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Preface

These notes are designed with future middle grades mathematics teachers in mind.
While most of the material in these notes would be accessible to an accelerated
middle grades student, it is our hope that the reader will find these notes both
interesting and challenging. In some sense we are simply taking the topics from
a middle grades class and pushing “slightly beyond” what one might typically see
in schools. In particular, there is an emphasis on the ability to communicate
mathematical ideas. Three goals of these notes are:

• To enrich the reader’s understanding of both numbers and algebra. From the
basic algorithms of arithmetic—all of which have algebraic underpinnings—to the
existence of irrational numbers, we hope to show the reader that numbers and
algebra are deeply connected.

• To place an emphasis on problem solving. The reader will be exposed to problems
that “fight-back.” Worthy minds such as yours deserve worthy opponents. Too
often mathematics problems fall after a single “trick.” Some worthwhile problems
take time to solve and cannot be done in a single sitting.

• To challenge the common view that mathematics is a body of knowledge to be
memorized and repeated. The art and science of doing mathematics is a process
of reasoning and personal discovery followed by justification and explanation.
We wish to convey this to the reader, and sincerely hope that the reader will pass
this on to others as well.

In summary—you, the reader, must become a doer of mathematics. To this end,
many questions are asked in the text that follows. Sometimes these questions



are answered; other times the questions are left for the reader to ponder. To let
the reader know which questions are left for cogitation, a large question mark is
displayed:

?
The instructor of the course will address some of these questions. If a question is
not discussed to the reader’s satisfaction, then we encourage the reader to put on a
thinking-cap and think, think, think! If the question is still unresolved, go to the
World Wide Web and search, search, search!

Much of the mathematics content in this course is strongly tied to the math-
ematics that you may be teaching in grades 4 through 9. To emphasize these
connections, you will sometimes see margin notes that begin “CCSS.” These are
drawn from the Common Core State Standards, which describe goals for mathemat-
ics learning in grades K–12 in Ohio and many other states. For more information,
see http://www.corestandards.org.

This document is open-source. It is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) License. Loosely speaking,
this means that this document is available for free. Anyone can get a free copy of
this document from the following sites:

http://www.math.osu.edu/~snapp/1165/

http://www.math.osu.edu/~findell.2

Please report corrections, suggestions, gripes, complaints, and criticisms to Bart
Snapp at snapp@math.osu.edu or Brad Findell at findell.2@osu.edu.

Thanks and Acknowledgments

This document is based on a set of lectures originally given by Bart Snapp at the
Ohio State University Fall 2009 and Fall 2010. Since then, additional text and many
activities have been added by Vic Ferdinand, Brad Findell, and Betsy McNeal as
part of our ongoing revision process to better serve our audience of future middle
grades teachers. Special thanks goes to Herb Clemens for many helpful comments
that have greatly improved these notes.
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Activity A.1 complements this section well.

1 Arithmetic and Algebra

As I made my way home, I thought Jem and I would get grown but there wasn’t much
else left for us to learn, except possibly algebra.

—Harper Lee

1.1 Home Base

Imagine 600 generations past—that’s on the order of 10000 years, the dawn of what
we would call civilization. This is a long time ago, well before the Epic of Gilgamesh.
Even then people already knew the need to keep track of numbers. However, they
didn’t use the numbers we know and love (that’s right, love!), they used tally-marks.
Now what if “a friend” of yours had a time machine? What if they traveled through
time and space and they decided to take you back 500 generations? Perhaps you
would meet a nice man named Lothar (Lothar of the Hill People is his full name) who
is trying to keep track of his goats. He has the following written on a clay tablet:

From this picture you discern that Lothar has 69 goats. Lothar is studying the
tablet intently when his wife, Gertrude, comes in. She tries in vain to get Lothar to



1.1. HOME BASE

keep track of his goats using another set of symbols:

A heated debate between Lothar and Gertrude ensues, the exact details of which
are still a mystery. We do glean the following facts:

(1) Under Gertrude’s scheme, five goats are denoted by:

(2) The total number of Lothar’s goats is denoted by:

Question Can you explain Gertrude’s counting scheme?

?
Did I mention that “your friend’s” time machine is also a spaceship? Oh. . . Well

it is. Now you both travel to the planet Omicron Persei 8. There are two things you
should know about the inhabitants of Omicron Persei 8:

(1) They only have 3 fingers on each hand.

(2) They can eat a human in one bite.

As you can see, there are serious issues that any human visitor to Omicron Persei 8
must deal with. For one thing, since the Omicronians only have 3 fingers on each
hand, they’ve only written down the following symbols for counting:

10



CHAPTER 1. ARITHMETIC AND ALGEBRA

Emperor Lrrr of the Omicronians is tallying how many humans he ate last week

when his wife, Ndnd, comes in and reminds him that he can write this number
using their fancy symbols as:

After reading some restaurant menus, you find out that twelve tally-marks are
denoted by the symbols:

Question Can you explain the Omicronians’ counting scheme?

?
At this point you hop back into “your friend’s” space-time ship. “Your friend”

kicks off their shoes. You notice that “your friend” has 6 toes on each foot. You
strike up a conversation about the plethora of toes. Apparently this anomaly has
enabled “your friend” to create their own counting scheme, which they say is based
on:

• Toes

• Feets

• Feets of Feets

• and so on. . .

11



1.1. HOME BASE

“Your friend” informs you that they would write the number you know as “twenty-six”
as 22 or “two feets and two toes.” What?! Though you find the conversation to be
dull and stinky, you also find out that “your friend” uses two more symbols when
they count. “Your friend” uses the letter A to mean what you call “ten,” and the
letter B to mean what you call “eleven!”

Question Can you explain “your friend’s” counting scheme?

?

12



CHAPTER 1. ARITHMETIC AND ALGEBRA

Problems for Section 1.1

(1) Explain why the following “joke” is “funny:” There are 10 types of
people in the world. Those who understand base 2 and those who
don’t.

(2) You meet some Tripod aliens, they tally by threes. Thankfully for
everyone involved, they use the symbols 0, 1, and 2.

(a) Can you explain how a Tripod would count from 11 to 201? Be
sure to carefully explain what number comes after 22.

(b) What number comes immediately before 10? 210? 20110?
Explain your reasoning.

(3) You meet some people who tally by sevens. They use the symbols
O, A, B, C, D, E, and F .

(a) What do the individual symbols O, A, B, C, D, E, and F mean?
(b) Can you explain how they would count from DD to AOC? Be

sure to carefully explain what number comes after FF .
(c) What number comes immediately before AO? ABO? EOFFA?

Explain your reasoning.

(4) Now, suppose that you meet a hermit who tallies by thirteens.
Explain how he might count. Give some relevant and revealing
examples.

(5) While visiting Mos Eisley spaceport, you stop by Chalmun’s Cantina.
After you sit down, you notice that one of the other aliens is holding
a discussion on fractions. Much to your surprise, they explain that
1/6 of 36 is 7. You are unhappy with this, knowing that 1/6 of 36
is in fact 6, yet their audience seems to agree with it, not you. Next
the alien challenges its audience by asking, “What is 1/4 of 10?”
What is the correct answer to this question, and how many fingers
do the aliens have? Explain your reasoning.

(6) When the first Venusian to visit Earth attended a 6Te grade class,
it watched the teacher show that

3
12
=

1
4
.

“How strange,” thought the Venusian. “On Venus,
4
12
=

1
4

.” What
base do Venusians use? Explain your reasoning.

(7) When the first Martian to visit Earth attended a high school algebra
class, it watched the teacher show that the only solution of the
equation

5x2 − 50x + 125 = 0

is x = 5.

“How strange,” thought the Martian. “On Mars, x = 5 is a solution
of this equation, but there also is another solution.” If Martians
have more fingers than humans, how many fingers do Martians
have on both hands? Explain your reasoning.

(8) In one of your many space-time adventures, you see the equation

3
10
+

4
13
=

21
20

written on a napkin. How many fingers did the beast who wrote
this have? Explain your reasoning.

(9) What is the smallest number of weights needed to produce every
integer-valued mass from 0 grams to say n grams? Explain your
reasoning.

(10) Starting at zero, how high can you count using just your fingers?

(a) Explain how to count to 10.

(b) Explain how to count to 35.

(c) Explain how to count to 1023.

(d) Explain how to count to 59048.

(e) Can you count even higher?

Explain your reasoning.

13



1.2. ARITHMETIC

Activity A.2 complements this section well.

1.2 Arithmetic

Consider this question:

Question Can you think about something if you lack the vocabulary required
to discuss it?

?

1.2.1 Nomenclature

The numbers and operations we work with have properties whose importance are so
fundamental that we have given them names. Each of these properties is surely well
known to you; however, the importance of the name is that it gives a keen observer
the ability to see and articulate fundamental structures in arithmetic and algebra.

The Associative Property An operation H is called associative if for all numbers a, b,
and c:

aH (bH c) = (aH b) H c

The Commutative Property An operation H is called commutative if for all numbers
a and b:

aH b = bHa

The Distributive Property An operation H is said to be distributive over another
operation B if for all numbers a, b, and c:

aH (bB c) = (aH b) B (aH c) and (bB c) Ha = (bHa) B (cHa)

The Closure Property An operation H is called closed on a set of numbers if for all
numbers a and b in the set:

aH b is another number in the set.

You may find yourself a bit distressed over some of the notation used above. In
particular you surely notice that we were using crazy symbols like H and B. We did

14



CHAPTER 1. ARITHMETIC AND ALGEBRA

CCSS 2.NBT.9: Explain why addition and subtrac-
tion strategies work, using place value and the
properties of operations. (Explanations may be sup-
ported by drawings or objects.)

this for a reason. The properties above may hold for more than one operation. Let’s
explore this:

Question Can you give examples of operations that are associative? Can you
give examples of operations that are not associative?

?

Question Can you give examples of operations that are commutative? Can
you give examples of operations that are not commutative?

?

Question Can you give examples of two operations where one distributes over
the other? Can you give examples of operations that do not distribute?

?

Question Can you give examples of an operation and a set of numbers where
the operation is closed on the set of numbers? Can you give examples of an
operation and a set of numbers where the operation is not closed on the set of
numbers?

?

1.2.2 Algorithms

In elementary school you learned many strategies for addition and subtraction.2.NBT.9

Some of these strategies can be developed into algorithms, which are general step-
by-step procedures for computation. In this section, we aim to explain various
strategies and algorithms for addition and subtraction, and our tools are place value
and the properties of operations.3.NBT.2

15



1.2. ARITHMETIC

Standard Addition Algorithm Here is an example of a standard addition algorithm:

11
892

+398
1290

Question Can you describe how to perform this algorithm?

As a gesture of friendship, I’ll take this one. All we are doing here is adding each
column of digits at a time, starting with the right-most digit

892

+398

10 {

1

892

+398

0

If our column of digits sums to 10 or higher, then we must “carry” the tens-digit of
our sum to the next column. This process repeats until we run out of digits on the
left.

1

892
+398
190 {

11
892
+398
1290

We’re done!

Question Can you show the “behind-the-scenes” algebra going on here?

16



CHAPTER 1. ARITHMETIC AND ALGEBRA

I’ll take this one too. Sure, you just write:

892 + 398 = (8 · 102 + 9 · 10 + 2) + (3 · 102 + 9 · 10 + 8)

= 8 · 102 + 9 · 10 + 2 + 3 · 102 + 9 · 10 + 8

= 8 · 102 + 3 · 102 + 9 · 10 + 9 · 10 + 2 + 8

= (8 + 3) · 102 + (9 + 9) · 10 + (2 + 8)

= (8 + 3) · 102 + (9 + 9) · 10 + 10 + 0

= (8 + 3) · 102 + (9 + 9 + 1) · 10 + 0

= (8 + 3) · 102 + (10 + 9) · 10 + 0

= (8 + 3 + 1) · 102 + 9 · 10 + 0

= 12 · 102 + 9 · 10 + 0

= 1290

Wow! That was a lot of algebra. At each step, you should be able to explain how to
get to the next step, and state which algebraic properties are being used.

Standard Multiplication Algorithm Here is an example of a standard multiplication
algorithm:

23
634
× 8
5072

Question Can you describe how to perform this algorithm?

Me me me me! All we are doing here is multiplying each digit of the multi-digit
number by the single digit number.

634

× 8

32 {

3

634

× 8

2

17



1.2. ARITHMETIC

If our product is 10 or higher, then we must “carry” the tens-digit of our product to
the next column. This “carried” number is then added to our new product. This
process repeats until we run out of digits on the left.

3

634
× 8

272 {

23
634
× 8

5072

We’re done!

Question Can you show the “behind-the-scenes” algebra going on here?

You betcha! Just write:

634 · 8 = (6 · 102 + 3 · 10 + 4) · 8

= 6 · 8 · 102 + 3 · 8 · 10 + 4 · 8

= 6 · 8 · 102 + 3 · 8 · 10 + 32 (_)

= 6 · 8 · 102 + (3 · 8 + 3) · 10 + 2 (`)

= 6 · 8 · 102 + 270 + 2 (d)

= (6 · 8 + 2) · 102 + 7 · 10 + 2 (b)

= 50 · 102 + 7 · 10 + 2

= 5 · 103 + 0 · 102 + 7 · 10 + 2

= 5072

Ahhhhh! Algebra works. Remember just as before, at each step you should be able
to explain how to get to the next step, and state which algebraic properties are being
used.

Question Can you clearly explain what happened between lines (_) and (`)?
What about between lines (d) and (b)?

?
18



CHAPTER 1. ARITHMETIC AND ALGEBRA

Long-Division Algorithm With Remainder Once more we meet with this old foe—long
division. Here is an example:

8
97 R1)

777
72
57
56
1

Question Can you describe how to perform this algorithm?

Yes! I’m all about this sort of thing. All we are doing here is single digit division
for each digit of the multi-digit dividend (the number under the division symbol) by
the single digit divisor (the left-most number). We start by noting that 8 won’t go
into 7, and so we see how many times 8 goes into 77.

8

9)
777
72

5

! n = d · q + r

77 = 8 · 9 + 5

Now we drop the other 7 down, and see how many times 8 goes into 57.

8

97)
777
72
57

56

1

! n = d · q + r

57 = 8 · 7 + 1

This process repeats until we run out of digits in the dividend.

Question Can you show the “behind-the-scenes” algebra going on here?

19



1.2. ARITHMETIC

Of course—but this time things will be a bit different.

77 = 8 · 9 + 5

77 · 10 = (8 · 9 + 5) · 10

77 · 10 = 8 · 9 · 10 + 5 · 10

77 · 10 + 7 = 8 · 9 · 10 + 5 · 10 + 7

777 = 8 · (9 · 10) + 57 (_)

777 = 8 · (9 · 10) + (8 · 7 + 1) (`)

777 = 8 · (9 · 10) + 8 · 7 + 1 (d)

777 = 8 · (9 · 10 + 7) + 1 (b)

777 = 8 · 97 + 1

Looks good to me, but remember: At each step you must be able to explain how to
get to the next step, and state which algebraic properties are being used.

Question Can you clearly explain what happened between lines (_) and (`)?
What about between lines (d) and (b)?

?
Long-Division Algorithm Without Remainder Do you remember that the division algo-
rithm can be done in such a way that there is no remainder? Here is an example of
the division algorithm without remainder:

4
0.75)
3.00
2 8

20
20

20
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Question Can you describe how to perform this algorithm?

I’m getting a bit tired, but I think I can do this last one. Again, all we are doing
here is single digit division for each digit of the multi-digit dividend (the number
under the division symbol) by the single digit divisor (the left-most number) adding
zeros after the decimal point as needed. We start by noting that 4 won’t go into 3,
and so we see how many times 4 goes into 3.0. Mathematically this is the same
question; however, by thinking of the 3.0 as 30, we put ourselves into familiar
territory. Since

4 · 7 = 30 ⇒ 4 · 7 · 10−1 = 30 · 10−1 = 3

this will work as long as we put our 7 immediately to the right of the decimal point.

4

0.7)
3.0

2 8

2

! n = d · q + r

30 = 4 · 7 + 2

Now we are left with a remainder of .2. To take care of this, we drop another 0 down
and see how many times 4 goes into 20. Since

4 · 5 = 20 ⇒ 4 · 5 · 10−2 = 5 · 10−2 = 0.05

this will work as long as we put our 5 two spaces to the right of the decimal point.

4

0.75)
3.00

2 8
20

20

! n = d · q + r

20 = 4 · 5 + 0

This process repeats until we obtain a division with no remainder, or until we see
repetition in the digits of the quotient.

21



1.2. ARITHMETIC

Question Can you show the “behind-the-scenes” algebra going on here?

Let’s do it:

3 = 4 · 0 + 3

3.0 = (4 · 7 + 2) · 10−1

3.0 = 4 · (7 · 10−1) + 2 · 10−1

3.00 = 4 · (7 · 10−1) + 20 · 10−2

3.00 = 4 · (7 · 10−1) + (4 · 5) · 10−2 (d)

3.00 = 4 · (7 · 10−1) + 4 · (5 · 10−2) (b)

3.00 = 4 · (7 · 10−1 + 5 · 10−2)

3.00 = 4 · 0.75

Looks good to me, but remember: At each step you must be able to explain how to
get to the next step, and state which algebraic properties are being used.

Question Can you clearly explain what happened between lines (d) and (b)?

?

22
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Problems for Section 1.2

(1) Explain what it means for an operation H to be associative. Give
some relevant and revealing examples and non-examples.

(2) Consider the following pictures:

2

3

2

3

2

3

2

3

3

4

3

4

Jesse claims that these pictures represent (2 · 3) · 4 and 2 · (3 · 4).

(a) Is Jesse’s claim correct? Explain your reasoning.

(b) Do Jesse’s pictures show the associativity of multiplication? If
so, explain why. If not, draw new pictures representing (2 · 3) · 4
and 2 · (3 · 4) that do show the associativity of multiplication.

(3) Explain what it means for an operation H to be commutative. Give
some relevant and revealing examples and non-examples.

(4) Explain what it means for an operation H to distribute over an-
other operation B. Give some relevant and revealing examples and
non-examples.

(5) Explain what it means for an operation H to be closed on a set
of numbers. Give some relevant and revealing examples and non-
examples.

(6) Sometimes multiplication is described as repeated addition. Does
this explain why multiplication is commutative? If so give the expla-
nation. If not, give another description of multiplication that does
explain why it is commutative.

(7) In a warehouse you obtain 20% discount but you must pay a 15%
sales tax. Which would save you more money: To have the tax
calculated first or the discount? Explain your reasoning—be sure
to use relevant terminology. In particular, which property of which
operation(s) do you use?

(8) Money Bags Jon likes to give a tip of 20% when he is at restaurants.
He does this by dividing his bill by 10 and then doubling it. Explain
why this works.

(9) Regular Reggie likes to give a tip of 15% when he is at restaurants.
He does this by dividing his bill by 10 and then adding half more to
this number. Explain why this works.

(10) Wacky Wally has a strange way of giving tips when he is at restau-
rants. He does this by rounding his bill up to the nearest multiple
of 7 and then taking the quotient (when that new number is divided
by 7). Explain why this isn’t as wacky as it might sound.

(11) Cheap Carl likes to give a tip of 13
1
3

% when he is at restaurants.
He does this by dividing his bill by 10 and then adding one-third
more to this number. Explain why this works.

(12) Reasonable Rebbecca likes to give a tip of 18% when she is at restau-
rants. She does this by dividing her bill by 5 and then removing
one-tenth of this number. Explain why this works.

(13) Can you think of and justify any other schemes for computing the
tip?

(14) Here is an example of a standard addition algorithm:

11
892
+398
1290

(a) Describe how to perform this algorithm.
(b) Provide an additional relevant and revealing example demon-

strating that you understand the algorithm.
(c) Show the “behind-the-scenes” algebra that is going on here.

(15) Here is an example of the column addition algorithm:

892
+398

10
18

11
1290

(a) Describe how to perform this algorithm.
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(b) Provide an additional relevant and revealing example demon-
strating that you understand the algorithm.

(c) Show the “behind-the-scenes” algebra that is going on here.

(16) If you check out Problems (23) and (25), you will learn about “par-
tial” algorithms.

(a) Develop a “partial” algorithm for addition, give it a name, and
describe how to perform this algorithm.

(b) Provide a relevant and revealing example demonstrating that you
understand the algorithm.

(c) Show the “behind-the-scenes” algebra that is going on here.

(17) Here is an example of the banker’s addition algorithm:

892
+398

10
19

12
1290

(a) Describe how to perform this algorithm.
(b) Provide an additional relevant and revealing example demon-

strating that you understand the algorithm.
(c) Show the “behind-the-scenes” algebra that is going on here.

(18) Here is an example of a standard subtraction algorithm:

8
86 9 12
−3 7 8

5 1 4

(a) Describe how to perform this algorithm.
(b) Provide an additional relevant and revealing example demon-

strating that you understand the algorithm.
(c) Show the “behind-the-scenes” algebra that is going on here.

(19) Here is an example of the subtraction by addition algorithm:

892
−378

514
!

8 + 4 = 12 add 1 to 7 to get 8

8 + 1 = 9

3 + 5 = 8

(a) Describe how to perform this algorithm.
(b) Provide an additional relevant and revealing example demon-

strating that you understand the algorithm.
(c) Show the “behind-the-scenes” algebra that is going on here.

(20) Here is an example of the Austrian subtraction algorithm:

8 9 12
−3 8
6 7 8

5 1 4

(a) Describe how to perform this algorithm.
(b) Provide an additional relevant and revealing example demon-

strating that you understand the algorithm.
(c) Show the “behind-the-scenes” algebra that is going on here.

(21) If you check out Problems (23) and (25), you will learn about “par-
tial” algorithms.

(a) Develop a “partial” algorithm for subtraction, give it a name, and
describe how to perform this algorithm.

(b) Provide a relevant and revealing example demonstrating that you
understand the algorithm.

(c) Show the “behind-the-scenes” algebra that is going on here.

(22) Here is an example of a standard multiplication algorithm:

23
634
× 8
5072

(a) Describe how to perform this algorithm.
(b) Provide an additional relevant and revealing example demon-

strating that you understand the algorithm.
(c) Show the “behind-the-scenes” algebra that is going on here.

(23) Here is an example of the partial-products algorithm:

634
× 8
4800
240
32

5072
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(a) Describe how to perform this algorithm.

(b) Provide an additional relevant and revealing example demon-
strating that you understand the algorithm.

(c) Show the “behind-the-scenes” algebra that is going on here.

(24) Here is an example of a standard division algorithm:

8
97 R1)

777
72
57
56
1

(a) Describe how to perform this algorithm.

(b) Provide an additional relevant and revealing example demon-
strating that you understand the algorithm.

(c) Show the “behind-the-scenes” algebra that is going on here.

(25) Here is an example of the partial quotients algorithm:

8

7
90)

777
720
57
56
1

(a) Describe how to perform this algorithm.

(b) Provide an additional relevant and revealing example demon-
strating that you understand the algorithm.

(c) Show the “behind-the-scenes” algebra that is going on here.

(26) Here is another example of the partial-quotients division algorithm:

8

4
10
10
10)

277
80

197
80

117
80
37
32
5

(a) Describe how to perform this algorithm—be sure to explain how
this is different from the scaffolding division algorithm.

(b) Provide an additional relevant and revealing example demon-
strating that you understand the algorithm.

(c) Show the “behind-the-scenes” algebra that is going on here.

(27) Here is an example of a standard multiplication algorithm:

634
×216
3804
6340

126800
136944

(a) Describe how to perform this algorithm.

(b) Provide an additional relevant and revealing example demon-
strating that you understand the algorithm.

(c) Show the “behind-the-scenes” algebra that is going on here—
you may assume that you already know the algebra behind the
standard multiplication algorithm.
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(28) Here is an example of the addition algorithm with decimals:

1
37.2
+8.74
45.94

(a) Describe how to perform this algorithm.
(b) Provide an additional relevant and revealing example demon-

strating that you understand the algorithm.
(c) Show the “behind-the-scenes” algebra that is going on here.

(29) Here is an example of the multiplication algorithm with decimals:

3.40
× .21

340
6800
.7140

(a) Describe how to perform this algorithm.
(b) Provide an additional relevant and revealing example demon-

strating that you understand the algorithm.
(c) Show the “behind-the-scenes” algebra that is going on here.

(30) Here is an example of the division algorithm without remainder:

4
0.75)
3.00
2 8

20
20

(a) Describe how to perform this algorithm.
(b) Provide an additional relevant and revealing example demon-

strating that you understand the algorithm.
(c) Show the “behind-the-scenes” algebra that is going on here.

(31) In the following addition problem, every digit has been replaced
with a letter.

MOON

+ SUN

PLUTO

Recover the original problem and solution. Explain your reasoning.
Hint: S = 6 and U = 5.

(32) In the following addition problem, every digit has been replaced
with a letter.

SEND

+MORE

MONEY

Recover the original problem and solution. Explain your reasoning.

(33) In the following subtraction problem, every digit has been replaced
with a letter.

DEFER

−DU7Y

N2G2

Recover the original problem and solution. Explain your reasoning.

(34) In the following two subtraction problems, every digit has been
replaced with a letter.

NINE

−TEN

TWO

NINE

−ONE

ALL

Using both problems simultaneously, recover the original problems
and solutions. Explain your reasoning.

(35) In the following multiplication problem, every digit has been replaced
with a letter.

LET

× NO

SOT

NOT

FRET

Recover the original problem and solution. Explain your reasoning.

(36) The following is a long division problem where every digit except 7
was replaced by X.

XX
X 7X)

XXXXX
X 7 7

X 7X
X 7X

XX
XX
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Recover the digits from this long division problem. Explain your
reasoning.

(37) The following is a long division problem where the various digits
were replaced by X except for a single 8. The double bar indicates
that the remainder is 0.

XXX
XX8XX)

XXXXXXXX
XXX

XXXX
XXX

XXXX
XXXX

Recover the digits from this long division problem. Explain your
reasoning.
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Activity A.5 complements this section well.

1.3 Algebra

Algebra is when you replace a number with a letter, usually x, right? OK—but you
also do things with x, like make polynomials out of it.

1.3.1 Polynomial Basics

Question What’s a polynomial?

?
I’ll take this one:

Definition An nth-degree polynomial in the variable x is an expression of the
form

anx
n + an−1x

n−1 + · · · + a1x + a0

where the ai ’s are all constants, n is a nonnegative integer, and an , 0.

Question Which of the following are polynomials?

3x3 − 2x + 1
1

3x3 − 2x + 1
3x−3 − 2x−1 + 1 3x1/3 − 2x1/6 + 1

?
Given two polynomials

anx
n + an−1x

n−1 + · · · + a1x + a0

bmx
m + bm−1x

m−1 + · · · + b1x + b0

we treat these polynomials much the same way we treat numbers. Note, an easy
fact is that polynomials are equal if and only if their coefficients are equal—this may
come up again!
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Question Are numbers equal if and only if their digits are equal?

?

Question Can you explain how to add two polynomials? Compare and contrast
this procedure to the standard addition algorithm for counting numbers.

?

Question Can you explain how to multiply two polynomials? Compare and
contrast this procedure to the standard multiplication algorithm for counting
numbers.

?

Question Can you explain why someone might say that working with polyno-
mials is like working in “base x?”

?

1.3.2 Division and Polynomials

For some reason you keep on signing up for classes with aloof old Professor Rufus.
When he was asked to teach division of polynomials with remainders, he merely
wrote

d(x)

q(x) R r(x))
n(x) where

d(x) is the divisor
n(x) is the dividend
q(x) is the quotient
r(x) is the remainder

and walked out of the room, again! Do you have déjà vu?
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Question Can you give 3 much needed examples of polynomial long division
with remainders?

