Connections Between Regularity, Unit-Regularity, Cleanness and Strong Cleanness

Janez Šter
University of Ljubljana

joint work with

Pace Nielsen,
Brigham Young University
R a (non-commutative) ring with 1

$U(R)$ units

idem(R) idempotents
Basic Definitions and Facts

- $a \in R$ is regular if $\exists x \in R : axa = a$
- R is regular if every element is regular (von Neumann)
Basic Definitions and Facts

- $a \in R$ is regular if $\exists x \in R : axa = a$
 - R is regular if every element is regular (von Neumann)
- $a \in R$ is unit-regular if $\exists u \in U(R) :avanaugh = a$
 - R is unit-regular if every element is unit-regular (Ehrlich 1968)

All these classes are subclases of exchange rings.
Basic Definitions and Facts

- \(a \in R \) is regular if \(\exists x \in R : axa = a \)
 - \(R \) is regular if every element is regular (von Neumann)

- \(a \in R \) is unit-regular if \(\exists u \in U(R) : aua = a \)
 - \(R \) is unit-regular if every element is unit-regular (Ehrlich 1968)

- \(a \in R \) is clean if \(\exists e \in \text{idem}(R), \exists u \in U(R) : a = e + u \)
 - \(R \) is clean if every element is clean (Nicholson 1977)

Connections Between (Unit)-Regular & (Strongly) Clean
Basic Definitions and Facts

- $a \in R$ is **regular** if $\exists x \in R: axa = a$
 - R is regular if every element is regular (von Neumann)
- $a \in R$ is **unit-regular** if $\exists u \in U(R): aua = a$
 - R is unit-regular if every element is unit-regular (Ehrlich 1968)
- $a \in R$ is **clean** if $\exists e \in \text{idem}(R), \exists u \in U(R): a = e + u$
 - R is clean if every element is clean (Nicholson 1977)
- $a \in R$ is **strongly clean** if
 - $\exists e \in \text{idem}(R), \exists u \in U(R): a = e + u$ and $eu = ue$
 - R is strongly clean if every element is strongly clean (Nicholson 1999)

All these classes are sub-classes of exchange rings.
Basic Definitions and Facts

- \(a \in R \) is regular if \(\exists x \in R : axa = a \)
 - \(R \) is regular if every element is regular (von Neumann)

- \(a \in R \) is unit-regular if \(\exists u \in U(R) : auu = a \)
 - \(R \) is unit-regular if every element is unit-regular (Ehrlich 1968)

- \(a \in R \) is clean if \(\exists e \in \text{idem}(R), u \in U(R) : a = e + u \)
 - \(R \) is clean if every element is clean (Nicholson 1977)

- \(a \in R \) is strongly clean if
 - \(\exists e \in \text{idem}(R), u \in U(R) : a = e + u \) and \(eu = ue \)
 - \(R \) is strongly clean if every element is strongly clean (Nicholson 1999)

All these classes are subclasses of exchange rings.
Known facts:

- Regular, commutative (or abelian) \(\Rightarrow \) unit-regular

- There exist regular rings which are not unit-regular, e.g. endomorphism ring of an infinite dimensional vector space

- There exists a regular ring which is not clean (Bergman's example)

- Unit-regular \(\Rightarrow \) clean (Camillo-Yu 1994, Camillo-Khurana 2001)

- Unit-regular \(\Rightarrow \) strongly clean? (Nicholson 1999)
Known facts:

- R regular, commutative (or abelian) \Rightarrow unit-regular
Known facts:

- R regular, commutative (or abelian) \Rightarrow unit-regular
- there exist regular rings which are not unit-regular, e.g. endomorphism ring of an infinite dimensional vector space
Known facts:

- R regular, commutative (or abelian) \Rightarrow unit-regular
- There exist regular rings which are not unit-regular, e.g., endomorphism ring of an infinite dimensional vector space
- There exists a regular ring which is not clean (Bergman’s example)
Known facts:

