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Preface

These notes are designed with future middle grades mathematics teachers in mind.
While most of the material in these notes would be accessible to an accelerated
middle grades student, it is our hope that the reader will find these notes both
interesting and challenging. In some sense we are simply taking the topics from
a middle grades class and pushing “slightly beyond” what one might typically see
in schools. In particular, there is an emphasis on the ability to communicate
mathematical ideas. Three goals of these notes are:

• To enrich the reader’s understanding of both numbers and algebra. From the
basic algorithms of arithmetic—all of which have algebraic underpinnings—to the
existence of irrational numbers, we hope to show the reader that numbers and
algebra are deeply connected.

• To place an emphasis on problem solving. The reader will be exposed to problems
that “fight-back.” Worthy minds such as yours deserve worthy opponents. Too
often mathematics problems fall after a single “trick.” Some worthwhile problems
take time to solve and cannot be done in a single sitting.

• To challenge the common view that mathematics is a body of knowledge to be
memorized and repeated. The art and science of doing mathematics is a process
of reasoning and personal discovery followed by justification and explanation.
We wish to convey this to the reader, and sincerely hope that the reader will pass
this on to others as well.

In summary—you, the reader, must become a doer of mathematics. To this end,
many questions are asked in the text that follows. Sometimes these questions



are answered; other times the questions are left for the reader to ponder. To let
the reader know which questions are left for cogitation, a large question mark is
displayed:

?
The instructor of the course will address some of these questions. If a question is
not discussed to the reader’s satisfaction, then we encourage the reader to put on a
thinking-cap and think, think, think! If the question is still unresolved, go to the
World Wide Web and search, search, search!

This document is open-source. It is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) License. Loosely speaking,
this means that this document is available for free. Anyone can get a free copy of
this document from the following sites:

http://www.math.osu.edu/˜snapp/1165/

http://www.math.osu.edu/˜findell.2

Please report corrections, suggestions, gripes, complaints, and criticisms to Bart
Snapp at snapp@math.osu.edu or Brad Findell at findell.2@osu.edu
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notes or suggesting problems. They are: Camille Brooks, Michelle Bruno, Marissa
Colatosti, Katie Colby, Anthony ‘Tino’ Forneris, Amanda Genovise, Melissa Peterson,
Nicole Petschenko, Jason Reczek, Christina Reincke, David Seo, Adam Shalzi, Allice
Son, Katie Strle, and Beth Vaughn.

4



In 2009, Greg Williams, a Master of Arts in Teaching student at Coastal Carolina
University, worked with Bart Snapp to produce an early draft of the chapter on
isometries.

In the Winter of 2010 and 2011, Bart Snapp gave a new set of lectures at the Ohio
State University. In this course the previous lecture notes were heavily modified,
resulting in a new text Parallels in Geometry. Since 2012, Bart Snapp and Brad
Findell have continued revising these notes annually. In particular, during 2014
and 2015, exposition and activities were added to address ideas from the Common
Core State Standards (CCSS). Many of the individual standards are included as
margin notes that begin “CCSS.”

5



Contents

Preface 3

1 Proof by Picture 10

1.1 Basic Set Theory . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Tessellations . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Proof by Picture . . . . . . . . . . . . . . . . . . . . . . 26

2 Compass and Straightedge Constructions 39

2.1 Constructions . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Anatomy of Figures . . . . . . . . . . . . . . . . . . . . 48
2.3 Trickier Constructions . . . . . . . . . . . . . . . . . . . 54

3 Folding and Tracing Constructions 63

3.1 Constructions . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Anatomy of Figures Redux . . . . . . . . . . . . . . . . 74

4 Toward Congruence and Similarity 77

4.1 Transformations, Symmetry, and Congruence . . . . . . 77
4.2 Euclidean and non-Euclidean Geometries . . . . . . . . 82



CONTENTS

4.3 Assumptions in Mathematics . . . . . . . . . . . . . . . 86
4.4 Dilations, Scaling, and Similarity . . . . . . . . . . . . . 91
4.5 Length, Area, and Volume . . . . . . . . . . . . . . . . 103

5 Coordinate Constructions 104

5.1 Constructions . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Brave New Anatomy of Figures . . . . . . . . . . . . . . 110
5.3 Constructible Numbers . . . . . . . . . . . . . . . . . . 116
5.4 Impossibilities . . . . . . . . . . . . . . . . . . . . . . . 125
5.5 Functions and More Functions . . . . . . . . . . . . . . 130

6 City Geometry 131

6.1 Welcome to the City . . . . . . . . . . . . . . . . . . . . 131
6.2 Anatomy of Figures and the City . . . . . . . . . . . . . 137
6.3 Getting Work Done . . . . . . . . . . . . . . . . . . . . 145

A Activities 152

A.1 It’s What the Book Says . . . . . . . . . . . . . . . . . . 153
A.2 Forget Something? . . . . . . . . . . . . . . . . . . . . . 155
A.3 Measuring Area . . . . . . . . . . . . . . . . . . . . . . 156
A.4 Suitable Precision in Language and Notation . . . . . . 157
A.5 Tilted Square . . . . . . . . . . . . . . . . . . . . . . . . 160
A.6 Pythagorean Theorem . . . . . . . . . . . . . . . . . . . 161
A.7 Angles in a Funky Shape . . . . . . . . . . . . . . . . . 163
A.8 Trapezoid Area . . . . . . . . . . . . . . . . . . . . . . . 164
A.9 Triangle Investigation . . . . . . . . . . . . . . . . . . . 166
A.10 UnMessUpable Figures . . . . . . . . . . . . . . . . . . 167
A.11 Triangle Centers . . . . . . . . . . . . . . . . . . . . . . 169
A.12 Lines in Triangles . . . . . . . . . . . . . . . . . . . . . 171
A.13 Isosceles Bisectors . . . . . . . . . . . . . . . . . . . . . 172
A.14 About Medians . . . . . . . . . . . . . . . . . . . . . . . 175

7



CONTENTS

A.15 Verifying Our Constructions . . . . . . . . . . . . . . . 178
A.16 Of Angles and Circles . . . . . . . . . . . . . . . . . . . 180
A.17 More Circles . . . . . . . . . . . . . . . . . . . . . . . . 183
A.18 Quadrilateral Diagonals . . . . . . . . . . . . . . . . . . 185
A.19 Congruence via Transformations . . . . . . . . . . . . . 187
A.20 More Transformations . . . . . . . . . . . . . . . . . . . 191
A.21 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . 193
A.22 Congruence Criteria . . . . . . . . . . . . . . . . . . . . 195
A.23 Parallels . . . . . . . . . . . . . . . . . . . . . . . . . . 199
A.24 Midsegments . . . . . . . . . . . . . . . . . . . . . . . . 200
A.25 Similarities . . . . . . . . . . . . . . . . . . . . . . . . . 201
A.26 Side-Splitter Theorems . . . . . . . . . . . . . . . . . . 206
A.27 Trigonometry Checkup . . . . . . . . . . . . . . . . . . 209
A.28 Please be Rational . . . . . . . . . . . . . . . . . . . . . 212
A.29 Rep-Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . 214
A.30 Rep-Tiles Repeated . . . . . . . . . . . . . . . . . . . . 216
A.31 Scaling Area . . . . . . . . . . . . . . . . . . . . . . . . 218
A.32 Turn Up the Volume! . . . . . . . . . . . . . . . . . . . 219
A.33 Coordinate Constructions . . . . . . . . . . . . . . . . . 222
A.34 Bola, Para Bola . . . . . . . . . . . . . . . . . . . . . . 224
A.35 More Medians . . . . . . . . . . . . . . . . . . . . . . . 226
A.36 Constructible Numbers . . . . . . . . . . . . . . . . . . 228
A.37 Constructible Numbers, Part 2 . . . . . . . . . . . . . . 231
A.38 Impossibilities . . . . . . . . . . . . . . . . . . . . . . . 233
A.39 Area and Perimeter . . . . . . . . . . . . . . . . . . . . 234
A.40 Reading Information from a Graph . . . . . . . . . . . . 237
A.41 Circular Trigonometry . . . . . . . . . . . . . . . . . . . 239
A.42 Parametric Equations . . . . . . . . . . . . . . . . . . . 242
A.43 Parametric Plots of Circles . . . . . . . . . . . . . . . . 244
A.44 Eclipse the Ellipse . . . . . . . . . . . . . . . . . . . . . 246
A.45 Taxicab Distance . . . . . . . . . . . . . . . . . . . . . . 249
A.46 Understanding and Using Absolute Value . . . . . . . . 250
A.47 The Path Not Taken . . . . . . . . . . . . . . . . . . . . 252

8



CONTENTS

A.48 Midsets Abound . . . . . . . . . . . . . . . . . . . . . . 254
A.49 Tenacity Paracity . . . . . . . . . . . . . . . . . . . . . 257

B References and Further Reading 262

C Index 264

9



1 Proof by Picture

A picture is worth a thousand words.

—Unknown

1.1 Basic Set Theory

The word set has more definitions in the dictionary than any other word. In our
case we’ll use the following definition:

Definition A set is any collection of elements for which we can always tell
whether an element is in the set or not.

Question What are some examples of sets? What are some examples of things
that are not sets?

?

If we have a set X and the element x is inside of X , we write:

x ∈ X



CHAPTER 1. PROOF BY PICTURE

This notation is said “x in X .” Pictorially we can imagine this as:

Sometimes the elements of a set can be listed or described by words or formulas.
In such cases, we often use curly braces { and } to enclose the elements of the set or
a description of the set. For example, if X = {2, 3, 7}, and Y = {even numbers}, then
each of the following statements are true:

2 ∈ X 4 < X 6 ∈ Y 9 < Y.

Definition A subset Y of a set X is a set Y such that every element of Y is
also an element of X . We denote this by:

Y ⊆ X

If Y is contained in X , we will sometimes loosely say that X is bigger than Y .

Question Can you think of a set X and a subset Y where saying X is bigger
than Y is a bit misleading?

?
Sometimes it is useful to list a set of sets. For example, if X = {2,3,7}, then

Y = {{2}, {2,7}, {3,7}}

is a set containing a few subsets of X .

11



1.1. BASIC SET THEORY

Question How many elements are in the set Y?

?

Question How is the meaning of the symbol ∈ different from the meaning of
the symbol ⊆?

?
1.1.1 Union

Definition Given two sets X and Y , X union Y is the set of all the elements
in X or Y . We denote this by X ∪ Y .

Pictorially, we can imagine this as:

Warning Note that this definition uses the inclusive or. In everyday language,
it is common to use the word “or” in an exclusive sense, meaning, “but not
both.” But in mathematics, the word “or” is almost always used inclusively.
Thus, the phrase “A or B” allows for the possibility of both.

Question What about the above picture shows that “or” is used inclusively in
the definition of union?

?
12
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1.1.2 Intersection

Definition Given two sets X and Y , X intersect Y is the set of all the elements
that are simultaneously in X and in Y . We denote this by X ∩ Y .

Pictorially, we can imagine this as:

Question Consider the sets X and Y below:

What is X ∩ Y?

I’ll take this one: Nothing! The set with no elements is called the empty set. We
sometimes denote the empty set as {}, but it is more common to denote the empty
set with the symbol ∅.

Question How is {∅} different from ∅?

?

13



1.1. BASIC SET THEORY

Question The empty set is a subset of every set. Why does this makes sense?
Why does it make sense to say the empty set rather than an empty set?

?

1.1.3 Complement

Definition Given two sets X and Y , X complement Y is the set of all the
elements that are in X and are not in Y . We denote this by X − Y .

Pictorially, we can imagine this as:

Question Check out the two sets below:

What is X − Y? What is Y − X?

?
14
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1.1.4 Putting Things Together

OK, let’s try something more complex:

Question Prove that:

X ∪ (Y ∩ Z ) = (X ∪ Y ) ∩ (X ∪ Z )

Proof Look at the left-hand side of the equation first. We can represent the

elements in Y ∩ Z with shaded region in the following diagram:

So the union of this region with X is represented the shaded region in this

diagram.

Now, looking at the right-hand side of the equation, X ∪ Y is represented by this

15
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shaded region:

And X ∪ Z is represented by this shaded region:

The region shaded in both of the diagrams, which is the intersection of X ∪ Y

16
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and X ∪ Z , is represented by the shaded region below.

Comparing the diagrams representing the left-hand and right-hand sides of the

equation, we see that the same regions are shaded, and so we are done.

17



1.1. BASIC SET THEORY

Problems for Section 1.1

(1) Given two sets X and Y , explain what is meant by X ∪ Y .

(2) Given two sets X and Y , explain what is meant by X ∩ Y .

(3) Given two sets X and Y , explain what is meant by X − Y .

(4) Explain the difference between the symbols ∈ and ⊆.

(5) How is {∅} different from ∅?

(6) List all the subsets of the set X = {2, 3, 5, 7}. In general, how many
subsets are there of an n-element set? Explain why this makes
sense. Does your formula work for a 0-element set? Explain.

(7) Draw a Venn diagram for the set of elements that are in X or Y but
not both. How does it differ from the Venn diagram for X ∪ Y?

(8) If we let X be the set of “right triangles” and we let Y be the set of
“equilateral triangles” does the picture below show the relationship
between these two sets?

Explain your reasoning.

(9) If X = {1,2,3,4,5} and Y = {3,4,5,6} find:

(a) X ∪ Y

(b) X ∩ Y

(c) X − Y

(d) Y − X

In each case explain your reasoning.

(10) Let nZ represent the integer multiples of n. So for example:

3Z = {. . . ,−12,−9,−6,−3,0,3,6,9,12, . . . }

Compute the following:

(a) 3Z ∩ 4Z

(b) 2Z ∩ 5Z
(c) 3Z ∩ 6Z
(d) 4Z ∩ 6Z
(e) 4Z ∩ 10Z

In each case explain your reasoning.

(11) Make a general rule for intersecting sets of the form nZ and mZ.
Explain why your rule works.

(12) Prove that:
X = (X ∩ Y ) ∪ (X − Y )

(13) Prove that:
X − (X − Y ) = (X ∩ Y )

(14) Prove that:
X ∪ (Y − X ) = (X ∪ Y )

(15) Prove that:
X ∩ (Y − X ) = ∅

(16) Prove that:

(X − Y ) ∪ (Y − X ) = (X ∪ Y ) − (X ∩ Y )

(17) Prove that:
X ∪ (Y ∩ Z ) = (X ∪ Y ) ∩ (X ∪ Z )

(18) Prove that:
X ∩ (Y ∪ Z ) = (X ∩ Y ) ∪ (X ∩ Z )

(19) Prove that:
X − (Y ∩ Z ) = (X − Y ) ∪ (X − Z )

(20) Prove that:
X − (Y ∪ Z ) = (X − Y ) ∩ (X − Z )

(21) If X ∪ Y = X , what can we say about the relationship between the
sets X and Y? Explain your reasoning.

(22) If X ∩ Y = X , what can we say about the relationship between the
sets X and Y? Explain your reasoning.

(23) If X − Y = ∅, what can we say about the relationship between the
sets X and Y? Explain your reasoning.

18
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1.2 Tessellations

Go to the Internet and look up M.C. Escher. He was an artist. Look at some
of his work. When you do your search be sure to include the word “tessellation”
Back already? Very good. Sometimes Escher worked with tessellations. What’s a
tessellation? I’m glad you asked:

Definition A tessellation is a pattern of polygons fitted together to cover the
entire plane without overlapping.

While it is impossible to actually cover the entire plane with shapes, if we give you
enough of a tessellation, you should be able to continue it’s pattern indefinitely.
Here are pieces of tessellations:

On the left we have a tessellation of a square and an octagon. On the right we have
a “brick-like” tessellation.

Definition A tessellation is called a regular tessellation if it is composed of
copies of a single regular polygon and these polygons meet vertex to vertex.

Example 1.2.1) Here are some examples of regular tessellations:

Johannes Kepler, who lived from 1571–1630, was one of the first people to study
tessellations. He certainly knew the next theorem:

19



1.2. TESSELLATIONS

Theorem 1.2.2 There are only 3 regular tessellations.

Question Why is the theorem above true?

?
Since one can prove that there are only three regular tessellations, and we have

shown three above, then that is all of them. On the other hand there are lots of
nonregular tessellations. Here are two different ways to tessellate the plane with a
triangle:

Here is a way that you can tessellate the plane with any old quadrilateral:

1.2.1 Tessellations and Art

How does one make art with tessellations? To start, a little decoration goes a long
way. Check this out: Decorate two squares as such:

20
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Tessellate them randomly in the plane to get this lightning-like picture:

Question What sort of picture do you get if you tessellate these decorated
squares randomly in a plane?

?

Another way to go is to start with your favorite tessellation:

21
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Then you modify it a bunch to get something different:

Question What kind of art can you make with tessellations?

?
I’m not a very good artist, but I am a mathematician. So let’s use a tessellation

to give a proof! Let me ask you something:

Question What is the most famous theorem in mathematics?

Probably the Pythagorean Theorem comes to mind. Let’s recall the statement of the
Pythagorean Theorem:

Theorem 1.2.3 (Pythagorean Theorem) Given a right triangle, the sum of
the squares of the lengths of the two legs equals the square of the length of the
hypotenuse. Symbolically, if a and b represent the lengths of the legs and c is
the length of the hypotenuse,

a
c

b

22
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then
a2 + b2 = c2.

Let’s give a proof! Check out this tessellation involving 2 squares:

Question How does the picture above “prove” the Pythagorean Theorem?

Proof (Solution) The white triangle is our right triangle. The area of the middle

overlaid square is c2, the area of the small dark squares is a2, and the area of

the medium lighter square is b2. Now label all the “parts” of the large overlaid

23



1.2. TESSELLATIONS

square:

2

3

4

1

5

From the picture we see that

a2 = {3 and 4}

b2 = {1, 2, and 5}

c2 = {1, 2, 3, 4, and 5}

Hence

c2 = a2 + b2

Since we can always put two squares together in this pattern, this proof will

work for any right triangle.

24
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Problems for Section 1.2

(1) Show two different ways of tessellating the plane with a given scalene
triangle. Label your picture as necessary.

(2) Show how to tessellate the plane with a given quadrilateral. Label
your picture.

(3) Show how to tessellate the plane with a nonregular hexagon. Label
your picture.

(4) Give an example of a polygon with 9 sides that tessellates the plane.

(5) Give examples of polygons that tessellate and polygons that do not
tessellate.

(6) Give an example of a triangle that tessellates the plane where both
4 and 8 angles fit around each vertex.

(7) True or False: Explain your conclusions.

(a) There are exactly 5 regular tessellations.

(b) Any quadrilateral tessellates the plane.

(c) Any triangle will tessellate the plane.

(d) If a triangle is used to tessellate the plane, then it is always the
case that exactly 6 angles will fit around each vertex.

(e) If a polygon has more than 6 sides, then it cannot tessellate the
plane.

(8) Given a regular tessellation, what is the sum of the angles around
a given vertex?

(9) Given that the regular octagon has 135 degree angles, explain why
you cannot give a regular tessellation of the plane with a regular
octagon.

(10) Fill in the following table:

Regular Does it Measure If it tessellates, how
n-gon tessellate? of an angle many surround each vertex?

3-gon
4-gon
5-gon
6-gon
7-gon
8-gon
9-gon
10-gon

Hint: A regular n-gon has interior angles of 180(n − 2)/n degrees.

(a) What do the shapes that tessellate have in common?
(b) Make a graph with the number of sides of an n-gon on the hori-

zontal axis and the measure of a single angle on the vertical axis.
Briefly describe the relationship between the number of sides of
a regular n-gon and the measure of one of its angles.

(c) What regular polygons could a bee use for building hives? Give
some reasons that bees seem to use hexagons.

(11) Considering that the regular n-gon has interior angles of 180(n −
2)/n degrees, and Problem (10) above, prove that there are only 3
regular tessellations of the plane.

(12) Explain how the following picture “proves” the Pythagorean Theo-
rem.

25
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1.3 Proof by Picture

Pictures generally do not constitute a proof on their own. However, a good picture
can show insight and communicate concepts better than words alone. In this
section we will show you pictures giving the idea of a proof and then ask you to
supply the words to finish off the argument.

1.3.1 Proofs Involving Right Triangles

Let’s start with something easy:

Question Explain how the following picture “proves” that the area of a right
triangle is half the base times the height.

?
That wasn’t so bad was it? Now for a game of whose-who:

Question What is the most famous theorem in mathematics?

Probably the Pythagorean Theorem comes to mind. Let’s recall the statement of the
Pythagorean Theorem:

Theorem 1.3.1 (Pythagorean Theorem) Given a right triangle, the sum of
the squares of the lengths of the two legs equals the square of the length of the
hypotenuse. Symbolically, if a and b represent the lengths of the legs and c is

26
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the length of the hypotenuse,

a
c

b

then
a2 + b2 = c2.

Question What is the converse to the Pythagorean Theorem? Is it true? How
do you prove it?

?
While everyone may know the Pythagorean Theorem, not as many know how to

prove it. Euclid’s proof goes kind of like this:
Consider the following picture:

27
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Now, cut up the squares a2 and b2 in such a way that they fit into c2 perfectly.
When you give a proof that involves cutting up the shapes and putting them back
together, it is called a dissection proof. The trick to ensure that this is actually a
proof is in making sure that your dissection will work no matter what right triangle
you are given. Does it sound complicated? Well it can be.

Is there an easier proof? Sure, look at:

Question How does the picture above “prove” the Pythagorean Theorem?

Proof (Solution) Both of the large squares above are the same size. Inside the

large squares, the shaded triangles have been rearranged. Thus, the unshaded

regions of the two figures above must have the same area. The large white

square on the left has an area of c2 and the two white squares on the right have

a combined area of a2 + b2. Thus we see that:

c2 = a2 + b2

Now a paradox:

28
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Paradox What is wrong with this picture?

Question How does this happen?

?

1.3.2 Proofs Involving Boxy Things

Consider the problem of Doubling the Cube. If a mathematician asks us to double
a cube, he or she is asking us to double the volume of a given cube. One may be
tempted to merely double each side, but this doesn’t double the volume!

Question Why doesn’t doubling each side of the cube double the volume of
the cube?

?
Well, let’s answer an easier question first. How do you double the area of a

29
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square? Does taking each side and doubling it work?

No! You now have four times the area. So you cannot double the area of a square
merely by doubling each side. What about for the cube? Can you double the volume
of a cube merely by doubling the length of every side? Check this out:

Ah, so the answer is again no. If you double each side of a cube you have 8 times
the volume.

Question What happens to the area of a square if you multiply the sides by
an arbitrary integer? What about the volume of a cube? Can you explain what
is happening here?

?
1.3.3 Proofs Involving Infinite Sums

As is our style, we will start off with a question:
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Question Can you add up an infinite number of terms and still get a finite
number?

Consider 1/3. Actually, consider the decimal notation for 1/3:

1
3
= .333333333333333333333333333333 . . .

But this is merely the sum:

.3 + .03 + .003 + .0003 + .00003 + .000003 + · · ·

It stays less than 1 because the terms get so small so quickly. Are there other
infinite sums of this sort? You bet! Check out this picture:

Question Explain how the picture above “proves” that:

1
4
+

(1
4

)2
+

(1
4

)3
+

(1
4

)4
+

(1
4

)5
+ · · · =

1
3

Proof (Solution) Let’s take it in steps. If the big triangle has area 1, the area
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of the shaded region below is 1/4.

We also see that the area of the shaded region below

is:
1
4
+

(1
4

)2

Continuing on in this fashion we see that the area of all the shaded regions is:

1
4
+

(1
4

)2
+

(1
4

)3
+

(1
4

)4
+

(1
4

)5
+ · · ·

But look, the unshaded triangles have twice as much area as the shaded triangle.

Thus the shaded triangles must have an area of 1/3.

1.3.4 Thinking Outside the Box

A calisson is a French candy that sort of looks like two equilateral triangles stuck
together. They usually come in a hexagon-shaped box.
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Question How do the calissons fit into their hexagon-shaped box?

If you start to put the calissons into a box, you quickly see that they can be
placed in there with exactly three different orientations:

Theorem 1.3.2 In any packing, the number of calissons with a given orienta-
tion is exactly one-third the total number of calissons in the box.

Look at this picture:

Question How does the picture above “prove” Theorem 1.3.2? Hint: Think
outside the box!

?
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Problems for Section 1.3

(1) Explain the rule
even + even = even

in two different ways. First give an explanation based on pictures.
Second give an explanation based on algebra.

(2) Explain the rule
odd + even = odd

in two different ways. First give an explanation based on pictures.
Second give an explanation based on algebra.

(3) Explain the rule
odd + odd = even

in two different ways. First give an explanation based on pictures.
Second give an explanation based on algebra.

(4) Explain the rule
even · even = even

in two different ways. First give an explanation based on pictures.
Second give an explanation based on algebra.

(5) Explain the rule
odd · odd = odd

in two different ways. First give an explanation based on pictures.
Second give an explanation based on algebra.

(6) Explain the rule
odd · even = even

in two different ways. First give an explanation based on pictures.
Second give an explanation based on algebra.

(7) Explain how the following picture “proves” that the area of a right
triangle is half the base times the height.

(8) Suppose you know that the area of a right triangle is half the base
times the height. Explain how the following picture “proves” that
the area of every triangle is half the base times the height.

Now suppose that Geometry Giorgio attempts to solve a similar
problem. Again knowing that the area of a right triangle is half the
base times the height, he draws the following picture:

Geometry Giorgio states that the diagonal line cuts the rectangle
in half, and thus the area of the triangle is half the base times the
height. Is this correct reasoning? If so, give a complete explanation.
If not, give correct reasoning based on Geometry Giorgio’s picture.

(9) Suppose you know that the area of a right triangle is half the base
times the height. Explain how the following picture “proves” that
the area of any triangle is half the base times the height. Note, this
way of thinking is the basis for Cavalieri’s Principle.
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(10) Explain how the following picture “proves” that the area of any
parallelogram is base times height. Note, this way of thinking is the
basis for Cavalieri’s Principle.

(11) Explain how to use a picture to “prove” that a triangle of a given
area could have an arbitrarily large perimeter.

(12) Give two explanations of how the following picture “proves” the
Pythagorean Theorem, one using algebra and one without algebra.

(13) Give two explanations of how the following picture “proves” the
Pythagorean Theorem, one using algebra and one without algebra.

(14) Explain how the following picture “proves” the Pythagorean Theo-

rem.

Note: This proof is due to Leonardo da Vinci.

(15) Recall that a trapezoid is a quadrilateral with two parallel sides.
Consider the following picture:

How does the above picture prove that the area of a trapezoid is

area =
h(b1 + b2)

2
,

where h is the height of the trapezoid and b1, b2, are the lengths of
the parallel sides?

(16) Explain how the following picture “proves” the Pythagorean Theo-
rem.
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Note: This proof is due to James A. Garfield, the 20th President of
the United States.

(17) Look at Problem (15). Can you use a similar idea to prove that the
area of a parallelogram

is the length of the base times the height?

(18) Explain how the following picture “proves” that the area of a paral-
lelogram is base times height.

Now suppose that Geometry Giorgio attempts to solve a similar
problem. In an attempt to prove the formula for the area of a
parallelogram, he draws the following picture:

At this point Geometry Giorgio says that he has proved the formula
for area of a parallelogram. What do you think of his picture? Give
a complete argument based on his picture, adding labels to support
your reasoning.

(19) Which of the above “proofs” for the formula for the area of a paral-
lelogram is your favorite? Explain why.

