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Part I

Proof by Pictures
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1 About Sets

1 About Sets

We study sets, fundamental objects in mathematics.

In this activity, we remind ourselves of the language and notation of sets. In
school mathematics, we often talk about sets of numbers, sets of points, sets of
geometric objects, sets of functions, and even sets of sets. When listing elements
of a set, we usually enclose them in curly brackets {. . . }, and separate them with
commas.

Problem 1 LetA = the set of divisors of 24, and letB = the set of divisors of 32.

(a) Use set notation to list the elements of A.

(b) Use the the symbols ∈ (is an element of) and ⊆ (is a subset of) to make
some true statements about set A.

(c) Draw a Venn diagram showing sets A and B and the relationship between
them.

Problem 2 The notation A ∪ B means the union of sets A and B, which is
to say the set of elements that are in A or in B. (Note: In mathematics, the
word “or” is used “inclusively.”)

A ∪B =

Author(s): Bart Snapp and Brad Findell
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1 About Sets

Problem 3 The notation A∩B means the intersection of sets A and B, which
is to say the set of elements that are in A and in B.

A ∩B =

Problem 4 Suppose C = {5, 7, 13} and D = {6, 12}.

(a) What is C∩D? Does the term empty set help? How should it be notated?

(b) Two sets with an empty intersection are said to be disjoint. How might
you notice disjoint sets on a Venn diagram?

(c) Draw a Venn diagram showing sets A, B, C, and D.

7



2 Forget Something?

2 Forget Something?

We study sets, fundamental objects in mathematics.

Problem 5 Draw a Venn diagram with one set. List every possible relation-
ship between an element and this set.

Problem 6 Draw a Venn diagram with two intersecting sets. List every pos-
sible relationship between an element and these sets.

Problem 7 Draw a Venn diagram with three intersecting sets. List every
possible relationship between an element and these sets.

Author(s): Bart Snapp and Brad Findell
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2 Forget Something?

Problem 8 Describe and explain any patterns you see occurring.

Problem 9 Draw a Venn diagram with four intersecting sets. List every
possible relationship between an element and these sets.

Problem 10 Are you sure that your diagram for Problem I is correct? If so
explain why. If not, draw a correct Venn diagram.

9



3 It’s What the Book Says

3 It’s What the Book Says

Writing and using careful definitions to describe relationships among special
quadrilaterals.

Problem 11 Do the following task fifth-grade task: Put the terms square,
rhombus, and parallelogram in the Venn diagram below.

rectangles

Problem 12 Critique the task above based on mathematical content.

Author(s): Bart Snapp and Brad Findell
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3 It’s What the Book Says

Problem 13 Supposing we know that a quadrilateral is a polygon with four
sides, write clear and succinct definitions of each of the following terms:

(a) A rectangle is a quadrilateral

(b) A parallelogram is a quadrilateral

(c) A rhombus is a quadrilateral

(d) A square is a quadrilateral

(e) A trapezoid is a quadrilateral

(f) A kite is a quadrilateral

Problem 14 Create a Venn diagram showing the correct relationships among
these quadrilaterals. Be ready to present and defend your diagram to your peers.

11



4 Measuring Area

4 Measuring Area

We measure the area of triangles.

Problem 15 Three congruent triangles are shown below.

(a) For each triangle, choose a base and use a ruler to draw carefully the
corresponding height to that base. (Choose bases of different lengths.)
Remember: A height is measured on a line that is perpendicular to a base
and containing the opposite vertex.

(b) Measure the heights and bases accurately, and compute the area of each
triangle.

(c) What do your results demonstrate about the formula for the area of a
triangle?

 

Author(s): Bart Snapp and Brad Findell
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4 Measuring Area
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5 Suitable Precision in Language and Notation

5 Suitable Precision in Language and

Notation

We discuss language for talking about geometry.

Geometry is about points, lines, and other figures made up of points. Points can
have coordinates, which are numbers, but we save these approaches for later in
the course.

Even without coordinates, geometry involves numbers, especially as measures
of lengths, angles, and areas.

Problem 16 Let M be the midpoint of AB.

A BM

Mark each statement T (true) or F (false). Briefly explain your reasoning.

(a) AB = BA

(b) AB = BA

(c) AM = MB

(d) AM = MB

Problem 17 Describe the geometric distinction between a segment and its
length. How are the two usually denoted differently?

Author(s): Bart Snapp and Brad Findell
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5 Suitable Precision in Language and Notation

Problem 18 Compare ∠CAB and ∠FDE in the figure below.

A

B

C

D

E

F

Mark each statement T (true) or F (false). Briefly explain your reasoning.

(a) ∠CAB = ∠BAC

(b) ∠CAB = ∠FDE

(c) m∠CAB < m∠FDE

(d) m∠CAB = m∠FDE

Problem 19 There are (at least) two ways of thinking about angles.

(a) Use precise language to describe an angle as a set of points.

(b) Use precise language to describe an angle as an amount of turning.

15



5 Suitable Precision in Language and Notation

Problem 20 Describe the geometric distinction between an angle and its
measure. How are the two usually denoted differently? And how do your an-
swers relate to the previous problem?

Problem 21 Use your meanings for angles to improve upon the following
imprecise statements.

Statement Improved Version

A triangle has 180◦.

A line measures 180◦.

A circle is (or has) 360◦.

16



6 Tilted Square

6 Tilted Square

We find the area of a tilted square.

Problem 22 In the diagram below, the dots are 1 centimeter apart, both
vertically and horizontally. The vertices of the square all lie exactly on such
dots. Find the area of the square, without computing the length of the side of
the square. Explain your method.

  

 

 

 

 

Author(s): Bart Snapp and Brad Findell
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7 Pythagorean Theorem

7 Pythagorean Theorem

We prove the most famous theorem of all, the Pythagorean Theorem.

Problem 23 Give two explanations of how the following picture “proves” the
Pythagorean Theorem, one using algebra and one without algebra.•

• CCSS 8.G.6. Explain a
proof of the Pythagorean
Theorem and its converse.

Author(s): Bart Snapp and Brad Findell
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7 Pythagorean Theorem

Problem 24 State the converse of the Pythagorean Theorem and prove it.

19



8 Walking and Turning

8 Walking and Turning

We reason about interior angles of a triangle.

Problem 25 Consider an arbitrary triangle shown below. Let a, b, and c be
the measures of the interior angles of the triangle.

Beginning at point M , the midpoint of a side of the triangle, imagine walking
around the triangle starting in the direction indicated by the arrow. At each
vertex, turn counterclockwise (viewed from above), as indicated by the directed
arc. Your journey ends when you return to point M .

(a) What do you want to prove about a, b, and c?

(b) Extend the sides of the triangle. At each vertex mark the angle through
which the walker turns at that vertex.

(c) How much does the walker turn during the whole journey?

(d) Based upon your “walking and turning” journey, write a proof of your
claim from part (a).

Turning

M

Walking

b

c

a

Author(s): Bart Snapp and Brad Findell
You will find it helpful to actually walk around a triangle outlined on the floor with

masking tape, for example. Alternatively, on Carmen you may find videos of other people
walking and turning.
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8 Walking and Turning

Problem 26 Now repeat the previous problem, this time turning clockwise
at each vertex and walking backwards along a side, as needed. Again, prove
what you can about a, b, and c.

(a) What do you want to prove about a, b, and c?

(b) Extend the sides of the triangle. At each vertex mark the angle through
which the walker turns at that vertex.

(c) How much does the walker turn during the whole journey?

(d) Based upon your “walking and turning” journey, write a proof of your
claim from part (a).

Turning

M

Walking

b

c

a

21



9 Angles in a Funky Shape

9 Angles in a Funky Shape

Let’s put your knowledge of interior angles to a test.

We are going to investigate the sum of the interior angles of a funky shape.

Problem 27 Using a protractor, measure the interior angles of the crazy
shape below:

a

b

c

d

e

f

g

h

i

Use this table to record your findings:

a b c d e f g h i

Problem 28 Find the sum of the interior angles of the polygon above.

Author(s): Jenny Sheldon, Bart Snapp, and Brad Findell
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9 Angles in a Funky Shape

Problem 29 What should the sum be? Explain your reasoning. (You might
find it useful to consider some of the angles to be “reflex angles.” Which ones?)

23



10 Trapezoid Area

10 Trapezoid Area

We investigate trapezoids and how to compute their area.

Problem 30 Explain how the following picture “proves” that the area of a
right triangle is half the base times the height.

Problem 31 Suppose you know that the area of a right triangle is half the
base times the height. Explain how the following picture “proves” that the area
of every triangle is half the base times the height.

Author(s): Bart Snapp and Brad Findell
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10 Trapezoid Area

Problem 32 Now suppose that Geometry Giorgio attempts to solve a similar
problem. Again knowing that the area of a right triangle is half the base times
the height, he draws the following picture:

Geometry Giorgio states that the diagonal line cuts the rectangle in half, and
thus the area of the triangle is half the base times the height. Is this correct
reasoning? If so, give a complete explanation. If not, give correct reasoning
based on Geometry Giorgio’s picture.

Problem 33 Now we explore several ways of justifying the formula for the
area of a trapezoid, as labeled below.

 

  

b2

b1

h

Complete the table on the following page so that, in each row, the explanation,
the geometric figure, and the algebraic formula together describe a way of com-
puting the area. For comparison purposes, each illustration should include a
trapezoid congruent to the trapezoid above.

All of the area formulas will, of course, be equivalent to one another as expres-
sions. But each way of expressing the area will make the most sense with figure
and the explanation from the same row.

25



10 Trapezoid Area

Explanation Figure Area Formula

Rectangle with
width that is
the average of
the bases.

 

 

  

(
b1 + b2

2

)
h

 

 

  
Two triangles
with the same
height and

different bases.

(b1 + b2)
h

2
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Part II

Constructions
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11 Triangle Investigation

11 Triangle Investigation

Find triangles given various conditions.

Problem 34 Draw triangles satisfying the conditions given below. You may
use whatever tools you like (e.g., ruler, protractor, compass, sticks, tracing
paper, or Geogebra).•

• CCSS 7.G.2. Draw (free-
hand, with ruler and protrac-
tor, and with technology) ge-
ometric shapes with given
conditions. Focus on con-
structing triangles from three
measures of angles or sides,
noticing when the conditions
determine a unique triangle,
more than one triangle, or no
triangle.

In each part, use reasoning to determine whether the information provided de-
termines a unique △ABC, more than one triangle, or no triangle.

Note: To check to see if two triangles are the same, attempt to lay one directly
on top of the other.

(a) AB = 4 and BC = 5

(b) m∠CAB = 25◦, m∠ABC = 75◦, m∠BCA = 80◦

(c) m∠CAB = 25◦, m∠ABC = 65◦, m∠BCA = 80◦

(d) AB = 4, m∠BAC = 30◦, m∠ABC = 45◦

(e) AB = 4, BC = 5, m∠ABC = 60◦

(f) BC = 7, CA = 8, AB = 9

(g) BC = 4, CA = 8, AB = 3

(h) m∠ABC = 45◦, BC = 8, CA = 12

(i) m∠ABC = 30◦, BC = 10, CA = 7

(j) m∠ABC = 60◦, BC = 10, CA = 3

Author(s): Bart Snapp and Brad Findell
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12 UnMessUpable Figures

12 UnMessUpable Figures

We model Euclidean constructions in dynamic geometry software.