- R regular, commutative (or abelian) \Rightarrow unit-regular
- there exist regular rings which are not unit-regular, e.g. endomorphism ring of an infinite dimensional vector space
- there exists a regular ring which is not clean (Bergman’s example)
- unit-regular \Rightarrow clean (Camillo-Yu 1994, Camillo-Khurana 2001)
Known facts:

- \(R \) regular, commutative (or abelian) \(\Rightarrow \) unit-regular
- there exist regular rings which are not unit-regular, e.g. endomorphism ring of an infinite dimensional vector space
- there exists a regular ring which is not clean (Bergman’s example)
- unit-regular \(\Rightarrow \) clean (Camillo-Yu 1994, Camillo-Khurana 2001)
- unit-regular \(\Rightarrow \) strongly clean? (Nicholson 1999)
Unit-Regular Ring Which Is not Strongly Clean

Field, \(F \) (\((t) \)) the field of formal Laurent series over \(F \);
the set of all \(\mathbb{Z} \times \mathbb{Z} \) matrices
\(A = (a_{ij}) \) \(i, j \in \mathbb{Z} \) over \(F \) such that
\(\exists m, n \in \mathbb{Z} \) and \(\exists f(t) = \sum_{k=k_0}^{\infty} a_k t^k \in F((t)) \) with the following properties:

1. if \(i \geq m \) or \(j < n \) then \(a_{ij} = a_{j-i,n} \),

2. the submatrix \(A_0 = (a_{ij}) \) \(i < m, j \geq n \) has finite rank.

\[A = \begin{pmatrix}
 a_{n-m} & a_{n-m-1} & \ldots & a_{n-m-1} \\
 a_{n-m} & a_{n-m-1} & \ldots & a_{n-m-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n-m} & a_{n-m-1} & \ldots & a_{n-m-1}
\end{pmatrix} \]
Unit-Regular Ring Which Is not Strongly Clean

F field, $F((t))$ the field of formal Laurent series over F;
F field, $F((t))$ the field of formal Laurent series over F; R the set of all $\mathbb{Z} \times \mathbb{Z}$ matrices $A = (a_{i,j})_{i,j \in \mathbb{Z}}$ over F such that $\exists m, n \in \mathbb{Z}$ and $\exists f(t) = \sum_{k=k_0}^{\infty} a_k t^k \in F((t))$ with the following properties:
Unit-Regular Ring Which Is not Strongly Clean

F, the field of formal Laurent series over F; R the set of all $\mathbb{Z} \times \mathbb{Z}$ matrices $A = (a_{i,j})_{i,j \in \mathbb{Z}}$ over F such that there exist $m, n \in \mathbb{Z}$ and $f(t) = \sum_{k=k_0}^{\infty} a_k t^k \in F((t))$ with the following properties:

1. if $i \geq m$ or $j < n$ then $a_{i,j} = a_{j-i},$
F field, $F((t))$ the field of formal Laurent series over F;
R the set of all $\mathbb{Z} \times \mathbb{Z}$ matrices $A = (a_{i,j})_{i,j \in \mathbb{Z}}$ over F such that
\[\exists m, n \in \mathbb{Z} \text{ and } \exists f(t) = \sum_{k=k_0}^{\infty} a_k t^k \in F((t)) \text{ with the following properties:} \]

1. if $i \geq m$ or $j < n$ then $a_{i,j} = a_{j-i}$,
2. the submatrix $A_0 = (a_{i,j})_{i < m, j \geq n}$ has finite rank.
Unit-Regular Ring Which Is not Strongly Clean

F field, $F((t))$ the field of formal Laurent series over F; R the set of all $\mathbb{Z} \times \mathbb{Z}$ matrices $A = (a_{i,j})_{i,j \in \mathbb{Z}}$ over F such that

$\exists m, n \in \mathbb{Z}$ and $\exists f(t) = \sum_{k=k_0}^\infty a_k t^k \in F((t))$ with the following properties:

1. if $i \geq m$ or $j < n$ then $a_{i,j} = a_{j-i}$,
2. the submatrix $A_0 = (a_{i,j})_{i<m,j\geq n}$ has finite rank.

$$A = \begin{pmatrix}
\vdots & \vdots & \vdots \\
\vdots & a_{n-m} & \vdots \\
\vdots & a_{n-m-1} & a_{n-m} \\
\vdots & \vdots & \ddots \\
\vdots & a_{n-m-1} & \vdots \\
\vdots & \vdots & \vdots \\
\cdots & \cdots & \cdots \\
\end{pmatrix}$$

Janez Šter, University of Ljubljana
Connections Between (Unit)-Regular & (Strongly) Clean
The set R is a ring under usual matrix operations. The ring R was originally defined by G. Bergman in a different way, as a unit-regular ring with a regular subring which is not unit-regular.

Proposition

The ring R is unit-regular.

Proof.

Let $A \in R$, and let $f(t)$ denote the corresponding Laurent series. We consider two cases, $f(t) \neq 0$ and $f(t) = 0$. In the case $f(t) = 0$ we need that A_0 has finite rank.
The set R is a ring under usual matrix operations.
The set R is a ring under usual matrix operations.

The ring R was originally defined by G. Bergman in a different way, as a unit-regular ring with a regular subring which is not unit-regular.
The set R is a ring under usual matrix operations.

The ring R was originally defined by G. Bergman in a different way, as a unit-regular ring with a regular subring which is not unit-regular.

Proposition

The ring R is unit-regular.
The set R is a ring under usual matrix operations.

The ring R was originally defined by G. Bergman in a different way, as a unit-regular ring with a regular subring which is not unit-regular.

Proposition

The ring R is unit-regular.

Proof.

Let $A \in R$, and let $f(t)$ denote the corresponding Laurent series. We consider two cases, $f(t) \neq 0$ and $f(t) = 0$. In the case $f(t) = 0$ we need that A_0 has finite rank.
The matrix \[A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ -2 & -1 \end{bmatrix} \] is not strongly clean in \(\mathbb{R} \). Therefore, \(\mathbb{R} \) is unit-regular but not strongly clean. (In fact, very few elements commute with \(A \).)
Theorem

The matrix

\[A = \begin{pmatrix}
-1 & -2 & -1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix} \]

is not strongly clean in \(R \). Therefore, \(R \) is unit-regular but not strongly clean.
Theorem

The matrix

\[
A = \begin{pmatrix}
-1 & -2 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

is not strongly clean in \(R \). Therefore, \(R \) is unit-regular but not strongly clean.

(In fact, very few elements commute with \(A \).)
Element-Wise Equivalence Between Clean and Unit-Regular Elements

Theorem (Camillo-Khurana, 2001)
Every unit-regular ring is clean. In fact,
\[R \text{ unit-regular} \iff \forall a \in R \exists e \in \text{idem}(R), \exists u \in \text{U}(R) \text{ such that } a = e + u \text{ and } aR \cap eR = 0. \]

The unit-regular \(\Rightarrow \) clean implication does not hold element-wise:
Example (Khurana-Lam, 2004)
There exist matrices in \(M_2(\mathbb{Z}) \) which are unit-regular but not clean.

What do we need to assume for the element \(a \in R \), besides the unit-regularity, to obtain that \(a \) is clean?
Theorem (Camillo-Khurana, 2001)

Every unit-regular ring is clean.
Theorem (Camillo-Khurana, 2001)

Every unit-regular ring is clean.

In fact, R unit-regular $\iff \forall a \in R \exists e \in \text{idem}(R), \exists u \in U(R)$ such that $a = e + u$ and $aR \cap eR = 0$.
Theorem (Camillo-Khurana, 2001)

Every unit-regular ring is clean.

In fact, R unit-regular $\Leftrightarrow \forall a \in R \exists e \in \text{idem}(R), \exists u \in U(R)$ such that $a = e + u$ and $aR \cap eR = 0$.