(20) Explain how the following picture “proves” that the area of a quadri-
lateral is equal to half of the area of the parallelogram whose sides
are parallel to and equal in length to the diagonals of the original
quadrilateral.

(21) Explain how the following picture “proves” that if a quadrilateral
has two opposite angles that are equal, then the bisectors of the
other two angles are parallel or on top of each other.
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(22) Why might someone find the following picture disturbing? How
would you assure them that actually everything is good and well in
the geometrical world?

(23) Why might someone find the following picture disturbing? How
would you assure them that actually everything is good and well in
the geometrical world?

(24) How could you explain to someone that doubling the lengths of each
side of a cube does not double the volume of the cube?

(25) Explain how the following picture “proves” that:

1
2
+

(1
2

)2

+

(1
2

)3

+

(1
2

)4

+

(1
2

)5

+ · · · = 1

1/2

1

(1/2)2

1

(26) Explain how the following picture “proves” that if 0 < r < 1:

r + r(1 − r) + r(1 − r)2 + r(1 − r)3 + · · · = 1

1

1

r

r(1-r)

r(1-r)2

r(1-r)3

r(1-r)

r

r
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(27) Explain how the following picture “proves” that:

1
4
+

(1
4

)2

+

(1
4

)3

+

(1
4

)4

+

(1
4

)5

+ · · · =
1
3

(28) Considering Problem (25), Problem (26), and Problem (27) can you
give a new picture “proving” that:

1
4
+

(1
4

)2

+

(1
4

)3

+

(1
4

)4

+

(1
4

)5

+ · · · =
1
3

Carefully explain the connection between your picture and the
mathematical expression above.

(29) Explain how the following picture “proves” that in any packing, the
number of calissons with a given orientation is exactly one-third
the total number of calissons in the box.
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2 Compass and Straightedge Constructions

Mephistopheles: I must say there is an obstacle
That prevents my leaving:
It’s the pentagram on your threshold.

Faust: The pentagram impedes you?
Tell me then, you son of hell,
If this stops you, how did you come in?

Mephistopheles: Observe! The lines are poorly drawn;
That one, the outer angle,
Is open, the lines don’t meet.

—Göthe, Faust act I, scene III

2.1 Constructions

About a century before the time of Euclid, Plato—a student of Socrates—declared
that the compass and straightedge should be the only tools of the geometer. Why
would he do such a thing? For one thing, both the the compass and straightedge are
fairly simple instruments. One draws circles, the other draws lines—what else could
possibly be needed to study geometry? Moreover, rulers and protractors are far
more complex in comparison and people back then couldn’t just walk to the campus
bookstore and buy whatever they wanted. However, there are other reasons:

(1) Compass and straightedge constructions are independent of units.

(2) Compass and straightedge constructions are theoretically correct.

(3) Combined, the compass and straightedge seem like powerful tools.
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Compass and straightedge constructions are independent of units. Whether you are
working in centimeters or miles, compass and straightedge constructions work just
as well. By not being locked to set of units, the constructions given by a compass
and straightedge have certain generality that is appreciated even today.

Compass and straightedge constructions are theoretically correct. In mathematics, a
correct method to solve a problem is more valuable than a correct solution. In this
sense, the compass and straightedge are ideal tools for the mathematician. Easy
enough to use that the rough drawings that they produce can be somewhat relied
upon, yet simple enough that the tools themselves can be described theoretically.
Hence it is usually not too difficult to connect a given construction to a formal proof
showing that the construction is correct.

Combined, the compass and straightedge seem like powerful tools. No tool is useful
unless it can solve a lot of problems. Without a doubt, the compass and straightedge
combined form a powerful tool. Using a compass and straightedge, we are able to
solve many problems exactly. Of the problems that we cannot solve exactly, we can
always produce an approximate solution.

We’ll start by giving the rules of compass and straightedge constructions:

Rules for Compass and Straightedge Constructions

(1) You may only use a compass and straightedge.

(2) You must have two points to draw a line.

(3) You must have a point and a line segment to draw a circle. The point is the
center and the line segment gives the radius.

(4) Points can only be placed in two ways:

(a) As the intersection of lines and/or circles.

(b) As a free point, meaning the location of the point is not important for the
final outcome of the construction.

Our first construction is also Euclid’s first construction:
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Construction (Equilateral Triangle) We wish to construct an equilateral tri-
angle given the length of one side.

(1) Open your compass to the width of the line segment.

(2) Draw two circles, one with the center being each end point of the line
segment.

(3) The two circles intersect at two points. Choose one and connect it to both of
the line segment’s endpoints.

Euclid’s second construction will also be our second construction:

Construction (Transferring a Segment) Given a segment, we wish to move
it so that it starts on a given point, on a given line.

(1) Draw a line through the point in question.

(2) Open your compass to the length of the line segment and draw a circle with
the given point as its center.

(3) The line segment consisting of the given point and the intersection of the
circle and the line is the transferred segment.

If you read The Elements, you’ll see that Euclid’s construction is much more
complicated than ours. Apparently, Euclid felt the need to justify the ability to
move a distance. Many sources say that Euclid used what is called a collapsing

compass, that is a compass that collapsed when it was picked up. However, I do
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not believe that such an invention ever existed. Rather this is something that lives
in the conservative geometer’s head.

Regardless of whether the difficulty of transferring distances was theoretical or
physical, we need not worry when we do it. In fact, Euclid’s proof of the above
theorem proves that our modern way of using the compass to transfer distances is
equivalent to using the so-called collapsing compass.

Question Exactly how would one prove that the modern compass is equivalent
to the collapsing compass? Hint: See Euclid’s proof.

?

Construction (Bisecting a Segment) Given a segment, we wish to cut it in
half.

(1) Open your compass to the width of the segment.

(2) Draw two circles, one with the center being at each end point of the line
segment.

(3) The circles intersect at two points. Draw a line through these two points.

(4) The new line bisects the original line segment.
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Construction (Perpendicular to a Line through a Point) Given a point and
a line, we wish to construct a line perpendicular to the original line that passes
through the given point.

(1) Draw a circle centered at the point large enough to intersect the line in two
distinct points.

(2) Bisect the line segment. The line used to do this will be the desired line.

Construction (Bisecting an Angle) We wish to divide an angle in half.

(1) Draw a circle with its center being the vertex of the angle.

(2) Draw a line segment where the circle intersects the lines.

(3) Bisect the new line segment. The bisector will bisect the angle.
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We now come to a very important construction:

Construction (Copying an Angle) Given a point on a line and some angle, we
wish to copy the given angle so that the new angle has the point as its vertex
and the line as one of its edges.

(1) Open the compass to a fixed width and make a circle centered at the vertex
of the angle.

(2) Make a circle of the same radius on the line with the point.

(3) Open the compass so that one end touches the 1st circle where it hits an
edge of the original angle, with the other end of the compass extended to
where the 1st circle hits the other edge of the original angle.

(4) Draw a circle with the radius found above with its center where the second
circle hits the line.

(5) Connect the point to where the circles meet. This is the other leg of the angle
we are constructing.
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Construction (Parallel to a Line through a Point) Given a line and a point,
we wish to construct another line parallel to the first that passes through the
given point.

(1) Draw a circle centered at the given point and passing through the given line
at two points.

(2) We now have an isosceles triangle, duplicate this triangle.

(3) Connect the top vertexes of the triangles and we get a parallel line.
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Question Can you give another different construction?

?
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Problems for Section 2.1

(1) What are the rules for compass and straightedge constructions?

(2) What is a collapsing compass? Why don’t we use them or worry
about them any more?

(3) Prove that the collapsing compass is equivalent to the modern
compass.

(4) Given a line segment, construct an equilateral triangle whose edge
has the length of the given segment. Explain the steps in your
construction and how you know it works.

(5) Use a compass and straightedge to bisect a given line segment.
Explain the steps in your construction and how you know it works.

(6) Given a line segment with a point on it, construct a line perpendic-
ular to the segment that passes through the given point. Explain
the steps in your construction and how you know it works.

(7) Use a compass and straightedge to bisect a given angle. Explain
the steps in your construction and how you know it works.

(8) Given an angle and a ray, use a compass and straightedge to copy
the angle so that the new angle has the ray as one side. Explain
the steps in your construction and how you know it works.

(9) Given a point and line, construct a line perpendicular to the given
line that passes through the given point. Explain the steps in your
construction and how you know it works.

(10) Given a point and line not containing the point, construct a line par-
allel to the given line that passes through the given point. Explain
the steps in your construction and how you know it works.

(11) Given a length of 1, construct a triangle whose perimeter is a multi-
ple of 6. Explain the steps in your construction and how you know
it works.

(12) Construct a 30-60-90 right triangle. Explain the steps in your
construction and how you know it works.

(13) Given a length of 1, construct a triangle with a perimeter of 3 +
√

5.
Explain the steps in your construction and how you know it works.

(14) Given a length of 1, construct a triangle with a perimeter that is a
multiple of 2 +

√
2. Explain the steps in your construction and how

you know it works.

(15) Here is a circle and here is the side length of an inscribed regular
5-gon.

Construct the regular 5-gon. Explain the steps in your construction
and how you know it works.

(16) Here is a piece of a regular 7-gon.

Construct the entire regular 7-gon. Explain the steps in your
construction and how you know it works.
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2.2 Anatomy of Figures

In studying geometry we seek to discover the points that can be obtained given
a set of rules. In our case the set of rules consists of the rules for compass and
straightedge constructions.

Question In regards to compass and straightedge constructions, what is a
point?

?

Question In regards to compass and straightedge constructions, what is a
line?

?

Question In regards to compass and straightedge constructions, what is a
circle?

?
OK, those are our basic figures, pretty easy right? Now I’m going to quiz you

about them:

Question Place two points randomly in the plane. Do you expect to be able to
draw a single line that connects them?

?

Question Place three points randomly in the plane. Do you expect to be able
to draw a single line that connects them?

?
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Question Place two lines randomly in the plane. How many points do you
expect them to share?

?

Question Place three lines randomly in the plane. How many points do you
expect all three lines to share?

?

Question Place three points randomly in the plane. Will you (almost!) always
be able to draw a circle containing these points? If no, why not? If yes, how do
you know?

?

2.2.1 Lines Related to Triangles

Believe it or not, in mathematics we often try to study the simplest objects as deeply
as possible. After the objects listed above, triangles are among the most basic of
geometric figures, yet there is much to know about them. There are several lines
that are commonly associated to triangles. Here they are:

• Perpendicular bisectors of the sides.

• Bisectors of the angles.

• Altitudes of the triangle.

• Medians of the triangle.

The first two lines above are self-explanatory. The next two need definitions.
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Definition An altitude of a triangle is a line segment originating at a vertex of
the triangle that meets the line containing the opposite side at a right angle.

Definition A median of a triangle is a line segment that connects a vertex to
the midpoint of the opposite side.

Question The intersection of any two lines containing the altitudes of a triangle
is called an orthocenter. How many orthocenters does a given triangle have?

?

Question The intersection of any two medians of a triangle is called a centroid.
How many centroids does a given triangle have?

?

Question What is the physical meaning of a centroid?

?

2.2.2 Circles Related to Triangles

There are also two circles that are commonly associated to triangles. Here they are:

• The circumcircle.

• The incircle.

These aren’t too bad. Check out the definitions.
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Definition The circumcircle of a triangle is the circle that contains all three
vertexes of the triangle. Its center is called the circumcenter of the triangle.

Question Does every triangle have a circumcircle?

?

Definition The incircle of a triangle is the largest circle that will fit inside the
triangle. Its center is called the incenter of the triangle.

Question Does every triangle have an incircle?

?
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Question Are any of the lines described above related to these circles and/or
centers? Clearly articulate your thoughts.

?
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Problems for Section 2.2

(1) Compare and contrast the idea of “intersecting sets” with the idea
of “intersecting lines.”

(2) Place three points in the plane. Give a detailed discussion explaining
how they may or may not be on a line.

(3) Place three lines in the plane. Give a detailed discussion explaining
how they may or may not intersect.

(4) Explain how a perpendicular bisector is different from an altitude.
Draw an example to illustrate the difference.

(5) Explain how a median is different from an angle bisector. Draw an
example to illustrate the difference.

(6) What is the name of the point that is the same distance from all
three sides of a triangle? Explain your reasoning.

(7) What is the name of the point that is the same distance from all
three vertexes of a triangle? Explain your reasoning.

(8) Could the circumcenter be outside the triangle? If so, draw a picture
and explain. If not, explain why not using pictures as necessary.

(9) Could the orthocenter be outside the triangle? If so, draw a picture
and explain. If not, explain why not using pictures as necessary.

(10) Could the incenter be outside the triangle? If so, draw a picture
and explain. If not, explain why not using pictures as necessary.

(11) Could the centroid be outside the triangle? If so, draw a picture
and explain. If not, explain why not using pictures as necessary.

(12) Are there shapes that do not contain their centroid? If so, draw
a picture and explain. If not, explain why not using pictures as
necessary.

(13) Draw an equilateral triangle. Now draw the lines containing the
altitudes of this triangle. How many orthocenters do you have as
intersections of lines in your drawing? Hints:

(a) More than one.
(b) How many triangles are in the picture you drew?

(14) Given a triangle, construct the circumcenter. Explain the steps in
your construction.

(15) Given a triangle, construct the orthocenter. Explain the steps in
your construction.

(16) Given a triangle, construct the incenter. Explain the steps in your
construction.

(17) Given a triangle, construct the centroid. Explain the steps in your
construction.

(18) Given a triangle, construct the incircle. Explain the steps in your
construction.

(19) Given a triangle, construct the circumcircle. Explain the steps in
your construction.

(20) Given a circle, give a construction that finds its center.

(21) Where is the circumcenter of a right triangle? Explain your reason-
ing.

(22) Where is the orthocenter of a right triangle? Explain your reasoning.

(23) Can you draw a triangle where the circumcenter, orthocenter, in-
center, and centroid are all the same point? If so, draw a picture
and explain. If not, explain why not using pictures as necessary.

(24) True or False: Explain your conclusions.

(a) An altitude of a triangle is always perpendicular to a line con-
taining some side of the triangle.

(b) An altitude of a triangle always bisects some side of the triangle.

(c) The incenter is always inside the triangle.

(d) The circumcenter, the centroid, and the orthocenter always lie
in a line.

(e) The circumcenter can be outside the triangle.

(f) The orthocenter is always inside the triangle.

(g) The centroid is always inside the incircle.

(25) Given 3 distinct points not all in a line, construct a circle that passes
through all three points. Explain the steps in your construction.
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2.3 Trickier Constructions

Question How do you construct regular polygons? In particular, how do you
construct regular: 3-gons, 4-gons, 5-gons, 6-gons, 7-gons, 8-gons, 10-gons,
12-gons, 17-gons, 24-gons, and 144-gons?

?
Well the equilateral triangle is easy. It was the first construction that we did.

What about squares? What about regular hexagons? It turns out that they aren’t
too difficult. What about pentagons? Or say n-gons? We’ll have to think about
that. Let’s leave the difficult land of n-gons and go back to thinking about nice,
three-sided triangles.

Construction (SAS Triangle) Given two sides with an angle between them,
we wish to construct the triangle with that angle and two adjacent sides.

(1) Transfer the one side so that it starts at the vertex of the angle.

(2) Transfer the other side so that it starts at the vertex.

(3) Connect the end points of all moved line segments.

The “SAS” in this construction’s name spawns from the fact that it requires two
sides with an angle between them. The SAS Theorem states that we can obtain a
unique triangle given two sides and the angle between them.

Construction (SSS Triangle) Given three line segments we wish to construct
the triangle that has those three sides, if it exists.

(1) Choose a side and select one of its endpoints.

(2) Draw a circle of radius equal to the length of the second side around the
chosen endpoint.

(3) Draw a circle of radius equal to the length of the third side around the other
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endpoint.

(4) Connect the end points of the first side and the intersection of the circles.
This is the desired triangle.

Question Can this construction fail to produce a triangle? If so, show how. If
not, why not?

?

Question Remember earlier when we asked about the converse to the Pythagorean
Theorem? Can you use the construction above to prove the converse of the
Pythagorean Theorem?

?

Question Can you state the SSS Theorem?

?

Construction (SAA Triangle) Given a side and two angles, where the given
side does not touch one of the angles, we wish to construct the triangle that
has this side and these angles if it exists.

(1) Start with the given side and place the adjacent angle at one of its endpoints.

(2) Move the second angle so that it shares a leg with the leg of the first angle—not
the leg with the given side.

(3) Extend the given side past the first angle, forming a new angle with the leg
of the second angle.

(4) Move this new angle to the other endpoint of the side, extending the legs of
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this angle and the first angle will produce the desired triangle.

Question Where does your construction use parallel lines?

?

Question Can this construction fail to produce a triangle? If so, show how. If
not, why not?

?

Question Can you state the SAA Theorem?

?

Question What about other combinations of S’s and A’s?

SSS, SSA, SAS, SAA, ASA, AAA

?
2.3.1 Challenge Constructions

Question How can you construct a triangle given the length of one side s, the
length of the median to that side m, and the length of the altitude from the
opposite angle a?

Proof (Follow-Along) Use these lengths and follow the directions below.
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(1) Start with the given side.

(2) Since the median hits our side at the center, bisect the given side.

(3) Make a circle of radius equal to the length of the median centered at the

bisector of the given side.

(4) Construct a line parallel to our given line of distance equal to the length of the

given altitude away.

(5) Where the line and the circle intersect is the third point of our triangle. Connect

the endpoints of the given side and the new point to get the triangle we want.

Question How can you construct a triangle given one angle α, the length of
an adjacent side s, and the altitude to that side a?

Proof (Follow-Along) Use these and follow the directions below.

(1) Start with a line containing the side.

(2) Put the angle at the end of the side.

(3) Draw a parallel line to the side of the length of the altitude away.

(4) Connect the angle to the parallel side. This is the third vertex. Connect the

endpoints of the given side and the new point to get the triangle we want.
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Question How can you construct a circle with a given radius tangent to two
other circles?

Proof (Follow-Along) Use these and follow the directions below.

(1) Let r be the given radius, and let r1 and r2 be the radii of the given circles.

(2) Draw a circle of radius r1 + r around the center of the circle of radius r1.

(3) Draw a circle of radius r2 + r around the center of the circle of radius r2.

(4) Where the two circles drawn above intersect is the center of the desired circle.

Question Place two tacks in a wall. Insert a sheet of paper so that the edges
hit the tacks and the corner passes through the imaginary line between the
tacks. Mark where the corner of the piece of paper touches the wall. Repeat
this process, sliding the paper around. What curve do you end up drawing?

?

Question How can you construct a triangle given an angle and the length of
the opposite side?

Proof (Solution) We really can’t solve this problem completely because the

information given doesn’t uniquely determine a triangle. However, we can still

say something. Here is what we can do:

(1) Put the known angle at one end of the line segment. (Note: In the picture

below, it is at the left end of the line segment, opening downwards.)
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CHAPTER 2. COMPASS AND STRAIGHTEDGE CONSTRUCTIONS

(2) Construct the perpendicular bisector of the given segment.

(3) Construct a perpendicular to the other leg of the angle at its vertex.

(4) See where the bisector in step 2 intersects the perpendicular drawn in step 3.

(5) Draw circle centered at the point found in step 4 and touching the endpoints

of the original segment.

(6) The segment cuts the circle into two arcs, one of which is opposite the angle

placed in step 1. Every point on that arc is a valid choice for the vertex of the

triangle.

Question Why does the above method work?

?

Question You are on a boat at night. You can see three lighthouses, and
you know their position on a map. Also you know the angles of the light rays
between the lighthouses as measured from the boat. How do you figure out
where you are?

?
59



2.3. TRICKIER CONSTRUCTIONS

2.3.2 Problem Solving Strategies

The harder constructions discussed in this section can be difficult to do. There is
no rote method to solve these problems, hence you must rely on your brain. Here
are some hints that you may find helpful:

Construct what you can. You should start by constructing anything you can, even if
you don’t see how it will help you with your final construction. In doing so you are
“chipping away” at the problem just as a rock-cutter chips away at a large boulder.
Here are some guidelines that may help when constructing triangles:

(1) If a side is given, then you should draw it.

(2) If an angle is given and you know where to put it, draw it.

(3) If an altitude of length ` is given, then draw a line parallel to the side that the
altitude is perpendicular to. This new line must be distance ` from the side.

(4) If a median is given, then bisect the segment it connects to and draw a circle
centered around the bisector, whose radius is the length of the median.

(5) If you are working on a figure, construct any “mini-figures” inside the figure you
are trying to construct. For example, many of the problems below ask you to
construct a triangle. Some of these constructions have right-triangles inside of
them, which are easier to construct than the final figure.

Sketch what you are trying to find. It is a good idea to try to sketch the figure that you
are trying to construct. Sketch it accurately and label all pertinent parts. If there
are special features in the figure, say two segments have the same length or there
is a right-angle, make a note of it on your sketch. Also mark what is unknown in
your sketch. We hope that doing this will help organize your thoughts and get your
“brain juices” flowing.

Question Why are the above strategies good?

?
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Problems for Section 2.3

(1) Construct a square. Explain the steps in your construction.

(2) Construct a regular hexagon. Explain the steps in your construc-
tion.

(3) Your friend Margy is building a clock. She needs to know how
to align the twelve numbers on her clock so that they are equally
spaced on a circle. Explain how to use a compass and straight-
edge construction to help her out. Illustrate your answer with a
construction and explain the steps in your construction.

(4) Construct a triangle given two sides of a triangle and the angle
between them. Explain the steps in your construction.

(5) State the SAS Theorem.

(6) Construct a triangle given three sides of a triangle. Explain the
steps in your construction.

(7) State the SSS Theorem.

(8) Construct a triangle given a side and two angles where one of the
angles does not touch the given side. Explain the steps in your
construction.

(9) State the SAA Theorem.

(10) Construct a triangle given a side between two given angles. Explain
the steps in your construction.

(11) State the ASA Theorem.

(12) Explain why when given an isosceles triangle, that two of its angles
have equal measure. Hint: Use the SAS Theorem.

(13) Construct a figure showing that a triangle cannot always be uniquely
determined when given an angle, a side adjacent to that angle, and
the side opposite the angle. Explain the steps in your construction
and explain how your figure shows what is desired. Explain what
this says about the possibility of a SSA theorem. Hint: Draw many
pictures to help yourself out.

(14) Give a construction showing that a triangle is uniquely determined if
you are given a right-angle, a side touching that angle, and another
side not touching the angle. Explain the steps in your construction
and explain how your figure shows what is desired.

(15) Construct a triangle given two adjacent sides of a triangle and
a median to one of the given sides. Explain the steps in your
construction.

(16) Construct a triangle given two sides and the altitude to the third
side. Explain the steps in your construction.

(17) Construct a triangle given a side, the median to the side, and the
angle opposite to the side. Explain the steps in your construction.

(18) Construct a triangle given an altitude, and two angles not touching
the altitude. Explain the steps in your construction.

(19) Construct a triangle given the length of one side, the length of the
the median to that side, and the length of the altitude of the opposite
angle. Explain the steps in your construction.

(20) Construct a triangle, given one angle, the length of an adjacent side
and the altitude to that side. Explain the steps in your construction.

(21) Construct a circle with a given radius tangent to two other given
circles. Explain the steps in your construction.

(22) Does a given angle and a given opposite side uniquely determine a
triangle? Explain your answer.

(23) You are on the bank of a river. There is a tree directly in front of
you on the other side of the river. Directly left of you is a friend a
known distance away. Your friend knows the angle starting with
them, going to the tree, and ending with you. How wide is the river?
Explain your work.

(24) You are on a boat at night. You can see three lighthouses, and you
know their position on a map. Also you know the angles of the light
rays from the lighthouses. How do you figure out where you are?
Explain your work.

(25) Construct a triangle given an angle, the length of a side adjacent to
the given angle, and the length of the angle’s bisector to the opposite
side. Explain the steps in your construction.

(26) Construct a triangle given an angle, the length of the opposite side,
and the length of the altitude of the given angle. Explain the steps
in your construction.
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(27) Construct a triangle given one side, the length of the altitude of
the opposite angle, and the radius of the circumcircle. Explain the
steps in your construction.

(28) Construct a triangle given one side, the length of the altitude of
an adjacent angle, and the radius of the circumcircle. Explain the
steps in your construction.

(29) Construct a triangle given one side, the length of the median connect-
ing that side to the opposite angle, and the radius of the circumcircle.
Explain the steps in your construction.

(30) Construct a triangle given one angle and the lengths of the altitudes

to the two other angles. Explain the steps in your construction.

(31) Construct a circle with a given radius tangent to two given inter-
secting lines. Explain the steps in your construction.

(32) Given a circle and a line, construct another circle of a given radius
that is tangent to both the original circle and line. Explain the steps
in your construction.

(33) Construct a circle with three smaller circles of equal size inside
such that each smaller circle is tangent to the other two and the
larger outside circle. Explain the steps in your construction.
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3 Folding and Tracing Constructions

We don’t even know if Foldspace introduces us to one universe or many. . .

—Frank Herbert

3.1 Constructions

While origami as an art form is quite ancient, folding and tracing constructions in
mathematics are relatively new. The earliest mathematical discussion of folding and
tracing constructions that I know of appears in T. Sundara Row’s book Geometric

Exercises in Paper Folding,first published near the end of the Nineteenth Century.
In the Twentieth Century it was shown that every construction that is possible with
a compass and straightedge can be done with folding and tracing. Moreover, there
are constructions that are possible via folding and tracing that are impossible with
compass and straightedge alone. This may seem strange as you can draw a circle
with a compass, yet this seems impossible to do via paper-folding. We will address
this issue in due time. Let’s get down to business—here are the rules of folding and
tracing constructions:

Rules for Folding and Tracing Constructions

(1) You may only use folds, a marker, and semi-transparent paper.

(2) Points can only be placed in two ways:

(a) As the intersection of two lines.
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(b) By marking “through” folded paper onto a previously placed point. Think of
this as when the ink from a permanent marker “bleeds” through the paper.

(3) Lines can only be obtained in three ways:

(a) By joining two points—either with a drawn line or a fold.

(b) As a crease created by a fold.

(c) By marking “through” folded paper onto a previously placed line.

(4) One can only fold the paper when:

(a) Matching up points with points.

(b) Matching up a line with a line.

(c) Matching up two points with two intersecting lines.

Now we are going to present several basic constructions. Compare these to
the ones done with a compass and straightedge. We will proceed by the order of
difficulty of the construction.

Construction (Transferring a Segment) Given a segment, we wish to move
it so that it starts on a given point, on a given line.

Construction (Copying an Angle) Given a point on a line and some angle, we
wish to copy the given angle so that the new angle has the point as its vertex
and the line as one of its edges.

Transferring segments and copying angles using folding and tracing without a
“bleeding marker” can be tedious. Here is an easy way to do it:

Use 2 sheets of paper and a pen that will mark through multiple sheets.
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CHAPTER 3. FOLDING AND TRACING CONSTRUCTIONS

Question Can you find a way to do the above constructions without using a
marker whose ink will pass through paper?

?

Construction (Bisecting a Segment) Given a segment, we wish to cut it in
half.

(1) Fold the paper so that the endpoints of the segment meet.

(2) The crease will bisect the given segment.

Question Which rule for folding and tracing constructions are we using above?

?

Construction (Perpendicular through a Point) Given a point and a line, we
wish to construct a line perpendicular to the original line that passes through
the given point.

(1) Fold the given line onto itself so that the crease passes though the given
point.

(2) The crease will be the perpendicular line.
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3.1. CONSTRUCTIONS

Question Which rule for folding and tracing constructions are we using above?

?