Suppose we draw or a construct a geometric figure (e.g., a square or an isosceles
triangle) with pencil, paper, compass, and straightedge. If we want to compare
to another example of that type of figure, we need to begin again from scratch.
With dynamic geometry software (e.g., Geogebra, Geometer’s Sketchpad, or
Cabri), we can alter the original figure by “dragging” vertices and segments to
create many other examples. For this to work properly, we want to construct the
figure rather than merely draw it, so that a square, for example, remains a square
even if we move its vertices. Some folks call such figures “UnMessUpable.”

Rules of Engagement:

• Before you begin, explore the menus and toolbars to see what the software
provides.

• You may use tools that function as a compass or straight-edge would.

• You may use special tools (e.g., perpendicular bisector) that accomplish
multistep compass-and-straightedge constructions in a single step.

• Do not use tools for transformations (e.g., translations, reflections, or
rotations).

• Do not use tools that construct objects from measurements.

Begin each problem in a new sketch.

Problem 35 Construct a segment between two points. Then construct an
equilateral triangle with that segment as one of its sides. Be sure that the
triangle remains equilateral when you drag its vertices. (Note: Do not use a
“regular polygon” tool.)

Problem 36 Construct a segment between two points. Then construct a
square with that segment as one of its sides. Be sure that it remains a square
when you drag its vertices. (Note: Do not use a “regular polygon” tool.)

Author(s): Bart Snapp and Brad Findell
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12 UnMessUpable Figures

Problem 37 Construct an UnMessUpable parallelogram. (Hint: Think about
the definition.)

Problem 38 Construct a rectangle that, through dragging, can be long and
thin, short and fat, or anything in between, but that is always a rectangle.

Problem 39 Copy a segment. Construct a segment and a line. Then copy
the segment onto the line. Hide the line so that the segment alone is clear. Then
drag the vertices that determine the initial segment to show that the copy is
always congruent to it.

Problem 40 Copy an angle. Using the ray tool, construct an angle and a
separate ray. Then copy the angle onto the other ray. Drag the vertices that
determine the first angle to show that the copy is always congruent to it.

Problem 41 Construct a capital H so that the midline is always the perpen-
dicular bisector of both sides.

Problem 42 Construct a quadrilateral so that one pair of opposite sides is
always congruent.

30



13 Triangle Centers

13 Triangle Centers

We investigate different “centers” for triangles.

In this activity, we use Geogebra to explore the basic lines, centers, and circles
related to triangles.

Problem 43 Here are some easy questions to get the brain-juices flowing!

(a) Place two points randomly in the plane. Do you expect to be able to draw
a single line that connects them?

(b) Place three points randomly in the plane. Do you expect to be able to
draw a single line that connects them?

(c) Place two lines randomly in the plane. How many points do you expect
them to share?

(d) Place three lines randomly in the plane. How many points do you expect
all three lines to share?

(e) Place two points randomly in the plane. Will you always be able to draw
a circle containing these points?

(f) Place three points randomly in the plane. Will you (almost!) always be
able to draw a circle containing these points? If no, why not? If yes, how
do you know?

(g) Place four points randomly in the plane. Do you expect to be able to draw
a circle containing all four at once? Explain your reasoning.

Definition 1. Three (or more) distinct lines are said to be concurrent if they
have a point in common.

Problem 44 In Geogebra, draw a triangle. Now construct the perpendicular
bisectors of the sides. Describe what you notice. Does this work for every
triangle?

Problem 45 In a new Geogebra sketch, draw a triangle. Now bisect the
angles. Describe what you notice. Does this work for every triangle?

Author(s): Bart Snapp and Brad Findell
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13 Triangle Centers

Problem 46 In a new Geogebra sketch, draw a triangle. Now construct the
lines containing the altitudes. Describe what you notice. Does this work for
every triangle?

Problem 47 In a new Geogebra sketch, draw a triangle. Now construct the
medians. Describe what you notice. Does this work for every triangle?

Problem 48 The circumcircle of a triangle contains all three vertices of
the triangle. The center of the circumcircle is called the circumcenter. Find
the circumcenter on your sketch with the three perpendicular bisectors, and
construct the circumcircle.

Problem 49 The incircle of a triangle is tangent to all three sides of the
triangle. The center of the incircle is called the incenter. Find the incenter on
your sketch with three angle bisectors. Construct the incircle. (Hint: To find
the radius of the incircle, you will need to find the distance from the incenter
to one of the sides of the triangle.)

Problem 50 The other “centers” of a triangle are called the centroid and
the orthocenter. Make a thoughtful guess about how these correspond to the
medians and the lines containing the altitudes.

32



13 Triangle Centers

Problem 51 Fill in the following handy chart summarizing what you found
above.

Associated point?
Always inside
triangle?

Meaning?

perpendicular
bisectors

angle
bisectors

lines
containing
altitudes

lines
containing
medians

Be sure to put this in a safe place like in a safe, or under your bed.
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14 Lines in Triangles

14 Lines in Triangles

We think about some special lines in triangles.

Two copies of a triangle are shown below. In each triangle, draw carefully
the designated lines. Construction is not necessary: Careful measurements are
allowed.

Problem 52 In the triangle below, draw the median from B to AC, the
altitude from B to AC, the angle bisector of ∠B, and the perpendicular bisector
of AC.

A

B

C

Author(s): Bart Snapp and Brad Findell
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14 Lines in Triangles

Problem 53 In the triangle below, draw the median from C to AB, the
altitude from C to AB, the angle bisector of ∠C, and the perpendicular bisector
of AB.

A

B

C

Problem 54 In each triangle, you should have drawn four different lines.
What might you say about a triangle for which two or more of these lines turn
out to be the same?

35



15 Isosceles Bisectors

15 Isosceles Bisectors

We think about isosceles triangles.

Theorem 1 (Isosceles Triangle Theorem). If two sides of a triangle are con-
gruent, then the angles opposite those sides are congruent.

Problem 55 Prove the Isosceles Triangle Theorem. (Hint: In a previous
activity, you noticed that in most triangles the median, perpendicular bisector,
angle bisector, and altitude to a side lie on four different lines. So if you draw a
new line in your diagram, be sure to decide which of these lines you are drawing.)

Problem 56 Use your proof to show that, in an isosceles triangle, a median,
perpendicular bisector, angle bisector, and altitude turn out to be the same line.

Author(s): Bart Snapp and Brad Findell
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15 Isosceles Bisectors

Problem 57 Prove the Isosceles Triangle Theorem without drawing another
line. Hint: Is there a way in which the triangle is congruent to itself?

Problem 58 State the converse of the Isosceles Triangle Theorem and prove
it.

37



15 Isosceles Bisectors

Problem 59 Prove that the points on the perpendicular bisector of a segment
are exactly those that are equidistant from the endpoints of the segment. Note
that the phrase exactly those requires that we prove a simpler statement as well
as its converse:

(a) Prove that a point on the perpendicular bisector of a segment is equidistant
from the endpoints of that segment.

(b) Prove that a point that is equidistant from the endpoints of a segment lies
on the perpendicular bisector of that segment.

Problem 60 Prove that the perpendicular bisectors of a triangle are concur-
rent. Hint: Name the intersection of two of the perpendicular bisectors and
then show that it must also lie on the third one. (This is a standard approach
for showing the concurrency of three lines.)

38



15 Isosceles Bisectors

Problem 61 Draw a line (neither horizontal nor vertical) and a point not on
the line. Describe how to find the exact distance from the point to the line.

Problem 62 Prove that the points on an angle bisector are exactly those that
are equidistant from the sides of the angle.

Problem 63 Prove that the angle bisectors of a triangle are concurrent.
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16 About Medians

16 About Medians

We explore several ways of thinking about the medians of triangles.

Problem 64 On cardstock, use a ruler to draw a medium-sized, non-right,
non-isosceles triangle, and then cut it out as accurately as you can. Draw two
of the medians on the cutout triangle. Draw the third median to make sure
they are concurrent.

(a) Using a ruler, try balancing the triangle along each median. (Ask a partner
to hold the ruler steady.)

(b) Now try balancing the triangle along a line that is not a median. How
does your line relate to the intersection of the medians? Explain why this
makes sense.

(c) Try balancing the triangle from a string at the intersection of the medians.
(Use the point of your compass to make a hole in the cardstock.)

Problem 65 Imagine stacking toothpicks in a triangle, as shown below.
t = 0.20 cm

tip = 0.60 cm

n = 19

M
A

C

B

(a) Explain, using toothpicks, why the triangle would balance on a ruler placed
along the median CM .

Author(s): Bart Snapp and Brad Findell
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16 About Medians

(b) Explain, using a different collection of toothpicks, why the triangle would
balance along the median to side AC. Describe how the toothpicks would
need be placed, relative to side AC.

(c) The two medians will intersect at a point. Explain why the triangle (with-
out toothpicks) should balance from a string or on a pencil point at the
intersection of the two medians.

(d) Use a balancing argument to explain why the third median should contain
the intersection of the first two.
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16 About Medians

Problem 66 The next problem uses the midsegment theorem. A midsegment
is a line joining the midpoints of two sides. Draw carefully a triangle and
a midsegment, and use it to make a conjecture about what the midsegment
theorem says. (We will prove the theorem later.)

Problem 67 Use the picture below to show that a pair of medians intersects
at a point 2/3 of the way from the vertex to the opposite side. Then use that
fact to argue that the three medians must be concurrent.
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16 About Medians

Problem 68 Imagine a triangle made of nearly weightless material with one-
pound weights placed at each of the vertices, A, B, and C.

(a) Explain why the triangle will balance on a ruler along the median to side
AB.

(b) Explain why the triangle will continue to balance along the median when
the masses at A and B are both moved to the midpoint of AB.

(c) Now imagine trying to balance the triangle at a single point along the
median. Where will it balance? Use the phrase “weighted average” to
explain your reasoning.

Problem 69 Using the picture below, explain why the medians of the large
triangle are also medians of the medial triangle. Then explain how repeating
this process indefinitely proves that the medians are concurrent.
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17 Verifying Our Constructions

17 Verifying Our Constructions

We use basic theorems to verify our Euclidean compass-and-straightedge con-
structions.

When we do our compass-and-straightedge constructions, we should take care
to verify that they actually work as advertised. We’ll walk you through this
process. To start, remember what a circle is:

Definition 2. A circle is the set of points that are a fixed distance from a given
point.

Problem 70 Is the center of a circle part of the circle? Explain.

Problem 71 Construct an equilateral triangle. Why does this construction
work?

Author(s): Bart Snapp and Brad Findell
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17 Verifying Our Constructions

Now recall the SSS Theorem:

Theorem 2 (SSS). Specifying three sides uniquely determines a triangle.

Problem 72 Now we’ll analyze the construction for copying angles.

(a) Use a compass and straightedge construction to duplicate an angle. Ex-
plain how you are really just “measuring” the sides of some triangle.

(b) In light of the SSS Theorem, can you explain why the construction used
to duplicate an angle works?

