set-theoretic independence issues quickly arise if we
do not narrow the focus. We show in this note that proper subfields of R that are well
behaved in certain algebraic and descriptive set-theoretic senses (to be made precise below)
are quite small when viewed measure theoretically, although every uncountable such field
has the cardinality of the continuum.

Given E ⊆ R and n ∈ N, we write En for the n-fold Cartesian product E×E× · · · ×E.
A subset of Rn is analytic (also called Souslin or Suslin in the literature) if it is the

continuous image of a Borel subset of R. (There are several equivalent definitions; this one
is perhaps the easiest to state.) The collection of all analytic subsets of Rn properly contains
the collection of all Borel subsets of Rn. Analytic sets are Lebesgue measurable and have
the property of Baire. Every uncountable analytic set contains a nonempty perfect set and
thus has the cardinality of the continuum. Basic information on analytic sets can be found
in Cohn [2, Ch. 8] or Rogers [11]; see Kechris [8] for an extensive modern development.

Suppose that G is a proper additive subgroup of R. It follows immediately from elemen-
tary results (see e.g. Oxtoby [10, 4.8]) that if G is Lebesgue measurable then it has measure
zero, and if G has the property of Baire then it is of Baire first category. Hence, proper
analytic subgroups of (R, +) are small if we restrict our attention to Lebesgue measure
and Baire category. On the other hand, any uncountable analytic subgroup of R has the
cardinality of R. Finer tools are needed in order to understand the situation better.

For s ≥ 0, the Hausdorff s-measure of A ⊆ Rn, denoted byHs(A), is defined as follows:
For δ > 0, let Hs

δ(A) ∈ [0,∞] be the infimum of all sums of the form
∑

j∈N[diameter(Aj)]
s

where {Aj}j∈N is a collection of subsets of Rn with A ⊆
⋃

j∈N Aj and diameter(Aj) ≤ δ

for all j ∈ N. Now put Hs(A) = limδ→0+ Hs
δ(A). The Hausdorff dimension of A ⊆ Rn,

denoted by dimHA, is the infimum of all s ≥ 0 such that Hs(A) = 0. (See any of Edgar [5],
Falconer [7], Mattila [9] or [11] for details).

From now on, “dimension” means “Hausdorff dimension”.
An ordered field K is real closed if every positive element has a square root in K and

every one-variable odd degree polynomial function with coefficients from K has a root in
K (equivalently, if the ring K[X]/(X2 + 1) is an algebraically closed field). Real closed
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fields play a role in the theory of ordered fields analogous to that of algebraically closed
fields in the theory of fields of characteristic zero.

Here is the main result of this note:

Theorem. Every analytic real closed proper subfield of R has dimension 0.

Actually, we shall prove that no analytic set E ⊆ R with dimHE > 0 is contained in
any proper real closed subfield of R. (Another way of saying this is that E contains a
transcendence base for R, that is, a maximal algebraically independent subset of R.)
The converse does not hold: There are dimension 0 analytic subsets of R that are not
contained in any proper real closed subfield of R. Indeed, there are dimension 0 compact
sets C ⊆ R such that the sum set {x+y : x, y ∈ C} has interior, so C is not even contained
in any proper additive subgroup of R. (For example, put C = E ∪ F where E and F are
as in [7, Example 7.8]).

We came to the theorem while considering an open question about the possible Hausdorff
dimensions of subrings of R that are Borel. It is well known that every proper additive
subgroup of R is either cyclic (that is, of the form rZ for some r ∈ R) or is dense and
co-dense in R. By what we noted earlier, if such a subgroup is Borel (as a subset of R)
then it has Lebesgue measure zero and is of Baire first category. What are the possible
values for its Hausdorff dimension? It turns out that the situation is quite wild: For each
d ∈ [0, 1] there is a subgroup G of (R, +) such that G is Borel and dimH G = d; see Erdős
and Volkmann [6] or [7, §12.4].

A natural variant of the question is this: What are the possible Hausdorff dimensions for
subrings of R that are Borel? Only a partial answer is known at present: The dimension
of such a ring is either equal to 1 or at most 1/2. But no examples are known other than
dimensions 0 and 1. A similar question for subfields of R that are Borel is also open. The
same questions are open even when the subring or subfield is not required to be Borel but
merely analytic. (See e.g. [9, pp. 166–7] for more information.)

Thus, we come to the question answered in this note: A real closed subfield of R that
is a Borel set (or even an analytic set) has Hausdorff dimension either 0 or 1. Moreover,
dimension 1 occurs only for R itself.

The theorem is immediate from the following four lemmas (each of independent interest).

Lemma 1. Let E ⊆ R be compact, dimHE > 0. Then there exist n ∈ N and an R-linear
function T : Rn → R such that T (En) has interior (in R).