Question Does the construction work even when the point is on the line?

?

Construction (Bisecting an Angle) We wish to divide an angle in half.

(1) Fold a point on one leg of the angle to the other leg so that the crease passes
though the vertex of the angle.

(2) The crease will bisect the angle.

Question Which rule for folding and tracing constructions are we using above?

?
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Construction (Parallel through a Point) Given a line and a point not on the
line, we wish to construct another line parallel to the first that passes through
the given point.

(1) Fold a perpendicular line through the given point.

(2) Fold a line perpendicular to this new line through the given point.

Now there may be a pressing question in your head:

Question How the heck are we going to fold a circle?

First of all, remember the definition of a circle:

Definition A circle is the set of points that are a fixed distance from a given
point.

Question Is the center of a circle part of the circle?

?
Secondly, remember that when doing compass and straightedge constructions

we can only mark points that are intersections of lines and lines, lines and circles,
and circles and circles. Thus while we technically draw circles, we can only actually
mark certain points on circles. When it comes to folding and tracing constructions,
drawing a circle amounts to marking points a given distance away from a given
point—that is exactly what we can do with compass and straightedge constructions.
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Construction (Intersection of a Line and a Circle) We wish to construct the
points where a given line meets a given circle. Note: A circle is given by a point
on the circle and the central point.

(1) Fold the point on the circle onto the given line so that the crease passes
through the center of the circle.

(2) Mark this point though both sheets of paper onto the line.

Question Which rule for folding and tracing constructions are we using above?

?

Question How could you check that your folding and tracing construction is
correct?

?

Construction (Equilateral Triangle) We wish to construct an equilateral tri-
angle given the length of one side.

(1) Bisect the segment.

(2) Fold one end of the segment onto the bisector so that the crease passes
through the other end of the segment. Mark this point onto the bisector.
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(3) Connect the points.

Question Which rules for folding and tracing constructions are we using
above?

?

Construction (Intersection of Two Circles) We wish to intersect two circles,
each given by a center point and a point on the circle.

(1) Use four sheets of tracing paper. On the first sheet, mark the centers of both
circles. On the next two sheets, mark the center and point on each of the
circle—one circle per sheet.

(2) Simply move the two sheets with the centers and points on the circles, so
that the centers are over the centers from the first sheet, and the points on
the circles coincide. Now on the fourth sheet, mark all points.

?
Think about the definition of a circle. In a similar fashion we can define other

common geometric figures:

Definition Given a point and a line, a parabola is the set of points such that
each of these points is the same distance from the given point as it is from the
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given line.

We can also form a parabola from an envelope of tangents:

Using a similar idea we can essentially obtain a parabola using folding and tracing.

Construction (Parabola) Given a point and a line we wish to construct a
parabola.

(1) Make a series of equally spaced marks on your line.

(2) Fold the point onto the marks.

(3) Repeat the above step until an envelope of tangents forms.
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This construction was discovered by S.T. Gormsen
and verified by S.H. Kung.

Question Considering the definition of the parabola, can you explain why the
above construction makes sense?

?

Question In the envelope of tangents, each line is tangent to the parabola.
How do you find points that actually on the parabola?

?

Question Can you give a compass and straightedge construction of a parabola?

?
Our final basic folding and tracing construction is one that cannot be done with

compass and straightedge alone.

Construction (Angle Trisection) We wish to divide an angle into thirds.

(1) Bisect the given angle.

(2) Find two points (one on each leg of the angle) equidistant from the vertex of
the angle.

(3) Fold the two points found above so that one of them lands on the extension
(behind the angle) of the angle bisector and one lands on the line containing
the other leg of the triangle—this will be behind the vertex. You are basically
folding the angle back over itself.

(4) The crease from the last step will intersect the angle bisector at some point,
mark it.

(5) The angle with the above mark as its vertex, the bisector found above as one
of its legs, and the line to either of the points found in step 2 above will be
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one third of the starting angle.
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Problems for Section 3.1

(1) What are the rules for folding and tracing constructions?

(2) Use folding and tracing to bisect a given line segment. Explain the
steps in your construction.

(3) Given a line segment with a point on it, use folding and tracing to
construct a line perpendicular to the segment that passes through
the given point. Explain the steps in your construction.

(4) Use folding and tracing to bisect a given angle. Explain the steps in
your construction.

(5) Given a point and line, use folding and tracing to construct a
line parallel to the given line that passes through the given point.
Explain the steps in your construction.

(6) Given a point and line, use folding and tracing to construct a line
perpendicular to the given line that passes through the given point.
Explain the steps in your construction.

(7) Given a circle (a center and a point on the circle) and line, use
folding and tracing to construct the intersection. Explain the steps
in your construction.

(8) Given a line segment, use folding and tracing to construct an equi-
lateral triangle whose edge has the length of the given segment.
Explain the steps in your construction.

(9) Explain how to use folding and tracing to transfer a segment.

(10) Given an angle and some point, use folding and tracing to copy
the angle so that the new angle has as its vertex the given point.
Explain the steps in your construction.

(11) Explain how to use folding and tracing to construct envelope of
tangents for a parabola.

(12) Explain how to use folding and tracing to trisect a given angle.

(13) Use folding and tracing to construct a square. Explain the steps in
your construction.

(14) Use folding and tracing to construct a regular hexagon. Explain the
steps in your construction.

(15) Morley’s Theorem states: If you trisect the angles of any triangle
with lines, then those lines form a new equilateral triangle inside
the original triangle.

Give a folding and tracing construction illustrating Morley’s Theo-
rem. Explain the steps in your construction.

(16) Given a length of 1, construct a triangle whose perimeter is a
multiple of 6. Explain the steps in your construction.

(17) Construct a 30-60-90 right triangle. Explain the steps in your
construction.

(18) Given a length of 1, construct a triangle with a perimeter of 3 +
√

5.
Explain the steps in your construction.
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3.2. ANATOMY OF FIGURES REDUX

3.2 Anatomy of Figures Redux

Remember, in studying geometry we seek to discover the points that can be obtained
given a set of rules. Now the set of rules consists of the rules for folding and tracing
constructions.

Question In regards to folding and tracing constructions, what is a point?

?

Question In regards to folding and tracing constructions, what is a line?

?

Question In regards to folding and tracing constructions, what is a circle?

?
OK, those are our basic figures, pretty easy right? Now I’m going to quiz you

about them (I know we’ve already gone over this, but it is fundamental so just smile
and answer the questions):

Question Place two points randomly in the plane. Do you expect to be able to
draw a single line that connects them?

?

Question Place three points randomly in the plane. Do you expect to be able
to draw a single line that connects them?

?
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Question Place two lines randomly in the plane. How many points do you
expect them to share?

?

Question Place three lines randomly in the plane. How many points do you
expect all three lines to share?

?

Question Place three points randomly in the plane. Will you (almost!) always
be able to draw a circle containing these points? If no, why not? If yes, how do
you know?

?
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Problems for Section 3.2

(1) In regards to folding and tracing constructions, what is a circle?
Compare and contrast this to a naive notion of a circle.

(2) Explain how a perpendicular bisector is different from an altitude.
Use folding and tracing to illustrate the difference.

(3) Explain how a median different from an angle bisector. Use folding
and tracing to illustrate the difference.

(4) Given a triangle, use folding and tracing to construct the circum-
center. Explain the steps in your construction.

(5) Given a triangle, use folding and tracing to construct the orthocenter.
Explain the steps in your construction.

(6) Given a triangle, use folding and tracing to construct the incenter.
Explain the steps in your construction.

(7) Given a triangle, use folding and tracing to construct the centroid.
Explain the steps in your construction.

(8) Could the circumcenter be outside the triangle? If so explain how
and use folding and tracing to give an example. If not, explain why
not using folding and tracing to illustrate your ideas.

(9) Could the orthocenter be outside the triangle? If so explain how
and use folding and tracing to give an example. If not, explain why
not using folding and tracing to illustrate your ideas.

(10) Could the incenter be outside the triangle? If so explain how and
use folding and tracing to give an example. If not, explain why not
using folding and tracing to illustrate your ideas.

(11) Could the centroid be outside the triangle? If so explain how and
use folding and tracing to give an example. If not, explain why not
using folding and tracing to illustrate your ideas.

(12) Where is the circumcenter of a right triangle? Explain your reason-
ing and illustrate your ideas with folding and tracing.

(13) Where is the orthocenter of a right triangle? Explain your reasoning
and illustrate your ideas with folding and tracing.

(14) The following picture shows a triangle that has been folded along
the dotted lines:

Explain how the picture “proves” the following statements:

(a) The interior angles of a triangle sum to 180◦.

(b) The area of a triangle is given by bh/2.

(15) Use folding and tracing to construct a triangle given the length of
one side, the length of the the median to that side, and the length
of the altitude of the opposite angle. Explain the steps in your
construction.

(16) Use folding and tracing to construct a triangle given one angle, the
length of an adjacent side and the altitude to that side. Explain the
steps in your construction.

(17) Use folding and tracing to construct a triangle given one angle and
the altitudes to the other two angles. Explain the steps in your
construction.

(18) Use folding and tracing to construct a triangle given two sides and
the altitude to the third side. Explain the steps in your construction.
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CCSS G-CO.2: Represent transformations in the
plane using, e.g., transparencies and geometry soft-
ware; describe transformations as functions that
take points in the plane as inputs and give other
points as outputs. Compare transformations that
preserve distance and angle to those that do not (e.g.,
translation versus horizontal stretch).

4 Toward Congruence and Similarity

4.1 Transformations, Symmetry, and Congruence

In school mathematics, transformations and symmetry have typically been niche top-
ics, separate from each other, separate from most of the rest of school mathematics,
and receiving little curricular attention. Congruence, on the other hand, is a more
prominent idea that begins informally in the elementary grades as “same shape,
same size” and culminates in high school with theorems and proofs, sometimes
based on explicit postulates.

In this section, we demonstrate how transformations can undergird both symme-
try and congruence, thereby strengthening all three topics and also establishing
groundwork for an analogous approach to similarity.

4.1.1 Transformations

Informally, a transformation of the plane is a “motion,” such as a rotation or a
stretch of the plane. More formally, a transformation is a function that takes points
in the plane as inputs and gives points as outputs.G-CO.2 In school mathematics, we
consider only transformations that take lines to lines, so that key geometric features
are “preserved.” For example a triangle remains a triangle when it is rotated and
even when it is stretched.

Transformations are often specified using a coordinate system, but coordinates
are not necessary. For now, we will explore transformations without a coordinate
system. Later, we will use coordinates, along with matrices and vectors, to describe
transformations.
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CCSS 8.G.1: Verify experimentally the properties of
rotations, reflections, and translations:

CCSS 8.G.1a: Lines are taken to lines, and line
segments to line segments of the same length.

CCSS 8.G.1b: Angles are taken to angles of the same
measure.

CCSS 8.G.1c: Parallel lines are taken to parallel
lines.

CCSS G-CO.4: Develop definitions of rotations, re-
flections, and translations in terms of angles, cir-
cles, perpendicular lines, parallel lines, and line
segments.

CCSS G-CO.3: Given a rectangle, parallelogram,
trapezoid, or regular polygon, describe the rotations
and reflections that carry it onto itself.

Definition Transformations that preserve distances and angles are called
isometries, and the most important of these are basic rigid motions: translations,
rotations, and reflections.

Question Is a transformation that stretches the plane an isometry? Explain.

?
Through exploration with transparencies, tracing paper, and software, it is not

hard to see that the basic rigid motions have important properties.8.G.1 8.G.1a 8.G.1b

8.G.1c

Based on such explorations, we write careful definitions of translation, reflection,
rotation, focusing what is required to specify each transformation.G-CO.4

Question What does it take to specify a translation? A reflection? A rotation?

?

Definition The identity transformation, sometimes called the “do nothing”
transformation, doesn’t move the plane at all. As a function, the identity
transformation takes a point to itself: The output is identical to the input.

Question Is the identity transformation a translation, rotation, or reflection?
Explain.

?
4.1.2 Symmetry

A symmetry of a figure is a transformation that takes the figure onto itself,G-CO.3

so that the figure is “preserved” by the transformation. In everyday language, we
may say a figure is “symmetrical,” but mathematically we can be more precise by
specifying the symmetry transformation(s) of the figure.
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CCSS 8.G.2: Understand that a two-dimensional
figure is congruent to another if the second can be
obtained from the first by a sequence of rotations,
reflections, and translations; given two congruent
figures, describe a sequence that exhibits the con-
gruence between them.

Question What are the symmetries of a rectangle? Be sure to specify the
transformations.

?
4.1.3 Congruence

Congruence is sometimes described using angles and side lengths. But such a
definition cannot apply to figures that are not polygons. A more inclusive definition
is as follows:

Definition Two figures (in the plane) are said to be congruent to one another if
there is a sequence of basic rigid motions that takes one figure onto the other.

The idea behind this definition is sometimes called the principle of superposition,
which states that congruent figures can be placed exactly on top of one another. The
above definition is more precise than superposition because it calls for an explicit
sequence of basic rigid motions (e.g., translations, rotations, and reflections) rather
than merely “movement” of one figure onto the other.

Question When we say that two polygons are congruent, why is the order of
labeling the vertices important? For example, if we know 4ABC ' 4XYZ , does
it follow that 4ABC ' 4YXZ? Explain. (Hint: Which angle of 4XYZ corresponds
to ∠A? Which side of 4ABC corresponds to XZ?)

?
The above definition of congruence helps us in two directions.8.G.2 First, if we have

a sequence of basic rigid motions that takes one figure onto another, then we know
the two figures are congruent. Furthermore, the sequence of basic rigid motions
sets up the correspondences between various parts of the figures. Conversely, if
two figures are congruent, then we know it is possible to find a sequence of basic
rigid motions that takes one figure onto the other. And the sequence of basic
rigid motions often takes advantage of corresponding parts that are known to be
congruent.
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CCSS 7.G.2: Draw (freehand, with ruler and pro-
tractor, and with technology) geometric shapes with
given conditions. Focus on constructing triangles
from three measures of angles or sides, noticing
when the conditions determine a unique triangle,
more than one triangle, or no triangle.

CCSS G-CO.7: Use the definition of congruence in
terms of rigid motions to show that two triangles are
congruent if and only if corresponding pairs of sides
and corresponding pairs of angles are congruent.

CCSS G-CO.8: Explain how the criteria for triangle
congruence (ASA, SAS, and SSS) follow from the
definition of congruence in terms of rigid motions.

For triangles, we still have the familiar congruence criteria, such as side-side-
side (SSS), side-angle-side (SAS), and angle-side-angle (ASA). The key idea is that
although triangles have six measures of sides and angles, most of the time (but
not always) just three of these measures are sufficient to determine the triangle
uniquely. Students can develop intuition about these criteria by drawing triangles
from given conditions.7.G.2 The next step is to show, first, that the above definition
fits with traditional notions of triangle congruenceG-CO.7, and, second, to prove
that the triangle congruence criteria follow from the properties of the basic rigid
motions.G-CO.8

Then, because the triangle congruence criteria can be established from sequences
of rigid motions, we can prove theorems using triangle congruence criteria, basic
rigid motions, or a combination of the two approaches.

80



CHAPTER 4. TOWARD CONGRUENCE AND SIMILARITY

Problems for Section 4.1

(1) What is required to specify a translation?

(2) What is required to specify a rotation?

(3) What is required to specify a reflection?

(4) Write a careful definition of translation. Hint: Describe how to find
the image P ′ of a point P.

(5) Write a careful definition of rotation. Hint: Describe how to find the
image P ′ of a point P.

(6) Write a careful definition of reflection. Hint: Describe how to find
the image P ′ of a point P.
Sometimes a sequence of transformations can be described as a
single translation, rotation, or reflection.

(7) What kind of transformation is a translation followed by a transla-
tion? Explain. Be sure to consider any special cases.

(8) What kind of transformation is a rotation followed by a rotation?
Explain. Be sure to consider any special cases.

(9) What kind of transformation is a reflection followed by another
reflection? Explain. Be sure to consider any special cases.

(10) Will the letter F look like an F after a reflection? What about after a
sequence of two reflections? What about after a sequence of 73 or
124 reflections? Explain your reasoning.

(11) How will your answer to the previous problem change if you use a
capital D? Explain.

(12) Given a figure and its image after a translation, how do find the
direction and distance of the translation? How many points and
images do you need?

(13) Given a figure and its image after a reflection, how do you find the
line of reflection? How many points and images do you need?

(14) Given a figure and its image after a rotation, how do you find the
center and the angle of the rotation? How many points and images
do you need?

(15) Categorize the capital letters of the alphabet by their symmetries.

(16) Write the words COKE and PEPSI in capital letters so that they read
vertically. Use a mirror to look at a reflection of the words. What is
different about the reflections of the two words? Explain.

(17) Describe all of the symmetries of the following figures:

(a) An equilateral triangle

(b) An isosceles triangle that is not equilateral

(c) A square

(d) A rectangle that is not a square

(e) A rhombus that is not a square

(f) A (non-special) parallelogram

(g) A regular n−gon

(18) What are the symmetries of a circle?

(19) How can you use the symmetries of a circle to determine whether a
figure is indeed a circle?

(20) What are the symmetries of a line?

(a) Describe all translation symmetries.

(b) Describe all rotation symmetries.

(c) Describe two types of reflection symmetries.

(d) Given a line, describe a rotation symmetry and a reflection sym-
metry that have the same effect on a line. How do the correspond-
ing transformations differ in what they do to the surrounding
space?

(21) How can you use the symmetries of a line to determine whether a
figure is indeed a line?

(22) Find some tessellations. For each tessellation, describe all of its
symmetries.
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4.2 Euclidean and non-Euclidean Geometries

The geometry of school mathematics is called Euclidean Geometry for it is the
geometry organized and detailed by Euclid more than 2,000 years ago. To better
understand the assumptions that underlie Euclidean geometry and the results
that follow, it helps to be aware of non-Euclidean geometries. Perhaps the most
accessible of these is spherical geometry, because we can make use of basketballs
that we can hold in our hands, and we can take advantage of our experience
traveling on our (approximately spherical) Earth, modeled by a globe.

Question Before we talk about spheres, what does it mean to say that a plane
is two-dimensional and space is three-dimensional? What is “dimension”?

?
To think about spherical geometry, it helps to imagine a bug crawling on the

surface of a sphere. From the bug’s perspective, the surface of the sphere is
very much the same as the surface of a Euclidean plane. Both surfaces are two-
dimensional in the sense that the bug has two degrees of freedom: forward/backward
and left/right. Any other movement can be expressed as a combination of these.
(We are assuming the bug must stay on the surface: It can neither fly away from
nor burrow underneath the surface.) Whereas the surface of a Euclidean plane is
infinite and flat, the surface of a sphere is finite and curved. But if the sphere is
reasonably large (compared to the bug), then even a very smart bug might have
trouble determining whether she or he was walking on a sphere or on a flat plane.

Question Explain in your own words how to think about the surface of a
sphere as two-dimensional.

?
Points in spherical geometry are taken to be points on the surface of the sphere.

But “lines” present more of a challenge: We want lines to be “straight”, but any path
on the surface of a sphere curves with the surface. Suppose the bug travels forward
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along a path that is as straight as possible, being very careful to veer neither right
nor left. Alternatively, because lines should determine “shortest paths” between two
points, stretch a rubber band between two points on a basketball or on a globe to
find the shortest path. (Try this!) In both cases, you will find that best answer is
that a “line” in spherical geometry is a great circle, which is to say a circle that is as
big as possible on the sphere. From a three-dimensional perspective, the center of a
great circle is the same as the center of the sphere.

Question Consider the pictures below.

N

S

Equator

N

S

Equator

N

S

Equator

Are longitude lines on the earth “lines” in spherical geometry? What about
latitude lines? Explain your reasoning.

?
In non-Euclidean geometries, many familiar results no longer hold. In spherical

geometry, for example, there are no parallel lines because any two “lines” (i.e., great
circles) intersect in two points, and the sum of the angles in a triangle is greater
than 180◦.

Question Use the following picture to explain that the sum of the angles in a
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triangle in spherical geometry can be greater than 180◦.

N

S

Equator

N

S

Equator

N

S

Equator

?
Other non-Euclidean geometries are even stranger than spherical geometry! In

hyperbolic geometry, for example, parallel lines are not a fixed distance apart, and
the sum of the angles in a triangle is less than 180◦.

The following statements characterize three different types of geometries:

• Euclidean geometry: Given a line and a point not on the line, there is exactly

one line parallel to the given line.

• Spherical geometry: Given a line and a point not on the line, there are no lines

through the point parallel to the given line.

• Hyperbolic geometry: Given a line and a point not on the line, there is more

than one line parallel to the given line.

In this course, we explore neither spherical nor hyperbolic geometry in detail, but
keep these contrasting ideas in mind as we continue to dig into Euclidean geometry.
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Problems for Section 4.2

(1) From the above statements about angle sums in triangles, what
can you conclude about angle sums in quadrilaterals in spherical
and hyperbolic geometries?

(2) In Euclidean geometry, a rectangle is a quadrilateral with four right
angles.

(a) What can you conclude about rectangles in spherical and hyper-
bolic geometries? Explain.

(b) What does this imply about the usefulness of familiar (Euclidean)
area formulas in these other geometries? Explain your reasoning.

(3) In Euclidean geometry, when three distinct points A, B, and C, lie
on a line, it is easy to tell which point is between the other two.
Does this work in spherical geometry? Explain your reasoning.

(4) A bear goes traveling. She walks due south for one mile, turns left
90◦, and walks due east for one mile. She again turns left 90◦, and

then walks due north for one mile, ending in the place where she
started. What color is the bear? Explain your reasoning.

(5) When walking on a sphere, how could a bug check whether she or
he was traveling straight.

(6) In Euclidean geometry, any two distinct points determine a unique
line. This is sometimes (but not always) true in spherical geometry.
What can you say about two distinct points that do not lie on a
unique line in spherical geometry?

(7) In Euclidean geometry, given a line and a point, there is a unique
perpendicular to the given line through the given point. Describe
how this sometimes fails in spherical geometry.

(8) Can the Euclidean definition of a circle make sense on a sphere?
Be sure that the center of the circle is a point on the sphere. How
would you measure the radius of the circle?
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In classical mathematics, “axioms” were self-evident
statements that were common to many areas of sci-
ence (including mathematics), whereas “postulates”
were common-sense facts drawn from experience
in specific areas, such as geometry. In modern
mathematics, this distinction is no longer seen as
significant, and most assumptions are merely called
axioms. In deference to Euclid’s Elements, the word
postulate is used almost exclusively to discuss key
assumptions in geometry, as you will see below.
In this course, we started in the middle. In this
section, we are examining the foundation.

4.3 Assumptions in Mathematics

Every area of mathematics is based on a set of assumptions, sometimes called
axioms or postulates, which are merely statements that are accepted without proof.
They serve as the foundation of the theory being developed, and all other facts are
proven beginning with these assumptions. This approach is called the axiomatic

method.
. . . Or at least that’s how mathematics is imagined to work. In practice, because

mathematics is so vast and interconnected, most mathematical reasoning and
problem solving starts “in the middle” from a collection of accepted facts, with little
worry about which statements were taken as assumptions and which were proven
as theorems.

Question In school mathematics we can “explain” the properties of whole or
rational numbers by appealing to models and to meanings of the arithmetic
operations. But in advanced mathematics courses, the real numbers are
usually specified via axioms, some of which have names.

What are the names of the following axioms:

(1) a + b = b + a

(2) a(bc) = (ab)c

(3) a(b + c) = ab + ac

(4) If a = b and b = c then a = c

?

Chances are you used the word “property” or “law” rather than “axiom” in your
responses. Some properties of arithmetic have important names, such as the
distributive property of multiplication over addition. The fourth property above is
called the transitive property of equality. But in school mathematics, it is neither
necessary nor instructive to insist that every such property have a name that
students are expected to recall.
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In addition to these geometric assumptions, we of
course assume the properties of the algebra of real
numbers.

4.3.1 Assumptions for School Geometry

We propose the following set of assumptions for school geometry:

(A1) Through two distinct points passes a unique line.

(A2) Given a line and a point not on the line, there is exactly one line passing through the
point which is parallel to the given line (Parallel postulate).

(A3) The points on a line can be placed in one-to-one correspondence with the real numbers
so that differences measure distances (Ruler postulate).

(A4) The rays with a common endpoint can be numbered so that differences measure angles
and so that straight angles measure 180◦ (Protractor postulate).

(A5) Every basic rigid motion (rotation, reflection, or translation) has the following properties:

(i) It maps a line to a line, a ray to a ray, and a segment to a segment.

(ii) It preserves distance and angle measure.

(A6) Areas of geometric figures have the following properties:

(i) Congruent figures enclose equal areas.

(ii) Area is additive, i.e., the area of the union of two regions that overlap only at their
boundaries is the sum of their areas.

(iii) A rectangle with side-lengths a and b has area ab, where a and b can be any non-
negative real numbers.

These formal axioms, we should be clear, are intended not for students but for
teachers. And even teachers need not memorize them. Instead, we suggest that
teachers remember them informally in the following chunks:

• Points, lines, and parallel lines behave as they should (A1 and A2)

• Distance and angle measure behave as they should (A3 and A4)

• Basic rigid motions behave as they should (A5)

• Area behaves as it should (A6)

We are almost ready to use these axioms to prove some basic results. First, we
need a crucial definition.
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Definition In a plane, two distinct lines are said to be parallel if they have no
point in common.

Most of the time, of course, two distinct lines will have exactly one point in
common.

Question Can the two distinct lines have more than one point in common?
Use the above axioms to explain your reasoning.

?
The ruler postulate gives us a definition of betweenness, which allows to to define

line segment and ray.

Definition If points A, X , and B are on a line l, we say that X is between A

and B if AX + XB = AB.

Question Use the concept of betweenness to define line segment AB. Now use
the concept of betweenness to define ray

−−→
AB.

?

Question Use the protractor postulate to provide a definition of adjacent
angles, analogous to betweenness for distances.

?

Theorem 4.3.1 Let l be a line and O be a point on l. Let R be the 180◦ rotation
around O. Then R maps l to to itself.
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Question Can you prove this theorem? (Hint: Pick points P and Q on l so that
O is between them, and consider the straight angle ∠POQ.)

?

Theorem 4.3.2 Let l be a line and O be a point not lying on l. Let R be the
180◦ rotation around O. Then R maps l to a line parallel to itself.

Note: The following proof uses function notation to describe the images under
the rotation R. Thus R(l) is the image of line l, and R(Q) is the image of point Q.

Proof Let P be an arbitrary point on R(l), the rotated image of l. To show that

R(l) is parallel to l, it is sufficient to show that P cannot lie also on l.

 

Because P is on R(l), there is a point Q on l such that P = R(Q). The rotated

image of the ray OQ is the ray OP, and because ∠QOP is 180◦, it follows that Q,

O, and P are collinear. Call that line k. We know line k is distinct from l because

O is on k but not on l. Now, if P were on l, then points P and Q would be on two

distinct lines, k and l, contradicting A1 (i.e., on two points there is a unique line).

The theorem is proved.
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Problems for Section 4.3

(1) Use adjacent angles to prove that vertical angles are equal.

(2) Now use rotations to prove that vertical angles are equal.

(3) Prove that alternate interior angles and corresponding angles of a
transversal with respect to a pair of parallel lines are equal.

(4) Prove that the sum of the interior angles of a triangle is 180◦.

