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Let F be a number field or a p-adic field of odd residual characteristic. Let E be a
quadratic extension of F , and F ′ an odd degree cyclic field extension of F . We establish
a base-change functorial lifting of automorphic (respectively, admissible) representations
from the unitary group U(3, E/F ) to the unitary group U(3, F ′E/F ′). As a consequence,
we classify, up to certain restrictions, the packets of U(3, F ′E/F ′) which contain irre-
ducible automorphic (respectively, admissible) representations invariant under the action
of the Galois group Gal(F ′E/E). We also determine the invariance of individual rep-
resentations. This work is the first study of base change into an algebraic group whose
packets are not all singletons, and which does not satisfy the rigidity, or “strong multiplic-
ity one”, theorem. Novel phenomena are encountered: e.g. there are invariant packets
where not every irreducible automorphic (respectively, admissible) member is Galois-
invariant. The restriction that the residual characteristic of the local fields be odd may
be removed once the multiplicity one theorem for U(3) is proved to hold unconditionally
without restriction on the dyadic places.

Keywords: Automorphic representations; base change; Langlands functoriality; trace
formula; unitary groups.
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1. Introduction

Let F be a number field or a local nonarchimedean field of odd residual charac-
teristic. In the local case, the restriction on the residual characteristic of F may
be removed once the multiplicity one theorem for U(3) is proved to hold for all
automorphic representations without restriction on their dyadic local components.
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Let E be a quadratic extension of F , with α the generator of Gal(E/F ). For any
g = (gij) in GL(3, E), or in the adèle group GL(3, AE) if E is a number field, put
α(g) := (α(gij)) and

σ(g) := Jα(tg−1)J−1, J =




1

−1
1



 .

Let G = U(3, E/F ) be the unitary group in three variables with respect to
E/F and the Hermitian form (x, y) "→ xJ tα(y). It is quasisplit and its group of
F -points is:

U(3, E/F )(F ) = {g ∈ GL(3, E) : σ(g) = g}.

Let RE/F G be the F -group obtained from G by the restriction of scalars functor
from E to F . Thus, (RE/F G)(F ) is GL(3, E).

The base-change lifting from G to RE/F G is established in [15] (some of whose
results we summarize in Appendix D, per kind suggestion of the referee). If F is
a number field, then the lifting is a one-to-one correspondence between the sta-
ble packets of automorphic representations of G(AF ) and the σ-invariant, discrete
spectrum, automorphic representations of GL(3, AE). Here, for a representation
(π, V ) of a group M and an automorphism γ of M , we say that π is γ-invariant
if (π, V ) is equivalent to (γπ, V ), where γπ : m "→ π(γ(m)) for all m ∈ M . If F is
local, the lifting is a one-to-one correspondence between the packets of admissible
representations of G(F ) and the σ-invariant, σ-stable, admissible representations
of GL(3, E). Implicit is a definition of packets. We shall in due course recall these
results in further detail.

Our work too is a study of base change for G, albeit in a different sense. Namely,
we consider a nontrivial cyclic field extension F ′ of F of odd degree n, and we estab-
lish the base-change lifting from the unitary group G associated with E/F to the
unitary group G′ := RF ′/F G associated with E′/F ′, where E′ is the compositum
field F ′E. Note that G′(F ) is U(3, E′/F ′)(F ′). If F is a number field (respectively,
local nonarchimedean field), we classify, in terms of base change from G, the invari-
ant packets of G′(AF ) (respectively, G′(F )), namely those packets which contain
an automorphic (respectively, admissible) representation invariant under the action
of Gal(E′/E).

In the nonarchimedean case, we show that every member of every invariant local
packet is Gal(E′/E)-invariant, except for one case when n = 3. In this case, there
is an invariant local packet {π′} on U(3, E′/F ′) consisting of four representations,
and only the unique generic member is Galois invariant (see Proposition 3.10).

Let β denote a generator of Gal(F ′/F ). Denote by α and β also the genera-
tors of Gal(E′/F ′) and Gal(E′/E) whose restrictions to E and F ′ are α and β.
Thus, Gal(E′/F ) = 〈α, β〉, with αβ = βα. We have the following system of field
extensions, where each edge is labeled by the generator of the Galois group of the
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corresponding field extension:

E′ π̃′, GL(3, E′)

π′, U(3, E′/F ′) F ′

α
!!!!!!!!!!!

E

β

π̃, GL(3, E)

π, U(3, E/F ) F

β

α

!!!!!!!!!!!!

Fig. 1. The liftings.

Also recorded in Fig. 1 above is our convention for denoting the representations
of the groups. Namely, a representation of a general linear group is marked with a
∼, and a representation of a group obtained via the restriction-of-scalars functor
RF ′/F is marked with a prime ′.

Unlike the base-change lifting from GL(m, F ) to GL(m, F ′) (see [26, 4]; m any
positive integer), where each Gal(F ′/F )-invariant automorphic or local admissible
representation of GL(m, F ′) is a lift from GL(m, F ), our case of base change for
U(3) involves two twisted endoscopic groups, G and H := U(2, E/F ).

In the global case, we say that a (quasi-) packet {π} of G(AF ) or H(AF ) weakly
lifts to a (quasi-) packet {π′} of G′(AF ) if, for almost all places v of F , the un-
ramified v-component πv of {π} lifts to the unramified v-component π′

v of {π′}
according to the underlying base-change L-group homomorphism. We say that {π}
lifts (or “strongly lifts” for emphasis) to {π′} if for all v the base-change lift ({π}v)′

of the v-component {π}v (which is a local packet) of {π} is the v-component {π′}v

of {π′}. The definition of local base-change lifting at a place v where F ′/F is split
is simple: A local packet {πv} of Gv lifts to ⊗n

i=1{πv} of G′
v = ⊗n

i=1Gv, and a local
packet {ρv} of Hv lifts to ⊗n

i=1π({ρv}), where π({ρv}) is the lift of {ρv} to Gv as
defined in [15, Part 2, Sec. III.2.3, Corollary] (See Proposition D.3.) Note that if v
is archimedean, then F ′/F is split at v, since n = [F ′ : F ] is odd. In the nonsplit
case, where the place v is necessarily nonarchimedean, we define local lifting, in the
context of Gv, Hv and G′

v, in terms of the local character identities summarized
below. Namely, one local packet lifts to another if they satisfy one of these local
character identities.

We say that a (quasi-) packet is discrete spectrum if it contains a discrete spec-
trum automorphic representation. We say that a discrete spectrum (quasi-) packet
of G′(AF ) = U(3, E′/F ′)(AF ′) is β-invariant if it contains a β-invariant, discrete
spectrum, automorphic, irreducible representation. The proof of the following main

In
t. 

J. 
N

um
be

r T
he

or
y 

20
09

.0
5:

12
47

-1
30

9.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 O

H
IO

 S
TA

TE
 U

N
IV

ER
SI

TY
 o

n 
02

/0
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 11, 2009 11:3 WSPC/203-IJNT 00268

1250 P.-S. Chan & Y. Z. Flicker

global result is achieved at the end of the paper:

Theorem 1.1 (Main Global Theorem). Assuming that the multiplicity one
theorem holds for U(3), each discrete spectrum (quasi-) packet {π} of G(AF ) or
H(AF ) weakly lifts to a discrete spectrum (quasi-) packet {π′} of G′(AF ). This
weak lifting is in fact a lifting. Its image consists precisely of those discrete spectrum
(quasi-) packets of G′(AF ) which are β-invariant.

Remark. (i) Our proof of the existence of the weak lifting does not require a new
use of the trace formula. It relies mainly on the lifting results in [15]. Note that
not all members of a β-invariant (quasi-) packet are necessarily β-invariant.

(ii) To show that every β-invariant (quasi-) packet of G′(AF ) is in the image of the
weak lifting, we use a twisted trace formula, and the assumed multiplicity one
theorem for U(3). These tools are also needed to establish the local lifting, and
thus the (strong) global lifting. It has been shown in [15] that the multiplicity
one theorem for U(3) holds for any automorphic representation each of whose
dyadic local components lies in the packet of a constituent of a parabolically
induced representation. It is likely that the same proof applies in the remaining
cases, but this has not been checked as yet.

Summary of local character identities. Let F, F ′, E, E′ now be local nonar-
chimedean fields of odd residual characteristic. We denote in roman font the group
of F -points of an algebraic F -group, e.g., G := G(F ). Let H′ = RF ′/F H. Let:

EF = {x ∈ E× : NE/F x = 1},

E′F ′
= {x ∈ E′× : NE′/F ′x = 1}.

For an irreducible admissible representation (π, V ) of a p-adic algebraic group M , a
linear map A : V → V , and a smooth, compactly supported modulo center function
f on M , which transforms under the center Z(M) of M via the inverse of the central
character of π, put:

〈π, f〉A := trπ(f)A.

Here, π(f) is the convolution operator
∫

Z(M)\M π(m)f(m) dm, and dm is a fixed
Haar measure on M , implicit in the notations. The operator π(f) is of trace class,
since it has finite rank. For simplicity we put 〈π, f〉 := 〈π, f〉id, where id is the
identity map on π. If {π} is a local packet of representations, we let 〈{π}, f〉 denote
the sum

∑
π〈π, f〉 over the members of {π}.

We now summarize our results in the nonarchimedean case. Functions on the
groups are assumed to be smooth, compactly supported modulo center. They are
said to be matching if their orbital integrals match in the sense of [24, p. 17].

Proposition A. Let π′ be the cuspidal G′-module which is the sole member of the
singleton local packet {π′(π̃′)} which lifts to a σ-invariant cuspidal representation
π̃′ of GL(3, E′). Then, the representation π′ is β-invariant if and only if there exists
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a cuspidal G-module π, and a nonzero intertwining operator A ∈ HomG(π′, βπ′),
such that the following character identity holds for matching functions f and f ′ on
G and G′, respectively:

〈π′, f ′〉A = 〈π, f〉.

In the case where π′ is β-invariant, π is the sole member of the singleton local packet
{π(π̃)} which lifts to a σ-invariant cuspidal representation π̃ of GL(3, E), which in
turn lifts to π̃′ via base change from GL(3, E) to GL(3, E′). (See Proposition 3.5.)

Let ρ be a cuspidal representation of H which is not monomial, namely does not
belong to any packet which is the endoscopic lift of a pair of characters of EF (see
Proposition D.1). Let π(ρ) denote the local packet of G which is the endoscopic lift
of ρ. The H-module ρ base-change lifts to a Gal(E′/E)-invariant cuspidal represen-
tation ρ′ of H ′. Let π′(ρ′) denote the local packet of G′ which is the endoscopic lift
of ρ′ from H ′. It consists of two cuspidal representations π′+ and π′−.

Proposition B. There exist nonzero operators A† ∈ HomG′(π′†, βπ′†) († is +
or −), such that the following system of character identities holds for matching
functions:

2〈π′+, f ′〉A+ = 〈π(ρ), f〉 + 〈ρ, fH〉,
2〈π′−, f ′〉A− = 〈π(ρ), f〉 − 〈ρ, fH〉.

In particular, both π′+ and π′− are β-invariant. (See Proposition 3.7.)

Let θ1, θ2, θ3 be distinct characters of EF . For i = 1, 2, 3, let θ′i denote the
character θi ◦ NE′/E of E′F ′

. For i &= j ∈ {1, 2, 3}, let ρi,j = ρ(θi, θj) denote the
packet of representations of H which is the endoscopic lift of the unordered pair
(θi, θj). Likewise, let ρ′i,j = ρ(θ′i, θ′j) denote the packet of representations of H ′

which is the endoscopic lift of the unordered pair (θ′i, θ′j). Let {π} := {π(θi, θj)}
denote the unstable packet of G which is the endoscopic lift of ρi,j from H . Let
{π′(θ′i, θ′j)} denote the unstable packet of G′ which is the endoscopic lift of ρ′i,j
from H ′ (see Proposition D.3). The packets {π′(θ′i, θ′j)} are all equivalent to the
same packet {π′} = {π′

a, π′
b, π

′
c, π

′
d} consisting of four cuspidal representations of

G′. We index the unique generic representation in {π′} by a.

Proposition C. There exist nonzero intertwining operators A∗ ∈ HomG′(π′
∗, βπ′

∗)
(∗ = a, b, c, d), and a way to index {ρi,j : i &= j ∈ {1, 2, 3}} as {ρ1, ρ2, ρ3}, such that
the following system of local character identities holds for matching functions:

4〈π′
a, f ′〉Aa = 〈{π}, f〉 + 〈ρ1, fH〉 + 〈ρ2, fH〉 + 〈ρ3, fH〉,

4〈π′
b, f

′〉Ab = 〈{π}, f〉 − 〈ρ1, fH〉 − 〈ρ2, fH〉 + 〈ρ3, fH〉,
4〈π′

c, f
′〉Ac = 〈{π}, f〉 − 〈ρ1, fH〉 + 〈ρ2, fH〉 − 〈ρ3, fH〉,

4〈π′
d, f

′〉Ad = 〈{π}, f〉 + 〈ρ1, fH〉 − 〈ρ2, fH〉 − 〈ρ3, fH〉.

(See Proposition 3.9.)
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Suppose n = 3. In the global situation, the cuspidal monomial automorphic
representations of GL(3, AE), associated with non-β-invariant characters of CE′ ,
base-change lift to parabolically induced representations of GL(3, AE′). Conse-
quently, there are stable packets of U(3, E/F )(AF ) which lift to unstable packets
of U(3, E′/F ′)(AF ′ ). This phenomenon in turn leads to the following result in the
local case:

Proposition D. Suppose n = 3. Let θ be a character of E′F ′
such that θ != βθ.

Let ρ′ = ρ′(θ, βθ) be the local packet (of cardinality 2) of H ′ which is the lift of
θ⊗βθ from E′F ′ ×E′F ′

. Let {π′} = {π′
a, π′

b, π
′
c, π

′
d} be the packet of G′ with central

character ω = θ ◦ NE′/E , which is the lift of ρ′, where π′
a is the unique generic

representation in the packet. Then, π′
a is the only β-invariant representation in the

packet, and there exists a cuspidal representation π of G and a nonzero intertwining
operator A ∈ HomG′(π′

a, βπ′
a), such that :

〈π′
a, f ′〉A = 〈π, f〉

for all matching functions. More precisely, π is the sole member of the singleton
packet of G which lifts to the cuspidal monomial representation π(κ′2θ̃) of GL(3, E)
associated with κ′2θ̃, where θ̃(z) := θ(z/α(z)), z ∈ E′×, and κ is a character of
E′× whose restriction to F ′× is the quadratic character corresponding to the field
extension E′/F ′ via local class field theory. In particular, π(κ′2θ̃) is σ-invariant.
(See Proposition 3.10.)

In both the global and local cases, we make extensive use of the results in [15],
where much of the heavy work pertaining to this article has been done.

2. Global Case

In this section, F is a number field. We set up the trace formula machinery and
establish global character identities, which are instrumental in deducing the local
character identities in Sec. 3, and the base-change lifting of automorphic represen-
tations from G and H to G′. As an intermediate step, we first prove the weak
base-change lifting, which simply follows from book-keeping of a system of L-group
homomorphisms (Proposition 2.11).

2.1. Definitions and notations

For a number field L, let AL denote its ring of adèles, and CL the idèle class group
L×\A×

L .
For a character µ of a group M and an automorphism γ of M , we let γµ denote

the character defined by (γµ)(m) = µ(γ(m)), m ∈ M. So, for example, if µ is a
character of CE , then (αµ)(x) = µ(α(x)) for all x ∈ CE .

Put

CF
E := U(1, E/F )(F )\U(1, E/F )(AF ).
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The embedding of the group U(1, E/F )(AF ) in A×
E induces an embedding CF

E ↪→
CE . We define CF ′

E′ similarly. Fix once and for all a β-invariant character ω′

of CF ′

E′ . Noting that the center ZG′(AF ) of G′(AF ) is isomorphic to the group
U(1, E′/F ′)(AF ′), we identify ω′ with a character of ZG′(AF ). By Lemmas C.1
and B.1, ω′ determines a unique character ω of CF

E such that ω′ = ω ◦ NE′/E . We
identify ω with a character of the center ZG(AF ) of G(AF ).

Let ρ be the right-regular representation of G(AF ) on the space of functions φ
in L2(G(F )\G(AF )) satisfying φ(zg) = ω(z)φ(g) for all z ∈ ZG(AF ), g ∈ G(AF ).
By an automorphic representation of G(AF ) we mean an irreducible representation
which is equivalent to a subquotient of ρ. In particular, the automorphic repre-
sentations of G(AF ) which we consider all have central character ω. We define an
automorphic representation of G′(AF ) similarly, restricting our attention to those
which have central character ω′.

Strictly speaking, our definition of an automorphic representation is not the
same as that in the traditional sense, namely, a representation which acts on the
space of automorphic forms. Nonetheless, the discrete spectrum of the right-regular
representation on the space of square-integrable functions coincide with that on the
space of automorphic forms.

For an automorphic representation (π′, V ) of G′(AF ), where V is the vector
space of π′, let (βπ′, V ) denote the representation:

βπ′ : g $→ π′(β(g)), ∀g ∈ GL(3, AE),

where β(gij) := (β(gij)). We say that the representation (π′, V ) is β-invariant if
(π′, V ) ∼= (βπ′, V ). That is, there exists a vector space automorphism A of V such
that π′(g)A = Aπ′(β(g)) for all g ∈ G′(AF ).

2.2. Endoscopy, L-group homomorphisms

We let LM denote the L-group of an algebraic group M. All of the algebraic
F -groups which we consider are quasisplit over F and split over a finite exten-
sion of F . For the Weil component of an L-group, instead of the full Weil group
we consider only the Weil group associated with the smallest field extension over
which the group is split.

Recall that n := [F ′ : F ] = [E′ : E]. The Weil group WE′/F is an extension of
Gal(E′/F ) = 〈α, β〉 by CE′ (see [32]). The L-group of G′ is

LG′ = GL(3, C)n ! WE′/F ,

where CE′ ⊂ WE′/F acts trivially on the identity component Ĝ′ := LG′0 =
GL(3, C)n, and the actions of α, β ∈ WE′/F on Ĝ′ are given by:

α(g1, . . . , gn) = (θ(g1), . . . , θ(gn)), β(g1, . . . , gn) = (gn, g1, g2, . . . , gn−1),

In
t. 

J. 
N

um
be

r T
he

or
y 

20
09

.0
5:

12
47

-1
30

9.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 O

H
IO

 S
TA

TE
 U

N
IV

ER
SI

TY
 o

n 
02

/0
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 11, 2009 11:3 WSPC/203-IJNT 00268

1254 P.-S. Chan & Y. Z. Flicker

for all (g1, . . . , gn) ∈ GL(3, C)n, where

θ(g) := J tg−1J, J =




1

−1
1



 .

The action of β on LG′ induces an automorphism, also denoted by β, of the algebraic
group G′, which in turn induces the automorphism β : (gij) #→ (β(gij)) of G′(AF ).

In analogy to base change for GL(m), base change with respect to F ′/F for G
is a case of twisted endoscopic lifting with respect to the automorphism β of G′.
In [24], the elliptic regular part of the geometric side of the twisted trace formula
of a connected reductive group is stabilized, and shown to be equal to the sum
of the geometric sides of the stabilized nontwisted trace formulas of the twisted
elliptic endoscopic groups, at least for global test functions whose orbital integrals
are supported on elliptic regular elements.

In this work, by a twisted (or “β-twisted” for emphasis) endoscopic group we
mean a quasisplit reductive F -group whose L-group is isomorphic to

Z(LG′, sβ) := {g ∈ LG′ : sβ(g)s−1 = g},

the β-twisted centralizer in LG′ of some semisimple element s in Ĝ′. We say that
an endoscopic group M is elliptic if Z(M̂)Gal(F̄ /F ) is contained in Z(Ĝ). Here, M̂
denotes the identity component of the L-group of M, Z(M̂) denotes its center, and
Z(M̂)Gal(F̄ /F ) denotes the subgroup of elements in Z(M̂) fixed by the action of
Gal(F̄ /F ).

Observe that any element (g1, g2, g3, . . . , gn) in Ĝ′ is β-conjugate (i.e. conjugate
in Ĝ′ ! 〈β〉) to

(gngn−1 · · · g2g1, I, I, . . . , I),

where I is the 3× 3 identity matrix. In this work, it suffices to consider the twisted
elliptic endoscopic groups of G′ only up to the equivalence of endoscopic data
(see [24, Chap. 2]). Hence, we may assume that the semisimple element s ∈ Ĝ has
the form s = (s1, I, I, . . . , I), where s1 = diag(a, b, c). The condition sβ(g)s−1 = g
for all g ∈ LG′ implies in particular that:

(s1θ(s−1
1 ), I, I, . . . , I; α) = s(I, I, . . . , I; α)s−1 = (I, I, . . . , I; α).

Thus, s1 = diag(a,±1, a−1) for some a ∈ C×. If a (= ±1, then the twisted endoscopic
group associated with s is not elliptic. Hence, up to the equivalence of endoscopic
data, G′ has two β-twisted elliptic endoscopic groups. One is G = U(3, E/F ). Its
L-group is isomorphic to the twisted centralizer of s = (I, . . . , I) ∈ GL(3, C)n. The
other is H = U(2, E/F ) × U(1, E/F ). It corresponds to the element:

s = (diag(−1, 1,−1), I, I, . . . , I).

Here, we go by the convention:

U(2, E/F )(F ) :=
{

g ∈ GL(2, E) :
(

1
−1

)
α(tg−1)

(
−1

1

)
= g

}
.
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We now describe the L-group of each twisted endoscopic group and its accom-
panying L-homomorphism into LG′. Their computation is straightforward given
the work of [24]. Hence, we only give the final results without elaborating on the
intermediate work. For the Weil components of these L-groups, we use:

WE/F = 〈z, α : z ∈ CE , α2 ∈ CF − NE/F CE , αz = α(z)α〉.

G:
LG = GL(3, C) ! WE/F . The action of α ∈ WE/F on GL(3, C) is defined by α(g) =
θ(g), and CE ⊂ WE/F acts trivially. The L-homomorphism bG : LG → LG′ is
defined as follows:

bG(g) = ∆g := (g, g, . . . , g)︸ ︷︷ ︸
diagonal embedding

∈ GL(3, C)n, ∀g ∈ GL(3, C);

bG(w) = w, ∀w ∈ WE/F .

H:
LH = [GL(2, C) × C×] ! WE/F . The action of α on GL(2, C) × C× is defined by:

α(g, x) = (θ2(g), x−1), ∀(g, x) ∈ GL(2, C) × C×,

where θ2(g) :=
( 1
−1

)
tg−1

( −1
1

)
. The L-homomorphism eH : LH → LG′ is

given by:

eH((g, x)) = ∆[g, x];

[g, x] :=




a b

x
c d



 ,

g =
(

a b
c d

)
∈ GL(2, C), x ∈ C×;

eH(α) = ∆[diag(1,−1), 1] ! α,

eH(z) = ∆[diag(κ(z), κ(z)), 1] ! z, ∀z ∈ CE ⊂ WE/F .