?

Question Given polynomials d(x), n(x), q(x), and r(x) how do you know if they
leave us with a correct expression above?

?

Question Can you explain how to divide two polynomials?

?

Question Can you do the polynomial long division with remainder?

?
Again, this question can be turned into a theorem.

Theorem 1.3.1 (Division Theorem) Given any polynomial n(x) and a non-
constant polynomial d(x), there exist unique polynomials q(x) and r(x) such
that

The above space has intentionally been left blank for you to fill in.
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Problems for Section 1.3

(1) Explain what is meant by a polynomial in a variable x.

(2) Given:

3x7−x5+x4−16x3+27 = a7x
7+a6x

6+a5x
5+a4x

4+a3x
3+a2x

2+a1x
1+a0

Find a0, a1, a2, a3, a4, a5, a6, a7.

(3) Given:

6x5 + a4x
4 − x2 + a0 = a5x

5 − 24x4 + a3x
3 + a2x

2 − 5

Find a0, a1, a2, a3, a4, a5.

(4) Is it true that polynomials are equal if and only if their coefficients
are equal? Explain your reasoning.

(5) Is it true that numbers are equal if and only if their digits are equal?
Explain your reasoning.

(6) Explain how to add two polynomials. Explain, in particular, how
“collecting like terms” is an application of the properties of arith-
metic.

(7) Explain how to multiply two polynomials.

(8) Here is an example of the polynomial division algorithm:

x2 + 3x + 1

x − 3 R 9x + 4)
x3 + 0x2 + x + 1
x3 + 3x2 + x

−3x2 + 0x + 1
−3x2 − 9x − 3

9x + 4

(a) Describe how to perform this algorithm.

(b) Provide an additional relevant and revealing example demon-
strating that you understand the algorithm.

(c) Show the “behind-the-scenes” algebra that is going on here.

(9) State the Division Theorem for polynomials. Give some relevant and
revealing examples of this theorem in action.

(10) Given a polynomial

p(x) = anxn + an−1x
n−1 + · · · + a1x + a0

can you find two numbers L and U such that L 6 p(x) 6 U for all
x? If so, explain why. If not, explain why not.

(11) Consider all polynomials of the form

anx
n + an−1x

n−1 + · · · + a1x + a0

where the ai ’s are integers. If you substitute an integer for x will
you always get an integer out? Explain your reasoning.

(12) Consider the following polynomial:

p(x) =
x2

2
+
x

2

Will p(x) always returns an integer when an integer is substituted
for x? Explain your reasoning.

(13) Fix some integer value for x and consider all polynomials of the
form

anx
n + an−1x

n−1 + · · · + a1x + a0

Where the ai ’s are integers greater than or equal to 0. Which
numbers can be represented by such polynomials? Explain your
reasoning.

(14) Find a polynomial

p(x) = anxn + an−1x
n−1 + · · · + a1x + a0

such that ai ’s are integers greater than or equal to 0 and less than
2 such that p(2) = 35. Discuss how your answer compares to the
representation of 35 in base 2. Explain your reasoning.

(15) Find a polynomial

p(x) = anxn + an−1x
n−1 + · · · + a1x + a0

such that ai ’s are integers greater than or equal to 0 and less than
7 such that p(7) = 234. Discuss how your answer compares to the
representation of 234 in base 7. Explain your reasoning.
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(16) Find a polynomial

p(x) = anxn + an−1x
n−1 + · · · + a1x + a0

such that ai ’s are integers greater than or equal to 0 and less than
10 such that p(10) = 18. Discuss how your answer compares to
the representation of 18 in base 10. Explain your reasoning.

(17) Find a polynomial

p(x) = anxn + an−1x
n−1 + · · · + a1x + a0

such that ai ’s are integers greater than or equal to 0 and less than
15 such that p(15) = 201. Discuss how your answer compares to
the representation of 201 in base 15. Explain your reasoning.

(18) Fix some integer value for x and consider all polynomials of the
form

anx
n + an−1x

n−1 + · · · + a1x + a0

Where the ai ’s are integers greater than or equal to 0 and less than x.
Which numbers can be represented by such polynomials? Explain
your reasoning. Big hint: Base x.

(19) Fix some integer value for x and consider all polynomials of the
form

anx
n + an−1x

n−1 + · · · + a1x + a0

Where the ai ’s are integers greater than or equal to 0 and less
than 10. Which numbers can be represented by such polynomials?
Explain your reasoning.

(20) Consider x2 + x + 1. This can be thought of as a “number” in base
x. Express this number in base (x + 1), that is, find b0, b1, b2 such
that

b2(x + 1)2 + b1(x + 1) + b0 = x
2 + x + 1.

Explain your reasoning.

(21) Consider x2 + 2x + 3. This can be thought of as a “number” in base
x. Express this number in base (x − 1), that is, find b0, b1, b2 such
that

b2(x − 1)2 + b1(x − 1) + b0 = x
2 + 2x + 3.

Explain your reasoning.

(22) Consider x3 + 2x + 1. This can be thought of as a “number” in base
x. Express this number in base (x − 1), that is, find b0, b1, b2, b3

such that

b3(x − 1)3 + b2(x − 1)2 + b1(x − 1) + b0 = x
3 + 2x + 1.

Explain your reasoning.

(23) If the polynomial

p(x) = anxn + an−1x
n−1 + · · · + a1x + a0

is thought of as a “number” in base x, describe two different ways
to find the base (x − 1) coefficients of p(x).
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2 Numbers

God created the integers, the rest is the work of man.

—Leopold Kronecker

2.1 The Integers

An important theme in this course is distinguishing among the various number
systems of school mathematics. A number system is a set of numbers together with
arithmetic operations, such as addition and multiplication, on those numbers. We
have already been using counting numbers. Now we need to be more precise.

Definition The counting numbers, often called the natural numbers, are
(naturally) those use for counting. We use the symbol N to denote the counting
numbers:

N = {1,2,3,4,5, . . . }

When 0 is included with the counting numbers, we have the set of whole

numbers, denoted W:
W = {0,1,2,3,4,5, . . . }

The set of counting numbers, zero, and negative counting numbers is called
the set of integers, denoted Z:

Z = {. . . ,−5,−4,−3,−2,−1,0,1,2,3,4,5, . . . }



2.1. THE INTEGERS

In case you’re wondering, the symbol Z is used because Zahlen is the German
word for “numbers.”

2.1.1 Addition

Addition is probably the first operation we learn.

Question Write a story problem whose solution is given by the expression
19 + 17. Let this context be a “working model” for addition.

?

Question Does your model show associativity of addition? If so, explain how.
If not, can you come up with a new model (story problem) that does?

?

Question Does your model show commutativity of addition? If so, explain how.
If not, can you come up with a new model that does?

?
An observant reader might notice that we have thus far given no reason to have

negative integers.

Question Describe some contexts (story problems) in which negative numbers
are useful. It will help to think of contexts in which there are “opposite” numbers
in some sense.

?
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Question Does your addition model work with negative integers? In other
words, does it model 19 + (−17) and 8 + (−13)? If so, explain how. If not, can
you modify your model or come up with a new model that does work?

?

2.1.2 Subtraction

Question Write a story problem whose solution is given by the expression
19 − 17. Let this context be a “working” model for subtraction.

?

Question We know that
a − b = a + (−b),

but the left-hand side of the equation is conceptually different from the right-
hand side of the equation. Write two story problems, one solved by 19− 17 and
the other solved by 19 + (−17). What’s the difference? (Pun intended!)

?

Question Can you use the two story problems above to model

(−19) − 17, 19 − (−17), (−19) − (−17)?

?

Question How is subtraction different from negation?

?
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2.1.3 Multiplication

Multiplication is more multifaceted than addition.

Question Write a story problem whose solution is given by the expression
19 · 17. Let this context be a “working” model for multiplication.

?

Question Does your model show commutativity of multiplication? If so, explain
how. If not, can you come up with a new model that does?

?

Question Does your model show associativity of multiplication? If so, explain
how. If not, can you come up with a new model that does?

?

Question Does your model work with negative integers? In particular does
your model show that

positive · negative = negative,

negative · positive = negative,

and
negative · negative = positive?

If so, explain how. If not, can you come up with a new model that does?

?
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Activity A.8 complements this section well.

2.1.4 Division

While addition and multiplication are good operations, the real “meat” of the situation
comes with division.

Definition We say that a non-zero integer d divides an integer n if there is an
integer q such that

n = dq.

In this case we write d | n, which is said: “d divides n.” If d does not divide n,
we sometimes write d - n.

While this may seem easy, it is actually quite tricky. You must always remember
the following synonyms for divides:

“d divides n”! “d is a divisor of n”! “d is a factor of n”! “n is a multiple of d”

Definition A prime number is a positive integer with exactly two positive
divisors, namely 1 and itself.

Definition A composite number is a positive integer with more than two
positive divisors.

I claim that every composite number is divisible by a prime number. Do you
believe me? If not, consider this:

Suppose there was a composite number that was not divisible by a prime. Then
there would necessarily be a smallest composite number that is not divisible by a
prime. Since this number is composite, this number is the product of two even smaller
numbers, both of which have prime divisors. Hence our original number must have
prime divisors.
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Activity A.12 complements this section well.

Question What the heck just happened?! Can you rewrite the above paragraph,
drawing pictures and/or using symbols as necessary, making it more clear?

?

2.1.5 Factoring

At this point we can factor any composite completely into primes. To do this, it is
often convenient to make a factor tree:

360
2 180

2 90
2 45

5 9
3 3

From this tree (Why is this a tree? It looks more like roots to me!) we see that

360 = 23 · 32 · 5.

At each step we simply divided by whichever prime number seemed most obvious,
branched off the tree and kept on going. From our factor tree, we can see some of
the divisors of the integer in question. However, there are many composite factors
that can be built up from the prime divisors. One of the most important is the
greatest common divisor.

Definition The greatest common divisor (GCD) of two integers a and b (not
both 0) is a positive integer g = gcd(a, b) where:

(1) g|a and g|b.

(2) If d|a and d|b, then 0 < d 6 g.
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Question Describe informally what the greatest common divisor of two num-
bers means. Explain how the two conditions in the formal definition appear in
your informal description.

?

Question What can you conclude when gcd(a, b) = 1? Explain.

?

Question How can you use a factor tree to compute the GCD of two integers?

?

Question Describe informally what the least common multiple (LCM) of two
numbers means. Write a formal definition of LCM. Explain how the two
conditions in the formal definition appear in your informal description.

?

Question How can you use a factor tree to compute the LCM of two integers?

?
So, to factor an integer or find the GCD, one could use a factor tree. However,

when building the factor tree, we had to know what primes to divide by. What if
no prime comes to mind? What if you want to factor the integer 391 or 397? This
raises a new question:
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Activities A.10 and A.11 complements this section
well.

Question How do you check to see if a given integer is prime? What possible
divisors must you check? When can you stop checking?

?

2.1.6 Division with Remainder

We all remember long division, or at least we remember doing long division. Some-
times, we need to be reminded of our forgotten foes. When aloof old Professor Rufus
was trying to explain division to his class, he merely wrote

d

q R r)
n where

d is the divisor
n is the dividend
q is the quotient
r is the remainder

and walked out of the room.

Question Can you give 3 much needed examples of long division with remain-
ders?

?

Question Given positive integers d, n, q, and r how do you know if they leave
us with a correct expression above?

?

Question Given positive integers d and n, how many different sets of q and r
can you find that will leave us with a correct expression above?

?
The innocuous questions above can be turned into a theorem. We’ll start it for

you, but you must finish it off yourself:
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Activity A.13 complements this section well.

Theorem 2.1.1 (Division Theorem) Given any integer n and a nonzero inte-
ger d, there exist unique integers q and r such that

The above space has intentionally been left blank for you to fill in.
Now consider the following picture:

Question How does the picture above “prove” the Division Theorem for positive
integers? How must we change the picture if we allow negative values for n and
d?

?
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Problems for Section 2.1

(1) Describe the set of integers. Give some relevant and revealing
examples/nonexamples.

(2) Explain how to model integer addition with pictures or items. What
relevant properties should your model show?

(3) Explain how to model integer multiplication with pictures or items.
What relevant properties should your model show?

(4) Explain what it means for one integer to divide another integer.
Give some relevant and revealing examples/nonexamples.

(5) Use the definition of divides to decide whether the following state-
ments are true or false. In each case, an explanation must be given
justifying your claim.

(a) 5|30

(b) 7|41

(c) 0|3

(d) 3|0

(e) 6|(22 · 34 · 5 · 7)

(f) 1000|(27 · 39 · 511 · 178)

(g) 6000|(221 · 317 · 589 · 2920)

(6) Incognito’s Hall of Shoes is a shoe store that just opened in Myrtle
Beach, South Carolina. At the moment, they have 100 pairs of
shoes in stock. At their grand opening 100 customers showed up.
The first customer tried on every pair of shoes, the second customer
tried on every 2nd pair, the third customer tried on every 3rd pair,
and so on until the 100th customer, who only tried on the last pair
of shoes.

(a) Which shoes were tried on by only 1 customer?

(b) Which shoes were tried on by exactly 2 customers?

(c) Which shoes were tried on by exactly 3 customers?

(d) Which shoes were tried on by the most number of customers?

Explain your reasoning.

(7) Factor the following integers:

(a) 111

(b) 1234
(c) 2345
(d) 4567
(e) 111111

In each case, how large a prime must you check before you can be
sure of your answers? Explain your reasoning.

(8) Which of the following numbers are prime? Explain how could
deduce whether the numbers are prime in as few calculations as
possible:

29 53 101 359 779 839 841

In each case, describe precisely which computations are needed
and why those are the only computations needed.

(9) Suppose you were only allowed to perform at most 7 computations
to see if a number is prime. How large a number could you check?
Explain your reasoning.

(10) Find examples of integers a, b, and c such that a | bc but a - b and
a - c. Explain your reasoning.

(11) Can you find at least 5 composite integers in a row? What about at
least 6 composite integers? Can you find 7? What about n? Explain
your reasoning. Hint: Consider something like 5! = 5 · 4 · 3 · 2 · 1.

(12) Use the definition of the greatest common divisor to find the GCD
of each of the pairs below. In each case, a detailed argument and
explanation must be given justifying your claim.

(a) gcd(462,1463)
(b) gcd(541,4669)
(c) gcd(10000,25 · 319 · 57 · 1113)
(d) gcd(11111,214 · 721 · 415 · 101)
(e) gcd(4375,89933)

(13) Lisa wants to make a new quilt out of 2 of her favorite sheets. To do
this, she is going to cut each sheet into as large squares as possible
while using the entire sheet and using whole inch measurements.

(a) If the first sheet is 72 inches by 60 inches what size squares
should she cut?
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(b) If the second sheet is 80 inches by 75 inches, what size squares
should she cut?

(c) How she might sew these squares together?

Explain your reasoning.

(14) Deena and Doug like to feed birds. They want to put 16 cups of
millet seed and 24 cups of sunflower seeds in their feeder.

(a) How many total scoops of seed (millet or sunflower) are required
if their scoop holds 1 cup of seed?

(b) How many total scoops of seed (millet or sunflower) are required
if their scoop holds 2 cups of seed?

(c) How large should the scoop be if we want to minimize the total
number of scoops?

Explain your reasoning.

(15) Consider the expression:

d
q R r)
n where

d is the divisor
n is the dividend
q is the quotient
r is the remainder

(a) Give 3 relevant and revealing examples of long division with
remainders.

(b) Given positive integers d, n, q, and r how do you know if they
leave us with a correct expression above?

(c) Given positive integers d and n, how many different sets of q and
r can you find that will leave us with a correct expression above?

(d) Give 3 relevant and revealing examples of long division with
remainders where some of d, n, q, and r are negative.

(e) Still allowing some of d, n, q, and r to be negative, how do we
know if they leave us with a correct expression above?

(16) State the Division Theorem for integers. Give some relevant and
revealing examples of this theorem in action.

(17) Explain what it means for an integer to not divide another integer.
That is, explain symbolically what it should mean to write:

a - b

(18) Consider the following:

20 ÷ 8 = 2 remainder 4,

28 ÷ 12 = 2 remainder 4.

Is it correct to say that 20 ÷ 8 = 28 ÷ 12? Explain your reasoning.

(19) Give a formula for the nth even number. Show-off your formula
with some examples.

(20) Give a formula for the nth odd number. Show-off your formula with
some examples.

(21) Give a formula for the nth multiple of 3. Show-off your formula with
some examples.

(22) Give a formula for the nth multiple of −7. Show-off your formula
with some examples.

(23) Give a formula for the nth number whose remainder when divided
by 5 is 1. Show-off your formula with some examples.

(24) Explain the rule
even + even = even

in two different ways. First give an explanation based on pictures.
Second give an explanation based on algebra. Your explanations
must be general, not based on specific examples.

(25) Explain the rule
odd + even = odd

in two different ways. First give an explanation based on pictures.
Second give an explanation based on algebra. Your explanations
must be general, not based on specific examples.

(26) Explain the rule
odd + odd = even

in two different ways. First give an explanation based on pictures.
Second give an explanation based on algebra. Your explanations
must be general, not based on specific examples.

(27) Explain the rule
even · even = even

in two different ways. First give an explanation based on pictures.
Second give an explanation based on algebra. Your explanations
must be general, not based on specific examples.
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(28) Explain the rule
odd · odd = odd

in two different ways. First give an explanation based on pictures.
Second give an explanation based on algebra. Your explanations
must be general, not based on specific examples.

(29) Explain the rule
odd · even = even

in two different ways. First give an explanation based on pictures.
Second give an explanation based on algebra. Your explanations
must be general, not based on specific examples.

(30) Let a > b be positive integers with gcd(a, b) = 1. Compute
gcd(a + b, a − b). Explain your reasoning. Hints:

(a) Make a chart.
(b) If g|x and g|y explain why g|(x + y).

(31) Make a chart listing all pairs of positive integers whose product is
18. Do the same for 221, 462, and 924. Use this experience to
help you explain why when factoring a number n, you only need to
check factors less than or equal to

√
n.

(32) Matt is a member of the Ohio State University Marching Band.
Being rather capable, Matt can take x steps of size y inches for all
integer values of x and y. If x is positive it means face North and
take x steps. If x is negative it means face South and take |x | steps.

If y is positive it means your step is a forward step of y inches. If y
is negative it means your step is a backward step of |y| inches.

(a) Discuss what the expressions x · y means in this context. In
particular, what happens if x = 1? What if y = 1?

(b) Using the context above, write and solve a word problem that
demonstrates the rule:

negative · positive = negative

Clearly explain how your problem shows this.

(c) Using the context above, write and solve a word problem that
demonstrates the rule:

negative · negative = positive

Clearly explain how your problem shows this.

(33) Stewie decided to count the pennies he had in his piggy bank. He
decided it would be quicker to count by fives. However, he ended
with two uncounted pennies. So he tried counting by twos but
ended up with one uncounted penny. Next he counted by threes
and then by fours, each time there was one uncounted penny.
Though he knew he had less than a dollars worth of pennies, and
more than 50 cents, he still didn’t have an exact count. Can you
help Stewie out? Explain your reasoning.
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Activity A.15 complements this section well.

2.2 The Fundamental Theorem of Arithmetic

In the previous section, we found divisors, greatest common divisors, and prime
factors of positive integers. And when we found prime factorizations of integers, we
used factor trees to organize our work.

Question Jake and Jenna use factor trees to find prime factorizations of the
same large number. Assuming that they don’t make any mistakes will their
prime factorizations be the same or could they be different? Explain.

?
Let’s try a simpler question.

Question If 11|50a, is it true that 11|a? Explain and generalize.

?
The following lemma will help us tie these ideas together. What is a lemma, you

ask? A lemma is nothing but a little theorem that helps us solve another problem.

Lemma 2.2.1 (Euclid’s Lemma) If p is a prime number and a and b are
integers

p|ab implies that p|a or p|b.

We are going to assume Euclid’s Lemma without proof (at least for now) because we
want to use it to prove our fundamental theorem—sometimes called the Fundamental

Theorem of Arithmetic:

Theorem 2.2.1 (Unique Factorization) Every integer greater than 1 can be
factored uniquely (up to ordering) into primes.
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Proof Well, if an integer is prime, we are done. If an integer is composite, then

it is divisible by a prime number. Divide and repeat with the quotient. If our

original integer was n, we’ll eventually get:

n = p1p2 · · · pm

where some of the pi ’s may be duplicates.

How do we know this factorization is unique? Well, suppose that

n = p1p2 · · · pm = q1q2 · · · ql

where the pi ’s and the qj’s are all prime. By the definition of “divides”

p1|q1(q2 · · · ql).

So by Euclid’s Lemma, p1 must divide either q1 or (q2 · · · ql). If p1 - q1, then

p1|q2(q3 · · · ql).

Repeat this enough times and you will find that p1|qj for one of the qj’s above,

which implies that p1 = qj. Repeat this process for all the pi ’s and you see that

the factorization is unique.

Question Huh?! Can you explain what just happened drawing pictures and/or
using symbols as necessary? How do we know the process will terminate?
Once we see that pi |qj for some j, how do we know that pi = qj? Could you also
give some examples?

?

Question Thinking about Unique Factorization of the Integers, explain why it
makes sense to exclude 1 from the prime numbers.

?
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Question Thinking about Unique Factorization of the Integers, what must be
the case when a number in base ten has units digit of 0? What about in other
bases?

?
From high school algebra, you have lots of tools for solving equations. But in

some situations, we are interested only in whole number or integer solutions to
these equations. These kinds of equations have a special name:

Definition A Diophantine equation is an equation where only integer solu-
tions are deemed acceptable.

In this section, we are particularly interested solve linear Diophantine equations,
that is, equations of the form:

ax + by = c

where a, b, and c are integers and the only solutions we will accept are pairs of
integers x and y.
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Problems for Section 2.2

(1) Explain what the GCD of two integers is. Give some relevant and
revealing examples/nonexamples.

(2) Explain what the LCM of two integers is. Give some relevant and
revealing examples/nonexamples.

(3) Consider the Diophantine equation:

15x + 4y = 1

(a) Find a solution to this equation. Explain your reasoning.
(b) Compute the slope of the line 15x + 4y = 1 and write it in lowest

terms. Show your work.
(c) Plot the line determined by 15x + 4y = 1 on graph paper.
(d) Using your plot and the slope of the line, explain how to find 10

more solutions to the Diophantine equation above.

(4) Explain why a Diophantine equation

ax + by = c

has either an infinite number of solutions or zero solutions.

(5) Josh owns a box containing beetles and spiders. At the moment,
there are 46 legs in the box. How may beetles and spiders are
currently in the box? Explain your reasoning.

(6) How many different ways can thirty coins (nickles, dimes, and
quarters) be worth five dollars? Explain your reasoning.

(7) Lisa collects lizards, beetles and worms. She has more worms than
lizards and beetles together. Altogether in the collection there are
twelve heads and twenty-six legs. How many lizards does Lisa have?
Explain your reasoning.

(8) Can you make exactly $5 with exactly 100 coins assuming you can
only use pennies, dimes, and quarters? If so how, if not why not?
Explain your reasoning.

(9) A merchant purchases a number of horses and bulls for the sum of
1770 talers. He pays 31 talers for each bull, and 21 talers for each
horse. How many bulls and how many horses does the merchant
buy? Solve this problem, explain what a taler is, and explain your

reasoning—note this problem is an old problem by L. Euler, it was
written in the 1700’s.

(10) A certain person buys hogs, goats, and sheep, totaling 100 animals,

for 100 crowns; the hogs cost him 3
1
2

crowns a piece, the goats 1
1
3

crowns, and the sheep go for
1
2

crown a piece. How many did this
person buy of each? Explain your reasoning—note this problem is
an old problem from Elements of Algebra by L. Euler, it was written
in the 1700’s.

(11) How many zeros are at the end of the following numbers:

(a) 22 · 58 · 73 · 115

(b) 11!
(c) 27!
(d) 99!
(e) 1001!

In each case, explain your reasoning.

(12) Decide whether the following statements are true or false. In each
case, a detailed argument and explanation must be given justifying
your claim.

(a) 7|56
(b) 55|11
(c) 3|40
(d) 100|(24 · 317 · 52 · 7)
(e) 5555|(520 · 79 · 1111 · 1323)
(f) 3|(3 + 6 + 9 + · · · + 300 + 303)

(13) Suppose that

(35 · 79 · 11x · 13y)|(3a · 7b · 1119 · 137)

What values of a, b, x and y, make true statements? Explain your
reasoning.

(14) Decide whether the following statements are true or false. In each
case, a detailed argument and explanation must be given justifying
your claim.

(a) If 7|13a, then 7|a.
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(b) If 6|49a, then 6|a.

(c) If 10|65a, then 10|a.

(d) If 14|22a, then 14|a.

(e) 54|93121.

(f) 54|81033.

(15) Joanna thinks she can see if a number is divisible by 24 by checking
to see if it’s divisible by 4 and divisible by 6. She claims that if the
number is divisible by 4 and by 6, then it must be divisible by 24.

Lindsay has a similar divisibility test for 24: She claims that if a
number is divisible by 3 and by 8, then it must be divisible by 24.

Are either correct? Explain your reasoning.

(16) Generalize the problem above.

(17) Suppose that you have a huge bag of tickets. On each of the tickets
is one of the following numbers.

{6,18,21,33,45,51,57,60,69,84}

Could you ever choose some combination of tickets (you can use
as many copies of the same ticket as needed) so that the numbers
sum to 7429? If so, give the correct combination of tickets. If not
explain why not.

(18) Decide whether the following statements are true or false. In each
case, a detailed argument and explanation must be given justifying
your claim.

(a) If a2|b2, then a|b.

(b) If a|b2, then a|b.

(c) If a|b and gcd(a, b) = 1, then a = 1.

(19) Betsy is factoring the number 24949501. To do this, she divides by
successively larger primes. She finds the smallest prime divisor to
be 499 with quotient 49999. At this point she stops. Why doesn’t
she continue? Explain your reasoning.

(20) When Ann is half as old as Mary will be when Mary is three times
as old as Mary is now, Mary will be five times as old as Ann is now.
Neither Ann nor Mary may vote. How old is Ann? Explain your
reasoning.

(21) If x2 = 11 · y, what can you say about y? Explain your reasoning.

(22) If x2 = 25 · y, what can you say about y? Explain your reasoning.

(23) When asked how many people were staying at the Hotel Chevalier,
the clerk responded “The number you seek is the smallest positive
integer such that dividing by 2 yields a perfect square, and dividing
by 3 yields a perfect cube.” How many people are staying at the
hotel? Explain your reasoning.
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2.3 The Euclidean Algorithm

In section 2.2, we assumed Euclid’s Lemma and used it to prove the Fundamental
Theorem of Arithmetic (aka Unique Factorization). In this section, we backtrack to
prove Euclid’s Lemma.

Question What was Euclid’s Lemma?

?
Up to this point, computing the GCD of two integers required you to factor both

numbers. This can be difficult to do. The following algorithm, called the Euclidean

algorithm, makes finding GCD’s quite easy. With that said, algorithms can be tricky
to explain. Let’s try this—study the following calculations, they are examples of the
Euclidean algorithm in action:

22 = 6 · 3 + 4

6 = 4 · 1 + 2

4 = 2 · 2 + 0 ∴ gcd(22,6) = 2

33 = 24 · 1 + 9

24 = 9 · 2 + 6

9 = 6 · 1 + 3

6 = 3 · 2 + 0 ∴ gcd(33,24) = 3

42 = 16 · 2 + 10

16 = 10 · 1 + 6

10 = 6 · 1 + 4

6 = 4 · 1 + 2

4 = 2 · 2 + 0 ∴ gcd(42,16) = 2

50



CHAPTER 2. NUMBERS

Activity A.14 complements this section well.