(5) Prove: If a pair of alternate interior angles or a pair of corresponding
angles of a transversal with respect to two lines are equal, then the
lines are parallel.
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CCSS G-SRT.1: Verify experimentally the properties
of dilations given by a center and a scale factor:

CCSS 8.G.4: Understand that a two-dimensional
figure is similar to another if the second can be
obtained from the first by a sequence of rotations,
reflections, translations, and dilations; given two
similar two-dimensional figures, describe a sequence
that exhibits the similarity between them.

4.4 Dilations, Scaling, and Similarity

In a previous section, we saw how transformations can be used as a foundation
for describing congruence and explaining the triangle congruence criteria. In this
section, we show how transformations can be used to describe similarity. Because
the basic rigid motions all preserve distances, we need a new kind of transformation:
a dilation.

Definition Given a point O and a positive number r, a dilation about O by
scale factor r, is a mapping that takes a point P to a point P ′ so that OP′ = r ·OP.

With this definition, rubber bands are natural tools for exploring dilations.
Through explorations with rubber bands and with geometry software, we observe
that a dilation has the following properties:G-SRT.1

(i) It maps lines to lines, rays to rays, and segments to segments.

(ii) It changes distance by a factor of r, where r is the scale factor of the dilation.

(iii) It maps every line passing through the center of dilation to itself, and it maps
every line not passing through the center of the dilation to a parallel line.

(iv) It preserves angle measure.

We could assume these properties, just as we have assumed the properties of
the basic rigid motions. Instead, we use our assumptions about area to prove some
of these properties. These are the Side-Splitter Theorems.

Now we are ready to define similarity.8.G.4

Definition A geometric figure is similar to another if the second can be obtained
from the first by a sequence of rotations, reflections, translations, and dilations.

4.4.1 Theorems for Similar Triangles

We need to show that this general definition of similarity fits with ideas about similar
triangles that we may remember from school mathematics. Here is one way of
thinking about similar triangles:
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4ABC ∼ 4A′B′C′ ⇔

∠A ' ∠A′

∠B ' ∠B′

∠C ' ∠C′

Question What does this mean?

?
Here is another way of thinking about similar triangles:

4ABC ∼ 4A′B′C′ ⇔

AB = k · A′B′

BC = k · B′C′

CA = k · C′A′

Question What does this mean?

?
Using merely the formula for the area of a triangle, we (meaning you) will explain

why the following important theorem is true. Throughout this discussion we will
use the convention that when we write AB we mean the length of the segment AB.

Theorem 4.4.1 (Parallel-Side) Given:
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If side BC is parallel to side DE, then

AB

AD
=
AC

AE
.

Question Can you tell me in English what this theorem says? How does it
relate to the definition of similarity in terms of rigid motions and dilations?

?
Now we (meaning you) are going to explore a bit. See if answering these questions

sheds light on this.

Question If h is the height of 4ABC, find formulas for the areas of 4ABC and
4ADC.

?

Question If g is the height of 4ACB, find formulas for the areas of 4ACB and
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4AEB.

?

Question Explain why

Area(4ABC) = Area(4ACB).

?

Question Explain why

Area(4CBE) = Area(4CBD).

Big hint: Use the fact that you have two parallel sides! Draw a picture to help
clarify your explanation.

?

Question Explain why

Area(4ADC) = Area(4AEB).

?
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Question Explain why

Area(4ABC)
Area(4ADC)

=
Area(4ACB)
Area(4AEB)

?

Question Compute and simplify both of the following expressions:

Area(4ABC)
Area(4ADC)

and
Area(4ACB)
Area(4AEB)

?

Question How can you conclude that:

AB

AD
=
AC

AE

?

Question Why is it important that line DE is parallel to line CB?

?

Question Can you sketch out (in words) how the questions above prove the
Parallel-Side Theorem?

?
Now comes the moment of truth.

95



4.4. DILATIONS, SCALING, AND SIMILARITY

These notes do not describe why side CA is also
scaled by k. You address that question in the Side-
Splitter Theorem activity.

Question Can you use the Parallel-Side Theorem to explain why if you know
that if you have two triangles, 4ABC and 4A′B′C′ with:

∠A ' ∠A′

∠B ' ∠B′

∠C ' ∠C′

then we must have that

AB = k · A′B′

BC = k · B′C′

CA = k · C′A′

?

The Converse The converse of the Parallel-Side Theorem states:

Theorem 4.4.2 (Split-Side) Given:

If side BC intersects (splits) the sides of 4ADE so that

AB

AD
=
AC

AE
,

then side BC is parallel to side DE and in the same ratio.
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Now we (meaning you) will answer questions in the hope that they will help us
see why the above theorem is true.

Question Suppose that you doubt that side BC is parallel to side DE. Explain
how to place a point C′ on side AE so that side BC′ is parallel to line DE. Be
sure to sketch the situation(s).

?

Question You now have a triangle 4ADE whose sides are split by a line BC′

such that the line BC′ is parallel to line DE. What does the Parallel-Side
Theorem have to say about this?

?

Question What can you conclude about points C and C′?

?

Question What does this tell you about the Split-Side Theorem?

?
Let’s see if you can put this all together:

Question Can you use the Split-Side Theorem to explain why you know that
if you have two triangles, 4ABC and 4A′B′C′ with:

AB = k · A′B′

BC = k · B′C′

CA = k · C′A′
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then we must have that

∠A ' ∠A′

∠B ' ∠B′

∠C ' ∠C′

?
Putting all of our work above together, we may now say the following:

Theorem 4.4.3 Two triangles 4ABC and 4A′B′C′ are similar if either equil-
valent condition holds:

∠A ' ∠A′

∠B ' ∠B′

∠C ' ∠C′
or

AB = k · A′B′

BC = k · B′C′

CA = k · C′A′

Question How does this theorem connect back to the definition of similarity
in terms of rigid motions and dilations?

?

4.4.2 A New Meaning of Multiplication

School mathematics makes sense when concepts have meaning.

Question What can multiplication mean? Can you give multiplication meaning
involving groups of groups or something of the sort?

?
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Question Can you give multiplication meaning involving areas or something
of the sort?

?

Question Can you somehow give meaning to multiplication using similarity?
Use “scale factor” or “scaling” in your explanation.

?
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CCSS G-SRT.2: Given two figures, use the definition
of similarity in terms of similarity transformations
to decide if they are similar; explain using similarity
transformations the meaning of similarity for trian-
gles as the equality of all corresponding pairs of
angles and the proportionality of all corresponding
pairs of sides.

CCSS G-C.1: Prove that all circles are similar.

4.4.3 Problem Solving with Similarity

We now have several ways of thinking more deeply about the naïve “same shape”
notion of similarity, imagined as zooming in and out. In this section, we defined
similarity in terms of basic rigid motions and dilations, and we used calculations
involving area to show that these ideas are consistent with triangle similarity
described as “same angles” or as “proportional sides.”

Again, the advantage of defining similarity in terms of basic rigid motions and
dilations, is that the approach applies not just to polygons but to figures of any
shape. And the key is identifying the scale factor.

Here are some key ideas that arise in the activities and homework problems:

(1) Many real-world problems can be solved using similar triangles or other similar
figures. For example, you can use shadows to compute the height of a flagpole.
Maps, scale drawings, and scale models all involve similarity.

(2) A crticial issue is being able to distinguish situations in which figures are similar
from those in which they are not.

(3) When using proportional relationships between corresponding parts of similar
figures, it helps distinguish “within figure” ratios from “across figure” ratios, the
latter being a scale factor.G-SRT.2 When figures overlap, one challenge is being
consistent about part-part versus part-whole ratios.

(4) You may use the definition of similarity to show that any two circles are
similar.G-C.1 You can also see the more surprising result that any two parabolas
are similar.

(5) Similarity turns out to be very useful in right triangles. First, the altitude to
the hypotenuse creates two triangles similar to the first. Second, among right
triangles, similarity requires specifying only one non-right angle, which leads to
right triangle trigonometry.
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Problems for Section 4.4

(1) Compare and contrast the ideas of equal triangles, congruent trian-
gles, and similar triangles.

(2) Explain why all equilateral triangles are similar to each other.

(3) Explain why all isosceles right triangles are similar to each other.

(4) Explain why when given a right triangle, the altitude of the right
angle divides the triangle into two smaller triangles each similar to
the original right triangle.

(5) The following sets contain lengths of sides of similar triangles. Solve
for all unknowns—give all solutions. In each case explain your
reasoning.

(a) {3,4,5}, {6,8, x}

(b) {3,3,5}, {9,9, x}

(c) {5,5, x}, {10,4, y}

(d) {5,5, x}, {10,8, y}

(e) {3,4, x}, {4,5, y}

(6) A Pythagorean Triple is a set of three positive integers {a, b, c} such
that a2 + b2 = c2. Write down an infinite list of Pythagorean Triples.
Explain your reasoning and justify all claims.

(7) Here is a right triangle. Note that it is not drawn to scale:

Solve for all unknowns in the following cases.

(a) a = 3, b =?, c =?, d = 12, e = 5, f =?

(b) a =?, b = 3, c =?, d = 8, e = 13, f =?

(c) a = 7, b = 4, c =?, d =?, e = 11, f =?

(d) a = 5, b = 2, c =?, d = 6, e =?, f =?

In each case explain your reasoning.

(8) Suppose you have two similar triangles. What can you say about
the area of one in terms of the area of the other? Be specific and
explain your reasoning.

(9) During a solar eclipse we see that the apparent diameter of the Sun
and Moon are nearly equal. If the Moon is around 240000 miles
from Earth, the Moon’s diameter is about 2000 miles, and the Sun’s
diameter is about 865000 miles how far is the Sun from the Earth?

(a) Draw a relevant (and helpful) picture showing the important
points of this problem.

(b) Solve this problem, be sure to explain your reasoning.

(10) When jets fly above 8000 meters in the air they form a vapor trail.
Cruising altitude for a commercial airliner is around 10000 meters.
One day I reached my arm into the sky and measured the length of
the vapor trail with my hand—my hand could just span the entire
trail. If my hand spans 9 inches and my arm extends 25 inches
from my eye, how long is the vapor trail? Explain your reasoning.

(a) Draw a relevant (and helpful) picture showing the important
points of this problem.

(b) Solve this problem, be sure to explain your reasoning.

(11) David proudly owns a 42 inch (measured diagonally) flat screen TV.
Michael proudly owns a 13 inch (measured diagonally) flat screen
TV. Dave sits comfortably with his dog Fritz at a distance of 10 feet.
How far must Michael stand from his TV to have the “same” viewing
experience? Explain your reasoning.

(a) Draw a relevant (and helpful) picture showing the important
points of this problem.

(b) Solve this problem, be sure to explain your reasoning.

(12) You love IMAX movies. While the typical IMAX screen is 72 feet by
53 feet, your TV is only a 32 inch screen—it has a 32 inch diagonal.
How close do you have to sit to your screen to simulate the IMAX
format? Explain your reasoning.

(a) Draw a relevant (and helpful) picture showing the important
points of this problem.

(b) Solve this problem, be sure to explain your reasoning.

101



4.4. DILATIONS, SCALING, AND SIMILARITY

(13) David proudly owns a 42 inch (measured diagonally) flat screen TV.
Michael proudly owns a 13 inch (measured diagonally) flat screen
TV. Michael stands and watches his TV at a distance of 2 feet. Dave
sits comfortably with his dog Fritz at a distance of 10 feet. Whose
TV appears bigger to the respective viewer? Explain your reasoning.

(a) Draw a relevant (and helpful) picture showing the important
points of this problem.

(b) Solve this problem, be sure to explain your reasoning.

(14) Here is a personal problem: Suppose you are out somewhere and
you see that when you stretch out your arm, the width of your
thumb is the same apparent size as a distant object. How far away
is the object if you know the object is:

(a) 6’ long (as tall as a person).

(b) 16’ long (as long as a car).

(c) 40’ long (as long as a school bus).

(d) 220’ long (as long as a large passenger airplane).

(e) 340’ long (as long as an aircraft carrier).

Explain your reasoning.

(15) I was walking down Woody Hayes Drive, standing in front of St.
John Arena when a car pulled up and the driver asked, “Where is
Ohio Stadium?” At this point I was a bit perplexed, but nevertheless
I answered, “Do you see the enormous concrete building on the
other side of the street that looks like the Roman Colosseum? That’s
it.”

The person in the car then asked, “Where are the Twin-Towers
then?” Looking up, I realized that the towers were in fact just cov-
ered by top of Ohio Stadium. I told the driver to just drive around
the stadium until they found two enormous identical towers—that

would be them. They thanked me and I suppose they met their
destiny.

I am about 2 meters tall, I was standing about 100 meters from
the Ohio Stadium and Ohio Stadium is about 40 meters tall. If the
Towers are around 500 meters from the rotunda (the front entrance
of the stadium), how tall could they be and still be obscured by the
stadium? Explain your reasoning—for the record, the towers are
about 80 meters tall.

(16) Explain how to use the notion of similar triangles to multiply num-
bers with your answer expressed as a segment of the appropriate
length.

(17) Explain how to use the notion of similar triangles to divide numbers
with your answer expressed as a segment of the appropriate length.

(18) Consider the following combinations of S’s and A’s. Which of them
produce a Congruence Theorem? Which of them produce a Similarity
Theorem? Explain your reasoning.

SSS, SSA, SAS, SAA, ASA, AAA

(19) Explain how the following picture “proves” the Pythagorean Theo-
rem.
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4.5 Length, Area, and Volume

To be written.
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5 Coordinate Constructions

As long as algebra and geometry have been separated, their progress have been slow
and their uses limited; but when these two sciences have been united, they have lent
each mutual forces, and have marched together towards perfection.

—Joseph Louis Lagrange

5.1 Constructions

One of the deepest and powerful aspects of mathematics is that it allows one to
see connections between disparate areas. So far we have used different physical
techniques (compass and straightedge constructions along with origami construc-
tions) to solve similar problems. Take a minute and reflect upon that—isn’t it cool
that similar problems can be solved by such different methods? You back? OK—so
let’s see if we can solidify these connections through abstraction and in the process,
make a third connection. We are going to see the algebra behind the geometry we’ve
done. Making these connections isn’t easy and can be scary. Thankfully, you are a
fearless (yet gentle) reader.

Rules for Coordinate Constructions

(1) A point is an ordered pair (x, y) of real numbers x and y. Points can only be
placed as the intersection of lines and/or circles.

(2) Lines are defined as all points (x, y) that are solutions to equations of the form

ax + by = c for given a, b, c.
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(3) Circles centered at (a, b) of radius c are defined as all solutions to equations of
the form

(x − a)2 + (y − b)2 = c2 for given a, b, c.

(4) The distance between two points A = (ax , ay) and B = (bx , by) is given by

d(A, B) =
√

(ax − bx )2 + (ay − by)2.

Just as we have done before, we will present several basic constructions. Compare
these to the ones done with a compass and straightedge and the ones done by
folding and tracing. We will proceed by the order of difficulty of the construction.

Construction (Bisecting a Segment) Given a segment, we wish to cut it in
half.

(1) Let (x1, y1) and (x2, y2) be the endpoints of your segment.

(2) We claim the midpoint is: (x1 + x2

2
,
y1 + y2

2

)

Question Can you explain why this works?

?

Construction (Parallel through a Point) Given a line and a point, we wish to
construct another line parallel to the first that passes through the given point.

(1) Let ax + by = c be the line and let (x0, y0) be the point.

(2) Set c0 = ax0 + by0.

105



5.1. CONSTRUCTIONS

(3) The line ax + by = c0 is the desired parallel line.

Question Can you explain why this works?

?

Construction (Perpendicular through a Point) Given a point and a line, we
wish to construct a line perpendicular to the original line that passes through
the given point.

(1) Let (x0, y0) be the given point and let ax + by = c be the given line.

(2) Find c0 = bx0 − ay0.

(3) The desired line is bx + (−a)y = c0.

Question Can you explain why this works? Can you give some examples of it
in action?

?

Construction (Line between two Points) Given two points, we wish to give
the line connecting them.

(1) Call the two points (x1, y1) and (x2, y2).

(2) Write

ax1 + by1 = c,

ax2 + by2 = c.
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(3) Solve for −a/b and c.

Example 5.1.1) Suppose you want to find the line between the points (3,1)
and (2,5). Write

a · 3 + b · 1 = c,

a · 2 + b · 5 = c,

and subtract these equations to get:

a − b · 4 = 0

Now we see

−b · 4 = −a,

−4 = −a/b.

Now we can take any values of a and b that make the equation above true,
and plug them back in to a · 3 + b = c to obtain c. You should explain why

this works! I choose a = 4 and b = 1. From this I see that c = 13 so the line
we desire is:

4x + y = 13

Construction (Intersection of a Line and a Circle) We wish to find the points
where a given line meets a given circle.

(1) Let ax + by = c be the given line.

(2) Let (x − x0)2 + (y − y0)2 = r2 be the given circle.

(3) Solve for x and y.

Question Can you give an example and draw a picture of this construction?

?
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Construction (Bisecting an Angle) We wish to divide an angle in half.

(1) Find two points on the angle equidistant from the vertex.

(2) Bisect the segment connecting the point above.

(3) Find the line connecting the vertex to the bisector above.

Question Can you give an example and draw a picture of this construction?

?

Construction (Intersection of Two Circles) Given two circles, we wish to
find the points where they meet.

(1) Let (x − a1)2 + (y − b1)2 = c2
1 be the first circle.

(2) Let (x − a2)2 + (y − b2)2 = c2
2 be the second circle.

(3) Solve for x and y.

Question Can you give an example and draw a picture of this construction?
How many examples should you give for “completeness” sake?

?

Question We wish to construct an equilateral triangle given the length of one
side. Can you do this?

?
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Problems for Section 5.1

(1) What are the rules for coordinate constructions?

(2) Explain how to transfer a segment using coordinate constructions.

(3) Explain how to copy an angle using coordinate constructions (but
don’t actually do it!)

(4) Given two points, use coordinate constructions to construct a line
between both points. Explain the steps in your construction.

(5) Given segment, use coordinate constructions to bisect the segment.
Explain the steps in your construction.

(6) Given a point and line, use coordinate constructions to construct a
line parallel to the given line that passes through the given point.
Explain the steps in your construction.

(7) Given a point and line, use coordinate constructions to construct a
line perpendicular to the given line that passes through the given
point. Explain the steps in your construction.

(8) Given a line and a circle, use coordinate constructions to con-
struct the intersection of these figures. Explain the steps in your
construction.

(9) Use coordinate constructions to bisect a given angle. Explain the
steps in your construction.

(10) Given two circles, use coordinate constructions to construct the
intersection of these figures. Explain the steps in your construction.

(11) Use algebra to help explain why lines intersect in zero, one, or
infinitely many points.

(12) Use algebra to help explain why circles and lines intersect in zero,
one, or two points.

(13) Use algebra to help explain why circles intersect in zero, one, two,
or infinitely many points.

(14) Use coordinate constructions to construct an equilateral triangle.
Explain the steps in your construction.

(15) Use coordinate constructions to construct a square. Explain the
steps in your construction.

(16) Use coordinate constructions to construct a regular hexagon. Ex-
plain the steps in your construction.
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5.2 Brave New Anatomy of Figures

Once more, in studying geometry we seek to discover the points that can be obtained
given a set of rules. Now the set of rules consists of the rules for coordinate
constructions.

Question In regards to coordinate constructions, what is a point?

?

Question In regards to coordinate constructions, what is a line?

?

Question In regards to coordinate constructions, what is a circle?

?
Now I’m going to quiz you about them (I know we’ve already gone over this twice,

but it is fundamental so just smile and answer the questions):

Question Place two points randomly in the plane. Do you expect to be able to
draw a single line that connects them?

?

Question Place three points randomly in the plane. Do you expect to be able
to draw a single line that connects them?

?
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Question Place two lines randomly in the plane. How many points do you
expect them to share?

?

Question Place three lines randomly in the plane. How many points do you
expect all three lines to share?

?

Question Place three points randomly in the plane. Will you (almost!) always
be able to draw a circle containing these points? If no, why not? If yes, how do
you know?

?

5.2.1 Parabolas

Recall the definition of a parabola:

Definition Given a point and a line, a parabola is the set of points such that
each of these points is the same distance from the given point as it is from the
given line.
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Fancy folks call the point the focus and they call the line the directrix.

However I know that you—being rather cosmopolitan in your knowledge and
experience—know that from a coordinate geometry point of view that the formula
for a parabola should be something like:

y = ax2 + bx + c

Question How do you rectify these two different notions of a parabola?

I’m feeling chatty, so let me take this one. What would be really nice is if we could
extract the focus and directrix from any formula of the form y = ax2 +bx + c. I think
we’ll work it for a specific example. Consider:

y = 3x2 + 6x − 7

Step 1 Complete the square. Write:

y = 3x2 + 6x − 7

= 3(x2 + 2x) − 7

= 3(x2 + 2x + 1 − 1) − 7

= 3(x2 + 2x + 1) − 3 − 7

= 3(x + 1)2 − 10

Step 2 Compare with the following basic form:

y = u(x − v)2 +w

Given a parabola in the form above, we have that

focus :
(
v,w +

1
4u

)
and directrix : y = w −

1
4u
.

So in our case the focus is at (
−1,−10 +

1
12

)
and our directrix is the line

y = −10 −
1
12
.
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Question Can you use the distance formula to show that every point on the
parabola is the same distance from focus as it is from the directrix?

?
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Problems for Section 5.2

(1) In regards to coordinate constructions, what is a point? Compare
and contrast this to a naive notion of a point.

(2) In regards to coordinate constructions, what is a line? Compare
and contrast this to a naive notion of a line.

(3) In regards to coordinate constructions, what is a circle? Compare
and contrast this to a naive notion of a circle. In particular, explain
how the formula for the circle arises.

(4) Explain what is meant by the focus of a parabola.

(5) Explain what is meant by the directrix of a parabola.

(6) Will the following formula

y = ax2 + bx + c

really plot any parabola in the plane? If so why? If not, can you
give a formula that will? Explain your reasoning.

(7) For each parabola given, find the focus and directrix:

(a) y = x2

(b) y = 7x2

(c) y = −2x2

(d) y = x2 − 4x
(e) y = x2 − 12
(f) y = x2 − x + 1
(g) y = x2 + 2x − 5
(h) y = 2x2 − 3x − 7
(i) y = −17x2 + 42x − 3
(j) x = y2 − 5y
(k) x = 3y2 − 23y + 17

In each case explain your reasoning.

(8) Explain in general terms (without appealing to an example) how to
find the focus and directrix of a parabola y = ax2 + bx + c.

(9) Use coordinate constructions to construct the circle that passes
through the points:

A = (0,0), B = (3,3), C = (4,0).

Sketch this situation and explain your reasoning.

(10) Consider the points

A = (1,1) and B = (5,3).

(a) Find the midpoint between A and B.
(b) Find the line the connects A and B. Use algebra to show that

the midpoint found above is actually on this line.
(c) Use algebra to show that this midpoint is equidistant from both

A and B.

Sketch this situation and explain your reasoning in each step above.

(11) Consider the parabola y = x2/4 + x + 2.

(a) Find the focus and directrix of this parabola.
(b) Sketch the parabola by plotting points.
(c) Use folding and tracing to fold the envelope of tangents of the

parabola.

Present the above items simultaneously on a single graph. Explain
the steps in your work.

(12) Consider the following line and circle:

x − y = −1 and (x − 1)2 + (y − 1)2 = 5

Use algebra to find their points of intersection. What were the
degrees of the equations you solved to find these points? Sketch
this situation and explain your reasoning.

(13) Consider the following two circles:

x2 + y2 = 5 and (x − 1)2 + (y − 1)2 = 5

Use algebra to find their points of intersection. What were the
degrees of the equations you solved to find these points? Sketch
this situation and explain your reasoning.

(14) Consider the following two circles:

(x + 1)2 + (y − 1)2 = 9 and (x − 3)2 + (y − 2)2 = 4

Use algebra to find their points of intersection. What were the
degrees of the equations you solved to find these points? Sketch
this situation and explain your reasoning.
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(15) Explain how to find the minimum or maximum of a parabola of the
form:

y = ax2 + bx + c

(16) Given a triangle, use coordinate constructions to construct the
circumcenter. Explain the steps in your construction.

(17) Given a triangle, use coordinate constructions to construct the
orthocenter. Explain the steps in your construction.

(18) Given a triangle, use coordinate constructions to construct the
incenter. Explain the steps in your construction.

(19) Given a triangle, use coordinate constructions to construct the
centroid. Explain the steps in your construction.

(20) Use coordinate constructions to construct a triangle given the length
of one side, the length of the the median to that side, and the length

of the altitude of the opposite angle. Explain the steps in your
construction.

(21) Use coordinate constructions to construct a triangle given one angle,
the length of an adjacent side and the altitude to that side. Explain
the steps in your construction.

(22) Use coordinate constructions to construct a triangle given one angle
and the altitudes to the other two angles. Explain the steps in your
construction.

(23) Use coordinate constructions to construct a triangle given two
sides and the altitude to the third side. Explain the steps in your
construction.
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Be warned, this notion of so-called “Descartes num-
bers” is unique to these pages.

5.3 Constructible Numbers

We’ve now practiced three types of constructions:

(1) Compass and straightedge constructions.

(2) Folding and Tracing constructions.

(3) Coordinate constructions.

You may be wondering what is meant by the words “constructible numbers.” Imagine
a line with two points on it:

0 1

Label the left point 0 and the right point 1. If we think of this as a starting point for
a number line, then a constructible number is nothing more than a point we can
obtain on the above number line using one of the construction techniques above
starting with the points 0 and 1.

(1) Denote the set of numbers constructible by compass and straightedge with C.
We’ll call C the set of constructible numbers.

(2) Denote the set of numbers constructible by folding and tracing with F . We’ll call
F the set of folding and tracing numbers.

(3) Denote the set of numbers constructible by coordinate constructions with D.
We’ll call D the set of Descartes numbers.

Mostly in this chapter we’ll be talking about C. You’ll have to deal with F and D
yourself.

Question Exactly what numbers are in C?

?
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How do we attack this question? Well first let’s get a bit of notation. Recall that
we use the symbol “∈” to mean is in. So we know that 0 and 1 are in the set of
constructible numbers. So we write

0 ∈ C and 1 ∈ C.

Question Is this true for F , the set of folding and tracing numbers? What
about D, the set of Descartes numbers?

?
If we could use constructions to make the operations +, −, ·, and ÷, then we

would be able to say a lot more. In fact we will do just this.

Question How does one add and subtract using a compass and straightedge?

?

Question Starting with 0 and 1, what numbers could we add to our number
line by simply adding and subtracting?

At this point we have all the positive whole numbers, zero, and the negative whole
numbers. We have a special name for this set, we call it the integers and denote it
by the letter Z:

Z = {. . . ,−5,−4,−3,−2,−1,0,1,2,3,4,5, . . . }.

Question Are the integers contained in F , the set of folding and tracing
numbers? Are the integers contained in D, the set of Descartes numbers?

?
We still have some more operations:
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Construction (Multiplication) This construction is based on the idea of simi-
lar triangles. Start with given segments of length a, b, and 1:

(1) Make a small triangle with the segment of length 1 and segment of length b.

(2) Now place the segment of length a on top of the unit segment with one end
at the vertex.

(3) Draw a line parallel to the segment connecting the unit to the segment of
length b starting at the other end of segment of length a.

(4) The length from the vertex to the point that the line containing b intersects
the line drawn in step 3 is of length a · b.

Construction (Division) This construction is also based on the idea of similar
triangles. Again, you start with given segments of length a, b, and 1:

(1) Make a triangle with the segment of length a and the segment of length b.