Here, κ is a fixed character of CE such that κ|CF = εE/F , the quadratic character
of CF associated to the number field extension E/F via global class field theory.

A representation π of H(AF ) has the form ρ ⊗ χ, where ρ is a representation
of the group U(2, E/F )(AF ) and χ is a character of U(1, E/F )(AF ). Since the
automorphic representations of G′(AF ) which we study all have the same fixed
central character ω′, the representations which lift to them from the endoscopic
groups all have the same fixed central character ω. Thus, χ is uniquely determined
by ρ. We often abuse notation and simply write H = U(2, E/F ), π = ρ.

In [15], the classification of the packets of G(AF ) is expressed in terms of the
Langlands functorial lifting from U(2, E/F ) to G, and from G to RE/F G. These
liftings correspond to a system of L-homomorphisms among the L-groups. Our work
makes extensive use of these results; hence, it is important to see how our system
of liftings “fits in” with those of [15, Sec. 1]. This is described by the diagram of
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LRE′/F U(2, E/F ) i′ !! LRE′/F U(3, E/F )

LRF ′/F H=LH′

b′u

""

e′
!!

b′s

##

LG′=LRF ′/F G

b′

$$

LH

bu

%%

bs

&&

bH

''

eH!!!!!!!

$$!!!!!!!

e
!! LG

bG

''

b

((
LRE/F U(2, E/F )

b2

''

i
!! LRE/F U(3, E/F )

b3

''

Fig. 2. L-group homomorphisms.

L-homomorphisms in Fig. 2, where the L-homomorphisms of [15] and base change
for GL(m) (m = 2, 3; see [26, 4]) are represented by dotted arrows. Except for the
two curved arrows labeled as bs and b′s, the diagram is commutative.

The functorial lifts corresponding to the L-homomorphisms in Fig. 2 are as
follows:

• i, i′ correspond to normalized parabolic induction from the standard (2, 1)-
parabolic subgroup of GL(3), i.e. normalized induction from the upper triangular
parabolic subgroup with Levi component isomorphic to GL(2) × GL(1). Here,
it is implicitly understood that the central character is fixed; hence, the charac-
ter of the GL(1)-component of the Levi subgroup is uniquely determined by the
representation of the GL(2)-component.

• bm (m = 2, 3) corresponds to base change for GL(m) with respect to the number
field extension E′/E (see [26, 4]).

• bu (respectively, bs) corresponds to the unstable (respectively, stable) endoscopic
lifting from U(2, E/F ) to GL(2, E), as established in [10] (see Proposition D.6).
For both maps, we let b′u, b′s denote their counterparts in the case of the algebraic
groups obtained via the restriction-of-scalars functor RF ′/F .

• b corresponds to the base-change lifting from U(3, E/F ) to GL(3, E) as estab-
lished in [15] (see Theorem D.8). The map b′ is the counterpart to b for the groups
obtained via restriction of scalars.

• e and its restriction-of-scalars analogue e′ correspond to the endoscopic lifting
from U(2) to U(3) (see Proposition D.7).
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• bH corresponds to base change from the group H to H′ := RF ′/F H, yet to be
established. We have LH ′ = GL(2, C)n ! Gal(E′/F ), where the Galois action on
the identity component Ĥ ′ is given by:

α(g1, g2, . . . , gn) = (θ2(g1), θ2(g2), . . . , θ2(gn)),

β(g1, g2, . . . , gn) = (gn, g1, g2, . . . , gn−1).

The L-homomorphism bH is defined by:

bH(g) = (g, . . . , g), g ∈ GL(2, C);

bH(α) = α.

2.3. Trace formula

The strategy to establish global functorial lifting via the trace formula technique
is well known. First, we relate the traces of automorphic representations to orbital
integrals, via the twisted Arthur’s trace formula ([8]). We then make use of the
stabilization of the elliptic regular part of the geometric side of the twisted trace
formula of G′, as shown in [24], in order to relate the traces of the automorphic
representations of G′(AF ) to those of its twisted endoscopic groups. Note that the
Kottwitz–Shelstad trace formula is shown in [24] to hold provided that each test
function on a given group transfers to matching test functions on its endoscopic
groups. This conjecture on the existence of matching functions has since been proved
due to the work of Ngo ([29]) and Waldspurger ([34–36]). Hence, the stabilization
of the elliptic regular parts of the geometric sides of the (twisted) trace formulas is
now known to hold without need of further qualification.

2.3.1. Trace formula, geometric side

In the case of β-twisted endoscopy for G′, the main result of [24] implies that the
following equation holds:

Te(G′, f ′ × β) = 1 · STe(G, f) +
1
2
· STe(H, fH). (2.1)

Here, Te(G′, f ′ × β) is the elliptic regular part of the geometric side of the twisted
trace formula of G′. It is the sum of the β-twisted orbital integrals of a smooth,
compactly supported mod center test function f ′ at the elliptic regular elements
of G′(F ). The symbol STe(G, f) (respectively, STe(H, fH)) denotes the elliptic
regular part of the stable trace formula of G (respectively, H). It is the sum of
the stable orbital integrals of the test function f (respectively, fH) matching f ′, at
the elliptic regular elements of G(F ) (respectively, H(F )). We refer to [24, p. 75]
(respectively, [24, p. 113]) for the definition of a twisted (respectively, stable) orbital
integral. The coefficients 1 and 1/2 are computed from a recipe given explicitly
in [24, p. 115].
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There is an obstacle which one must negotiate in using the Kottwitz–Shelstad
formula to establish functorial liftings. Namely, Eq. (2.1) only relates the orbital
integrals associated with elliptic regular elements. Consequently, each term in the
equation may not fully coincide with the geometric side of a trace formula for
general test functions. So, Eq. (2.1) may not be readily used to relate the spectral
sides of the trace formulas of the groups under consideration. One way to overcome
this is to restrict the space of test functions to those which have two elliptic local
components, as was done in [14], for example. An undesirable consequence of this
approach is that under it one can study only those automorphic representations
which have at least two elliptic local components. In the case of lifting from U(3) to
RE/F U(3), one may use instead an argument analogous to one used in [15, Part 2,
II. 4], for the lifting of representations from U(3, E/F ) to GL(3, E). A crude outline
of the argument is as follows:

Fix a nonarchimedean place u of F which splits in E. We consider global test
functions whose local components at u are Iwahori functions (i.e. biinvariant under
the standard Iwahori subgroup) which vanish on the singular elements. Applying the
last proposition of [17] to U(3), it is shown that for such test functions the discrete
parts of the spectral sides of the (twisted) trace formulas of GL(3, E), U(3, E/F ) and
U(2, E/F ) satisfy an equation parallel to the Kottwitz–Shelstad formula. Using the
fact that U(3, E/F )(Fu) (respectively, U(2, E/F )(Fu)) is isomorphic to GL(3, Fu)
(respectively, GL(2, Fu)) at the place u, it is then shown that the equation holds
for all matching global test functions.

The argument outlined above relies on no special properties of the groups which
are not possessed by those who studied this work, hence it readily applies to our
case. Via an argument borrowed from [15, Part 2, II. 4], we can then “separate by
eigenvalues” and derive global character identities relating the terms which occur
in the discrete parts of the spectral sides of the trace formulas.

2.3.2. Discrete spectral terms in the twisted trace formula

Define an operator Tβ on L2 := L2(G′(F )\G′(AF )) as follows:

(Tβ ϕ)(g) = ϕ(β(g)), ∀ϕ ∈ L2, g ∈ G′(AF ).

Fix once and for all a Haar measure dg′ on G′(AF ). Let (π′, V ) be an irreducible,
discrete spectrum, automorphic representation of G′(AF ). Thus, it is an irreducible
subrepresentation of L2. Let f ′ be a smooth, compactly supported mod center test
function on G′(AF ) which transforms under the center ZG′(AF ) of G′(AF ) via
the inverse of the central character ω′ of π′. We define the β-twisted convolution
operator π′(f ′ × β) on (π′, V ) as follows:

π′(f ′ × β)v =
∫

ZG′ (AF )\G′(AF )
π′(g′)f ′(g′)Tβ v dg′, v ∈ V.
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It is of trace class, since π′ is admissible. We let tr π′(f ′ × β) denote its trace. It is
easy to see that π′ is β-invariant if its β-twisted character f ′ "→ trπ′(f ′×β) defines
a nonzero distribution on the space of smooth, compactly supported mod center
functions on G′(AF ). Conversely, suppose π′ is β-invariant and occurs in the discrete
spectrum of G′(AF ). The operator Tβ intertwines π′ with a subrepresentation W
of L2(G′(F )\G′(AF )) which is equivalent to βπ′. If for each dyadic place v of
F , the representation π′

v belongs to a local packet containing a constituent of a
parabolically induced representation, then π′ occurs in the discrete spectrum with
multiplicity one ([15, Part 2, Corollary III.5.2.2(1)]), and W must coincide with the
space of π′. This implies that the distribution f ′ "→ tr π′(f ′ × β) is nonzero. If the
multiplicity one theorem holds for U(3, E′/F ′) without any condition on the dyadic
local components of the representations, then a discrete spectrum automorphic
representation of G′(AF ) is β-invariant if and only if its β-twisted character is
nonzero.

For characters µ of CE and η of CF
E , let I(µ, η) denote the automorphic repre-

sentation of G(AF ) which is parabolically induced, with normalization, from the
representation:

µ ⊗ η :




a ∗ ∗

b ∗
α(a)−1



 "→ µ(a)η(b), a ∈ CE , b ∈ CF
E ,

of the upper triangular Borel subgroup. Here, α is the generator of the Galois group
Gal(E/F ). Similarly, given characters µ′ of CE′ and η′ of CF ′

E′ , let I(µ′, η′) denote the
automorphic representation of G′(AF ) parabolically induced, with normalization,
from the representation:

µ′ ⊗ η′ :




a ∗ ∗

b ∗
α(a)−1



 "→ µ′(a)η′(b), a ∈ CE′ , b ∈ CF ′

E′ ,

of the Borel subgroup of G′(AF ), where α is the generator of Gal(E′/F ′). Let I(µ)
denote the representation of H(AF ) = U(2, E/F )(AF ) parabolically induced, with
normalization, from the following representation of the Borel subgroup of H(AF ):

µ :
(

a ∗
α(a)−1

)
"→ µ(a), a ∈ CE .

Lemma 2.1. The discrete part I(G′, f ′ × β) of the spectral side of the β-twisted
trace formula of G′ is the sum of the following terms :

∑

π′=βπ′

trπ′(f ′ × β). (G′1)
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The sum is over the β-invariant, irreducible, discrete spectrum, automorphic repre-
sentations π′ of G′(AF ).

1
4

∑

µ′·αβµ′=1
µ′=βµ′, η′=βη′

tr MI(µ′, η′)(f ′ × β). (G′2)

The sum is over the characters µ′ of CE′ and η′ of CF ′

E′ which satisfy the conditions
specified. The symbol M denotes an intertwining operator on the possibly reducible
induced representation I(µ′, η′).

The computation of these expressions follows from a technical procedure described
in [8, Lec. 15]. To simplify the exposition, we include it in Appendix A.

The upcoming sections often make reference to the results in [10, 15]. A summary
of the results in these works is given in Appendix D.

2.3.3. Global packets

The spectral side of a stable trace formula is indexed by packets and quasi-packets
(see [27, 1]). A definition of (quasi-) packets for G = U(3, E/F ) is provided in [15,
p. 217]: Let {π} be a set of representations which is a restricted tensor product:

⊗′
v{πv} := {⊗vπv : πv ∈ {πv} for all v, πv is unramified for almost all v},

where the tensor product is over all places v of F , and for each place v the set {πv} is
a local (quasi-) packet of admissible representations of G(Fv). The local packets
of G(Fv) are defined in [15] via twisted local character identities, associated with
the lifting from U(3, E/F ) to GL(3, E) (see Proposition D.4). If {π} weakly lifts
(that is, almost all local components lift) via the L-homomorphism b (see Fig. 2)
to a generic or one-dimensional automorphic representation of GL(3, AE), we say
that {π} is a packet. If {π} weakly lifts to a non-generic and non-one-dimensional
automorphic representation of GL(3, AE), we say that it is a quasi-packet. The
(quasi-) packets of U(2) are defined likewise ([10]). We say that a packet containing
a discrete spectrum automorphic representation is stable if each of its members
occurs with equal positive multiplicity in the discrete spectrum of the group. We
say that it is unstable if not all of its members belong to the discrete spectrum.
Unstable packets are in principle lifts from proper endoscopic groups.

For an element g in GL(3, AE) (respectively, GL(2, AE)), let

σ(g) = J α(tg−1)J−1, where J :=




1

−1
1




(

respectively,
(

1
−1

))
.

We define automorphisms σ′ on GL(3, AE′) and GL(2, AE′) in exactly the same way,
but with α viewed as the generator of Gal(E′/F ′). For m = 2 or 3, we say that an
automorphic representation (π, V ) of GL(m, AE) is σ-invariant if (π, V ) is equivalent
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to (σπ, V ), where (σπ, V ) is the GL(m, AE)-module defined by σπ : g !→ π(σ(g)),
g ∈ GL(m, AE).

By [15, pp. 217–218] (see Theorem D.8), a packet containing a discrete spectrum
automorphic representation of G(AF ) is stable if and only if it lifts to a σ-invariant,
discrete spectrum, automorphic representation of GL(3, AE). It is unstable if and
only if it is equal to the lift π({ρ}) of a packet {ρ} on the proper endoscopic group H
of G. By Proposition D.6, a packet containing a discrete spectrum representation of
H(AF ) is stable if and only if it lifts to a discrete spectrum, automorphic represen-
tation of GL(2, AE). Otherwise, it is the lift ρ(θ1, θ2) of an unordered pair (θ1, θ2)
of distinct characters of CF

E . In other words, ρ(θ1, θ2) is a lift from the endoscopic
group U(1, E/F ) × U(1, E/F ) of H.

2.3.4. Discrete spectral terms in the stable trace formulas

The discrete parts SI(G, f), SI(H, fH) of the spectral sides of the stable trace
formulas of G, H are computed in [15, Part 2, Sec. II.3] and [10, Sec. 3], respectively.
For a packet {π} of automorphic representations, let tr{π}(f) denote the sum of
characters

∑
π∈{π} tr π(f). For a given smooth, compactly supported mod center

function f , only finitely many terms in the sum are nonzero. We say that a packet is
discrete spectrum if it contains a discrete spectrum automorphic representation.
The discrete part SI(G, f) of the stable trace formula of G(AF ) is the sum of the
following terms:

∑

Stable, discrete spectrum{π}

tr{π}(f). (G1)

The sum is over all stable discrete spectrum (quasi-) packets {π} of automorphic
representations of G(AF ). By virtue of its stability, {π} is not of the form π({ρ})
for any packet {ρ} of H(AF ).

1
2

∑

{ρ} "=ρ(θ1,θ2)

tr π({ρ})(f). (G2)

The sum is over the discrete spectrum packets {ρ} of H(AF ) which are not in the
image of the endoscopic lifting from U(1, E/F ) × U(1, E/F ).

1
4

∑

{π}=π(ρ(θ1,θ2))

tr{π}(f). (G3)

The sum is over the equivalence classes of packets of the form π(ρ(θ1, θ2)) for some
pair (θ1, θ2) of characters of CF

E , such that θ1, θ2, ω/θ1θ2 are distinct. Here, ω is the
fixed character of the center of G(AF ), which is identified with CF

E .

−1
8

∑

µ,η
µαµ=1
µ|CF "=1

tr I(µ, η)(f). (G4)

In
t. 

J. 
N

um
be

r T
he

or
y 

20
09

.0
5:

12
47

-1
30

9.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 O

H
IO

 S
TA

TE
 U

N
IV

ER
SI

TY
 o

n 
02

/0
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 11, 2009 11:3 WSPC/203-IJNT 00268

1262 P.-S. Chan & Y. Z. Flicker

The sum is over the characters µ of CE and η of CF
E which satisfy the conditions

specified.
By Proposition 1 in [10, Sec. 3], the discrete part SI(H, fH) of the stable trace

formula of H(AF ) is the sum of the following terms:
∑

{ρ} !=ρ(θ1,θ2)

tr{ρ}(fH). (H1)

The sum is over the discrete spectrum packets {ρ} of U(2, E/F ) which are not of
the form ρ(θ1, θ2) for any characters θ1, θ2 of CF

E .
1
2

∑

{θ1, θ2}
θ1 !=θ2

tr ρ(θ1, θ2)(fH). (H2)

The sum is over all unordered pairs (θ1, θ2) of distinct characters of CF
E .

−1
4

∑

µ·αµ=1
µ|CF =1

tr I(µ, η)(fH). (H3)

The sum is over all characters µ of CE satisfying the specified conditions.

2.4. Separation by eigenvalues

For an algebraic group M defined over F and a place v of F , put Mv := M(Fv). Let
Ev denote E ⊗F Fv. Let S be a finite set of places of F . Let tG(S) = {tv : v /∈ S}
be a set of conjugacy classes in LG; or rather, each tv is a conjugacy class in the
local version LGv = Ĝ ! WEv/Fv

of LG. Via the L-homomorphism bG (see Fig. 2),
each tv lifts to a conjugacy class t′v in LG′. We thus obtain:

bG(tG(S)) := tG′(S) = {t′v : v /∈ S}

in LG′. We say that bG(tG(S)) is the lift of tG(S). We extend to H the analogous
notions of such a set of conjugacy classes and its lifting to LG′.

Given an automorphic representation π = ⊗vπv (tensor product over all places
of F ) of G(AF ), its local component πv is an unramified representation of Gv

for every place v outside of some finite set of places S(π) which contains all the
archimedean places. Since an unramified representation πv corresponds to a Hecke
conjugacy class tv = t(πv) in the L-group ([5]), the representation π defines t(π, S) =
{t(πv) : v /∈ S} for any finite set of places S containing S(π). Any two members of
a (quasi-) packet define the same t(π, S) for some finite set S. We often suppress S
from the notation and write simply t(π).

We say that one (quasi-) packet {π1} weakly lifts to another (quasi-) packet
{π2} if, for some finite set of places S, the set of conjugacy classes t(π, S) associated
with a member π1 of {π1} lifts to t(π2, S) for some member π2 of {π2}. In [15], a
(quasi-) packet {π} = ⊗′

v{πv} of automorphic representations of G(AF ) is said to
lift to an automorphic representation π̃ of GL(3, AE) if {π} weakly lifts to π̃, and
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for each place v the local packet {πv} satisfies a specific local character identity
involving π̃v. Similarly, we say that a (quasi-) packet {ρ} of H(AF ) lifts to {π} of
G(AF ) if the former weakly lifts to the latter, and the local packets {ρv} and {πv}
satisfy the local character identities summarized in [15, pp. 214–215].

For each place v of F , let βv be the image of β ∈ Gal(E′/E) in the group
Gal(E′

v/Ev). Let π′
v be an irreducible admissible representation of G′

v. Write βvπ′
v

for the representation g "→ π′
v(βv(g)). By definition, π′

v is βv-invariant if there exists
a nonzero G′

v-equivariant map A(π′
v) in HomG′

v
(π′

v, βvπ′
v). The map A(π′

v) is called
an intertwining operator. Since, for any nonzero operator B in HomG′

v
(π′

v, βvπ′
v),

the map B−1 ◦A(π′
v) intertwines the irreducible admissible π′

v with itself, A(π′
v) is

unique up to a scalar by Schur’s Lemma. Since βn
v = 1, Schur’s Lemma also implies

that A(π′
v)n is a scalar multiplication, which we normalize to be the identity map.

If in addition π′
v and E′

v/F ′
v are unramified, we scale A(π′

v) so that it sends each
G′(Ov)-fixed vector of π′

v to itself. Here, Ov denotes the ring of integers of Fv. If
π′

v is not βv-invariant, we put A(π′
v) := 0.

We make the following observation regarding the case where v splits completely
in F ′: We have E′

v = E′ ⊗F Fv =
∏n

i=1 Ev. The group G′
v = G′(Fv) is the direct

product
∏n

i=1 U(3, E′
v/F ′

v), and βv acts on G′
v via:

βv(g1, . . . , gn) = (gn, g1, . . . , gn−1), ∀(g1, . . . , gn) ∈ G′
v.

A representation π′
v of G′

v is of the form ⊗n
i=1π

′
i, where π′

i (1 ≤ i ≤ n) is a repre-
sentation of U(3, E′

v/F ′
v). Hence,

(βvπ
′
v)(gv) = π′

1(gn) ⊗ π′
2(g1) ⊗ · · ·⊗ π′

n(gn−1), ∀gv = (g1, . . . , gn) ∈ G′
v.

So, π′
v is βv-invariant if and only if the π′

i’s are all equivalent. For a βv-invariant
representation π′

v of G′
v, we let A(π′

v) be the operator in HomG′
v
(π′

v, βvπ′
v) which

sends each vector ξ1 ⊗ · · ·⊗ ξn in ⊗n
i=1π

′
v to the vector ξn ⊗ ξ1 ⊗ · · ·⊗ ξn−1.

There are additional cases to consider according to how the place v splits in E
and F ′. For instance, if n is not prime, v may not split completely in F ′. If v splits
in E, then G′

v = GL(3, F ′
v), which further splits into a product of groups if v splits

in F ′. We leave it as an exercise for the reader to formulate what it means for π′
v

to be βv-invariant in such cases.
Let v be a place of F . For a smooth, compactly supported mod center function

f ′
v on G′

v, satisfying f ′
v(zg) = ω′−1

v (z)f ′(g) for all z in the center Z(G′
v) of G′

v, let
tr π′

v(f ′
v × βv) denote the trace of the twisted convolution operator

∫

Z(G′
v)\G′

v

π′
v(g′v)f

′
v(g′v)A(π′

v) dg′v.

Here, dg′v is a fixed Haar measure on G′
v such that G′(Ov) has volume one for

almost all v, and the tensor product ⊗v dg′v over all places of F coincides with a
fixed Tamagawa measure dg′ on G′(AF ).

Let π′ = ⊗vπ′
v be an automorphic representation which occurs in the discrete

spectrum of G′(AF ) with multiplicity one. Recall the definition of the operator Tβ

In
t. 

J. 
N

um
be

r T
he

or
y 

20
09

.0
5:

12
47

-1
30

9.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 O

H
IO

 S
TA

TE
 U

N
IV

ER
SI

TY
 o

n 
02

/0
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 11, 2009 11:3 WSPC/203-IJNT 00268

1264 P.-S. Chan & Y. Z. Flicker

on L2 = L2(G′(F )\G′(AF )):

(Tβϕ)(g) = ϕ(β(g)), ∀ϕ ∈ L2, g ∈ G′(AF ).