Question Can you describe how to do the Euclidean algorithm?

?

Question Can you explain why the Euclidean algorithm will always stop? Hint:
Division Theorem.

?
The algorithm demonstrated above is called the Euclidean algorithm or Euclid’s

algorithm because Euclid uses it several times in Books VII and X of his book The

Elements. Donald Knuth gives a description of the Euclidean algorithm in the first
volume of his series of books The Art of Computer Programming. Given integers m
and n, he describes it as follows:

(1) [Find remainder.] Divide m by n and let r be the remainder. (We will have 0 6 r < n.)

(2) [Is it zero?] If r = 0, the algorithm terminates; n is the answer.

(3) [Interchange.] Set m ← n, n ← r, and go back to step (1).

Question What do you think of this description? How does it compare to your
description of the Euclidean algorithm?

?
While the Euclidean algorithm is handy and fun, its real power is that it helps us

solve equations. Specifically it helps us solve linear Diophantine equations.
Let’s study the following calculations:

22 = 6 · 3 + 4 ⇔ 22 − 6 · 3 = 4

6 = 4 · 1 + 2 ⇔ 6 − 4 · 1 = 2

4 = 2 · 2 + 0

6 − 4 · 1 = 2

6 − (22 − 6 · 3) · 1 = 2

6 · 4 + 22(−1) = 2

∴ 22x + 6y = 2 where x = −1 and y = 4
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33 = 24 · 1 + 9 ⇔ 33 − 24 · 1 = 9

24 = 9 · 2 + 6 ⇔ 24 − 9 · 2 = 6

9 = 6 · 1 + 3 ⇔ 9 − 6 · 1 = 3

6 = 3 · 2 + 0

9 − 6 · 1 = 3

9 − (24 − 9 · 2) · 1 = 3

9 · 3 + 24 · (−1) = 3

(33 − 24 · 1) · 3 + 24 · (−1) = 3

33 · 3 + 24 · (−4) = 3

∴ 33x + 24y = 3 where x = 3 and y = −4

Question Can you explain how to solve Diophantine equations of the form

ax + by = g

where g = gcd(a, b)?

?
The Euclidean algorithm is also useful for theoretical questions.

Question Given integers a and b, what is the smallest positive integer that
can be expressed as

ax + by

where x and y are also integers?

I’m feeling chatty, so I’ll take this one. I claim that g = gcd(a, b) is the smallest
positive integer that can be expressed as

ax + by

where x and y are integers. How do I know? Well first, the Euclidean algorithm
shows that g can be expressed as a sum ax + by. (Why?)

Second, suppose there was a smaller positive integer, say s where:

ax + by = s
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Hmmm. . . but we know that g|a and g|b. This means that g divides the left-hand-
side of the equation. This means that g divides the right-hand-side of the equation.
So g|s—but this is impossible, as s < g. Thus g is the smallest integer that can be
expressed as ax + by.

Question Can you now use the Euclidean Algorithm to prove Euclid’s Lemma?

?
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Problems for Section 2.3

(1) Explain what a Diophantine equation is. Give an example and
explain why such a thing has real-world applications.

(2) Use the Euclidean algorithm to find: gcd(671,715), gcd(667,713),
gcd(671,713), gcd(682,715), gcd(601,735), and gcd(701,835).

(3) Explain the advantages of using the Euclidean algorithm to find the
GCD of two integers over factoring.

(4) Find integers x and y satisfying the following Diophantine equations:

(a) 671x + 715y = 11
(b) 667x + 713y = 69
(c) 671x + 713y = 1
(d) 682x + 715y = 55
(e) 601x + 735y = 4
(f) 701x + 835y = 15

(5) Given integers a, b, and c, explain how you know when a solution
to a Diophantine equation of the form

ax + by = c

exists.

(6) Consider the Diophantine equation:

15x + 4y = 1

(a) Use the Euclidean Algorithm to find a solution to this equation.
Explain your reasoning.

(b) Compute the slope of the line 15x + 4y = 1 and write it in lowest
terms. Show your work.

(c) Plot the line determined by 15x + 4y = 1 on graph paper.

(d) Using your plot and the slope of the line, explain how to find 10
more solutions to the Diophantine equation above.

(7) Explain why a Diophantine equation

ax + by = c

has either an infinite number of solutions or zero solutions.
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Activities A.16 and A.17 complement this section
well.

2.4 Rational Numbers

Once you are familiar with integers, you start to notice something: Given an integer,
it may or may not divide into another integer evenly. This property is at the heart
of our notions of factoring and primality. Life would be very different if all nonzero
integers divided evenly into one another. With this in mind, we introduce rational

numbers.

Definition A rational number can be written as
a

b
where a ∈ Z, b ∈ Z, and

b , 0.

In other words, rational numbers can be written as a fraction of integers, where
the denominator is nonzero.

Warning Note the words “can be” in the definition. Rational numbers do not
have to be represented as fractions. And fractions are not necessarily rational
numbers.

Question Which of the following numbers are rational?

5
4
, 718,

√
2, 2.718,

22
7
,

12
4
,

π

3
,

√
2
√

8
,

1
43

The set of all rational numbers is denoted by the symbol Q:

Q =
{a
b

such that a ∈ Z and b ∈ Z with b , 0
}

The letter Q stands for the word quotient, which should remind us of fractions. The
funny little “∈” symbol means “is in” or “is an element of.” Fancy folks will replace
the words such that with a colon “:” to get:

Q =
{a
b

: a ∈ Z and b ∈ Z with b , 0
}
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2.4.1 Why do People Hate Fractions?

Why do so many people find fractions difficult? This is a question worth exploring.
We’ll guide you through some of the tough spots with some questions of our own.

Question Given a rational number
a

b
, come up with three other different

rational numbers that are all equal to
a

b
. What features of fractions are we

illustrating?

?

Question Given two positive rational numbers
a

b
and

c

d
, explain how to tell

which is greater. What features of fractions are we illustrating?

?

Question Given two rational numbers
a

b
and

c

d
with

a

b
<
c

d
, explain how one

might find a rational number between them. What features of fractions are we
illustrating?

?

Question Dream up counting numbers a, b, and c such that:

a/b

c
=

a

b/c

Can you dream up other counting numbers a′, b′, and c′ such that:

a′/b′

c′
,

a′

b′/c′
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Activities A.19 through A.21 complement this section
well.

CCSS 3.NF.1: Understand a fraction 1/b as the
quantity formed by 1 part when a whole is partitioned
into b equal parts; understand a fraction a/b as the
quantity formed by a parts of size 1/b.

What features of fractions are we illustrating?

?

Question Explain how to add two fractions
a

b
and

c

d
. What features of

fractions are we illustrating?

?

Question Can you come up with any other reasons fractions are difficult?

?

2.4.2 Basic Meanings of Fractions

Like all numbers, fractions have meanings outside of their pure mathematical
existence. Let’s see if we can get to the heart of some of this meaning.3.NF.1

Question Draw a rectangle. Can you shade 3/8 of this rectangle? Explain the
steps you took to do this.

?

Question Draw a rectangle. Given a fraction a/b where 0 < a 6 b, explain
how to shade a/b of this rectangle.

?
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Question Draw a rectangle. How could you visualize 8/3 of this rectangle?
Explain the steps you took to do this.

?

Question Draw a rectangle. Given a fraction a/b where 0 < b < a, explain
how to visualize a/b of this rectangle.

?

Question Draw a rectangle. Can you shade

3/8
4

of this rectangle? Explain the steps you took to do this.

?
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Problems for Section 2.4

(1) Describe the set of rational numbers. Give some relevant and
revealing examples/nonexamples.

(2) What algebraic properties do the rational numbers enjoy that the
integers do not? Explain your reasoning.

(3) What number gives the same result when added to 1/2 as when
multiplied by 1/2. Explain your reasoning.

(4) Draw a rectangle to represent a garden. Shade in 3/5 of the garden.
Without changing the shading, show why 3/5 of the garden is the
same as 12/20 of the garden. Explain your reasoning.

(5) Shade in 2/3 of the entire picture below:

Explain your reasoning.

(6) What fractions could the following picture be illustrating?

Explain your reasoning.

(7) When Jesse was asked what the 7 in the fraction
3
7

means, Jesse
said that the “7” is the whole. Explain why this is not completely
correct. What is a better description of what the “7” in the fraction
3
7

means?

(8) Find yourself a sheet of paper. Now, suppose that this sheet of
paper is actually 4/5 of some imaginary larger sheet of paper.

• Shade your sheet of paper so that 3/5 of the larger (imaginary)
sheet of paper is shaded in. Explain why your shading is correct.

• Explain how this shows that

3/5
4/5

=
3
4
.

(9) Try to find the largest rational number smaller than 3/7. Explain
your solution or explain why this cannot be done.

(10) How many rational numbers are there between 3/4 and 4/7? Find
3 of them. Explain your reasoning.

(11) A youthful Bart loved to eat hamburgers. He ate 5/8 pounds of
hamburger meat a day. After testing revealed that his blood con-
sisted mostly of cholesterol, Bart decided to alter his eating habits
by cutting his hamburger consumption by 3/4. How many pounds
of hamburger a day did Bart eat on his new “low-cholesterol” diet?
Explain your reasoning.

(12) Courtney and Paolo are eating popcorn. Unfortunately, 1/3rd of
the popcorn kernels are poisoned. If Courtney eats exactly 5/16th
of the kernels and Paolo eats exactly 5/13ths of the kernels, did at
least one of them eat a poisoned kernel? Explain your reasoning.
Also, at least how many kernels of popcorn are in the bowl? Again,
explain your reasoning.

(13) Best of clocks, how much of the day is past if there remains twice
two-thirds of what is gone? Explain what this strange question
is asking and answer the question being sure to explain your
reasoning—note this is an old problem from the Greek Anthology
compiled by Metrodorus around the year 500.

(14) John spent a fifth of his life as a boy growing up, another one-sixth
of his life in college, one-half of his life as a bookie, and has spent
the last six years in prison. How old is John now? Explain your
reasoning

(15) Diophantus was a boy for 1/6th of his life, his beard grew after
1/12 more, he married after 1/7th more, and a son was born five
years after his marriage. Alas! After attaining the measure of half
his father’s full life, chill fate took the child. Diophantus spent the
last four years of his life consoling his grief through mathematics.
How old was Diophantus when he died? Explain your reasoning—
note this is an old problem from the Greek Anthology compiled by
Metrodorus around the year 500.

(16) Wandering around my home town (perhaps trying to find my former
self!), I suddenly realized that I had been in my job for one-quarter
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of my life. Perhaps the melancholia was getting the best of me, but
I wondered: How long would it be until I had been in my job for
one-third of my life? Explain your reasoning.

(17) In a certain adult condominium complex, 2/3 of the men are mar-
ried to 3/5 of the women. Assuming that men are only married to
women (and vice versa), and that married residents’ spouses are
also residents, what portion of the residents are married?

(a) Before any computations are done, use common sense to guess
the solution to this problem.

(b) Try to get a feel for this problem by choosing numbers for the un-
knowns and doing some calculations. What do these calculations
say about your guess?

(c) Use algebra to solve the problem.

Explain your reasoning in each step above.

(18) Let a, b, c, and d be positive integers such that

a < b < c < d

Is it true that
a

b
<
c

d
?

Explain your reasoning.

(19) Let a, b, c, and d be positive consecutive integers such that

a < b < c < d.

Is it true that
a

b
<
c

d
?

Explain your reasoning.

(20) Let a, b, c, and d be positive consecutive integers such that

a < b < c < d.

Is it true that
a

b
<
b

c
<
c

d
?

Explain your reasoning.

(21) Can you generalize Problem (19) and Problem (20) above? Explain
your reasoning.

(22) Let a, b, c, and d be positive integers such that

a

b
<
c

d
.

Is it true that
a

a + b
<

c

c + d
?

Explain your reasoning.
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Activities A.22, A.23, and A.24 are intended for this
section.

2.5 Decimal Representations

There are two ways that we usually write real numbers that aren’t whole numbers:
as fractions and as decimals. Let’s explore the relationship between these two
representations of numbers.

Question How is a “fraction” different from a rational number?

?
First, let’s work on translating fraction representations into decimal representa-

tions. You probably already know from school that some numbers have decimal
representations that end (these are called “terminating” decimals) and the rest of
them have decimal representations that never end (these are “non-terminating”).
Try to figure out what it would take for a fraction to have a terminating decimal
representation.

Question Write .465, 0.72895, 0.00673, and 34.062 as fractions of integers.
What do you notice about terminating decimals when they are written as
fractions?

?

Question Write 4/5, 7/16, 43/20, and 3/6250 as decimals. What about these
fractions makes the decimals terminate?

?

Question Your calculator is not trustworthy for determining whether a num-
ber’s decimal representation terminates or repeats. Why? How can you use
your calculator carefully to judge whether a decimal terminates or repeats?

?
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CCSS 7.NS.2d: Convert a rational number to a deci-
mal using long division; know that the decimal form
of a rational number terminates in 0s or eventually
repeats.

CCSS 8.NS.1: Know that numbers that are not ratio-
nal are called irrational. Understand informally that
every number has a decimal expansion; for rational
numbers show that the decimal expansion repeats
eventually, and convert a decimal expansion which
repeats eventually into a rational number.

In Activity A.23, you separate a bunch of fractions according to whether they
appear to have a terminating or non-terminating decimals. The rational numbers
that have a terminating decimals are straighforward to describe, once you see the
idea. The real action (and the intrigue) lies with the non-terminating ones.

Let’s investigate with a fraction that has a non-terminating representation: 4/7.
As you know, 4/7 is the same as “4 divided by 7.” So, use long division to find the
decimal representation.7.NS.2dBring a pillow, because you already know that it will
take an infinite number of steps to complete the work!

Now that you’ve spent your life doing long division, can you carefully explain
why the fraction’s non-terminating representation will “repeat”? (Hint: Think about
remainders.) Try a few others, like 2/13, 3/11, or 4/17. Will the same sort of thing
happen with, say, 3457/213678940753? What can you say about how soon the
process will repeat?

Here are some cool things you can investigate on the side:

• Some non-terminating decimals have a “delay” before they start repeating. (The
most famous one is probably 1/6.) I happen to know 1/123750000 will have
a delay of 7 places before the repeating starts. Can you look at a fraction and
predict whether it will or will not have a delay (and how long that delay will be)?

• What are the restrictions to the sizes of the “blocks” for the repeating decimal
representation of a rational number? For example, any fraction with denominator
37 can only possibly repeat in blocks of 1, 2, 3, 4, 6, 9, 12, 18, or 36.

Based on the ideas you have explored, you can prove that a non-terminating
decimal representation of a rational number must repeat. Is the converse true?
Can any repeating decimal be written as a fraction? It turns out indeed to be the
case, as can be found by taking advantage of a nice pattern involving the decimals
representations of 1/9, 1/99, 1/999, etc., or by noting that each repeating decimal
is a “geometric series,” as we will explore later.

Thus, we have it that every rational number can be written as either a terminating
or repeating decimal.8.NS.1 Can every decimal be written as a fraction? That is, we
have that all fractions are decimals, but are all decimals fractions? Have we let any
decimals out in the cold here?
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• This discussion draws heavily on ideas described in Where Mathemat-

ics Comes From: How the embodied mind brings mathematics into

being by Lakoff and Núñez (2000).

Question Describe the decimal representations of 3 “homemade” decimals
that could never be written as fractions of integers. Explain your thinking.
Warning: Do not say

√
2, π, e, or the like, unless you are ready to convince the

class that these are not rational numbers.

?

2.5.1 A Note on Infinite Processes

Mathematical reasoning often involves “infinite processes” in which direct calcu-
lation is impossible.• Infinite processes become central in calculus, where both
differentiation and integration are defined via limits. These approaches are made
rigorous in advanced undergraduate courses, such as Real Analysis. But infinite
processes arise from time to time even in middle grades mathematics, and so it is
important that teachers are able to talk about them sensibly and accurately. Here
we explain some key ideas for reasoning about infinite processes.

First, there is the idea of a process that continues, over and over, without end.
Here are some examples:

• Perhaps the earliest of these is counting: 1, 2, 3, 4, . . . . We do not imagine
completing the process of counting. Nonetheless, for any large positive number you
name, we can imagine exceeding that number, eventually, if we have enough time.

• We can approximate 1/3 with a sequence, 0.3, 0.33, 0.333, and so on. We can get
as close to 1/3 as we like by including enough digits. Note, on the other hand, that
it is false to say that 0.3333 = 1/3 or even 0.3333333333 = 1/3, because any finite
number of digits will miss 1/3 by an amount that can be calculated precisely.

• If we look at a sequence of regular n-gons of the same diameter, as n gets large, we
can get as close to a circle as we might like. But for any finite number of sides, the
regular n-gon will not actually be a circle.

The above examples use what is sometimes called potential infinity, for in none of
the cases do we actually complete the process, and we do not need to. We imagine
these things as going on “forever,” and a process that goes on forever never ends.

But the interesting uses of infinity in mathematics involve actual infinity.
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Question In each of the above examples, what would happen if the process
could end?

?
In order to conceptualize actual infinity, we imagine, metaphorically, that the

process does end. In a literal sense, an infinite process cannot end, but through the
use of metaphor, we consider what would happen if the process were to end. And
with the help of intuitions about completed processes, we then infer the “ultimate
result” of the completed infinite process.

With the metaphor of actual infinity, counting yields the infinite set of counting
numbers, N. All of them. In the repeating decimal for 1/3, we get an exact decimal
representation, so that 0.33333 . . . = 1/3. Exactly. And in the case of the regular
n-gon with an infinite number of sides, we get a circle. Perfectly.

Warning With the metaphor of actual infinity, it is false to say that 0.3333 . . .
never gets to 1/3 because the dots imply that the infinite process has been
completed. Although any finite number of digits fails reach 1/3, an infinite
number of digits reaches 1/3 exactly: The error has gone to 0.

In summary, reasoning about infinite processes involves the following steps:

(1) Describing the finite process carefully and accurately;

(2) Considering the process to go on forever, and describing how the result can get
arbitrarily close to some goal;

(3) Imagining that the infinite process has been completed; and

(4) Reasoning about the “ultimate result” of the infinite process.

For some infinite processes, it is quite helpful in the second and fourth steps to
talk about the “error,” which is to say how much the finite process falls short of the
ultimate goal, and then to argue that the error becomes arbitrarily small (i.e., it
goes to 0).

Happy infinite reasoning!
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Problems for Section 2.5

Exercises

(1) What does 3.417 mean in the base-ten place-value system? Using
the rectangle below as 1, draw a picture the illustrates the place-
value meaning of 3.417. Draw as accurately as you can, indicating
how the picture would be drawn perfectly (if you could). Indicate
whether your model is primarily about length, area, or something
else.

(2) Plot 3.417 on each of the following number lines, zooming in to
show how to make the placement more accurate at each step. Draw
dotted curves (as shown) to indicate where the zooming takes place,
and label the large tick marks on each number line.

0 1 2 3 4 5 6 7 8 9 10

3 4

(3) How would your plotted points in the four number lines have been
different if the number had been 341.7? What about 0.003417?
Or 34,170,000? What does your answer say about the consistent
structure of the base-ten place value system? (Hint: In each num-
ber, how does the meaning of the 4 compare to the meaning of the 1
to its right? How does the meaning of the 4 compare to the meaning

of the 3 to its left?)

(4) How would your plotted points in the four number lines have
been different if the number had been 3.41708? What about
3.41708667999? Explain.

(5) You should know or be able to figure out (in your head) decimal
equivalents of fractions with many small or “nice” denominators
(i.e., 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 16, 20, 25, 30, 40, and 50).
Describe how to figure out quickly any that you might forget.

(6) Here is a nice relationship between twelfths and eighths: 1/8 ≈ 0.12
and 1/12 ≈ 0.08. Find other such pairs, and explain why the pairs
“work” this way.

(7) Compare the decimal representations of
1
7

,
2
7

,
3
7

,
4
7

,
5
7

, and
6
7

.

(a) Notice that the repeating digits always appear in the same order.
Explain why this is the case.

(b) Suppose you are able to remember the decimal representation

of
1
7

. Explain how to use that to write quickly the decimal
representation of any of the other sevenths.

(8) Compare the decimal representations of
1
13

,
2
13

, . . . ,
12
13

.

(a) Describe carefully how the order of the digits is somewhat like
and also different from what you noticed for sevenths.

(b) Explain why the decimal representations of thirteenths work as
you described.

(9) Without a calculator, predict whether the decimal representations
of the following numbers will terminate or not. For those that
terminate, predict the number of decimal places.

(a)
13
400

(b)
11
70

(c)
21
70

(d)
27

6250
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(e)
23

27 · 52

(f)
23

27 · 52 · 11

(g)
22

27 · 52 · 11
(10) The clearest way to demonstrate that a number is rational is to

show that it satisfies the definition. (What is the definition of a
rational number?) Show that the following numbers are rational:

(a) 0.324

(b) 15.324

(c) 0.15324

(d) 0.25643

Generalizations

(11) Use long division to explain why the decimal representation of a
rational number must either terminate or repeat.

(12) Suppose
m

n
is a rational number in lowest terms. If the number’s

decimal representation terminates, what can you conclude about
m and about n? Explain.

(13) Suppose
m

n
is a rational number in lowest terms. If you know the

number’s decimal representation repeats, what can you conclude
about the number of repeating digits? Explain.

(14) You have seen three types of decimal representations for rational
numbers between 0 and 1: terminating, repeating, and delayed-
repeating. Suppose that m and n are counting numbers with no
common factors and m < n. Explain why the type of decimal repre-
sentation of

m

n
depends only on n and not on m. Hint: Consider

the three types separately.

Explorations

(15) The rational number
1
19

has decimal representation

0.052631578947368421. To verify this, your calculator is un-
likely to display enough digits, and long division would be quite

tedious. Devise a method for “piecing together” this decimal repre-
sentation in “chunks,” using your calculator. Then use the method

to compute the decimal representation of
7
23

. Be sure to indicate
how you know that it repeats as you claim.

(16) Given a prime number p, find the smallest positive integer n so that
p divides 10n − 1, or explain why there is no such integer n.

(a) Do this for all primes less than 15, and also for the primes 37,
41, 73, and 101.

(b) For each prime, compare the n you found with the number of

repeating digits in the decimal representation of
1
p

. Make a

conjecture about what you notice. Provide a brief explanation of
why your conjecture ought to be true.

(17) Explain 2.7 × 3.4 in two different ways. Be sure your explana-
tions address two key questions: (i) Why can you almost ignore the
decimal point and multiply as though the digits described whole
numbers? And (ii) How do you know where to place the decimal
point in the result? Here are some ideas:

• Use behind the scenes algebra to explain why the digits in the
27 × 34 should be the same as the digits in the desired product
2.7 × 3.4.

• Convert the decimals to fractions, compute the product of the
fractions, and then convert the result to a decimal.

• Use the picture below to compute 2.7 × 3.4 with neither an
algorithm nor a calculator. Explain your reasoning.
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• Explain why the above picture can also represent either 27 × 34.
Explain the lengths and areas for both calculations.

(18) Explain 3.96 ÷ 2.4 in two different ways. Be sure your explana-
tions address two key questions: (i) Why can you almost ignore
the decimal point and divide as though the digits described whole
numbers? And (ii) How do you know where to place the decimal
point in the result? Here are some ideas:

• Use the measurement model of division to reason how many
groups of size 2.4 are in 3.96.

• Use bundles or base ten blocks where the single stick or unit
block represents a quantity other than 1.

• Multiply both the dividend and the divisor by a suitable power of
10 and then divide.

• Convert both decimals to fractions, divide the fractions, then
convert the result back to a decimal.

• Divide 396 by 24 and then use estimation to place the decimal
point.
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3 Ratios, Functions, and Beyond

3.1 Ratios and Proportional Relationships

As a topic in school mathematics, ratios and proportions are often isolated entities
with their own special vocabulary, habits, and procedures. When studying ratios
and proportional situations, students often learn, “Set up a proportion and cross
multiply.” But what is a proportion? When does cross multiplication work? Why
does it work?

For the problems in this section, try to take a more general approach: “Write an
equation and solve.” More precisely, “Write an equation relating the quantities, and
solve the equation for the desired quantity (usually an unknown).” These are skills
that serve students well throughout school mathematics and beyond.

As you work through the problems and activities for this section, you will find it
useful to make use of reasoning tools such as the following:

• Equivalent fractions

• Equivalent ratios

• Ratio tables

• Unit rates

• Double number lines

• Graphs
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During the process, be on the lookout for a wide variety of strategies, includ-
ing part:part comparisons, part:whole comparisons, common denominators, and
common numerators. And note how the problems simultaneously build on under-
standings of fractions and pave the way for functions.

3.1.1 Ratios

Fractions, ratios, and rates are three connected ideas with differing histories and
differing usage:

• Fractions are numbers, often used to express results of sharing, cutting, or
measuring.

• Ratios have historically been used to compare quantities of the same kind, such
as two lengths or two volumes. Ratios are often expressed as pairs of counting
numbers, without units, e.g., 3 : 2.

• Rates are typically used to compare different quantities (e.g., meters and seconds).
Rates are often expressed as quotients with units (e.g., 1.5 m/sec).

In high school and beyond, these rough historical distinctions become blurred,
and the uses of these terms are varied, sometimes conflicting, and often muddled.
Thus, we will not attempt to write precise definitions that distinguish these terms
from one another. Instead, we aim toward the end-goal that students see all of
these as quotients that provide differing perspectives on closely related ideas.

To this end, we invest our energy in solving problems. We will see that it is
sometimes useful to attend only to the numbers in a situation, so that we can notice
that two apparently different problems are abstractly the same if we “decontextualize”
the problem by removing the units. At other times, we will see the importance of
using the units to interpret answers in context. This interplay is the essence of
modeling.

3.1.2 Proportional Relationships

For situations that involve two varying quantities, perhaps the most fundamental
are those in which the quantities are proportional to one another.
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Activities A.25, A.26, and A.27 complement this
section well. As a conclusion, we suggest doing
Activity A.29.

Definition Quantities x and y are in a proportional relationship if there is a
constant k such that y = kx.

When solving problems, a critical skill is the ability to distinguish propotional
situations from situations in which quantities are not proportional.

Question Give a table of data for two quantities that are in a proportional
relationship.

?

Question Give a table of data for two quantities that are not in a proportional
relationship.

?
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Problems for Section 3.1

(1) A baseball coach once asked me the following question: If a pitcher
can throw a 90 mph pitch during a game, but can only sustain a
60 mph pitch during practice, how close should the pitcher stand
during practice to ensure that the amount of time it takes the ball
to reach home plate is the same in practice as it is in the game?
Explain your reasoning.

(2) Three brothers and a sister won the lottery together and plan to
share it equally. If the brothers alone had shared the money, then
they would have increased the amount they each received by $20.
How much was won in the lottery? Explain your reasoning.

(3) Chris is working on his Fiat. His car’s cooling system holds 6 quarts
of coolant, and should be filled with a 50/50 mix of antifreeze and
water. Chris noticed that the car was 1 quart low with the correct
50/50 mix. But then he added a 25/75 mix, 25 parts antifreeze,
and 75 parts water. How much coolant does he have to remove from
the cooling system to then add 100 percent antifreeze to restore his
desired 50/50 mix? Explain your reasoning.