(2) Put the unit along the segment of length a starting at the vertex where the
segment of length a and the segment of length b meet.
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(3) Make a line parallel to the third side of the triangle containing the segment
of length a and the segment of length b starting at the end of the unit.

(4) The distance from where the line drawn in step 3 meets the segment of
length b to the vertex is of length b/a.

Question What does our number line look like at this point?

Currently we have Z, the integers, and all of the fractions. In other words:

Q =
{a
b

such that a ∈ Z and b ∈ Z with b , 0
}

Fancy folks will replace the words such that with a colon “:” to get:

Q =
{a
b

: a ∈ Z and b ∈ Z with b , 0
}

We call this set the rational numbers. The letter Q stands for the word quotient,
which should remind us of fractions.

In mathematics we study sets of numbers. In any field of science, the first step
to understanding something is to classify it. One sort of classification that we have
is the notion of a field.

119



5.3. CONSTRUCTIBLE NUMBERS

Definition A field is a set of numbers, which we will call F , that is closed
under two associative and commutative operations + and · such that:

(1) (a) There exists an additive identity 0 ∈ F such that for all x ∈ F ,

x + 0 = x.

(b) For all x ∈ F , there is an additive inverse −x ∈ F such that

x + (−x) = 0.

(2) (a) There exists a multiplicative identity 1 ∈ F such that for all x ∈ F ,

x · 1 = x.

(b) For all x ∈ F where x , 0, there is a multiplicative inverse x−1 such that

x · x−1 = 1.

(3) Multiplication distributes over addition. That is, for all x, y, z ∈ F

x · (y + z) = x · y + x · z.

Now, a word is in order about three tricky words I threw in above: closed,
associative, and commutative:

Definition A set F is closed under an operation * if for all x, y ∈ F , x * y ∈ F .

Example 5.3.1) The set of integers, Z, is closed under addition, but is not
closed under division.

Definition An operation * is associative if for all x, y, and z

x * (y * z) = (x * y) * z.
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Definition An operation * is commutative if for all x, y

x * y = y * x.

Question Is Z a field? Is Q a field? Can you think of other fields? What
about the set of constructible numbers C? What about the folding and tracing
numbers F ? What about the Descartes numbers D?

?
From all the constructions above we see that the set of constructible numbers C

is a field. However, which field is it? In fact, the set of constructible numbers is
bigger than Q!

Construction (Square-Roots) Start with given segments of length a and 1:

(1) Put the segment of length a immediately to the left of the unit segment on a
line.

(2) Bisect the segment of length a + 1.

(3) Draw an arc centered at the bisector that starts at one end of the line segment
of length a + 1 and ends at the other end.

(4) Construct the perpendicular at the point where the segment of length a

meets the unit.

(5) The line segment connecting the meeting point of the segment of length a
and the unit to the arc drawn in step 3 is of length

√
a.
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This tells us that square-roots are constructible. In particular, the square-root of
two is constructible. But the square-root of two is not rational! That is, there is no
fraction

a

b
=
√

2 such that a, b ∈ Z.

Question Can you remind me, how do we know that
√

2 is not rational?

?

Question Are square-roots found in F , the set of folding and tracing numbers?
What about D, the set of Descartes numbers?

?
OK, so how do we talk about a field that contains both Q and

√
2? Simple, use

this notation:

Q(
√

2) = {the smallest field containing both Q and
√

2}

So the set of constructible numbers contains all of Q(
√

2). Does the set of con-
structible numbers contain even more numbers? Yes! In fact the

√
3 is also not
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rational, but is constructible. So here is our situation:

Z ⊆ Q ⊆ Q(
√

2) ⊆ Q(
√

2,
√

3) ⊆ C

So all the numbers in Q(
√

2,
√

3) are also in C. But is this all of C? Hardly! We
could keep on going, adding more and more square-roots ’til the cows come home,
and we still will not have our hands on all of the constructible numbers. But all is
not lost. We can still say something:

Theorem 5.3.2 The use of compass and straightedge alone on a field F can at
most produce numbers in a field F (

√
α) where α ∈ F .

Question Can you explain why the above theorem is true? Big hint: What is
the relationship between C and D?

?
The upshot of the above theorem is that the only numbers that are constructible

are expressible as a combination of rational numbers and the symbols:

+ − · ÷
√

So what are examples of numbers that are not constructible? Well to start 3√2
is not constructible. Also π is not constructible. While both of these facts can be
carefully explained, we will spare you gentle reader—for now.

Question Which of the following numbers are constructible?

3.1415926,
16√

5, 3√27, 6√27.

?
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Problems for Section 5.3

(1) Explain what the set denoted by Z is.

(2) Explain what the set denoted by Q is.

(3) Explain what the set C of constructible numbers is.

(4) Given two line segments a and b, construct a +b. Explain the steps
in your construction.

(5) Given two line segments a and b, construct a −b. Explain the steps
in your construction.

(6) Given three line segments 1, a, and b, construct a · b. Explain the
steps in your construction.

(7) Given three line segments 1, a, and b, construct a/b. Explain the
steps in your construction.

(8) Given a unit, construct 4/3. Explain the steps in your construction.

(9) Given a unit, construct 3/4. Explain the steps in your construction.

(10) Use the construction for multiplication to explain why when mul-
tiplying two numbers between 0 and 1, the product is always still
between 0 and 1.

(11) Explain why the construction for multiplication works.

(12) Use the construction for division to explain why when dividing a
positive number by a number between 0 and 1, the quotient is
always larger than the initial positive number.

(13) Explain why the construction for division works.

(14) Given a unit, construct
√

2. Explain the steps in your construction.

(15) Use algebra to help explain why the construction for square-roots
works.

(16) Give relevant and revealing examples of numbers in the set Z.

(17) Give relevant and revealing examples of numbers in the set Q.

(18) Give relevant and revealing examples of numbers in the set Q(
√

2).

(19) Give relevant and revealing examples of numbers in the set
Q(
√

2,
√

3).

(20) Give relevant and revealing examples of numbers in the set
Q(
√

2,
√

3,
√

5).

(21) Which of the following are constructible numbers? Explain your
answers.

(a) 3.141

(b)
3√
5

(c)
√

3 +
√

17

(d)
8√
5

(e) 10√37

(f) 16√37

(g) 3√28

(h) 3√27

(i)
√

13 + 3√2 +
√

11

(j) 3 + 5√4

(k)
√

3 +
√

19 +
√

10

(22) Is
√

7 a rational number? Is it a constructible number? Explain
your reasoning.

(23) Is
√

8 a rational number? Is it a constructible number? Explain
your reasoning.

(24) Is
√

9 a rational number? Is it a constructible number? Explain
your reasoning.

(25) Is 3√7 a rational number? Is it a constructible number? Explain
your reasoning.

(26) Is 3√8 a rational number? Is it a constructible number? Explain
your reasoning.

(27) Is 3√9 a rational number? Is it a constructible number? Explain
your reasoning.
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5.4 Impossibilities

Oddly enough, the importance of compass and straightedge constructions is not
so much what we can construct, but what we cannot construct. It turns out that
classifying what we cannot construct is an interesting question. There are three
classic problems which are impossible to solve with a compass and straightedge
alone:

(1) Doubling the cube.

(2) Squaring the circle.

(3) Trisecting the angle.

5.4.1 Doubling the Cube

The goal of this problem is to double the volume of a given cube. This boils down to
trying to construct roots to the equation:

x3 − 2 = 0

But we can see that the only root of the above equation is 3√2 and we already know
that this number is not constructible.

Question Why does doubling the cube boil down to constructing a solution to
the equation x3 − 2 = 0?

?

5.4.2 Squaring the Circle

Given a circle of radius r, we wish to construct a square that has the same area.
Why would someone want to do such a thing? Well to answer this question you
must ask yourself:
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Question What is area?

?
So what is the deal with this problem? Well suppose you have a circle of radius

1. Its area is now π square units. How long should the edge of a square be if it has
the same area? Well the square should have sides of length

√
π units. In 1882, it

was proved that π is not the root of any polynomial equation, and hence
√
π is not

constructible. Therefore, it is impossible to square the circle.

5.4.3 Trisecting the Angle

This might sound like the easiest to understand, but it’s a bit subtle. Given any
angle, the goal is to trisect that angle. It can be shown that this cannot be done
using a compass and straightedge. In particular, it is impossible to trisect a 60
degree angle with compass and straightedge alone. However, we are not saying
that you cannot trisect some angles with compass and straightedge alone, in fact
there are special angles which can be trisected using a compass and straightedge.
However the methods used to trisect those special angles will fail miserably in nearly
all other cases.

Question Can you think of any angles that can be trisected using a compass
and straightedge?

?
Just because it is impossible to trisect an arbitrary angle with compass and

straightedge alone does not stop people from trying.

Question If you did not know that it was impossible to trisect an arbitrary
angle with a compass and straightedge alone, how might you try to do it?

?
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One common way that people try to trisect angles is to take an angle, make an
isosceles triangle using the angle, and divide the line segment opposite the angle
into three equal parts. While you can divide the opposite side into three equal parts,
it in fact never trisects the angle. When you do this procedure to acute angles, it
seems to work, though it doesn’t really. You can see that it doesn’t by looking at an
obtuse angle:

Trisecting the line segment opposite the angle clearly leaves the middle angle much
larger than the outer two angles. This happens regardless of the measure of the
angle. This mistake is common among people who think that they can trisect an
angle with compass and straightedge alone.

5.4.4 Folding and Tracing’s Time to Shine

We know that:
Z ⊆ Q ⊆ Q(

√
2) ⊆ Q(

√
2,
√

3) ⊆ C = D

Where does the set of folding and tracing numbers F fit into the parade? I’ll tell
you, if you promise not to tell anybody that I did. . .F is the leader of the pack! We
already know that you can trisect angles using folding and tracing constructions.
In fact you can even solve cubic equations! We’ll show you how to do this.

Construction (Solving Cubic Equations) We wish to solve equations of the
form:

x3 + ax2 + bx + c = 0

(1) Plot the points: P1 = (a,1) and P2 = (c, b).

(2) Plot the lines: `1 : y = −1 and `2 : x = −c.

(3) With a single fold, place P1 onto `1 and P2 onto `2.

(4) The slope of the crease is a solution to x3 + ax2 + bx + c = 0.
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Question How do we get the “solution” from the slope?

?
Since folding and tracing constructions can duplicate every compass and straight-

edge construction and more, we have that C ⊆ F .
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Problems for Section 5.4

(1) Explain the three classic problems that cannot be solved with a
compass and straightedge alone.

(2) Use a compass and straightedge construction to trisect an angle of
90◦. Explain the steps in your construction.

(3) Use a compass and straightedge construction to trisect an angle of
135◦. Explain the steps in your construction.

(4) Use a compass and straightedge construction to trisect an angle of
45◦. Explain the steps in your construction.

(5) Use a compass and straightedge construction to trisect an angle of
67.5◦. Explain the steps in your construction.

(6) Use folding and tracing to construct an angle of 20◦. Explain the
steps in your construction.

(7) Use folding and tracing to construct an angle of 10◦. Explain the
steps in your construction.

(8) Is it possible to use compass and straightedge constructions to
construct an angle of 10◦? Why or why not?

(9) We have seen that:

Z ⊆ Q ⊆ Q(
√

2) ⊆ Q(
√

2,
√

3) ⊆ C ⊆ F

Give explicit examples showing that the set inclusions above are
strict—none of them are set equality. Explain your reasoning.

(10) Use folding and tracing to find a solution to the following cubic
equations:

(a) x3 − x2 − x + 1 = 0

(b) x3 − 2x2 − x + 2 = 0

(c) x3 − 3x − 2 = 0

(d) x3 − 4x2 + 5x − 2 = 0

(e) x3 − 2x2 − 5x + 6 = 0

Explain the steps in your constructions.
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5.5 Functions and More Functions

To be written.
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6 City Geometry

I always like a good math solution to any love problem.

—Carrie Bradshaw

6.1 Welcome to the City

One day I was walking through the city—that’s right, New York City. I had the most
terrible feeling that I was lost. I had just passed a Starbucks Coffee on my left and
a Sbarro Pizza on my right, when what did I see? Another Starbucks Coffee and
Sbarro Pizza! Three options occurred to me:

(1) I was walking in circles.

(2) I was at the nexus of the universe.

(3) New York City had way too many Starbucks and Sbarro Pizzas!

Regardless, I was lost. My buddy Joe came to my rescue. He pointed out that the
city is organized like a grid.

“Ah! city geometry!” I exclaimed. At this point all Joe could say was “Huh?”

Question What the heck was I talking about?

Let me tell you: Euclidean geometry is regular old plane (not plain!) geometry. It
is the geometry that we’ve been exploring thus far in our journey. In city geometry
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we have points and lines, just like in Euclidean geometry. However, most cities can
be viewed as a grid of city blocks

and when we travel in a city, we can only travel on the streets—we can’t cut through
the blocks. This means that we don’t measure distance as the crow flies. Instead
we use the taxicab distance:

Definition Given two points A = (ax , ay) and B = (bx , by), we define the
taxicab distance as:

dT (A, B) = |ax − bx | + |ay − by|

Example 6.1.1) Consider the following points:

A

B
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Let A = (0,0). Now we see that B = (7,4). Hence

dT (A, B) = |0 − 7| + |0 − 4|

= 7 + 4

= 11.

Of course in real life, you would want to add in the appropriate units to your
final answer.

Question How do you compute the distance between A and B as the crow
flies?

?

Definition The geometry where points and lines are those from Euclidean
geometry but distance is measured via taxicab distance is called city geometry.

Question Compare and contrast the notion of a line in Euclidean geometry
and in city geometry. In either geometry is a line the unique shortest path
between any two points?

?

6.1.1 (Un)Common Structures

How different is life in city geometry from life in Euclidean geometry? Let’s find out!

Triangles If we think back to Euclidean geometry, we may recall some lengthy
discussions on triangles. Yet so far, we have not really discussed triangles in city
geometry.
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Question What does a triangle look like in city geometry and how do you
measure its angles?

I’ll take this one. Triangles look the same in city geometry as they do in Euclidean
geometry. Also, you measure angles in exactly the same way. However, there is one
minor hiccup. Consider these two triangles in city geometry:

Question In city geometry, what are the lengths of the sides of each of these
triangles? Why is this odd?

?
Hence we see that triangles are a bit funny in city geometry.

Circles Circles are also discussed in many geometry courses and this course is
no different. However, in city geometry the circles are a little less round. The first
question we must answer is the following:

Question What is a circle?

Well, a circle is the collection of all points equidistant from a given point. So in
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city geometry, we must conclude that a circle of radius 2 would look like:

Question What sort of shape should a city geometry compass draw?

?

Question How many points are there at the intersection of two circles in
Euclidean geometry? How many points are there at the intersection of two
circles in city geometry?

?
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Problems for Section 6.1

(1) Given two points A and B in city geometry, does dT (A, B) = dT (B, A)?
Explain your reasoning.

(2) It was once believed that Euclid’s five postulates

(a) A line can be drawn from a point to any other point.
(b) A finite line can be extended indefinitely.
(c) A circle can be drawn, given a center and a radius.
(d) All right angles are ninety degrees.
(e) If a line intersects two other lines such that the sum of the

interior angles on one side of the intersecting line is less than
the sum of two right angles, then the lines meet on that side and
not on the other side.

were sufficient to completely describe plane geometry. Explain how
city geometry shows that Euclid’s five postulates are not enough to
determine all of the familiar properties of the plane.

(3) In Euclidean geometry are all equilateral triangles congruent assum-
ing they have the same side length? Is this true in city geometry?
Explain your reasoning.

(4) How many points are there at the intersection of two circles in
Euclidean geometry? How many points are there at the intersection
of two circles in city geometry? Explain your reasoning.

(5) What sort of shape should a city geometry compass draw? Explain
your reasoning.

(6) Give a detailed discussion of what happens if we attempt the com-
pass and straightedge construction for an equilateral triangle using
a city geometry compass.

(7) Give a detailed discussion of what happens if we attempt the com-
pass and straightedge construction for bisecting a segment using a
city geometry compass.

(8) Give a detailed discussion of what happens if we attempt the com-
pass and straightedge construction for a perpendicular through a
point using a city geometry compass.

(9) Give a detailed discussion of what happens if we attempt the com-
pass and straightedge construction for bisecting an angle using a
city geometry compass.

(10) Give a detailed discussion of what happens if we attempt the com-
pass and straightedge construction for copying an angle using a
city geometry compass.

(11) Give a detailed discussion of what happens if we attempt the com-
pass and straightedge construction for a parallel through a point
using a city geometry compass.
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6.2 Anatomy of Figures and the City

When we study geometry, what do we seek? That’s right—we wish to discover the
points that can be obtained given a set of rules. With city geometry, the major rule
involved is the taxicab distance. Let’s answer these questions!

Question In regards to city geometry, what is a point?

?

Question In regards to city geometry, what is a line?

?

Question In regards to city geometry, what is a circle?

?
Now I’m going to quiz you about them (I know we’ve already gone over this twice,

but it is fundamental so just smile and answer the questions):

Question Place two points randomly in the plane. Do you expect to be able to
draw a single line that connects them?

?

Question Place three points randomly in the plane. Do you expect to be able
to draw a single line that connects them?

?
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Question Place two lines randomly in the plane. How many points do you
expect them to share?

?

Question Place three lines randomly in the plane. How many points do you
expect all three lines to share?

?

Question Place three points randomly in the plane. Will you (almost!) always
be able to draw a city geometry circle containing these points? If no, why not?
If yes, how do you know?

?
Midsets

Definition Given two points A and B, their midset is the set of points that
are an equal distance away from both A and B.

Question How do we find the midset of two points in Euclidean geometry?
How do we find the midset of two points in city geometry?

In Euclidean geometry, we just take the the following line:

B

A
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If we had no idea what the midset should look like in Euclidean geometry, we could
start as follows:

• Draw circles of radius r1 centered at both A and B. If these circles intersect, then
their points of intersection will be in our midset. (Why?)

• Draw circles of radius r2 centered at both A and B. If these circles intersect, then
their points of intersection will be in our midset.

• We continue in this fashion until we have a clear idea of what the midset looks
like. It is now easy to check that the line in our picture is indeed the midset.

How do we do it in city geometry? We do it basically the same way.

Example 6.2.1) Suppose you wished to find the midset of two points in city
geometry.

We start by fixing coordinate axes. Considering the diagram below, if
A = (0, 0), then B = (5, 3). We now use the same idea as in Euclidean geometry.
Drawing circles of radius 3 centered at A and B respectively, we see that there
are no points 3 points away from both A and B. Since dT (A, B) = 8, this is to be
expected. We will need to draw larger taxicab circles before we will find points
in the midset. Drawing taxicab circles of radius 5, we see that the points (1, 4)
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and (4,−1) are both in our midset.

B

A

Now it is time to sing along. You draw circles of radius 6, to get two more
points (1,5) and (4,−2). Drawing circles with larger radii yields more and
more points “due north” of (1,5) and “due south” of (4,−2). However, if we
draw circles of radius 4 centered at A and B respectively, their intersection is
the line segment between (1,3) and (4,0). Unlike Euclidean circles, distinct
city geometry circles can intersect in more than two points and city geometry
midsets can be more complicated than their Euclidean counterparts.

Question How do you draw the city geometry midset of A and B? What could
the midsets look like?

?
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Parabolas Recall that a parabola is a set of points such that each of those points is
the same distance from a given point, F , as it is from a given line, D.

This definition still makes sense when we work with taxicab distance instead of
Euclidean distance. To start, choose a value r and draw a line parallel to D at
taxicab distance r away from D. Now draw a City circle of radius r centered at F .
The points of intersection of this line and this circle will be r away from D and r
away from F and so will be points on our City parabola. Repeat this process for
different values of r.

D

FA

B

Unlike the Euclidean case, the City parabola need not grow broader and broader
as the distance from the line increases. In the picture above, as we go from A to B
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on the parabola, both the taxicab and Euclidean distances to the line D increase by
1. The taxicab distance from the point F also increases by 1 as we go from A to B
but the Euclidean distance increases by less than 1. For the Euclidean distance
from F to the parabola to keep increasing at the same rate as the distance to the
line D, the Euclidean parabola has to keep spreading to the sides.

Question How do you draw city geometry parabolas? What do different parabo-
las look like?

?
A Paradox To be completely clear on what a paradox is, here is the definition we
will be using:

Definition A paradox is a statement that seems to be contradictory. This
means it seems both true and false at the same time.

There are many paradoxes in mathematics. By studying them we gain insight—
and also practice tying our brain into knots! Here is a paradox:

Paradox
√

2 = 2.

Proof (False-Proof) Consider the following sequence of diagrams:

On the far right-hand side, we see a right-triangle. Suppose that the lengths

of the legs of the right-triangle are one. Now by the Pythagorean Theorem, the

length of the hypotenuse is
√

12 + 12 =
√

2.
However, we see that the triangles coming from the left converge to the triangle
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on the right. In every case on the left, the stair-step side has length 2. Hence

when our sequence of stair-step triangles converges, we see that the hypotenuse

of the right-triangle will have length 2. Thus
√

2 = 2.

Question What is wrong with the proof above?

?
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Problems for Section 6.2

(1) Suppose that you have two triangles 4ABC and 4DEF in city geom-
etry such that

(a) dT (A, B) = dT (D, E).
(b) dT (B, C) = dT (E, F ).
(c) dT (C, A) = dT (F, D).

Is it necessarily true that 4ABC ≡ 4DEF? Explain your reasoning.

(2) In city geometry, if all the angles of 4ABC are 60◦, is 4ABC neces-
sarily an equilateral triangle? Explain your reasoning.

(3) In city geometry, if two right triangles have legs of the same length,
is it true that their hypotenuses will be the same length? Explain
your reasoning.

(4) Considering that π is the ratio of the circumference of a circle to
its diameter, what is the value of π in city geometry? Explain your
reasoning.

(5) Considering that the area of a circle of radius r is given by πr2, what
is the value of π in city geometry? Explain your reasoning.

(6) When is the Euclidean midset of two points equal to their city
geometry midset? Explain your reasoning.

(7) Find the city geometry midset of (−2,2) and (3,2).

(8) Find the city geometry midset of (−2,2) and (4,−1).

(9) Find the city geometry midset of (−2,2) and (2,2).

(10) Draw the city geometry parabola determined by the point (0, 2) and
the line y = 0.

(11) Draw the city geometry parabola determined by the point (3, 0) and
the line x = 0.

(12) Draw the city geometry parabola determined by the point (2, 0) and
the line y = x.

(13) Find the distance in city geometry from the point (3,4) to the line
y = −1/3x. Explain your reasoning.

(14) Draw the city geometry parabola determined by the point (0, 4) and
the line y = x/3. Explain your reasoning.

(15) Draw the city geometry parabola determined by the point (0, 6) and
the line y = x/2. Explain your reasoning.

(16) Draw the city geometry parabola determined by the point (1, 4) and
the line y = 2x/3. Explain your reasoning.

(17) Draw the city geometry parabola determined by the point (3, 3) and
the line y = x/2. Explain your reasoning.

(18) Find all points P such that dT (P, A) + dT (P, B) = 8. Explain your
work. (In Euclidean geometry, this condition determines an el-
lipse. The solution to this problem could be called the city geometry
ellipse.)

(19) True/False: Three noncollinear points lie on a unique Euclidean
circle. Explain your reasoning.

(20) True/False: Three noncollinear points lie on a unique city geometry
circle. Explain your reasoning.

(21) Explain why no Euclidean circle can contain three collinear points.
Can a city geometry circle contain three collinear points? Explain
your conclusion.

(22) Can you find a false-proof showing that π = 2?
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6.3 Getting Work Done

If you are interested in real-world types of problems, then maybe city geometry is
the geometry for you. The concepts that arise in city geometry are directly applicable
to everyday life.

Question Will just bought himself a brand new gorilla suit. He wants to show
it off at three parties this Saturday night. The parties are being held at his
friends’ houses: the Antidisestablishment (A), Hausdorff (H), and the Wookie
Loveshack (W ). If he travels from party A to party H to party W , how far does
he travel this Saturday night?

W

A

H

Proof (Solution) We need to compute

dT (A,H) + dT (H,W )

Let’s start by fixing a coordinate system and making A the origin. Then H is

(2,−5) and W is (−10,−2). Then

dT (A,H) = |0 − 2| + |0 − (−5)|

= 2 + 5

= 7
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and

dT (H,W ) = |2 − (−10)| + | − 5 − (−2)|

= 12 + 3

= 15.

Will must trudge 7 + 15 = 22 blocks in his gorilla suit.

Okay, that’s enough monkey business—I feel like pizza and a movie.

Question Brad and Melissa are going to downtown Champaign, Illinois. Brad
wants to go to Jupiter’s for pizza (J) while Melissa goes to Boardman’s Art

Theater (B) to watch a movie. Where should they park to minimize the total
distance walked by both?

J

B

Proof (Solution) Again, let’s set up a coordinate system so that we can say
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what points we are talking about. If J is (0,0), then B is (−5,4).

J

B

C

D

No matter where they park, Brad and Melissa’s two paths joined together must

make a path from B to J . This combined path has to be at least 9 blocks long

since dT (B, J) = 9. They should look for a parking spot in the rectangle formed

by the points (0,0), (0,4), (−5,0), and (−5,4).
Suppose they park within this rectangle and call this point C. Melissa now

walks 4 blocks from C to B and Brad walks 5 blocks from C to J . The two paths

joined together form a path from B to J of length 9.

If they park outside the rectangle described above, for example at point D,

then the corresponding path from B to J will be longer than 9 blocks. Any path

from B to J going through D goes a block too far west and then has to backtrack

a block to the east making it longer than 9 blocks.

Question If we consider the same question in Euclidean geometry, what is the
answer?

?

Question Tom is looking for an apartment that is close to Altgeld Hall (H) but
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is also close to his favorite restaurant, Crane Alley (C). Where should Tom live?

C

H

Proof (Solution) If we fix a coordinate system with its origin at Altgeld Hall,

H, then C is at (8,2). We see that dT (H,C) = 10. If Tom wants to live as

close as possible to both of these, he should look for an apartment, A, such

that dT (A,H) = dT (A, C) = 5. He would then be living halfway along one of the

shortest paths from Altgeld to the restaurant. Mark all the points 5 blocks away

from H. Now mark all the points 5 blocks away from C.

C

H

We now see that Tom should check out the apartments near (5,0), (4,1), and

(3,2).
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Problems for Section 6.3

(1) Will just bought himself a brand new gorilla suit. He wants to show
it off at three parties this Saturday night. The parties are being held
at his friends’ houses: the Antidisestablishment (A), Hausdorff (H),
and the Wookie Loveshack (W ). If he travels from party A to party
H to party W , how far does he travel this Saturday night? Explain
your reasoning.

W

A

H

(2) Brad and Melissa are going to downtown Champaign, Illinois. Brad
wants to go to Jupiter’s for pizza (J) while Melissa goes to Board-
man’s Art Theater (B) to watch a movie. Where should they park to
minimize the total distance walked by both? Explain your reasoning.

J

B

(3) Tom is looking for an apartment that is close to Altgeld Hall (H)
but is also close to his favorite restaurant, Crane Alley (C). Where

should Tom live? Explain your reasoning.

C

H

(4) Johann and Amber are going to German Village. Johann wants
to go to Schmidt’s (S) for a cream-puff while Amber goes to the
Thurman Cafe (T ) for some spicy wings. Where should they park
to minimize the total distance walked by both if Amber insists that
Johann should not have to walk a longer distance than her? Explain
your reasoning.