It defines an intertwining operator T (π′) in HomG′(AF )(⊗vπ′
v,⊗vβvπ′

v) which differs
from the operator ⊗vA(π′

v) by at most an nth root of unity ε(π′), since T n
β = 1.

Note that T (π′) $= 0 if and only if π′ is β-invariant.
From henceforth, we assume that each global test function f is a tensor product

⊗vfv of local functions. Let π′, π and πH be irreducible, discrete spectrum, auto-
morphic representations of the groups G′(AF ),G(AF ) and H(AF ), respectively. To
simplify the notation, put

〈π′, f ′ × β〉v := 〈π′
v, f ′

v × βv〉 := tr π′
v(f ′

v × βv),

〈π′, f ′ × β〉 := tr π′(f ′ × β) = ε(π′)
∏

v

〈π′
v, f ′

v × βv〉,

〈π, f〉 := tr π(f) =
∏

v

〈πv, fv〉,

and extend the notation analogously to πH . Here, the products are over all places v
of F . Recall that a (quasi-) packet {π} of automorphic representations is a restricted
tensor product ⊗′

v{πv} of local (quasi-) packets. We put

〈{π}, f〉 :=
∑

π∈{π}

〈π, f〉 =
∏

v

〈{πv}, fv〉,

where 〈{πv}, fv〉 :=
∑

πv∈{πv} c(πv)〈πv, fv〉. The coefficients c(πv) are equal to 1 if
{πv} is a local packet, but they may not be constant over the members of {πv} if
{πv} is a quasi-packet (see [15, pp. 214–215]).

Let S be a set of places of F . For an object which is a tensor product of local com-
ponents over a set of places containing S, let subscript S denote the tensor product
over the places in S. For example, fS := ⊗v∈Sfv, and 〈π, f〉S :=

∏
v∈S〈πv, fv〉.

Fix a finite set of places S containing all the archimedean places and the nonar-
chimedean places where at least one of the number field extensions E/F , F ′/F is
ramified. Fix a collection of conjugacy classes tG′ = tG′(S) = {t′v : v /∈ S} in LG′.
We choose the matching test functions f ′, f, fH such that, at every place v /∈ S,
their local components f ′

v, fv, fH,v are spherical and correspond to one another via
the duals of the L-homomorphisms bG, eH (see [5]). In particular, for any unramified
representations π′

v, πv and πH,v of G′
v, Gv and Hv whose corresponding conjugacy

classes in the L-groups are related via the L-homomorphisms, the Satake trans-
forms f ′

v
∨(π′

v), f∨
v (πv) and f∨

H,v(πH,v) coincide. The Fundamental Lemma ([29])
asserts that such f ′

v, fv, fH,v have matching orbital integrals. Using Eq. (2.1) and
the twisted Arthur’s trace formula, and borrowing the technique of [15, Part 2,
II. 4.4] (see Sec. 2.3.1), we may separate the terms in the discrete sums I(G′, f ′×β),
SI(G, f), SI(H, fH) by eigenvalues (or more precisely by Hecke conjugacy classes),
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and obtain an expression of the form:
∑

π′∈{π′}

m(π′)ε(π′)〈π′, f ′ × β〉S

=
∑

{π}

m({π})〈{π}, f〉S +
1
2

∑

{ρ}

m({ρ})〈{ρ}, fH〉S . (2.2)

The sum on the left is over the β-invariant automorphic representations π′ of G′(AF )
with the property that π′

v is unramified and parametrized by t′v for each v /∈ S. In
particular, these representations all lie in the same packet {π′}. Each sum on the
right is over the (quasi-) packets of G(AF ), respectively, H(AF ), which weakly
lift to {π′}. The coefficients m(π′), m({π}) and m({ρ}) are those associated with
the contributions of the representations/packets to the discrete parts of the spectral
sides of the (twisted) trace formulas. The values of m({π}) are recorded in Sec. 2.3.4.
They are equal to 0, 1, 1/2, 1/4, or −1/8. The values of m({ρ}) are also recorded
in that section. They are equal to 0, 1, 1/2, or −1/4. The values of m(π′) shall be
described in due course.

Note that we can produce via the same procedure a global trace identity of the
form (2.2) if we fix at the beginning a set of conjugacy classes in LG or LH instead.

Proposition 2.2. Suppose the multiplicity one theorem holds for U(3, E′/F ′). Let
π′ be a β-invariant, discrete spectrum, automorphic representation of the group
G′(AF ). Then, π′ belongs to a (quasi-) packet which is the weak lift of (quasi-)
packet(s) of automorphic representations of G(AF ) and/or H(AF ).

Proof. Apply Eq. (2.2) to the set of conjugacy classes t(π′, S) associated with π′,
for some finite set of places S outside of which the local components of π′ and the
number field extensions E/F , F ′/F are unramified. By the multiplicity one theorem
for U(3, E′/F ′), the β-invariance of π implies that 〈π′, f ′×β〉S is nonzero. Moreover,
by the linear independence of twisted characters, the sum of the twisted characters
associated with the β-invariant representations which contribute to the left-hand
side of (2.2) must be nonzero. Consequently, there must be a representation which
has nonzero contribution to the right-hand side.

2.5. Global character identities

With the machinery (2.2) in place, we may now establish concrete cases of weak
global lifting and global character identities. We let S denote a finite set of places
of F which includes all the archimedean places and the nonarchimedean ones where
at least one of the field extensions E/F , F ′/F is ramified. We shall consider below
representations which are unramified at all places v /∈ S. We let H′ := RF ′/F H.

Recall from Sec. 2.2 that there is a character κ of CE associated with the
L-homomorphism bu. This character κ is trivial on NE/F CE but not on CF .
Likewise, the L-homomorphism b′u is associated with the character κ′ := κ ◦NE′/E

of CE′ .
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We identify the Weil group WE/F with {(z, τ) : z ∈ CE , τ ∈ Gal(E/F )}, where
CE = E× if E is a p-adic field, and CE = E×\A×

E if E is a number field. We
consider the following form of the L-group of H = U(2, E/F ):

LH = GL(2, C) ! WE/F ,

where (z, α)(g) =
( 1
−1

)
tg−1

( −1
1

)
for all z ∈ CE . The form of the L-group of

RE/F H which we consider is:
LRE/F H = LRE/F GL(2) = (GL(2, C) × GL(2, C)) ! WE/F ,

where (z, α)(g1, g2) = (g2, g1) for all z ∈ CE . The L-group homomorphisms bu, bs

from LH to LRE/F H are defined as follows ([10, p. 692]):

bs : g ! (z, τ) #→ (g, g) ! (z, τ),
bu : g ! (z, τ) #→ (gκ(z), gκ(z)δ(τ)) ! (z, τ),

where δ(1) = 1, δ(α) = −1.

Lemma 2.3. The following L-group diagrams are commutative:
LRF ′E/F ′H ′

LH ′

b′s
!!

LH

bs""

bH

##

LRE/F H

b2

##
LRF ′E/F ′H ′

LH ′

b′u
!!

LH

bu""

bH

##

LRE/F H

b2

##

Proof. This follows directly from the definitions of the L-group homomorphisms.

2.5.1. Unstable packets

Let {ρ} be a stable (quasi-) packet of U(2, E/F )(AF ). In particular, {ρ} is not of
the form ρ(θ1, θ2) for any characters θ1, θ2 of CF

E (see Sec. 2.3.3). To study the
weak global lifting of {ρ} to G′(AF ), we apply to it Eq. (2.2) and make use of the
commutativity of the L-group diagram in Fig. 2. The procedure, though somewhat
tedious, is not difficult. Hence, we try to elucidate the process as much as we can in
this one case of weak lifting, and then skim over the details in the later cases. The
reader may find Fig. 3 a useful depiction of the system of weak liftings involving
{ρ}. We are particularly interested in the global liftings which correspond to the
L-homomorphisms bG and eH .

Recall that we have fixed a character ω of CF
E . Let η denote the character

ω/ωρ of CF
E , where ωρ is the central character of ρ. Let η̃(z) = η(z/α(z)) for all
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ρ̃′
i′ !! π̃′

ρ′

b′u/b′s

""

e′
!! {π′}

b′
##

ρ

bu
$$

bH

%%

eH!!!!

##!!!

e
!! {π}

bG

%%

b

&&
ρ̃

b2

%%

i
!! π̃

b3

%%
Rep./Packet Group

ρ U(2, E/F )(AF )

ρ′ U(2, E′/F ′)(AF ′ )

ρ̃ GL(2, AE)

ρ̃′ GL(2, AE′)

{π} U(3, E/F )(AF )

{π′} U(3, E′/F ′)(AF ′ )

π̃ GL(3, AE)

π̃′ GL(3, AE′)

Fig. 3. Lifting packets.

z ∈ CE . The packet {ρ} lifts via bs (respectively, bu) to a σ-invariant cuspidal
automorphic representation ρ̃ (respectively, ρ̃⊗κ) of GL(2, AE); and it lifts via e to
an unstable packet {π} := π({ρ}) of G(AF ), which in turn b-lifts to the σ-invariant
representation π̃ := I(2,1)(κρ̃, η̃) of GL(3, AE) induced from a parabolic subgroup
whose Levi component is isomorphic to GL(2, AE) × A×

E (see Proposition D.7).
The representation π̃ lifts via the base change b3 to the parabolically induced

representation π̃′ := I(2,1)(κ′ρ̃′, η̃′) of GL(3, AE′), where ρ̃′ is the base change of ρ̃
to GL(2, AE′), and η̃′ = η̃ ◦ NE′/E . Since [E′ : E] = n %= 2, the representation ρ̃′

must be cuspidal by [4, Chap. 3, Theorem 4.2(a)].

Lemma 2.4. The representation ρ̃′ is the lift via b′s of a stable packet {ρ′} on
RF ′/F H(AF ) = U(2, E′/F ′)(AF ′), which coincide with the bH-lift of {ρ}.

Proof. We first show that ρ̃′ is σ′-invariant. At each place v where ρ̃v and Ev/Fv

are unramified, ρ̃v is parametrized by the conjugacy class in LRE/F GL(2) =
GL(2, C)2 ! WEv/Fv

of an element of the form tv = (g1, g2) ! Frv, where Frv

denotes the Fröbenius element. Since ρ̃ is σ-invariant, for every such place v there
exists an element hv ∈ LRE/F GL(2) such that h−1

v tvhv = (θ(g2), θ(g1))!Frv, where
θ(gi) :=

( 1
−1

)
tg−1

i

( −1
1

)
. By the definition of base change, each unramified com-

ponent ρ̃′v of ρ̃′ is parametrized by the conjugacy class of t′v = ∆(g1, g2) ! Frv in
LRE′/F GL(2) = (GL(2, C)2)n !WE′

v/Fv
, where ∆(g1, g2) is the diagonal embedding

of (g1, g2). We have

(∆hv)−1t′v(∆hv) = ∆(θ(g2), θ(g1)) ! Frv,

which implies that ρ̃′v is σ′
v-invariant, where σ′

v is the local component of σ′ at v.
Since this is true for almost all v, it follows from the rigidity, or strong multiplicity
one, theorem for GL(2) that ρ̃′ is σ′-invariant.

By Proposition D.6, the GL(2, AE′)-module ρ̃′ is either a b′s or a b′u-lift from
H′, but not both. Suppose the second case holds. By Lemma 2.3 the packet {ρ}
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must bu-lift to an irreducible automorphic representation ρ̃u of GL(2, AE), which
base-change lifts to ρ̃′. By [4, Theorem III.3.1], ρ̃u must be equal to εm

E′/E ρ̃ for some
integer m, where εE′/E is the character of CE associated with the odd degree field
extension E′/E via global class field theory. On the other hand, we have ρ̃u = κρ̃
(see Appendix D). So, ρ̃ ∼= ε−m

E/F κρ̃. The character ε−m
E′/Eκ has order different from 2.

This is because ε−m
E′/E has odd order, while the order of κ is even or undefined, for κ

restricts to a nontrivial quadratic character on CF . This implies that the equivalent
irreducible GL(2, AE)-modules ρ̃ and εm

E/F κρ̃ have different central characters, a
contradiction.

Since ρ̃′ is cuspidal, by Proposition D.6 the packet {ρ′} is stable.

Recall that we let S be a finite set of places of F , outside of which are places
where the number field extensions E/F , F ′/F are unramified. The automorphic
representations which we study are assumed to have unramified local components
at all the places outside of S.

Lemma 2.5. (i) The packets π({ρ}) and {ρ} weakly lift to the packet π′({ρ′}) of
G′(AF ).

(ii) Let f ′, f, fH be matching test functions on G′(AF ),G(AF ),H(AF ), respectively,
whose local components at the places outside of S are spherical. The following
equation holds:

2
∑

π′∈π′({ρ′})

m(π′)ε(π′)〈π′, f ′ × β〉S = 〈π({ρ}), f〉S + 〈{ρ}, fH〉S , (2.3)

where m(π′) is the multiplicity with which π′ contributes to the discrete spectrum
of G′(AF ), and ε(π′) is an nth root of unity.

Proof. Part (i) follows from the commutativity of the L-group diagram in Fig. 2.
For part (ii): Apply Eq. (2.2) to the packet {π′} = π′({ρ′}). By the commutativ-

ity of the L-group diagram, we know that {ρ} and π({ρ}) contribute to the equation.
We need to show that no other packet of G(AF ) or H(AF ) also contributes.

To determine the packets {τ} (respectively, {(}) of G(AF ) (respectively, H(AF ))
which contribute to the equation, note that any such packet must b-lift (respectively,
b◦e-lift) to a σ-invariant automorphic representation τ̃ of GL(3, AE), which in turn
base-change lifts to π̃′ via b3. Therefore, τ̃ is a parabolically induced representation
of the form

Ii,j := I(2,1)(εiκρ̃, εj η̃), i, j ∈ {0, 1, 2, . . . , n − 1},

where ε is the character of CE associated with the number field extension E′/E via
global class field theory ([4, Chap. 3, Theorem 3.1]). Suppose j (= 0. Then, Ii,j is
σ-invariant if and only if ε(zα(z)) = 1 for all z ∈ CE . Since the Galois action of α
commutes with that of β, we have ε = ε ◦ α. So, ε(zα(z)) = 1 implies that ε2 = 1.
On the other hand, ε is the character associated with the nontrivial cyclic number
field extension E′/E of the odd degree n; thus, εn = 1. These two facts together
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imply that ε is trivial, a contradiction. Hence, j = 0. If ρ̃ ! εiρ̃, then by the same
reasoning the σ-invariance of τ̃ implies that i = 0. The same type of argument
applies to {%}, and we conclude that π({ρ}) and {ρ} are the only packets which
contribute to the right-hand side of Eq. (2.2), applied to π′({ρ′}).

We now consider the unstable packets of H(AF ) = U(2, E/F )(AF ). Fix three
characters θ1, θ2 and θ3 of CF

E , with θ1θ2θ3 = ω and θ1 != θ2. For a character θ of
CF

E , let θ′ denote the character θ◦NE′/E of CF ′

E′ . By Lemma B.1, the correspondence
θ #→ θ′ is one-to-one. Let ρ(θi, θj) (respectively, ρ′(θ′i, θ′j)) be the packet of auto-
morphic representations of H(AF ) (respectively, H′(AF )) associated with (θi, θj)
(respectively, (θ′i, θ′j)), for i, j ∈ {1, 2, 3}. If the characters θi are distinct, then all
three packets in Q = {ρ(θi, θj) : i != j ∈ {1, 2, 3}} are discrete spectrum packets.
Otherwise, if θ1 != θ2 = θ3, then ρ(θ2, θ3) consists of the irreducible constituents of
the parabolically induced representation I(θ̃2κ, ω/θ̃2κ), and the other two members
of Q are discrete spectrum packets ([10, pp. 699–700]). Here, θ̃2(z) := θ2(z/α(z))
for all z ∈ CE . For all i != j ∈ {1, 2, 3}, the packets of G(AF ) which are the e-lifts
of ρ(θi, θj) are equivalent to one another. Let π(ρ) (respectively, π′(ρ′)) denote the
packet of G(AF ) (respectively, G′(AF )) which is the lift of ρ(θ1, θ2) (respectively,
ρ′(θ′1, θ′2)).

Suppose the characters θ1, θ2, θ3 are distinct. In particular, π(ρ) and π′(ρ′) are
discrete spectrum packets. The following lemma holds:

Lemma 2.6. (i) The packets ρ(θ1, θ2), ρ(θ1, θ3), ρ(θ2, θ3) and π(ρ) weakly lift to
the packet π′(ρ′) of G′(AF ).

(ii) The following equation holds for matching test functions:

4
∑

π′∈π′(ρ′)

m(π′)ε(π′)〈π′, f ′ × β〉S = 〈π(ρ), f〉S + 〈ρ(θ1, θ2), fH〉S

+ 〈ρ(θ1, θ3), fH〉S + 〈ρ(θ2, θ3), fH〉S ,

(2.4)

where m(π′) is the multiplicity with which π′ contributes to the discrete spectrum
of G′(AF ), and ε(π′) is an nth root of unity.

Proof. This follows from the commutativity of the L-group diagram in Fig. 2,
the properties of base change for GL(2), the results recorded in Sec. 2.3.4,
and Eq. (2.2).

Suppose θ1 != θ2 = θ3. In this case, the packet π(ρ) (respectively, π′(ρ′)) consists
of the irreducible constituents of:

I(θ̃2, ω/θ̃2) (respectively, I(θ̃′2, ω
′/θ̃′2))

(see [15, Part. 2, III.3.8]).

Lemma 2.7. The following equation holds for matching functions:

〈π′(ρ′), f ′ × β〉S = 〈π(ρ(θ1, θ2)), f〉S . (2.5)
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Proof. The representations in this case are parabolically induced, so the equation
will follow from the local character identity in Lemma 3.2.

Let µ be a character of CF
E , and let µ′ denote the character µ ◦ NE′/E of

CF ′

E′ . Then, µ (respectively, µ′) defines a one-dimensional automorphic represen-
tation of H(AF ) (respectively, H′(AF )) via composition with the determinant. Let
π(µ) (respectively, π′(µ′)) denote the quasi-packet of G(AF ) (respectively, G′(AF ))
which is the lift of µ (respectively, µ′) (see [15, Part 2, Sec. III.3.2, Corollary]). For
each nonarchimedean place v of F , and local test function fv on Gv, let

〈π(µ)v , fv〉 = 〈π(µv), fv〉 := 〈π(µv)×, fv〉 − 〈π(µv)−, fv〉,

where π(µv)× and π(µv)− are the nontempered and cuspidal members, respectively,
of the local quasi-packet π(µv). Using the same type of argument as before, we
obtain:

Lemma 2.8. (i) The one-dimensional representation µ and quasi-packet π(µ)
weakly lift to the quasi-packet {π′(µ′)} of G′(AF ).

(ii) The following trace identity holds for matching test functions:

2
∑

π′∈{π′(µ′)}

ε(π′)〈π′, f ′ × β〉S = 〈π(µ), f〉S + 〈µ, fH〉S , (2.6)

where ε(π′) is an nth root of unity.

2.5.2. Stable packets

Let {π} be a stable discrete spectrum (quasi-) packet of automorphic representations
of G(AF ). It lifts to a σ-invariant discrete spectrum representation π̃ of GL(3, AE)
via the L-homomorphism b (see Fig. 2). Let π̃′ be the base change via b3 of π̃
to GL(3, AE′). Via the same argument used in the proof of Lemma 2.4, it can be
shown that:

Lemma 2.9. π̃′ is σ′-invariant.

We claim that there exists a packet {π′} of G′(AF ) which b′-lifts to π̃′. There
are two cases to consider:

Case 1. Suppose n = [E′ : E] is not equal to 3, or n = 3 and π̃ is not the cuspidal
monomial representation associated with a character of CE′ . Then, π̃′ is cuspidal
by [4, Chap. 3, Theorem 4.2(a)]. Consequently, by Theorem D.8 and Lemma 2.9
there exists a stable packet {π′} on G′(AF ) which b′-lifts to π̃′.

Case 2. Suppose n = 3, and π̃ is the cuspidal monomial representation π(χ) asso-
ciated with a character χ of CE′ such that χ &= βχ. The central character of π(χ)
is χ|CE . Since π̃ is the b-lift of a representation of G(AF ), its central character ωπ̃

is trivial on CF . Hence, χ|CF = ωπ̃|CF = 1.
The representation π̃ base-change lifts to the representation π̃′ := I(χ, βχ, β2χ)

of GL(3, AE′) parabolically induced from the upper triangular Borel subgroup. Since
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π̃′ is σ′-invariant, we have {χ, βχ, β2χ} = {αχ−1, αβχ−1, αβ2χ−1}. Suppose χ =
αβiχ−1 for i = 1 or 2. Applying αβi to both sides of the equation, and noting that
αβ = βα, α2 = 1, we have χ−1 = β2iχ−1, which implies, since β3 = 1, that χ is
β-invariant, a contradiction.

Hence, χ = αχ−1, and therefore χ|CF ′ = 1 or εE′/F ′ , the quadratic character
of CF ′ associated with the field extension E′/F ′ via global class field theory. It
follows from an exercise in class field theory that εE′/F ′ agrees with εE/F on CF ,
which rules out the possibility that χ|CF ′ = εE′/F ′ , for we have already shown that
χ|CF = 1. Thus, χ|CF ′ is trivial, so there exists a character θ of CF ′

E′ such that
χ(z) = θ̃(z) := θ(z/α(z)), z ∈ CE′ .

Let κ′′ denote the character which is the restriction of κ′−1 to CF ′

E′ . Let {π′} be
the unstable packet on G′(AF ) = U(3, E′/F ′)(AF ′) which is the e′-weak-lift of the
unstable packet ρ′(κ′′θ, κ′′βθ) of U(2, E′/F ′)(AF ′). It follows from Proposition D.7
and the commutativity of the L-group diagram in Fig. 2 that {π′} lifts to π̃′.

If n = [E′ : E] is not 3, then by [4, Chap. 3, Theorem 3.1] the fiber of the
base-change lifting b3 to π̃′ consists of π̃ alone. If n = 3, then εiπ̃ lifts to π̃′ for
each i = 0, 1, 2, where ε is the character of CE associated with the number field
extension E′/E via global class field theory. By the same reasoning used in the proof
of Lemma 2.5, the representation εiπ̃ is σ-invariant if and only if i = 0 or π̃ ∼= επ̃.
Thus, {π} is the only (quasi-) packet which b3 ◦ b-lifts to π̃′, which in turn implies
that it is the only (quasi-) packet which bG-weakly-lifts to {π′}. Since {π} lifts via
b to a σ-invariant discrete spectrum representation of GL(3, AE), no automorphic
representation of H(AF ) lifts to {π} (see Proposition D.7). Consequently, in both
Cases 1 and 2, no automorphic representation of H(AF ) eH -weakly-lifts to {π′}, by
the commutativity of the L-group diagram in Fig. 2.