Problem 73 Now we’ll analyze the construction for bisecting angles.

(a) Use compass and straightedge construction to bisect an angle. Explain
how you are really just constructing (two) isosceles triangles. Draw these
isosceles triangles in your figure.

(b) Find two more triangles on either side of your angle bisector where you
may use the SSS Theorem to argue that they have equal side lengths and
therefore equal angle measures.

(c) Can you explain why the construction used to bisect angles works?
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17 Verifying Our Constructions

Recall the SAS Theorem:

Theorem 3 (SAS). Specifying two sides and the angle between them uniquely
determines a triangle.

Problem 74 Now we’ll analyze the construction for bisecting segments.

(a) Use a compass and straightedge construction to bisect a segment. Explain
how you are really just constructing two isosceles triangles.

(b) Note that the bisector divides each of the above isosceles triangles in half.
Find two triangles on either side of your bisector where you may use
the SAS Theorem to argue that they have equal side lengths and angle
measures.

(c) Can you explain why the construction used to bisect segments works?

Problem 75 Now we’ll analyze the construction of a perpendicular line through
a point not on the line.

(a) Use a compass and straightedge construction to construct a perpendicular
through a point. Explain how you are really just constructing an isosceles
triangle.

(b) Find two triangles in your construction where you may use the SAS The-
orem to argue that they have equal side lengths and angle measures.

(c) Can you explain why the construction used to construct a perpendicular
through a point works?

46



18 Of Angles and Circles

18 Of Angles and Circles

We study central and inscribed angles.

In this activity we are going to look at pictures and see if we can explain how
they “prove” theorems.

Theorem 4. Any triangle inscribed in a circle and having the diameter as a
side is a right triangle.

Problem 76 Can you tell me in English what this theorem says? Provide
some examples of this theorem in action.

Problem 77 Here is a series of pictures, designed to be read from left to right.

Explain how these pictures “prove” the above theorem. In the process of your
explanation, you may need to label parts of the pictures and do some algebra.

Author(s): Bart Snapp and Brad Findell
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18 Of Angles and Circles

Definition 3. A chord in a circle defines two arcs, each of which corresponds
to a central angle. The measure of the arc is defined to be the measure of the
corresponding central angle.

Problem 78 Can you tell me in English what this definition says? Use pic-
tures to demonstrate what the fancy words mean.

Theorem 5. Given an arc of a circle, the central angle corresponding to this
arc is twice any inscribed angle intercepting this arc.

I’ll play nice here and give you a picture of this theorem in action:

Problem 79 Can you tell me in English what this theorem says? Specifically,
what is meant by inscribed angle? And why does it say “any inscribed angle”?

48



18 Of Angles and Circles

Problem 80 For one possible line of reasoning, consider this series of pictures,
designed to be read from left to right.

Explain how these pictures “prove” the above theorem. In the process of your
explanation, you may need to label parts of the pictures and do some algebra.

Corollary 1. Given an arc of a circle, all inscribed angles intercepting this arc
are congruent.

Problem 81 Firstly—what the heck is a corollary? Secondly—what is it
saying? Thirdly—why is it true?
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18 Of Angles and Circles

Problem 82 Not all inscribed angles look like those in the previous picture.
Consider the following pictures:

OA = 4.09 cm
OA = 4.09 cm
OA = 4.09 cm

αβ

m∠ABC = β –  αm∠ABC = β + αm∠ABC = β

In the pictures below, find and explain the
relationship between m∠ABC and m∠AOC.

β β
α

DC D

O

AA

O

A

OB

C

B B

C

(a) In each of the pictures, find and explain the relationship between m∠ABC
and m∠AOC.

(b) Explain why any inscribed angle must fit one of these three cases.
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19 More Circles

19 More Circles

We think about circles that have certain relations to other shapes.

Problem 83 Prove: The radius of a circle is perpendicular to the tangent
where the radius intersects the circle. Hint: Suppose not.

Problem 84 Suppose an angle circumscribes a circle, as shown below. Find
a relationship between the measure of the angle and the measure of the central
angle intercepted by the same chord.

Author(s): Bart Snapp and Brad Findell
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19 More Circles

Problem 85 Show that, given any three non-collinear points in the Euclidean
plane, there is a unique circle passing through the three points.

Problem 86 Draw four points in the Euclidean plane, no three of which are
collinear, that cannot lie on a single circle. Explain your reasoning.
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19 More Circles

Problem 87 Using a compass, draw a large circle, and inscribe a quadrilat-
eral in the circle. Measure the four angles. Repeat with another circle and
quadrilateral. What do you notice? Identify a condition on any quadrilateral
that is inscribed in a circle. Now prove it.

Problem 88 Construct a tangent line to a circle from a point outside the
given circle.

53



19 More Circles

Problem 89 Give an informal derivation of the relationship between the cir-
cumference and area of a circle. Imagine cutting a circle into “pie pieces” and
rearranging the pieces into a shape like the one below. As the circle is cut into
more and more equal-sized “pie pieces,” what does the rearranged shape begin
to resemble? Can you find the area of this shape?
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19 More Circles

Problem 90 Derive a formula for the length of the arc intercepted by an
central angle of a circle.

Problem 91 Derive a formula for the area of a sector of a circle.
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20 Quadrilateral Diagonals

20 Quadrilateral Diagonals

We explore basic shapes.

Imagine you are working at a kite factory and you have been asked to design a
new kite. The kite will be a quadrilateral made of synthetic cloth, and it will be
formed by two intersecting rods that serve as the diagonals of the quadrilateral
and provide structure for the kite.

Problem 92 To get started, review the definitions of all special quadrilaterals.
Be sure to include kite on your list.

Problem 93 To consider the possible kite shapes, your task is to describe how
conditions on the diagonals determine the quadrilateral. Use fettuccine to model
the intersecting rods, and use paper and pencil to draw the rod configurations
and resulting kite shapes.

Here are some hints:

• Explore diagonals of various lengths, of the same length, and of different
lengths.

• Explore various places at which to attach the diagonals to each other,
including at one or both of their midpoints.

• Explore various angles that the diagonals might make with each other at
their intersection, including the possibility of being perpendicular.

• Indicate what kinds of rotational or reflection symmetry you see in the
resulting figure.

Author(s): Bart Snapp and Brad Findell
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20 Quadrilateral Diagonals

Problem 94 Summarize your findings in a table organized like the following.

Definition Diagonals Comments

Quadrilateral (A quad. with . . . ) C
o
n
g.

B
is
ec
t

P
er
p
.

(e.g., symmetry)

Square

Rectangle

Rhombus

Parallelogram

Kite

Trapezoid

Isosceles Trap.
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Part III

Congruence and Similarity
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21 Congruence via Transformations

21 Congruence via Transformations

We think about geometric transformations.

Informally, a transformation of the plane is a “motion,” such as a rotation or a
stretch of the plane, that takes a figure to an image of that figure. This activity
explores the basic rigid motions: translations (slides), rotations (turns), and
reflections (flips).

Problem 95 One of the pairs of figures below shows a translation, and the
other pair does not. To identify which is which, draw segments between each
point and its image. Use those segments to explain your reasoning.

Author(s): Bart Snapp and Brad Findell
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21 Congruence via Transformations

Problem 96 One of the pairs of figures shows a reflection about the given
line, and the other pair does not.

(a) Identify which pair of figures shows a reflection about the given line, and
explain how you know.

(b) Find the line of reflection for the other pair of figures, and explain your
reasoning.
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21 Congruence via Transformations

Problem 97 One of the pairs of figures below shows a rotation about point
C, and the other pair does not.

(a) Identify which pair of figures shows a rotation about C, and explain how
you know.

(b) Find the angle of rotation.

(c) Find the center of and angle of rotation for the other pair of figures.
Explain your reasoning.

C
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21 Congruence via Transformations

Problem 98 Two figures are said to be congruent if there is a sequence of
basic rigid motions that take one figure onto the other.

(a) Specify a sequence of two or three basic rigid motions that takes one F
onto the other. Illustrate intermediate images. Explain your reasoning.

(b) Explain briefly why, for this pair of figures, sequences of the following
types cannot work:

• a rotation followed by a rotation

• a translation followed by a translation

• a reflection followed by a reflection
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22 More Transformations

22 More Transformations

We think about geometric transformations.

Transformations of the plane are considered to be functions that take points as
inputs and produce points as outputs. Given a point as input, the corresponding
output value is often called the image of the point under the transformation.•

• CCSS G-CO.2. Repre-
sent transformations in the
plane using, e.g., transparen-
cies and geometry software;
describe transformations as
functions that take points
in the plane as inputs and
give other points as out-
puts. Compare transforma-
tions that preserve distance
and angle to those that do
not (e.g., translation versus
horizontal stretch).

Problem 99 Based on your experience with the basic rigid motions, write
definitions of translation, rotation, and reflection.• For each definition, be sure

• CCSS G-CO.4. Develop
definitions of rotations, re-
flections, and translations
in terms of angles, circles,
perpendicular lines, parallel
lines, and line segments.

to indicate (1) what it takes to specify the transformation, and (2) how to
produce the image of a given point.

(a) Translation:

(b) Rotation:

(c) Reflection:

Problem 100 Now explore sequences of basic rigid motions. Here are some
suggestions to support your explorations:

• Use a non-symmetric figure (such as an F).

• Use one sheet of tracing paper as the original plane, and use a second
sheet of paper to carry out the sequence of transformations.

• Trace intermediate figures on both sheets of paper, to keep track of the
work.

• For reflections, trace the line of reflection on both sheets.

• For rotations, use a protractor to help you keep track of angles.

• Consider special cases, such as reflections about the same line or rotations
about the same point.

• Try to predict the result before you actually carry out the sequence of
transformations.

Author(s): Bart Snapp and Brad Findell
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22 More Transformations

Describe briefly what you can say about each of the following sequences of basic
rigid motions. Include special cases in your descriptions.

(a) Translation followed by translation

(b) Rotation followed by rotation

(c) Reflection followed by reflection

(d) Translation followed by rotation

(e) Translation followed by reflection

(f) Rotation followed by reflection
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23 Symmetries

23 Symmetries

We introduce symmetries.

Definition 4. A symmetry is a transformation that takes a figure onto itself.

Problem 101 List the symmetries of an equilateral triangle. Explain how
you know you have them all.

Problem 102 Flip through these notes and describe the symmetries you no-
tice. Try to find reflection symmetry, rotation symmetry, and translation sym-
metry.

Problem 103 Suppose the symmetries of a square are called R0, R90, R180,
R270, V , H, D, D′, based upon the figure below.

V
D'

H

D

Hint: To identify a single transformation that accomplishes a sequence of trans-
formations, do the transformations physically with a square piece of paper
marked with “FRONT” on the side that starts facing you. Or mark the corners
of the square with A, B, C, and D.

Author(s): Bart Snapp and Brad Findell
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23 Symmetries

(a) Complete the following table, where the entry at (row, column) is the
symmetry that results from the sequence of symmetries given by the row
heading followed by the column heading.

(b) What patterns and not-quite-patterns do you notice in the table? For
example, which elements “commute” with which other elements?