The “unit-regular \Rightarrow clean” implication does not hold element-wise:
Theorem (Camillo-Khurana, 2001)

Every unit-regular ring is clean.

In fact, R unit-regular $\iff \forall a \in R \exists e \in \text{idem}(R), \exists u \in U(R)$ such that $a = e + u$ and $aR \cap eR = 0$.

The “unit-regular \Rightarrow clean” implication does not hold element-wise:

Example (Khurana-Lam, 2004)

There exist matrices in $M_2(\mathbb{Z})$ which are unit-regular but not clean.
Element-Wise Equivalence Between Clean and Unit-Regular Elements

Theorem (Camillo-Khurana, 2001)

Every unit-regular ring is clean.

In fact, R unit-regular $\iff \forall a \in R \exists e \in \text{idem}(R), \exists u \in U(R)$ such that $a = e + u$ and $aR \cap eR = 0$.

The “unit-regular \Rightarrow clean” implication does not hold element-wise:

Example (Khurana-Lam, 2004)

There exist matrices in $M_2(\mathbb{Z})$ which are unit-regular but not clean.

What do we need to assume for the element $a \in R$, besides the unit-regularity, to obtain that a is clean?
Element-Wise Equivalence Between Clean and Unit-Regular Elements

Theorem

Let \(a \) be an element of a ring \(R \). The following are equivalent:

1. \(\exists u \in U(R) \) with \(au = a \), such that, writing \(e := ua \in \text{idem}(R) \), \(eae \) is unit-regular in \(eRe \);

2. \(\exists r \in R \) with \(ara = a \), such that, writing \(e := ra \in \text{idem}(R) \), \(eae \) is unit-regular in \(eRe \);

3. \(\exists e \in \text{idem}(R) \) and \(u \in U(R) \) such that \(a = e + u \), \(aR \cap eR = (0) \), and \(a^2 R \cap aeR = (0) \);

4. \(\exists e \in \text{idem}(R) \) and \(u \in U(R) \) such that \(a = e + u \) with \(au - 1 = a \) and \(a^2 u - 2a = a^2 \).
Theorem

Let a be an element of a ring R. The following are equivalent:

1. $\exists u \in U(R)$ with $aua = a$, such that, writing $e := u\cdot a \in \text{idem}(R)$, $e\cdot a\cdot e$ is unit-regular in $e\cdot R\cdot e$;
2. $\exists r \in R$ with $ara = a$, such that, writing $e := r\cdot a \in \text{idem}(R)$, $e\cdot a\cdot e$ is unit-regular in $e\cdot R\cdot e$;
3. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$, $a\cdot R \cap e\cdot R = (0)$, and $a^2\cdot R \cap a\cdot e\cdot R = (0)$;
4. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$ with $au - 1 = a$ and $a^2u - 2a^2 = a^2$.

Janez Šter, University of Ljubljana
Theorem

Let a be an element of a ring R. The following are equivalent:

1. $\exists u \in U(R)$ with $aua = a$, such that, writing $e := ua \in \text{idem}(R)$, eae is unit-regular in eRe;
Theorem

Let a be an element of a ring R. The following are equivalent:

1. $\exists u \in U(R)$ with $aua = a$, such that, writing $e := ua \in \text{idem}(R)$, eae is unit-regular in eRe;

2. $\exists r \in R$ with $ara = a$, such that, writing $e := ra \in \text{idem}(R)$, eae is unit-regular in eRe;

3. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$, $aR \cap eR = (0)$, and $a^2R \cap aeR = (0)$;

4. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$ with $au - 1 a = a$ and $a^2 u - 2 a^2 = a^2$.