We write {π} = {π(π̃)} to emphasize that π lifts (via b) to π̃, and likewise write
{π′} = {π′(π̃′)}.

Lemma 2.10. (i) The packet {π(π̃)} weakly lifts to {π′(π̃′)}.
(ii) For matching functions, we have:

∑

π′∈{π′(π̃′)}

m(π′)ε(π′)〈π′, f ′ × β〉S = 〈{π(π̃)}, f〉S , (2.7)

where m(π′) is the multiplicity with which π′ occurs in the discrete spectrum of
G′(AF ), and ε(π′) is an nth root of unity.

Proof. Part (i) follows from the remarks preceding the lemma. Part (ii) follows
from Eq. (2.2).

Summarizing parts (i) of Lemmas 2.5, 2.6, 2.8 and 2.10, we have:

Proposition 2.11. Every discrete spectrum (quasi-) packet of G(AF ), respectively,
H(AF ), weakly lifts to a (quasi-) packet of G′(AF ) via the L-homomorphism bG,
respectively, eH .
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Remark. Note that the proposition is a statement on weak lifting as defined in
Sec. 2.4. It follows from the commutativity of the L-group diagram in Fig. 2, and
it says nothing regarding the β-invariance of the members of the (quasi-) packets
of G′(AF ) which are bG or eH-weak-lifts. That issue shall be addressed in Proposi-
tion 4.1.

3. Local Character Identities

We now deduce local twisted character identities from the global identities which
we have established in Sec. 2.4. Let k be a local p-adic field with odd residual
characteristic, l a quadratic extension of k, and k′ a degree n cyclic extension of
k, with n odd. Let l′ be the compositum field lk′, and let α, β be generators of
Gal(l′/k) such that k′ = l′α and l = l′β , the subfields fixed by α and β.

The multiplicity one theorem for U(3) has been proved only for those auto-
morphic representations each of whose dyadic local components belongs to a local
packet containing a constituent of a parabolically induced representation ([15]).
Consequently, we are able to establish our main results, i.e. Propositions 3.5, 3.7,
3.9 and 3.10, only when the residual characteristic of k is odd. This restriction may
be removed once the multiplicity one theorem for U(3) is available in full generality.

Let:

• lk = {x ∈ l× : Nl/kx = 1}, l′k
′
= {x ∈ l′× : Nl′/k′x = 1};

• G = U(3, l/k), G′ = U(3, l′/k′);
• H = U(2, l/k)× lk, H ′ = U(2, l′/k′) × l′k

′
.

Here, for example, U(3, l/k) denotes a group of k-points rather than an algebraic
group scheme, which was the convention in Sec. 2.

In the global case, associated with the L-homomorphism e : LH → LG is a
character κ of CE such that κακ = 1 (see Appendix D.2). Likewise, associated with
e′ : LH ′ → LG′ is the character κ′ := κ ◦NE′/E of CE′ . We let κ and κ′ denote also
the corresponding local characters of l× and l′×, respectively.

We fix once and for all a character ω′ of l′k
′

which satisfies ω′ = βω′. By Lem-
mas C.1 and B.1, ω′ uniquely determines a character ω of lk such that ω′ = ω◦Nl′/l.
We consider only those representations of G′ (respectively, G, H) whose central
characters are equal to ω′ (respectively, ω). Under this condition, a representation
of H (respectively, H ′) is uniquely determined by its U(2)-component. Hence, we
often abuse notation and put H := U(2, l/k), H ′ := U(2, l′/k′).

Let f ′, f, fH denote arbitrary smooth, compactly supported mod center func-
tions on G′, G, H , respectively, with matching orbital integrals ([24, p. 71]). As
mentioned earlier, their existence follows from the work of Waldspurger ([34–36])
and Ngo ([29]).

Assume that the function f ′ transforms under the center Z(G′) of G′ via ω′−1,
i.e. f ′(zg) = ω′−1(z)f ′(g) for all z ∈ Z(G′), g ∈ G′. Then, by the matching condi-
tion, f and fH transform under the centers of the groups on which they are defined
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via ω−1. For an irreducible admissible representation π′ of G′, and A an intertwining
operator in HomG′(π′, βπ′), put 〈π′, f ′〉A := trπ′(f ′)A.

For our purpose in this work, it suffices to consider test functions whose orbital
integrals are zero on a neighborhood of each singular element. We say that an
element t ∈ G′ is β-regular if the norm of t in G is regular, and we let G′β-reg

denote the subset in G′ of β-regular elements. The following lemma is well known.

Lemma 3.1. Let M = G or H. Given any test function fM on M whose orbital
integral is zero on a neighborhood of each singular element, there exists a test func-
tion f on G′ such that f and fM are matching functions.

Proof. Defined in [3, Sec. 2] is an adjoint transfer factor ∆G′,M on G′β-reg ×M reg.
(Or rather, we define ∆G′,M in terms of the transfer factor ∆M,G′ on M reg×G′β-reg

in virtually the same way as in [3, Eq. (2.3)].) For each t ∈ G′β-reg, let:

F (t) =
∑

tM∈Mreg

∆G,M (t, tM )SOfM (tM ),

where the sum is over representatives of the regular conjugacy classes of M , and
SOfM (tM ) denotes the stable orbital integral of fM at tM . We claim that F (t) may
be realized as a β-twisted orbital integral; namely, there exists a smooth compactly
supported modulo center function f on G′ such that:

F (t) = Of (tβ) :=
∫

Z(G′)G′
tβ\G′

f(g−1tβ(g))dg

for all t ∈ G′β-reg, where G′
tβ := {g ∈ G′ : g−1tβ(g) = t}, the β-twisted centralizer

of t in G′. Once that is shown, it follows from the “inversion formula” (2.5) in [3],
extended to the twisted case, that f and fM are in fact matching functions (see [3,
pp. 528–529]). That is, the stable orbital integral of fM at each element tM ∈ M reg

is equal to the so-called “κ-orbital integral” of f computed at the stable β-conjugacy
class of an element t ∈ Gβ-reg whose norm is tM , where κ is a character of the finite
group parametrizing the β-conjugacy classes within the stable β-conjugacy class
of t (not to be confused with the κ associated with the lifting from U(2, E/F ) to
RE/F GL(2) introduced earlier). In this work we content ourselves with claiming
that it is reasonable to assume that the inversion formula extends to the twisted
case, without proving it.

The factor ∆G,M (t, tM ) is zero unless tM is a norm of t. Hence, it suffices to
consider only those elements in G′β-reg whose norms in M are regular. Let t ∈ G′

be such an element. In our context of base change for U(3), t has a norm in G
which is regular, even when M = H . By [24, Lemma 3.2.A], the β-conjugacy class
of t meets a β-invariant maximal torus in G′. So, without loss of generality we may
assume that t belongs to a β-invariant maximal torus T ′ of G′. In particular, T ′

is the centralizer in G′ of the norm Nt of t in G ⊂ G′, and G′
tβ is equal to the

centralizer of Nt in G. We also have G′
tβ = T ′β, the subgroup of β-fixed elements

in T ′.
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Let {T ′
i} be a set of representatives for the β-conjugacy classes of the β-invariant

maximal tori of G′. For each T ′
i , put

NG′(T ′
iβ) := {g ∈ G′ : g−1T ′

iβ(g) = T ′
i},

the β-normalizer of T ′
i in G′. Fix a smooth function aT ′

i
on G′, compactly sup-

ported modulo Z(G′)NG′(T ′
iβ), such that aT ′

i
(hg) = aT ′

i
(g) for all g ∈ G′,

h ∈ Z(G′)NG′(T ′
iβ), and

∫
Z(G′)T ′β

i \G′ aT ′
i
(g)dg = 1. For each h ∈ G′, let:

f(h) =
{

F (t)aT ′
i
(g) if h = g−1tβ(g) for some t ∈ T ′

i , g ∈ G′,
0 otherwise.

The function f is well-defined, since we have made the heavy assumption that the
orbital integral of fM is zero on a neighborhood of the singular set, so that we can
separate nonconjugate tori and need not study asymptotic expansions. For each
t ∈ G′β-reg with a regular norm in G, we have:

Of (tβ) =
∫

Z(G′)G′
tβ\G′

f(g−1tβ(g))dg =
∫

Z(G′)T ′β
t \G′

F (t)aT ′
t
(g)dg = F (t)

after a suitable change of variable; T ′
t is T ′

i for a suitable i depending on t.

Unless otherwise noted, all representations studied in this section are irreducible
and smooth admissible.

3.1. Classification of local packets for U(3)

We now give a summary of the classification of the local (quasi-) packets of admis-
sible representations of U(3). All results recorded in this section are due to [10, 15].
The local packets are defined in terms of the local character identities which they
satisfy. For an element g in GL(m, l) (m = 2, 3), let σ(g) = Jα(tg−1)J−1, where

J is
( 1

−1
1

)
if m = 3,

( 1
−1

)
if m = 2. We say that a representation (π, V ) of

GL(m, l) is σ-invariant if (π, V ) ∼= (σπ, V ), where (σπ, V ) is the GL(m, l)-module
defined by σπ : g #→ π(σ(g)), ∀g ∈ GL(m, l).

Each σ-invariant square-integrable representation π̃ of GL(3, l) is the lift of a
local packet consisting of a single square-integrable representation π(π̃) of G. Each
pair (θ1, θ2) of characters of lk lifts to a local packet ρ(θ1, θ2) which consists of
two irreducible representations π+, π− of H . They are cuspidal if θ1 &= θ2. If an
irreducible representation ρ of H does not lie in a local packet of the form ρ(θ1, θ2),
then ρ belongs to a local packet consisting of itself alone. A local packet {ρ} of H
lifts to a local packet π({ρ}) of G which has cardinality |π({ρ})| = 2|{ρ}|.

A more detailed summary is given in Appendix D.
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3.2. Parabolically induced representations

We now state the twisted character identities for the parabolically induced repre-
sentations of G′. Let µ be a character of l×, and η a character of lk. Let µ⊗η denote
the following representation of the upper triangular parabolic subgroup P of G:

µ ⊗ η : p =




a ∗ ∗

b ∗
α(a)−1



 #→ µ(a)η(b), p ∈ P.

Let IG(µ, η) denote the representation of G parabolically induced from µ⊗ η, with
normalization. We extend this notation to G′. The character µ defines a represen-
tation of the upper triangular parabolic subgroup of H = U(2, l/k) via

µ

((
a ∗

α(a)−1

))
= µ(a), a ∈ l×.

Let IH(µ) denote the representation of H parabolically induced from µ, with
normalization.

Let µ′ denote the character µ ◦ Nl′/l of l′×, η′ the character η ◦ Nl′/l of l′k
′
. For

a smooth function φ in the space of I ′ := IG′(µ′, η′), let

(Aφ)(g) = φ(β(g)), g ∈ G′.

Then, A is an intertwining operator in HomG′(I ′, βI ′).

Lemma 3.2. The following character identities hold for all matching functions :

〈I ′, f ′〉A = 〈IG(µ, η), f〉 = 〈IH(µκ−1), fH〉. (3.1)

Proof. This follows from a standard computation of the trace of an induced rep-
resentation, using the Weyl integration formula and its twisted form.

3.3. Cuspidal representations

In this section, we establish local character relations for cuspidal representations.
Many of the proofs in this section rely on the construction of global data whose
local components coincide with the given local data. We describe once and for all
our notation here: For a given positive integer m, we construct a system of totally
imaginary number fields F , F ′, E, E′ such that: [E : F ] = 2, F ′/F is cyclic of
degree n, E′ = F ′E; there is a place w of F , which stays prime in E and F ′, such
that Fw = k, Ew = l, F ′

w = k′, E′
w = l′; and there are m places w1, . . . , wm of F not

equal to w, which stay prime in F ′, such that Fw1 = Fw2 = · · · = Fwm . By abuse of
notation, we let α and β denote also generators of Gal(E′/F ), with F ′ = E′α and
E = E′β . Recall that we put

CF := F×\A×
F , CF

E := U(1, E/F )(F )\U(1, E/F )(AF ),

and define CE , CF ′ , CE′ , CF ′

E′ similarly.
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3.3.1. Global construction

Let π0 be an irreducible square-integrable representation of a connected, reductive
p-adic group. By definition, π0 embeds in a Hilbert space ([21, p. 5]). We let (·, ·)
denote the inner product on the space of π0. Given any unit vector v in the space
of π0, we define the matrix coefficient function fπ0(g) := d(π0)(π0(g)v, v) on
the group, where d(π0) is the formal degree of π0 (see [21]). The function fπ0 is
smooth and square-integrable modulo the center of the group. If π0 is cuspidal,
fπ0 is compactly supported mod center, and the trace tr π(fπ0) is well-defined for
any admissible representation π of the group with the same central character as
π0. For irreducible admissible representations π0, π of the group with the same
central character, such that π0 is cuspidal, Harish-Chandra proved in [21] that the
trace trπ(fπ0) is nonzero if and only if π ∼= π0, and tr π0(fπ0) = 1. If π0 is square-
integrable but not cuspidal, then tr π(fπ0) is not defined, since fπ0 is not compactly
supported mod center.

In [23], Kazhdan proved the existence of pseudo-coefficients for square-
integrable representations. These are smooth, compactly supported modulo center
functions which behave like the matrix coefficients of cuspidal representations. More
precisely, a pseudo-coefficient fπ0 of an irreducible square-integrable representation
π0 has the property that: For an irreducible admissible representation π with the
same central character as π0, we have tr π(fπ0) "= 0 if and only if π is an elliptic
constituent of the parabolically induced representation I of which π0 is a subquo-
tient. Here, we say that a representation is elliptic if its character is nonzero on
the elliptic regular set. If π is tempered, then tr π(fπ0) is equal to 1 if π0

∼= π,
and 0 otherwise ( [23, Theorem K]). Note that any matrix coefficient of a cuspidal
representation is a pseudo-coefficient.

The existence of pseudo-coefficients also holds for nonconnected groups, see
for example [4, Chap. 1], where the case of RF ′/F GL(n, F ) ! Gal(F ′/F ) (F ′/F
cyclic field extension) is discussed, or [11, p. 197]. Hence, for each β-invariant,
irreducible, square-integrable representation π′

0 of G′, there exists a smooth, com-
pactly supported modulo center function fπ′

0
on G′ with the property that: For

any β-invariant, irreducible, admissible representation π′ of G′ with the same cen-
tral character as π′

0, and nonzero intertwining operator A′ ∈ HomG′(π′, βπ′), the
twisted trace 〈π′, fπ′

0
〉A′ := tr π′(fπ′

0
)A′ is nonzero if and only if π′ is an elliptic

constituent of the parabolically induced representation of which π′
0 is a subquo-

tient. If π′ is tempered, then 〈π′, fπ′
0
〉A′ is nonzero if and only if π′

0
∼= π′. We

call fπ′
0

a β-twisted pseudo-coefficient of π′
0. If π′

0 is cuspidal, we may take
its twisted pseudo-coefficient to be any of its matrix coefficients, defined as in the
nontwisted case. For simplicity, we normalize the twisted pseudo-coefficient fπ′ for
each β-invariant square-integrable G′-module π′, such that 〈π′, fπ′〉A(π′) = 1, where
A(π′) is a nonzero intertwining operator in HomG′(π′, βπ′) fixed once and for all,
with A(π′)n = 1. Note that twisted pseudo-coefficients in fact exist for a larger
class of representations called β-discrete representations (see [4, Sec. 1.2.3]), which
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are not necessarily square-integrable, but for simplicity we restrict our attention to
only the β-invariant square-integrable representations of U(3, l′/k′).

The following lemma enables us to construct β-invariant automorphic repre-
sentations of G′(AF ) with given β-invariant cuspidal and square-integrable local
components. A priori, if [k′ : k] > 1, it is possible that no cuspidal representation
of G′ is β-invariant, in which case the lemma is vacuous. As we shall see, at least in
the case where the residual characteristic of k is odd, β-invariant cuspidal represen-
tations of G′ do exist by Proposition 3.5, which is proved in part by applying the
lemma to the case where the field extension k′/k is trivial. As shall be shown by
the comments made before Proposition 3.11, there always exist β-invariant square-
integrable representations of G′, regardless of the residual characteristic of k.

Lemma 3.3. Let m be a positive integer. Let π′
i, 0 ≤ i ≤ m, be Gal(l′/l)-invariant,

irreducible, square-integrable G′-modules. Let π′
0 be moreover cuspidal.

There exist totally imaginary number fields F, F ′, E, E′ = F ′E, with [E : F ] = 2,
F ′/F cyclic of degree n, and a Gal(E′/E)-invariant, irreducible, cuspidal, automor-
phic representation π′ of

G′(AF ) = (RF ′/F U(3, E/F ))(AF ) = U(3, E′/F ′)(AF ′),

such that :

(i) There are m + 1 nonarchimedean places {wi}m
i=0 of F which stay prime in F ′

and E, such that: For 0 ≤ i ≤ m, we have Fwi = k, F ′
wi

= k′, Ewi = l,
E′

wi
= l′.

(ii) π′
wi

(0 ≤ i ≤ m) is equivalent to π′
i.

(iii) πv is unramified for each nonarchimedean place v "= w0, w1, . . . , wm of F at
which E/F is unramified.

(iv) For each place u outside of {wi}m
i=0 which is either an archimedean place or a

nonarchimedean place at which E/F is ramified, π′
u is an irreducible principal

series representation.

Proof. The lemma follows from techniques used in [11, p. 173, Proposition III.3]
and, for example, [13]. We summarize the procedure as follows:

For any finite prime p and finite field extension Qp(γ) of Qp, Krasner’s Lemma
implies that if an element c in Q ∩ Qp(γ) is sufficiently close to γ in Qp(γ), then
Q(c)Qp = Qp(γ). Thus, by the Chinese Remainder Theorem, for any finite collection
of algebraic p-adic field extensions {Qpi(γi)}, with pi distinct, there exists c ∈ Q
such that Q(c)Qpi = Qpi(γi) for all i. Hence, there are totally imaginary number
fields F, F ′, E, E′ = F ′E, with [E : F ] = 2 and F ′/F cyclic of degree n, which
satisfy condition (i) of the lemma. Note that this construction is not unique. Let β
denote also the generator of Gal(E′/E), which is the restriction to E′ of the fixed
generator β of Gal(l′/l).

We consider the β-twisted “simple trace formula” of U(3, E′/F ′), or equivalently
the simple trace formula of the nonconnected group RF ′/F U(3, E/F )! 〈β〉 (see [9],
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[11, Chap. IV, Sec. 3] and [4, Chap. 1, Lemma 2.5]). To apply it we must first
fix a β-invariant character ω′ of U(1, E′/F ′)(AF ′), trivial on U(1, E′/F ′)(F ′), such
that the test function f ′ on G′(AF ) in the formula transforms under the center
Z(G′)(AF ) ∼= U(1, E′/F ′)(AF ′) of G′(AF ) as follows:

f ′(zg) = ω′−1(z)f ′(g), g ∈ G′(AF ), z ∈ Z(G′)(AF ).

Moreover, we would like ω′
wi

to coincide with the central character of π′
i, for i =

0, 1, . . . , m. In what follows, we identify U(1, E′/F ′) with an F -group via restriction
of scalars.

By assumption, the central characters ω′
i (0 ≤ i ≤ m) of π′

i are βwi-invariant.
Hence, by Lemma C.1, there are characters ωi of the group U(1, l/k) such that
ω′

i = ωi ◦ Nl/k. We construct a global character ω of CF
E such that ωwi = ωi

for i = 0, 1, . . . , m, and ωv is unramified for each nonarchimedean place v /∈
{w0, w1, . . . , wm} at which E/F is unramified. This construction is possible be-
cause CF

E and E
Fwi
wi (elements in Ewi with norm 1 in Fwi), 0 ≤ i ≤ m, are compact

in their respective topologies, which allows us to construct ω using the Poisson
Summation Formula for U(1).

Let ω′ = ω◦NE′/E . Then, ω′ is a β-invariant character of CF ′

E′ with the property
that ω′

wi
= ω′

i for i = 0, 1, . . . , m, and ω′
v is unramified for all nonarchimedean

places v /∈ {wi}m
i=0 of F at which E/F is unramified.

For simplicity, we now view G′(AF ) as the group of AF ′ -points of the F ′-group
U(3, E′/F ′), so that the local components of an irreducible automorphic repre-
sentation of G′(AF ) are indexed by the places of F ′. Let Vram denote the set of
nonarchimedean places of F ′ outside of {wi}m

i=0 at which E′/F ′ is ramified. Here,
we identify the places wi of F with places of F ′, as we may since they are by
assumption prime in F ′.

We let the local component f ′
w0

of the test function f ′ be a matrix coefficient of
π′

w0
. For 1 ≤ i ≤ m, we let f ′

wi
be a twisted (with respect to βwi) pseudo-coefficient

of π′
i. For each nonarchimedean place v of F ′ outside of Vram ∪ {wi}m

i=0, we let f ′
v

be a spherical function. Note that the condition m ≥ 1 is needed to ensure that the
simple trace formula holds for such f ′.

For each place u ∈ Vram, fix a ramified character µu of F ′×
u of odd order.