(c) What facts about isometries can you observe in the table? For example,
what can you say generally about sequences of rotations and reflections?

R0 R90 R180 R270 V H D D′

R0

R90

R180

R270

V

H

D

D′
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24 Congruence Criteria

24 Congruence Criteria

We develop triangle congruence from basic rigid motions.

In this activity, we show how the common triangle congruence criteria follow
from what we now know about rigid motions.• Recall that two figures are said

• CCSS G-CO.8. Explain
how the criteria for triangle
congruence (ASA, SAS, and
SSS) follow from the defini-
tion of congruence in terms
of rigid motions.

to be congruent if there exists a basic rigid motion (translation, rotation, or
reflection) or a sequence of basic rigid motions that maps one figure onto the
other.

Problem 104 Proof of Side-Angle-Side (SAS) congruence. Suppose △ABC
and △XY Z are such that AB = XY , AC = XZ, and ∠A ∼= ∠X. Prove, using
basic rigid motions, that △ABC ∼= △XY Z. Consider the figure below.

Y

Z

X

A

C

B

Fill in the details of the following proof.

(a) Translate △ABC through the vector
−−→
AX. Call the image △A′B′C ′. Ex-

plain why A′ and X coincide.

Author(s): Bart Snapp and Brad Findell

67



24 Congruence Criteria

(b) Rotate △A′B′C ′ about X = A′ through ∠B′XY so that ray
−−−→
A′B′ is along

ray
−−→
XY . Call the image △A′′B′′C ′′ Explain how you know the segments

A′′B′′ and XY coincide.

(c) Reflect△A′′B′′C ′′ about the line
←−−→
A′′B′′ =

←→
XY . Call the image△A′′′B′′′C ′′′.

Explain why A′′′C ′′′ and XZ coincide.

(d) Explain how you now know that all sides and angles of △A′′′B′′′C ′′′ are
congruent to the corresponding sides and angles of △XY Z.

(e) Explain how to modify the above steps to handle the following different
cases:

• Initially X = A.

• After the translation, A′B′ and XY coincide.

• After the rotation, A′′C ′′ and XZ coincide. (Hint: Consider whether

C ′′ and Z are on the same side or on opposite sides of
←→
XZ.)
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24 Congruence Criteria

Problem 105 Proof of Angle-Side-Angle (ASA) congruence. Suppose△ABC
and △XY Z are such that AB = XY , ∠A ∼= ∠X, and ∠B ∼= ∠Y . Prove, using
basic rigid motions, that △ABC ∼= △XY Z.

(a) Outline a general proof for the figure below.

Y

Z

X

A

C

B

(b) Explain carefully how you know, after the sequence of rigid motions, that
the “final image” of C coincides with Z.

(c) Describe how to modify the outline to handle other cases.
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24 Congruence Criteria

Problem 106 In a previous activity, you used triangle congruence criteria to
prove the following results:

• The Isosceles Triangle Theorem.

• The points on a perpendicular bisector of a segment are exactly those that
are equidistant from the endpoints.

Verify that these results could have been established using only SAS and ASA
congruence. (Thus, you may use these results in the problems that follow.)

Problem 107 Proof of Hypotenuse-Leg (HL) congruence. Suppose △ABC
and △XY Z are such that ∠C and ∠Z are right angles, AB = XY , and BC =
Y Z. Prove that △ABC ∼= △XY Z.

YZ

X

A

C

B
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24 Congruence Criteria

Problem 108 Proof of Side-Side-Side (SSS) congruence. Suppose △ABC
and △XY Z are such that AB = XY , AC = XZ, and BC = Y Z. Prove,
using basic rigid motions, that △ABC ∼= △XY Z. Build toward the general
case through the following steps:

(a) Case 1a: A = X, B = Y , and C and Z lie on opposite sides of
←→
AB. (Hint:

Explain why the situation must be like one of the figures below, argue

that
←→
AB is the perpendicular bisector of CZ, and then use a reflection.)

ZZ

B = Y

C

A = X A = X

C

B = Y

(b) Case 1b: A = X, B = Y , and C and Z lie on the same side of
←→
AB =

←→
XY .

(Hint: Consider a reflection of one of the triangles and use the previous
case.)

(c) Case 2: A = X but B ̸= Y .

(d) Case 3: The general case.

71



25 Parallels

25 Parallels

We seek to understand the Parallel Postulate and its consequences.

In the following problems, you may assume the following:

Postulate 1 (Parallel Postulate). Given a line and a point not on the line,
there is exactly one line passing through the point which is parallel to the given
line.

You may also use previously-established results, such as the following:

• The measures of adjacent angles add as they should.

• A straight angle measures 180◦.

• A 180◦ rotation about a point on a line takes the line to itself.

• A 180◦ rotation about a point off a line takes the line to a parallel line.

Now you may get started!

Problem 109 Prove that vertical angles are congruent. Then try to prove it
another way.

Author(s): Bart Snapp and Brad Findell
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25 Parallels

Problem 110 Prove: If a pair of parallel lines is cut by a transversal, then
alternate interior angles are equal and corresponding angles are equal.

Problem 111 Prove: If a pair of alternate interior angles or a pair of corre-
sponding angles of a transversal with respect to two lines are equal, then the
lines are parallel.
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25 Parallels

Problem 112 The previous two problems seem almost identical to one an-
other. How are they different?

Problem 113 Prove: The angle sum of a triangle is 180◦.
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26 Midsegments

26 Midsegments

We prove the medsegment theorem.

Definition 5. In a triangle, a midsegment is a line joining the midpoints of
two sides.

Theorem 6. Midsegment Theorem: A midsegment in a triangle is parallel to
and half the length of the corresponding side.

In this activity, we prove the midsegment theorem. First, we need some results
about parallelograms.

Problem 114 Prove the following theorem: If the diagonals of a quadrilateral
bisect each other, then the quadrilateral is a parallelogram.

Problem 115 Prove the following theorem: If one pair of sides of a quadri-
lateral are congruent and parallel, then the quadrilateral is a parallelogram.

Author(s): Bart Snapp and Brad Findell
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26 Midsegments

Problem 116 Prove the midsegment theorem. (Hint: Extend the midseg-
ment DE to a point X such that EX = DE, and then find quadrilaterals that
must be parallelograms by the previous results.)

X
ED

A

C

B
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27 Similarities

27 Similarities

We introduce similarity.

Problem 117 Based on your experience with the stretching activity, write
a definition of dilation. Be sure to indicate (1) what it takes to specify the
transformation, and (2) how to produce the image of a given point.

Problem 118 Based on your experience with the stretching activity, describe
for a dilation:

(a) What happens to line segments?

(b) What happens to angles?

(c) What happens to lines passing through the center of the dilation?

(d) What happens to lines not passing through the center of the dilation?

Definition 6. A geometric figure is similar to another if the second can be
obtained from the first by a sequence of rotations, reflections, translations, and
dilations.

Problem 119 For each of the pairs of objects on the following pages, do the
following:

(a) Trace the smaller figure on plastic. Then close one eye and try to hold
the plastic between your eye and the paper so that the tracing “exactly”
covers the larger figure. Be sure that the plane of the paper and the plane
of the plastic are parallel. (Why does this matter?)

Author(s): Bart Snapp and Brad Findell
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27 Similarities

(b) If the objects are similar, find a sequence of rotations, reflections, trans-
lations, and dilations that takes one figure onto the other.

(c) If the objects are similar, try to find a single dilation that demonstrates
the similarity. If you cannot find such a dilation, explain how you know
you cannot.
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27 Similarities
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27 Similarities

Problem 120 Describe a general (and foolproof) way of demonstrating that
any two circles are similar.• • CCSS G-C.1 Prove that all

circles are similar.
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27 Similarities

Problem 121 Describe a general (and foolproof) way of demonstrating that
any two parabolas are similar.
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28 Side-Splitter Theorems

28 Side-Splitter Theorems

We prove fundamental theorems about similar triangles.

In this activity, we will show that the properties of dilations, which you noticed
in a previous activity, can be proven without using facts about transversals and
parallel lines. Instead, we use the area formula for triangles. Note: For a given
base, draw the corresponding altitude to reason about a triangle’s area.

Background: Areas of triangles

Question 122 For the triangle area formula to be valid, what must be true
about the base and height measurements?

Problem 123 Suppose the area of △SPR = 8 square inches and the area of
△QPR = 5 square inches.

(a) Thinking of SR and RQ as bases of these triangles, respectively, what are
their heights?

(b) Then what can you say about
SR

RQ
? What about

SR

SQ
?

(c) What can you say generally about how these ratios depend upon the areas
of the triangles?

Y

M

D C

A

W X

Z

S

PQ

B

R

Author(s): Bart Snapp and Brad Findell
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28 Side-Splitter Theorems

Problem 124 For the trapezoid below, explain why the area of △BAD is
equal to the area of △BAC. Name two other triangles that have the same area.

Y

M

D C

A

W X

Z

S

P

Q

B

R

Problem 125 For the parallelogram below, which triangle has the greatest
area: △XY Z, △WXY , △ZWX, or △Y ZW? Explain.

Y

M

D C

A

W X

Z

S

P

Q

B

R
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28 Side-Splitter Theorems

Side Splitting

Problem 126 Prove the Parallel-Side Theorem: If a line in a triangle is
parallel to a side of a triangle, then it splits the other sides of the triangle
proportionally.

BC = 7.57 cm

AC = 6.56 cm

EEE

A

B C CB

A

CB

A

D D D

(a) How do the areas of △ADE and △DBE relate to AD and DB? Explain.

(b) How do the areas of △ADE and △ECD relate to AE and EC? Explain.

(c) How do the areas of △DBE and △ECD compare? Explain.

(d) Use the previous results to show that
DB

AD
=

EC

AE
.

(e) What the heck did we just do? What does this say?

(f) Where in the proof did we use the fact that DE ∥ BC?
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28 Side-Splitter Theorems

Problem 127 Use some algebra to show, in the previous picture, that
AB

AD
=

AC

AE
.

Problem 128 Prove: Next we prove, in the previous figure, that
BC

DE
=

AB

AD
=

AC

AE
. Here are the steps.

(a) How do we know that ∠ADE ∼= ∠ABC?

(b) Translate △ADE by the vector
−−→
DB so that the image ∠A′D′E′ of ∠ADE

coincides with ∠ABC. Draw a picture of the result.

(c) What segments are parallel now? How do you know?

(d) Now explain why
BC

DE
=

AB

AD
=

AC

AE
is equal to a common ratio from the

previous problem.
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28 Side-Splitter Theorems

Problem 129 Explain briefly how the Parallel-Side Theorem implies the AA
criterion for triangle similarity. (Hint: Be sure to use the definition of similarity
in terms of basic rigid motions and dilations.)

Problem 130 The Split-Side Theorem is the converse of the Parallel-Side
Theorem.

(a) State the Split-Side Theorem.

(b) Prove the Split-Side Theorem. (Hint: Using the previous figures, draw
a line through D and parallel to BC, and let X be the point where the
new line intersects AC. By the previous results, DX divides the sides
proportionally. Then argue that E and X must be the same point.)
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28 Side-Splitter Theorems

Problem 131 Use the Split-Side Theorem to justify the following properties
of a dilation given by a center and a scale factor:

(a) A dilation takes a line not passing through the center of the dilation to a
parallel line, and leaves a line passing through the center unchanged.