(4) If a hen and a half lays an egg and a half in a day and a half, how
many eggs will 6 hens lay in 4 days? How many days will it take for
8 hens to lay 16 eggs? How many hens would it take to lay 12 eggs
in three days? How many hens would it take to lay a dozen eggs
per week? In each case, explain your reasoning.

(5) Fred and Frank are two fitness fanatics on a run from A to B. Fred
runs half the way and walks the other half. Frank runs for half the
time and walks for the other half. They both run at the same speed
and they both walk at the same speed. Who finishes first?

(a) Before any computations are done, guess the solution to this
problem and record your guess.

(b) Try to get a feel for this problem by choosing numbers for the un-
knowns and doing some calculations. What do these calculations
say about your initial guess?

(c) Use algebra to solve the problem. What does your solution say
about your initial guess?

(6) Andy and Sandy run a race of a certain distance. When Sandy fin-
ishes, she is 1/10 of the distance ahead of Andy, who then finishes

the race. After some discussion, Andy and Sandy decide to race the
distance again, but this time Sandy will start 1/10 of the distance
behind Andy (at the starting line) to “even-up” the competition. Who
wins this time? Explain your reasoning.

(a) Before any computations are done, guess the solution to this
problem and record your guess.

(b) Try to get a feel for this problem by choosing numbers for the un-
knowns and doing some calculations. What do these calculations
say about your initial guess?

(c) Use algebra to solve the problem. What does your solution say
about your initial guess?

(7) You have two beakers, one that contains water and another that
contains an equal amount of oil. A certain amount of water is
transferred to the oil and thoroughly mixed. Immediately, the same
amount of the mixture is transferred back to the water. Is there
now more water in the oil or is there more oil in the water?

(a) Before any computations are done, guess the solution to this
problem and record your guess.

(b) Try to get a feel for this problem by choosing numbers for the un-
knowns and doing some calculations. What do these calculations
say about your initial guess?

(c) Use algebra to solve the problem. What does your solution say
about your initial guess?

(8) While on a backpacking trip Lisa hiked five hours, first along a level
path, then up a hill, then turned around and hiked back to her
base camp along the same route. She walks 4 miles per hour on a
level trail, 3 uphill, and 6 downhill. Find the total distance traveled.
Explain your reasoning.

(9) Monica, Tessa, and Jim are grading papers. If it would take Monica
2 hours to grade them all by herself, Tessa 3 hours to grade them
all by herself, and Jim 4 hours to grade them all by himself how
long would it take them to grade the exams if they all work together?
Explain your reasoning.

(10) Say quickly, friend, in what portion of a day will four fountains,
being let loose together, fill a container which would be filled by the
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individual fountains in one day, half a day, a third of a day, and a
sixth of a day respectively? Explain your reasoning—note this is an
old problem from the Indian text Lilavati written in the 1200s.

(11) Three drops of Monica’s XXX Hot Sauce were mixed with five cups
of chili mix to make a spicy treat—the hot sauce is much hotter
than the chili. Later, two drops of Monica’s XXX Hot Sauce were
mixed with three cups of chili. Which mixture is hotter?
Josh made the following observation: “If two different recipes are
added together, the result will be a chili with hotness between the
two.” Explain why this makes sense.
To compare the given recipes, Josh suggested using this reasoning
backwards, as follows:

• Remove the second (recipe) from the first, that is: Start with 3

drops of hot sauce and 5 cups of chili, and remove 2 drops and
3 cups. So we are now comparing

1 drop and 2 cups with 2 drops and 3 cups.

• Now remove the first from the second, that is: Start with 2 drops
and 3 cups, and remove 1 drop and 2 cups. So we are now
comparing

1 drop and 2 cups with 1 drop and 1 cup.

Now you can see that the second is more concentrated (and hence
hotter!) than the first. Is this correct? Will this strategy always/ever
work? Explain your reasoning.
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Activities A.30 through ?? are intended for this sec-
tion.

CCSS 8.F.1: Understand that a function is a rule that
assigns to each input exactly one output. The graph
of a function is the set of ordered pairs consisting of
an input and the corresponding output. (Function
notation is not required in Grade 8.)

CCSS F-IF.1: Understand that a function from one
set (called the domain) to another set (called the
range) assigns to each element of the domain exactly
one element of the range. If f is a function and x
is an element of its domain, then f (x) denotes the
output of f corresponding to the input x. The graph
of f is the graph of the equation y = f (x).

CCSS F-IF.3: Recognize that sequences are func-
tions, sometimes defined recursively, whose domain
is a subset of the integers.

• n 1 2 3 4 5 . . .

f (n) 4 7 10 13 16 . . .

3.2 Sequences and Functions

Sequences. Because "Sequences and Series" is a common topic in calculus and
precalculus courses, the concept of sequence is often considered an advanced topic
in high schools, but the idea of a sequence is much more elementary. In fact, many
patterns explored in grades K-8 can be considered sequences. For example, the
sequence 4, 7, 10, 13, 16, . . . might be described as a “plus 3 pattern” because terms
are computed by adding 3 to the previous term.

Definition A sequence is an ordered set of numbers or other objects. The
numbers or objects are called the terms of the sequence.

Functions. In the Common Core State Standards, students begin formal study of
functions in grade 8.8.F.1 In high school, the approach to functions becomes more
formal, through the use of function notation and with explicit attention to the
concepts of domain and range.F-IF.1

Definition A function is a rule in which each input value determines a
corresponding output value. The domain of a function is the set of input
values. The range of the function is the set of output values.

Sequences Are Functions. As students begin formal study of functions, it makes sense
to use their patterning experience as a foundation for understanding functions.F-IF.3

To show how the sequence above can be considered a function, we need an index,
which indicates which term of the sequence we are talking about, and which serves
as an input value to the function. After deciding that the 4 corresponds to an index
value of 1, we can make a table showing the correspondence.•

Although sequences are sometimes notated with subscripts, function notation
can help students remember that sequences are functions. For example, the
sequence can be described recursively by the rule f (1) = 4, f (n + 1) = f (n) + 3 for
n ≥ 2. Notice that the recursive definition requires both a starting value and a
rule for computing subsequent terms. The sequence can also be described with
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•

 

16

14

12
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6

4

2

2 4

f(n)

n

CCSS F-BF.2: Write arithmetic and geometric se-
quences both recursively and with an explicit for-
mula, use them to model situations, and translate
between the two forms.

the closed (or explicit) formula f (n) = 3n + 1, for integers n ≥ 1. Notice that the
domain (i.e., integers n ≥ 1) is included as part of the description. When a function
is given without an explicit domain, the assumption is that the domain is all values
for which the expression is valid. Thus, the function g(x) = 3x + 1 appears to be
essentially the same as the function f because the formula is the same and because
f (n) = g(n) for all positive integers. To see that the functions are different, observe
that g(2.5) = 8.5, but f (2.5) is undefined.

A common habit in school mathematics is creating a table of (x, y) pairs, plotting
those pairs (as dots), and then “connecting the dots.” The above discussion demon-
strates that this habit is sometimes not appropriate: A graph• of the sequence
consists of discrete dots, because the specification does not indicate what happens
“between the dots.” Connecting the dots requires the assumption that domain values
between the dots make sense in some way.

Question In your own words, what does it mean to say that sequences are
functions?

Question Given that f (1) = f (2) = 1, and f (n + 1) = f (n)+ f (n − 1) for integers
n > 2, find f (6).

Arithmetic and Geometric Sequences.
F-BF.2

Definition An arithmetic sequence has a constant difference between consec-
utive terms. A geometric sequence has a constant ratio between consecutive
terms. Some sequences, of course, are neither arithmetic nor geometric.

Question For each of the following sequences, decide whether it is arithmetic,
geometric, or neither, and explain your reasoning:

• 1,4,9,16,25, . . .
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CCSS F-LE.2: Construct linear and exponential func-
tions, including arithmetic and geometric sequences,
given a graph, a description of a relationship, or
two input-output pairs (include reading these from
a table).

CCSS F-IF.4: For a function that models a relation-
ship between two quantities, interpret key features
of graphs and tables in terms of the quantities, and
sketch graphs showing key features given a verbal
description of the relationship.

CCSS F-IF.7: Graph functions expressed symboli-
cally and show key features of the graph, by hand in
simple cases and using technology for more compli-
cated cases.

• 4,8,16,32, . . .

• 2,4,6,8,2,4,6,8, . . .

• −2,5,12,19, . . .

Can you write both recursive and explicit formulas for each of these sequences?

Beginning in about grade 8, much of school mathematics is devoted to the
study of linear, quadratic, and exponential functions.F-LE.2 Here we provide only
definitions and key questions about these types of functions.

• A linear function is of the form f (x) = ax + b, where a and b are real numbers
and a , 0. What do a and b tell you about the linear function?

• A quadratic function is of the form f (x) = ax2 + bx + c, where a, b, and c are real
numbers and a , 0. What do a, b, and c tell you about the function? Why is it
important to specify that a , 0?

• An exponential function is of the form f (x) = abx , where a and b are real numbers,
a , 0, and b > 0. What do a and b tell you about the function?

Question Why do these definitions require that a , 0?

?

Question Why does the definition of exponential function require that b > 0?
What happens if b = 0? What happens if b < 0?

?
How can you identify these types of functions in tables, graphs, symbols, and

contexts?F-IF.4 F-IF.7 For example, how can you recognize the slope in the graph of a
linear function? What about in a table, in a symbolic expression, or in a context?
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Question An arithmetic sequence is what kind of function? Explain.

?

Question A geometric sequence is what kind of function? Explain.

?

Question Sometimes quadratic functions are written in the form f (x) = a(x −
h)2 + k, where a, h, and k are real numbers and a , 0. What do a, k, and h
tell you about the function? What are the advantages and disadvantages of
this form of a quadratic, as compared to the alternative form given above?

?
Concluding Remarks. When studying arithmetic and geometric sequences, it is
tempting to encapsulate common results into compact formulas. But formulas
are easily confused with one another and otherwise misremembered. Furthermore,
general formulas often obscure the ideas.

Question Find the missing terms in the following arithmetic sequence:

, ,2, , ,6, . . .

Explain your reasoning.

Question Find exact values (not decimal approximations) for the missing terms
in the following geometric sequence:

, ,2, , , ,6, . . .

Explain your reasoning. And describe how this problem and the rules of
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exponents might be used to explain the connection between radicals and
exponents.

Question What key ideas behind arithmetic and geometric sequences did you
use in the previous two problems?

With the ideas, you can reconstruct the formulas you need. And without the

ideas, formulas are empty.
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Problems for Section 3.2

(1) A park consists of a row of circular gardens. “Garden #0” has radius
3 feet, and each successive garden after that has a radius 2 feet
greater than the previous garden.

(a) Using tables as a guide, write both explicit and recursive rep-
resentations that will allow us to predict the area of the nth

garden.

(b) Make a graph that shows the areas of the gardens in the park.
Which variable do you plot on the horizontal axis? Explain.

(c) Does it make sense to connect the dots on your graph? Explain
your reasoning.

(d) Using your table, compute the area differences between the suc-
cessive gardens. What do you notice? Why does this happen?

(2) An oil spill starts out as a circle with radius 3 feet and is expanding
outward in all directions at a rate of 2 feet per minute.

(a) Use tables, graphs, and formulas to describe the area of the oil
region x minutes after the spill.

(b) How is this question fundamentally different than that of the
gardens?

(c) Dumb Question: At any one time, how many different areas are
possible for the oil region?
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Activities A.34 and A.35 are intended for this section.

• Problem solving is an essential part of mathematics.

3.3 Series

Definition A series is a sum of consecutive terms from a sequence. A series
with terms that form an arithmetic sequence is called an arithmetic series.

Question Find the sum: 1 + 3 + 5 + · · · + 4999. (First explain how you know
this is an arithmetic series.)

?
In mathematics teaching and learning, it is useful to distinguish problems

from excercises. Problems require that you formulate a solution strategy, whereas
exercises are about using a procedure that you have been taught.• Whether a
question is a problem or an exercise depends upon the learner.

Question Is the previous question a problem or an exercise for you?

When analyzing any series, it is often useful to consider the sequence of partial

sums. For example, in response to the above question, the sequence of partial sums
is as follows:

1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 + 7, . . .

Sometimes you can see a pattern in the sequence of partial sums. Making a
conjecture about a pattern is a type of inductive reasoning. Once you notice a
pattern, an important next step is showing, deductively, that the pattern must

continue.
For arithmetic series, here are some approaches that can lead to general deductive

arguments for the sum:

• Consider pairing the first term with the last term, the second term with the
second-to-last term, and so on. What do you notice about the sum of each of
these pairs? And how many such pairs are in the whole series?
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• Consider the average of each of the same pairs. How might those averages help
determine the sum of the whole series?

• Consider writing the series backward immediately below a forward version, line
up the terms, and then add vertically.

Question Use one of these approaches to show that the sum is what it is. Can
you use a picture to illustrate your reasoning?

?

Question When you consider the sequence of partial sums of an arithmetic
series, what kind of function(s) can you get? Explain.

?

Definition A series with terms that form a geometric sequence is called a
geometric series.

Question Find the sum:
2
3
+

2
9
+ · · · +

2
310 . (First explain how you know the

series is geometric.)

?
For the question above, it is not hard to see a pattern in the sequence of partial

sums. In fact, it is reasonable to believe that the pattern holds for any (finite) partial

sum of the infinite geometric series
2
3
+

2
9
+ . . . . But to show that the pattern always

holds, we need a general argument.
For geometric series, the techniques for arithmetic series do not carry over.

Instead, observe that if you multiply the series by the common ratio, the resulting
series has most of the same terms as the original series. Thus, the difference
between the two series (i.e., subtract the two) is a short expression that is not hard
to work with.
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Question Use these ideas to show that the sum is what it is. Can you use a
picture to illustrate this sum?

?

Question Convert 0.42 to a fraction. What connections do you see with
geometric series?

?

Question Explain briefly the key ideas behind finding the sum of an arithmetic
series. Then do the same for geometric series.

?
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Problems for Section 3.3

(1) Recall the story of Gertrude the Gumchewer, who has an addiction
to Xtra Sugarloaded Gum. Each day, she goes to her always stocked
storage vault and grabs gum to chew. At the beginning of her habit,
she chewed three pieces and then, each day, she chews eight more
pieces than she chewed the day before to satisfy her ever-increasing
cravings. We want to find out how many pieces of gum did Gertrude
chew over the course of the first 973 days of her habit?

(2) Assume now that Gertrude, at the beginning of her habit, chewed
m pieces of gum and then, each day, she chews n more pieces than
she chewed the day before to satisfy her ever-increasing cravings.
How many pieces will she chew over the course of the first k days
of her habit? Explain your formula and how you know it will work
for any m, n and k.

(3) Find the sum:
19 + 26 + 33 + · · · + 1720

Give a story problem that is represented by this sum.

(4) Now remember the story of Billy the bouncing ball. He is dropped
from a height of 13 feet and each bounce goes up 92% of the bounce
before it. Assume that the first time Billy hits the ground is bounce
#1. How far did Billy travel over the course of 38 bounces (up to
when he hits the ground on his 38th bounce)?

(5) Assume now that Billy the Bouncing Ball is dropped from a height
of h feet. After each bounce, Billy goes up a distance equal to r
times the distance of the previous bounce. (For example, r = .92
above.)

(a) How high will Billy go after the kth bounce?
(b) How much distance will Billy travel over the course of k bounces

(not including the height he went up after the kth bounce)?
(c) If r < 1, what can you say about Billy’s bounces? What if r = 1?

What if r > 1?

(6) Joey starts out with $456. He plays one hand of poker each day
with the same stakes of $10. Because he doesn’t know anything
about poker, he is on an extended losing streak. Write explicit and
recursive representations for the amount of money Joey has after n
days.

(7) Suppose Buzz Aldrin could fold a piece of paper in half as many
times as he wanted—for rectangular paper of any size. How many
folds would Buzz need for the thickness of the paper to reach or
exceed the distance from the earth to the moon? How many folds
would it take to reach or exceed halfway to the moon?

(8) A ball is thrown up in the air from a 200 foot cliff with an initial
velocity of 15 feet per second. What is the height of the ball at
any time t? Write explicit and recursive representations of the
relationship between the time after the ball is thrown and its height
above the base of the cliff.

(9) While waiting for Mark Pi to arrive to address the Mathematics
Party, the members all shake hands with one another. When Mark
Pi walks in, he shakes hands with only the big-wigs of the Party. A
total of 6357 handshakes took place that day, and no one shook
hands with the same person more than once. How many members
were there? How many big-wigs were there?

(10) If you deposit $347 at the beginning of each year (starting on Jan.
1, 2014), into an account that compounds interest annually at a
rate of 6.7%, how much will be in the account on January 2, 2056?

(11) You take out a $100,000 loan on Jan. 1, 2014 to buy one Michigan
ticket. The loan shark charges 13% annual interest. You agree to
pay back the loan through equal annual payments beginning on
Jan. 1, 2015 and ending with the final payment on Jan. 1, 2028.
How much should each annual payment be? How much interest
will you pay over the course of the payment plan? If you hit the
lottery on Dec. 31, 2020 and decide to pay off the rest of the loan
the next day, how much will you owe?

(12) 5 mg of a drug are administered to a patient at the start of a treat-
ment regimen. Each day at the same time, 3 more mg of the drug
is administered. Assuming that the drug still dissipates by 21%
each day, how much of the drug will be in the body immediately
following the 34th 3 mg dose?

(13) Find the fractional representation of the number 0.784396.

(14) A park consists of a row of circular gardens. The “Garden 0” has
radius 3 feet, and each successive garden after that has a radius 2

82



CHAPTER 3. RATIOS, FUNCTIONS, AND BEYOND

feet longer than the previous garden. If there are 37 gardens, how
much total area would the gardens comprise?

(15) During their hour play time, the two oldest Brady kids (Greg and
Marcia) went to the park to play with their walkie-talkies. They used
them for an hour. The next day, the next-oldest kid came along.
Because there were only two walkie-talkies, they needed to share so
that each possible pair got equal time. The next day, the next-oldest

also came along. This continued until on the ninth day, all ten kids
were there wanting to use the walkie-talkies. How much time did
Greg and Marcia spend with each other on the walkie-talkies over
the course of the nine days?

(16) Find the total number of gifts given in the song “The 365 Days of
Christmas”.
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4 Solving Equations

Politics is for the moment. An equation is for eternity.

—Albert Einstein

4.1 Time to Get Real

Remember the definition of a root of a polynomial:

Definition A root of a polynomial

anx
n + an−1x

n−1 + · · · + a1x + a0

is a number r where

anr
n + an−1r

n−1 + · · · + a1r + a0 = 0.

OK—let’s go! We know what integers are right? We know what rational numbers
are right?

Question Remind me, what is Z? What is Q? What is the relationship between
these two sets of numbers?

While I do want you to think about this, I also want to tell you my answer: Q is the
set of solutions to linear polynomial equations with coefficients in Z.



CHAPTER 4. SOLVING EQUATIONS

Question What-with-the-who-in-the-where-now?

?

Are these all the numbers we need? Well, let’s see. Consider the innocent
equation:

x2 − 2 = 0

Question Could x2 − 2 have rational roots?

Stand back—I’ll handle this. Remember, a root of x2 − 2 is a number that solves
the equation

x2 − 2 = 0.

So suppose that there are integers a and b where a/b is a root of x2 − 2 where a
and b have no common factors. Then

(a
b

)2
− 2 = 0.

So

a2 − 2b2 = 0 thus a2 = 2b2.

But a and b have no common factors—so by the Unique Factorization Theorem
for the integers, b2 = 1. If you find this step confusing, check out Problem (18) in
Section 2.3. This tells us that a2 = 2 and that a is an integer—impossible! So x2 − 2
cannot have rational roots.
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Hmmm but now consider the plot of y = x2 − 2:

-3 -2 -1 1 2 3
x

-2

2

4

6

y

The polynomial x2 − 2 clearly has two roots! But we showed above that neither of
them are rational—this means that there must be numbers that cannot be expressed
as fractions of integers! In particular, this means:

The square-root of 2 is not rational!

Wow! But it still can be written as a decimal
√

2 = 1.4142135623 . . .

as the square-root of 2 is a real number.

Definition A real number is a number with a (possibly infinite) decimal
representation. We use the symbol R to denote the real numbers.

For example:

−1.000 . . . 2.718281828459045 . . . 3.333 . . . 0.000 . . .

are all real numbers.
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Question Another description of real numbers is that they are the numbers
that can be approximated by rational numbers. Why does this follow from the
definition above?

?
Famous examples of real numbers that are not rational are

π = 3.14159265358 . . . and e = 2.718281828459045 . . .

Question If a and b are integers with b , 0, what can you say about the decimal
representation of a/b? What can you say about the decimal representation of
an irrational number?

?
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Problems for Section 4.1

(1) Describe the set of real numbers. Give some relevant and revealing
examples/nonexamples.

(2) Explain what would happen if we “declared” the value of π to be 3?
What about if we declared it to have the value of 3.14?

(3) Explain why x2 − x − 1 has no rational roots.

(4) Explain why
√

7 is irrational.

(5) Explain why
3√
5 is irrational.

(6) Explain why 5√27 is irrational.

(7) Explain why if n is an integer and
√
n is not an integer, then n is

irrational.

(8) Consider the following numbers:
1
47

and
1

78125
For each, determine whether the decimal representation terminates
or repeates, without actually computing the decimal representation.
Explain your reasoning. If the decimal repeats, indicate and ex-
plain what the maximum possible number of digits in the repeating
pattern is.

(9) Solve x5 − 31x4 + 310x3 − 1240x2 + 1984x − 1024 = 0. Interlace an
explanation with your work. Hint: Use reasoning from this section
to find rational roots.

(10) Solve x5 − 28x4 + 288x3 − 1358x2 + 2927x − 2310 = 0. Interlace an
explanation with your work. Hint: Use reasoning from this section
to find rational roots.

(11) Knowing that π is irrational, explain why 101 · π is irrational.

(12) Knowing that π is irrational, explain why π + 101 is irrational.

(13) Knowing that π is irrational, explain why 77.2835 · π is irrational.

(14) Knowing that π is irrational, explain why π + 77.2835 is irrational.

(15) Suppose we knew that α2 was irrational. Could we conclude that α
is also irrational? Explain your reasoning.

(16) Is ((
√

2)
√

2)
√

2 rational or irrational? Explain your reasoning.

(17) In the discussion above, we give an argument showing that
√

2 is
irrational. What happens if you try to use the exact same argument
to try and show that

√
9 is irrational? Explain your reasoning.

(18) For each of the following statements, indicate whether the expres-
sion is a “rational number,” an “irrational number,” or whether it
could be either. Note: For parts (d)–(f) assume that neither of the
numbers is zero.

(a) rational + rational =?

(b) rational + irrational =?

(c) irrational + irrational =?

(d) rational · rational =?

(e) rational · irrational =?

(f) irrational · irrational =?

Give careful explanations for parts (a), (e), and (f).
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Activity A.36 is a good warm-up to this section.

4.2 Polynomial Equations

Solving equations is one of the fundamental activities in mathematics. We’re going
to separate our equations into sets:

(1) Linear Equations—polynomial equations of degree 1.

(2) Quadratic Equations—polynomial equations of degree 2.

(3) Cubic Equations—polynomial equations of degree 3.

(4) Quartic Equations—polynomial equations of degree 4.

(5) Quintic Equations—polynomial equations of degree 5.

We’ll stop right there, for now. . .

4.2.1 Linear Equations

The simplest polynomials (besides constant polynomials) are linear polynomials.
Solving equations of the form

ax + b = 0

poses no difficulty, we can write out the solution easily as

x = −b/a.

4.2.2 Quadratic Equations

Finding roots of quadratic polynomials is a bit more complex. We want to find x
such that

ax2 + bx + c = 0.

I know you already know how to do this. However, pretend for a moment that you
don’t. This would be a really hard problem. We have evidence that it took humans
around 1000 years to solve this problem in generality, the first general solution
appearing in Babylon and China around 2500 years ago. With this in mind, I think
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this topic warrants some attention. If you want to solve ax2 + bx + c = 0, a good
place to start would be with an easier problem. Let’s make a = 1 and try to solve

x2 + bx = c

Geometrically, you could visualize this as an x×x square along with a b×x rectangle.
Make a blob for c on the other side.

Question What would a picture of this look like?

?

Question What is the total area of the shapes in your picture?

?
Take your b × x rectangle and divide it into two (b/2) × x rectangles.

Question What would a picture of this look like?

?

Question What is the total area of the shapes in your picture?

?
Now take both of your (b/2) × x rectangles and snuggie them next to your x × x

square on adjacent sides. You should now have what looks like an (x +
b

2
) × (x +

b

2
)

square with a corner cut out of it.

Question What would a picture of this look like?

?
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Activities A.37, A.40, and ??, complement this sec-
tion well. Activity A.41 could be done here too.

Question What is the total area of the shapes in your picture?

?
Finally, your big (x +

b

2
) × (x +

b

2
) has a piece missing, a (b/2) × (b/2) square,

right? So if you add that piece in on both sides, the area of both sides of your
picture had better be c + (b/2)2. From your picture you will find that:(

x +
b

2

)2
= c +

(b
2

)2

Question Can you find x at this point?

?

Question Explain how to solve ax2 + bx + c = 0.

?

4.2.3 Cubic Equations

While the quadratic formula was discovered around 2500 years ago, cubic equations
proved to be a tougher nut to crack. A general solution to a cubic equation was not
found until the 1500’s. At the time mathematicians were a secretive and competitive
bunch. Someone would solve a particular cubic equation, then challenge another
mathematician to a sort of “mathematical duel.” Each mathematician would give
the other a list of problems to solve by a given date. The one who solved the most
problems was the winner and glory everlasting (This might be a slight exaggeration.)
was theirs. One of the greatest duelists was Niccolò Fontana Tartaglia (pronounced
Tar-tah-lee-ya). Why was he so great? He developed a general method for solving
cubic equations! However, neither was he alone in this discovery nor was he
the first. As sometimes happens, the method was discovered some years earlier

91



4.2. POLYNOMIAL EQUATIONS

by another mathematician, Scipione del Ferro. However, due to the secrecy and
competitiveness, very few people knew of Ferro’s method. Since these discoveries
were independent, we’ll call the method the Ferro-Tartaglia method.

We’ll show you the Ferro-Tartaglia method for finding at least one root of a cubic
of the form:

x3 + px + q

We’ll illustrate with a specific example—you’ll have to generalize yourself! Take

x3 + 3x − 2 = 0

Step 1 Replace x with u + v.

(u + v)3 + 3(u + v) − 2 = u3 + 3u2v + 3uv2 + v3 + 3(u + v) − 2

= u3 + v3 + 3uv(u + v) + 3(u + v) − 2

= u3 + v3 − 2 + (3uv + 3)(u + v).

Step 2 Set uv so that all of the terms are eliminated except for u3, v3, and constant
terms.

Since we want
3uv + 3 = 0

we’ll set uv = −1 and so
u3 + v3 − 2 = 0.

Since uv = −1, we see that v = −1/u so

u3 +

(
−1
u

)3
− 2 = u3 −

1
u3 − 2 = 0.

Step 3 Clear denominators and use the quadratic formula.

u3 −
1
u3 − 2 = 0 ⇔ u6 − 2u3 − 1 = 0

But now we may set y = u3 and so we have

y2 − 2y − 1 = 0
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and by the quadratic formula

y =
2 ±
√

4 + 4
2

= 1 ±
√

2.