Let µ′
u denote the character µu ◦ NE′

u/F ′
u

of E′×
u . For all x ∈ F ′

u
×, we have

µ′
u(x) = µ2

u(x). Since the order of µu is odd and the ramified character µu is
nontrivial on O×

F ′
u
, the restriction of µ′

u to O×
F ′

u
is nontrivial. We choose f ′

u such
that its normalized βu-twisted orbital integral ∆Φβ(f ′

u) is supported on the βu-
twisted conjugacy classes of elements of the form z diag(r$j

u, x(r, j), α(r$j
u)−1),

where z is an element in the center of G′
u := U(3, E′

u/F ′
u), r is a unit in the

ring of integers OE′
u

of E′
u, $u is a fixed uniformizer of OE′

u
, j is a fixed pos-

itive integer, and x(r, j) := (α(r)/r)(α($u)/$u)j . Moreover, we require that
∆Φβ(f ′

u) takes the value ω′
u(z)(µ′

u(r) + µ′
u(α(r)−1)) on the twisted conjugacy class

of z diag(r$j
u, x(r, j), α(r$j

u)−1).
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Let Z ∼= U(1, E′/F ′) be the center of U(3, E′/F ′). Let SU(3, E′/F ′) be the
subgroup of elements in U(3, E′/F ′) with determinant 1. Then,

ZSU(3, E′/F ′)wi := Z(F ′
wi

)SU(3, E′/F ′)(F ′
wi

)

is a subgroup of index 3 in U(3, E′/F ′)(F ′
wi

), for i = 0, 1, . . . , m. The restriction
of π′

wi
(0 ≤ i ≤ m) to ZSU(3, E′/F ′)wi can be shown to be nonzero on develop-

ing endoscopy for SU(3) in analogy with the theory for SL(2). Hence, the twisted
orbital integrals of the matrix/pseudo-coefficients f ′

wi
do not vanish identically on

ZSU(3, E′/F ′)wi , nor on SU(3, E′/F ′)wi since they transform under Zwi via mul-
tiplication with the fixed central character ω′

i.
By the weak approximation property of the simply connected algebraic F ′-group

SU(3, E′/F ′) ([30, Proposition 7.9]), there is a g0 ∈ ZSU(3, E′/F ′)(F ′) which lies
simultaneously in the support of the twisted orbital integrals of all f ′

wi
(0 ≤ i ≤ m),

and is arbitrarily close to an element of the form z diag(r#j
u, x(r, j), α(r#j

u)−1)
(see above) in ZSU(3, E′/F ′)u for each u ∈ Vram. Adjusting the support of the
archimedean components of f ′ if necessary to ensure that the twisted orbital inte-
gral of f ′ is nonzero at only one elliptic β-regular element in U(3, E′/F ′)(F ′), the
geometric side of the β-twisted simple trace formula of U(3, E′/F ′)(AF ′) is nonzero
for this choice of f ′. Hence, there must be a β-invariant, irreducible, cuspidal, auto-
morphic representation π′ of U(3, E′/F ′)(AF ′) such that 〈π′, f ′× β〉 '= 0. Since f ′

w0

is the matrix coefficient of the cuspidal representation π′
0, we must have π′

w0
∼= π′

0.
This proves part (ii) of the lemma for i = 0. Part (iii) of the lemma also follows
because π′

v must be unramified if f ′
v is spherical and 〈π′

v, f ′
v × βv〉 '= 0.

We now consider part (iv) of the lemma. Since the number fields are totally
imaginary, the archimedean local components of π′ must be irreducible principal
series representations of GL(3, C). Let u be a place in Vram. Given our choice of f ′

u,
by the same argument as in [13, Sec. 1.5] which uses the Deligne–Casselman Theo-
rem [6], 〈π′

u, f ′
u × βu〉 '= 0 implies that the representation π′

u must be a constituent
of a parabolically induced representation IG′

u
(χ′, η′), such that χ′ agrees with µ′

u

on O×
E′

u
, and η′ is trivial on O×

E′
u
∩ E

′F ′
u

u (i.e. η′ is unramified).
To show that IG′

u
(χ′, η′) is irreducible, we first recall the criteria for the reducibil-

ity of the parabolically induced representations of G′
u, as recorded in [15, Part 2,

I.4.3]: IG′
u
(χ′, η′) is reducible if and only if one of the following conditions holds:

(1) χ′ is trivial on F ′×
u , and χ′ '= η̃′, where η̃′ is the character of E′×

u defined by
η̃′(z) = η′(z/α(z)) for all z ∈ E′×

u . In this case, IG′
u
(χ′, η′) is the direct sum of

two tempered representations.
(2) χ′ = ξ′κ′ν′1/2, for some characters ξ′, κ′ of E′×

u , such that ξ′|F ′×
u

= 1, and
κ′|F ′×

u
= εE′

u/F ′
u

= εEu/Fu
◦ NF ′

u/Fu
, where εEu/Fu

is the quadratic character
associated with the local field extension Eu/Fu via local class field theory. Here,
ν′ is the normalized absolute value character of E′×

u . The composition series of
IG′

u
(ξ′κ′ν′1/2, η′) has length two and consists of a discrete series component and

a nontempered component.
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(3) χ′ = η̃′ν′. The composition series of the representation IG′
u
(χ′, η′) consists

of a square-integrable Steinberg subrepresentation and a nontempered one-
dimensional quotient.

Since µu is ramified of odd order, the restriction µ′
u|O×

F ′
u

= µ2
u|O×

F ′
u

is nontrivial

with odd order. So, the restriction of χ′ to O×
F ′

u
is also ramified with odd order. In

particular, χ′ is nontrivial on F ′×
u ; hence, IG′

u
(χ′, η′) does not belong to case (1)

of the classification above. Since the order of χ′|O×
F ′

u

is odd, χ′ cannot be of the

form ξ′κ′ν′1/2 as in case (2). Lastly, IG′
u
(χ′, η′) does not belong to case (3) of the

classification above, since the character η̃′ν′ is unramified, but χ′ is ramified. Thus,
we conclude that π′

u is an irreducible principal series representation.
We now prove part (ii) of the lemma for 0 < i ≤ m. Suppose the cuspidal

automorphic representation π′ of U(3, E′/F ′)(AF ′) has a nontempered local com-
ponent π′

v for some nonarchimedean place v ∈ {wi}m
i=1. By the classification of the

admissible representations of U(3, E′
v/F ′

v) recorded in [15, pp. 214–215], π′
v must be

either (a) a one-dimensional representation, or (b) the nontempered quotient π′× of
an induced representation belonging to case (2) of the classification above. Suppose
case (a) holds. Since

U(3, E/F )(AF ) = SU(3, E/F )(AF ) · {diag(x, 1, α(x)−1) : x ∈ CE},
the strong approximation property of Gm ([30, Theorem 1.5]) and of the simply con-
nected group SU(3, E/F ) ( [30, Theorem 7.12]) implies that π′ is one-dimensional,
a contradiction. In case (b), by [15, Part 2, III, Proposition 5.2.3] the representa-
tion π′ must belong to the quasi-packet which is the e′-lift of a one-dimensional
representation of U(2, E′/F ′)(AF ′ ). This contradicts the fact that π′ has, by con-
struction, irreducible principal series local components. Hence, neither case (a) nor
(b) holds, and we conclude that π′

v is tempered for all v ∈ {wi}m
i=1. By construc-

tion, the local test functions fwi (1 ≤ i ≤ m) are twisted pseudo-coefficients of the
square-integrable representations π′

i of our choice, so 〈π′
wi

, f ′
wi

× βwi〉 &= 0 implies
that π′

wi
∼= π′

i. This proves part (ii) of the lemma.

Lemma 3.4. Let π0 be a β-invariant, cuspidal, irreducible U(3, l′/k′)-module. Let
F, F ′, E, E′ = F ′E be totally imaginary number fields, where [E : F ] = 2 and F ′

is a degree n cyclic extension of F, such that there is a place w of F, which remains
prime in E and F ′, such that Fw = k, Ew = l, F ′

w = k′ and E′
w = l′. Let u be

a place of F which stays prime in F ′ and splits in E. There exists a β-invariant,
irreducible, cuspidal, automorphic representation π of U(3, E′/F ′)(AF ′) such that:
(i) πw

∼= π0; (ii) The β-twisted character of πu is not identically zero on the set
of elliptic β-regular elements in U(3, E′/F ′)(F ′

u); (iii) πv is an irreducible principal
series representation for all places v of F ′ at which E′/F ′ is ramified; and (iv) πv

is unramified for each place v /∈ {w, u} of F ′ at which E′/F ′ is unramified.

Proof. The proof is very similar to that of Lemma 3.3. In this case the situation
is even simpler, for we put no restriction on πu other than it be elliptic. So, in
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the simple trace formula (see proof of Lemma 3.3), it suffices to let f ′
u be any

test function whose twisted orbital integral is supported only on elliptic β-regular
elements.

3.3.2. Local character relations

If a local packet {π} of G lifts to a representation π̃ of GL(3, E), we put {π(π̃)} :=
{π}. If π̃ is cuspidal, then {π(π̃)} is a singleton, by Proposition D.5.

Proposition 3.5. (i) Let π be a cuspidal G-module belonging to a local packet
{π(π̃)} which lifts to a cuspidal representation π̃ of GL(3, l). In particular, π̃ is
σ-invariant and the local packet {π(π̃)} consists of π alone. Assume, in the case
where n = [l′ : l] = 3, that π̃ is not the monomial representation associated with
any character of l′×. Then, there exists a β-invariant cuspidal representation
π′ of G′, and a nonzero intertwining operator A ∈ HomG′(π′, βπ′), such that
the following character identity holds for matching functions:

〈π′, f ′〉A = 〈π, f〉. (3.2)

Moreover, π′ belongs to the singleton local packet {π′(π̃′)} which lifts to the β-
and σ′-invariant cuspidal representation π̃′ of GL(3, l′), where π̃′ is the base-
change lift of π̃ with respect to l′/l.

(ii) Conversely, given a β-invariant representation π′ of G′ which lifts to a cusp-
idal representation π̃′ of GL(3, l′), there exists a cuspidal G-module π, and a
nonzero intertwining operator A ∈ HomG′(π′, βπ′), such that Eq. (3.2) holds
for matching functions.

Proof of Proposition 3.5(i). Let F, F ′, E, E′ = F ′E be totally imaginary number
fields, where [E : F ] = 2, F ′/F is cyclic of degree n, and there is a place w of F which
stays prime in E and F ′, such that Fw = k, Ew = l, F ′

w = k′ and E′
w = l′. Let S be

the set of the archimedean places of F , the dyadic places, and the nonarchimedean
places different from w where at least one of the number field extensions E/F , F ′/F
is ramified. The cardinality of S is finite. Let u /∈ S be a nonarchimedean place of
F which splits in E but stays prime in F ′.

By Lemma 3.4, there exists a cuspidal automorphic representation of G(AF ),
which we denote again by π, such that:

(1) πw is equivalent to the local representation of U(3, l/k) previously denoted by π;
(2) πu is an elliptic representation of Gu = GL(3, Fu);
(3) πv is unramified for each place v /∈ S∪{w, u}; and πv is an irreducible principal

series representation for each place v ∈ S.

By construction, the global packet {π} containing π is stable because {πw}
is a singleton local packet, so {π} b-lifts to a σ-invariant, cuspidal, automorphic
representation π̃ of GL(3, AE). The packet π̃ lifts via base change to a β-invariant
automorphic representation π̃′ of GL(3, AE′), which is σ′-invariant by Lemma 2.9.
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Its local component π̃′
w, being the local base-change lift of the cuspidal GL(3, Ew)-

module π̃w, is non-cuspidal only if n = 3 and π̃w is the monomial representation
associated with a character of l′×. Since that is not the case by hypothesis, π̃′

w is
cuspidal, which implies that π̃′ is a discrete spectrum automorphic representation.
Hence, π̃′ is the lift of a global packet {π′} = {π′(π̃′)} on G′(AF ). Moreover, the
local packet {π′

w} = {π′(π̃′
w)} consists of a single cuspidal representation π′

w.
Let f ′ and f be matching functions on G′(AF ), G(AF ), respectively, such

that their local components at each place outside of S ∪ {w, u} are spherical. By
Lemma 2.10, we have the following global character identity:

∑

τ ′∈{π′}

ε(τ ′)m(τ ′)〈τ ′, f ′ × β〉S∪{w,u} = 〈{π}, f〉S∪{w,u}. (3.3)

Here, recall from Sec. 2.4 that

〈τ ′, f ′ × β〉S∪{w,u} :=
∏

v∈S∪{w,u}

〈τ ′
v, f ′

v × βv〉,

where 〈τ ′
v, f ′

v × βv〉 is the twisted character associated with a fixed intertwining
operator A(τ ′

v) ∈ HomG′
v
(τ ′

v, βvτ ′
v), that is 〈τ ′

v, f ′
v × βv〉 = 〈τ ′

v , f ′
v〉A(τ ′

v).
For each dyadic place v of F ′, the local component τ ′

v of τ ′ belongs to the same
local packet as π′

v. By construction, π′
v is an irreducible principal series representa-

tion, which implies that the multiplicity one property holds for τ ′ (see Theorem D.9).
Hence, m(τ ′) = 1 for all τ ′ ∈ {π′}.

The coefficient ε(τ ′) is an nth root of unity, defined as follows: If τ ′ is β-invariant,
then the operator induced by Tβ on ⊗vτ ′

v is nonzero, and ε(τ ′) is the nth root of
unity by which the global intertwining operator ⊗vA(τ ′

v) differs from Tβ. If τ ′ is
not β-invariant, then both operators are zero, and we let ε(τ ′) = 1.

Since {π′} is a restricted tensor product ⊗′
v{π′

v} of local packets, and {π′
w}

consists of a single cuspidal representation π′
w, the local component τ ′

w of every
representation τ ′ ∈ {π′} is equivalent to π′

w. Moreover, by hypothesis the local
packet {πw} consists of πw alone. So, Eq. (3.3) is equivalent to:

∑

τ ′∈{π′}

ε(τ ′)

(
∏

v∈S

〈τ ′
v, f ′

v × βv〉
)
〈τ ′

u, f ′
u × βu〉〈π′

w, f ′
w × βw〉

=

(
∏

v∈S

〈{πv}, fv〉
)
〈{πu}, fu〉〈πw, fw〉. (3.4)

Since the number fields are totally imaginary, the archimedean components of
the automorphic representations are all irreducible principal series representations.
Hence, by the construction of π, for each place v ∈ S the local packet {πv} consists
of a single irreducible principal series representation. By the linear independence of
characters, the right-hand side of Eq. (3.4) is not identically zero as a distribution
on the space of test functions on G(AF ). So, by Lemma 3.1 the left-hand side
of the equation is nonzero. Hence, by the linear independence of characters and
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Lemma 3.2, the local components at v ∈ S of the automorphic representations in
Eq. (3.4) cancel one another.

Lastly, at the place u, the group Gu (respectively, G′
u) is GL(3, Fu) (respectively,

GL(3, F ′
u)), and the GL(3, F ′

u)-module π′
u is the local base-change lift of πu, by the

commutativity of the L-group diagram (Fig. 2). Since local base-change lifting for
general linear groups has been established in [4, Chap. 1, Theorem 6.2], we may
cancel the local components at u of the representations in Eq. (3.4). We thus obtain
the identity:

ξn〈π′
w, f ′

w〉A(π′
w) = 〈πw, fw〉

for some nth root of unity ξn. Letting A = ξnA(π′
w), part (i) of the proposition

follows.

Proof of Proposition 3.5(ii). Let F, F ′, E, E′ again be the system of totally
imaginary number fields introduced in the proof of part (i) of the proposition. We
let S denote the same set of “bad” places as before. Using Lemma 3.4, we construct
a β-invariant, irreducible, cuspidal, automorphic representation of G′(AF ), which
we denote again by π′, such that:

(1) π′
w is equivalent to the local representation of U(3, l′/k′) previously denoted

by π′.
(2) π′

u is an elliptic representation of G′
u.

(3) π′
v is unramified for each place v /∈ S∪{w, u}, and π′

v is an irreducible principal
series representation for each place v ∈ S.

By construction, the packet {π′} containing π′ is stable because {π′
w} is a

singleton local packet, which implies that {π′} b′-lifts to a σ′-invariant, cuspidal,
automorphic representation π̃′ of GL(3, AE′). By Proposition 2.2, {π′} is the weak
lift of packet(s) from G and/or H, via the L-homomorphisms bG and/or eH . Suppose
it is the eH -weak-lift of a packet of H(AF ). By the commutativity of the L-group
diagram in Fig. 2, the packet π̃′ must be the b3-lift of a parabolically induced rep-
resentation of GL(3, AE), which contradicts the cuspidality of π̃′. Hence, the packet
{π′} must be the bG-weak-lift of a stable packet {π} = {π(π̃)} of G(AF ), which
b-lifts to a σ-invariant, cuspidal, automorphic representation π̃ of GL(3, AE). By
the commutativity of the L-group diagram, the representation π̃ base-change lifts
to π̃′ via b3.

By the theory of base change for general linear groups, the automorphic repre-
sentation π̃ is cuspidal at w, elliptic at u, and irreducible principal series everywhere
else. Hence, by Proposition D.4, the representation π satisfies the conditions (1)–(3)
in the proof of part (i) of the proposition. In particular, the cuspidal representation
πw belongs to the singleton local packet {π(π̃w)}.

The twisted local character identity now follows via the same argument as in
the proof of part (i) of the proposition.
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Let ρ be a cuspidal representation of H = U(2, l/k) which does not belong
to a local packet of the form ρ(θ1, θ2) for any pair of characters (θ1, θ2) of lk.
Let π(ρ) denote the local packet of G which is the lift of ρ. By Lemma 2.4 and
the same reasoning used in the proof of Proposition 3.5, there is a base-change
lifting of ρ to a cuspidal representation ρ′ of H ′ = U(2, l′/k′), corresponding to the
L-homomorphism bH (see Fig. 2). Since ρ is not a lift from U(1, l/k) × U(1, l/k),
it lifts to a cuspidal representation ρ̃ of GL(2, l). The representation ρ′ lifts to
the GL(2, l′)-module ρ̃′ which is the base-change lift of ρ̃. Since l′/l is an odd
degree extension, ρ̃′ is cuspidal, which implies that ρ′ is not a lift from U(1, l′/k′)×
U(1, l′/k′). Let π′(ρ′) denote the local packet of G′ which is the lift of ρ′ via the
L-homomorphism e′. It consists of two cuspidal representations π′+ and π′− (see
Proposition D.3).

Proposition 3.6. The cuspidal representations π′+ and π′− of G′ are β-invariant.

Proof. Construct number fields F, F ′, E, E′ such that there are 2 nonarchimedean
places w1, w2 of F which stay prime in E and F ′, and Fw = k, F ′

w = k′, Ew = l,
E′

w = l′. Using the same technique as in the proof of Lemma 3.3, we construct an
automorphic representation of H(AF ) = U(2, E/F )(AF ) such that its local compo-
nents at w1, w2 are equivalent to ρ.

From henceforth, by abuse of notation we denote this automorphic representa-
tion of H(AF ) by ρ. Hence, ρwi (i = 1, 2) is equivalent to the local representation
denoted by ρ in the preamble to the lemma. Let ρ′ be the weak base-change lift of
ρ to H′(AF ) = U(2, E′/F ′)(AF ′) corresponding to the L-homomorphism bH (see
Lemma 2.4). Put {π′} := π′(ρ′), the unstable packet of G′(AF ) which is the e′-lift
of ρ′.

It follows from the definitions of the L-homomorphisms bH and e′ (see [15,
p. 207]) that almost all unramified local components of each member of {π′} are
β-invariant. Hence, by the rigidity theorem for the packets of U(3) (Theorem D.10),
the global intertwining operator Tβ associated with β must map each discrete spec-
trum automorphic representation π′ in {π′} to an automorphic representation in
the same global packet which is equivalent to βπ′. This implies that the local packet
{π′+, π′−} is equivalent to {βπ′+, βπ′−}. On the other hand, the action of β is of
odd order, while {π′+, π′−} consists of two inequivalent irreducible representations.
Hence, π′+ ∼= βπ′+, and π′− ∼= βπ′−.

Proposition 3.7. There exist nonzero operators A† ∈ HomG′(π′†, βπ′†) († is +
or −) such that the following system of character identities holds for matching
functions:

2〈π′+, f ′〉A+ = 〈π(ρ), f〉 + 〈ρ, fH〉,
2〈π′−, f ′〉A− = 〈π(ρ), f〉 − 〈ρ, fH〉.

(3.5)

Proof. Construct totally imaginary number fields F, F ′, E, E′ = F ′E, such that
there are m ≥ 2 places w1, w2, . . . , wm of F which stay prime in E and F ′, and
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Fwi = k, Ewi = l, F ′
wi

= k′, E′
wi

= l′, 1 ≤ i ≤ m. Using Lemma 3.3, we construct
ρ, ρ′, {π}, {π′}, where ρ is an automorphic representation of H(AF ) whose local
component at each place in {wi}m

i=1 is equivalent to the local representation of H
previously denoted by ρ; ρ′ is the automorphic representation of H′(AF ) which is
the bH-lift of ρ; {π} := π(ρ) is the e-lift of ρ to G(AF ); and {π′} := π′(ρ′) is the
e′-lift of ρ′ to G′(AF ). Let {ρ} be the global packet of H(AF ) to which ρ belongs.
By assumption, ρ does not belong to a packet of the form ρ(θ1, θ2) for any pair of
characters θ1, θ2 of CF

E . Hence, {ρ} is stable.
As in the case of U(3), we may (and do) construct ρ such that, at a place

v /∈ {wi}m
i=1, the local packet {ρv} contains an unramified representation or consists

of a single irreducible principal series representation. Consequently, each member
of π′(ρ′) occurs in the discrete spectrum of G′(AF ) with multiplicity at most one
(Theorem D.9), and it is β-invariant by Proposition 3.6. By Lemma 2.5, we have:

2
∑

π′∈π′(ρ′)

m(π′)ε(π′)〈π′, f ′ × β〉S = 〈π(ρ), f〉S + 〈ρ, fH〉S .

Here, m(π′) is the multiplicity with which π′ occurs in the discrete spectrum of
G′(AF ). It is one if an even number (including zero) of local components of π′

are equivalent to π′−, and zero otherwise. The coefficient ε(π′) is an nth root of
unity by which the global intertwining operator Tβ, restricted to π′, differs from the
tensor product of the local intertwining operators A(π′

v), see the proof of part (i)
of Proposition 3.5.

By Lemma 3.2 and the linear independence of characters, we may cancel the
unramified and parabolically induced local components of the automorphic repre-
sentations, and obtain the following equation for matching functions:

2
∑

π′∈{π′}

m(π′)ε(π′)
m∏

i=1

〈π′
wi

, f ′
wi

× βwi〉

=
m∏

i=1

〈{πwi}, fwi〉 +
m∏

i=1

〈{ρwi}, fH,wi〉. (3.6)

For ∗ ∈ {+,−}, put A∗ := A(π′∗), a fixed nonzero intertwining operator in
HomG′(π′∗, βπ′∗) (with 〈π′∗, f ′

wi
× βwi〉 = 〈π′∗, f ′

wi
〉A(π′∗)). Let f ′∗ be a matrix co-

efficient of the cuspidal representation π′∗. Hence, for a β-invariant, irreducible,
admissible representation π′′ of G′ with nonzero intertwining operator A′′ ∈
HomG′(π′′, βπ′′), the twisted trace 〈π′′, f ′∗〉A′′ is nonzero if and only if π′′ ∼= π′∗.
For simplicity, we normalize f ′∗ with respect to A∗, so that 〈π′∗, f ′∗〉A∗ = 1. Let f∗

(respectively, f∗
H) be a fixed local test function on G (respectively, H) which matches

f ′∗. Note that, for 1 ≤ i ≤ m, the local packets {πwi} = π(ρwi) (respectively,
representations ρwi) are equivalent to one another.