(b) The dilation of a line segment is longer or shorter in the ratio given by
the scale factor.

Problem 132 Explain briefly how the Split-Side Theorem establishes the SAS
criterion for triangle similarity.

87



29 Trigonometry Checkup

29 Trigonometry Checkup

We review trigonometry.

This activity is intended to remind you of key ideas from high school trigonom-
etry.

Problem 133 What are the ratios of side lengths in a 45◦-45◦-90◦ triangle?
Explain where the ratios come from, including why they work for any such
triangle, no matter what size. (Hint: Use the Pythagorean Theorem.)

Problem 134 What are the ratios of side lengths in a 30◦-60◦-90◦ triangle?
Explain where those the come from. (Hint: How might an equilateral triangle
help.)

Author(s): Bart Snapp and Brad Findell
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29 Trigonometry Checkup

Problem 135 Consider the right triangle below with an angle of α, sides of
length x and y, and hypotenuse of length r, as labeled.

α
x

r
y

(a) If we imagine angle α is fixed, why are ratios of pairs of side lengths the
same, no matter the size of the triangle?•

• CCSS G-SRT.6. Under-
stand that by similarity, side
ratios in right triangles are
properties of the angles in
the triangle, leading to def-
initions of trigonometric ra-
tios for acute angles.

(b) Using the triangle above (and your memory of Precalculus), write down
the side-length ratios for sine, cosine, and tangent:

sinα = cosα = tanα =

(c) What values of αmake sense in right triangle trigonometry? (We overcome
these bounds later in circular trigonometry.)

(d) What does it mean to say that these ratios depend upon the angle α?

(e) Why is only one of the triangle’s three angles necessary in defining these
ratios?

89



29 Trigonometry Checkup

Problem 136 Use your work so far to find the following trigonometric ratios:

(a) sin 30◦ = cos 30◦ = tan 30◦ =

(b) sin 45◦ = cos 45◦ = tan 45◦ =

(c) sin 60◦ = cos 60◦ = tan 60◦ =

(d) sin 0◦ = cos 0◦ = tan 0◦ =

Problem 137 You may recall the identity sin2 ϑ+ cos2 ϑ = 1.•

• CCSS F-TF.8. Prove
the Pythagorean identity
sin2(ϑ) + cos2(ϑ) = 1 and
use it to find sin(ϑ), cos(ϑ),
or tan(ϑ) given sin(ϑ),
cos(ϑ), or tan(ϑ) and the
quadrant of the angle.(a) Explain why the equation is true.

(b) Why is it called an identity?

(c) Why is it called a Pythagorean identity?
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29 Trigonometry Checkup

Problem 138 In right triangle trigonometry, there are indeed two acute an-
gles, as shown in the figure below.•

• CCSS G-SRT.7. Explain
and use the relationship be-
tween the sine and cosine of
complementary angles.

α

β

x

r
y

(a) How are the angles α and β related? Explain why.

(b) Using lengths in the above triangle, find the following ratios:

sinα = cosα =

sinβ = cosβ =

(c) What do you notice about the sine and cosine of complementary angles?

(d) Explain why the result makes sense.

Given an angle and a side length of a right triangle, you can find the missing
side lengths.• This is called “solving the right triangle.” And given the sine,

• CCSS G-SRT.8. Use
trigonometric ratios and
the Pythagorean Theorem
to solve right triangles in
applied problems.

cosine, or tangent of an angle, you can find the other two ratios. (Hint: In either
case, draw a triangle.)

Problem 139 Suppose sinα =
3

5
. Then cosα = , tanα = .
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30 Please be Rational

30 Please be Rational

We prove that the square root of two is not rational.

Let’s see if we can give yet another proof that the square root of two is not
rational. Consider the following isosceles right triangle:

Problem 140 Using the most famous theorem of all, how long is the un-
marked side?

Problem 141 Suppose that the unmarked side has a rational length. In that
case how could we express it?

Problem 142 Explain why there would then be a smallest isosceles right
triangle with integer sides. Considering the problem above, how long would the
sides be? Draw and label a picture.

Author(s): Bart Snapp and Brad Findell
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30 Please be Rational

Problem 143 Now fold your smallest isosceles right triangle with integer sides
along the dotted line like so:

Describe how to accomplish the fold, and explain why the figure is as marked.

Problem 144 Explain how we have now found an isosceles right triangle with
integer sides that is now smaller than the smallest isosceles right triangle with
integer sides. Is this possible? What must we now conclude?
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31 Rep-Tiles

31 Rep-Tiles

We study self-similar shapes called rep-tiles.

A rep-tile is a polygon where several copies of a given rep-tile fit together to
make a larger, similar, version of itself. If 2 copies are used, we call it a rep-2-
tile, if 3 copies are used, we call it a rep-3-tile, and if n copies are used, we call
it a rep-n-tile. Below is an example of a rectangle that is a rep-4-tile.

Problem 145 Explain why every parallelogram is a rep-4-tile. Give an ex-
ample, and compare the perimeter and area of the larger figure to that of the
original.

Problem 146 Explain why every triangle is a rep-4-tile. Give an example,
and compare the perimeter and area of the larger figure to that of the original.

Author(s): Bart Snapp and Brad Findell
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31 Rep-Tiles

Problem 147 Explain why every parallelogram and every triangle is a rep-9-
tile. Give an example of each, and compare the perimeter and area of the larger
triangle to that of the original. Can you generalize your result? In other words,
for what values of n can you say that every parallelogram and every triangle is
a rep-n-tile?

Problem 148 With a separate sheet of paper, draw and cut out:

(a) An isosceles right triangle whose sides have lengths 1′′, 1′′, and
√
2
′′
.

(b) A rectangle whose sides have lengths 1′′ and
√
2
′′
.

Working with a partner, show that each of these polygons is a rep-2-tile. And
in each case, how do the perimeter and area of the larger polygon compare to
the perimeter and area of the original?

Problem 149 With a fresh sheet of paper, start a table to summarize your
work so far. Use exact answers whenever possible.

rep-tile scale factor (new:old) perimeter (new:old) area (new:old)

description
...

...
...

...
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31 Rep-Tiles

Problem 150 Geometry Giorgio suggests that a rectangle whose sides have
lengths 1′′ and 4′′ is also a rep-2-tile. Is he right? If you should happen to search
the Internet for other examples of rep-2-tiles, you might find a surprise.

Problem 151 With a separate sheet of paper, draw and cut-out:

(a) A 30-60-90 right triangle whose shortest side has length 1′′.

(b) A rectangle whose sides have lengths 1′′ and
√
3
′′
.

Working with a partner, show that each of these polygons is a rep-3-tile.

Problem 152 For each rep-tile above, compute the perimeter and area. In
each case, how does this relate to the perimeter and area of the larger polygon?
Add this information to your table.
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32 Rep-Tiles Repeated

32 Rep-Tiles Repeated

We further our study of rep-tiles.

Problem 153 With a separate sheet of graph paper, draw and cut out the
following polygons:

Working with a partner, show that each of these polygons is a rep-4-tile.

Problem 154 For each rep-tile above, compute the perimeter and area. In
each case, how does this relate to the perimeter and area of the larger polygon?

Problem 155 With a separate sheet of paper, trace and cut out the following
polygons:

Working with a partner, show that each of these polygons is a rep-4-tile.

Author(s): Bart Snapp and Brad Findell
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32 Rep-Tiles Repeated

Problem 156 Explain why every rectangle whose sides have ratio 1 :
√
n is

a rep-n-tile.

Problem 157 Explain how you know that any polygonal rep-tile will tessel-
late the plane.

Problem 158 Give an example of a polygon that tessellates the plane that is
not a rep-tile.
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32 Rep-Tiles Repeated

Problem 159 Every tessellation made by rep-tiles will have symmetry of
scale. What does it mean to have symmetry of scale?

Problem 160 Consider the tessellations made by rep-tiles you’ve seen so far.
What other symmetries do they have?

Problem 161 Do you think you can have a tessellation that has symmetry
of scale but no other symmetries?
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33 Scaling Area

33 Scaling Area

We investigate how area changes when an object is scaled.

Problem 162 Is a 3× 5 rectangle similar to a 4× 6 rectangle? Explain your
reasoning. Now come up with another explanation.

Problem 163 Use area formulas to explain what happens to the area of a
rectangle under scaling by a factor of k? What about a triangle? What about
a circle?

Author(s): Bart Snapp and Brad Findell
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33 Scaling Area

Problem 164 Below is a figure and a dilation of that figure about point O.

Scale Factor = 1.8

O

(a) Find the scale factor of the dilation. Explain your reasoning.

(b) What can you say about the areas of the two figures? Explain your rea-
soning.
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34 Turn Up the Volume!

34 Turn Up the Volume!

We investigate areas and volumes.

In this activity, we will investigate formulas for area and volume.

Problem 165 Explain how the following picture “proves” that the area of a
right triangle is one half of the base times the height.

Problem 166 “Shearing” is a process where you take a shape, cut it into thin
parallel strips, and then move the strips in a direction parallel to the strips to
make a new shape. By Cavalieri’s principle:

Shearing parallel to a fixed direction does not change the n-dimensional
measure of an object.

What is this saying?

Author(s): Bart Snapp and Brad Findell
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34 Turn Up the Volume!

Problem 167 Building on the first two problems, explain how the following
picture “proves” that the area of any triangle is one half of the base times the
height.

Problem 168 Explain how to use a picture to “prove” that a triangle of a
given area could have an arbitrarily large perimeter.
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34 Turn Up the Volume!

Problem 169 Shearing is a special case of Cavalieri’s principle, which, in two
dimensions, is stated as follows:

Suppose two regions in a plane are contained between two parallel
lines. If every line parallel to the given lines intersects the two regions
in equal lengths, then the regions have equal area.

Give an intuitive argument explaining why Cavalieri’s principle is true.

Problem 170 State Cavalieri’s principle in three dimensions.
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34 Turn Up the Volume!

Problem 171 Cut out the provided net. Then fold it and tape it to create a
square-based pyramid. With your neighbors, show that three such square-based
pyramids can form a cube.

Three pyramids
Three pyramids that fit in one cube

Copyright © 2005  G. Korthals Altes
www.korthalsaltes.com
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34 Turn Up the Volume!

Problem 172 Use your work above to derive a formula for the volume of a
right pyramid with a square base. The formula should be in terms of the side
length of the square base.

Problem 173 Use Cavalieri’s principle to explain the formula for every pyra-
mid with an s× s square base of height s in terms of s. Be sure to describe how
this formula is different from the previous one.

Problem 174 Provide an informal explanation of a volume formula for any
pyramid-like object with a base of area B and height h. Be sure to describe
what you mean by “pyramid-like” and whether your formula works for a cone.
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34 Turn Up the Volume!