Janez Šter, University of Ljubljana
Theorem

Let a be an element of a ring R. The following are equivalent:

1. $\exists u \in U(R)$ with $aua = a$, such that, writing $e := ua \in \text{idem}(R)$, eae is unit-regular in eRe;

2. $\exists r \in R$ with $ara = a$, such that, writing $e := ra \in \text{idem}(R)$, eae is unit-regular in eRe;

3. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$, $aR \cap eR = (0)$, and $a^2R \cap aeR = (0)$;
Element-Wise Equivalence Between Clean and Unit-Regular Elements

Theorem

Let a be an element of a ring R. The following are equivalent:

1. \(\exists u \in U(R) \) with $aua = a$, such that, writing $e := ua \in \text{idem}(R)$, eae is unit-regular in eRe;

2. \(\exists r \in R \) with $ara = a$, such that, writing $e := ra \in \text{idem}(R)$, eae is unit-regular in eRe;

3. \(\exists e \in \text{idem}(R) \) and $u \in U(R)$ such that $a = e + u$, $aR \cap eR = (0)$, and $a^2 R \cap aeR = (0)$;

4. \(\exists e \in \text{idem}(R) \) and $u \in U(R)$ such that $a = e + u$ with $au^{-1}a = a$ and $a^2 u^{-2}a^2 = a^2$.
Element-Wise Equivalence Between Clean and Unit-Regular Elements

Corollary
In a unit-regular ring R, for every $a \in R$ exists $u \in U(R)$ such that $a = au = a^2u$. Can this be further generalized?
Element-Wise Equivalence Between Clean and Unit-Regular Elements

Corollary

In a unit-regular ring R, for every $a \in R \exists u \in U(R)$ such that $a = aua$ and $a^2 = a^2 u^2 a^2$.
Element-Wise Equivalence Between Clean and Unit-Regular Elements

Corollary

In a unit-regular ring R, for every $a \in R \exists u \in U(R)$ such that $a = aua$ and $a^2 = a^2 u^2 a^2$.

Can this be further generalized?
Special Inner Inverses

Theorem

Let \(R \) be a ring and \(a \in R \) such that \(a, a^2, \ldots, a^n \) are regular. Then there exists \(w \in R \) such that \(a_j w = a_j \) for all \(j = 1, \ldots, n \).

Moreover, if \(a \) is unit-regular, then we can take \(w \in U(R) \).

Janez Šter, University of Ljubljana
Theorem

Let R be a ring and $a \in R$ such that a, a^2, \ldots, a^n are regular. Then there exists $w \in R$ such that

$$a^j w^j a^j = a^j$$

for all $j = 1, \ldots, n$.

Moreover, if a is unit-regular, then we can take $w \in U(R)$.

Janez Šter, University of Ljubljana
Special Inner Inverses

Theorem
Let R be a ring and $a \in R$ such that a, a^2, \ldots, a^n are regular. Then there exists $w \in R$ such that $a_i w_j a_k = w_j - i a_j w_j - k$ for all $0 \leq i, k \leq j \leq n$ with $i + k \geq j$. In particular, $a_j w_j a_j = a_j$ and $w_j a_j w_j = w_j$ for all $j = 1, \ldots, n$.

Theorem
Let R be a ring and $a \in R$ such that a, a^2, \ldots, a^n are regular. Then there exists $w \in R$ such that $a_i w_j a_k = w_j - i a_j w_j - k$ for all $0 \leq i, k \leq j \leq n$ with $i + k \geq j$. In particular, $a_j w_j a_j = a_j$ and $w_j a_j w_j = w_j$ for all $j = 1, \ldots, n$.
Theorem

Let R be a ring and $a \in R$ such that a, a^2, \ldots, a^n are regular. Then there exists $w \in R$ such that

$$a^i w^j a^k = w^{j-i} a^j w^{j-k}$$

for all $0 \leq i, k \leq j \leq n$ with $i + k \geq j$. In particular, $a^j w^j a^j = a^j$ for all $j = 1, \ldots, n$. Moreover, if $a \in \text{ureg}(R)$, we can take $w \in U(R)$.
Theorem

Let \(R \) be a ring and \(a \in R \) such that \(a, a^2, \ldots, a^n \) are regular. Then there exists \(w \in R \) such that

\[
a^i w^j a^k = w^{j-i} a^j w^{j-k}
\]

for all \(0 \leq i, k \leq j \leq n \) with \(i + k \geq j \). In particular, \(a^j w^j a^j = a^j \) for all \(j = 1, \ldots, n \). Moreover, if \(a \in \text{ureg}(R) \), we can take \(w \in U(R) \).