Put

D∗
π := 〈π(ρwi ), f

∗〉, D∗
ρ := 〈ρwi , f

∗
H〉.
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For 1 ≤ i ≤ m, let f ′
wi

= f ′+, and fwi = f+, fH,wi = f+
H . For such test functions,

it follows from Eq. (3.6) and the multiplicity formula for {π′} that, for each m ≥ 2,
there exists an nth root of unity ξ+

n (m) such that:

2 · ξ+
n (m) = (D+

π )m + (D+
ρ )m. (3.7)

By a similar argument, we also have, for each even integer m ≥ 2, an nth root of
unity ξ−n (m) such that:

2 · ξ−n (m) = (D−
π )m + (D−

ρ )m. (3.8)

Now let f ′
wi

= f ′+, fwi = f+ and fH,wi = f+
H for 1 ≤ i ≤ m−1. Let f ′

wm
= f ′−,

fwm = f− and fH,wm = f−
H . For such test functions, it follows from Eq. (3.6) and

the multiplicity formula for {π′} that

0 = (D+
π )m−1D−

π + (D+
ρ )m−1D−

ρ , ∀m ≥ 2. (3.9)

Let z be a complex variable. Multiply both sides of the above equation by zm−1

and take the sum of each side over 2 ≤ m < ∞. For z sufficiently close to 0, we get:

0 =
D+

π D−
π

1 − D+
π z

+
D+

ρ D−
ρ

1 − D+
ρ z

. (3.10)

Each side of the above equation meromorphically continues to the whole complex
plane. Since the left-hand sides of Eqs. (3.7) and (3.8) have absolute values 2 for
infinitely many integers m, none of D+

π , D−
π , D+

ρ and D−
ρ can be zero. By the

absence of poles on the left-hand side (i.e. the zero function) of Eq. (3.10), the two
nonzero terms on the right-hand side must cancel each other, which implies that
D+

π = D+
ρ and D−

π = −D−
ρ . By Eq. (3.7), we have

ξ+
n (2) = (D+

π )2, ξ+
n (3) = (D+

π )3.

Dividing one equation by the other, we have D+
π = D+

ρ = ξn := ξ+
n (3)/ξ+

n (2), which
is an nth root of unity. Similarly, Eq. (3.8) implies that (D−

π )2 = ξ−n (4)/ξ−n (2), so
D−

π = −D−
ρ = ξ2n for some 2nth root of unity.

We are now at the final stage in the proof of the proposition. Let m = 2. Let
f ′

w2
= f ′+, fw2 = f+, and fH,w2 = f+

H . Let f ′
w1

, fw1 , fH,w1 be arbitrary matching
local test functions. By Eq. (3.6) and the multiplicity formula for {π′}, we have

2 ξ′n〈π′+, f ′
w1

〉A+ = D+
π 〈π(ρw1 ), fw1〉 + D+

ρ 〈ρw1 , fH,w1〉

for some nth root of unity ξ′n. Hence, by the values of D+
π and D+

ρ just computed,
we have

2 ξ′′n〈π′+, f ′
w1

〉A+ = 〈π(ρw1), fw1〉 + 〈ρw1 , fH,w1〉

for some nth root of unity ξ′′n. Now let f ′
w2

= f ′−, fw2 = f−, fH,w2 = f−
H , and let

f ′
w1

, fw1 , fH,w1 be arbitrary matching local test functions. By the same argument
as above, we have

2 ξ′′2n〈π′−, f ′
w1

〉A− = 〈π(ρw1), fw1〉 − 〈ρw1 , fH,w1〉

In
t. 

J. 
N

um
be

r T
he

or
y 

20
09

.0
5:

12
47

-1
30

9.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 O

H
IO

 S
TA

TE
 U

N
IV

ER
SI

TY
 o

n 
02

/0
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 11, 2009 11:3 WSPC/203-IJNT 00268

Base Change for Unitary Groups 1287

for some 2nth root of unity ξ′′2n. Multiplying the intertwining operators A+, A− by
ξ′′n, ξ′′2n, respectively, the system of equations of (3.5) follows.

We now consider the local packets of H which are lifts from lk × lk. Let
θ1, θ2 be characters of lk such that θ1, θ2 and θ3 := ω/θ1θ2 are distinct (recall
that ω is our fixed central character of G). For i = 1, 2, 3, let θ′i be the char-
acter θi ◦ Nl′/l of l′k

′
. In particular, θ′1, θ

′
2 and θ′3 are distinct by Lemma B.1. Let

ρ′ = ρ′(θ′1, θ′2) denote the packet of H ′ = U(2, l′/k′) associated with the pair (θ′1, θ′2).
Let {π′(θ′1, θ′2)} = {π′

a, π′
b, π

′
c, π

′
d} denote the packet, consisting of four inequivalent

cuspidal representations of G′, which is the lift of ρ′. We let π′
a be the unique generic

representation in {π′(θ′1, θ′2)} (see [15, p. 214]).

Proposition 3.8. All four members of {π′(θ′1, θ′2)} are β-invariant.

Proof. The equivalence classes of the inner forms of H ′ are indexed by the two
elements of k′×/Nl′/k′ l′×. We write H ′

1 := H ′, and let H ′
d denote a (unique up to

equivalence) non-quasisplit inner form of H ′ associated with the nontrivial element
d ∈ k′×/Nl′/k′ l′×.

Fix a β-invariant additive character ψ′ of k′. For ∗ = 1, d, the pair of characters
(ψ′, κ′−1) determines a Howe lifting ρ′ %→ H∗

ψ′(ρ′, κ′−1), of irreducible admissible
representations ρ′ of H ′

∗, to G′ (see [33]). Let ρ′d := ρ′d(θ
′
1, θ

′
2) denote the packet on

H ′
d which consists of the transfer to inner form of the members of ρ′ := ρ′(θ′1, θ′2).

The packets ρ′ and ρ′d each consists of two representations. By [19, Theorem 4.3],
each of these four representations lifts via Howe correspondence to one of the mem-
bers of {π′(θ′1, θ′2)}. This lifting is one-to-one, hence its image exhausts all four
members of the packet.

Let V (respectively, W ) be the Hermitian space (respectively, skew-Hermitian
space) over l′ associated with G′ (respectively, H ′). So, as l′-vector spaces, V = l′3

and W = l′2. The Hermitian structures of these spaces endow the tensor prod-
uct V ⊗ W with a symplectic structure (see, for example, [18, p. 454]). Let
Sp = Sp(V ⊗ W ) be the associated symplectic group. Let H be the Heisenberg
group associated with V ⊗ W (see [22, Sec. 1]). Let S = S(H)ψ′ be the space of
complex valued, smooth, compactly supported modulo center functions on H which
transform under the center (identified with l′) of H via ψ′ (see [28, p. 28]). Let
(ρψ′ ,S) be the Schrödinger representation of H, where H acts on the functions in S
via right translation. Let Mp1 denote the metaplectic group Mp(V ⊗ W ). It is the
group of elements (g, M) in Sp × GL(S) which satisfy:

Mρψ′(h)M−1 = ρψ′(gh), ∀h ∈ Sp.

The oscillator representation Ω = (Ωψ′ ,S) is the representation of Mp1 given by
Ω(g, M) = M (see [22, Sec. 2]).

A section g %→ (g, M [g]) from Sp to Mp1 is defined in [28, Chap. 2, Sec. II.2]. It
is associated with a two-cocycle c(g, g′) on Sp (see [28, Chap. 3, Sec. I]) such that:

M [g] · M [g′] = c(g, g′)M [gg′], ∀g, g′ ∈ Sp.
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Let Mp2 be the group Sp × C× with multiplication law:

(g1, b1)(g2, b2) = (g1g2, c(g1, g2)b1b2).

We have an isomorphism ϕ : Mp2 → Mp1 defined by:

ϕ(g, b) = (g, b · M [g]), g ∈ Sp, b ∈ C×.

By [18, Proposition 3.1.1], there is a splitting:

s = sψ′,κ′−1 : (g, h) $→ (m(g, h), b(g, h))

from G′×H ′ to Mp2, associated with the pair of characters (ψ′, κ′−1). Note that for
simplicity we have suppressed from the notation the dependence of b on (ψ′, κ′−1).
Composing ϕ with s, we have a splitting ϕ ◦ s : G′ × H ′ → Mp1. Let Ω′ denote the
representation Ω◦ϕ◦s of G′×H ′. For each irreducible admissible representation ρ′

of H ′, the representation π′ = H1
ψ′(ρ′, κ′−1) is by definition the unique irreducible

G′-module such that π′ ⊗ ρ′ occurs as a direct summand of Ω′ (see [33]). We claim
that Ω′ is β-invariant.

Let ω(β) be the vector space endomorphism of S defined by:

(ω(β)φ)(x) = φ(β−1(x)), φ ∈ S, x ∈ H.

We define an isomorphism β̃1 : Mp1 → Mp1 by:

β̃1(g, M) = (β(g), ω(β)M ω(β)−1),

and a map β̃2 : Mp2 → Mp2 by: β̃2(g, b) = (β(g), b). We claim that β̃2 is
a group isomorphism. The two-cocycle c(g, g′) is defined in terms of the Leray
invariant q(g, g′), which is uniquely determined by the triplet (X, g−1X, g′X), where
X is a fixed Lagrangian subspace of the symplectic space V ⊗ W (see [25, 31]
and [28, p. 55]). Since the l′-vector spaces β(g)−1X and g−1X are equal to each
other, and likewise β(g′)X = g′X , the Leray invariant q(g, g′) is β-invariant, i.e.
q(β(g), β(g′)) = q(g, g′). Consequently, the two-cocycle c(g, g′) is β-invariant, and
β̃2 is a group isomorphism.

Observe that the isomorphisms β̃2 and ϕ−1 ◦ β̃1 ◦ ϕ of Mp2 are equal to each
other. Moreover, the map b : G′ × H ′ → C×, defined in terms of the Hilbert
symbol, is β-invariant. It now follows from the definitions of β̃1 and β̃2 that, for
(g, h) ∈ G′ × H ′,

Ω′(β(g), β(h)) = b(β(g), β(h))M [m(β(g), β(h))]
= b(g, h)ω(β)M [m(g, h)]ω(β)−1 = ω(β)Ω′(g, h)ω(β)−1.

This shows that Ω′ is a β-invariant representation of G′ × H ′.
Consequently, if a representation π′ of G′ is the Howe lift of a representation ρ′

of H ′, then βπ′ is the Howe lift of βρ′.
Consider the packet ρ′(θ′1, θ′2) = {ρ′+, ρ′−} on H ′. Since the order of the Galois

group element β has odd order n, it follows from the same argument used in the proof
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of Proposition 3.6 that ρ′+ and ρ′− are β-invariant. By [19, Theorem 4.3], two of the
representations in the packet {π′(θ′1, θ′2)} are the Howe lifts π′

1 := H1
ψ′(ρ′+, κ′−1)⊗χ

and π′
2 := H1

ψ′(ρ′−, κ′−1)⊗χ, where χ = κ′|l′k′ · θ′3. For ∗ = +,− and i = 1, 2, both
ρ′∗ ⊗ π′

i and βρ′∗ ⊗ βπ′
i occur in Ω′, and ρ′∗ is β-invariant. It follows from the

uniqueness of Howe correspondence that π′
i is β-invariant.

Since the Gal(l′/l)-orbit of each of the remaining two members of {π′(θ′1, θ′2)}
must have cardinality dividing the odd number n, we conclude that these represen-
tations must also be β-invariant.

Remark 1. We can give an alternative, more explicit proof of Proposition 3.8.
Indeed, one can realize Ω′ in the Schrödinger model S(V ), which is the space of
complex valued, smooth compactly supported functions on V (see [19, p. 432]). To
prove the β-invariance of (Ω′,S(V )), one can resort to an explicit description of the
action of G′ × H ′ on (Ω′,S(V )): For each function φ ∈ S(V ),

(Ω′(g, 1)φ)(x) = κ′−1(det g)φ(xg), g ∈ G′,

(Ω′(1, diag(c, α(c)−1))φ)(x) = κ′−1(c3)|c|3/2φ(cx), c ∈ l′×,
(

Ω′
(

1,

(
1 t
0 1

))
φ

)
(x) = ψ′(t〈x, x〉)φ(x), t ∈ l′,

(Ω′(1, antidiag(1,−1))φ)(x) = γφ̂(x).

Here, φ̂ is the Fourier transform of φ associated with ψ′, and γ is the Weil factor
associated with the function x (→ ψ′(〈x, x〉) on V , where 〈·, ·〉 is the symplectic form
on V .

Let ω(β) be the vector space endomorphism of S(V ) defined by (ω(β)φ)(x) =
φ(β−1(x)). It follows from the β-invariance of the characters ψ′ and κ′−1, and the
equations defining Ω′, that ω(β) is an intertwining operator in HomG′×H′(Ω′, βΩ′).
This completes the alternative proof.

Remark 2. Note that the assertion in [19] that the multiplicity one theorem for
U(3) has been proved is incorrect (see [15, pp. 394–395] for explanation). However, in
the proof of Proposition 3.8, we do not rely on any statement which uses multiplicity
one for U(3).

Let θi, θ′i, 1 ≤ i ≤ 3, be as in the paragraph preceding Proposition 3.8. For
i += j ∈ {1, 2, 3}, let ρi,j denote the local packet ρ(θi, θj) of H which is the lift of
the pair of characters (θi, θj). Let {π} := {π(θ1, θ2)} denote the local packet of G
which is the lift of ρ(θ1, θ2). Let {π′} := {π′(θ′1, θ′2)} be the packet of G′ defined
similarly, where θ′i := θi ◦ Nl′/l (i = 1, 2).

Proposition 3.9. There exist nonzero intertwining operators A∗ ∈ HomG′(π′
∗,

βπ′
∗) (∗ = a, b, c, d), and a way to index the set {ρi,j : i += j ∈ {1, 2, 3}} as

{ρ1, ρ2, ρ3}, such that the following system of local character identities holds for
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matching functions:

4〈π′
a, f ′〉Aa = 〈{π}, f〉+ 〈ρ1, fH〉 + 〈ρ2, fH〉 + 〈ρ3, fH〉,

4〈π′
b, f

′〉Ab = 〈{π}, f〉 − 〈ρ1, fH〉 − 〈ρ2, fH〉 + 〈ρ3, fH〉,
4〈π′

c, f
′〉Ac = 〈{π}, f〉 − 〈ρ1, fH〉 + 〈ρ2, fH〉 − 〈ρ3, fH〉,

4〈π′
d, f

′〉Ad = 〈{π}, f〉+ 〈ρ1, fH〉 − 〈ρ2, fH〉 − 〈ρ3, fH〉.

(3.11)

Proof. Let F, F ′, E, E′ = F ′E be totally imaginary number fields, with m ≥ 2
places w1 = · · · = wm of F , which stay prime in E and F ′, such that Fwi = k,
Ewi = l, F ′

wi
= k′ and E′

wi
= l′, 1 ≤ i ≤ m. Let S be the set of the archimedean

places of F and the nonarchimedean places where at least one of the number field
extensions E/F , F ′/F is ramified.

Construct characters of CF
E , which we denote again by θi (i = 1, 2, 3), such that:

(i) For 1 ≤ s ≤ m, the local component θi,ws is equal to the character of lk

previously denoted by θi.
(ii) At each place v /∈ S ∪ {w1, . . . , wm}, the character θi,v is unramified.
(iii) For each v ∈ S which does not split in E, the characters θ1,v, θ2,v and θ3,v are

equal to one another.

This construction is possible due to the Poisson summation formula for U(1) and
the fact that U(1, Ev/Fv) is compact for the places v referred to in (i) and (iii).

For i (= j ∈ {1, 2, 3}, we now let ρi,j denote the global unstable packet ρ(θi, θj) of
H(AF ) associated with the pair of global characters (θi, θj). By the construction of
θi (i = 1, 2, 3), for each place v ∈ S which does not split in E, the local component
ρi,j,v of ρi,j consists of the irreducible constituent(s) of a parabolically induced
representation (see [10, p. 699]). If v splits in E, then H ′

v is GL(2, Fv), and ρi,j,v is
an irreducible principal series representation. Lastly, for v /∈ S ∪ {w1, . . . , wm}, the
representation ρi,j,v is unramified, hence parabolically induced.

For i = 1, 2, let θ′i denote the character θi ◦ NE′/E of CF ′

E′ . Thus, θ′i,ws

(s = 1, 2, . . . , m) is equal to the local character previously denoted by θ′i. Let
{π} be the unstable packet of G(AF ) which is the lift of ρi,j corresponding to
the L-homomorphism e (see Fig. 2). Let f ′, f and fH be matching test functions
on G′(AF ), G(AF ) and H(AF ), respectively. Applying Lemmas 2.6 and 3.2, and
the linear independence of characters to cancel the contribution from the paraboli-
cally induced local components of the automorphic representations, we obtain the
following character identity:

4
∑

π′∈{π′(θ′
1,θ′

2)}

m(π′)ε(π′)
m∏

s=1

〈π′
ws

, f ′
ws

× βws〉

=
m∏

s=1

〈{πws}, fws〉 +
∑

i#=j∈{1,2,3}

m∏

s=1

〈ρi,j,ws , fH,ws〉, (3.12)

where m(π′) is the multiplicity with which π′ occurs in the discrete spectrum of
G′(AF ), and ε(π′) is the nth root of unity by which the global intertwining operator
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Tβ|π′ differs from the tensor product ⊗vA(π′
v) of fixed local intertwining operators.

By construction, the dyadic local components of {π′} contain constituents of
parabolically induced representations, so the following formula for m(π′), derived
in [15, Part 2, Sec. III.5.1], holds: For each s = 1, . . . , m, the representation π′

ws

belongs to the local packet {π′
a, π′

b, π
′
c, π

′
d} of four cuspidal representations of G′

ws
=

G′(k), where the representations are indexed such that π′
a is the unique generic

representation in the packet. There exist distinct maps

εi : {π′
a, π′

b, π
′
c, π

′
d} → {±1}, i ∈ {1, 2, 3},

such that:

• εi(π′
a) = 1 for all i;

• For each ∗ = b, c, d, there are exactly two i’s such that εi(π′
∗) = −1;

• Putting εi(π′) :=
∏m

s=1 εi(π′
ws

), we have

m(π′) =
1
4

(
1 +

3∑

i=1

εi(π′)

)
. (3.13)

It is equal to 0 or 1.

For ∗ = a, b, c, d, by Proposition 3.8 there exist nonzero intertwining operators
A∗ in HomG′(π′

∗, βπ′
∗). We normalize A∗ such that An

∗ = 1. Let f ′∗ be a matrix
coefficient of π′

∗ which is normalized such that, for any tempered representation π′′

of G′, 〈π′′, f ′∗〉A∗ = δπ′
∗,π′′ . For 1 ≤ s ≤ m, the local packets {πws} (respectively,

ρi,j,ws) are equivalent to one another. Put

D∗
π := 〈{πws}, f∗〉, D∗

ρi,j
:= 〈ρi,j,ws , f

∗
H〉, ∗ ∈ {a, b, c, d}, i )= j ∈ {1, 2, 3},

where f∗ (respectively, f∗
H) is a fixed test function on G (respectively, H) matching

f ′∗. Let f ′
ws

= f ′∗, fws = f∗ and fH,ws = f∗
H for 1 ≤ s ≤ m. By Eq. (3.12) and the

multiplicity formula (3.13), we have:

4 · ξa(m) = (Da
π)m +

∑

i#=j∈{1,2,3}

(Da
ρi,j

)m, ∀m ≥ 2;

4 · ξ∗(m) = (D∗
π)m +

∑

i#=j∈{1,2,3}

(D∗
ρi,j

)m, ∗ ∈ {b, c, d}, ∀m even;
(3.14)

where ξ∗(m) (∗ = a, b, c, d) is an nth root of unity dependent on m.
Now let f ′

ws
= f ′a, fws = fa and fH,ws = fa

H for 1 ≤ s ≤ m− 1. Let f ′
wm

= f ′∗,
fwm = f∗ and fH,wm = f∗

H , for ∗ = b, c, d. Then, again by Eq. (3.12) and the
multiplicity formula (3.13), we have

0 = (Da
π)m−1D∗

π +
∑

i#=j∈{1,2,3}

(Da
ρi,j

)m−1D∗
ρi,j

, ∗ ∈ {b, c, d}.
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Multiplying each side of the above equation by the (m − 1)-st power of a complex
variable z, and summing over 2 ≤ m < ∞, we obtain the following equality of
meromorphic functions:

0 =
Da

πD∗
π

1 − Da
πz

+
∑

i"=j∈{1,2,3}

Da
ρi,j

D∗
ρi,j

1 − Da
ρi,j

z
, ∗ ∈ {b, c, d}. (3.15)

The values of D∗
π, D∗

ρi,j
may be computed using the same technique as in the

proof of Proposition 3.7. We leave the following as an exercise: It follows from the
equations of (3.14) and the absence of poles on the left-hand side of (3.15), that we
may index ρi,j,w1 as ρs (s = 1, 2, 3) such that:

ξn = Da
π = Da

ρ1
= ±Da

ρ2
= ±Da

ρ3
,

ξ∗2n = D∗
π = −D∗

ρ1
= ±D∗

ρ2
= ∓D∗

ρ3

for some nth root of unity ξn and 2nth root of unity ξ∗2n, for all ∗ ∈ {b, c, d}.
Arguing as we did at the end of the proof of Proposition 3.7, multiplying each

intertwining operator A∗ by a root of unity if necessary, and noting that the twisted
characters of inequivalent β-invariant representations are linearly independent, the
proposition follows.

The local packet {π′} of G′ which we considered in Proposition 3.9 is the lift of
the nonsingleton packet {π} = {πa, πb, πc, πd} of G which is the lift of a local packet
of H . The next proposition shows that, in the case where n = [l′ : l] = 3, there is a
packet of G′ of the form {π′

a, π′
b, π

′
c, π

′
d} which is the lift of a singleton packet of G.

Proposition 3.10. Suppose n = [l′ : l] = 3. Let θ be a character of l′k
′

such
that θ '= βθ. Moreover, suppose ω′ = θ ◦ NE′/E. Let ρ′ = ρ′(θ, βθ) be the local
packet (of cardinality 2) of H ′ which is the lift of θ ⊗ βθ from l′k

′ × l′k
′
. Let {π′} =

{π′
a, π′

b, π
′
c, π

′
d} be the packet of G′ which is the lift of ρ′, where π′

a is the unique
generic representation in the packet. Then, π′

a is the only β-invariant representation
in the packet, and there exists a cuspidal representation π of G and a nonzero
intertwining operator A ∈ HomG′(π′

a, βπ′
a), such that:

〈π′
a, f ′〉A = 〈π, f〉

for all matching functions. More precisely, π is the sole member of the singleton
packet of G which lifts to the cuspidal monomial GL(3, l)-module π(κ′2θ̃) = κ2π(θ̃)
associated with κ′2θ̃, where θ̃(z) := θ(z/α(z)), z ∈ l′×. In particular, κ2π(θ̃) is
σ-invariant.