Putting this all together we find:

y = 1 ±
√

2

u =
3
√

1 ±
√

2

v =
−1

3
√

1 ±
√

2

and finally (drum-roll please):

x =
3
√

1 +
√

2 −
1

3
√

1 +
√

2
and x =

3
√

1 −
√

2 −
1

3
√

1 −
√

2

Question How many solutions are we supposed to have in total?

?

Question How do we do this procedure for other equations of the form

x3 + px + q = 0?

?

4.2.4 Quartics, Quintics, and Beyond

While the Ferro-Tartaglia method may seem like it only solves the special case of
x3 + px + q = 0, it is in fact a “wolf in sheep’s clothing” and is the key to giving a
formula for solving any cubic equation

ax3 + bx2 + cx + d = 0.
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The formula for solutions of the cubic equation is quite complex—we will spare you
the details. Despite the fact that the key step of the formula is the Ferro-Tartaglia
method, it is usually called Cardano’s formula because Cardano was the first to
publish this method.

It was wondered if there were formulas for solutions to polynomial equations of
arbitrary degree. When we say formulas, we mean formulas involving the coefficients
of the polynomials and the symbols:

+ − · ÷
√

Cardano’s student Ferrari, (who incidentally went to the University of Bologna) soon
found the quartic formula, though it is too monstrous to write down in these notes.
The search for the quintic equation began. Things started getting very difficult. The
old tricks didn’t work, and it wasn’t until nearly 300 years later that this problem
was settled.

Question Who was Niels Abel? Who was Évariste Galois?

?
Abel and Galois (pronounced Gal-wah), independently prove that there is no

general formula (using only the symbols above) for polynomial equations of degree
5 or higher. It is an amazing result and is only seen by students in advanced
undergraduate or beginning graduated courses in pure mathematics. Nevertheless,
in our studies we will not completely shy away from such demons. Read on!
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Problems for Section 4.2

(1) Draw a rough timeline showing: The point when we realized we were
interested in quadratic equations, the discovery of the quadratic
formula, the discovery of the cubic formula, the discovery of the
quartic formula, and the work of Abel and Galois proving the im-
possibility of a general formula for polynomial equations of degree 5
or higher.

(2) Given a polynomial, explain the connection between linear factors
and roots. Are they the same thing or are they different things?

(3) In ancient and Medieval times the discussion of quadratic equations
was often broken into three cases:

(a) x2 + bx = c

(b) x2 = bx + c

(c) x2 + c = bx

where b and c are positive numbers. Create real-world word prob-
lems involving length and area for each case above.

(4) In ancient and Medieval times the discussion of quadratic equations
was often broken into three cases:

(a) x2 + bx = c

(b) x2 = bx + c

(c) x2 + c = bx

where b and c are positive numbers. Is this a complete list of cases?
If not, what is missing and why is it (are they) missing? Explain
your reasoning.

(5) Describe what happens geometrically when you complete the square
of a quadratic equation of the form x2 + bx = c when b and c are
positive. Explain your reasoning.

(6) Jim, Lydia, and Isabel are visiting China. Unfortunately they are
stuck in a seemingly infinite traffic jam. The cars are moving at a
very slow (but constant) rate. Jim and Lydia are 25 miles behind
Isabel. Jim wants to send a sandwich to Isabel. So he hops on
his motorcycle and rides through traffic to Isabel, gives her the
sandwich, and rides back to Lydia at a constant speed. When he
returns to Lydia, she has moved all the way to where Isabel was
when Jim started. In total, how far did Jim travel on his motorcycle?

(a) Before any computations are done, use common sense to guess
the solution to this problem.

(b) Try to get a feel for this problem by choosing numbers for the un-
knowns and doing some calculations. What do these calculations
say about your guess?

(c) Use algebra to solve the problem.

(7) Must a quadratic polynomial always have a real root? Explain your
reasoning.

(8) Must a cubic polynomial always have a real root? Explain your
reasoning.

(9) Must a quartic polynomial always have a real root? Explain your
reasoning.

(10) Must a quintic polynomial always have a real root? Explain your
reasoning.

(11) Derive the quadratic formula. Explain your reasoning.

(12) Solve x2 + 3x − 2 = 0. Interlace an explanation with your work.

(13) Find two solutions to x4 + 3x2 − 2 = 0. Interlace an explanation
with your work.

(14) Find two solutions to x6 + 3x3 − 2 = 0. Interlace an explanation
with your work.

(15) Find two solutions to x10 + 3x5 − 2 = 0. Interlace an explanation
with your work.

(16) Find two solutions to 3x14 − 2x7 + 6 = 0. Interlace an explanation
with your work.

(17) Find two solutions to −4x22+13x11+1 = 0. Interlace an explanation
with your work.

(18) Give a general formula for finding two solutions to equations of
the form: ax2n + bxn + c = 0 where n is an integer. Interlace an
explanation with your work.

(19) Use the Ferro-Tartaglia method to find a solution to x3 + x + 1 = 0.
Interlace an explanation with your work.

(20) Use the Ferro-Tartaglia method to find a solution to x3 − x − 1 = 0.
Interlace an explanation with your work.
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(21) Use the Ferro-Tartaglia method to find a solution to x3 + 3x − 4 = 0.
Interlace an explanation with your work.

(22) Use the Ferro-Tartaglia method to find a solution to x3 + 2x − 3 = 0.
Interlace an explanation with your work.

(23) Use the Ferro-Tartaglia method to find a solution to x3+6x −20 = 0.

Interlace an explanation with your work.

(24) Find at least two solutions to x4 − x3 − 3x2 + 2x + 1 = 0. Hint: Can
you “guess” a solution to get you started? Interlace an explanation
with your work.

(25) Explain what Abel and Galois proved to be impossible.

96



CHAPTER 4. SOLVING EQUATIONS

Activity A.42 complements this section well.

4.3 Me, Myself, and a Complex Number

We’ll start with the definition:

Definition A complex number is a number of the form

x + yi

where x and y are real numbers and i2 = −1. We use the symbol C to denote
the complex numbers.

What’s that I hear? Yells of protest telling me that no such number exists? Well
if it makes you feel any better, people denied the existence of such numbers for a
long time. It wasn’t until the 1800’s until people finally changed their minds. Let’s
talk about some ideas that helped. Consider the plot of y = x3 − 6x + 1:

-3 -2 -1 1 2 3
x

-5

5

10

y

If you use the Ferro-Tartaglia method to find at least one solution to this cubic, then
you find the following root:

3

√
−1 +

√
−31

2
+

2
3
√

1
2 (−1 +

√
−31)

This root looks like a complex number, since
√
−31 pops up twice. This might seem

a bit redundant, but we should point out that
√
−31 is a complex number since it
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can be expressed as:
0 +

(√
31

)
i

Even though our root has complex numbers in it, we know that it is real from the
picture! Moral: If you want to give exact solutions to equations, then you’d better
work with complex numbers, even if the roots are real!

Question If u + vi is a nonzero complex number, is

1
u + vi

a complex number too?

You betcha! Let’s do it. The first thing you must do is multiply the numerator
and denominator by the complex conjugate of the denominator:

1
u + vi

=
1

u + vi
·
u − vi

u − vi
=
u − vi

u2 + v2

Now break up your fraction into two fractions:

u − vi

u2 + v2 =
u

u2 + v2 +
−v

u2 + v2 i

Ah! Since u and v are real numbers, so are

x =
u

u2 + v2 and y =
−v

u2 + v2

Hence
1

u + vi
= x + yi

and is definitely a complex number.
The real importance of the complex numbers came from Gauss, with the Funda-

mental Theorem of Algebra:

Theorem 4.3.1 (Fundamental Theorem of Algebra) Every polynomial of the
form

anx
n + an−1x

n−1 + · · · + a1x + a0

where the ai ’s are complex numbers has exactly n (possibly repeated) complex
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Activities A.43 and A.44 complement this section
well.

roots.

Said a different way, the Fundamental Theorem of Algebra says that every
polynomial with complex coefficients

anx
n + an−1x

n−1 + · · · + a1x + a0

can be factored as

an · (x − r1)(x − r2) · · · (x − rn)

where each ri is a complex number.

Question How many complex roots does x3 − 1 have? What are they?

?

4.3.1 The Complex Plane

Complex numbers have a strong connection to geometry, we see this with the
complex plane:

Definition The complex plane is obtained when one plots the complex number
x + yi as the point (x, y). When considering the complex plane, the horizontal
axis is called the real axis and the vertical axis is called the imaginary axis.

Here is a grid. Draw the real and imaginary axes and plot the complex numbers:

3 − 5i 4 + 6i − 3 + 5i − 6 − i 6 − 6i
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Be sure to label your plot.

Question Geometrically speaking, what does it mean to “add” complex num-
bers?

?

Question Geometrically speaking, what does it mean to “multiply” complex
numbers?

?
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Problems for Section 4.3

(1) What is a real number?

(2) What is a complex number?

(3) Solve x3 − 6x + 5 = 0 two different ways. First, try to find an “ob-
vious” root, call it r. Then divide your polynomial by (x − r) and
find the remaining roots. Second, use the Ferro-Tartaglia method
to find (at least) one solution. Compare your answers. What do you
notice—explain your reasoning.

(4) Solve x3 − 6x + 4 = 0 two different ways. First, try to find an “ob-
vious” root, call it r. Then divide your polynomial by (x − r) and
find the remaining roots. Second, use the Ferro-Tartaglia method
to find (at least) one solution. Compare your answers. What do you
notice—explain your reasoning.

(5) Solve x3 − 2x − 1 = 0 two different ways. First, try to find an “ob-
vious” root, call it r. Then divide your polynomial by (x − r) and
find the remaining roots. Second, use the Ferro-Tartaglia method
to find (at least) one solution. Compare your answers. What do you
notice—explain your reasoning. Interlace an explanation with your
work.

(6) Solve x3 − 12x − 8 = 0 two different ways. First, try to find an
“obvious” root, call it r. Then divide your polynomial by (x − r) and
find the remaining roots. Second, use the Ferro-Tartaglia method
to find (at least) one solution. Compare your answers. What do you
notice—explain your reasoning. Interlace an explanation with your
work.

(7) Solve x3 − 3x2 + 5x − 3 = 0. Hint: Can you “guess” a solution to get
you started? Interlace an explanation with your work.

(8) Solve x3 + 4x2 − 7x + 2 = 0. Hint: Can you “guess” a solution to get
you started? Interlace an explanation with your work.

(9) Draw a Venn diagram showing the relationship between Z, Q, R,
and C. Include relevant examples of numbers belonging to each set.

(10) Explain why the following “joke” is “funny:” The number you have
dialed is imaginary. Please rotate your phone by 90 degrees and try
again.

(11) Explain why every real number is a complex number.

(12) Explain why
√
−2 is a complex number.

(13) Is 3√
−2 a complex number? Explain your reasoning.

(14) Explain why
10√
−5 is a complex number.

(15) Explain why if x + yi and u + vi are complex numbers, then

(x + yi) + (u + vi)

is a complex number.

(16) Explain why if x + yi and u + vi are complex numbers, then

(x + yi)(u + vi)

is a complex number.

(17) Given a complex number z = x + yi, the complex conjugate of z
is x − yi, we denote this as z. Let w = u + vi be another complex
number.

(a) Explain why z +w = z +w.
(b) Explain why z ·w = z ·w.

(18) Explain why if u + vi is a complex number, then

1
u + vi

is a complex number.

(19) Compute the following, expressing your answer in the form x + yi:

(a) (1 + 2i) + (1 + 7i)
(b) (1 + 2i) · (1 + 7i)
(c) (1 + 2i)/(1 + 7i)

Explain your reasoning.

(20) I’m going to show you something, see if you can see a connection to
geometry:

(a) Let z = 3 + 4i. Compute
√
z · z.

(b) Let z = 6 + 8i. Compute
√
z · z.

(c) Let z = 5 + 12i. Compute
√
z · z.

What do you notice?

(21) Express
√
i in the form a + bi. Hint: Solve the equation z2 = i.
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(22) Factor the polynomial 3x2 + 5x + 10 over the complex numbers.
Explain your reasoning.

(23) Factor the polynomial x3 − 1 over the complex numbers. Explain
your reasoning.

(24) Factor the polynomial x4 − 1 over the complex numbers. Explain
your reasoning.

(25) Factor the polynomial x4 + 1 over the complex numbers. Explain
your reasoning. Hint: Factor as the difference of two squares and
use Problem (21).

(26) Factor the polynomial x4 + 4 over the complex numbers. Can it
be factored into polynomials with real coefficients of lower degree?
Explain your reasoning.

(27) Plot all complex numbers z in the complex plane such that z · z = 1.
Explain your reasoning.

(28) Suppose I told you that:

sin(x) = x −
x3

3!
+
x5

5!
−
x7

7!
+ · · · +

(−1)nx2n+1

(2n + 1)!
+ · · ·

cos(x) = 1 −
x2

2!
+
x4

4!
−
x6

6!
+ · · · +

(−1)nx2n

(2n)!
+ · · ·

ex = 1 + x +
x2

2!
+
x3

3!
+
x4

4!
+ · · · +

xn

n!
+ · · ·

Explain why we say:

ex ·i = cos(x) + i sin(x)

(29) This is Euler’s famous formula:

eπ·i + 1 = 0

Use Problem (28) to explain why it is true.

(30) How many complex roots should x2 = 1 have? What are they? Plot
them in the complex plane. Explain your reasoning.

(31) How many complex roots should x3 = 1 have? What are they? Plot
them in the complex plane. Explain your reasoning.

(32) How many complex roots should x4 = 1 have? What are they? Plot
them in the complex plane. Explain your reasoning.

(33) How many complex roots should x5 = 1 have? What are they? Plot
them in the complex plane. Explain your reasoning.
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Activity A.46 complements this section well.

5 Harmony of Numbers

Let us despise the barbaric neighings [of war] which echo through these noble lands,
and awaken our understanding and longing for the harmonies.

—Johannes Kepler

5.1 Clocks

It is now time to think about clocks. Consider the usual run-of-the-mill clock:

1
2
3

4
5

6
7

8

9

11
10

12

=

0

Question Suppose you start grading papers at 3 o’clock and then 5 hours
pass. What time is it? Now suppose that you find more papers to grade, and 5
more hours pass—now what time is it? How do you do these problems? Why
are there so many papers to grade?

?
We have a mathematical way of writing these questions:

3 + 5 ≡ 8 (mod 12)

8 + 5 ≡ 1 (mod 12)



5.1. CLOCKS

We call arithmetic on clocks modular arithmetic. Being rather fearless in our
quest for knowledge, we aren’t content to stick with 12 hour clocks:

12

0

1

2

34

5

6

0

(mod 3) (mod 7)

Question Suppose you are working on a 2 hour clock:

1

0

(mod 2)

Suppose you started at time zero, and finished after 10245 hours.

(1) Where is the hand of the clock pointing?

(2) How does the answer change if you are working on a 5 hour clock?

(3) What if you are working on a 7 hour clock?

?

OK—clocks are great. Here is something slightly different: Denote the set of all
integers that are r greater than a multiple of 5 by [r]5. So for example:

[0]5 = {. . . ,−15,−10,−5,0,5,10,15, . . . }
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Write down the following sets:

[1]5 =

[2]5 =

[3]5 =

[4]5 =

[5]5 =

Question With our work above, see if you can answer the following:

(1) Explain why one could say that [4]5 = [9]5.

(2) Explain why one could say that [2]5 = [−3]5.

(3) Explain what you think is meant by the expression:

[1]5 + [2]5 = [3]5

(4) Explain what you think is meant by the expression:

[1]5 + [4]5 = [0]5

?

Question How many different descriptions of modular arithmetic can you give?
To aid you in this quest, I suggest you start your descriptions off with the words:

The number a is congruent to b modulo m when . . .

?
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OK—I know I was supposed to leave that question for you, but there is one
description that I just gotta tell you about—check this out:

a ≡ b (mod m) ⇔ a − b = m · q

Question What is the deal with the junk above? What is q? How does it help
you solve congruences like

3x ≡ 1 (mod 11)?

?

Question Is it the case that

5 + x ≡ 2 + x (mod 3)

for all integers x? Why or why not? Use each of the descriptions of modular
arithmetic above to answer this question.

?
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Problems for Section 5.1

(1) Solve the following equations/congruences, expressing your answer
as a number between 0 and the relevant modulus:

(a) 3 + x = 10

(b) 3 + x ≡ 10 (mod 12)

(c) 3 + x ≡ 10 (mod 7)

(d) 3 + x ≡ 10 (mod 6)

(e) 3 + x ≡ 10 (mod 5)

(f) 3 + x ≡ 10 (mod 3)

(g) 3 + x ≡ 10 (mod 2)

In each case explain your reasoning.

(2) Solve the following equations/congruences, expressing your answer
as a number between 0 and the relevant modulus:

(a) 10 + x = 1

(b) 10 + x ≡ 1 (mod 12)

(c) 10 + x ≡ 1 (mod 11)

(d) 10 + x ≡ 1 (mod 9)

(e) 10 + x ≡ 1 (mod 5)

(f) 10 + x ≡ 1 (mod 3)

(g) 10 + x ≡ 1 (mod 2)

In each case explain your reasoning.

(3) Solve the following equations/congruences, expressing your answer
as a number between 0 and the relevant modulus:

(a) 217 + x = 1022

(b) 217 + x ≡ 1022 (mod 100)

(c) 217 + x ≡ 1022 (mod 20)

(d) 217 + x ≡ 1022 (mod 12)

(e) 217 + x ≡ 1022 (mod 5)

(f) 217 + x ≡ 1022 (mod 3)

(g) 217 + x ≡ 1022 (mod 2)

In each case explain your reasoning.

(4) Solve the following equations/congruences, expressing your answer
as a number between 0 and the relevant modulus:

(a) 11 + x ≡ 7 (mod 2)
(b) 11 + x ≡ 7 (mod 3)
(c) 11 + x ≡ 7 (mod 5)
(d) 11 + x ≡ 7 (mod 8)
(e) 11 + x ≡ 7 (mod 10)

In each case explain your reasoning.

(5) List out 6 elements of [3]4, including 3 positive and 3 negative
elements. Explain your reasoning.

(6) List out 6 elements of [6]7, including 3 positive and 3 negative
elements. Explain your reasoning.

(7) List out 6 elements of [7]6, including 3 positive and 3 negative
elements. Explain your reasoning.

(8) One day you walk into a mathematics classroom and you see the
following written on the board:

[4]6 = {. . . ,−14,−8,−2,4,10,16,22, . . . }[1
2

]
=

{
. . . ,

−3
−6
,
−2
−4
,
−1
−2
,
1
2
,
2
4
,
3
6
, . . .

}
What is going on here? Can you figure out what

[3
4

]
would be?

Explain your reasoning.

(9) If possible, solve the following equations/congruences, expressing
your answer as a number between 0 and the relevant modulus:

(a) 3x = 1
(b) 3x ≡ 1 (mod 11)
(c) 3x ≡ 1 (mod 9)
(d) 3x ≡ 1 (mod 8)
(e) 3x ≡ 1 (mod 7)
(f) 3x ≡ 1 (mod 3)
(g) 3x ≡ 1 (mod 2)

In each case explain your reasoning.

(10) Solve the following congruences, expressing your answer as a num-
ber between 0 and the relevant modulus:
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(a) 11x ≡ 7 (mod 2)
(b) 11x ≡ 7 (mod 3)
(c) 11x ≡ 7 (mod 5)
(d) 11x ≡ 7 (mod 8)
(e) 11x ≡ 7 (mod 10)

In each case explain your reasoning.

(11) Solve the following congruences or explain why there is no solution,
expressing your answer as a number between 0 and the relevant
modulus:

(a) 15x ≡ 7 (mod 2)
(b) 15x ≡ 7 (mod 3)
(c) 15x ≡ 7 (mod 5)
(d) 15x ≡ 7 (mod 9)
(e) 15x ≡ 7 (mod 10)

In each case explain your reasoning.

(12) Make an “addition table” for arithmetic modulo 6.

(13) Make an “addition table” for arithmetic modulo 7.

(14) Make a “multiplication table” for arithmetic modulo 6.

(15) Make a “multiplication table” for arithmetic modulo 7.

(16) Explain the connection between writing an integer in base b and
reducing an integer modulo b.

(17) Is
5 + x ≡ 12 + x (mod 3)

ever/always true? Explain your reasoning.

(18) Is
20 + x ≡ 32 + x (mod 3)

ever/always true? Explain your reasoning.

(19) Recalling that i2 = −1, can you find “i” in the integers modulo 5?
Explain your reasoning.

(20) Recalling that i2 = −1, can you find “i” in the integers modulo 17?
Explain your reasoning.

(21) Recalling that i2 = −1, can you find “i” in the integers modulo 13?
Explain your reasoning.

(22) Recalling that i2 = −1, can you find “i” in the integers modulo 11?
Explain your reasoning.

(23) Today is Saturday. What day will it be in 3281 days? Explain your
reasoning.

(24) It is now December. What month will it be in 219 months? What
about 111 months ago? Explain your reasoning.

(25) What is the remainder when 2999 is divided by 3? Explain your
reasoning.

(26) What is the remainder when 326 is divided by 7? Explain your
reasoning.

(27) What is the remainder when 1430 is divided by 11? Explain your
reasoning.

(28) What is the remainder when 528 is divided by 11? Explain your
reasoning.

(29) What is the units digit of 123456? Explain your reasoning.

(30) Factor x2 + 1 over the integers modulo 2. Explain your reasoning.

(31) Factor x3 + x2 + x + 1 over the integers modulo 2. Explain your
reasoning.

(32) Factor x5 + x4 + x + 1 over the integers modulo 2. Explain your
reasoning.
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5.2 In the Real World

Perhaps the coolest thing about mathematics is that you can actually solve “real
world” problems. Let’s stroll through some of these “real world” problems.

5.2.1 Automotive Repair

A Geometry Problem One Thanksgiving Day I had a neat conversation with my
cousin Chris at the dinner table. You see he works on cars—specifically vintage
Italian sports cars. He had been doing some routine maintenance on one of his
cars and needed to remove the steering wheel and the steering column. All was
fine until it came time to put the parts back together. The steering wheel was no
longer centered! The car could drive down the street just fine, but when the car
drove straight ahead the steering wheel was off by a rotation of 5 degrees to the
right. This would not do! This sounds like a geometry problem.

An Algebra Problem How did this happen you ask? Well the steering wheel attaches
to the car via the steering column:

17 notches 21 notches

there were 21 notches on the back of the wheel, which connects to the column.
There were also 17 notches on the other end of the column that then connected to
the car itself.

Chris had noticed that moving the wheel 1 notch changed its position by

360
21
≈ 17 degrees,

and that adjusting the columns by 1 notch changed its position by

360
17
≈ 21 degrees.
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Hmmm so if we want to center the wheel, we want to solve the following equation:

17w + 21c = −5

where w represents how many notches we turn the wheel and c represents how
many notches we turn the column. Ah! This sounds like an algebra problem! There
is only one issue: We have two unknowns and a single variable.

Question How do we proceed from here? Can you solve the problem? Where
does modular arithmetic factor in to the solution?

?
5.2.2 Check Digits

Our world is full of numbers. Sometimes if you are in a large organization—say a
large university—you feel a bit like a number. How do you know if you are the right
number? Allow me to clarify. Most items you buy have some sort of UPC (Universal
Product Code) on them. This allows them to be put into a computer in an organized
fashion. When you buy items in a grocery story, you want the item you scanned to
come up—and not some other (potentially embarrassing!) item. To ensure you get
what is coming to you, we have check digits. These are digits that “check” to make
sure that the code has scanned correctly. Typically, what you see are either UPC-A
codes or UPC-E codes. Here is an example of a UPC-A code:

0   42572    05001   4

The check digit is the right most digit (in this case 4). The check digit is not used in
identifying the item, instead it is used purely to check if the other digits are correct.
Here is how you check to see if a UPC-A code is valid:

(1) Working modulo 10, add the digits in the odd positions and multiply by 3:

0 + 2 + 7 + 0 + 0 + 1 = 10

10 · 3 = 30

30 ≡ 0 (mod 10).
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(2) Working modulo 10, add the digits in the even positions (including the check
digit):

4 + 5 + 2 + 5 + 0 + 4 = 20

20 ≡ 0 (mod 10)

(3) Add the outcomes from the previous steps together and take the result modulo
10:

0 + 0 ≡ 0 (mod 10)

If the result is congruent to 0 modulo 10, as it is in this case, then you have a
correct UPC-A number and you are good to go!

We should note, sometimes at stores you see UPC-E codes:

0  123456  5

These are compressed UPC-A codes where 5 zeros have been removed. The rules for
transforming UPC-A codes to UPC-E codes are a bit tedious, so we’ll skip them for
now—though they are easy to look up on the internet.

Question Can you find a UPC-E code and verify that it is valid?

?
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Problems for Section 5.2

(1) Which of the following is a correct UPC-A number?

8 12556 01041 0

8 12565 01091 0

8 12556 01091 0

Explain your reasoning.

(2) Which of the following is a correct UPC-A number?

7 17664 13387 0

7 17669 13387 0

7 17669 73387 0

Explain your reasoning.

(3) Find the missing digit in the following UPC-A number:

8 14371 0�354 2

Explain your reasoning.

(4) Find the missing digit in the following UPC-A number:

0 76484 86�97 3

Explain your reasoning.

(5) How similar can two different UPC numbers be? Explain your
reasoning.

(6) In the United States some bank check codes are nine digit numbers

a1a2a3a4a5a6a7a8a9

where

7a1 + 3a2 + 9a3 + 7a4 + 3a5 + 9a6 + 7a7 + 3a8 ≡ a9 (mod 10).

(a) Give three examples of valid bank check codes.

(b) If adjacent digits were accidentally switched, could a machine
detect the error? Explain your reasoning.

(7) ISBN-10 numbers are ten digit numbers

a1a2a3a4a5a6a7a8a9a10

where

10a1+9a2+8a3+7a4+6a5+5a6+4a7+3a8+2a9+a10 ≡ 0 (mod 11).

(a) Give three examples of ISBN-10 numbers.

(b) If adjacent digits were accidentally switched, could a machine
detect the error? Explain your reasoning.
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5.3 The Binomial Theorem

5.3.1 Varna-Sangita

In ancient Indian texts we find a description of a type of music called varna-sangita.
This is music made from a variation of long and short syllables. When performing
a varna-sangita, one starts off with a given number of short syllables and ends
with the same number of long syllables. In between these verses, every possible
combination of long and short syllables is supposed to occur. If s represents a short
syllable and l represents a long syllable we might visualize this as:

ssss
every possible combination
−−−−−−−−−−−−−−−−−−−−→ llll

To check their work, the people of ancient India counted how many of each
combination appeared in a song. Suppose we started with sss and finished with lll.
Our song should contain the following verses:

sss, ssl, sls, lss, sll, lsl, lls, lll

We can construct the following table to summarize what we have found:

3 s’s 2 s’s and 1 l 1 s and 2 l’s 3 l’s
1 3 3 1

Question What would your table look like if you started with ss and finished
with ll? What about if you started with ssss and finished with llll?

?

The vedics of the time gave a rule for making tables like the one above. Their rule
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was based on the following diagram:

Today people call this diagram Pascal’s triangle.

Question How does Pascal’s triangle relate to varna-sangitas? Is there an easy
way to produce the above diagram?

?
And now for something completely different. . .