T

S

(5) Han and Tom are going to downtown Clintonville. Han wants to
go to get a haircut (H) and Tom wants to look at the bookstore (B).
Where should they park to keep the total distance walked by both
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less than 8 blocks? Explain your reasoning.

H

B

(6) The university is installing emergency phones across campus.
Where should they place them so that their students are never
more than a block away from an emergency phone? Explain your
reasoning.

(7) Tom and Ben have devised a ingenious Puzzle-Stroll (aka a
scavenger-hunt). Here is one of the puzzles:

To find what you seek, you must be one with the city—using
it’s distance, the treasure is 4 blocks from (A), 3 blocks from
(B), and 2 blocks from (C).

C

B

A

Where’s the treasure? Explain your reasoning.

(8) Johann is starting up a new business, Cafe Battle Royale. He knows
mathematicians drink a lot of coffee so he wants it to be near Altgeld
Hall. Balancing this against how expensive rent is near campus,
he decides the cafe should be 3 blocks from Altgeld Hall. Where
should his cafe be located? Explain your reasoning.

(9) Cafe Battle Royale, Inc. is expanding. Johann wants his potential
customers to always be within 4 blocks of one of his cafes. Where
should his cafes be located? Explain your reasoning.

(10) There are hospitals located at A, B, and C. Ambulances should
be sent to medical emergencies from whichever hospital is closest.
Divide the city into regions in a way that will help the dispatcher
decide which ambulance to send. Explain your reasoning.

C

B

A

(11) Sylvia is going to open a new restaurant called Grillvia’s where
customers make their own food and then she grills it for them. She
wants her restaurant to be equidistant from the heart of Cham-
paign (C) and the heart of Urbana (U ). Where should she put her
restaurant? Explain your reasoning.

C

U

(12) Chris wants to live an equal distance from his favorite hangout
Studio 35 (S) and High Street (H) where he can catch the Number
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2 bus. Where should he live? Explain your reasoning.

S

H

(13) Lisa just bought a 3-wheeled zebra-striped electric car and its range
is limited. Suppose that each day Lisa likes to go to work (W ), and

then to the tea shop (T ) or the garden shop (G) but not both, and
then back home (H). Where should Lisa live? Give several options
depending on how efficient her zebra-striped car is. Explain your
reasoning.

G

W

T
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APPENDIX A. ACTIVITIES

A.1 It’s What the Book Says

A.1.1) Do the following task fifth-grade task: Put the terms square, rhombus, and
parallelogram in the Venn diagram below.

rectangles

A.1.2) Critique the task above based on mathematical content.
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A.1.3) Supposing we know that a quadrilateral is a polygon with four sides, write
clear and succinct definitions of each of the following terms:

(a) A rectangle is a quadrilateral

(b) A parallelogram is a quadrilateral

(c) A rhombus is a quadrilateral

(d) A square is a quadrilateral

(e) A trapezoid is a quadrilateral

(f) A kite is a quadrilateral

A.1.4) Create a Venn diagram showing the correct relationships among these
quadrilaterals. Be ready to present and defend your diagram to your peers.
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A.2 Forget Something?

A.2.1) Draw a Venn diagram with one set. List every possible relationship between
an element and this set.

A.2.2) Draw a Venn diagram with two intersecting sets. List every possible relation-
ship between an element and these sets.

A.2.3) Draw a Venn diagram with three intersecting sets. List every possible
relationship between an element and these sets.

A.2.4) Describe and explain any patterns you see occurring.

A.2.5) Draw a Venn diagram with four intersecting sets. List every possible
relationship between an element and these sets.

A.2.6) Are you sure that your diagram for Problem A.2.5 is correct? If so explain
why. If not, draw a correct Venn diagram.
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A.3 Measuring Area

A.3.1) Three congruent triangles are shown below.

(a) For each triangle, choose a base and use a ruler to draw carefully the correspond-
ing height to that base. (Choose bases of different lengths.) Remember: A height

is measured on a line that is perpendicular to a base and containing the opposite
vertex.

(b) Measure the heights and bases accurately, and compute the area of each triangle.

(c) What do your results demonstrate about the formula for the area of a triangle?
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A.4 Suitable Precision in Language and Notation

Geometry is about points, lines, and other figures made up of points. Points can
have coordinates, which are numbers, but we save these approaches for later in the
course.

Even without coordinates, geometry involves numbers, especially as measures of
lengths, angles, and areas.

A.4.1) Let M be the midpoint of AB.

A BM

Which of the following are true? Explain.

(a) AB = BA

(b) AB = BA

(c) AM = MB

(d) AM = MB

A.4.2) Describe the geometric distinction between a segment and its length. How
are the two usually denoted differently?
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A.4.3) Compare ∠CAB and ∠FDE in the figure below.

A

B

C

D

E

F

Which of the following are true? Explain.

(a) ∠CAB = ∠BAC

(b) ∠CAB = ∠FDE

(c) m∠CAB < m∠FDE

(d) m∠CAB = m∠FDE

A.4.4) There are (at least) two ways of thinking about angles.

(a) Use precise language to describe an angle as a set of points.

(b) Use precise language to describe an angle as an amount of turning.

A.4.5) Describe the geometric distinction between an angle and its measure. How
are the two usually denoted differently? And how do your answers relate to the
previous problem?
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A.4.6) Use your meanings for angles to improve upon the following imprecise
statements.

Statement Improved Version Comments

A triangle has 180◦.

A line measures 180◦.

A circle is (or has) 360◦.
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A.5. TILTED SQUARE

A.5 Tilted Square

A.5.1) In the diagram below, the dots are 1 centimeter apart, both vertically and
horizontally. The vertices of the square all lie exactly on such dots. Find the area
of the square, without computing the length of the side of the square. Explain your
method.
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CCSS 8.G.6: Explain a proof of the Pythagorean
Theorem and its converse.

A.6 Pythagorean Theorem

A.6.1) Give two explanations of how the following picture “proves” the Pythagorean
Theorem, one using algebra and one without algebra.8.G.6
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A.6.2) State the converse of the Pythagorean Theorem and prove it.

162



APPENDIX A. ACTIVITIES

A.7 Angles in a Funky Shape

We are going to investigate the sum of the interior angles of a funky shape.

A.7.1) Using a protractor, measure the interior angles of the crazy shape below:

a

b

c

d

e

f

g

h

i

Use this table to record your findings:

a b c d e f g h i

A.7.2) Find the sum of the interior angles of the polygon above.

A.7.3) What should the sum be? Explain your reasoning. (You might find it useful
to consider some of the angles to be “reflex angles.” Which ones?)
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A.8 Trapezoid Area

A.8.1) In this activity, we explore several ways of justifying the formula for the area
of a trapezoid, as labeled below.

 

  

b2

b1

h

Complete the table on the following page so that, in each row, the explanation, the
geometric figure, and the algebraic formula together describe a way of computing
the area. For comparison purposes, each illustration should include a trapezoid
congruent to the trapezoid above.

All of the area formulas will, of course, be equivalent to one another as expressions.
But each way of expressing the area will make the most sense with figure and the
explanation from the same row.
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Explanation Figure Area Formula

Rectangle with
width that is the
average of the

bases.

 

 

  

(b1 + b2

2

)
h

 

 

  
Two triangles
with the same

height and
different bases.

(b1 + b2)
h

2
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A.9. TRIANGLE INVESTIGATION

CCSS 7.G.2: Draw (freehand, with ruler and pro-
tractor, and with technology) geometric shapes with
given conditions. Focus on constructing triangles
from three measures of angles or sides, noticing
when the conditions determine a unique triangle,
more than one triangle, or no triangle.

A.9 Triangle Investigation

A.9.1) Draw triangles satisfying the conditions given below. You may use whatever
tools you like (e.g., ruler, protractor, compass, sticks, tracing paper, or Geogebra).

In each part, use reasoning to determine whether the information provided
determines a unique 4ABC, more than one triangle, or no triangle.7.G.2 Note: To
check to see if two triangles are the same, attempt to lay one directly on top of the
other.

(a) AB = 4 and BC = 5

(b) m∠CAB = 25◦, m∠ABC = 75◦, m∠BCA = 80◦

(c) m∠CAB = 25◦, m∠ABC = 65◦, m∠BCA = 80◦

(d) AB = 4, m∠BAC = 30◦, m∠ABC = 45◦

(e) AB = 4, BC = 5, m∠ABC = 60◦

(f) BC = 7, CA = 8, AB = 9

(g) BC = 4, CA = 8, AB = 3

(h) m∠ABC = 45◦, BC = 8, CA = 12

(i) m∠ABC = 30◦, BC = 10, CA = 7

(j) m∠ABC = 60◦, BC = 10, CA = 3
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A.10 UnMessUpable Figures

Suppose we draw or a construct a geometric figure with pencil, paper, compass, and
straightedge. If we want to compare to another example of the geometric figure, we
need to begin again from scratch. With dynamic geometry software (e.g., Geogebra,
Geometer’s Sketchpad, or Cabri ), we can alter the original figure by “dragging”
vertices and segments to create many other examples. For this to work properly,
we want to construct the figure rather than merely draw it, so that a square, for
example, remains a square even if we move its vertices. Some folks call such figures
“UnMessUpable.”

Rules of Engagement:

• Before you begin, explore the menus and toolbars to see what the software
provides.

• You may use tools that function as a compass or straight-edge would.

• You may use special tools (e.g., perpendicular bisector) that accomplish multistep
compass-and-straightedge constructions in a single step.

• Do not use tools for transformations (e.g., translations, reflections, or rotations).

• Do not use tools that construct objects from measurements.

Begin each problem in a new sketch.

A.10.1) Construct a segment between two points. Then construct an equilateral
triangle with that segment as one of its sides. Be sure that the triangle remains
equilateral when you drag its vertices. (Note: Do not use a “regular polygon” tool.)

A.10.2) Construct a segment between two points. Then construct a square with
that segment as one of its sides. Be sure that it remains a square when you drag its
vertices. (Note: Do not use a “regular polygon” tool.)

A.10.3) Construct an UnMessUpable parallelogram. (Hint: Think about the defini-
tion.)
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A.10.4) Construct a rectangle that, through dragging, can be long and thin, short
and fat, or anything in between, but that is always a rectangle.

A.10.5) Copy a segment. Construct a segment and a line. Then copy the segment
onto the line. Hide the line so that the segment alone is clear. Then drag the vertices
that determine the initial segment to show that the copy is always congruent to it.

A.10.6) Copy an angle. Using the ray tool, construct an angle and a separate ray.
Then copy the angle onto the other ray. Drag the vertices that determine the first
angle to show that the copy is always congruent to it.

A.10.7) Construct a capital H so that the midline is always the perpendicular
bisector of both sides.

A.10.8) Construct a quadrilateral so that one pair of opposite sides is always
congruent.
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A.11 Triangle Centers

In this activity, we use Geogebra to explore the basic lines, centers, and circles
related to triangles.

A.11.1) Here are some easy questions to get the brain-juices flowing!

(a) Place two points randomly in the plane. Do you expect to be able to draw a single
line that connects them?

(b) Place three points randomly in the plane. Do you expect to be able to draw a
single line that connects them?

(c) Place two lines randomly in the plane. How many points do you expect them to
share?

(d) Place three lines randomly in the plane. How many points do you expect all three
lines to share?

(e) Place two points randomly in the plane. Will you always be able to draw a circle
containing these points?

(f) Place three points randomly in the plane. Will you (almost!) always be able to
draw a circle containing these points? If no, why not? If yes, how do you know?

(g) Place four points randomly in the plane. Do you expect to be able to draw a circle
containing all four at once? Explain your reasoning.

Definition Three (or more) distinct lines are said to be concurrent if they have
a point in common.

A.11.2) In Geogebra, draw a triangle. Now construct the perpendicular bisectors of
the sides. Describe what you notice. Does this work for every triangle?

A.11.3) In a new Geogebra sketch, draw a triangle. Now bisect the angles. Describe
what you notice. Does this work for every triangle?

A.11.4) In a new Geogebra sketch, draw a triangle. Now construct the lines
containing the altitudes. Describe what you notice. Does this work for every
triangle?
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A.11.5) In a new Geogebra sketch, draw a triangle. Now construct the medians.
Describe what you notice. Does this work for every triangle?

A.11.6) The circumcircle of a triangle contains all three vertices of the triangle.
The center of the circumcircle is called the circumcenter. Find the circumcenter on
your sketch with the three perpendicular bisectors, and construct the circumcircle.

A.11.7) The incircle of a triangle is tangent to all three sides of the triangle. The
center of the incircle is called the incenter. Find the incenter on your sketch with
three angle bisectors. Construct the incircle. (Hint: To find the radius of the incircle,
you will need to find the distance from the incenter to one of the sides of the triangle.)

A.11.8) The other “centers” of a triangle are called the centroid and the orthocen-

ter. Make a thoughtful guess about how these correspond to the medians and the
lines containing the altitudes.

A.11.9) Fill in the following handy chart summarizing what you found above.

Associated point?
Always inside
the triangle?

Meaning?

perpendicular
bisectors

angle
bisectors
lines
containing
altitudes
lines
containing
the medians

Be sure to put this in a safe place like in a safe, or under your bed.
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A.12 Lines in Triangles

Two copies of a triangle are shown below. In each triangle, draw carefully the
designated lines. Construction is not necessary: careful measurements are allowed.

A.12.1) In the triangle on the left, draw the median from B to AC, the altitude from
B to AC, the angle bisector of ∠B, and the perpendicular bisector of AC.

A.12.2) In the triangle on the right, draw the median from C to AB, the altitude
from C to AB, the angle bisector of ∠C, and the perpendicular bisector of AB.

A.12.3) In each triangle, you should have drawn four different lines. What might
you say about a triangle for which two or more of these lines turn out to be the
same?

A

B

C

A

B

C
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A.13 Isosceles Bisectors

Theorem A.13.1 (Isosceles Triangle Theorem) If two sides of a triangle are
congruent, then the angles opposite those sides are congruent.

A.13.1) Prove the Isosceles Triangle Theorem. (Hint: In a previous activity, you
noticed that in most triangles the median, perpendicular bisector, angle bisector,
and altitude to a side lie on four different lines. So if you draw a new line in your
diagram, be sure to decide which of these lines you are drawing.)

A.13.2) Use your proof to show that a median, perpendicular bisector, angle bisector,
and altitude turn out to be the same line.
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A.13.3) Prove the Isosceles Triangle Theorem without drawing another line. Hint:
Is there a way in which the triangle is congruent to itself?

A.13.4) State the converse of the Isosceles Triangle Theorem and prove it.
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A.13.5) Prove that the points on the perpendicular bisector of a segment are exactly

those that are equidistant from the endpoints of the segment. Note that the phrase
exactly those requires that we prove a simpler statement as well as its converse:

(a) Prove that a point on the perpendicular bisector of a segment is equidistant from
the endpoints of that segment.

(b) Prove that a point that is equidistant from the endpoints of a segment lies on the
perpendicular bisector of that segment.

A.13.6) Prove that the perpendicular bisectors of a triangle are concurrent. Hint:
Name the intersection of two of the perpendicular bisectors and then show that
it must also lie on the third one. (This is a standard approach for showing the
concurrency of three lines.)

A.13.7) Draw a line (neither horizontal nor vertical) and a point not on the line.
Describe how to find the exact distance from the point to the line.

A.13.8) Prove that the points on an angle bisector are exactly those that are
equidistant from the sides of the angle.

A.13.9) Prove that the angle bisectors of a triangle are concurrent.
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A.14 About Medians

Here we explore several ways of thinking about the medians of triangles.

A.14.1) On cardstock, use a ruler to draw a medium-sized, non-right, non-isosceles
triangle, and then cut it out as accurately as you can. Draw two of the medians on
the cutout triangle. Draw the third median to make sure they are concurrent.

(a) Using a ruler, try balancing the triangle along each median. (Ask a partner to
hold the ruler steady.)

(b) Now try balancing the triangle along a line that is not a median. How does your
line relate to the intersection of the medians? Explain why this makes sense.

(c) Try balancing the triangle from a string at the intersection of the medians. (Use
the point of your compass to make a hole in the cardstock.)

A.14.2) Imagine stacking toothpicks in a triangle, as shown below.
t = 0.20 cm

tip = 0.60 cm

n = 19

M
A

C

B

(a) Explain, using toothpicks, why the triangle would balance on a ruler placed along
the median CM .

(b) Explain, using a different collection of toothpicks, why the triangle would balance
along the median to side AC. Describe how the toothpicks would need be placed,
relative to side AC.

(c) The two medians will intersect at a point. Explain why the triangle (without
toothpicks) should balance from a string or on a pencil point at the intersection
of the two medians.
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(d) Use a balancing argument to explain why the third median should contain the
intersection of the first two.

A.14.3) The next problem uses the midsegment theorem. A midsegment is a line
joining the midpoints of two sides. Draw carefully a triangle and a midsegment,
and use it to make a conjecture about what the midsegment theorem says. (We will
prove the theorem later.)

A.14.4) Use the picture below to show that a pair of medians intersects at a point
2/3 of the way from the vertex to the opposite side. Then use that fact to argue that
the three medians must be concurrent.

 

A.14.5) Imagine a triangle made of nearly weightless material with one-pound
weights placed at each of the vertices, A, B, and C.

(a) Explain why the triangle will balance on a ruler along the median to side AB.

(b) Explain why the triangle will continue to balance along the median when the
masses at A and B are both moved to the midpoint of AB.

(c) Now imagine trying to balance the triangle at a single point along the median.
Where will it balance? Use the phrase “weighted average” to explain your
reasoning.

A.14.6) Using the picture below, explain why the medians of the large triangle
are also medians of the medial triangle. Then explain how repeating this process
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indefinitely proves that the medians are concurrent.
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A.15 Verifying Our Constructions

When we do our compass and straightedge constructions, we should take care to
verify that they actually work as advertised. We’ll walk you through this process.
To start, remember what a circle is:

Definition A circle is the set of points that are a fixed distance from a given
point.

A.15.1) Is the center of a circle part of the circle?

A.15.2) Construct an equilateral triangle. Why does this construction work?

Now recall the SSS Theorem:

Theorem A.15.1 (SSS) Specifying three sides uniquely determines a triangle.

A.15.3) Now we’ll analyze the construction for copying angles.

(a) Use a compass and straightedge construction to duplicate an angle. Explain how
you are really just “measuring” the sides of some triangle.

(b) In light of the SSS Theorem, can you explain why the construction used to
duplicate an angle works?

A.15.4) Now we’ll analyze the construction for bisecting angles.

(a) Use compass and straightedge construction to bisect an angle. Explain how
you are really just constructing (two) isosceles triangles. Draw these isosceles
triangles in your figure.

(b) Find two more triangles on either side of your angle bisector where you may use
the SSS Theorem to argue that they have equal side lengths and therefore equal
angle measures.

(c) Can you explain why the construction used to bisect angles works?

Recall the SAS Theorem:
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Theorem A.15.2 (SAS) Specifying two sides and the angle between them
uniquely determines a triangle.

A.15.5) Now we’ll analyze the construction for bisecting segments.

(a) Use a compass and straightedge construction to bisect a segment. Explain how
you are really just constructing two isosceles triangles.

(b) Note that the bisector divides each of the above isosceles triangles in half. Find
two triangles on either side of your bisector where you may use the SAS Theorem
to argue that they have equal side lengths and angle measures.

(c) Can you explain why the construction used to bisect segments works?

A.15.6) Now we’ll analyze the construction of a perpendicular line through a point
not on the line.

(a) Use a compass and straightedge construction to construct a perpendicular
through a point. Explain how you are really just constructing an isosceles
triangle.

(b) Find two triangles in your construction where you may use the SAS Theorem to
argue that they have equal side lengths and angle measures.

(c) Can you explain why the construction used to construct a perpendicular through
a point works?

179



A.16. OF ANGLES AND CIRCLES

A.16 Of Angles and Circles

In this activity we are going to look at pictures and see if we can explain how they
“prove” theorems.

Theorem A.16.1 Any triangle inscribed in a circle and having the diameter as
a side is a right triangle.

A.16.1) Can you tell me in English what this theorem says? Provide some examples
of this theorem in action.

A.16.2) Here is a series of pictures, designed to be read from left to right.

Explain how these pictures “prove” the above theorem. In the process of your
explanation, you may need to label parts of the pictures and do some algebra.

Definition A chord in a circle defines two arcs, each of which corresponds to
a central angle. The measure of the arc is defined to be the measure of the
corresponding central angle.

A.16.3) Can you tell me in English what this definition says? Use pictures to
demonstrate what the fancy words mean.

Theorem A.16.2 Given an arc of a circle, the central angle corresponding to
this arc is twice any inscribed angle intercepting this arc.
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I’ll play nice here and give you a picture of this theorem in action:

A.16.4) Can you tell me in English what this theorem says? Specifically, what is
meant by inscribed angle? And why does it say “any inscribed angle”?

A.16.5) For one possible line of reasoning, consider this series of pictures, designed
to be read from left to right.

Explain how these pictures “prove” the above theorem. In the process of your
explanation, you may need to label parts of the pictures and do some algebra.

A.16.6) Not all inscribed angles look like those in the previous picture. Consider
the following pictures:

OA = 4.09 cm
OA = 4.09 cm
OA = 4.09 cm

αβ

m∠ABC = β –  αm∠ABC = β + αm∠ABC = β

In the pictures below, find and explain the
relationship between m∠ABC and m∠AOC.

β β
α

DC D

O

AA

O

A

OB

C

B B

C

181



A.16. OF ANGLES AND CIRCLES

(a) In each of the pictures, find and explain the relationship between m∠ABC and
m∠AOC.

(b) Explain why any inscribed angle must fit one of these three cases.

Corollary Given an arc of a circle, all inscribed angles intercepting this arc
are congruent.

A.16.7) Firstly—what the heck is a corollary? Secondly—what is it saying? Thirdly—
why is it true?
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A.17 More Circles

A.17.1) Prove: The radius of a circle is perpendicular to the tangent where the
radius intersects the circle. Hint: Suppose not.

A.17.2) Suppose an angle circumscribes a circle, as shown below. Find a rela-
tionship between the measure of the angle and the measure of the central angle
intercepted by the same chord.

A.17.3) Show that, given any three non-collinear points in the Euclidean plane,
there is a unique circle passing through the three points.

A.17.4) Draw four points in the Euclidean plane, no three of which are collinear,
that cannot lie on a single circle. Explain your reasoning.

A.17.5) Using a compass, draw a large circle, and inscribe a quadrilateral in the
circle. Measure the four angles. Repeat with another circle and quadrilateral. What
do you notice? Identify a condition on any quadrilateral that is inscribed in a circle.
Now prove it.

A.17.6) Construct a tangent line to a circle from a point outside the given circle.
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A.17.7) Give an informal derivation of the relationship between the circumference
and area of a circle. Imagine cutting a circle into “pie pieces” and rearranging the
pieces into a shape like the one below. As the circle is cut into more and more
equal-sized “pie pieces,” what does the rearranged shape begin to resemble? Can
you find the area of this shape?

A.17.8) Derive a formula for the length of the arc intercepted by an central angle of
a circle.

A.17.9) Derive a formula for the area of a sector of a circle.
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A.18 Quadrilateral Diagonals

Imagine you are working at a kite factory and you have been asked to design a new
kite. The kite will be a quadrilateral made of synthetic cloth, and it will be formed
by two intersecting rods that serve as the diagonals of the quadrilateral and provide
structure for the kite.

A.18.1) To get started, review the definitions of all special quadrilaterals. Be sure
to include kite on your list.

A.18.2) To consider the possible kite shapes, your task is to describe how condi-
tions on the diagonals determine the quadrilateral. Use fettuccine to model the
intersecting rods, and use paper and pencil to draw the rod configurations and
resulting kite shapes.

Here are some hints:

• Explore diagonals of various lengths, of the same length, and of different lengths.

• Explore various places at which to attach the diagonals to each other, including
at one or both of their midpoints.

• Explore various angles that the diagonals might make with each other at their
intersection, including the possibility of being perpendicular.

A.18.3) Summarize your findings in a table organized like the one on the next page.
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Diagonals

Quadrilateral Definition (A quadrilateral with . . . ) C
on

g.

B
is

ec
t

Pe
rp

.

Comments (e.g., other key properties)

Square

Rectangle

Rhombus

Parallelogram

Kite

Trapezoid

Isosceles Trapezoid
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A.19 Congruence via Transformations

Informally, a transformation of the plane is a “motion,” such as a rotation or a stretch
of the plane, that takes a figure to an image of that figure. This activity explores the
basic rigid motions: translations (slides), rotations (turns), and reflections (flips).

A.19.1) One of the pairs of figures below shows a translation, and the other pair
does not. To identify which is which, draw segments between each point and its
image. Use those segments to explain your reasoning.
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A.19.2) One of the pairs of figures shows a reflection about the given line, and the
other pair does not.

(a) Identify which pair of figures shows a reflection about the given line, and explain
how you know.

(b) Find the line of reflection for the other pair of figures, and explain your reasoning.
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A.19.3) One of the pairs of figures below shows a rotation about point C, and the
other pair does not.

(a) Identify which pair of figures shows a rotation about C, and explain how you
know.

(b) Find the angle of rotation.

(c) Find the center of and angle of rotation for the other pair of figures. Explain your
reasoning.

C
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A.19.4) Two figures are said to be congruent if there is a sequence of basic rigid
motions that take one figure onto the other.

(a) Specify a sequence of two or three basic rigid motions that takes one F onto the
other. Illustrate intermediate images. Explain your reasoning.

(b) Explain briefly why, for this pair of figures, sequences of the following types
cannot work:

• a rotation followed by a rotation

• a translation followed by a translation

• a reflection followed by a reflection
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CCSS G-CO.2: Represent transformations in the
plane using, e.g., transparencies and geometry soft-
ware; describe transformations as functions that
take points in the plane as inputs and give other
points as outputs. Compare transformations that
preserve distance and angle to those that do not (e.g.,
translation versus horizontal stretch).

CCSS G-CO.4: Develop definitions of rotations, re-
flections, and translations in terms of angles, cir-
cles, perpendicular lines, parallel lines, and line
segments.

A.20 More Transformations

Transformations of the plane are considered to be functions that take points as
inputs and produce points as outputs. Given a point as input, the corresponding
output value is often called the image of the point under the transformation.G-CO.2

A.20.1) Based on your experience with the basic rigid motions, write definitions of
translation, rotation, and reflection.G-CO.4 For each definition, be sure to indicate
(1) what it takes to specify the transformation, and (2) how to produce the image of
a given point.

(a) Translation:

(b) Rotation:

(c) Reflection:

A.20.2) Now explore sequences of basic rigid motions. Here are some suggestions
to support your explorations:

• Use a non-symmetric figure (such as an F).

• Use one sheet of tracing paper as the original plane, and use a second sheet of
paper to carry out the sequence of transformations.

• Trace intermediate figures on both sheets of paper, to keep track of the work.

• For reflections, trace the line of reflection on both sheets.

• For rotations, use a protractor to help you keep track of angles.

• Consider special cases, such as reflections about the same line or rotations about
the same point.

• Try to predict the result before you actually carry out the sequence of transfor-
mations.
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Describe briefly what you can say about each of the following sequences of basic
rigid motions. Include special cases in your descriptions.

(a) Translation followed by translation

(b) Rotation followed by rotation

(c) Reflection followed by reflection

(d) Translation followed by rotation

(e) Translation followed by reflection

(f) Rotation followed by reflection
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A.21 Symmetries

Definition A symmetry is a transformation that takes a figure onto itself.

A.21.1) List the symmetries of an equilateral triangle. Explain how you know you
have them all.