Proof. As before, construct totally imaginary number fields F, F ′, E, E′ such that
Fwi = k, Ewi = l, F ′

wi
= k′ and E′

wi
= l′, for m ≥ 2 places w1, . . . , wm of F which

stay prime in E′ and F ′. Let S be the set of archimedean places of F and those
nonarchimedean places where at least one of E/F, F ′/F is ramified. Construct a
global character θ of CF ′

E′ such that: (i) For 1 ≤ i ≤ m, θwi is equal to the local
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character of l′k
′

previously denoted by θ in the proposition; (ii) for each place
u ∈ S which does not split in E, θu = (βθ)u; (iii) θv is unramified for each place
v /∈ S ∪ {w1, . . . , wm}. (See proof of Proposition 3.9.) Let θ̃ be the character of CE′

defined by θ̃(z) := θ(z/α(z)), z ∈ CE′ . In particular, θ̃ #= βθ̃.
Let π̃ := π(κ′2θ̃) = κ2π(θ̃) be the cuspidal, monomial, automorphic representa-

tion of GL(3, AE) associated with the character κ′2θ̃ of CE′ . Then, π̃wi (1 ≤ i ≤ m)
is equivalent to the local representation of GL(3, l) previously denoted by π(κ′2θ)
in the proposition. The automorphic representation π̃ base-change lifts to the rep-
resentation π̃′ := κ′2I(θ̃, βθ̃, β2θ̃) of GL(3, AE′) induced from the upper triangular
Borel subgroup. Since κακ = θ̃αθ̃ = 1, it is clear that π̃′ is σ′-invariant. Hence, π̃′

is the b′-lift of a packet {π′} of G′(AF ), by Theorem D.8.
We want to show that {π′} is the bG-weak-lift of a stable packet of G(AF ).

Towards this end, we first show that the cuspidal representation π̃ = κ2π(θ̃) of
GL(3, AE) is σ-invariant. Since, κακ = 1, it suffices to show that π(θ̃) is equivalent
to σ(π(θ̃)). At almost every place v of F , the number field extensions E/F , F ′/F
and the character θv are unramified. If such a place v stays prime in F ′ and E,
then there exists a character µv of E×

v such that θ̃v = µv ◦ NE′/E , and π(θ̃v) is
equivalent to the induced representation µvI(1, εE′/E,v, ε

2
E′/E,v), where εE′/E is

the character of CE associated with the number field extension E′/E via global
class field theory. Since α commutes with β, we have αεE′/E,v = εE′/E,v. Since
αθ̃−1

v = θ̃v, we have αµ−1
v = εi

E′/E,vµv for some i = 0, 1 or 2. Hence, σ(π(θ̃v)) =
εi

E′/E,vµvI(1, ε−1
E′/E,v, ε

−2
E′/E,v), which is equivalent to π(θ̃v) because εE′/E is cyclic

of order 3. By a similar argument, we also have (σπ(θ̃))v
∼= π(θ̃)v when v splits in

F ′ and/or E. By the strong multiplicity one theorem for GL(3), we conclude that
the cuspidal automorphic representation π̃ = κ2π(θ̃) is σ-invariant. Hence, π̃ is the
lift of a stable packet {π} of G(AF ) by Theorem D.8.

The representation π̃′ is the i′-lift (i.e. parabolic induction) of σ-invariant rep-
resentations ρ̃′ of GL(2, AE′) of the form κ′2I(θ̃1, θ̃2), where θ1, θ2 are distinct
characters in {θ, βθ, β2θ}. Moreover, no other representation of GL(2, AE′) lifts
to π̃′. The representations ρ̃′ are b′u-lifts of the unstable packets {ρ′} := ρ′(θ1, θ2) of
U(2, E′/F ′)(AF ′), which are the lifts of the pairs (θ1, θ2) (see [10, Corollary 7.2]).
These packets {ρ′} all lift via the L-group homomorphism e′ to the same unstable
packet π′(θ, βθ) of G′(AF ), which must be {π′} by the commutativity of the L-group
diagram in Fig. 2. It is clear that {π′} must be the bG-weak-lift of {π}, again by
the commutativity of the L-group diagram. We have therefore the commutative
diagram of liftings in Fig. 4.

Applying Lemma 2.10 to {π′}, we obtain:
∑

π′∈{π′}

m(π′)ε(π′)〈π′, f ′ × β〉S∪{w1,...,wm} = 〈{π}, f〉S∪{w1,...,wm}. (3.16)

At each place u ∈ S which does not split in E, by the construction of θ the local
packet {π′

u} = π′(θu, (βθ)u) = π′(θu, θu) consists of a single irreducible principal
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κ′2I(θ̃,βθ̃)
GL(2,AE′)

i′ !!κ′2I(θ̃,βθ̃,β2θ̃)
GL(3,AE′)

ρ′(θ,βθ)
U(2,E′/F ′)(AF ′ )

b′u
""

e′
!! {π′}
U(3,E′/F ′)(AF ′)

b′
##

{π}
U(3,E/F )(AF )

bG

$$

b

%%
κ2π(θ̃)

GL(3,AE)

b3

$$

Fig. 4. Monomial representations.

series representation ([15, Part 2, I.4.3]). For each u ∈ S which splits in E, we have
G′

u = GL(3, F ′
u) and {π′

u} = I(θu, (βθ)u, (β2θ)u).
For 1 ≤ i ≤ m, the local component {π′}wi of the unstable global packet {π′}

is the local packet {π′
0} := {π′

a, π′
b, π

′
c, π

′
d} in the proposition. Namely, {π′

0} is the
lift of the local packet ρ′(θwi , (βθ)wi ) of H ′

wi
= U(2, l′/k′). (Note that θw1 = θw2 =

· · · = θwm .) Via the same argument as in the proof of Proposition 3.6, but using
the definition of the L-homomorphism bG instead of e′, the rigidity theorem for the
global packets of U(3) implies that: {π′

a, π′
b, π

′
c, π

′
d} = {βπ′

a, βπ′
b, βπ′

c, βπ′
d}. Since

n = 3, and π′
a is the unique generic representation in the packet, either all four

members of {π′
0} are β-invariant, or only π′

a is. In either case, the left-hand side of
Eq. (3.16) is not identically zero. Using Lemma 3.2 and the linear independence of
characters to cancel the principal series local components in (3.16), we obtain:

∑

π′∈{π′}

m(π′)ε(π′)
m∏

i=1

〈π′
wi

, f ′
wi

× βwi〉 =
m∏

i=1

〈{πwi}, fwi〉. (3.17)

We want to show that not all four members of {π′
0} are β-invariant. Suppose

they are, then in particular π′
b is β-invariant. Let Ab be a nonzero intertwining

operator in HomG′(π′
b, βπ′

b). Let f ′b be a matrix coefficient of π′
b, normalized so

that 〈π′
b, f

′b〉Ab = 1. For 1 ≤ i ≤ m, the local packets {π}wi of Gwi = G are
all equivalent to the same local packet, which we denote by {π0}. We choose the
matching global test functions such that f ′

wi
= f ′b for 1 ≤ i ≤ m, and fwi is a fixed

local test function f b on G matching f ′b. For such global test functions, Eq. (3.17)
and the multiplicity formula (3.13) for {π′} imply that:

〈{π0}, f b〉m =
{

ξn(m) if m is even,
0 if m is odd,

where ξn(m) is an nth root of unity. Clearly, no such number 〈{π0}, f b〉 exists.
Hence, π′

a is the only β-invariant representation in the local packet {π′
0}. Let Aa be a
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nonzero intertwining operator in HomG′(π′
a, βπ′

a). By Eq. (3.17) and the multiplicity
formula for {π′}, we have:

ξn(m)
m∏

i=1

〈π′
a, f ′

wi
〉Aa =

m∏

i=1

〈{π0}, fwi〉, (3.18)

where ξn(m) is an nth root of unity dependent on m.
Let f ′a be a matrix coefficient of π′

a, normalized so that 〈π′
a, f ′a〉Aa = 1. Let fa

be a local test function on G matching f ′a. Similar to what we did before, we choose
the matching global test functions such that f ′

wi
= f ′a, fwi = fa for 1 ≤ i ≤ m.

Then, Eq. (3.18) implies that:

ξn(m)〈π′
a, f ′a〉mAa

= ξn(m) = 〈{π0}, fa〉m, ∀m ≥ 2.

Hence, 〈{π0}, fa〉 is an nth root of unity ξ0.
Now, let m = 2. Choose the global test functions such that f ′

w2
= f ′a, fw2 = fa,

and f ′
w1

, fw1 are arbitrary matching local test functions. Using Eq. (3.18) again, we
have:

ξn(2)〈π′
a, f ′

w1
〉Aa = ξ0〈{π0}, fw1〉.

Multiplying Aa by an nth root of unity if necessary, we have

〈π′
a, f ′

w1
〉Aa = 〈{π0}, fw1〉.

Recall that the global packet {π} of G(AF ) lifts to the cuspidal, monomial,
automorphic representation π̃ = κ2π(θ̃) of GL(3, AE), and that π̃ is σ-invariant.
Hence, {π0} = {π}wi (1 ≤ i ≤ m) lifts to the σ-invariant, cuspidal, monomial
representation π̃wi = κ2

wi
π(θ̃wi) of GL(3, Ewi) = GL(3, l). By Proposition D.5, the

local packet {π0} is a singleton. The proof of the proposition is now complete.

Remark. The packet {π′} is the lift of the packet ρ′(θ, βθ) on H ′, which is not
β-invariant. Hence, we cannot apply the Howe correspondence argument in the proof
of Proposition 3.8 to this case and show that each member of {π′} is β-invariant.

3.4. Other representations

Let ν denote the normalized absolute value character of l×. Let µ be a charac-
ter of lk. Let µ′ denote the character µ ◦ Nl′/l of l′k

′
. Then, µ (respectively, µ′)

defines via composition with the determinant a one-dimensional representation
of G (respectively, G′). As a one-dimensional representation of G′, µ′ is clearly
β-invariant. Let µ̃ be the character of l× defined by µ̃(z) = µ(z/α(z)) for all z ∈ l×.
The one-dimensional representation µ of G is the unique nontempered quotient
of the length two parabolically induced representation I := IG(µ̃ν, µ) of G. The
other constituent of I is a Steinberg square-integrable subrepresentation, which
we denote by St(µ). Likewise, the one-dimensional representation µ′ of G′ is the
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unique nontempered constituent of the length two parabolically induced represen-
tation I ′ := IG′(µ̃′ν′, µ′) of G′, where ν′ = ν ◦ Nl′/l is the absolute value character
of l′×. We denote the unique square-integrable subrepresentation of I ′ by St(µ′).

Let A be the intertwining operator in HomG′(I ′, βI ′) defined in the paragraph
preceding Lemma 3.2. Since St(µ′) is the unique square-integrable subrepresentation
of I ′, the restriction of A to St(µ′) defines a nonzero intertwining operator, which
we denote also by A, in HomG′(St(µ′), βSt(µ′)). Since An = 1 is a scalar on I ′ and
ASt(µ′) ⊆ St(µ′), we have Aϕ /∈ St(µ′) for all ϕ ∈ I ′ which lies outside of St(µ′).
Consequently, A induces a nonzero operator A(µ′) in HomG′(µ′, βµ′). Since µ′ is
one-dimensional, we may, and do, normalize A such that A(µ′) = 1.

Proposition 3.11. The following character identity holds for all matching func-
tions f ′ on G′ and f on G:

〈St(µ′), f ′〉A = 〈St(µ), f〉.

Proof. Let F, F ′, E, E′ = F ′E be number fields, with a place w1 of F which stays
prime in E and F ′, such that Fw1 = k, Ew1 = l, F ′

w1
= k′ and E′

w1
= l′. We construct

a character of CF
E whose local component at w1 is the local character µ in the

proposition. We denote this global character also by µ, and denote within this proof
what was previously µ in the proposition by µw1 . We let µ′ denote the character
µ ◦ NE′/E of CF ′

E′ . The characters µ and µ′ define one-dimensional representations
of G(AF ) and G′(AF ), respectively, via composition with the determinant.

Let µ̃′ denote the character of CE′ defined by µ̃′(z) = µ′(z/α(z)) for all z
in CE′ . The one-dimensional representation µ′ of G′(AF ) lifts via the L-group
homomorphism b′ (see Fig. 2) to the one-dimensional σ-invariant representation
µ̃′ := µ̃′ ◦ det of GL(3, AE). The representation µ′ of G′(AF ) belongs to a singleton
stable packet.

By Eq. (2.7), we have:

〈µ′, f ′ × β〉S = 〈µ, f〉S , (3.19)

where S is a finite set of places containing w1, such that at the places outside of S
the character µ and the number field extensions E/F , F ′/F are unramified.

Fix the local components of the test functions at each place v ∈ S − {w1}, and
treat 〈µ′

v, f ′
v × βv〉, 〈µv, fv〉 as constants. We may, and do, choose the test functions

such that these constants are nonzero, since both sides of Eq. (3.19) define nonzero
distributions. Thus, we have:

C〈µ′
w1

, f ′
w1

× βw1〉 = 〈µw1 , fw1〉

for some nonzero constant C.
By Lemma 3.2, we have:

〈St(µ′
w1

), f ′
w1

〉A + 〈µ′
w1

, f ′
w1

〉A = 〈St(µw1), fw1〉 + 〈µw1 , fw1〉︸ ︷︷ ︸
= C〈µ′

w1
,f ′

w1
×βw1〉

.
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By Schur’s Lemma, the twisted characters 〈µ′
w1

, f ′
w1

〉A and 〈µ′
w1

, f ′
w1

× βw1〉 are
scalar multiples of each other. The representations St(µ′

w1
) and St(µw1) are square-

integrable, so their central exponents decay. The representations µ′
w1

and µw1 are
nontempered, so their central exponents do not decay. By a well-known theorem
of Harish-Chandra’s, the character of an admissible representation π is represented
by a locally integrable function χπ. By the Deligne–Casselman theorem [6], the
central exponents of π may be computed from χπ. Lastly, by a well-known argument
employing the (twisted) Weyl integration formula and the linear independence of
central exponents ([16, Sec. 21]), we conclude that:

〈µ′
w1

, f ′
w1

〉A = C〈µ′
w1

, f ′
w1

× βw1〉,
〈St(µ′

w1
), f ′

w1
〉A = 〈St(µw1), fw1〉.

The parabolically induced representation I = IH(µ̃ν1/2) of H = U(2, l/k) has a
unique square-integrable subrepresentation s(µ) and a unique nontempered quotient
which is the one-dimensional representation µ := µ ◦ det of H . The representation
IH′ (µ̃′ν′1/2) of H ′ = U(2, l′/k′) likewise has a unique square-integrable subrepre-
sentation s(µ′) and a unique nontempered quotient which is the one-dimensional
representation µ′ := µ′ ◦ det = µ ◦ Nl′/l ◦ det of H ′.

Let π(s(µ)) = {π+, π−} (respectively, π′(s(µ′)) = {π′+, π′−}) be the local packet
of G (respectively, G′) which is the lift of s(µ) from H (respectively, s(µ′) from H ′).
The representations π′+ and π+ are square-integrable, while π′− and π− are cuspidal
([15, pp. 214–215]).

Lemma 3.12. There exist nonzero intertwining operators A† ∈ HomG′(π′†, βπ′†)
(† is + or −) such that the following system of local character identities holds for
matching functions:

2〈π′+, f ′〉A+ = 〈π(s(µ)), f〉 + 〈s(µ), fH〉,
2〈π′−, f ′〉A− = 〈π(s(µ)), f〉 − 〈s(µ), fH〉.

Proof. Let F, F ′, E, E′ be the same number fields as in the proof of Proposi-
tion 3.11. Let w be a nondyadic nonarchimedean place of F , different from w1,
which does not split in E or F ′. Fix a cuspidal representation ρ0 of Hw which
lies in a singleton packet. Construct a cuspidal automorphic representation ρ of
H(AF ) such that ρw1 = s(µ), ρw = ρ0, and ρv is an irreducible principal series
representation for each place v '= w1, w.

Let ρ′0 be the base-change lift of ρ0 to H ′
w = U(2, E′

w/F ′
w). Let π(ρ0) (respec-

tively, π′(ρ′0) = {π′+
0 , π′−

0 }) be the packet of Gw (respectively, G′
w) which is the lift

of ρ0 (respectively, ρ′0). Let ρ′ be the lift of ρ to H′(AF ) via the L-homomorphism
bH . Let π′(ρ′) be the packet of G′(AF ) which is the e′-lift of ρ′. By the construction
of ρ, each dyadic local component of π′(ρ′) is a local packet containing a constituent
of a parabolically induced representation. Hence, the members of π′(ρ′) occur in the
discrete spectrum of G′ with multiplicity at most 1.
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We now apply the same argument which we have already used repeatedly: By
Eq. (2.3), the multiplicity formula for the packet π′(ρ′) (see proof of Proposition 3.7),
and the cancellation of the principal series local components using the linear inde-
pendence of characters, we have:

2ε+〈π′+, f ′
w1

× βw1〉〈π′+
0 , f ′

w × βw〉 + 2ε−〈π′−, f ′
w1

× βw1〉〈π′−
0 , f ′

w × βw〉
= 〈π(s(µ)), fw1 〉〈π(ρ0), fw〉 + 〈s(µ), fH,w1〉〈ρ0, fH,w〉. (3.20)

The coefficients ε± are nth roots of unity, which we may assume to be 1, since we
can absorb them into the intertwining operators A(π′±) associated with the twisted
characters 〈π′±, f ′

w × βw〉. By Proposition 3.6, the representations π′+
0 and π′−

0 are
βw-invariant. Choose f ′

w to be a matrix coefficient f ′+ of the cuspidal representa-
tion π′+

0 , normalized such that 〈π′+
0 , f ′+ × βw〉 = 1. The system of equations in

Proposition 3.7 implies that:

1 = 〈π(ρ0), fw〉 = 〈ρ0, fH,w〉,

where fw (respectively, fH,w) is any test function on Gw (respectively, Hw) which
matches f ′+. For global test functions with such local components at the place w,
Eq. (3.20) gives:

2〈π′+, f ′
w1

× βw1〉 = 〈π(s(µ)), fw1 〉 + 〈s(µ), fH,w1〉.

Likewise, by choosing f ′
w to be a matrix coefficient of π′−

0 , we obtain:

2〈π′−, f ′
w1

× βw1〉 = 〈π(s(µ)), fw1〉 − 〈s(µ), fH,w1〉.

Let π(µ) = {π×, π−} be the local quasi-packet of G which is the lift of the one-
dimensional representation µ of H (see [15, pp. 214–215]). Let π′(µ′) = {π′×, π′−}
be the local quasi-packet of G′ which is the lift of the one-dimensional representation
µ′ of H ′.

Proposition 3.13. There exist nonzero operators A† in HomG′(π′†, βπ′†) († is
+ or −) such that the following system of character identities holds for matching
functions:

〈π′×, f ′〉A× + 〈π′−, f ′〉A− = 〈µ, fH〉,
〈π′×, f ′〉A× − 〈π′−, f ′〉A− = 〈π×, f〉 − 〈π−, f〉.

Proof. The representations π+ and π× are the unique square-integrable subrep-
resentation and nontempered quotient, respectively, of the parabolically induced
representation I := IG(κµ̃ν1/2, η) of G, where η is the character of lk such that the
central character of I is our fixed ω. Likewise, the representations π′+ and π′× are
the unique square-integrable and nontempered constituents of the representation
I ′ := IG′(κ′µ̃′ν′1/2, η′) of G′, where the prime on a character denotes composition
with the norm map Nl′/l.

The intertwining operator A on I ′, as defined in the paragraph preceding
Lemma 3.2, must send subrepresentation to subrepresentation, and quotient to
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quotient. Thus, it induces intertwining operators A+ and A× on π′+ and π′×, re-
spectively. Since the representations µ and s(µ) are the constituents of IH(µ̃ν1/2),
by Lemma 3.2 we have:

〈π′+, f ′〉A+ + 〈π′×, f ′〉A× = 〈µ, fH〉 + 〈s(µ), fH〉. (3.21)

By Lemma 3.12, we have

ξn〈π′+, f ′〉A+ − 〈π′−, f ′〉A− = 〈s(µ), fH〉 (3.22)

for some nth root of unity ξn. The presence of ξn is due to the fact that the
intertwining operator A+ obtained in Lemma 3.12 may differ by an nth root of
unity from the A+ defined by A. Subtracting Eq. (3.22) from (3.21), we obtain:

(1 − ξn)〈π′+, f ′〉A+ + 〈π′×, f ′〉A× + 〈π′−, f ′〉A− = 〈µ, fH〉.

The central exponents of the square-integrable representation π′+ decay, while those
of the nontempered representations π′× and µ do not. Since π′− is cuspidal, its
central exponents are zero. As in the proof of Proposition 3.11, it follows from the
linear independence of central exponents that 1 − ξn = 0. Hence,

〈π′×, f ′〉A× + 〈π′−, f ′〉A− = 〈µ, fH〉.

By Lemma 3.12, and the fact that π+ and π− are the members of the local
packet π(s(µ)), the following holds for matching functions:

〈π′+, f ′〉A+ + 〈π′−, f ′〉A− = 〈π(s(µ)), f〉 = 〈π+, f〉 + 〈π−, f〉. (3.23)

On the other hand, by Lemma 3.2 we have:

〈π′+, f ′〉A+ + 〈π′×, f ′〉A× = 〈π+, f〉 + 〈π×, f〉. (3.24)

Subtracting Eq. (3.23) from (3.24), we obtain:

〈π′×, f ′〉A× − 〈π′−, f ′〉A− = 〈π×, f〉 − 〈π−, f〉.

4. Global Classification

Let F, F ′, E, E′ be the number fields described in the Introduction.

Proposition 4.1. Every discrete spectrum automorphic representation of G(AF )
or H(AF ) lifts to a (quasi-) packet of G′(AF ) which contains a β-invariant, discrete
spectrum, automorphic representation.

Proof. By Proposition 2.11, each discrete spectrum automorphic representation
of G(AF ) or H(AF ) weakly lifts to a (quasi-) packet of G′(AF ) via the L-
homomorphism bG or eH , respectively. What remains to be shown is that every
such packet of G′(AF ) contains a β-invariant, discrete spectrum, automorphic
representation.