5.3.2 Expansions

Expand the following on a separate sheet of paper. Write the result of your work in
the boxes below:

(a + b)0 =

(a + b)1 =

(a + b)2 =

(a + b)3 =

(a + b)4 =
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Activity A.47 complements this section well.

Question Is there a nice way to organize this data?

?

Question Can you explain the connection between expanding binomials and
varna-sangitas?

?

5.3.3 Come Together

Let’s see if we can bring these ideas together. Let’s denote the following symbol:(
n

k

)
= the number of ways we choose k objects from n objects.

it is often said “n choose k” and is sometimes denoted as nCk.

Question What exactly does
(
n

k

)
mean in terms of varna-sangitas? What does(

n

k

)
mean in terms of expansion of binomials?

?

Question How does
(
n

k

)
relate to Pascal’s triangle?

?
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Activity A.48 complements this section well.
Activity ?? is worth considering here, too.
The counting/probability activities, A.49 through
A.53 can now be done.

Question Pascal claims: (
n

k − 1

)
+

(
n

k

)
=

(
n + 1
k

)
Explain how this single equation basically encapsulates the key to constructing
Pascal’s triangle.

?

Question Suppose that an oracle tells you that(
n

k

)
=

n!
k!(n − k)!

but we, being good skeptical people, are not convinced. How do we check this?

?
From the work above, we obtain a fabulous theorem:

Theorem 5.3.1 (Binomial Theorem) If n is a nonnegative integer, then

(a + b)n =
(
n

0

)
anb0 +

(
n

1

)
an−1b1 + · · · +

(
n

n − 1

)
a1bn−1 +

(
n

n

)
a0bn.

Question This looks like gibberish to me. Tell me what it is saying. Also, why
is the Binomial Theorem true?

?
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Problems for Section 5.3

(1) Write down the first 7 rows of Pascal’s triangle.

(2) Explain how
(
n

k

)
corresponds to the entries of Pascal’s triangle. Feel

free to draw diagrams and give examples.

(3) State the Binomial Theorem and give some examples of it in action.

(4) Explain the “physical” meaning of
(
n

k

)
. Give some examples illus-

trating this meaning.

(5) Explain how Pascal’s triangle is formed. In your explanation, use

the notation
(
n

k

)
. If you were so inclined to do so, could you state a

single equation that basically encapsulates your explanation above?

(6) Explain why the formula you found in Problem (5) is true.

(7) State the formula for
(
n

k

)
.

(8) Expand (a + b)5 using the Binomial Theorem.

(9) Expand (a − b)7 using the Binomial Theorem.

(10) Expand (−a − b)8 using the Binomial Theorem.

(11) Expand (a + (b + c))3 using the Binomial Theorem.

(12) Expand (a − b − c)3 using the Binomial Theorem.

(13) Let n be a positive integer.

(a) Try some experiments to guess when 9n + 1n is divisible by 10.
What do you find? Clearly articulate your conjecture.

(b) Use the Binomial Theorem to explain why your conjecture is
true. Hint: 10 − 9 = 1.

(14) Let n be a positive integer.

(a) Try some experiments to guess when 6n + 4n is divisible by 10.
What do you find? Clearly articulate your conjecture.

(b) Use the Binomial Theorem to explain why your conjecture is
true. Hint: 10 − 6 = 4.

(15) Let n be a positive integer.

(a) Try some experiments to guess when 7n − 3n is divisible by 10.
What do you find? Clearly articulate your conjecture.

(b) Use the Binomial Theorem to explain why your conjecture is
true. Hint: 10 − 3 = 7.

(16) Let n be a positive integer.

(a) Try some experiments to guess when 8n − 2n is divisible by 10.
What do you find? Clearly articulate your conjecture.

(b) Use the Binomial Theorem to explain why your conjecture is
true. Hint: 10 − 2 = 8.

(17) Generalize Problems (13), (14), (15), and (16) above. Clearly articu-
late your new statement(s) and explain why they are true.

(18) Which is larger, (1 + 1/2)2 or 2? Explain your reasoning.

(19) Which is larger, (1 + 1/5)5 or 2? Explain your reasoning.

(20) Which is larger, (1 + 1/27)27 or 2? Explain your reasoning.

(21) Which is larger, (1 + 1/101)101 or 2? Explain your reasoning.

(22) Which is larger, (1.0001)10000 or 2? Explain your reasoning.

(23) Generalize Problems (18), (19), (20), (21), and (22) above. Clearly
articulate your new statement(s) and explain why it is true.

(24) Given a positive integer n, can you guess an upper bound for
(1 + 1/n)n?

(25) Let n be a positive integer. Use the Binomial Theorem to explain
why: (

n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · · +

(
n

n

)
= 2n

What does this mean in terms of Pascal’s Triangle?

(26) Let n be a positive integer. Use the Binomial Theorem to explain
why:

(−1)0
(
n

0

)
+ (−1)1

(
n

1

)
+ (−1)2

(
n

2

)
+ · · · + (−1)n

(
n

n

)
= 0

What does this mean in terms of Pascal’s Triangle?

(27) Suppose I tell you:

(1 + x)n =
(
n

0

)
+

(
n

1

)
x +

(
n

2

)
x2 + · · · +

(
n

n

)
xn

Explain how to deduce:

(a + b)n =
(
n

0

)
an +

(
n

1

)
an−1b +

(
n

2

)
an−2b2 + · · · +

(
n

n

)
bn
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APPENDIX A. ACTIVITIES

A.1 Shelby and Scotty

Note: In this activity, we use words (rather than numerals) to indicate bases. And
we use use a subscript after a numeral to specify its base.

Shelby and Scotty want to express the (base ten) number 27 in base four. However,
they used very different methods to do this. Let’s check them out.

A.1.1) Consider Shelby’s work:

4
6 R 3)

27 4
1 R 2)
6 4

0 R 1)
1 ⇒ 123four

(a) Describe how to perform this algorithm.

(b) Provide an additional relevant and revealing example demonstrating that you
understand the algorithm.

A.1.2) Using the 27 marks below, create an illustration (or series of illustrations)
that models Shelby’s method for changing bases.

| | | | | | | | | | | | | | | | | | | | | | | | | | |

Further, explain why Shelby’s method works.

A.1.3) Consider Scotty’s work:

43
0 R 27)

27 42
1 R 11)

27 4
2 R 3)

11 ⇒ 123four

(a) Describe how to perform this algorithm.

(b) Provide an additional relevant and revealing example demonstrating that you
understand the algorithm.

A.1.4) Using the 27 marks below, create an illustration (or series of illustrations)
that models Scotty’s method for changing bases.

| | | | | | | | | | | | | | | | | | | | | | | | | | |

Further, explain why Scotty’s method works.
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A.1. SHELBY AND SCOTTY

A.1.5) Use both methods to write 1644ten in base seven.

A.1.6) Now let’s try to be more efficient.

(a) Convert 8630ten to base thirteen. Use A for ten, B for eleven, and C for twelve.

(b) Quickly convert 2102three to base nine.

(c) Without using base ten, convert 341six to base four.

(d) Without using base ten, convert 341six to base eleven.

120
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A.2 Hieroglyphical Arithmetic

Note: This activity is based on an activity originally designed by Lee Wayand.

Consider the following addition and multiplication tables:

+ d w a H T K E l o

d K l d o H a w E T

w l o w K d E H T a

a d w a H T K E l o

H o K H l w T d a E

T H d T w E o a K l

K a E K T o d l w H

E w H E d a l T o K

l E T l a K w o H d

o T a o E l H K d w

d = fish

w = lolly-pop

a = skull

H = cinder-block

T = DNA

K = fork

E = man

l = balloon

o = eyeball

· K o l E a w H T d

K d w H T a o l E K

o w l E K a H T d o

l H E K w a T d o l

E T K w H a d o l E

a a a a a a a a a a

w o H T d a l E K w

H l T d o a E K w H

T E d o l a K w H T

d K o l E a w H T d
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A.2. HIEROGLYPHICAL ARITHMETIC

A.2.1) Use the addition table to compute the following:

H + w and T + E

A.2.2) Do you notice any patterns in the addition table? Tell us about them.

A.2.3) Can you tell me which glyph represents 0? How did you arrive at this
conclusion?

A.2.4) Use the multiplication table to compute the following:

o ·H and w · E

A.2.5) Do you notice any patterns in the multiplication table? Tell us about them.

A.2.6) Can you tell me which glyph represents 1? How did you arrive at this
conclusion?

A.2.7) Compute:
d − w and K − T

A.2.8) Compute:
E ÷ T and l ÷o

A.2.9) Keen Kelley was working with our tables above. All of a sudden, she writes

d +d +d = a

and shouts “Weird!” Why is she so surprised? Try repeated addition with other
glyphs. What do you find? Can you explain this?

A.2.10) Can you find any other oddities of the arithmetic above? Hint: Try repeated
multiplication!
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A.3 Playing with Blocks

I always enjoyed blocks quite a bit. Go find yourself some base-ten blocks. Just so
that we are all on the same page, here are the basic blocks:

A.3.1) Sketch a model of the number 247 with base-ten blocks.

A.3.2) Oscar modeled the number 15 in the following way:

What do you think of his model? Can you improve upon it?

A.3.3) Many problems involving subtraction can be considered one of the following
types: take-away, comparison, and missing addend. Describe what might be meant
by each of those types.
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A.3. PLAYING WITH BLOCKS

A.3.4) Here is a standard subtraction algorithm:

8
86 9 12
−3 7 8

5 1 4

Use base-ten blocks to model this algorithm. Which type of subtraction are you
using?
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A.3.5) Oscar uses base-ten blocks to model subtraction.

Can you explain what is going on? Which type of subtraction is Oscar using?

A.3.6) Create a “new” subtraction algorithm based on Oscar’s model.
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A.3. PLAYING WITH BLOCKS

A.3.7) Here is an example of a standard addition algorithm:

11
892

+398
1290

Model this algorithm with base-ten blocks.
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A.4 More Playing with Blocks

A.4.1) Now Oscar is modeling the basic multiplication algorithm:

11
234
× 3
702

Can you explain what is going on? What do you think of his model?

127



A.4. MORE PLAYING WITH BLOCKS

A.4.2) Here is an example of the basic division algorithm:

3
67 R1)

202
18
22
21
1

Explain how to model this algorithm with base-ten blocks, assuming that you start
with 202 as two flats and two blocks and that you intend to organize them into
three equal piles.
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A.5 Comparative Arithmetic

A.5.1) Compute:
131
+122

and
x2 + 3x + 1
+x2 + 2x + 2

Compare, contrast, and describe your experiences.

A.5.2) Compute:
139
+122

and
x2 + 3x + 9
+x2 + 2x + 2

Compare, contrast, and describe your experiences. In particular, discuss how this
is different from the first problem.

A.5.3) Compute:
121
×32

and
x2 + 2x + 1
× 3x + 2

Compare, contrast, and describe your experiences.

A.5.4) Expand:
(x2 + 2x + 1)(3x + 2)

Compare, contrast, and describe your experiences. In particular, discuss how this
problem relates to the one above.
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A.6. INTEGER ADDITION AND SUBTRACTION

A.6 Integer Addition and Subtraction

In this activity, we explore various models and strategies for making sense of addition
and subtraction of integers.

Useful language

Addition and subtraction problems arise in situations where we add to, take from,
put together, take apart, or compare quantities.

Recall that addition and subtraction facts are related. For example, if we know
that 8 + 5 = 13, then we also know three related facts: 5 + 8 = 13, 13 − 8 = 5, and
13 − 5 = 8. In school mathematics, these are often called fact families.

A.6.1) What are integers? Describe some situations in which both positive and
negative integers arise. Use the word “opposite” in your descriptions.

Red and black chips

A.6.2) In a red-and-black-chip model of the integers, red and black chips each
count for 1, but they are opposites, so that they cancel each other out. Using
language from accounting, suppose black chips are assets and red chips are debts.
We add by putting chips together. Use red and black chips (or draw the letters R
and B) to model the following computations.

(a) (−5) + (−3)

(b) 6 + (−4).

(c) (−7) + 9

(d) 2 + (−5)

A.6.3) In the previous problem, you saw different combinations of red and black
chips that had the same numerical value.

(a) How many ways are there to represent −3? Draw two different representations.

(b) Use the phrase “zero pairs” to describe how your two representations are related.
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A.6.4) To subtract in the red-and-black-chip model, we can “take away” chips, as
you might expect. When we don’t have enough chips of a particular color, we can
always add “zero pairs.” Use this idea to model the following subtraction problems:

(a) 6 − 8

(b) 4 − (−3)

(c) (−6) − 5

(d) (−3) − (−7)

Subtraction as missing addend

A.6.5) To evaluate a subtraction expression, we can solve a related addition equation.
For example, 11 − 7 is the solution to 7 + = 11. Use this idea to evaluate the
subtraction expressions in the previous problem.

Subtraction as difference on the number line

A.6.6) Use a number line to reason about b − a by asking how to get from a to b:
How far? And in which direction? For example, to evaluate 11 − 7, we can ask how
to get from 7 to 11. We travel 4 units to the right. Use this idea to evaluate the
subtraction expressions in the previous problems.

A.6.7) How is subtraction different from negation?

A.6.8) Use what you have learned to explain why a − (−b) = a + b.

Other Models

Use the following models for addition and subtraction of integers. Each model
requires two decisions: (1) how positive and negative integers are ‘opposite’ in the
situation, and (2) how addition and subtraction are ‘opposite’ in a different way.

• A postal carrier who brings checks and bills—and who also takes them away.

• Walking on an North-South number line, facing either North or South, and
walking either forward or backward.
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A.7. INTEGER MULTIPLICATION

A.7 Integer Multiplication

In this activity, we explore various models and strategies for making sense of
multiplication of integers.

Continuing patterns

A.7.1)

(a) Continue the following patterns, and explain why it makes sense to continue
them in that way.

4 × 3 = 12

4 × 2 =

4 × 1 =

4 × 0 =

4 × (−1) =

4 × (−2) =

4 × (−3) =

3 × 6 = 18

2 × 6 =

1 × 6 =

0 × 6 =

(−1) × 6 =

(−2) × 6 =

(−3) × 6 =

(−7) × 3 = −21

(−7) × 2 =

(−7) × 1 =

(−7) × 0 =

(−7) × (−1) =

(−7) × (−2) =

(−7) × (−3) =

(b) What rule of multiplication might a student infer from the first pattern?

(c) What rule of multiplication might a student infer from the second pattern?

(d) What rule of multiplication might a student infer from the third pattern?

Using properties of operations

A.7.2) Suppose we do not know how to multiply negative numbers but we do know
that 4 × 6 = 24. We will use this fact and the properties of operations to reason
about products involving negative numbers.

(a) What do we know about A and B if A + B = 0?
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(b) Use the distributive property to show that the expression 4× 6+ 4× (−6) is equal
to 0. Then use that fact to reason about what 4 × (−6) should be.

(c) Use the distributive property to show that the expression 4× (−6)+ (−4)× (−6) is
equal to 0. Then use that fact to reason about what (−4) × (−6) should be.

Walking on a number line

A.7.3) Matt is a member of the Ohio State University Marching Band. Being rather
capable, Matt can take x steps of size y inches for all integer values of x and y. If x
is positive it means face North and take x steps. If x is negative it means face South

and take |x | steps. If y is positive it means your step is a forward step of y inches. If
y is negative it means your step is a backward step of |y| inches.

(a) Discuss what the expressions x · y means in this context. In particular, what
happens if x = 1? What if y = 1?

(b) If x and y are both positive, how does this fit with the “repeated addition” model
of multiplication?

(c) Using the context above and specific numbers, demonstrate the general rule:

negative · positive = negative

Clearly explain how your problem shows this.

(d) Using the context above and specific numbers, demonstrate the general rule:

positive · negative = negative

Clearly explain how your problem shows this.

(e) Using the context above and specific numbers, demonstrate the general rule:

negative · negative = positive

Clearly explain how your problem shows this.
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A.8. WHAT CAN DIVISION MEAN?

A.8 What Can Division Mean?

Solve each of the problems below, explain your reasoning, and indicate whether
the problem is asking “How many in one group?” or “How many groups?” or
something else entirely.

A.8.1) There are a total of 35 hard candies. If there are 5 boxes with an equal
number of candies in each box—and all the candy is accounted for, then how many
candies are in each box? What if you had 39 candies?

A.8.2) There are a total of 28 hard candies. If there are 4 candies in each box, how
many boxes are there? What if you had 34 candies?

A.8.3) There is a total of 29 gallons of milk to be put in 6 containers. If each
container holds the same amount of milk and all the milk is accounted for, how
much milk will each container hold?

A.8.4) There is a total of 29 gallons of milk to be sold in containers holding 6 gallons
each. If all the milk is used, how many containers can be sold?

A.8.5) There is a total of 29 gallons of milk to be sold in containers holding 6 gallons
each. If all the milk is used, how much milk cannot be sold?

A.8.6) If there are 29 kids and each van holds 6 kids, how many vans do we need
for the field trip?
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A.9 Divisibility Statements

Let a|b mean b = aq for some integer q. (Read a|b as “a divides b”.)

A.9.1) Using the numbers 56 and 7, make some true statements using the notation
above and one or more of the words factor, multiple, divisor, and divides.

A.9.2) Use the definition of divides to decide which of the following are true and
which are false. If a statement is true, find q satisfying the definition of divides. If it
is false, give an explanation. (Hint: Try to reason about multiplication rather than
using your calculator.)

(a) 21|2121

(b) 3|(9 × 41)

(c) 6|(24 × 32 × 73 × 135)

(d) 100000|(23 × 39 × 511 × 178)

(e) 6000|(221 × 37 × 517 × 295)

(f) p3q5r |(p5q13r7s2t27)

(g) 7|(5 × 21 + 14)

A.9.3) If a|b and a|c does a|(bc)? Explain.

A.9.4) If a|b and a|c does a|(b + c)? Explain.

A.9.5) If a|(b + c) and a|c does a|b? Explain.

A.9.6) Suppose that

(35 · 79 · 11x · 13y)|(3a · 7b · 1119 · 137)

What values of a, b, x, and y make true statements?
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A.10. HALL OF SHOES

A.10 Hall of Shoes

A.10.1) Incognito’s Hall of Shoes is a shoe store that just opened in Myrtle Beach,
South Carolina. At the moment, they have 100 pairs of shoes in stock. At their
grand opening 100 customers showed up. The first customer tried on every pair
of shoes, the second customer tried on every 2nd pair, the third customer tried on
every 3rd pair, and so on until the 100th customer, who only tried on the last pair
of shoes.

(a) Which shoes were tried on by only 1 customer?

(b) Which shoes were tried on by exactly 2 customers?

(c) Which shoes were tried on by exactly 3 customers?

(d) Which shoes were tried on by exactly 4 customers?

(e) How many customers tried on the 45th pair?

(f) How many customers tried on the 81st pair?

(g) Challenge: Which shoes were tried on by the most customers?

In each case, explain your reasoning.

A.10.2) Which pairs of shoes were tried on by both

(a) customers 3 and 5?

(b) customers 6 and 8?

(c) customers 12 and 30?

(d) customers 7 and 13?

(e) customers a and b?

A.10.3) Which customers tried on both

(a) pairs 24 and 36?
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(b) pairs 30 and 60?

(c) pairs 42 and 12?

(d) pairs 28 and 15?

(e) pairs a and b?
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A.11. SIEVING IT ALL OUT

A.11 Sieving It All Out

A.11.1) Try to find all the primes from 1 to 120 without doing any division. Try
to circle numbers that are prime and cross out numbers that are not prime. As a
gesture of friendship, here are the numbers from 1 to 120.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120

Describe your method.
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•

prime first # crossed out

2

A.11.2) Now let’s be systematic. Ignore 1 (we’ll talk about why later). As you identify
a prime, first circle it, then cross out its multiples that are not already crossed out.
Keep track of your work so that you can answer the following questions:

(a) After circling a new prime, note the first number crossed out with that prime.
Record your results in a table. •

(b) What was the biggest prime for which you crossed out at least one multiple?

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120
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A.12 There’s Always Another Prime

We’ll start off with easy questions, then move to harder ones.

A.12.1) Use the Division Theorem to explain why neither 2 nor 3 divides 2 · 3 + 1.
(Hint: Do not multiply and add. Use the expression as written to reason what the
quotient and remainder must be.)

A.12.2) Use the Division Theorem to explain why neither 2 nor 3 nor 5 divides
2 · 3 · 5 + 1.

A.12.3) Let p1, . . . , pn be the first n primes. Do any of these primes divide

p1p2 · · · pn + 1?

Explain your reasoning.

A.12.4) Suppose there were only a finite number of primes, say there were only n
of them. Call them p1, . . . , pn. Could any of them divide

p1p2 · · · pn + 1?

what does that mean? Can there really only be a finite number of primes?

A.12.5) Consider the following:

2 · 3 · 5 · 7 · 11 · 13 + 1 = 59 · 509

Does this contradict our work above? If so, explain why. If not, explain why not.
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A.13 There Are Many Factors to Consider

A.13.1) How many factors does the integer 60 have?

A.13.2) Consider the following diagram:

What is going on in this diagram? What do the numbers represent? How does it
help you count the number of factors of 23 · 32 · 5?

A.13.3) Make a similar diagram for 60.

A.13.4) Can you devise a method for computing the number of factors that a
number has? Explain why your method works.

A.13.5) How many factors does 735 have?

A.13.6) If p is a prime number, how many factors does pn have?

A.13.7) If p and q are both prime numbers, how many factors does pnqm have?

A.13.8) Which integers between 0 and 100 have the most factors?
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A.14 Why Does It Work?

The Euclidean Algorithm is pretty neat. Let’s see if we can figure out why it works.
As a gesture of friendship, I’ll compute gcd(351,153):

351 = 153 · 2 + 45

153 = 45 · 3 + 18

45 = 18 · 2 + 9

18 = 9 · 2 + 0 ∴ gcd(351,153) = 9

Let’s look at this line-by-line.

The First Line

A.14.1) Since 351 = 153 · 2 + 45, explain why gcd(153,45) divides 351.

A.14.2) Since 351 = 153 · 2 + 45, explain why gcd(351,153) divides 45.

A.14.3) Since 351 = 153 · 2 + 45, explain why gcd(351,153) = gcd(153,45).

The Second Line

A.14.4) Since 153 = 45 · 3 + 18, explain why gcd(45,18) divides 153.

A.14.5) Since 153 = 45 · 3 + 18, explain why gcd(153,45) divides 18.

A.14.6) Since 153 = 45 · 3 + 18, explain why gcd(153,45) = gcd(45,18).

The Third Line

A.14.7) Since 45 = 18 · 2 + 9, explain why gcd(18,9) divides 45.

A.14.8) Since 45 = 18 · 2 + 9, explain why gcd(45,18) divides 9.

A.14.9) Since 45 = 18 · 2 + 9, explain why gcd(45,18) = gcd(18,9).

The Final Line

A.14.10) Why are we done? How do you know that the Euclidean Algorithm will
always terminate?
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A.15 Prome Factorization

Let’s consider a crazy set of numbers—all multiples of 3. Let’s use the symbol 3Z
to denote the set consisting of all multiples of 3. As a gesture of friendship, I have
written down the first 100 nonnegative integers in 3Z:

0 3 6 9 12 15 18 21 24 27

30 33 36 39 42 45 48 51 54 57

60 63 66 69 72 75 78 81 84 87

90 93 96 99 102 105 108 111 114 117

120 123 126 129 132 135 138 141 144 147

150 153 156 159 162 165 168 171 174 177

180 183 186 189 192 195 198 201 204 207

210 213 216 219 222 225 228 231 234 237

240 243 246 249 252 255 258 261 264 267

270 273 276 279 282 285 288 291 294 297

A.15.1) Given any two integers in 3Z, will their sum be in 3Z? Explain your
reasoning.

A.15.2) Given any two integers in 3Z, will their difference be in 3Z? Explain your
reasoning.

A.15.3) Given any two integers in 3Z, will their product be in 3Z? Explain your
reasoning.
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A.15. PROME FACTORIZATION

A.15.4) Given any two integers in 3Z, will their quotient be in 3Z? Explain your
reasoning.

Definition Call a positive integer prome in 3Z if it cannot be expressed as the
product of two integers both in 3Z.

As an example, I tell you that 6 is prome number in 3Z. You may object because
6 = 2 · 3, but remember—2 is not in 3Z!

A.15.5) List some of the prome numbers less than 297. Hint: What numbers in 3Z
can be expressed as a product of two integers both in 3Z?

A.15.6) Can you give some sort of algebraic characterization of prome numbers in
3Z?

A.15.7) Can you find numbers that factor completely into prome numbers in two

different ways? How many can you find?
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A.16 Picture Models for Equivalent Fractions

A.16.1) Get out a piece of paper and show
3
8

. Explain how you know.

A.16.2) Draw pictures to explain why:

2
3
=

4
6

Explain how your pictures show this.

A.16.3) Draw pictures to explain why:

3
6
=

2
4

Explain how your pictures show this.

A.16.4) Given equivalent fractions with 0 < a 6 b and 0 < c 6 d:

a

b
=
c

d

Give a procedure for representing this equation with pictures.

A.16.5) Explain, without cross-multiplication, why if 0 < a 6 b and 0 < c 6 d:

a

b
=
c

d
if and only if ad = bc

Feel free to use pictures as part of your explanation.
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A.17 Picture Models for Fraction Operations

A.17.1) Draw pictures that model:
1
5
+

2
5
=

3
5

Explain how your pictures show this. Write a story problem whose solution is given
by the expression above.

A.17.2) Draw pictures that model:
2
3
+

1
4
=

11
12

Explain how your pictures model this equation. Be sure to carefully explain how
common denominators are represented in your pictures. Write a story problem
whose solution is given by the expression above.

A.17.3) Given 0 < a 6 b and 0 < c 6 d, explain how to draw pictures that model
the sum:

a

b
+
c

d
Use pictures to find this sum and carefully explain how common denominators are
represented in your pictures.

A.17.4) Given positive integers a and b, explain how to draw pictures that model
the product a · b—give an example of your process.

A.17.5) Draw pictures that model:
4
5
·

2
3
=

8
15

Explain how your pictures model this equation. Write a story problem whose
solution is given by the expression above. Does your story work with

7
5
·

2
3
=

14
15

?

A.17.6) Given 0 < a 6 b and 0 < c 6 d, explain how to draw pictures that model
the product:

a

b
·
c

d
Use pictures to find this product and explain how this product is shown in your
pictures—give an example of your process.
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A.18 Fraction Multiplication

A.18.1) Suppose x and y are counting numbers.

(a) What is our convention for the meaning of xy as repeated addition?

(b) In our convention for the meaning of the product xy, which letter describes how

many groups and which letter describes how many in one group?

(c) In the product xy, the x is called the multiplier and y is called the multiplicand.
Use these words to describe the meaning of xy as repeated addition.

A.18.2) In the Common Core State Standards, fractions and fraction operations are
built from unit fractions, which are fractions with a 1 in the numerator. The meaning
of a fraction

a

b
involves three steps: (1) determining the whole; (2) describing the

meaning of
1
b

; and (3) describe the meaning of the fraction
a

b
. Use pictures to

illustrate these three steps for the fraction
3
5

.

A.18.3) Now we combine the ideas from the previous two problems to describe
meanings for simple multiplication of fractions.

(a) Without computing the result, describe the meaning of the product 5 ×
1
3

.

(b) Without computing the result, describe the meaning of the product
1
3
× 5.
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(c) Without using the commutativity of multiplication (which we have not established
for fractions), use these meanings and pictures to explain what the products
should be.