Theorem

Let \(R \) be a ring and \(a \in R \) such that \(a, a^2, \ldots, a^n \) are regular. Then there exists \(w \in R \) such that

\[
a^i w^j a^k = w^{j-i} a^j w^{j-k}
\]

for all \(0 \leq i, k \leq j \leq n \). In particular, \(a^j w^j a^j = a^j \) and \(w^j a^j w^j = w^j \) for all \(j = 1, \ldots, n \).
Examples and Counterexamples

Corollary
In a regular ring R, for every $a \in R$ and every $n \geq 1$ there exists $w \in R$ such that $a^j w a^j = a^j$ for all $0 \leq j \leq n$.

Can we find w such that these equations hold for arbitrary (unbounded) j?

Example
There exists a ring R and $a \in R$ such that all powers of a are regular but there is no $w \in R$ satisfying $a^j w a^j = a^j$ for all $j \geq 1$.

Proof.
Take the algebra $R = \langle a, x_i \mid (i \geq 1) : a^i x_i a^i = a^i \rangle$.
Corollary

In a regular ring R, for every $a \in R$ and every $n \geq 1$ there exists $w \in R$ such that $a^j w^j a^j = a^j$ for all $0 \leq j \leq n$.
Corollary

In a regular ring \(R \), for every \(a \in R \) and every \(n \geq 1 \) there exists \(w \in R \) such that \(a^j w^j a^j = a^j \) for all \(0 \leq j \leq n \).

Can we find \(w \) such that these equations hold for arbitrary (unbounded) \(j \)?
Corollary

In a regular ring R, for every $a \in R$ and every $n \geq 1$ there exists $w \in R$ such that $a^j w^j a^j = a^j$ for all $0 \leq j \leq n$. Can we find w such that these equations hold for arbitrary (unbounded) j?

Example

There exists a ring R and $a \in R$ such that all powers of a are regular but there is no $w \in R$ satisfying $a^j w^j a^j = a^j$ for all $j \geq 1$.
Examples and Counterexamples

Corollary

In a regular ring R, for every $a \in R$ and every $n \geq 1$ there exists $w \in R$ such that $a^j w^j a^j = a^j$ for all $0 \leq j \leq n$.

Can we find w such that these equations hold for arbitrary (unbounded) j?

Example

There exists a ring R and $a \in R$ such that all powers of a are regular but there is no $w \in R$ satisfying $a^j w^j a^j = a^j$ for all $j \geq 1$.

Proof.

Take the algebra $R = F\langle a, x_i (i \geq 1) : a^i x_i a^i = a^i \rangle$.

Janez Šter, University of Ljubljana

Connections Between (Unit)-Regular & (Strongly) Clean
Examples and Counterexamples

What about if the whole ring \(R \) is regular, do the unbounded equations hold?

Proposition

If \(R \) is a regular (right or left) self-injective ring, then for every \(a \in R \) there exists \(w \in R \) such that

\[
ajwja = aj
\]

for all \(j \).

The unbounded equations also hold in some other special cases (e.g. when the ring has bounded index of nilpotence).

G. Bergman recently found a unit-regular ring \(R \) and \(a \in R \) such that there is no \(w \in R \) satisfying

\[
ajwja = aj
\]

for all \(j \).
What about if the whole ring R is regular, do the “unbounded” equations hold?
What about if the whole ring R is regular, do the “unbounded” equations hold?

Proposition

If R is a regular (right or left) self-injective ring, then for every $a \in R$ there exists $w \in R$ such that $a^j w^j a^j = a^j$ for all j.