Proof. Put dimHE = d > 0. Choose k ∈ N such that kd > 1; then dimH(Ek) ≥ kd > 1
(see [9, 8.10]). Hence, there is an orthogonal projection π : Rk → R such that the image
πE has positive Lebesgue measure [9, Ch. 9]. (In R, Hausdorff 1-measure is the same as
Lebesgue measure). Then the difference set { a− b : a, b ∈ πE } has interior; see [10, 4.8].
Put n = 2k and define T : Rn → R by T (x1, . . . , xn) = π(x1, . . . , xk)− π(xk+1, . . . , xn). �

Lemma 2. Let E ⊆ R be analytic, dimHE > 0. Then there exist n ∈ N and an R-linear
function T : Rn → R such that T (En) has interior.

Proof. Since E is analytic, it contains a compact set of positive dimension [5, (1.7.11)].
Apply the previous lemma. �

Remark. Suppose, in Lemma 2, that E is moreover an additive subgroup of R. Then T (En)
is an additive subgroup of R that has interior in R. Hence, T (En) = R, that is, there exist
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s1, . . . , sn ∈ R such that R is equal to the set all sums
∑n

i=1 siei with e1, . . . , en ∈ E. (In
particular, if E is also a subring of R, then R is finitely generated as an E-module.) This
shows that proper analytic subgroups of R having positive dimension are, in an algebraic
sense, almost all of R.

Before proceeding further, we need some definitions and basic facts from real algebraic
geometry. (See Bochnak et al [1, Chs. 1,2] or van den Dries [4, Chs. 2,3] for facts used
below.)

A semialgebraic set S ⊆ Rn is a finite union of sets of the form

{x ∈ Rn : p(x) = 0, q1(x) < 0, . . . , ql(x) < 0 }

where p, q1, . . . , ql : Rn → R are real polynomial functions. We say that S is defined
over a subfield K ⊆ R if every coefficient occuring in the description of S belongs to K
(so “semialgebraic and defined over R” means the same as “semialgebraic”). If A ⊆ Rm

then a map f : A → Rn is said to be semialgebraic (and defined over K) if its graph
{ (x, f(x)) : x ∈ A } is a semialgebraic (and defined over K) subset of Rm+n.

Semialgebraic sets play a role in real algebraic geometry analogous to that of constructible
sets in complex algebraic geometry.

Lemma 3. Let E ⊆ R be analytic and K be the smallest real closed subfield of R containing
E. Then K is analytic.

Proof. The field K is equal to the union of all sets of the form f(En) where n ∈ N and
f : Rn → R is semialgebraic and defined over Q. (Aside: There are more explicit ways
of producing K from E but we do not need them here.) Let n ∈ N and f : Rn → R
be semialgebraic. By the cell decomposition theorem, there is a finite partition of Rn

into locally closed sets C1, . . . , Ck such that each restriction f |Ci : Ci → R is continuous.
Intersections of analytic sets are again analytic, so each Ci ∩ En is analytic. Continuous
images of analytic sets are analytic, so each f(Ci∩En) is analytic. For each n ∈ N there are
only countably many semialgebraic functions Rn → R that are defined over Q. Countable
unions of analytic sets are analytic, so K is analytic. �

Remark. Lemma 3 fails with “Borel” in place of “analytic” even if E is also a subring of R.
However, if E is a Borel subfield of R, then K is Borel. (These results were produced by
R. Dougherty in personal communication with the second author.)

Remark to model theorists. An easy modification of the proof of Lemma 3 shows that if R
is an o-minimal expansion of the structure (R, <, +, 1) in a countable language and E ⊆ R
is analytic then the definable closure of E—taken with respect to Th(R)—is again analytic.

Finally, we state without proof a special case of a model-theoretic result; see [3, Lemma 4.1].

Lemma 4. Let K and L be real closed subfields of R such that K is properly contained in
L. Let n ∈ N and f : Rn → R be semialgebraic and defined over L. Then f(Kn) has empty
interior in L.

The point is that coefficients from L are allowed in the description of f . The result is
rather trivial if f is defined over K, for then f(Kn) ⊆ K, and K has no interior in L.

Proof of the Theorem. Let E ⊆ R be analytic with dimHE > 0. Let K be the smallest
real closed subfield of R containing E; then K is analytic (by Lemma 3) and dimHK > 0.
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By Lemma 2, there exist n ∈ N and an R-linear (hence semialgebraic) function T : Rn → R
such that T (Kn) has interior. Hence (by Lemma 4) we have K = R. �

We don’t know how optimal is the theorem. Lemma 4 says that all proper real closed
subfields of R are small in a model-theoretic sense. Lemma 3 can be regarded more generally
as saying that the smallest real closed subfield of R containing a given E ⊆ R is neither
much larger nor much more complicated than is E. But the tools needed in order to obtain
Lemma 2 do not extend in general to non-analytic sets.
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