A.18.1 Area Models

A.18.4) Beginning with a unit square, use an area model to illustrate the following:

(a)
1
3
×

1
4

(b)
7
3
×

5
4

A.18.5) When computing 2
1
3
× 3

2
5

, Byron says that the answer is 6
2
15

.

(a) Explain Byron’s method.

(b) How do you know that he is incorrect?

(c) Use what is right about his method to show what he is missing.
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A.19 Flour Power

A.19.1) Suppose a cookie recipe calls for 2 cups of flour. If you have 6 cups of flour
total, how many batches of cookies can you make?

(a) Draw a picture representing the situation, and use pictures to solve the problem.

(b) Identify whether the problem is asking “How many groups?” or “How many in
one group?” or something else entirely.

(c) You find another recipe that calls for 1
1
2

cups per batch. If you have 6 cups of
flour, how many batches of these cookies can you make? Again use pictures to
solve the problem.

(d) Somebody once told you that “to divide fractions, you invert and multiply.”
Discuss how this rule is manifested in this problem.

A.19.2) You have 2 snazzy stainless steel containers (both the same size), which
hold a total of 6 cups of flour. How many cups of flour does 1 container hold?

(a) Draw a picture representing the situation, and use pictures to solve the problem.

(b) Identify whether the problem is asking “How many groups?” or “How many in
one group?” or something else entirely.

(c) It turned out that the 6 cups of flour filled exactly 1
1
2

of your containers. How
many cups of flour does 1 container hold? Again use pictures to solve the
problem.

(d) Somebody once told you that “to divide fractions, you invert and multiply.”
Discuss how this rule is manifested in this problem.
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A.20 Picture Yourself Dividing

We want to understand how to visualize

a

b
÷
c

d

Let’s see if we can ease into this like a cold swimming pool.

A.20.1) Draw a picture that shows how to compute:

10 ÷ 5

Explain how your picture could be redrawn for other similar numbers. Write two
story problems solved by this expression, one asking for “how many groups” and
the other asking for “how many in one group.”

A.20.2) Try to use a similar process to the one you used in the first problem to
draw a picture that shows how to compute:

1
4
÷ 3

Explain how your picture could be redrawn for other similar numbers. Write two
story problems solved by this expression, one asking for “how many groups” and
the other asking for “how many in one group.”

A.20.3) Try to use a similar process to the one you used in the first two problems
to draw a picture that shows how to compute:

3 ÷
1
4

Explain how your picture could be redrawn for other similar numbers. Write two
story problems solved by this expression, one asking for “how many groups” and
the other asking for “how many in one group.”

A.20.4) Try to use a similar process to the one you used in the first three problems
to draw a picture that shows how to compute:

7
5
÷

3
4
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Explain how your picture could be redrawn for other similar numbers. Write two
story problems solved by this expression, one asking for “how many groups” and
the other asking for “how many in each group.”

A.20.5) Explain how to draw pictures to visualize:

a

b
÷
c

d

A.20.6) Use pictures to explain why:

a

b
÷
c

d
=
a

b
·
d

c
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A.21 Cross Something-ing

A.21.1) What might someone call the following statements:

(a)
a

b
=
c

d
⇒ ad = bc

(b)
a

b
·
b

c
=
a

c

(c)
a

b
÷
c

d
=
ad

bc

(d)
a

b
+
c

d
=
ad + bc

bd

(e) ad < bc ⇒
a

b
<
c

d

(f) ad < bc ⇒
c

d
<
a

b

A.21.2) Which of the above statements are true? What specific name might you
use to describe them?

A.21.3) Use pictures to help explain why the true statements above are true and
give counterexamples showing that the false statements are false.

A.21.4) Can you think of other statements that should be grouped with those
above?

A.21.5) If mathematics is a subject where you should strive to “say what you mean
and mean what you say,” what issue might arise with cross-multiplication?
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• For example, one of the grids below is shaded to represent
21
100

.

A.22 Hundredths Grids for Rational Numbers

When a 10 × 10 square is taken to be 1 whole, it can be used as a “hundredths grid”
to represent fractions and decimals between 0 and 1.•

A.22.1) Shade the hundredths grids to show each of the following fractions. Then
use your shading to determine a decimal equivalent for each fraction.

(a)
3
20

(b)
1
8

(c)
1
6

(d)
7
12
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A.23 Shampoo, Rinse, . . .

We’re going to investigate the following question: If a and b are integers with b , 0,
what can you say about the decimal representation of a/b?

As a middle school teacher, you should know from memory the decimal equiv-
alents of many fractions, and you should be able to compute others quickly in
your head. Use this activity to hone this skill, and use your calculator as backup
support.

A.23.1) Complete the following table. For type, write “T” for “Terminating,” and
use other letters for other types you observe.

Fr
ac

tio
n

D
ec

im
al

Ty
pe

1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 20 1 24 1 25 1 28 1 32 1 35 1 40 1 42 1 48 1 64 1 80

A.23.2) Can you find a pattern from your results from Problem A.23.1? Use your
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pattern to guess whether the following fractions “terminate”?

1
61

1
625

1
6251

A.23.3) Can you explain why your conjecture from Problem A.23.2 is true?

A.23.4) Now let’s consider fractions with decimal representations that do not
terminate.

(a) Use long division to compute 1/7.

(b) State the Division Theorem for integers.

(c) How does the Division Theorem for integers appears in your computation for
1/7?

(d) In each instance of the Division Theorem, what is the divisor? And what does
this imply about the remainder?

(e) Generalize: When a and b are integers with b , 0, what can you say about the
decimal representation of a/b, assuming it does not terminate? Explain your
reasoning.

A.23.5) Compute
1
9

,
1
99

, and
1

999
. Can you find a pattern? Can you explain why

your pattern holds?

A.23.6) Use your work from Problem A.23.5 to give the fraction form of the following
decimals:

(a) 0.357

(b) 23.459

(c) 0.234598

(d) 76.3421

A.23.7) Assuming that the pattern holds, is the number

.123456789101112131415161718192021 . . .

a rational number? Explain your reasoning.

155



A.24. DECIMALS AREN’T SO NICE

A.24 Decimals Aren’t So Nice

We will investigate the following question: How is 0.999 . . . related to 1?

A.24.1) What symbol do you think you should use to fill in the box below?

.999 . . . 1

Should you use <, >, = or something else entirely?

A.24.2) What is 1 − .999 . . . ?

A.24.3) How do you write 1/3 in decimal notation? Express

1
3
+

1
3
+

1
3

in both fraction and decimal notation.

A.24.4) See what happens when you follow the directions below:

(a) Set x = .999 . . . .

(b) Compute 10x.

(c) Compute 10x − x.

(d) From the step immediately above, what does 9x equal?

(e) From the step immediately above, what does x equal?

A.24.5) Are there other numbers with this weird property?
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A.25 Ratios and Proportional Relationships

Here begins our work with ratios and proportional reasoning, which are the corner-
stone of middle school mathematics. Try to avoid procedural approaches, such as,
“set up a proportion and cross multiply.” Instead, try to reason from the context
and use pictures and tables to support your reasoning.

As you solve these problems, note how the problems simultaneously build on
understandings of fractions and pave the way for functions.

Stacking Paper

A.25.1) Suppose you want to know how many sheets are in a particular stack of
paper, but don’t want to count the pages directly. You have the following information:

• The given stack has height 4.50 cm.

• A ream of 500 sheets has height 6.25 cm.

How many sheets of paper do you think are in the given stack?

A.25.2) In your solution to the previous problem, what did you assume was propor-
tional to what other quantity? Be precise.

Mixing Punch

A.25.3) Jenny is mixing punch and is considering two recipes:

• Recipe A: 3 parts orange juice for every 5 parts ginger ale

• Recipe B: 2 parts orange juice for every 3 parts ginger ale

(a) Which recipe will give juice that is the most “orangey”? Explain your reasoning.

(b) Use a table to show various ways to make recipe B.

(c) To make 12 gallons of recipe B, how much of each will you need?
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Racing Snails

A.25.4) Mike is racing snails that move at a constant speed:

• Snail A travels 3 inches in 5 minutes.

• Snail B travels 2 inches in 3 minutes.

(a) Which snail moves faster? Explain your reasoning.

(b) Use a table to show other distances and times for snail B.
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A.26 Poor Old Horatio

A.26.1) A shade of orange is made by mixing 3 parts red paint with 5 parts yellow
paint. Sam says we can add 4 cups of each color of paint and maintain the same
color. Fred says we can quadruple both 3 and 5 and get the same color.

(a) Who (if either or both) is correct? Explain your reasoning.

(b) Use a table like the one below to show other paint mixtures that are the desired
shade of orange.

Red 3

Yellow 5

A.26.2) If we wanted to make the same orange paint but were required to use 73
cups of yellow paint, how many cups of red paint would we need? Explain your
reasoning.

Red 3

Yellow 5

A.26.3) If we wanted to make the same orange paint but were required to use 56
cups of red paint, how many cups of yellow paint would we need? Explain your
reasoning.
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Red 3

Yellow 5

A.26.4) Generalize your approaches to the previous problems.

(a) Give a general formula for computing how much red paint is needed when y cups
of yellow paint is used.

(b) Give a general formula for computing how much yellow paint is needed when r
cups of red paint is used.

Red 3

Yellow 5

A.26.5) Now suppose we want to make a different shade of orange, this time made

with
3
4

cup of red paint and
2
3

cup of yellow paint. How many cups of each color do
you need in order to make 15 cups of the mixture? Use the table below.

Red
3
4

Yellow
2
3

17 1 15
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A.26.6) In proportional reasoning problems, a unit rate describes the amount of
one quantity for 1 unit of another quantity.

(a) What are the units for the various numbers in these problems?

(b) Identify some unit rates in this activity.

(c) In solving the above problems, it is likely that you or your classmates use
strategies that made use of unit rates on the way to your solution. Explain why
this strategy is sometimes called going through one.

A.26.7) If 2
1
2

pints of jelly fills 3
1
2

jars, then how many jars will you need for 12
pints of jelly? (Assume the jars are all the same size.) If the last jar is not totally
full, indicate how full it will be.

Jelly

Jars
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A.27 Ratio Oddities

In this activity we are going to investigate thinking about and adding ratios.

A.27.1) There are 3 boys for every 4 girls in Mrs. Sanders’ class.

(a) What fraction of the class are girls?

(b) List ratios that can describe this situation.

(c) If each of the number of boys and number of girls quadruples, what is the new
ratio of girls to boys?

(d) Write an equation relating the number of boys in the class to the number of girls
in the class.

(e) If the number of boys and number of girls each increase by 6, what can you say
about the new ratio of boys to girls?

A.27.2) Suppose the ratio of girls to boys in Smith’s class is 7:3 while the ratio of
girls to boys in Jones’ class is 6:5.

(a) If there are 50 students in Smith’s class and 55 students in Jones’ class, and
both classes get together for an assembly, what is the ratio of girls to boys?
Explain your reasoning.

(b) What if there are 500 students in Smith’s class and still 55 students in Jones’
class?

(c) What if there are 5000 students in Smith’s class and still 55 students in Jones’
class?

(d) How do the ratios of girls to boys in the combined assembly compare to the ratios
of girls to boys in the original classes?

(e) Now suppose you don’t know how many students are in Smith’s class and there
are 55 students in Jones’ class. What can you say about the ratio of girls to boys
at the assembly?
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A.27.3) Suppose you are teaching a class, and a student writes

1
4
+

3
5
=

4
9

(a) How would you respond to this?

(b) This student is most contrary, and presents you with the following problem:

Suppose you have two cars, a 4 seater and a 5 seater. If the first car is 1/4 full and
the second car is 3/5 full, how full are they together?

The student then proceeds to answer their question with “The answer is 4/9.”
How do you address this?

(c) This student’s reasoning suggest a new kind of “addition” of ratios. Let’s use ⊕
for this new form of “addition.” So

a

b
⊕
c

d
=
a + c

b + d
.

For which of the previous problems is does this “addition” give the correct answer?
What is going on?

(d) Use the student’s context of seats and cars to reason about how
a

b
⊕
c

d
compares

with
a

b
and

c

d
.

A.27.4) Let’s think a bit more about ⊕. If you were going to plot
a

b
and

c

d
on a

number line, where iswhat can you say about the location of
a

b
⊕
c

d
? Is this always

the case, or does it depend on the values of a, b, c, and d? Hint: Assume that all
of the letters are positive. Use specific numbers and a context; then try to reason
generally.
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A.28 The Triathlete

A.28.1) On Friday afternoon, just as Laine got off the bus, she realized that she
had left her bicycle at school. In order to have her bicycle at home for the weekend,
she decided to run to school and then ride her bike back home. If she averaged 6
mph running and 12 mph on her bike, what was her average speed for the round
trip? Explain your reasoning.

A.28.2) On Saturday, Laine completed a workout in which she split the time evenly
between running and cycling. If she again averaged 6 mph running and 12 mph on
her bike, what was her average speed for the workout? Explain your reasoning.

A.28.3) Why was her average speed on Saturday different from her average speed
on Friday? Can you reason, without computation, which average speed should be
faster?

A.28.4) On Sunday, Laine’s workout included swimming. Assuming that she
can swim at an average speed of 2 mph, describe two running-cycling-swimming
workouts, one similar to Friday’s scenario (same distance) and a second similar
to Saturday’s (same time). Compute the average speed for each and explain your
reasoning.

A.28.5) Which of the workout scenarios (same distance or same time) most closely
resembles an actual triathlon? Why do you think that is the case?

A.28.6) After two months of intense training, Laine is able to average s mph
swimming, r mph running, and c mph cycling. Again describe two running-cycling-
swimming workouts, one similar to each of the two original scenarios, and compute
her average speeds.
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A.29 The Dreaded Story Problem

Let’s try our hand at a problem involving ratios.

A.29.1) On orders from his doctor, every day, Marathon Marty must run from his
house to a statue of Millard Fillmore and run back home along the same path. So
Marty doesn’t lollygag, the doctor orders him to average 8 miles per hour for the
round trip.

(a) On Monday, Marty ran into Gabby Gilly on his way to the statue and averaged
only 6 miles per hour for the trip out to the statue.What must Marty do to ensure
he’s obeyed his doctor’s orders?

(b) On Tuesday, Marty did not see Gilly on his way to the statue and averaged 9.23
miles per hour for the trip out to the statue. What must Marty do to ensure he’s
obeyed his doctor’s orders?

(c) On Wednesday, Gilly talks so much that Marty only averages 4 miles per hour
on the way out. What must Marty do to ensure he’s obeyed his doctor’s orders?

(d) Assuming that Marty, for whatever reason, averages r miles per hour on the trip
out to the statue. What must Marty do to ensure he’s obeyed his doctor’s orders?
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A.30 I Walk the Line

Solve the problems below initially without using letters and without algebraic
procedures. Rely on numerical reasoning only, and then generalize your numerical
approaches.

A.30.1) Slimy Sam is on the lam from the law. Being not-too-smart, he drives the
clunker of a car he stole east on I-70 across Ohio. Because the car can only go a
maximum of 52 miles per hour, he floors it all the way from where he stole the car
(just now at the Rest Area 5 miles west of the Indiana line) and goes as far as he
can before running out of gas 3.78 hours from now.

(a) At what mile marker will he be 3 hours after stealing the car?

(b) At what mile marker will he be when he runs out of gas and is arrested?

(c) At what mile marker will he be x hours after stealing the car?

(d) At what time will he be at mile marker 99 (east of Indiana)?

(e) At what time will he be at mile marker 71.84?

(f) At what time will he be at mile marker y?

(g) Do parts (c) and (f) supposing that the car goes m miles per hour and Sam started
b miles east of the Ohio-Indiana border.

(h) What “form” of an equation for a line does this problem motivate?

A.30.2) Free-Lance Freddy works for varying hourly rates, depending on the job.
He also carries some spare cash for lunch. To make his customers sweat, Freddy
keeps a meter on his belt telling how much money they currently owe (with his
lunch money added in).

(a) On Monday, 3 hours into his work as a gourmet burger flipper, Freddy’s meter
reads $42. 7 hours into his work, his meter reads $86. If he works for 12 hours,
how much money will he have? When will he have $196? Solve this problem
without finding his lunch money.
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(b) On Tuesday, Freddy is CEO of the of We Say So Company. After 2.53 hours of
work, his meter reads $863.15 and after 5.71 hours of work, his meter reads
$1349.78. If he works for 10.34 hours, how much money will he have? How
much time will he be in office to have $1759.21?

(c) On Wednesday, Freddy is starting goalie for the Columbus Blue Jackets. After x1

hours of work, his meter reads y1 dollars and after x2 hours of work, his meter
reads y2 dollars. Without finding his amount of lunch money, if he works for x
hours, how much money will he have? How much time will he be in front of the
net to have y dollars?

(d) What “form” of an equation for a line does this problem motivate?

A.30.3) Counterfeit Cathy buys two kinds of fake cereal: Square Cheerios for $4
per pound and Sugarless Sugar Pops for $5 per pound.

(a) If Cathy’s goal for today is to buy $1000 of cereal, how much of each kind could
she purchase? Give five possible answers.

(b) Plot your answers. What does the slope represent in this situation? What do the
points where your curve intercepts the axes represent?

(c) If she buys Square Cheerios for a dollars per pound and Sugarless Sugar Pops for
b dollars per pound and she wants to buy c dollars of cereal, write an equation
that relates the amount of Sugar Pops Cathy buys to the amount of Cheerios she
buys. What “form” of the equation of a line does this problem motivate?

(d) Write a function in the form

pounds of Sugar Pops = f (pounds of Cheerios).

A.30.4) Given points p = (3,7) and q = (4,9), find the formula for the line that
connects these points.

A.30.5) In each of the situations above, write an equation relating the two variables
(hours and position, hours and current financial status, pounds of Square Cheerios
and pounds of Sugarless Sugar Pops) and answer the following questions:
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(a) How did (or could) the equations help you solve the problems above? What about
a table or a graph?

(b) Organize the information in each problem into a table and then into a graph.
What patterns do you see, if any?

(c) What do the different features of your graph represent for each situation?
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A.31 Constant Amount Changes

In this section, we explore sequences and functions and the fact that sequences are
functions.

Sometimes you compute the output value of a function from a previous output
value. This is called a recursive representation of the function. Other times, you
compute the output value directly from the input value. This is called a closed form

representation of the function. Both approaches are important, as they provide
different insights.

A.31.1) We can use function notation for sequences, with f (n) representing the nth

term of a sequence. Here is an example of a sequence specified recursively:

f (0) = 1, f (1) = 1, and f (n) = f (n − 1) + f (n − 2) for n > 2.

(a) Find f (6) and explain your reasoning.

(b) Why was it important to give the values f (0) = 1 and f (1) = 1?

A.31.2) Gertrude the Gumchewer has an addiction to Xtra Sugarloaded Gum, and
it’s getting worse. At the beginning of her habit, on day 0, she chews 3 pieces and
then, each day afterward, she chews 8 more pieces than she chewed the day before.

(a) Gertrude’s friend Wanda notices that Gertrude chewed 35 pieces on day 4. Wanda
claims that, because Gertrude is increasing the number of pieces she chews at a
constant rate, we can just use proportions with the given piece of information to
find out how many pieces Gertrude chewed on any other day. Is Wanda correct
or not? Explain.

(b) Make a table of how many pieces of gum Gertrude chewed on each of the first 10
days of her addiction.

(c) Think of what a 4th grader would do to predict the next day’s number of pieces
given the previous day’s number of pieces. Use the variables Next and Now to
write an equation that describes the thinking.

(d) Write a recursive specification for a function g(n) that gives the number of pieces
of gum Gertrude chewed on the nth day.
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(e) How many pieces of gum Gertrude did chew on the 793rd day of her habit?
Explain your reasoning.

(f) How would the 4th grader answer the previous question? How does this differ
from how you solved it?

(g) Write a closed formula for computing g(n) directly from n.

(h) Make a graph of your data about Gertrude’s gum chewing. Which variable do
you plot on the horizontal axis? Explain.

(i) Does it make sense to connect the dots on your graph? Explain.

(j) Locate the values g(6) and g(5) in your table from above, compute g(6) − g(5),
and interpret your result. How might you have known the answer without doing
any calculation?

A.31.3) Slimy Sam steals a car from a rest area 3 miles east of the Indiana-Ohio
state line and starts heading east along the side of I-70. Because the car is a real
clunker, it can only go 8 miles per hour.

(a) Assuming the police are laughing too hard to arrest Sam, describe Sam’s position
on I-70 (via mile markers) t hours after stealing the car.

(b) Make a graph of your data about Sam’s travel. Which variable do you plot on the
horizontal axis? Explain.

(c) Does it make sense to connect the dots on your graph? Explain your reasoning.

(d) Write a recursive specification for a function s(t) that gives Sam’s position on
I-70 at hour t.

(e) Write closed formula for s(t).

(f) How is this problem the same and how is it different from the Gertrude problem?

(g) Dumb Question: At any specific time, how many positions could Sam be in?
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A.32 Constant Percentage (Ratio) Changes

A.32.1) Billy is a bouncing ball. He is dropped from a height of 13 feet and each
bounce goes up 92% of the bounce before it. Assume that the first time Billy hits
the ground is bounce 1.

(a) Make a table of how high Billy bounced after each of the first 10 times he hit
the ground. Be sure to indicate the arithmetic process you go through for each
bounce (i.e., not just the final height). Find a pattern that will predict an answer.

(b) Think of what a 4th grader would do to predict the next bounce’s height given
the previous bounce’s height. How would the 4th grader answer the previous
question? How does this differ from how you solved it?

(c) Make a graph of your data about Billy. Which variable do you plot on the
horizontal axis? Explain.

(d) Does it make sense to connect the dots on your graph? Explain your reasoning.

(e) How high will Billy bounce after the 38th bounce? How high will Billy bounce
after the nth bounce? Explain your reasoning.

(f) Use function notation, f (n), and a recursive formula to specify the height of
Billy’s bounces, including the initial condition and general term.

(g) Use function notation, f (n), and an explicit formula to specify the height of Billy’s
bounces. Indicate the domain of the function.

(h) Using your table from above, compute the differences between the heights on
successive bounces (e.g., f (1) − f (0), f (2) − f (1), etc.). What do you notice? Why
does this happen?

(i) Compare and contrast the explicit and recursive representations from Billy and
from Gertrude. How do the role(s) of the operations and initial values differ,
remain the same, or relate?

A.32.2) Supppose 13 mg of a drug is administered to a patient once, and the
amount of the drug in the patient’s body decreases by 8% each hour.
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(a) Describe the amount of the drug in the patient’s body x hours after it was
administered.

(b) Make a graph of your data about the amount of drug in the body over time.
Which variable do you plot on the horizontal axis? Explain.

(c) Does it make sense to connect the dots on your graph? Explain your reasoning.

(d) Use function notation, g(t), and an explicit formula to specify the the amount of
drug remaining in the body after t hours. Indicate the domain of the function.

(e) How is this problem fundamentally different from the Billy problem? What is the
same and different about the functions f and g?

(f) Dumb Question: At any one time, how many different amounts of the drug are
possible in the patient’s body?
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A.33 Meanings of Exponents

Students in grades 3-7 can use their understanding of counting number arithmetic
to build understandings of the arithmetic of negative integers and rational numbers.
Here are the key ideas:

• The properties of operations (commutative, associative, and distributive properties)
are established for counting numbers based on meanings of operations.

• As we extend arithmetic to negative integers and rational numbers, we want the
properties of operations to continue to hold.

This activity follows an analogous process for exponents: Students use their
understanding of counting number exponents to build an understanding of negative
integer and rational exponents. Here are the key ideas:

• The rules of exponents are established for counting number exponents based on
the meaning of an exponent.

• As we extend to negative and rational exponents, we want the rules of exponents to
continue to hold.

A.33.1) Students sometimes say that an means “a multiplied by itself n times.”
But for counting number exponents, this is not correct. For example, how many
multiplications are there in 35? Write a better definition for an, where n is a counting
number.

A.33.2) Why is x3 not the same function as 3x? We often think of multiplication as
“repeated addition,” and we find that adding a copies of b gives the same result as
adding b copies of a. Does this idea work for thinking of exponentiation as “repeated
multiplication”? Explain.

A.33.3) If you do not know (or do not remember) the rules for exponents, you can
still use your definition of an to figure out other ways of writing expressions with
exponents. Use specific values for letters in expressions of the form anam , an/am ,
(an)m , and (ab)n for counting-number exponents, to explain what the rules must
be. Choose specific values that help you explain generally.

A.33.4) Patterns. One way to reason about the meanings of zero and negative
exponents is to use patterns. As you complete the following table, imagine that you
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know nothing about zero and negative exponents. Instead, use the patterns in
the values for positive exponents to reason about what the values should be for zero
and negative exponents. Then reason generally about the meaning of a0 and a−n,
where n is a counting number and a is a real number. Are there any values of a for
which your reasoning is not valid? Explain.

23 =

22 =

21 =

20 =

2−1 =

2−2 =

2−3 =

33 =

32 =

31 =

30 =

3−1 =

3−2 =

3−3 =

(−2)3 =

(−2)2 =

(−2)1 =

(−2)0 =

(−2)−1 =

(−2)−2 =

(−2)−3 =

(1
2

)3
=(1

2

)2
=(1

2

)1
=(1

2

)0
=(1

2

)−1
=(1

2

)−2
=(1

2

)−3
=

A.33.5) Extending the rules. A careful way to approach zero and negative integer
exponents is to use the rules of exponents (which you established above for counting-
number exponents) to determine what 0 and negative integer exponents must mean
if the exponent rules continue to hold in this extended domain.

(a) Use the exponent rules to provide two explanations for a sensible definition of a0,
being clear about why your definition makes sense. Note any restrictions on a.

(b) Use the exponent rules to provide two explanations for a sensible definition of
a−n, where n is a counting number. Again, note any restrictions on a.

A.33.6) While trying to decide what 3
2
5 should mean, Katie wondered about the

expression
(
3

2
5
)5

. What should Katie’s expression be equal to? Explain, using rules

of exponents. Then use Katie’s idea to determine a value for 3
2
5 .
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A.34 Arithmetic Series

In this activity, we explore arithmetic series, which are sums of consecutive terms
from an arithmetic sequence.

Ms. Nguyen’s math class has been looking at “triangular numbers.” The first 6
triangular numbers are shown below.

 

A.34.1) Blair wanted to find the 551st triangular number. She used a table and
looked for a pattern in the sequence of partial sums: 1, 1 + 2, 1 + 2 + 3, . . . . Help her
finish her idea.

A.34.2) Kaley realized the the 551st triangular number would be the sum

1 + 2 + 3 + 4 + · · · + 548 + 549 + 550 + 551

She started pairing the first with the last number; the second with the second-to-last;
the third with the third-to-last; and so on. She saw that the averages are always
the same. Help her finish her idea.

A.34.3) Ali begin by writing out the sum forward and backward and follows:

1 + 2 + 3 + 4 + 5 + 6 +· · ·+546+547+548+549+550+551
551+550+549+548+547+546+· · ·+ 6 + 5 + 4 + 3 + 2 + 1

Help her finish her idea. Be sure to explain clearly what happens “in the dots.”
Does it matter whether there are an even or an odd number of terms?

A.34.4) Cooper was interested in a different triangular number and drew the
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following picture:
1 2 3 4 5 6 163

Which triangular number was he finding? Help him finish his idea. Be sure to
explain clearly what happens “in the dots.”