G. Bergman recently found a unit–regular ring R and $a \in R$ such that there is no $w \in R$ satisfying $a^j w^j a^j = a^j$ for all j.

Janez Šter, University of Ljubljana
What about if the whole ring R is regular, do the “unbounded” equations hold?

Proposition

If R is a regular (right or left) self-injective ring, then for every $a \in R$ there exists $w \in R$ such that $a^j w^j a^j = a^j$ for all j.

The unbounded equations also hold in some other special cases (e.g. when the ring has bounded index of nilpotence).
What about if the whole ring R is regular, do the “unbounded” equations hold?

Proposition

If R is a regular (right or left) self-injective ring, then for every $a \in R$ there exists $w \in R$ such that $a^j w^j a^j = a^j$ for all j.]

The unbounded equations also hold in some other special cases (e.g. when the ring has bounded index of nilpotence).

G. Bergman recently found a *unit*-regular ring R and $a \in R$ such that there is no $w \in R$ satisfying $a^j w^j a^j = a^j$ for all j.
Examples and Counterexamples

Theorem
Let a be an element of a ring R. The following are equivalent:

1. $\exists u \in U(R)$ with $aua = a$, such that, writing $e := ua \in \text{idem}(R)$, eae is unit-regular in eRe;
2. $\exists r \in R$ with $ara = a$, such that, writing $e := ra \in \text{idem}(R)$, eae is unit-regular in eRe;
3. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$, $aR \cap eR = (0)$, and $a^2R \cap aeR = (0)$;
4. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$ with $au - 1a = a$ and $a^2u - 2a^2 = a^2$.

($1) \iff (2)$ of this theorem implies that if a is regular and $a^2 = 0$ then a is unit-regular.

Is every regular nilpotent unit-regular?
In an exchange ring, the answer is yes (Ara 1996).
Let a be an element of a ring R. The following are equivalent:

1. $\exists u \in U(R)$ with $aua = a$, such that, writing $e := ua \in \text{idem}(R)$, eae is unit-regular in eRe;

2. $\exists r \in R$ with $ara = a$, such that, writing $e := ra \in \text{idem}(R)$, eae is unit-regular in eRe;

3. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$, $aR \cap eR = (0)$, and $a^2R \cap aeR = (0)$;

4. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$ with $au^{-1}a = a$ and $a^2u^{-2}a^2 = a^2$.

(1) \iff (2) of this theorem implies that if a is regular and $a^2 = 0$ then a is unit-regular.

Is every regular nilpotent unit-regular?

In an exchange ring, the answer is yes (Ara 1996).
Examples and Counterexamples

Theorem

Let a be an element of a ring R. The following are equivalent:

1. $\exists u \in U(R)$ with $aua = a$, such that, writing $e := ua \in \text{idem}(R)$, eae is unit-regular in eRe;

2. $\exists r \in R$ with $ara = a$, such that, writing $e := ra \in \text{idem}(R)$, eae is unit-regular in eRe;

3. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$, $aR \cap eR = (0)$, and $a^2R \cap aeR = (0)$;

4. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$ with $au^{-1}a = a$ and $a^2u^{-2}a^2 = a^2$.

$(1) \iff (2)$ of this theorem implies that if a is regular and $a^2 = 0$ then a is unit-regular.
Theorem

Let a be an element of a ring R. The following are equivalent:

1. $\exists u \in U(R)$ with $aua = a$, such that, writing $e := ua \in \text{idem}(R)$, eae is unit-regular in eRe;

2. $\exists r \in R$ with $ara = a$, such that, writing $e := ra \in \text{idem}(R)$, eae is unit-regular in eRe;

3. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$, $aR \cap eR = (0)$, and $a^2 R \cap aeR = (0)$;

4. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$ with $au^{-1}a = a$ and $a^2 u^{-2}a^2 = a^2$.