Problem 175 In this problem you derive the formula for the volume of a
sphere of radius r.• The figures below shows a half-sphere of radius r alongside

• CCSS G-GME.2. Give
an informal argument using
Cavalieri’s principle for the
formulas for the volume of
a sphere and other solid fig-
ures.

a cylinder of radius r and height r with a cone of radius r and height r removed.

h

s

r
h

h

r

Think of r as fixed, and think of h as the varying height of a cross section. The
(hard to read) s is the radius of the cross section of the sphere.

(a) The heights of the cylinder and the cone are not h. What are their heights?

(b) What is h? Explain why the several values labeled h are indeed equal.

(c) Draw and label an “aerial view” of the cross sections.

(d) Explain why the cross sections at height h have the same area.

(e) Use the formula for the volume of a cone and Cavalieri’s principle to derive
a formula for the volume of a sphere of radius r.
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Coordinates
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35 Coordinate Constructions

35 Coordinate Constructions

We use Cartesian coordinates to help understand geometry.

In synthetic geometry, point, line and plane are taken to be undefined terms. In
analytic (coordinate) geometry, in contrast, we make the following definitions.

Definition 7. A point is an ordered pair (x, y) of real numbers. A line is the
set of ordered pairs (x, y) that satisfy an equation of the form ax+by = c, where
a, b, and c are real numbers and a and b are not both 0.

Many of the problems below are expressed generally. You may find it useful to
try some specific examples before the general case.

Problem 176 In the above definition of a line in coordinate geometry, why
is it important to require that a and b are not both 0?

Problem 177 Given points (x1, y1) and (x2, y2), find the distance between
them in the coordinate plane.

Problem 178 Find the midpoint of the segment from (x1, y1) and (x2, y2).
Explain why your formula makes sense.

Author(s): Bart Snapp and Brad Findell
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35 Coordinate Constructions

Problem 179 Recall that in synthetic geometry, a circle is defined as the set
of points that are equidistant from a center. Use this definition to determine
the equation of circle with center (h, k) and radius r.•

• CCSS G-GPE.1. Derive the
equation of a circle of given
center and radius using the
Pythagorean Theorem; com-
plete the square to find the
center and radius of a circle
given by an equation.

Problem 180 For each pair of points below, find an equation of the line
containing the two points.

(a) Points (2, 3) and (5, 7).

(b) Points (2, 3) and (2, 7).

(c) Points (2, 3) and (5, 3).

(d) Points (x1, y1) and (x2, y2).
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35 Coordinate Constructions

Problem 181 Express each of your previous equations in the form ax+by = c
and also in the form y = mx + b. What are the advantages and disadvantages
of these forms?

Problem 182 In school mathematics, lines are usually of the form y = mx+b.
Why is it unambiguous to talk about the slope of such a line? In other words,
given a non-vertical line in the plane, explain why any two points on the line
will yield the same slope.•

• CCSS 8.EE.6. Use simi-
lar triangles to explain why
the slope m is the same be-
tween any two distinct points
on a non-vertical line in the
coordinate plane; derive the
equation y = mx for a line
through the origin and the
equation y = mx + b for a
line intercepting the vertical
axis at b.
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36 Bola, Para Bola

36 Bola, Para Bola

We seek to deepen our understanding of parabolas.

We’ve mentioned several times that a parabola is the set of points that are
equidistant from a given point (the focus) and a given line (the directrix):

In this activity we are going to reconcile the definition given above with the
equation that you know and love (admit it!):

y = ax2 + bx+ c

Problem 183 How do we compute the distance between two points? Be
explicit!

Problem 184 Let’s see if we can derive the formula for a parabola with its
focus at (0, 1) and its directrix being the line y = 0.

(a) Graph the focus and the directrix, sketch what the parabola might look
like, and identify a generic point (x, y).

Author(s): Bart Snapp and Brad Findell
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36 Bola, Para Bola

(b) Draw on the graph the distance from (x, y) to the focus. Write an expres-
sion for this distance.

(c) Draw on the graph the distance from (x, y) to the directrix. Write an
expression for this distance.

(d) Use these two expressions and some algebra to find the formula for the
parabola.

(e) How might you have known, before completing the algebra, that the result
would be in the form y = ax2 + bx+ c?

Problem 185 Now derive the formula for a parabola with focus at (2, 1) and
directrix y = −1.

Problem 186 Now derive the formula for a parabola with focus at (1,−3) and
directrix x = 3. How might you have known, before completing the algebra, the
form of the result?
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37 More Medians

37 More Medians

We think about coordinate geometry, medians, and triangles.

Here we use coordinates to explore several ways of thinking about the medians
of triangles.

Problem 187 For each set of points below, plot the points in the coordinate
plane, and use a ruler to draw the triangle. Locate the midpoint of each side,
and use a ruler to draw the medians. Check that the medians are concurrent,
and find the coordinates of the centroid.

(a) A = (2, 1), B = (10, 2), C = (3, 6). Centroid: .

(b) D = (6, 6), E = (9, 10), F = (4, 8). Centroid: .

(c) G = (−1, 1), H = (1, 6), I = (−3, 4). Centroid: .

14

12

10

8

6

4

2

2

4

6

y

10 5 5 10

Author(s): Bart Snapp and Brad Findell
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37 More Medians

Problem 188 What do you notice about how the coordinates of the centroid
depend upon the coordinates of the vertices? Make a conjecture about the
centroid of a triangle with vertices at (x1, y1), (x2, y2), and (x3, y3). Check that
your formula works for all of the triangles above.

Problem 189 Imagine a triangle made of nearly weightless material with one-
pound weights placed at each of the vertices, A = (x1, y1), B = (x2, y2), and
C = (x3, y3).

(a) Explain why the triangle will balance on a ruler along the median to side
AB.

(b) Explain why the triangle will continue to balance along the median when
the masses at A and B are both moved to the midpoint of AB.

(c) Now imagine trying to balance the triangle at a single point along the
median. Where will it balance? Use the phrase “weighted average” to
explain your reasoning.

(d) Use weighted-average reasoning to compute the coordinates of this balance
point, assuming the vertices are A = (x1, y1), B = (x2, y2), and C =
(x3, y3).
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37 More Medians

Problem 190 Consider a triangle with vertices at A = (x1, y1), B = (x2, y2),
and C = (x3, y3).

(a) Explain why the equation of the line containing the median from C to the
midpoint of AB can be written as follows:

y − y3
x− x3

=
y1 + y2 − 2y3
x1 + x2 − 2x3

(b) From reasoning alone (i.e., without doing additional calculations) write
down analogous equations for the lines containing the other two medians.

(c) Use algebra and reasoning to show that the previously-conjectured co-
ordinates of the centroid satisfy all three equations of lines containing
medians.

(d) Have you now proven that the medians are concurrent? Explain.
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38 Constructible Numbers

38 Constructible Numbers

We use algebra to help us understand compass and straightedge constructions.

Compass and straightedge constructions involve drawing and finding intersec-
tions of two fundamental geometric objects: lines and circles. All more compli-
cated constructions are combinations of pieces of these.

In this activity, we explore what numbers are constructible (as lengths or dis-
tances) with compass and straightedge, assuming only that we begin with a
segment of length 1. We call such numbers constructible numbers. First we
must establish how to do arithmetic with compass and straightedge.

Arithmetic with Constructions

Problem 191 Suppose you are given a compass and a straightedge and seg-
ments of lengths a, b, and 1.

(a) How would you construct a segment of length a+ b?

(b) How would you construct a segment of length a− b?

(c) How would you construct a segment of length ab? (Hint: Use similar
triangles.)

(d) How would you construct a segment of length a÷ b?

(e) How would you construct a segment of length
√
a? (Hint: Recall how to

construct a geometric mean.)

Author(s): Bart Snapp and Brad Findell
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38 Constructible Numbers

Problem 192 Beginning with a segment of length 1, how you might con-
struct segments of the following lengths? Describe briefly (to your partner) the
arithmetic constructions you would use, in what order, and with which numbers.

(a)
7

5

(b) Any rational number, p/q

(c) 3 + 2
√
5

(d)
3 +

√
2−
√
3

1 +
√
5

Problem 193 Based on the previous problems, if you begin with a segment
of length 1, describe the set of all numbers constructible with the methods used
so far.

Coordinate Constructions

With the methods so far, we can construct neither
3
√
2 nor π. The question now

is whether we have described the entire set of constructible numbers or whether
there are additional constructions that will broaden our arithmetic and thereby
enlarge the set.

For this question, we turn to coordinate constructions, which allow us to use
the methods of algebra to solve geometric problems. A key habit here will be
imagining the algebra without actually doing it—based on your extensive
algebra experience with these kinds of problems.
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38 Constructible Numbers

Problem 194 Suppose you are given points (p, q), and (r, s) with integer
coordinates.

(a) What arithmetic operations are involved in finding an equation ax+by = c
of the line containing these points?

(b) What can you conclude about the numbers a, b, and c?

(c) What if you begin with points that have coordinates that are rational
numbers?

Problem 195 Suppose you are given equations of the form

ax+ by = c

dx+ ey = f

where a, b, c, d, e, and f are all integers.

(a) What kind of geometric objects do these equations describe in the xy-
plane?

(b) What arithmetic operations would you use to solve the equations simul-
taneously?

(c) What can you conclude about the numbers x and y that are the (simul-
taneous) solutions of these equations?

(d) How will your answers change if a, b, c, d, e, and f are all rational numbers?
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39 Constructible Numbers, Part 2

39 Constructible Numbers, Part 2

We continue to use algebra to understand compass and straightedge construc-
tions.

Problem 196 Suppose you are given points (h, k), and (p, q) with integer
coordinates?

(a) Write an equation of the circle with center (h, k) and containing the point
(p, q).

(b) What arithmetic operations were involved in writing your equation of the
circle?

(c) What can you conclude about the numbers that are coefficients in your
equation?

Problem 197 Solve the following equations simultaneously

(x− 3)2 + (y − 2)2 = 14

y = x+ 4

Author(s): Bart Snapp and Brad Findell
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39 Constructible Numbers, Part 2

Problem 198 Solve the following equations simultaneously

(x− 3)2 + (y − 2)2 = 18

y = x+ 5

Problem 199 Solve the following equations simultaneously

(x− 3)2 + (y − 2)2 = 12

y = x+ 4
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39 Constructible Numbers, Part 2

Problem 200 Solve the following equations simultaneously

(x− 3)2 + (y + 2)2 = 4

(x− 1)2 + (y − 2)2 = 9

Problem 201 Solve the following equations simultaneously

(x− 3)2 + (y + 2)2 = 4

(x+ 1)2 + (y − 2)2 = 9
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39 Constructible Numbers, Part 2

Problem 202 Suppose you are given equations of the form

x2 + ax+ y2 + by = c

x2 + dx+ y2 + ey = f

where a, b, c, d, e, and f are all integers.

(a) What kind of geometric objects do these equations describe in the xy-
plane?

(b) What arithmetic operations would you use to solve the equations simul-
taneously?

(c) What can you conclude about the numbers x and y that are the (simul-
taneous) solutions of these equations?

(d) How will your answers change if a, b, c, d, e, and f are all rational numbers?

Problem 203 Based on the previous problems, if you begin with a coordinate
system with only integer coordinates, how would you describe the set of all
numbers (coordinates) that are constructible via lines and circles?