Recall that a global (quasi-) packet {π′} is a restricted tensor product of local
packets {π′

v}. Suppose {π′} is a (quasi-) packet of G′(AF ) which is a weak lift from
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either or both of G(AF ) and H(AF ). Then, by the classification of the images of
the weak liftings bG and eH in Sec. 2.5, the local components {π′

v} of {π′} are
precisely the local (quasi-) packets which are examined in Sec. 3. In particular, by
Lemma 3.2 and Propositions 3.5, 3.6, 3.8, 3.10 and 3.13, for each place v the local
packet {π′

v} contains at least one β-invariant representation π′
0,v. If {π′

v} is of the
form {π′+

v , π′−
v }, we take π′

0,v to be π′+
v . If {π′

v} is of the form {π′
v,a, π′

v,b, π
′
v,c, π

′
v,d},

we let π′
0,v be the unique generic member π′

v,a. If {π′} is the global quasi-packet
which is the e′-lift of a β-invariant one-dimensional representation µ′ of H′(AF ),
then {π′

v} is of the form {π′×
v , π′−

v }. In this case, we let π′
0,v = π′×

v for all v if the
factor ε(µ̃′, κ′) (see [15, p. 387]) is equal to 1, and we let π′

0,v be π′×
v for all but

one v if ε(µ̃′, κ′) = −1. (Note: It is conjectured by [2, 20] that ε(µ̃′, κ′) is equal
to the epsilon factor ε(1

2 , µ̃′κ′).) By the multiplicity formulas of the global packets
which are bG- or eH -weak-lifts, the tensor product ⊗vπ′

v,0 ∈ {π′} is equivalent to a
discrete spectrum automorphic representation of G′(AF ), and it is β-invariant by
construction.

Theorem 1.1 now follows from Propositions 2.2 and 4.1, and all the local char-
acter identities which we have derived, since the condition that the residual charac-
teristics of the local fields be odd may be removed if we assume that the multiplicity
one theorem holds for U(3) in general.
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Appendix A. Discretely Occurring Representations

In this section, we compute the representations which occur discretely in the spectral
side of the β-twisted trace formula of G′(AF ). The computation follows from an
explicit recipe established in [8], which we now describe.

Let F be a number field, with ring of adèles AF . For any finite place v of F , let
Ov denote the ring of integers of Fv. Let H be a reductive F -group, with center Z.
Let σ be an automorphism of H(AF ).

Fix a character ω of Z(F )\Z(AF ). For any place v of F , put Hv := H(Fv). Let
C(Hv, ωv) be the space of smooth functions fv on Hv such that fv is compactly
supported modulo Zv := Z(Fv) and fv(zh) = ω−1

v (z)f(h) for all z ∈ Zv, h ∈ Hv.
For each place v of F , fix a maximal compact subgroup Kv of Hv such that Kv is

the hyperspecial subgroup H(Ov) if H is unramified as an Fv-group. Let H(Hv, ωv)
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denote the Hecke algebra of Kv-biinvariant (respectively, Kv-finite) functions in
C(Hv, ωv) if v is nonarchimedean (respectively, archimedean).

Let C(H(AF ), ω) denote the span of the smooth, compactly supported functions
on H(AF ) which are of the form ⊗vfv, where fv ∈ C(Hv, ωv) for all v and fv is a
unit in the Hecke algebra H(Hv, ωv) for almost all nonarchimedean v. In this work,
whenever we mention a function f ∈ C(H(AF ), ω), we assume that f is a tensor
product of local components fv.

Fix a minimal parabolic subgroup P0 of H. Let A0 be the maximal F -split
component of the Levi subgroup of P0. Let M be a Levi subgroup of H. Let AM

denote the split component of the center of M. Let X∗(AM ) := Hom(Gm,AM ). Let
aM denote X∗(AM ) ⊗Z R, and a∗M its dual. Let P(M) denote the set of parabolic
subgroups of H with Levi component M.

For any parabolic subgroup P ∈ P(M), representation τ of M(AF ), and element
ζ ∈ (aM/aH)∗, let IP,τ (ζ) denote the H(AF )-module normalizedly induced from
the P(AF )-module which sends an element p in P(AF ) to χζ(m)τ(m), where m ∈
M(AF ) is the Levi component of p. Here,

χζ(m) := e〈ζ,HM (m)〉,

where HM (m) ∈ aM is the standard notation for the “logarithm” of m, and HM (m)
is its image in aM/aH .

In other words, IP,τ (ζ) is the right-regular representation on the space of smooth
functions ϕ on H(AF ) which satisfy:

ϕ(pg) = (δ1/2χζ ⊗ τ)(m)ϕ(g), ∀p ∈ P(AF ), g ∈ H(AF ).

Here, δ(m) := |det(Ad m|n)|, where n denotes the Lie algebra of the unipotent
component of P. For any function f in C(H(AF ), ω), let IP,τ (ζ, f) denote the
convolution operator

∫

Z(AF )\H(AF )
(IP,τ (ζ))(h)f(h) dh,

where dh is a fixed Tamagawa measure on H(AF ).
Let W (A0, H) denote the Weyl group of A0 in H. Suppose s is an element in

W (A0, H) which satisfies sσM = M. For each M(AF )-module τ , there exists a
family of intertwining operators of H(AF )-modules:

MP |σP (s, ζ) : IσP,s−1τ (s−1ζ) → IP,τ (ζ), ζ ∈ (aM/aH)∗,

which is meromorphic in ζ. Here, s−1τ is the σM(AF )-module:

s−1τ : m %→ τ(sm), ∀m ∈ σM(AF ).

Let IP,τ (σ) be the operator on the space of IP,τ which sends ϕ(g) to ϕ(σg). Put

IP,τ (ζ, f × σ) := IP,τ (ζ, f)IP,τ (σ).
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The spectral side of Arthur’s trace formula is called the fine χ-expansion. For
f in C(H(AF ), ω), the twisted (with respect to σ) fine χ-expansion is a sum over
the set of quadruples {χ} = (M,L, τ, s), consisting of Levi subgroups M,L of H,
an element s ∈ W (A0, M), and a discrete spectrum automorphic representation τ
of M(AF ), such that:

• M ⊆ L;
• aL is the subspace of aM fixed pointwise by s;
• For all x ∈ aM which lies outside of aH , τ(exp x);
• the restriction of τ to Z(AF ) is equal to ω;
• τ is equivalent to sστ , where sστ(m) := τ(σs−1m) for all m ∈ M(AF ).

We say that a parabolic subgroup is standard if it contains the fixed mini-
mal parabolic subgroup P0. Let P ∈ P(M) be the standard parabolic subgroup
with Levi component M. The term associated with (M,L, τ, s) in the twisted fine
χ-expansion is the product of

|W (A0, M)|
|W (A0, H)| |det(1 − s)|aM /aL

|−1 (A.1)

and

(2π)−dim(aL/aH)

∫

i(aL/aH)∗
trMT

L(P, ζ)IP,τ (ζ, f)MP |σP (s, σ(ζ))IP,τ (σ) dζ. (A.2)

Here, MT
L(P, ζ) is the logarithmic derivative of an intertwining operator. We will not

reproduce here the definition of MT
L(P, ζ). We only use the fact that MT

L(P, ζ) = 1
when L is equal to H. In particular, the term in the expansion associated with a
quadruple of the form (M,H, τ, s) is

|W (A0, M)|
|W (A0, H)| |det(1 − s)|aM /aH

|−1tr IP,τ (ζ, f × σ)MP |σP (s, 0). (A.3)

We call the sum of all the terms of the form (A.3) the discrete part of the fine
χ-expansion of the σ-twisted trace formula. We denote it by Id(H, f × σ). We call
the sum of the rest of the terms the continuous part. Observe that the σ-twisted
character of a discrete spectrum representation π of H(AF ) corresponds to the
quadruple (H,H, π, 1). For any quadruple of the form (M,H, τ, s) and parabolic
subgroup P in P(M), we say that the (normalizedly) parabolically induced repre-
sentation IP,τ occurs σ-discretely in the spectrum of H(AF ).

In this work, we only study the discrete parts of the spectral expansions of the
groups. This section is devoted to the computation of the terms in Id(G′, f ′ × β),
where β denotes also the automorphism of G′(AF ) defined by:

β(gij) := (β(gij)), ∀(gij) ∈ G′(AF ).
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A.1. β-discretely occurring representations of G′(AF )

If a quadruple has the form (G′,G′, τ, s), then s is necessarily trivial, and τ can
be any β-invariant, discrete spectrum, automorphic representation of G′(AF ) with
central character equal to the fixed ω. The contribution to the fine χ-expansion
corresponding to quadruples of the form (G′,G′, τ, 1) is therefore

∑

τ

tr τ(f ′ × β),

where the sum is over all τ as described just now, and τ(f ′ × β) denotes τ(f ′)Tβ

(see the beginning of Sec. 2.3.4 for the definition of Tβ).
The group G′ has only one proper Levi subgroup, namely the maximal diagonal

torus, which we denote by M′. Its group of AF -points is

M′(AF ) = {diag(x, y, α(x)−1) : x, y ∈ A×
E′ , yα(y) = 1}.

A quadruple of the form (G′,M′, τ, s) satisfies the conditions prescribed earlier only
if s is the generator (13) of the Weyl group W (M′,G′), where (13) swaps the first
and third entries of a diagonal element in M′(AF ) and leaves the second entry
unchanged. The M′(AF )-module τ is of the form:

τ = µ′ ⊗ η′ : diag(x, y, α(x)−1) $→ µ′(x)η′(y), ∀diag(x, y, α(x)−1) ∈ M′(AF ),

where µ′, η′ are characters of CE′ , CF ′

E′ , respectively. By the conditions on the
quadruple, we must have

µ′ ⊗ η′ = τ ∼= (13)βτ = αβµ′−1 ⊗ βη′,

i.e. µ′ · αβµ′ = 1, η′ = βη′.

The constant (A.1) associated with (M′,G′, τ, (13)) is 1/4. Since α2 = 1, the
condition µ′ · αβµ′ = 1 implies that β2µ′ = µ′, which in turn implies that βµ′ = µ′

because the order n = [E′ : E] of β is odd. Hence, µ′ = αµ−1.
Consequently, µ′ ⊗ η′ is invariant under the action of W (M′,G′), and I(µ′, η′)

is equivalent to I(µ′′, η′′) if and only if µ′ = µ′′, η′ = η′′. In conclusion:

Lemma A.1. The discrete part of the spectral side of the β-twisted trace formula
of G′ is the sum:

∑

τ ′=βτ ′

tr τ ′(f ′ × β) +
1
4

∑

µ′·αµ′=1
µ′=βµ′

η′=βη′

tr I(µ′, η′)(f ′ × β)MP |βP ((13), 0),

where P is the upper triangular Borel subgroup of U(3, E′/F ′).
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Appendix B. Surjectivity of the Norm

For a number field or a nonarchimedean local field L with quadratic extension K,
put

CL :=
{

L×\A×
L if L is a number field,

L× if L is a local field;

CL
K :=

{
U(1, K/L)(L)\U(1, K/L)(AL) if L is a number field,
{z ∈ K× : NK/Lz = 1} if L is a local field.

Let F be a number field or a local nonarchimedean field. Let E be a quadratic
extension of F , and F ′ a cyclic extension of F of odd degree n. Let E′ be the
compositum field EF ′, with Gal(E′/E) = 〈β〉 and Gal(E′/F ′) = 〈α〉.

Lemma B.1. For both global and local F, the norm map:

NE′/E : CF ′

E′ → CF
E

defined by NE′/Ex =
∏n−1

i=0 βix is surjective.

Proof. By Hilbert’s Theorem 90, the group CF ′

E′ is equal to {z/αz : z ∈ CE′}, and
likewise CF

E = {z/αz : z ∈ CE}. Hence, to prove the lemma it suffices to show that
CE = CF · NE′/ECE′ .

Consider the group homomorphism:

ι : CF /NF ′/F CF ′ → CE/NE′/ECE′

induced from the natural embedding of F into E. It is well known in class
field theory that both quotient groups are cyclic of order n. We claim that ι is
injective: Let x ∈ CF be a representative of a class x̄ in CF /NF ′/F CF ′ such that
ι(x̄) = 1. By definition, there exists y ∈ CE′ such that NE′/E y = x. Moreover,
NE/F NE′/E y = NF ′/F NE′/F ′ y = x2, which implies that x2 ∈ NF ′/F F ′×, i.e.
x̄2 = 1. Since CF ′/NF ′/F CF ′ is of odd order, x̄2 = 1 implies that x̄ = 1.

Since ι is an injective homomorphism between two finite groups of equal order,
it is surjective. Hence, CE = CF · NE′/ECE′ , which completes the proof.

Appendix C. β-Invariant Characters

Lemma C.1. Let the fields F, F ′, E, E′ be as in the previous section. In both the
global and local cases, a character ω′ of CF ′

E′ is β-invariant if and only if it is equal
to ω ◦ NE′/E for some character ω of CF

E .

Proof. That ω ◦ NE′/E is β-invariant is obvious. We now prove the converse. Let
ω′ be a β-invariant character of CF ′

E′ . Let ω̃′ be the character of CE′ defined by:

ω̃′(z) = ω′(z/αz), ∀z ∈ CE′ .
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Since ω′ = βω′, we have ω̃′ = βω̃′, and it follows from Hilbert’s Theorem 90 that
ω̃′ = ω̃ ◦ NE′/E for some character ω̃ of CE .

Since the restriction of the character ω̃′ to CF ′ is trivial, so is the restriction
of ω̃ to NE′/ECF ′ = NF ′/F CF ′ . By class field theory, the group CF /NF ′/F CF ′ is
isomorphic to the cyclic group Gal(F ′/F ) ∼= Z/nZ. Let c be an element of CF such
that the coset c NF ′/F CF ′ generates CF /NF ′/F CF ′ . We have:

ω̃(c)n = ω̃ ◦ NE′/E(c) = ω̃′(c) = 1.

Hence, ω̃(c) = εi
F ′/F (c) for some integer i, where εF ′/F is the character of CF

associated with the field extension F ′/F via class field theory.
Since n is odd, there exists an integer m such that 2m ≡ 1 mod n. Let εE′

denote the character εm
F ′/F ◦ NE′/F ′ of CE′ , which is trivial on NF ′/F CF ′ . Noting

that εn
F ′/F = 1, we have εE(c) = ε2m

F ′/F (c) = εF ′/F (c). Thus, εE′ restricts to εF ′/F

on CF , and the character ω̃0 := ε−i
E ω̃ is trivial on CF . Hence, by Hilbert’s Theorem

90 there exists a character ω of CF
E such that ω̃0(z) is equal to ω(z/αz) for all

z ∈ CE . Since ω̃′ = ω̃0 ◦ NE′/E , and α, β ∈ Gal(E′/F ) commute with each other,
we have:

ω′
( z

αz

)
= ω

(
NE′/Ez

α(NE′/Ez)

)
= ω

(
NE′/E

( z

αz

))
, ∀z ∈ CE′ .

So, invoking Hilbert’s Theorem 90 yet again, we conclude that the character ω′ of
CF ′

E′ is equal to ω ◦ NE′/E .

Appendix D. Selected Results of [15, 10]

Let F be a number field or a p-adic field, E a quadratic extension of F . For an

element g in GL(m, E) (m = 2, 3), let σ(g) = Jα(tg−1)J−1, where J is
( 1

−1
1

)

if m = 3,
( 1
−1

)
if m = 2. We say that a representation (π, V ) of GL(m, E) is

σ-invariant if (π, V ) ∼= (σπ, V ), where (σπ, V ) is the GL(m, E)-module defined by
σπ : g &→ π(σ(g)), ∀g ∈ GL(m, E).

D.1. Local results

We first consider the case where F is p-adic. In [10] (respectively, [15]), the local
packets of U(2, E/F ) (respectively, U(3, E/F )) are defined in terms of the local
character identities which they satisfy. The sum of the characters of the represen-
tations in a local packet is shown to be invariant under stable conjugation.

All representations which we consider in this section are by assumption
admissible.

Proposition D.1 ([10, pp. 699–700]). Each pair (θ1, θ2) of characters of
U(1, E/F ) lifts to a local packet ρ(θ1, θ2) which consists of two irreducible repre-
sentations π+, π− of H = U(2, E/F ). They are cuspidal if θ1 (= θ2.
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Note that if we fix the central character of the representations of U(2, E/F ), then
the lifting from U(1) × U(1) is equivalent to a lifting from U(1).

Fix a character κ of E×/NE/F E× which is nontrivial on F×. Defined in [10]
are two local liftings from U(2, E/F ) to GL(2, E), called stable and unstable base
change, respectively. These two liftings are related to each other as follows: If a local
packet {ρ} of U(2, E/F ) lifts via stable base change to a representation ρ̃({ρ}) of
GL(2, E), then {ρ} lifts via unstable base change to ρ̃({ρ}) ⊗ κ (see [10, p. 716]).

Proposition D.2 (Base Change [10, Sec. 7, Proposition 3]). Each
σ-invariant, cuspidal, irreducible representation of GL(2, E) is the lift of a cuspidal,
irreducible representation of U(2, E/F ) via either the stable or the unstable base
change.

Proposition D.3 (Endoscopy [15, Part 2, Sec. III.2.3, Corollary]). Each
local packet {ρ} of square-integrable U(2, E/F )-modules lifts to a local packet π({ρ})
of U(3, E/F ). The cardinality of π({ρ}) is twice that of {ρ}.

Proposition D.4 (Base Change [15, Part 2, Sec. III.3.9]). Each local packet
of U(3, E/F ) lifts to a representation of GL(3, E). This lifting defines a one-to-one
correspondence between the set of local packets of U(3, E/F ), and the set of σ-stable,
σ-invariant, irreducible representations of GL(3, E).

We customarily let π̃({π}) denote the GL(3, E)-module to which a local packet {π}
of U(3, E/F ) lifts.

Proposition D.5 ([15, Part 2, Sec. III.3.9]). Let {π} be a local packet of square-
integrable representations of U(m, E/F ) (m = 2, 3). The following statements are
equivalent :

(1) {π} is a singleton.
(2) {π} lifts to a square-integrable, irreducible GL(m, E)-module.
(3) {π} is not the lift of a packet/representation from U(m − 1, E/F ).

D.2. Global results

Let F , E now be number fields. In [10, 15], the global (quasi-) packets of U(2, E/F )
and U(3, E/F ) are restricted tensor products of (quasi-) local packets. The global
liftings considered below are uniquely defined by their analogues in the local case.

A (quasi-) packet is said to be discrete spectrum if it contains a discrete
spectrum automorphic representation. We say that a discrete spectrum (quasi-)
packet is stable if each of its members appears with the same multiplicity in the
discrete spectrum, and unstable otherwise.

Each pair of characters (θ1, θ2) of U(1, E/F )(F )\U(1, E/F )(AF ) lifts to a global
packet ρ(θ1, θ2) of U(2, E/F )(AF ). A discrete spectrum packet of U(2, E/F )(AF )
is stable if and only if it is not of the form ρ(θ1, θ2).

As in the local case, there are stable and unstable global base-change liftings
from U(2, E/F ) to GL(2, AE). The unstable lifting is associated with a character
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κ of CE/NE/F CE which is nontrivial on CF . The stable and unstable liftings are
related to each other as follows: If a global packet {ρ} of U(2, E/F ) lifts via stable
base change to an automorphic representation ρ̃({ρ}) of GL(2, AE), then {ρ} lifts
via unstable base change to ρ̃({ρ}) ⊗ κ.

Proposition D.6 ([10, Sec. 5, Lemma 8; Sec. 7, Proposition 4]). A σ-
invariant, irreducible, discrete spectrum, automorphic representation of GL(2, AE)
is either the stable or unstable base change of a packet of U(2, E/F )(AF ).

A discrete spectrum packet of U(2, E/F )(AF ) is stable if and only if it lifts to a
discrete spectrum automorphic representation of GL(2, AE).

Proposition D.7 ([15, pp. 217–218; Part 2, Theorem III.5.2.1]). Each
discrete spectrum global packet {ρ} of U(2, E/F )(AF ) lifts to an unstable packet
π({ρ}) (if

∑
ρ∈{ρ} dim ρ = ∞), or a quasi-packet π({ρ}) (if

∑
ρ∈{ρ} dim ρ = 1),

of U(3, E/F )(AF ). All unstable packets and quasi-packets of U(3, E/F )(AF ) are
so obtained. Moreover, π(ρ) weakly lifts to the parabolically induced representation
I(2,1)(ρ̃({ρ}) ⊗ κ, η) of GL(3, AE), where η is a character of CE .

Theorem D.8 ([15, Part 2, Theorem III.5.2.1]). Each σ-invariant, auto-
morphic representation of GL(3, AE) is the lift of an automorphic representation
of U(3, E/F )(AF ). The global lifting from U(3, E/F )(AF ) to GL(3, AE) gives a
one-to-one correspondence between the set of stable discrete spectrum packets of
U(3, E/F )(AF ), and the set of σ-invariant, irreducible, discrete spectrum, automor-
phic representations of GL(3, AE).

Theorem D.9 (Multiplicity One Theorem [15, Part 2, Corollary
III.5.2.2(1)]). If π is a discrete spectrum automorphic representation of G(AF )
each of whose dyadic local components lies in a local packet containing a constituent
of a parabolically induced representation, then π occurs in the discrete spectrum of
L2(G(F )\G(AF )) with multiplicity one.

Remark. The restriction at the dyadic places is due only to a shortcoming in the
current proof.

Theorem D.10 (Rigidity Theorem [15, Part 2, Corollary III.5.2.2(2)]). If
π and π′ are discrete spectrum representations of G(AF ) whose local components πv

and π′
v are equivalent for almost all places v of F, then they lie in the same packet,

or quasi-packet.
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représentations, II, Astérisque 171–172 (1989) 13–17.

In
t. 

J. 
N

um
be

r T
he

or
y 

20
09

.0
5:

12
47

-1
30

9.
 D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 O

H
IO

 S
TA

TE
 U

N
IV

ER
SI

TY
 o

n 
02

/0
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



November 11, 2009 11:3 WSPC/203-IJNT 00268

1308 P.-S. Chan & Y. Z. Flicker

[3] , On local character relations, Selecta Math. (N.S.) 2(4) (1996) 501–579.
[4] J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory

of the Trace Formula, Ann. of Math. Stud., Vol. 120 (Princeton University Press,
Princeton, NJ, 1989).

[5] A. Borel, Automorphic L-functions, in Automorphic Forms, Representations and L-
Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977),
Proc. Sympos. Pure Math., Vol. 33 (Amer. Math. Soc., Providence, RI, 1979), Part 2,
pp. 27–61.

[6] W. Casselman, Characters and Jacquet modules, Math. Ann. 230(2) (1977) 101–105.
[7] P.-S. Chan, Invariant representations of GSp(2) under tensor product with a quadratic

character (submitted); Preprint, arXiv math.NT/0612850.
[8] L. Clozel, J.-P. Labesse and R. Langlands, Morning seminar on the trace formula,

IAS notes (1984); Available at http://www.math.ubc.ca/˜cass/Langlands/friday/
friday.html.
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(2006) 423–525.

[36] , L’endoscopie tordue n’est pas si tordue: Intégrales orbitales, preprint (2006);
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