$(1) \iff (2)$ of this theorem implies that if a is regular and $a^2 = 0$ then a is unit-regular.

Is every regular nilpotent unit-regular?

Connections Between (Unit)-Regular & (Strongly) Clean

Janez Šter, University of Ljubljana
Theorem

Let a be an element of a ring R. The following are equivalent:

1. $\exists u \in U(R)$ with $aua = a$, such that, writing $e := ua \in \text{idem}(R)$, eae is unit-regular in eRe;

2. $\exists r \in R$ with $ara = a$, such that, writing $e := ra \in \text{idem}(R)$, eae is unit-regular in eRe;

3. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$, $aR \cap eR = (0)$, and $a^2 R \cap aeR = (0)$;

4. $\exists e \in \text{idem}(R)$ and $u \in U(R)$ such that $a = e + u$ with $au^{-1}a = a$ and $a^2u^{-2}a^2 = a^2$.

$(1) \iff (2)$ of this theorem implies that if a is regular and $a^2 = 0$ then a is unit-regular.

Is every regular nilpotent unit-regular?

In an exchange ring, the answer is yes (Ara 1996).
Examples and Counterexamples

Example

There exists a ring R and $a \in R$ with $a^3 = 0$ such that a is regular but not unit-regular.

Proof.

Let $S = F \langle x, y : x^2 = 0 \rangle$, and $I = S(1 - yx)$. Define $R = (S I S F + I)$. Then $A = (x 0 1 0) \in R$ is the desired element.
Example

There exists a ring R and $a \in R$ with $a^3 = 0$ such that a is regular but not unit-regular.

Proof. Let $S = \mathbb{F} \langle x, y : x^2 = 0 \rangle$, and $I = S(1 - yx)$. Define $R = (S I S \mathbb{F} + I)$. Then $A = (x^0 1 0)$ is the desired element.
Example

There exists a ring R and $a \in R$ with $a^3 = 0$ such that a is regular but not unit-regular.

Proof.

Let $S = F\langle x, y : x^2 = 0 \rangle$, and $I = S(1 - yx)$. Define

$$R = \begin{pmatrix} S & I \\ S & F + I \end{pmatrix}.$$

Then $A = \begin{pmatrix} x & 0 \\ 1 & 0 \end{pmatrix} \in R$ is the desired element.
The power inner inverse condition does not imply the property, even in exchange rings.

Example

There exists a regular ring R, $a \in R$ and $w \in U(R)$, such that $a^j w^j a^j = a^j$ for all j, but a is not clean in R.

Proof.

Let F be a field, let S be Bergman's example of a non-clean exchange ring. Denote the canonical map $\psi \colon S \to F((t))$ and $I = \ker(\psi)$. Then $R = (S I I S)$ and $a = (\alpha 0 0 0)$ $\in R$ (where α denotes the right shift operator) satisfy the desired properties.
Examples and Counterexamples

The “power inner inverse” condition does not imply the clean property, even in exchange rings.
The “power inner inverse” condition does not imply the clean property, even in exchange rings.

Example

There exists a *regular* ring R, $a \in R$ and $w \in U(R)$, such that $a^j w^j a^j = a^j$ for all j, but a is not clean in R.
Examples and Counterexamples

The “power inner inverse” condition does not imply the clean property, even in exchange rings.

Example

There exists a *regular* ring \(R \), \(a \in R \) and \(w \in U(R) \), such that \(a^j w^j a^j = a^j \) for all \(j \), but \(a \) is not clean in \(R \).

Proof.

Let \(F \) be a field, let \(S \) be Bergman’s example of a non-clean exchange ring. Denote the canonical map \(\psi : S \to F((t)) \) and \(I = \ker(\psi) \). Then

\[
R = \begin{pmatrix} S & I \\ I & S \end{pmatrix} \quad \text{and} \quad a = \begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix} \in R
\]

(where \(\alpha \) denotes the right shift operator) satisfy the desired properties.
Thank you for your attention.