Problem 204 Considering that all compass and straightedge constructions
are about lines, circles, and their intersections, what do your results about
coordinate constructions imply about compass and straightedge constructions?

Problem 205 Name some numbers that are not constructible with com-
pass and straightedge.
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40 Impossibilities

40 Impossibilities

We investigate which numbers are constructible with compass and straightedge
alone.

The idea that some numbers are not constructible is exactly what was needed
to address several problems first posed by the Greeks in antiquity, such as
doubling the cube and trisecting an angle. In a paper published in 1837, Pierre
Wantzel used algebraic methods to prove the impossibility of these geometric
constructions.

Problem 206 Suppose you have a square of side length s and you want to
“double the square.” In other words, you want to construct a square with twice
the area.

(a) What is the side length of the desired square? Explain your reasoning.

(b) Is this side length constructible? Explain.

Problem 207 Suppose you have a cube of side length s and you want to
“double the cube.” In other words, you want to construct a cube with twice
the volume.

(a) What is the side length of the desired cube? Explain your reasoning.

(b) Is this side length constructible? Explain.

Author(s): Bart Snapp and Brad Findell
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40 Impossibilities

Problem 208 You may remember some double angle formulas from trigonom-
etry. There are also triple angle formulas. For example, for any angle ϑ,
cos 3ϑ = 4 cos3 ϑ− 3 cosϑ.

(a) Write the above triple angle formula for ϑ = 20◦.

(b) Explain why x = cos 20◦ must be a root of the polynomial 8x3 − 6x− 1.

(c) Explain how the rational root theorem implies that this polynomial has
no linear factors.

(d) Explain why this polynomial must therefore be irreducible over the ratio-
nal numbers.

(e) You may recall from Math 1165 that some methods of solving cubic equa-
tions involve extracting cube roots. What does this imply about trisecting
angles?

(f) You may recall, from earlier this semester, discussing a method for trisect-
ing an angle with paper folding. What does that method imply about the
relationship between the numbers that are constructible by paper folding
and those that are constructible by compass and straightedge? Explain.
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41 Area and Perimeter

41 Area and Perimeter

We study the relationship between area and perimeter.

Problem 209 You have been asked to put together the dance floor for your
sister’s wedding. The dance floor is made up of 24 square tiles that measure
one meter on each side.

(a) Experiment with different rectangles that could be made using all of these
tiles, and record your data in a table.

(b) Draw a graph of your data. Describe patterns in the data, as seen in the
table or graph.

(c) Can we connect the dots in the graphs? Explain.

(d) How might we change the context so that the dimensions can be other
than whole numbers? In the new context, how would the previous answers
change?

Problem 210 Suppose the dance floor is held together by a border made of
thin edge pieces one meter long.

(a) What determines how many edge pieces are needed? Explain.

(b) Make a graph showing the perimeter vs. length for various rectangles with
an area of 24 square meters.

(c) Describe the graph. How do patterns that you observed in the table show
up in the graph?

(d) For perimeter and length, is either one a function of the other? Explain
what that means.

(e) Which design would require the most edge pieces? Explain.

(f) Which design would require the fewest edge pieces? Explain.

(g) If the context allows dimensions other than whole numbers, how would
the previous answers change?

Author(s): Bart Snapp and Brad Findell
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41 Area and Perimeter

Problem 211 Suppose you had begun with a different number of floor tiles,
such as 30, 21, or 19, or 36.

(a) In general, describe the rectangle with whole-number dimensions that has
the greatest perimeter for a fixed area.

(b) If the context does not require whole-number dimensions, describe the
rectangle with the least perimeter for a fixed area.

Problem 212 The previous problems were about rectangles with constant
area and changing perimeter.

(a) Make up a problem about rectangles with whole-number dimensions, con-
stant perimeter, and changing area.

(b) Make a table of length, width, perimeter, and area for these rectangles.

(c) Draw graphs of width versus length and area versus length for your rect-
angles.

(d) Now modify the context and your graphs to allow dimensions that are not
whole numbers.

(e) Which rectangle will have a maximum area? Explain.

(f) Which rectangle will have a minimum area? Explain.

Problem 213 So far we have considered rectangles with fixed area and those
with fixed perimeter. What about fixing the width or the length? Since they
behave in much the same way, let’s fix the width.

(a) Make up a problem about rectangles with constant width and changing
area and perimeter.

(b) Make a table of length, width, perimeter, and area for these rectangles.

(c) Draw graphs of area versus length and perimeter versus length for your
rectangles.

Problem 214 What types of functions did you see in the previous problems?
Complete the following sentences with types of functions. (Note: If two func-
tions are the same type, write answers that distinguish them from each other.)
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41 Area and Perimeter

(a) Fixed width: area vs. length is a .

(b) Fixed width: perimeter vs. length is a .

(c) Fixed perimeter: width vs. length is a .

(d) Fixed perimeter: area vs. length is a .

(e) Fixed area: width vs. length is a .

(f) Fixed area: perimeter vs. length is a .

Problem 215 Explain how and where you saw the following advanced algebra
ideas in the above problems:

(a) Domain, range and “limiting cases”

(b) Rates of change, maxima, minima, and asymptotic behavior

(c) Generalizing from a specific to a generic fixed quantity

(d) Equation solving with several variables
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42 Reading Information from a Graph

42 Reading Information from a Graph

We analyze graphs of functions.

On the next page is the graph of a function called h(t), which represents the
distance (in miles) and direction (east = positive, west = negative) Johnny is
from home t hours after noon. It does not have a simple formula, so don’t try
to find one. Answer the following questions about h, briefly explaining how you
obtained your answer(s):

Problem 216 On the given graph of h, what are the least and greatest values
of t? What are the least and greatest values of h(t)? What do these answers
say about Johnny?

Problem 217 Evaluate the following expressions: h(0), h(3), and h(−3).
What do each of these say about Johnny?

Problem 218 For each of the following, solve for t (i.e., find all the values
of t that make the statement true). Describe what you did with the graph
to determine the solutions. Where possible, interpret the statement and its
solutions in terms of Johnny’s travels.

(a) h(t) = 0

(b) h(t) = 3

(c) h(t) ≤ 3

(d) h(t) = h(4.5)

(e) h(t) = t

(f) h(t) = −t

(g) h(t) = h(−t)

(h) h(t) = −h(−t)

(i) h(t+ 1) = h(t)

(j) h(t) + 1 = h(t)

Author(s): Vic Ferdinand, Bart Snapp, and Brad Findell
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42 Reading Information from a Graph

y 
= 
h(
t)

t

y

1

1
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43 Circular Trigonometry

43 Circular Trigonometry

We investigate how trigonometric functions relate to circles.

As we have seen, right triangle trigonometry is restricted to acute angles. But
angles are often obtuse, so it is quite useful to extend trigonometry to angles
greater than 90◦. Here is one approach: Place the angle with the vertex at the
origin in the coordinate plane and with one side of the angle (the initial side)
along the positive x-axis. Measure to the other side of the angle (the terminal
side) as a counter-clockwise rotation about the origin.
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2

1

1
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5

4 2 2 4

terminal side of angle

initial side of angle

θ

(x, y)

If we choose a point on the terminal side of this angle, we can draw what is
called reference triangle by dropping a perpendicular to the x-axis. Then we
can use the values of x, y, and r from this triangle, just as before. What is
different in this picture is that x is negative, as will be the case for any angle
with a terminal side in the second quadrant.

Problem 219 Draw a picture and use it to find the following values:

(a) sin 135◦ =

(b) cos 135◦ =

(c) tan 135◦ =

Author(s): Bart Snapp and Brad Findell
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43 Circular Trigonometry

Problem 220 Draw a picture and use it to find the following values:

(a) sin 150◦ =

(b) cos 150◦ =

(c) tan 150◦ =

Problem 221 For some angles, the reference triangle is not actually a ‘trian-
gle,’ but that’s okay. Draw pictures to demonstrate the following:

(a) sin 90◦ =

(b) cos 90◦ =

(c) tan 90◦ =

(d) sin 180◦ =

(e) cos 180◦ =

(f) tan 180◦ =

Because angles are often about rotation, angles greater than 180◦ can make
sense, too. And negative angles can describe rotation in the opposite direction.
If we consider the angle to change continuously, then rotation about the origin
creates a situation that repeats every 360◦. This repetition provides the founda-
tion for modeling lots of repetitive (periodic) contexts in the real world. For this
modeling, we need circular trigonometry, which turns out to be much cleaner
if (1) angles are measured not in degrees but in a more “natural” unit, called
radians; and (2) we use the unit circle, which is a circle of radius 1 centered at
the origin.
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43 Circular Trigonometry

Problem 222 Below is the unit circle with special angles labeled in degrees,
radians, and with coordinates.•

• CCSS F-TF.2. Explain how
the unit circle in the coordi-
nate plane enables the exten-
sion of trigonometric func-
tions to all real numbers, in-
terpreted as radian measures
of angles traversed counter-
clockwise around the unit
circle.

(a) Explain what the various numbers mean in this unit circle.

(b) Use the unit circle to make a table showing (1) angle in degrees, (2) angle
in radians, (3) sine of the angle, and (4) cosine of the angle.

(c) Use your table to draw a graph of sinϑ versus ϑ.

(d) Use your table to draw a graph of cosϑ versus ϑ.

(e) Explain why it makes sense to connect the dots.

(f) Extend your graphs to angles greater than 360◦, and use the unit circle
to explain why your extension makes sense.

(g) Extend your graphs to angles less than 0◦, and use the unit circle to
explain why your extension makes sense.
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44 Parametric Equations

44 Parametric Equations

We investigate parametric functions.

Definition 8. When graphs are given by parametric equations, the coordinates
x and y may be given as functions of t, often thought of as “time.” To begin
graphing parametric equations, make a table of values for t, x, and y, and then
plot the order pairs (x, y).

Problem 223 Consider the following parametric equation about points that
vary with t:

(x, y) = (2t+ 3,−t− 4).

To see the individual coordinates as functions of time, this equation can also be
written as a pair of equations, as follows:

x(t) = 2t+ 3 y(t) = −t− 4 (1)

(a) Graph the equation. It might help to note various values of t on your
graph.

(b) Describe the graph and explain why it looks the way it does.

(c) Locate the points corresponding to t =
2

3
,
5

4
, 3.14, and π.

(d) Why is it okay to connect the dots? Consider what happens to the x and
y coordinates near and between points you have already plotted.

(e) What are the input values for this parametric equation?

(f) What are the output values for this parametric equation?

Author(s): Bart Snapp and Brad Findell
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44 Parametric Equations

Definition 9. A vector has both direction and magnitude (i.e., length). In this
course, vectors will often be given as ordered pairs, and they may be drawn or
imagined as arrows from the origin to the given point, but the position of a
vector is unimportant.

Problem 224 The vector (3, 2) can be represented as an arrow from (0, 0) to
(3, 2). Explain why an arrow from (1, 6) to (4, 8) also describes the vector (3, 2).

Problem 225 What vector may be represented by an arrow from (6, 4) to
(2, 1)?

Problem 226 Consider the equation (x, y) = (2, 1) + t(−1, 3).

(a) Graph the equation.

(b) Use the ideas of a starting point and a direction vector to explain why the
graph looks the way it does.