A.21.2) Flip through these notes and describe the symmetries you notice. Try to
find reflection symmetry, rotation symmetry, and translation symmetry.

A.21.3) Suppose the symmetries of a square are called R0, R90, R180, R270, V , H, D,
D′, based upon the figure below.

V
D'

H

D

Hint: To identify a single transformation that accomplishes a sequence of transfor-
mations, do the transformations physically with a square piece of paper marked
with “FRONT” on the side that starts facing you. Or mark the corners of the square
with A, B, C, and D.

(a) Complete the following table, where the entry at (row, column) is the symmetry
that results from the sequence of symmetries given by the row heading followed
by the column heading.

(b) What patterns and not-quite-patterns do you notice in the table? For example,
which elements “commute” with which other elements?
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(c) What facts about isometries can you observe in the table? For example, what
can you say generally about sequences of rotations and reflections?

R0 R90 R180 R270 V H D D′

R0

R90

R180

R270

V

H

D

D′
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CCSS G-CO.8: Explain how the criteria for triangle
congruence (ASA, SAS, and SSS) follow from the
definition of congruence in terms of rigid motions.

A.22 Congruence Criteria

In this activity, we show how the common triangle congruence criteria follow from
what we now know about isometries.G-CO.8 Recall that two figures are said to
be congruent if there exists an isometry (translation, rotation, or reflection) or a
sequence of isometries that maps one figure onto the other.

A.22.1) Proof of Side-Angle-Side (SAS) congruence. Suppose 4ABC and 4XYZ are
such that AB = XY , AC = XZ , and ∠A � ∠X . Prove, using basic rigid motions, that
4ABC � 4XYZ . Consider the figure below.

Y

Z

X

A

C

B

Fill in the details of the following proof.

(a) Translate 4ABC through the vector
−−→
AX . Call the image 4A′B′C′. Explain why A′

and X coincide.

(b) Rotate 4A′B′C′ about X = A′ through ∠B′XY so that ray
−−−→
A′B′ is along ray

−−→
XY .

Call the image 4A′′B′′C′′ Explain how you know the segments A′′B′′ and XY

coincide.

(c) Reflect 4A′′B′′C′′ about the line
←−−→
A′′B′′ =

←→
XY . Call the image 4A′′′B′′′C′′′. Explain

why A′′′C′′′ and XZ coincide.
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(d) Explain how you now know that all sides and angles of 4A′′′B′′′C′′′ are congruent
to the corresponding sides and angles of 4XYZ .

(e) Explain how to modify the above steps to handle the following different cases:

• Initially X = A.

• After the translation, A′B′ and XY coincide.

• After the rotation, A′′C′′ and XZ coincide. (Hint: Consider whether C′′ and Z
are on the same side or on opposite sides of

←→
XZ .)

A.22.2) Proof of Angle-Side-Angle (ASA) congruence. Suppose 4ABC and 4XYZ are
such that AB = XY , ∠A � ∠X , and ∠B � ∠Y . Prove, using basic rigid motions, that
4ABC � 4XYZ .

(a) Outline a general proof for the figure below.

Y

Z

X

A

C

B

(b) Explain carefully how you know, after the sequence of rigid motions, that the
“final image” of C coincides with Z .

(c) Describe how to modify the outline to handle other cases.

A.22.3) In a previous activity, you used triangle congruence criteria to prove the
following results:
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• The Isosceles Triangle Theorem.

• The points on a perpendicular bisector of a segment are exactly those that are
equidistant from the endpoints.

Verify that these results could have been established using only SAS and ASA
congruence. (Thus, you may use these results in the problems that follow.)

A.22.4) Proof of Hypotenuse-Leg (HL) congruence. Suppose 4ABC and 4XYZ
are such that ∠C and ∠Z are right angles, AB = XY , and BC = YZ . Prove that
4ABC � 4XYZ .

YZ

X

A

C

B

A.22.5) Proof of Side-Side-Side (SSS) congruence. Suppose 4ABC and 4XYZ are
such that AB = XY , AC = XZ , and BC = YZ . Prove, using basic rigid motions, that
4ABC � 4XYZ . Build toward the general case through the following steps:

(a) Case 1a: A = X , B = Y , and C and Z lie on opposite sides of
←→
AB. (Hint: Explain

why the situation must be like one of the figures below, argue that
←→
AB is the

perpendicular bisector of CZ , and then use a reflection.)

ZZ

B = Y

C

A = X A = X

C

B = Y
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A.22. CONGRUENCE CRITERIA

(b) Case 1b: A = X , B = Y , and C and Z lie on the same side of
←→
AB =

←→
XY . (Hint:

Consider a reflection of one of the triangles and use the previous case.)

(c) Case 2: A = X but B , Y .

(d) Case 3: The general case.
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A.23 Parallels

In the following problems, you may assume the following:

Postulate (Parallel Postulate) Given a line and a point not on the line, there
is exactly one line passing through the point which is parallel to the given line.

You may also use previously-established results, such as the following:

• The measures of adjacent angles add as they should.
• A straight angle measures 180◦.
• A 180◦ rotation about a point on a line takes the line to itself.
• A 180◦ rotation about a point off a line takes the line to a parallel line.

Now you may get started!

A.23.1) Use adjacent angles to prove that vertical angles are equal.

A.23.2) Now use rotations to prove that vertical angles are equal.

A.23.3) Prove: If a pair of parallel lines is cut by a transversal, then alternate
interior angles are equal and corresponding angles are equal.

A.23.4) Prove: If a pair of alternate interior angles or a pair of corresponding angles
of a transversal with respect to two lines are equal, then the lines are parallel.

A.23.5) The previous two problems seem almost identical to one another. How are
they different?

A.23.6) Prove: The angle sum of a triangle is 180◦.
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A.24 Midsegments

Definition In a triangle, a midsegment is a line joining the midpoints of two
sides.

Theorem A.24.1 Midsegment Theorem: A midsegment in a triangle is parallel
to and half the length of the corresponding side.

In this activity, we prove the midsegment theorem. First, we need some results
about parallelograms.

A.24.1) Prove the following theorem: If the diagonals of a quadrilateral bisect each
other, then the quadrilateral is a parallelogram.

A.24.2) Prove the following theorem: If one pair of sides of a quadrilateral are
congruent and parallel, then the quadrilateral is a parallelogram.

A.24.3) Prove the midsegment theorem. (Hint: Extend the midsegment DE to a
point X such that EX = DE, and then find quadrilaterals that must be parallelograms
by the previous results.)

X
ED

A

C

B
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A.25 Similarities

A.25.1) Based on your experience with the stretching activity, write a definition of
dilation. Be sure to indicate (1) what it takes to specify the transformation, and (2)
how to produce the image of a given point.

A.25.2) Based on your experience with the stretching activity, describe for a dilation:

(a) What happens to line segments?

(b) What happens to angles?

(c) What happens to lines passing through the center of the dilation?

(d) What happens to lines not passing through the center of the dilation?

Definition A geometric figure is simliar to another if the second can be obtained
from the first by a sequence of rotations, reflections, translations, and dilations.

A.25.3) For each of the pairs of objects on the following pages, do the following:

(a) Trace the smaller figure on plastic. Then close one eye and try to hold the plastic
between your eye and the paper so that the tracing “exactly” covers the larger
figure. Be sure that the plane of the paper and the plane of the plastic are parallel.
(Why does this matter?)

(b) If the objects are similar, find a sequence of rotations, reflections, translations,
and dilations that takes one figure onto the other.
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(c) If the objects are similar, try to find a single dilation that demonstrates the
similarity. If you cannot find such a dilation, explain how you know you cannot.
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A.25. SIMILARITIES

CCSS G-C.1: Prove that all circles are similar.

A.25.4) Describe a general (and foolproof) way of demonstrating that any two circles
are similar.G-C.1
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A.25.5) Describe a general (and foolproof) way of demonstrating that any two
parabolas are similar.
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A.26. SIDE-SPLITTER THEOREMS

For a given base, draw the corresponding altitude to
reason about a triangle’s area.

A.26 Side-Splitter Theorems

In this activity, we will show that the properties of dilations, which you noticed
in a previous activity, can be proven without using facts about transversals and
parallel lines. Instead, we use the area formulas for rectangles, triangles, and
parallelograms.

Question What must be true about the base and height measurements for
these area formulas to be valid?

?
A.26.1) If the area of 4SPR = 8 square inches and the area of 4QPR = 5 square

inches, then what can you say about
SR

RQ
? What about

SR

SQ
? What can you say

generally about how these ratios depend upon the areas of the triangles?

Y

M

D C

A

W X

Z

S

PQ

B

R

A.26.2) For the trapezoid below, explain why the area of 4BAD is equal to the area
of 4BAC. Name two other triangles that have the same area.

Y

M

D C

A

W X

Z

S

P

Q

B

R

A.26.3) For the parallelogram below, which triangle has the greatest area: 4XYZ ,

206



APPENDIX A. ACTIVITIES

4WXY , 4ZWX , or 4YZW? Explain.

Y

M

D C

A

W X

Z

S

P

Q

B

R

A.26.4) Prove the Parallel-Side Theorem: If a line in a triangle is parallel to a side
of a triangle, then it splits the other sides of the triangle proportionally.BC = 7.57 cm

AC = 6.56 cm

EEE

A

B C CB

A

CB

A

D D D

(a) How do the areas of 4ADE and 4DBE relate to AD and DB? Explain.

(b) How do the areas of 4ADE and 4ECD relate to AE and EC? Explain.

(c) How do the areas of 4DBE and 4ECD compare? Explain.

(d) Use the previous results to show that
DB

AD
=
EC

AE
.

(e) What the heck did we just do? What does this say?

(f) Where in the proof did we use the fact that DE ‖ BC?

A.26.5) Use some algebra to show, in the previous picture, that
AB

AD
=
AC

AE
.

A.26.6) Prove: Next we prove, in the previous figure, that
BC

DE
=
AB

AD
=
AC

AE
. Here

are the steps.

(a) How do we know that ∠ADE � ∠ABC?
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(b) Translate 4ADE by the vector
−−→
DB so that the image ∠A′D′E′ of ∠ADE coincides

with ∠ABC. Draw a picture of the result.

(c) What segments are parallel now? How do you know?

(d) Now explain why
BC

DE
=
AB

AD
=
AC

AE
is equal to a common ratio from the previous

problem.

A.26.7) Explain briefly how the Parallel-Side Theorem implies the AA criterion for
triangle similarity. (Hint: Be sure to use the definition of similarity in terms of basic
rigid motions and dilations.)

A.26.8) The Split-Side Theorem is the converse of the Parallel-Side Theorem.

(a) State the Split-Side Theorem.

(b) Prove the Split-Side Theorem. (Hint: Using the previous figures, draw a line
through D and parallel to BC, and let X be the point where the new line intersects
AC. By the previous results, DX divides the sides proportionally. Then argue
that E and X must be the same point.)

A.26.9) Use the Split-Side Theorem to justify the following properties of a dilation
given by a center and a scale factor:

(a) A dilation takes a line not passing through the center of the dilation to a parallel
line, and leaves a line passing through the center unchanged.

(b) The dilation of a line segment is longer or shorter in the ratio given by the scale
factor.

A.26.10) Explain briefly how the Split-Side Theorem establishes the SAS criterion
for triangle similarity.
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CCSS G-SRT.6: Understand that by similarity, side
ratios in right triangles are properties of the angles
in the triangle, leading to definitions of trigonometric
ratios for acute angles.

A.27 Trigonometry Checkup

This activity is intended to remind you of key ideas from high school trigonometry.

A.27.1) What are the ratios of side lengths in a 45◦-45◦-90◦ triangle? Explain where
the ratios come from, including why they work for any such triangle, no matter
what size. (Hint: Use the Pythagorean Theorem.)

A.27.2) What are the ratios of side lengths in a 30◦-60◦-90◦ triangle? Explain where
those the come from. (Hint: How might an equilateral triangle help.)

A.27.3) Consider the right triangle below with an angle of α, sides of length x and
y, and hypotenuse of length r, as labeled.

α
x

r
y

(a) If we imagine angle α is fixed, why are ratios of pairs of side lengths the same, no
matter the size of the triangle?G-SRT.6

(b) Using the triangle above (and your memory of Precalculus), write down the
side-length ratios for sine, cosine, and tangent:

sinα = cosα = tanα =

(c) What values of α make sense in right triangle trigonometry? (We overcome these
bounds later in circular trigonometry.)
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CCSS F-TF.8: Prove the Pythagorean identity
sin2(ϑ) + cos2(ϑ) = 1 and use it to find sin(ϑ), cos(ϑ),
or tan(ϑ) given sin(ϑ), cos(ϑ), or tan(ϑ) and the quad-
rant of the angle.

(d) What does it mean to say that these ratios depend upon the angle α?

(e) Why is only one of the triangle’s three angles necessary in defining these ratios?

A.27.4) Use your work so far to find the following trigonometric ratios:

(a) sin 30◦ = cos 30◦ = tan 30◦ =

(b) sin 45◦ = cos 45◦ = tan 45◦ =

(c) sin 60◦ = cos 60◦ = tan 60◦ =

(d) sin 0◦ = cos 0◦ = tan 0◦ =

A.27.5) You may recall the identity sin2 ϑ + cos2 ϑ = 1.F-TF.8

(a) Explain why the equation is true.

(b) Why is it called an identity?

(c) Why is it called a Pythagorean identity?
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CCSS G-SRT.7: Explain and use the relationship be-
tween the sine and cosine of complementary angles.

CCSS G-SRT.8: Use trigonometric ratios and the
Pythagorean Theorem to solve right triangles in ap-
plied problems.

A.27.6) In right triangle trigonometry, there are indeed two acute angles, as shown
in the figure below.G-SRT.7

α

�

x

r
y

(a) How are the angles α and � related? Explain why.

(b) Using lengths in the above triangle, find the following ratios:

sinα = cosα =

sin � = cos � =

(c) What do you notice about the sine and cosine of complementary angles?

(d) Explain why the result makes sense.

Given an angle and a side length of a right triangle, you can find the missing side
lengths.G-SRT.8 This is called “solving the right triangle.” And given the sine, cosine,
or tangent of an angle, you can find the other two ratios. (Hint: In either case, draw
a triangle.)

A.27.7) Suppose sinα =
3
5

. Then cosα = , tanα = .
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A.28 Please be Rational

Let’s see if we can give yet another proof that the square root of two is not rational.
Consider the following isosceles right triangle:

A.28.1) Using the most famous theorem of all, how long is the unmarked side?

A.28.2) Suppose that the unmarked side has a rational length. In that case how
could we express it?

A.28.3) Explain why there would then be a smallest isosceles right triangle with
integer sides. Considering the problem above, how long would the sides be? Draw
and label a picture.
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A.28.4) Now fold your smallest isosceles right triangle with integer sides along the
dotted line like so:

Describe how to accomplish the fold, and explain why the figure is as marked.

A.28.5) Explain how we have now found an isosceles right triangle with integer
sides that is now smaller than the smallest isosceles right triangle with integer sides.
Is this possible? What must we now conclude?
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A.29 Rep-Tiles

A rep-tile is a polygon where several copies of a given rep-tile fit together to make a
larger, similar, version of itself. If 2 copies are used, we call it a rep-2-tile, if 3 copies
are used, we call it a rep-3-tile, and if n copies are used, we call it a rep-n-tile. Below
is an example of a rectangle that is a rep-4-tile.

A.29.1) Explain why every parallelogram is a rep-4-tile. Give an example, and
compare the perimeter and area of the larger figure to that of the original.

A.29.2) Explain why every triangle is a rep-4-tile. Give an example, and compare
the perimeter and area of the larger figure to that of the original.

A.29.3) Explain why every parallelogram and every triangle is a rep-9-tile. Give an
example of each, and compare the perimeter and area of the larger triangle to that
of the original. Can you generalize your result? In other words, for what values of n
can you say that every parallelogram and every triangle is a rep-n-tile?

A.29.4) With a separate sheet of paper, draw and cut out:

(a) An isosceles right triangle whose sides have lengths 1′′, 1′′, and
√

2′′.

(b) A rectangle whose sides have lengths 1′′ and
√

2′′.

Working with a partner, show that each of these polygons is a rep-2-tile. And in
each case, how do the perimeter and area of the larger polygon compare to the
perimeter and area of the original?
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A.29.5) With a fresh sheet of paper, start a table to summarize your work so far.
Use exact answers whenever possible.

rep-tile scale factor (new:old) perimeter (new:old) area (new:old)

description
...

...
...

...

A.29.6) Geometry Giorgio suggests that a rectangle whose sides have lengths 1′′

and 4′′ is also a rep-2-tile. Is he right? If you should happen to search the Internet
for other examples of rep-2-tiles, you might find a surprise.

A.29.7) With a separate sheet of paper, draw and cut-out:

(a) A 30-60-90 right triangle whose shortest side has length 1′′.

(b) A rectangle whose sides have lengths 1′′ and
√

3′′.

Working with a partner, show that each of these polygons is a rep-3-tile.

A.29.8) For each rep-tile above, compute the perimeter and area. In each case,
how does this relate to the perimeter and area of the larger polygon? Add this
information to your table.

215



A.30. REP-TILES REPEATED

A.30 Rep-Tiles Repeated

A.30.1) With a separate sheet of graph paper, draw and cut out the following
polygons:

Working with a partner, show that each of these polygons is a rep-4-tile.

A.30.2) For each rep-tile above, compute the perimeter and area. In each case, how
does this relate to the perimeter and area of the larger polygon?

A.30.3) With a separate sheet of paper, trace and cut out the following polygons:

Working with a partner, show that each of these polygons is a rep-4-tile.

A.30.4) Explain why every rectangle whose sides have ratio 1 :
√
n is a rep-n-tile.

A.30.5) Explain how you know that any polygonal rep-tile will tessellate the plane.

A.30.6) Give an example of a polygon that tessellates the plane that is not a rep-tile.

A.30.7) Every tessellation made by rep-tiles will have symmetry of scale. What
does it mean to have symmetry of scale?
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A.30.8) Consider the tessellations made by rep-tiles you’ve seen so far. What other
symmetries do they have?

A.30.9) Do you think you can have a tessellation that has symmetry of scale but
no other symmetries?

217



A.31. SCALING AREA

A.31 Scaling Area

A.31.1) Is a 3 × 5 rectangle similar to a 4 × 6 rectangle? Explain your reasoning.
Now come up with another explanation.

A.31.2) Use area formulas to explain what happens to the area of a rectangle under
scaling by a factor of k? What about a triangle? What about a circle?

A.31.3) Below is a figure and a dilation of that figure about point O.

Scale Factor = 1.8

O

(a) Find the scale factor of the dilation. Explain your reasoning.

(b) What can you say about the areas of the two figures? Explain your reasoning.
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A.32 Turn Up the Volume!

In this activity, we will investigate formulas for area and volume.

A.32.1) Explain how the following picture “proves” that the area of a right triangle
is one half of the base times the height.

A.32.2) “Shearing” is a process where you take a shape, cut it into thin parallel
strips, and then move the strips in a direction parallel to the strips to make a new
shape. By Cavalieri’s principle:

Shearing parallel to a fixed direction does not change the n-dimensional measure of an
object.

What is this saying?

A.32.3) Building on the first two problems, explain how the following picture “proves”
that the area of any triangle is one half of the base times the height.

A.32.4) Explain how to use a picture to “prove” that a triangle of a given area could
have an arbitrarily large perimeter.
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CCSS G-GMD.1: Give an informal argument for the
formulas for the circumference of a circle, area of a
circle, volume of a cylinder, pyramid, and cone.

CCSS G-GMD.2: Give an informal argument using
Cavalieri’s principle for the formulas for the volume
of a sphere and other solid figures.

A.32.5) Shearing is a special case of Cavalieri’s principle, which, in two dimensions,
is stated as follows:

Suppose two regions in a plane are contained between two parallel lines. If every line
parallel to the given lines intersects the two regions in equal lengths, then the regions
have equal area.

Give an intuitive argument explaining why Cavalieri’s principle is true.

A.32.6) State Cavalieri’s principle in three dimensions.

A.32.7) Cut out the provided net. Then fold it and tape it to create a square-based
pyramid. With your neighbors, show that three such square-based pyramids can
form a cube.

A.32.8) Use your work above to derive a formula for the volume of a right pyramid
with a square base. The formula should be in terms of the side length of the square
base.

A.32.9) Use Cavalieri’s principle to explain the formula for every pyramid with an
s × s square base of height s in terms of s. Be sure to describe how this formula is
different from the previous one.

A.32.10) Provide an informal explanation of a volume formula for any pyramid-like
object with a base of area B and height h. Be sure to describe what you mean by
“pyramid-like” and whether your formula works for a cone.

A.32.11) In this problem you derive the formula for the volume of a sphere of radius
r.G-GMD.1G-GMD.2 The figures below shows a half-sphere of radius r alongside a
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cylinder of radius r and height r with a cone of radius r and height r removed.

13.3 Volumes of Solid Shapes CA-309 

Class Activity 130 Deriving the Volume of a Sphere 

Half-sphere of radius r: 

h 

Cross-section at height h: 

s 

·, 

Cylinder of radius rand height r with 
a cone of radius r and height r removed: 

Cross-section at height h: 

r 

1 . Explain why the colored cross-sections at height h of the half-sphere and of the part of the cylinder 
outside the cone have the same area. 

2. Find the volume of the part of the cylinder that is outside the cone. By Cavalieri's principle and 
part 1, this volume is the same as the volume of the hemisphere. Use this to verify the volume 
formula for a sphere of radius r units. 

From Beckmann, 2014, Mathematics for Elementary Teachers

Think of r as fixed, and think of h as the varying height of a cross section. The
(hard to read) s is the radius of the cross-section of the sphere.

(a) The heights of the cylinder and the cone are not h. What are their heights?

(b) What is h? Explain why the several values labeled h are indeed equal.

(c) Draw and label an “aerial view” of the cross sections.

(d) Explain why the cross-sections at height h have the same area.

(e) Use the formula for the volume of a cone and Cavalieri’s principle to derive a
formula for the volume of a sphere of radius r.

221



A.33. COORDINATE CONSTRUCTIONS

CCSS G-GPE.1: Derive the equation of a circle of
given center and radius using the Pythagorean The-
orem; complete the square to find the center and
radius of a circle given by an equation.

A.33 Coordinate Constructions

In synthetic geometry, point, line and plane are taken to be undefined terms.
In analytic (coordinate) geometry, in contrast, we make the following definitions.

Definition A point is an ordered pair (x, y) of real numbers. A line is the set of
ordered pairs (x, y) that satisfy an equation of the form ax + by = c, where a, b,
and c are real numbers and a and b are not both 0.

Many of the problems below are expressed generally. You may find it useful to
try some specific examples before the general case.

A.33.1) In the above definition of a line in coordinate geometry, why is it important
to require that a and b are not both 0?

A.33.2) Given points (x1, y1) and (x2, y2), find the distance between them in the
coordinate plane.

A.33.3) Find the midpoint of the segment from (x1, y1) and (x2, y2). Explain why
your formula makes sense.

A.33.4) Recall that in synthetic geometry, a circle is defined as the set of points
that are equidistant from a center. Use this definition to determine the equation of
circle with center (h, k) and radius r.G-GPE.1

A.33.5) For each pair of points below, find an equation of the line containing the
two points.

(a) Points (2,3) and (5,7).

(b) Points (2,3) and (2,7).

(c) Points (2,3) and (5,3).

(d) Points (x1, y1) and (x2, y2).

A.33.6) Express each of your previous equations in the form ax + by = c and also
in the form y = mx + b. What are the advantages and disadvantages of these forms?
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CCSS 8.EE.6: Use similar triangles to explain why
the slope m is the same between any two distinct
points on a non-vertical line in the coordinate plane;
derive the equation y = mx for a line through the ori-
gin and the equation y = mx+b for a line intercepting
the vertical axis at b.

A.33.7) In school mathematics, lines are usually of the form y = mx + b. Why is
it unambiguous to talk about the slope of such a line? In other words, given a
non-vertical line in the plane, explain why any two points on the line will yield the
same slope.8.EE.6
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A.34 Bola, Para Bola

We’ve mentioned several times that a parabola is the set of points that are equidistant
from a given point (the focus) and a given line (the directrix):

In this activity we are going to reconcile the definition given above with the equation
that you know and love (admit it!):

y = ax2 + bx + c

A.34.1) How do we compute the distance between two points? Be explicit!

A.34.2) Let’s see if we can derive the formula for a parabola with its focus at (0,1)
and its directrix being the line y = 0.

(a) Graph the focus and the directrix, sketch what the parabola might look like, and
identify a generic point (x, y).

(b) Draw on the graph the distance from (x, y) to the focus. Write an expression for
this distance.

(c) Draw on the graph the distance from (x, y) to the directrix. Write an expression
for this distance.

(d) Use these two expressions and some algebra to find the formula for the parabola.
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(e) How might you have known, before completing the algebra, that the result would
be in the form y = ax2 + bx + c?

A.34.3) Now derive the formula for a parabola with focus at (2,1) and directrix
y = −1.

A.34.4) Now derive the formula for a parabola with focus at (1,−3) and directrix
x = 3. How might you have known, before completing the algebra, the form of the
result?
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A.35 More Medians

Here we use coordinates to explore several ways of thinking about the medians of
triangles.

A.35.1) For each set of points below, plot the points in the coordinate plane, and
use a ruler to draw the triangle. Locate the midpoint of each side, and use a ruler to
draw the medians. Check that the medians are concurrent, and find the coordinates
of the centroid.

(a) A = (2,1), B = (10,2), C = (3,6). Centroid: .

(b) D = (6,6), E = (9,10), F = (4,8). Centroid: .

(c) G = (−1,1), H = (1,6), I = (−3,4). Centroid: .
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226



APPENDIX A. ACTIVITIES

A.35.2) What do you notice about how the coordinates of the centroid depend upon
the coordinates of the vertices? Make a conjecture about the centroid of a triangle
with vertices at (x1, y1), (x2, y2), and (x3, y3). Check that your formula works for all
of the triangles above.

A.35.3) Imagine a triangle made of nearly weightless material with one-pound
weights placed at each of the vertices, A = (x1, y1), B = (x2, y2), and C = (x3, y3).

(a) Explain why the triangle will balance on a ruler along the median to side AB.

(b) Explain why the triangle will continue to balance along the median when the
masses at A and B are both moved to the midpoint of AB.

(c) Now imagine trying to balance the triangle at a single point along the median.
Where will it balance? Use the phrase “weighted average” to explain your
reasoning.

(d) Use weighted-average reasoning to compute the coordinates of this balance point,
assuming the vertices are A = (x1, y1), B = (x2, y2), and C = (x3, y3).

A.35.4) Consider a triangle with vertices at A = (x1, y1), B = (x2, y2), and C =

(x3, y3).

(a) Explain why the equation of the line containing the median from C to the midpoint
of AB can be written as follows:

y − y3

x − x3
=
y1 + y2 − 2y3

x1 + x2 − 2x3

(b) From reasoning alone (i.e., without doing additional calculations) write down
analogous equations for the lines containing the other two medians.

(c) Use algebra and reasoning to show that the previously-conjectured coordinates
of the centroid satisfy all three equations of lines containing medians.

(d) Have you now proven that the medians are concurrent? Explain.
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A.36 Constructible Numbers

Compass and straightedge constructions involve drawing and finding intersections
of two fundamental geometric objects: lines and circles. All more complicated
constructions are combinations of pieces of these.

In this activity, we explore what numbers are constructible (as lengths or dis-
tances) with compass and straightedge, assuming only that we begin with a segment
of length 1. We call such numbers constructible numbers. First we must establish
how to do arithmetic with compass and straightedge.