A.34.5) Sum the numbers:

106 + 112 + 118 + · · · + 514

A.34.6) Sum the numbers:

2.2 + 2.9 + 3.6 + 4.3 + · · · + 81.3

A.34.7) Suppose you have an arithmetic sequence beginning with a, with a constant
difference of d and with n terms.

(a) What is the nth term of the sequence?

(b) Use dots to write the series consisting of the first n terms of this sequence.

(c) Find the sum of this series.
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A.35 Geometic Series

In this activity, we explore geometric series, which are sums of consecutive terms
from an geometric sequence.

Ms. Radigan’s math class has been trying to compute the following sums:

1 + 2 + 4 + 8 + · · · + 219

2
3
+

2
9
+

2
27
+ · · · +

2
313

A.35.1) Kelsey used tables and looked for pattern in the sequence of partial sums:
1,1 + 2,1 + 2 + 4, . . . . Help her finish her idea for both sequences.

A.35.2) For the sum beginning with
2
3

, Erin started by drawing a large square

(which she imagined as having area 1), and she shaded in
2
3

of it. Then she shaded

in
2
9

more, and so on. Help her finish her idea.

A.35.3) Ryan wrote out all of the terms in the first sum, represented as powers of
2, beginning with 1 + 2 + 22 + 23. Then he realized that because the terms formed a
geometric sequence, he could multiply the series by the common ratio of 2, and the
resulting series would be almost identical to the first, differing only at the beginning
and the end. By subtracting the first series from the second, all of the middle terms
would cancel. Help him finish his idea.

A.35.4) Ali said, “Here is a thought experiment. I take a sheet of paper, rip it
perfectly into thirds, place one piece to start a pile that I will call A, another piece to
start a pile I will call B, and I keep the third piece in my hands. I then rip that piece
into thirds, place one piece on pile A, one piece on pile B, and keep the third. Notice

that each of pile A and pile B have
1
3
+

1
9

of a sheet of paper, and I still have
1
9

of a

sheet in my hands. I continue this process until I place
1

313 of a sheet on each pile

and still have
1

313 of a sheet in my hands.
Help Ali finish her idea.
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A.35.5) Sum the expression:

2
3
+

4
9
+

8
27
+ · · · +

2n

3n

What happens to this sum as n gets really large?

A.35.6) Consider the expression:

7
10
+

7
100

+
7

1000
+ · · · +

7
10n

(a) Find the sum of the expression.

(b) What happens to this sum as n gets really large?

(c) How does this help you explain why a particular repeating decimal is a particular
rational number? Be sure to indicate what repeating decimal and what rational
number you are talking about.

A.35.7) Suppose you have an geometric sequence beginning with a, with a constant
ratio of r and with n terms.

(a) What is the nth term of the sequence?

(b) Use dots to write the series consisting of the first n terms of this sequence.

(c) Find the sum of this series.

178



APPENDIX A. ACTIVITIES

A.36 Hieroglyphical Algebra

([)0]This activity is based on an activity originally designed by Lee Wayand.
Consider the following addition and multiplication tables:

+ d w a H T K E l o

d K l d o H a w E T

w l o w K d E H T a

a d w a H T K E l o

H o K H l w T d a E

T H d T w E o a K l

K a E K T o d l w H

E w H E d a l T o K

l E T l a K w o H d

o T a o E l H K d w

d = fish

w = lolly-pop

a = skull

H = cinder-block

T = DNA

K = fork

E = man

l = balloon

o = eyeball

· K o l E a w H T d

K d w H T a o l E K

o w l E K a H T d o

l H E K w a T d o l

E T K w H a d o l E

a a a a a a a a a a

w o H T d a l E K w

H l T d o a E K w H

T E d o l a K w H T

d K o l E a w H T d
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A.36.1) Can you tell me which glyph represents 0? How did you arrive at this
conclusion?

A.36.2) Can you tell me which glyph represents 1? How did you arrive at this
conclusion?

A.36.3) A number x has an additive inverse if you can find another number y with

x + y = 0.

and we say that “y is the additive inverse for x.” If possible, find the additive inverse
of every number in the table above.

A.36.4) A number x has a multiplicative inverse if you can find another number y
with

x · y = 1.

and we say that “y is the multiplicative inverse for x.” If possible, find the multi-
plicative inverse of every number in the table above.

A.36.5) If possible, solve the following equations:

(a) l ·x −H = K

(b) R
H
=
K

d

(c)
(
v −K

)(
v + E

)
=d

(d) d
−q

T
+K =

l

E

In each case explain your reasoning.

A.36.6) If possible, solve the following equations:

(a) x ·x = K

(b) v ·v = E

(c) R ·R +R ·H =d

(d) q ·q + T =q

In each case explain your reasoning.
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A.37 The Other Side---Solving Equations

In this activity, we will explore ideas related to solving equations.

A.37.1) Solve the following equation three ways: Using algebra, using the balance,
and with the graph. At each step, the three models should be in complete alignment.

Equations: Balance: Plotting:
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A.37.2) Critically analyze the three “different” methods of solving equations, noting
the advantages and disadvantages of each.

A.37.3) Can you solve quadratic equations using the methods above? If so give an
example. If not, explain why not.

A.37.4) Can you think of an example when the undoing via algebraic manipulation
would fail?

While sometimes we solve equations via a process of algebraic manipulation,
other times we have a formula.

A.37.5) Give a formula for solving linear equations of the form ax + b = 0.
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A.38 Solving Quadratics

Here we explore various methods for solving quadratic equations in one variable.
Please read all instructions carefully.

A.38.1) Is
√

4 = ±2? Explain.

A.38.2) Suppose that
√

4 = ±2? Then evaluate
√

4 +
√

9.

A.38.3) What does your calculator say about
√

4 +
√

9?

A.38.4) In the following problems, you may not use the quadratic formula. But
just for the record, write down the quadratic formula.
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A.38.5) In the following list of equations, solve those that are easy to solve.

(a) (x − 3)(x + 2) = 0

(b) (x − 3)(x + 2) = 1

(c) (2x − 5)(3x + 1) = 0

(d) (x − a)(x − b) = 0

(e) (x − 1)(x − 3)(x + 2)(2x − 3) = 0

A.38.6) Regarding the previous problem, state the property of numbers that made
all but one of the equations easy to solve.

A.38.7) For each part below, write a quadratic equation with the stated solution(s)
and no other solutions.

(a) x = 7 or x = −4

(b) x = p or x = q

(c) x = 3

(d) x =
1 ±
√

5
2

A.38.8) In the following list of equations, solve those that are easy to solve.

(a) x2 = 5

(b) x2 − 4 = 2

(c) x2 − 4x = 2

(d) 2x2 = 1

(e) (x − 2)2 = 5
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A.38.9) Regarding the previous problem, state the property of numbers that made
all but one of the equations easy to solve.

A.38.10) Although 160 is not a square in base ten, what could you add to 160 so
that the result would be a square number?

A.38.11) Consider the polynomial expression x2 + 6x to be a number in base x. We
want to add to this polynomial so that the result is a square in base x.

(a) Use “flats” and “longs” to draw a picture of this polynomial as a number in base
x, adding enough “ones” so that you can arrange the polynomial into a square.

(b) What “feature” of the square does the new polynomial expression represent?

(c) Why does it make sense to call this technique “completing the square”?

(d) Use your picture to help you solve the equation x2 + 6x = 5.
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A.38.12) Complete the square to solve the following equations:

(a) x2 + 3x = 4

(b) x2 + bx = q

(c) 2x2 + 8x = 12

(d) ax2 + bx + c = 0

A.38.13) Find all solutions to x3 − 3x2 + x + 1 = 0. Hint: One solution is x = 1.

A.38.14) Solve the following equation

x5 − 4x4 − 18x3 + 64x2 + 17x − 60 = 0

assuming you know that 1, −1, and 3 are roots.
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A.39 Solving Cubic Equations

To solve the cubic equation x3 + px + q = 0, we use methods that were discovered
and advanced by various mathematicians, including Ferro, Tartaglia, and Cardano.
The approach is organized in three steps. Make notes in the margin as you follow

along.

A.39.1 Step 1: Replace x with u + v

In x3 + px + q = 0, let x = u + v. Show that the result can be written as follows:

u3 + v3 + (3uv + p)(u + v) + q = 0.

A.39.2 Step 2: Set uv to eliminate terms

If 3uv + p = 0, then all of the terms are eliminated except for u3, v3, and constant
terms. Explain why the equation simplifies nicely to:

u3 + v3 + q = 0.

Solve 3uv + p = 0 for v, substitute, and show that we have:

u3 +

(
−p

3u

)3
+ q = 0.

A.39.3 Step 3: Recognize the equation as a quadratic in u3 and solve

By multiplying by u3, show that we get a quadratic in u3:

u6 + qu3 +

(
−p

3

)3
= 0.

Show that this has solutions:

u3 =
−q ±

√
q2 − 4

(
−p
3

)3

2
.

Now, use the facts v = −p/(3u) and x = u + v to write a formula for x:
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x =
3

√√
−q ±

√
q2 − 4

(
−p
3

)3

2
+

−p

3
3

√
−q±

√
q2−4( −p3 )3

2

.

A.39.1) How many values does this formula give for x? From the original equation
x3 + px + q = 0, how many solutions should we expect?

A.39.2) Use the above formula to solve the specific equation x3 − 15x − 4 = 0. Show
that

x =
3
√

2 ±
√
−121 +

5
3
√

2 ±
√
−121

.

Are these values of x real numbers?

A.39.3) Use technology to graph y = x3 − 15x − 4. According to the graph, how
many real roots does the polynomial have? What is going on?

A.39.4) Choose “plus” in the ±, and check that 2+
√
−1 is a cube root of 2+

√
−121.

Use that fact to simplify the above expression for x. What do you notice?

A.39.5) Now choose “minus” in the ± above, and find the value of x. What do you
notice?

In both cases, the formula requires computations with square roots of negative
numbers, but the result is a real solution. These kinds of occurrences were the
historical impetus behind the gradual acceptance of complex numbers.
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A.40 Maximums and Minimums

While you might have encountered completing the square first when solving
quadratic equations, its real power is in transforming the form of an expression to
reveal properties of that expression.

In this activity, we’ll see it in action. We will use only real numbers for x. And we
use the form of each expression to reason about the values that the expression can
have.

A.40.1) Consider the curve f (x) = x2 − 3. Find the x and y values for the maxi-
mum/minimum value(s) of this curve. Explain how you know you are correct.

A.40.2) Consider the curve f (x) = 3(x − 5)2 + 7. Find the x and y values for the
maximum/minimum value(s) of this curve. Explain how you know you are correct.

A.40.3) Consider the curve f (x) = −2(x + 3)2 + 7. Find the x and y values for the
maximum/minimum value(s) of this curve. Explain how you know you are correct.

A.40.4) What type of curve is drawn by f (x) = a(x − h)2 + k? Find the x and y

values for the maximum/minimum value(s) of this curve. Explain how you know
you are correct.

A.40.5) Consider the parabola f (x) = x2 + 4x + 2. Complete the square to put this
expression in the form above and identify the maximum/minimum value(s) of this
curve.

A.40.6) Consider the parabola f (x) = 2x2 − 8x + 6. Complete the square to put this
expression in the form above and identify the maximum/minimum value(s) of this
curve.

A.40.7) Consider the parabola f (x) = 3x2 + 7x − 1. Complete the square to put this
expression in the form above and identify the maximum/minimum value(s) of this
curve.

A.40.8) Given a parabola f (x) = ax2 + bx + c. Complete the square to put this
expression in the form above and identify the maximum/minimum value(s) of this
curve.
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A.40.9) Could you find the same formula found in the previous question by appeal-
ing to the symmetry of the roots?
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A.41 It Takes All Kinds. . .

Data can come in all shapes and sizes. While a line is the simplest approximation,
it might not be the best.

A.41.1) Consider the data below:

x 0 1 2 3
y 8.1 22.1 60.1 165

What type of data is this? To get the “brain juices” flowing here are some choices. It
could be:

(a) A parabola.

(b) An exponential.

(c) A quartic.

(d) Something else.

Hint: Think about the most famous graph of all, the one you know most about. And
see if you can somehow convert the above data to get that type of graph. You will
probably need to make some plots.

A.41.2) Now do the same with this data:

x 1 2 3 4
y 8.3 443.6 24420.8 1364278.6

A.41.3) Now do the same with this data:

x 1 2 3 4 5
y 7 62 220 506 1012
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A.41.4) Here is a sample of semi-log paper. What’s going on here?
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A.42 Sketching Roots

In this activity we seek to better understand the connection between roots and
the plots of polynomials. We will restrict our attention to polynomials with real
coefficients.

First, we need to be precise about the correct usage of some important language:

• Expressions have values.

• Equations have solutions: values of the variables that make the equation true.

• Functions have zeros: input values that give output values of 0.

• Polynomials (i.e., polynomial expressions) have roots.

These ideas are related, of course, as follows: A zero of a polynomial function, p(x),
is a root of the polynomial p(x) and a solution to the equation p(x) = 0.

Please try to use this language correctly: Equations do not have zeros, and
functions do not have solutions.

A.42.1) Give an example of a polynomial, and write a true sentence about related
equations, functions, zeros, equations, and roots.

A.42.2) Sketch the plot of a quadratic polynomial with real coefficients that has:

(a) Two real roots.

(b) One repeated real root.

(c) No real roots.

In each case, give an example of such a polynomial.

A.42.3) Can you have a quadratic polynomial with exactly one real root and 1
complex root? Explain why or why not.

A.42.4) Sketch the plot of a cubic polynomial with real coefficients that has:

(a) Three distinct real roots.
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(b) One real root and two complex roots.

In each case, give an example of such a polynomial.

A.42.5) Can you have a cubic polynomial with no real roots? Explain why or why
not. What about two distinct real roots and one complex root?

A.42.6) For polynomials with real coefficients of degree 1 to 5, classify exactly
which types of roots can be found. For example, in our work above, we classified
polynomials of degree 2 and 3.
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A.43 Geometry and Adding Complex Numbers

Let’s think about the geometry of adding complex numbers. We won’t be alone on
our journey—Louie Llama is here to help us out:

!

Louie Llama how we’ll draw him

A.43.1) Here’s Louie Llama hanging out near the point 0 in the complex plane. Add
4 + 4i to him. Make a table and show in the plane below what happens.

A.43.2) Explain what it means to “add” a complex number to Louie Llama. Describe
the process(es) used when doing this.
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A.43.3) Put Louie Llama back where he started, now add 1 − 5i to him. Make a
table and show what happens in the plane.

A.43.4) Geometrically speaking, what does it mean to “add” complex numbers?
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A.44 Geometry and Multiplying Complex Numbers

Now we’ll investigate the geometry of multiplying complex numbers. In each case,
specify the transformation. For example, if you see a rotation, specify the angle and
the center of rotation.

Louie Llama is here to help us out:

!

Louie Llama how we’ll draw him

A.44.1) Here’s Louie Llama hanging out near the point 0 in the complex plane.
Multiply him by 2. Make a table and show in the plane below what happens. What
transformation do you see?
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A.44.2) Now multiply him by i. Make a table and show in the plane below what
happens. What transformation do you see?
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A.44.3) Now multiply Louie Llama by 1 + i. Make a table and show in the plane
below what happens. What transformation do you see?
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A.44.4) Now multiply Louie Llama by 1 − 2i. Make a table and show in the plane
below what happens. What transformation do you see?

A.44.5) Make a table to summarize your results from the previous problems. Then
describe what happens geometrically when we “multiply” by a complex number.
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A.45 To the Second Degree

In this activity, we seek to understand why roots of polynomials with real coefficients
must always come in conjugate pairs.

A.45.1) Consider your favorite (non-real) complex number, I’ll call it ξ . Find a
polynomial with real coefficients whose degree is as small as possible having your
number as a root. What is the degree of your polynomial?

A.45.2) I’ll call the polynomial found in the first problem s(x). Let f (x) be some
other polynomial with

f (ξ ) = 0.

I claim s(x)|f (x). Explain why if s(x) - f (x) then there exist q(x) and r(x) with

f (x) = s(x) · q(x) + r(x) with deg(r) < deg(s).

A.45.3) Plug in ξ for x in the equation above. What does this tell you about r(ξ )?
Is this possible?

A.45.4) Explain why complex roots must always come in conjugate pairs. Also plot
some conjugate pairs in the complex plane and explain what “conjugation” means
geometrically.
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A.46 Broken Records

Fill in the following table:

modulus: 2 3 4 5 6 7 8 9 10 11

2 · 1 ≡

2 · 2 ≡

2 · 3 ≡

2 · 4 ≡

2 · 5 ≡

2 · 6 ≡

2 · 7 ≡

2 · 8 ≡

2 · 9 ≡

2 · 10 ≡

2 · 11 ≡

A.46.1) Find patterns in your table above, clearly describe the patterns you find.

A.46.2) Consider the patterns you found. Can you explain why they happen?

A.46.3) When does a column have a 0? When does a column have a 1?

A.46.4) Describe what would happen if you extend the table for bigger moduli and
bigger multiplicands.
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modulus: 2 3 4 5 6 7 8 9 10 11

3 · 1 ≡

3 · 2 ≡

3 · 3 ≡

3 · 4 ≡

3 · 5 ≡

3 · 6 ≡

3 · 7 ≡

3 · 8 ≡

3 · 9 ≡

3 · 10 ≡

3 · 11 ≡

A.46.5) Find patterns in your table above, clearly describe the patterns you find.

A.46.6) Consider the patterns you found. Can you explain why they happen?

A.46.7) When does a column have a 0? When does a column have a 1?

A.46.8) Can you describe what would happen if you extend the table for bigger
moduli and bigger multiplicands?

A.46.9) Describe precisely when a column of the table will contain representatives
for each integer modulo n. Explain why your description is true.
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A.47 On the Road

A.47.1) Steve likes to drive the city roads. Suppose he is driving down a road with
three traffic lights. For this activity, we will ignore yellow lights, and pretend that
lights are either red or green.

(a) How many ways could he see one red light and two green lights?

(b) How many ways could he see one green light and two red lights?

(c) How many ways could he see all red lights?

A.47.2) Now suppose Steve is driving down a road with four traffic lights.

(a) How many ways could he see two red light and two green lights?

(b) How many ways could he see one green light and three red lights?

(c) How many ways could he see all green lights?

A.47.3) In the following chart let n be the number of traffic lights and k be the
number of green lights seen. In each square, write the number of ways this number
of green lights could be seen while Steve drives down the street.
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

Describe any patterns you see in your table and try to explain them in terms of
traffic lights.
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A.48 Pascal’s Triangle: Fact or Fiction?

Consider the numbers
(
n

k

)
. These numbers can be arranged into a “triangle” form

that is popularly called “Pascal’s Triangle”. Assuming that the “top” entry is
(
0
0

)
= 1,

we write the numbers row by row, with n fixed for each row. Write out the first 7
rows of Pascal’s Triangle.

Note that there are many patterns to be found. Your job is to justify the following
patterns in the context of relevant models. Here are three patterns. Can you explain
them?

(a)
(
n

k

)
=

(
n

n − k

)
.

(b) The sum of the entries in each row is 2n.

(c)
(
n

k − 1

)
+

(
n

k

)
=

(
n + 1
k

)
.
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A.49 You Can Count on It!

A.49.1) The Diet-Lite restaurant offers 5 entrées and 8 side dishes. If you were
going to select a dinner with one entrée and one side dish, how many different
dinners could you order?

A.49.2) In addition to the 5 entrées and 8 side dishes, The Diet-Lite restaurant
offers 12 desserts and 6 kinds of drinks. If you were going to select a dinner with
one entrée, one side dish, one dessert, and one drink, how many different dinners
could you order?

A.49.3) A standard Ohio license plate consists of two letters followed by two digits
followed by two letters. How many different standard Ohio license plates can be
made if:

(a) There are no more restrictions on the numbers or letters.

(b) There are no repeats of numbers or letters.

A.49.4) Seven separate coins are flipped. How many different results are possible
(e.g., HTHHTHT is different from THHHTTH)?

A.49.5) There are 10 students in the auto mechanics club. Elections are coming up
and the members are holding nominations for President, Vice President, Secretary,
and Treasurer. If all members are eligible, how many possible slates of nominees
are there?

A.49.6) Now the club is not electing officers anymore, but instead deciding to send
3 delegates to the state auto mechanics club convention. How many possible groups
of delegates can be made?

A.49.7) Describe how to generalize the previous two questions to n members of the
club and k offices or delegates.

A.49.8) A pizza shop always puts cheese on their pizzas. If the shop offers n
additional toppings, how many different pizzas can be ordered (Note: A plain cheese
pizza is an option)?
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A.49.9) The Pig-Out restaurant offers 5 entrees, 8 side dishes, 12 desserts, and 6
kinds of drinks. If you were going to select a dinner with 3 entrées, 4 side dishes, 7
desserts, and one drink, how many different dinners could you order?
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A.50 Which Road Should We Take?

A.50.1) Consider a six-sided die. Without actually rolling a die, guess the number
of 1’s, 2’s, 3’s, 4’s, 5’s, and 6’s you would obtain in 50 rolls. Record your predictions
in the chart below:

Predictions

# of 1’s # of 2’s # of 3’s # of 4’s # of 5’s # of 6’s Total

Now roll a die 50 times and record the number of 1’s, 2’s, 3’s, 4’s, 5’s, and 6’s
you obtain.

Experimental Results

# of 1’s # of 2’s # of 3’s # of 4’s # of 5’s # of 6’s Total

How did you come up with your predictions? How do your predictions compare with
your actual results? Now make a chart to combine your data with that of the rest of
the class.

Experiment 1 We investigated the results of throwing one die and recording what
we saw (a 1, a 2, ..., or a 6). We said that the probability of an event (for example,
getting a “3” in this experiment) predicts the frequency with which we expect to
see that event occur in a large number of trials. You argued the P(seeing 3) = 1/6
(meaning we expect to get a 3 in about 1/6 of our trials) because there were six
different outcomes, only one of them is a 3, and you expected each outcome to occur
about the same number of times.

Experiment 2 We are now investigating the results of throwing two dice and recording
the sum of the faces. We are trying to analyze the probabilities associated with these
sums. Let’s focus first on P(sum = 2) =?. We might have some different theories,
such as the following:
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Theory 1 P(sum = 2) = 1/11.
It is proposed that a sum of 2 was 1 out of the 11 possible sums {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Theory 2 P(sum = 2) = 1/21.
It is proposed that a sum of 2 was 1 of 21 possible results, counting 1 + 3 as the

same as 3 + 1:

1 + 1 − − − − −

2 + 1 2 + 2 − − − −

3 + 1 3 + 2 3 + 3 − − −

4 + 1 4 + 2 4 + 3 4 + 4 − −

5 + 1 5 + 2 5 + 3 5 + 4 5 + 5 −

6 + 1 6 + 2 6 + 3 6 + 4 6 + 5 6 + 6

A.50.2) Propose your own Theory 3.

A.50.3) Test all theories by computing P(2), P(3), . . . , P(12) for each theory and
comparing to the dice rolls recorded by the class. What do you notice?

A.50.4) Which theory do you like best? Why?

A.50.5) How could we test our theory further?
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A.51 Lumpy and Eddie

Two ancient philosophers, Lumpy and Eddie, were sitting on rocks flipping coins.

A.51.1) Lumpy and Eddie wondered about the probability of obtaining both a head
and a tail. Here is how it went:

Eddie argued the following: “Look Lumpy, it’s clear to me that when we flip two coins,
we should get one of each about half the time because there are two possibilities:
They’re either the same or different.” Lumpy, on the other hand, argued this way:
“Eddie, stop being a wise guy! If we flipped two coins, we should expect both a head
and tail to come up about a third of the time because there are only three possibilities:
two heads, two tails, and one of each.”

Which, if any, of these two guys is right? Is there another answer?

A.51.2) Next Lumpy and Eddie threw a third coin in the mix and wondered about
the probability of obtaining 2 heads and a tail or 2 tails and a head.

(a) What would Lumpy say in this case?

(b) What would Eddie say in this case?

Be sure to clearly explain why you think they would answer in the way you suggest.
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A.52 Go Climb a Tree!

In this activity, we’ll evaluate the probabilities of complex events using tree diagrams,
fraction arithmetic, and counting.

A.52.1) Give a story problem that is modeled by the expression:

3
7
×

2
5

Let the start of the story be: “2/5 of the class are girls.” Once you have the story,
solve it using pictures (use rectangles for the wholes) and explain why it makes
sense that multiplying fractions is the same as multiplying the numerators and
multiplying the denominators.

A.52.2) The Weather Channel has predicted that there is a 70% chance of rain
today, a 20% chance of rain tomorrow, and a 40% chance of rain the day after
tomorrow. Use a tree diagram to help answer the following:

(a) What is the probability that it will rain today and not rain tomorrow?

(b) What is the probability it will rain on exactly one of the first two days?

(c) What is the probability that it will rain today, not rain tomorrow, and rain the
following day?

(d) What is the probability that it will rain on exactly two of the three days?

(e) What is the probability it will rain on all three days?

(f) What is the probability it won’t rain at all?

(g) What is the probability it will rain on at least one of the days?

A.52.3) The Indians and the Yankees are to face each other in a best-of-seven series.
The probability that the Indians will win any game is 30%.

(a) What is the probability that the Indians win games 1, 3, 4, and 6 to win the
series?

(b) What is the probability that the Indians win the series in exactly 6 games?
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(c) What is the probability that the Indians win the series?

A.52.4) Fred the Slob has an unreliable car that starts only 65% of the days. If
the car doesn’t start, poor Fred must walk the one block to work. This week, he is
slated to work 6 days (Monday through Saturday).

(a) What is the probability that Fred will walk on Monday and Wednesday and drive
the other days?

(b) What is the probability that Fred will drive on exactly 4 of the days?

(c) What is the probability that poor Fred will have to walk on at least two of the
days?

A.52.5) Use the techniques of this activity (i.e., using a special case and fraction
arithmetic to help investigate a more general case) to find the probability of passing
a 10-question multiple choice test by guessing if you must get 70% or more correct
to pass.
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A.53 They’ll Fall for Anything!

What is incorrect about the following reasoning? Be specific!

A.53.1) Herman says that if you pick a United States citizen at random, the
probability of selecting a citizen from Indiana is because Indiana is one of 50 equally
likely states to be selected.

A.53.2) Jerry has set up a game in which one wins a prize if he/she selects an
orange chip from a bag. There are two bags to choose from. One has 2 orange and
4 green chips. The other bag has 7 orange and 7 green chips. Jerry argues that you
have a better chance of winning by drawing from the second bag because there are
more orange chips in it.

A.53.3) Gil the Gambler says that it is just as likely to flip 5 coins and get exactly 3
heads as it is to flip 10 coins and get exactly 6 heads because

3
5
=

6
10

A.53.4) We draw 4 cards without replacement from a deck of 52. Know-it-all Ned

says the probability of obtaining all four 7’s is
4(
52
4

) because there are ways to select

the
(
52
4

)
4 cards and there are four 7’s in the deck.

A.53.5) At a festival, Stealin’ Stan gives Crazy Chris the choice of one of three
prizes—each of which was hidden behind a door. One of the doors has a fabulous
prize behind it while the other two doors each have a “zonk” (a free used tube of
toothpaste, etc.). Crazy Chris chooses Door #1. Before opening that door, Stealin’
Stan shows Chris that hidden behind Door #3 is a zonk and gives Chris the option
to keep Door #1 or switch to Door #2. Chris says, “Big deal. It doesn’t help my
chances of winning to switch or not switch.”
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