(c) Pick an arbitrary point on your graph and describe how to arrive at that
point using the starting point and scaling the direction vector.
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44 Parametric Equations

Problem 227 Graph the equation (x, y) = (2, 1) + t(2,−6). Compare and
contrast this problem with the previous problem.

Problem 228 Write a parametric equation for the line containing (−3, 2) and
(2, 1).

Problem 229 Write a parametric equation for the line containing the points
(a, b) and (c, d).

Problem 230 Consider the line containing the points A = (2, 4) and B =
(−1, 8).

(a) Find the coordinates of the point 2/3 of the way from A to B.

(b) Find the coordinates of the point 5/4 of the way from A to B.

(c) Find the coordinates of the point p/q of the way from A to B.

(d) What would it mean for p/q to be greater than 1? Explain

(e) What would it mean for p/q to be negative? Explain.

(f) What geometric object will result if p/q varies through all possible rational
numbers? Explain.

(g) Find the coordinates of the point p/q of the way between (a, b) and (c, d).
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45 Parametric Plots of Circles

45 Parametric Plots of Circles

We explore parametric plots of circles.

In this activity we’ll investigate parametric plots of circles.

Problem 231 One problem with the standard form for a circle, even the form
for the unit circle

x2 + y2 = 1,

is that it is somewhat difficult to find points on the circle. We claim that for
any value of t,

x(t) = cos(t)

y(t) = sin(t)

will be a point on the unit circle. Can you give me some explanation as to why
this is true? Two hints, for two answers: The unit circle; The Pythagorean
identity.

Problem 232 Another way to think about parametric formulas for circles is
to imagine

x(ϑ) = cos(ϑ)

y(ϑ) = sin(ϑ)

where ϑ is an angle. What is the connection between value of ϑ and the point
(x(ϑ), y(ϑ))?

Author(s): Bart Snapp and Brad Findell
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45 Parametric Plots of Circles

Problem 233 One way to think about parametric formulas for circles is to
imagine

x(t) = cos(t)

y(t) = sin(t)

as “drawing” the circle as t changes. Starting with t = 0, describe how the
circle is “drawn.” Make a table of values of t, x, and y. Use values of t that are
special angles. Includes values of t that are negative as well as some values of t
that are greater than 2π.

Problem 234 One day you accidentally write down

x(t) = sin(t)

y(t) = cos(t)

Again, make a table of values of t, x, and y What happens now? Do you still
get a circle? How is this different from what we did in the previous question?

Problem 235 Do the formulas

x(t) = cos(t)

y(t) = sin(t)

define a function? Discuss. Clearly identify the domain and range as part of
your discussion. Remember, the domain is the set of input values and the range
is the set of output values.
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45 Parametric Plots of Circles

Problem 236 Reason with your previous tables of x- and y-values to deter-
mine the graph of the following parametric equations.

x(t) = 2 cos(t) + 3

y(t) = 2 sin(t)− 4

Explain your reasoning.

Problem 237 Now we will go backwards. The standard form for a circle
centered at a point (a, b) with radius c is given by

(x− a)2 + (y − b)2 = r2.

Explain why this makes perfect sense from the definition of a circle.

Problem 238 Here are three circles

(x− 1)2 + (y + 2)2 = 42 (x+ 4)2 + (y − 2)2 = 8 x2 + y2 − 4x+ 6y = 12.

Convert each of these circles to parametric form.
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46 Eclipse the Ellipse

46 Eclipse the Ellipse

We’ll investigate parametric plots of ellipses and other curves.

Problem 239 Recall that for 0 ⩽ t < 2π

x(t) = cos(t)

y(t) = sin(t)

gives a parametric plot of a unit circle. Describe the plot of

x(t) = 3 cos(t)

y(t) = sin(t)

for 0 ⩽ t < 2π.

Problem 240 Now describe the plot of

x(t) = 2 cos(t)

y(t) = 5 sin(t)

for 0 ⩽ t < 2π.

Problem 241 We claim that an ellipse centered at the origin is defined by
points (x, y) satisfying (x

a

)2

+
(y
b

)2

= 1.

Are the parametric curves we found above ellipses? Explain why or why not.

Author(s): Bart Snapp and Brad Findell
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46 Eclipse the Ellipse

Problem 242 Here we have some plots showing two concentric circles and an
ellipse that touches both.
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(a) Can you guess parametric formulas for the circles and for the ellipse?

(b) Do you notice anything about the dots in the pictures? Can you explain
why this happens?

(c) Can you give a compass and straightedge construction that will give you as
many points on a given ellipse as you desire? Give a detailed explanation.
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46 Eclipse the Ellipse

Problem 243 Can you give a parametric formula for this cool spiral?

−20 −10 10 20

−20

−10

10

20

x

y

Problem 244 Remind me once more, do the formulas that produce these
plots define functions? Discuss. Clearly identify the domain and range as part
of your discussion.

143



Part VI

City Geometry

144



47 Taxicab Distance

47 Taxicab Distance

We explore geometry with a noneuclidean distance.

In this activity, we explore City Geometry, where points are Euclidean points,
given with coordinates; lines are Euclidean lines, defined with equations or
by two points, as in Euclidean coordinate geometry; and angles are Euclidean
angles. Distance, however, is measured according to the path a taxicab might
travel. Let’s get started.

Problem 245 Suppose we are in a city that is neatly laid out in blocks of
two-way streets, with streets running north-south and east-west, and suppose
we want to travel from point A to point B in the figure below.

A

B

(a) What is the taxicab distance, measured in city blocks, from point A to
point B? (Do we mean the shortest distance, the longest distance, or
something else?)

(b) Is there a single shortest path for the taxi to take? Explain.

(c) Let A = (1, 2). What would be the coordinates of B?

Author(s): Bart Snapp and Brad Findell
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47 Taxicab Distance

(d) Describe a calculation that yields the taxicab distance between points A
and B.

(e) Suppose the taxicab may travel on alleys also running north-south and
east-west. Better yet, suppose the taxicab can create alleys wherever they
would be most useful, except that they must still run north-south or east-
west. What then would be the taxicab distance from A to B? Explain.

(f) Based on your reasoning, given points P = (x1, y1) and Q = (x2, y2),
write a formula for, dT (P,Q), the taxicab distance between points P and
Q. Check that it works for several pairs of points.
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48 Understanding and Using Absolute Value

48 Understanding and Using Absolute

Value

We think about absolute value.

Problem 246 True or False (and explain)

(a) −x is negative

(b)
√
9 = ±3

(c)
√
x2 = x

(d)
√
x2 = |x|

(e) If |x| = −x then x is negative or 0.

Problem 247 Let’s consider circles in city geometry. Hint: First, remind
yourself how to use the definition of circle and the distance formula in Euclidean
coordinate geometry to derive the equation of a Euclidean circle with radius r
and center (a, b).

(a) Use the taxicab distance formula to derive the equation of a city-geometry
circle with radius r and center (a, b).

(b) Write the equation of a city-geometry circle with radius 1, centered at the
origin, and draw a graph of this city-geometry circle.

Author(s): Bart Snapp and Brad Findell
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48 Understanding and Using Absolute Value

To better understand the equation of this city-geometry circle, we need to firm
up the idea of absolute value.

Problem 248 Consider the following attempts to characterize the absolute
value function.

|x| is the “magnitude” of x—the size of x, ignoring its sign. (2)

|x| is the distance from the origin to x. (3)

|x| =
√
x2 (4)

|x| =

{
x if x ≥ 0

−x if x < 0
(5)

(a) Which characterization is the definition of the absolute value function?

(b) Are the other characterizations of the absolute value function equivalent
to the definition? Explain.

(c) Use one or more of these characterizations to develop meanings for |x−a|
and |a− x| where a is a constant.

(d) Use one or more of these characterizations to explain the solution(s) to
|x− 5| = 8.

(e) What are the benefits of using more than one characterization of this idea?
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48 Understanding and Using Absolute Value

Problem 249 Use the piecewise characterization of the absolute value func-
tion to explain why the equation |x|+ |y| = 1 has the graph that it does. (Hint:
Consider various cases, depending upon the sign of x and the sign of y.)
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49 The Path Not Taken

49 The Path Not Taken

We study shortest paths in city geometry.

In Euclidean geometry, there is a unique shortest path between two points. Not
so in city geometry, here you have many different choices. Let’s investigate this
further.

Problem 250 Place two points 5 units apart on the grid below. How many
paths are there that follow the grid lines? Note, if your answer is 1, then maybe
you should pick another point!

Be sure to demand that your results are shared with the rest of the class.

Author(s): Bart Snapp and Brad Findell
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49 The Path Not Taken

Problem 251 Do the first problem again, except for points that are 4 units
apart and then for points that are 6 units apart. What do you notice? Can you
explain this?

Problem 252 Construct a chart showing your findings from your work above,
and other findings that may be relevant.

Problem 253 Suppose you know how many paths there are to all points of
distance n away from a given point. Can you easily figure out how many paths
there are to all points of distance n+1 away? Try to explain this in the context
of paths in city geometry.
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50 Midsets Abound

50 Midsets Abound

We introduce and investigate midsets.

Definition 10. Given two points A and B, their midset is the set of points
that are an equal distance away from both A and B.

Problem 254 Draw two points in the plane A and B. See if you can sketch
the Euclidean midset of these two points.

Problem 255 See if you can use coordinate constructions to find the equation
of the midset of two points A and B. If necessary, set A = (2, 3) and B = (5, 7).

Author(s): Bart Snapp and Brad Findell
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50 Midsets Abound

Problem 256 Now working in city geometry, place two points and see if you
can find their midset.
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50 Midsets Abound

Problem 257 Let’s try to classify the various midsets in city geometry:
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51 Tenacity Paracity

51 Tenacity Paracity

We investigate city geometry parabolas.

Problem 258 Remind me again, what is the definition of a parabola?

Problem 259 Use the definition of a parabola and taxicab distance to sketch
the city geometry parabola when the focus is the point (2, 1) and the directrix
is y = −3.

Author(s): Bart Snapp and Brad Findell
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51 Tenacity Paracity

Problem 260 Comparing geometries with algebra.

(a) Use coordinate constructions to write an equation for the Euclidean ge-
ometry parabola with its focus at (2, 1) and its directrix being the line
y = −3. (Hint: No need to simplify. Just use the definition and set the
distances equal to one another.)

(b) Use your taxicab distance formula to write an equation for the city ge-
ometry parabola with its focus at (2, 1) and its directrix being the line
y = −3.

(c) Compare and contrast the two equations.

(d) Use algebra of absolute value to show that the graph in the previous
problem is the correct graph. (Hint: Consider three cases: y > 1, −3 ≤
y ≤ 1, and y < −3.)
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51 Tenacity Paracity

Problem 261 Sketch the city geometry parabola when the focus is the point
(4, 4) and the directrix is y = −x.

157



51 Tenacity Paracity

Problem 262 Sketch the city geometry parabola when the focus is the point
(0, 4) and the directrix is y = x/3.
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51 Tenacity Paracity

Problem 263 Explain how to find the distance between a point and a line in
city geometry.

Problem 264 Give instructions for sketching city geometry parabolas.
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