Arithmetic with Constructions

A.36.1) Suppose you are given a compass and a straightedge and segments of
lengths a, b, and 1.

(a) How would you construct a segment of length a + b?

(b) How would you construct a segment of length a − b?

(c) How would you construct a segment of length ab? (Hint: Use similar triangles.)

(d) How would you construct a segment of length a ÷ b?

(e) How would you construct a segment of length
√
a? (Hint: Recall how to construct

a geometric mean.)

A.36.2) Beginning with a segment of length 1, how you might construct segments of
the following lengths? Describe briefly (to your partner) the arithmetic constructions
you would use, in what order, and with which numbers.

(a)
7
5

(b) Any rational number, p/q

(c) 3 + 2
√

5

(d)
3 +

√
2 −
√

3

1 +
√

5
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A.36.3) Based on the previous problems, if you begin with a segment of length 1,
describe the set of all numbers constructible with the methods used so far.

Coordinate Constructions

With the methods so far, we can construct neither 3√2 nor π. The question now is
whether we have described the entire set of constructible numbers or whether there
are additional constructions that will broaden our arithmetic and thereby enlarge
the set.

For this question, we turn to coordinate constructions, which allow us to use the
methods of algebra to solve geometric problems. A key habit here will be imagining

the algebra without actually doing it—based on your extensive algebra experience
with these kinds of problems.

A.36.4) Suppose you are given points (p, q), and (r, s) with integer coordinates.

(a) What arithmetic operations are involved in finding an equation ax + by = c of the
line containing these points?

(b) What can you conclude about the numbers a, b, and c?

(c) What if you begin with points that have coordinates that are rational numbers?

A.36.5) Suppose you are given equations of the form

ax + by = c

dx + ey = f

where a, b, c, d, e, and f are all integers.

(a) What kind of geometric objects do these equations describe in the xy-plane?
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(b) What arithmetic operations would you use to solve the equations simultaneously?

(c) What can you conclude about the numbers x and y that are the (simultaneous)
solutions of these equations?

(d) How will your answers change if a, b, c, d, e, and f are all rational numbers?
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A.37 Constructible Numbers, Part 2

A.37.1) Suppose you are given points (h, k), and (p, q) with integer coordinates?

(a) Write an equation of the circle with center (h, k) and containing the point (p, q)?

(b) What arithmetic operations were involved in writing your equation of the circle?

(c) What can you conclude about the numbers that are coefficients in your equation?

A.37.2) Solve the following equations simultaneously

(x − 3)2 + (y − 2)2 = 14

y = x + 4

A.37.3) Solve the following equations simultaneously

(x − 3)2 + (y − 2)2 = 18

y = x + 5

A.37.4) Solve the following equations simultaneously

(x − 3)2 + (y − 2)2 = 12

y = x + 4

A.37.5) Solve the following equations simultaneously

(x − 3)2 + (y + 2)2 = 4

(x − 1)2 + (y − 2)2 = 9

A.37.6) Solve the following equations simultaneously

(x − 3)2 + (y + 2)2 = 4

(x + 1)2 + (y − 2)2 = 9

231



A.37. CONSTRUCTIBLE NUMBERS, PART 2

A.37.7) Suppose you are given equations of the form

x2 + ax + y2 + by = c

x2 + dx + y2 + ey = f

where a, b, c, d, e, and f are all integers.

(a) What kind of geometric objects do these equations describe in the xy-plane?

(b) What arithmetic operations would you use to solve the equations simultaneously?

(c) What can you conclude about the numbers x and y that are the (simultaneous)
solutions of these equations?

(d) How will your answers change if a, b, c, d, e, and f are all rational numbers?

A.37.8) Based on the previous problems, if you begin with a coordinate system with
only integer coordinates, how would you describe the set of all numbers (coordinates)
that are constructible via lines and circles?

A.37.9) Considering that all compass and straightedge constructions are about
lines, circles, and their intersections, what do your results about coordinate con-
structions imply about compass and straightedge constructions?

A.37.10) Name some numbers that are not constructible with compass and
straightedge.
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A.38 Impossibilities

The idea that some numbers are not constructible is exactly what was needed to
address several problems first posed by the Greeks in antiquity, such as doubling
the cube and trisecting an angle. In a paper published in 1837, Pierre Wantzel used
algebraic methods to prove the impossibility of these geometric constructions.

A.38.1) Suppose you have a square of side length s and you want to “double the
square.” In other words, you want to construct a square with twice the area.

(a) What is the side length of the desired square? Explain your reasoning.

(b) Is this side length constructible? Explain.

A.38.2) Suppose you have a cube of side length s and you want to “double the
cube.” In other words, you want to construct a cube with twice the volume.

(a) What is the side length of the desired cube? Explain your reasoning.

(b) Is this side length constructible? Explain.

A.38.3) You may remember some double angle formulas from trigonometry. There
are also triple angle formulas. For example, for any angle ϑ, cos 3ϑ = 4 cos3 ϑ−3 cos ϑ.

(a) Write the above triple angle formula for ϑ = 20◦.

(b) Explain why x = cos 20◦ must be a root of the polynomial 8x3 − 6x − 1.

(c) Explain how the rational root theorem implies that this polynomial has no linear
factors.

(d) Explain why this polynomial must therefore be irreducible over the rational
numbers.

(e) You may recall from Math 1165 that some methods of solving cubic equations
involve extracting cube roots. What does this imply about trisecting angles?

(f) You may recall, from earlier this semester, discussing a method for trisecting an
angle with paper folding. What does that method imply about the relationship
between the numbers that are constructible by paper folding and those that are
constructible by compass and straightedge? Explain.
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A.39 Area and Perimeter

A.39.1) You have been asked to put together the dance floor for your sister’s
wedding. The dance floor is made up of 24 square tiles that measure one meter on
each side.

(a) Experiment with different rectangles that could be made using all of these tiles,
and record your data in a table.

(b) Draw a graph of your data. Describe patterns in the data, as seen in the table or
graph.

(c) Can we connect the dots in the graphs? Explain.

(d) How might we change the context so that the dimensions can be other than
whole numbers? In the new context, how would the previous answers change?

A.39.2) Suppose the dance floor is held together by a border made of thin edge
pieces one meter long.

(a) What determines how many edge pieces are needed? Explain.

(b) Make a graph showing the perimeter vs. length for various rectangles with an
area of 24 square meters.

(c) Describe the graph. How do patterns that you observed in the table show up in
the graph?

(d) For perimeter and length, is either one a function of the other? Explain what
that means.

(e) Which design would require the most edge pieces? Explain.

(f) Which design would require the fewest edge pieces? Explain.

(g) If the context allows dimensions other than whole numbers, how would the
previous answers change?

A.39.3) Suppose you had begun with a different number of floor tiles, such as 30,
21, or 19, or 36.
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(a) In general, describe the rectangle with whole-number dimensions that has the
greatest perimeter for a fixed area.

(b) If the context does not require whole-number dimensions, describe the rectangle
with the least perimeter for a fixed area.

A.39.4) The previous problems were about rectangles with constant area and
changing perimeter.

(a) Make up a problem about rectangles with whole-number dimensions, constant
perimeter, and changing area.

(b) Make a table of length, width, perimeter, and area for these rectangles.

(c) Draw graphs of width versus length and area versus length for your rectangles.

(d) Now modify the context and your graphs to allow dimensions that are not whole
numbers.

(e) Which rectangle will have a maximum area? Explain.

(f) Which rectangle will have a minimum area? Explain.

A.39.5) So far we have considered rectangles with fixed area and those with fixed
perimeter. What about fixing the width or the length? Since they behave in much
the same way, let’s fix the width.

(a) Make up a problem about rectangles with constant width and changing area and
perimeter.

(b) Make a table of length, width, perimeter, and area for these rectangles.

(c) Draw graphs of area versus length and perimeter versus length for your rectangles.

A.39.6) What types of functions did you see in the previous problems? Complete
the following sentences with types of functions. (Note: If two functions are the same
type, write answers that distinguish them from each other.)

(a) Fixed width: area vs. length is a .
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(b) Fixed width: perimeter vs. length is a .

(c) Fixed perimeter: width vs. length is a .

(d) Fixed perimeter: area vs. length is a .

(e) Fixed area: width vs. length is a .

(f) Fixed area: perimeter vs. length is a .

A.39.7) Explain how and where you saw the following advanced algebra ideas in
the above problems:

(a) Domain, range and “limiting cases”

(b) Rates of change, maxima, minima, and asymptotic behavior

(c) Generalizing from a specific to a generic fixed quantity

(d) Equation solving with several variables
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A.40 Reading Information from a Graph

On the next page is the graph of a function called h(t), which represents the distance
(in miles) and direction (east = positive, west = negative) Johnny is from home t
hours after noon. It does not have a simple formula, so don’t try to find one. Answer
the following questions about h, briefly explaining how you obtained your answer(s):

A.40.1) On the given graph of h, what are the least and greatest values of t? What
are the least and greatest values of h(t)? What do these answers say about Johnny?

A.40.2) Evaluate the following expressions: h(0), h(3), and h(−3). What do each of
these say about Johnny?

A.40.3) For each of the following, solve for t (i.e., find all the values of t that make
the statement true). Describe what you did with the graph to determine the solutions.
Where possible, interpret the statement and its solutions in terms of Johnny.

(a) h(t) = 0

(b) h(t) = 3

(c) h(t) ≤ 3

(d) h(t) = h(4.5)

(e) h(t) = t

(f) h(t) = −t

(g) h(t) = h(−t)

(h) h(t) = −h(−t)

(i) h(t + 1) = h(t)

(j) h(t) + 1 = h(t)
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y = h(t)

t

y

1

1
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A.41 Circular Trigonometry

As we have seen, right triangle trigonometry is restricted to acute angles. But
angles are often obtuse, so it is quite useful to extend trigonometry to angles greater
than 90◦. Here is one approach: Place the angle with the vertex at the origin
in the coordinate plane and with one side of the angle (the initial side) along the
positive x-axis. Measure to the other side of the angle (the terminal side) as a
counter-clockwise rotation about the origin.
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terminal side of angle

initial side of angle

θ

(x, y)

If we choose a point on the terminal side of this angle, we can draw what is called
reference triangle by dropping a perpendicular to the x-axis. Then we can use the
values of x, y, and r from this triangle, just as before. What is different in this
picture is that x is negative, as will be the case for any angle with a terminal side in
the second quadrant.

A.41.1) Draw a picture and use it to find the following values:

(a) sin 135◦ =

(b) cos 135◦ =

(c) tan 135◦ =

A.41.2) Draw a picture and use it to find the following values:
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CCSS F-TF.2: Explain how the unit circle in the
coordinate plane enables the extension of trigono-
metric functions to all real numbers, interpreted as
radian measures of angles traversed counterclock-
wise around the unit circle.

(a) sin 150◦ =

(b) cos 150◦ =

(c) tan 150◦ =

A.41.3) For some angles, the reference triangle is not actually a ‘triangle,’ but that’s
okay. Draw pictures to demonstrate the following:

(a) sin 90◦ =

(b) cos 90◦ =

(c) tan 90◦ =

(d) sin 180◦ =

(e) cos 180◦ =

(f) tan 180◦ =

Because angles are often about rotation, angles greater than 180◦ can make
sense, too. And negative angles can describe rotation in the opposite direction. If
we consider the angle to change continuously, then rotation about the origin creates
a situation that repeats every 360◦. This repetition provides the foundation for
modeling lots of repetitive (periodic) contexts in the real world. For this modeling,
we need circular trigonometry, which turns out to be much cleaner if (1) angles are
measured not in degrees but in a more “natural” unit, called radians; and (2) we
use the unit circle, which is a circle of radius 1 centered at the origin.

A.41.4) Below is the unit circle with special angles labeled in degrees, radians, and
with coordinates.F-TF.2
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(a) Explain what the various numbers mean in this unit circle.

(b) Use the unit circle to make a table showing (1) angle in degrees, (2) angle in
radians, (3) sine of the angle, and (4) cosine of the angle.

(c) Use your table to draw a graph of sin ϑ versus ϑ.

(d) Use your table to draw a graph of cos ϑ versus ϑ.

(e) Explain why it makes sense to connect the dots.

(f) Extend your graphs to angles greater than 360◦, and use the unit circle to explain
why your extension makes sense.

(g) Extend your graphs to angles less than 0◦, and use the unit circle to explain why
your extension makes sense.
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A.42 Parametric Equations

Definition When graphs are given by parametric equations, the coordinates
x and y may be given as functions of t, often thought of as “time.” To begin
graphing parametric equations, make a table of values for t, x, and y, and then
plot the order pairs (x, y).

A.42.1) Consider the following parametric equation about points that vary with t:

(x, y) = (2t + 3,−t − 4).

To see the individual coordinates as functions of time, this equation can also be
written as a pair of equations, as follows:

x(t) = 2t + 3 y(t) = −t − 4 (A.1)

(a) Graph the equation. It might help to note various values of t on your graph.

(b) Describe the graph and explain why it looks the way it does.

(c) Locate the points corresponding to t =
2
3

,
5
4

, 3.14, and π.

(d) Why is it okay to connect the dots? Consider what happens to the x and y

coordinates near and between points you have already plotted.

(e) What are the input values for this parametric equation?

(f) What are the output values for this parametric equation?

Definition A vector has both direction and magnitude (i.e., length). In this
course, vectors will often be given as ordered pairs, and they may be drawn
or imagined as arrows from the origin to the given point, but the position of a
vector is unimportant.

A.42.2) The vector (3, 2) can be represented as an arrow from (0, 0) to (3, 2). Explain
why an arrow from (1,6) to (4,8) also describes the vector (3,2).
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A.42.3) What vector may be represented by an arrow from (6,4) to (2,1)?

A.42.4) Consider the equation (x, y) = (2,1) + t(−1,3).

(a) Graph the equation.

(b) Use the ideas of a starting point and a direction vector to explain why the graph
looks the way it does.

(c) Pick an arbitrary point on your graph and describe how to arrive at that point
using the starting point and scaling the direction vector.

A.42.5) Graph the equation (x, y) = (2,1) + t(2,−6). Compare and contrast this
problem with the previous problem.

A.42.6) Write a parametric equation for the line containing (−3,2) and (2,1).

A.42.7) Write a parametric equation for the line containing the points (a, b) and
(c, d).

A.42.8) Consider the line containing the points A = (2,4) and B = (−1,8).

(a) Find the coordinates of the point 2/3 of the way from A to B.

(b) Find the coordinates of the point 5/4 of the way from A to B.

(c) Find the coordinates of the point p/q of the way from A to B.

(d) What would it mean for p/q to be greater than 1? Explain

(e) What would it mean for p/q to be negative? Explain.

(f) What geometric object will result if p/q varies through all possible rational
numbers? Explain.

(g) Find the coordinates of the point p/q of the way between (a, b) and (c, d).
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A.43 Parametric Plots of Circles

In this activity we’ll investigate parametric plots of circles.

A.43.1) One problem with the standard form for a circle, even the form for the unit
circle

x2 + y2 = 1,

is that it is somewhat difficult to find points on the circle. We claim that for any
value of t,

x(t) = cos(t)

y(t) = sin(t)

will be a point on the unit circle. Can you give me some explanation as to why this
is true? Two hints, for two answers: The unit circle; The Pythagorean identity.

A.43.2) Another way to think about parametric formulas for circles is to imagine

x(ϑ) = cos(ϑ)

y(ϑ) = sin(ϑ)

where ϑ is an angle. What is the connection between value of ϑ and the point
(x(ϑ), y(ϑ))?

A.43.3) One way to think about parametric formulas for circles is to imagine

x(t) = cos(t)

y(t) = sin(t)

as “drawing” the circle as t changes. Starting with t = 0, describe how the circle
is “drawn.” Make a table of values of t, x, and y. Use values of t that are special
angles. Includes values of t that are negative as well as some values of t that are
greater than 2π.

A.43.4) One day you accidentally write down

x(t) = sin(t)

y(t) = cos(t)
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Again, make a table of values of t, x, and y What happens now? Do you still get a
circle? How is this different from what we did in the previous question?

A.43.5) Do the formulas

x(t) = cos(t)

y(t) = sin(t)

define a function? Discuss. Clearly identify the domain and range as part of your
discussion. Remember, the domain is the set of input values and the range is the
set of output values.

A.43.6) Reason with your previous tables of x- and y-values to determine the graph
of the following parametric equations.

x(t) = 2 cos(t) + 3

y(t) = 2 sin(t) − 4

Explain your reasoning.

A.43.7) Now we will go backwards. The standard form for a circle centered at a
point (a, b) with radius c is given by

(x − a)2 + (y − b)2 = r2.

Explain why this makes perfect sense from the definition of a circle.

A.43.8) Here are three circles

(x − 1)2 + (y + 2)2 = 42 (x + 4)2 + (y − 2)2 = 8 x2 + y2 − 4x + 6y = 12.

Convert each of these circles to parametric form.
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A.44 Eclipse the Ellipse

In this activity we’ll investigate parametric plots of ellipses and other curves.

A.44.1) Recall that for 0 6 t < 2π

x(t) = cos(t)

y(t) = sin(t)

gives a parametric plot of a unit circle. Describe the plot of

x(t) = 3 cos(t)

y(t) = sin(t)

for 0 6 t < 2π.

A.44.2) Now describe the plot of

x(t) = 2 cos(t)

y(t) = 5 sin(t)

for 0 6 t < 2π.

A.44.3) We claim that an ellipse centered at the origin is defined by points (x, y)
satisfying ( x

a

)2
+

(y
b

)2
= 1.

Are the parametric curves we found above ellipses? Explain why or why not.
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A.44.4) Here we have some plots showing two concentric circles and an ellipse that
touches both.
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(a) Can you guess parametric formulas for the circles and for the ellipse?

(b) Do you notice anything about the dots in the pictures? Can you explain why this
happens?

(c) Can you give a compass and straightedge construction that will give you as many
points on a given ellipse as you desire? Give a detailed explanation.
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A.44.5) Can you give a parametric formula for this cool spiral?

−20 −10 10 20

−20

−10

10

20

x

y

A.44.6) Remind me once more, do the formulas that produce these plots define
functions? Discuss. Clearly identify the domain and range as part of your discus-
sion.
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A.45 Taxicab Distance

In this activity, we explore City Geometry, where points are Euclidean points, given
with coordinates; lines are Euclidean lines, defined with equations or by two points,
as in Euclidean coordinate geometry; and angles are Euclidean angles. Distance,
however, is measured according to the path a taxicab might travel. Let’s get started.

A.45.1) Suppose we are in a city that is neatly laid out in blocks of two-way streets,
with streets running north-south and east-west, and suppose we want to travel
from point A to point B in the figure below.

A

B

(a) What is the taxicab distance, measured in city blocks, from point A to point B?
(Do we mean the shortest distance, the longest distance, or something else?)

(b) Is there a single shortest path for the taxi to take? Explain.

(c) Let A = (1,2). What would be the coordinates of B?

(d) Describe a calculation that yields the taxicab distance between points A and B.

(e) Suppose the taxicab may travel on alleys also running north-south and east-west.
Better yet, suppose the taxicab can create alleys wherever they would be most
useful, except that they must still run north-south or east-west. What then
would be the taxicab distance from A to B? Explain.

(f) Based on your reasoning, given points P = (x1, y1) and Q = (x2, y2), write a
formula for, dT (P, Q), the taxicab distance between points P and Q. Check that it
works for several pairs of points.
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A.46. UNDERSTANDING AND USING ABSOLUTE VALUE

First, remind yourself how to use the definition of
circle and the distance formula in Euclidean coordi-
nate geometry to derive the equation of a Euclidean
circle with radius r and center (a, b).

A.46 Understanding and Using Absolute Value

A.46.1) True or False (and explain)

(a) −x is negative

(b)
√

9 = ±3

(c)
√
x2 = x

(d)
√
x2 = |x |

(e) If |x | = −x then x is negative or 0.

A.46.2) Let’s consider circles in city geometry.

(a) Use the taxicab distance formula to derive the equation of a city-geometry circle
with radius r and center (a, b).

(b) Write the equation of a city-geometry circle with radius 1, centered at the origin,
and draw a graph of this city-geometry circle.

To better understand the equation of this city-geometry circle, we need to firm
up the idea of absolute value.

A.46.3) Consider the following attempts to characterize the absolute value function.

|x | is the “magnitude” of x—the size of x, ignoring its sign. (A.2)

|x | is the distance from the origin to x. (A.3)

|x | =
√
x2 (A.4)

|x | =

x if x ≥ 0

−x if x < 0
(A.5)

(a) Which characterization is the definition of the absolute value function?

(b) Are the other characterizations of the absolute value function equivalent to the
definition? Explain.
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(c) Use one or more of these characterizations to develop meanings for |x − a| and
|a − x | where a is a constant.

(d) Use one or more of these characterizations to explain the solution(s) to |x − 5| = 8.

(e) What are the benefits of using more than one characterization of this idea?

A.46.4) Use the piecewise characterization of the absolute value function to explain
why the equation |x | + |y| = 1 has the graph that it does. (Hint: Consider various
cases, depending upon the sign of x and the sign of y.)

251



A.47. THE PATH NOT TAKEN

A.47 The Path Not Taken

In Euclidean geometry, there is a unique shortest path between two points. Not
so in city geometry, here you have many different choices. Let’s investigate this
further.

A.47.1) Place two points 5 units apart on the grid below. How many paths are
there that follow the grid lines? Note, if your answer is 1, then maybe you should
pick another point!

Be sure to demand that your results are shared with the rest of the class.
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A.47.2) Do the first problem again, except for points that are 4 units apart and
then for points that are 6 units apart. What do you notice? Can you explain this?

A.47.3) Construct a chart showing your findings from your work above, and other
findings that may be relevant.

A.47.4) Suppose you know how many paths there are to all points of distance n
away from a given point. Can you easily figure out how many paths there are to
all points of distance n + 1 away? Try to explain this in the context of paths in city
geometry.
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A.48. MIDSETS ABOUND

A.48 Midsets Abound

In this activity we are going to investigate midsets.

Definition Given two points A and B, their midset is the set of points that
are an equal distance away from both A and B.

A.48.1) Draw two points in the plane A and B. See if you can sketch the Euclidean
midset of these two points.

A.48.2) See if you can use coordinate constructions to find the equation of the
midset of two points A and B. If necessary, set A = (2,3) and B = (5,7).
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A.48.3) Now working in city geometry, place two points and see if you can find their
midset.
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A.48. MIDSETS ABOUND

A.48.4) Let’s try to classify the various midsets in city geometry:
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A.49 Tenacity Paracity

In this activity we are going to investigate city geometry parabolas.

A.49.1) Remind me again, what is the definition of a parabola?

A.49.2) Use the definition of a parabola and taxicab distance to sketch the city
geometry parabola when the focus is the point (2,1) and the directrix is y = −3.
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A.49. TENACITY PARACITY

A.49.3) Comparing geometries with algebra.

(a) Use coordinate constructions to write an equation for the Euclidean geometry
parabola with its focus at (2,1) and its directrix being the line y = −3. (Hint:
No need to simplify. Just use the definition and set the distances equal to one
another.)

(b) Use your taxicab distance formula to write an equation for the city geometry
parabola with its focus at (2,1) and its directrix being the line y = −3.

(c) Compare and contrast the two equations.

(d) Use algebra of absolute value to show that the graph in the previous problem is
the correct graph. (Hint: Consider three cases: y > 1, −3 ≤ y ≤ 1, and y < −3.)
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A.49.4) Sketch the city geometry parabola when the focus is the point (4,4) and
the directrix is y = −x.
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A.49. TENACITY PARACITY

A.49.5) Sketch the city geometry parabola when the focus is the point (0,4) and
the directrix is y = x/3.
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A.49.6) Sketch the city geometry parabola when the focus is the point (4,1) and
the directrix is y = 3x/2.

A.49.7) Explain how to find the distance between a point and a line in city geometry.

A.49.8) Give instructions for sketching city geometry parabolas.
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altitude, 50
associative, 120

Battle Royale, 150
bees, 25
boat

lost at night, 59
brain juices, 60

C, 116
calisson, 32
Cavalieri’s Principle, 34, 35
Cavalieri’s principle, 219
centroid, 50, 53, 76, 115
circle, 67

city geometry, 135
Coordinate Geometry, 104

circumcenter, 51, 53, 76, 115
circumcircle, 51, 53
city geometry, 131, 133

circle, 135
midset, 138
parabola, 141
triangle, 134

closed, 120
collapsing compass, 41
commutative, 121

compass
collapsing, 41

compass and straightedge
bisecting a segment, 42
bisecting an angle, 43
copying an angle, 44
division, 118
equilateral triangle, 41
impossible problems, 125
multiplication, 118
parallel to a line through a point, 45
perpendicular to a line through a point, 43
SAA triangle, 55
SAS triangle, 54
SSS triangle, 54
transferring a segment, 41

complement, 14
constructible numbers, 116
constructions, see compass and straightedge

or origami
coordinate geometry

bisecting a segment, 105
bisecting an angle, 108
equilateral triangle, 108
intersection of a line and a circle, 107
intersection of two circles, 108

line between two points, 106
parallel through a point, 105
perpendicular through a point, 106

Crane Alley, 148, 149
cubic equations

folding and tracing, 127

D, 116
d

Euclidean, 105
taxicab, 132

Descartes numbers, 116
directrix, 112, 224
dissection proof, 28
distance

Euclidean, 105
taxicab, 132

doubling the cube, 29, 125

∈, 10, 116
empty set, 13
envelope of tangents, 70
equilateral triangle, 73
Escher, M.C., 19
Euclid, 39

F , 116
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field, 120
focus, 224
focus of a parabola, 112
folding and tracing

bisecting a segment, 65
bisecting an angle, 66
copying an angle, 64
equilateral triangle, 68
intersection of a line and a circle, 68
intersection of two circles, 69
parabola, 70
parallel through a point, 67
perpendicular through a point, 65
solving cubic equations, 127
transferring a segment, 64
trisecting the angle, 71

folding and tracing numbers, 116
free point, 40

geometry
City, 131
city, 133
Euclidean, 131

gorilla suit, 145

incenter, 51, 53, 76, 115
incircle, 51, 53
integers, 117
intersection, 13

Kepler, Johannes, 19

line

Coordinate Geometry, 104

median, 50
midset, 254

city geometry, 138
Morley’s Theorem, 73

nexus of the universe, 131

orthocenter, 50, 53, 76, 115

parabola, 69, 111
city geometry, 141

paradox, 142
√

2 = 2, 142
triangle dissection, 29

Parallel-Side Theorem, 92
Plato, 39
point

Coordinate Geometry, 104
puzzle-stroll, 150
Pythagorean Theorem, 22, 26, 55
Pythagorean Triple, 101

Q, 119
Q(α), 122
quadrilateral

tessellation of, 20

rational numbers, 119
regular

polygon, 19
tessellation, 19

rep-tile, 214

set, 10
set theory symbols
−, 14
∅, 13
∈, 10, 116
∩, 13
⊆, 11
∪, 12

similar triangles, 98, 118
Socrates, 39
Split-Side Theorem, 96
√

2, 142
squaring the circle, 125
subset, 11
symmetry of scale, 216

taxicab distance, 132
tessellation, 19

any quadrilateral, 20
regular, 19
triangles, 20

Theorem
Parallel-Side, 92
Split-Side, 96

triangle
city geometry, 134

trisecting the angle, 71, 73, 126

∪, 12
union, 12

Z, 117
zebra, 151
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