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Abstract. Let X1 be a curve of genus g, projective and smooth over Fq. Let S1
⊂ X1 be a

reduced divisor consisting of N1 closed points of X1. Let (X, S) be obtained from (X1, S1)
by extension of scalars to an algebraic closure F of Fq. Fix a prime l not dividing q. The
pullback by the Frobenius endomorphism Fr of X induces a permutation Fr∗ of the set of
isomorphism classes of rank n irreducible Ql-local systems on X − S. It maps to itself the
subset of those classes for which the local monodromy at each s ∈ S is unipotent, with a
single Jordan block. Let T (X1, S1, n, m) be the number of fixed points of Fr∗m acting on
this subset.

Under the assumption that N1 ≥ 2, we show that T (X1, S1, n, m) is given by a formula
reminiscent of a Lefschetz fixed point formula: the function m #→ T (X1, S1, n, m) is of the
form

∑
niγ

m
i for suitable integers ni and “eigenvalues” γi.

We use Lafforgue [L] to reduce the computation of T (X1, S1, n, m) to counting auto-
morphic representations of GL(n), and the assumption N1 ≥ 2 to move the counting to the
multiplicative group of a division algebra, where the trace formula is easier to use.
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Introduction

We keep the notations of the abstract. They are elaborated upon in 0.1. What are “Ql-

local systems” is explained in 1.1. A better terminology, which we will use from now on, is

“Ql-smooth sheaf”. Actions of Frobenius are explained in 1.2.

The present work is motivated by Drinfeld’s 1981 paper [D]. In it, Drinfeld considers

irreducible Ql-smooth sheaves of rank 2 on X, and computes the number of fixed points of

Fr∗m on the set of their isomorphism classes. He uses the trace formula for GL(2) and the

then not yet wholly available correspondence between irreducible Ql-smooth sheaves of rank 2

over X1 and everywhere unramified cuspidal automorphic representations of GL(2, A), where

A is the adèle ring of the function field F1 of X1. He shows in particular that, as a function

of m, the number of fixed points is of the form
∑

niγm
i . Our result is a simple yet higher

dimensional analogue of Drinfeld’s deep and beautiful analysis. We hope similar counting

formulas of Lefschetz type hold for any number of ramification points and any imposed local

monodromy at those points. See 6.29, 6.30. The case of tame local monodromy, given at

each point by n characters of the residue field, has been considered by Arinkin (unpublished),

under a “generic position” assumption for the characters involved.

We now describe what is done in each section. In §1, we review relations between Ql-

smooth sheaves on X1 − S1, l-adic representations of Gal(F 1/F1), and automorphic repre-

sentations of GL(n) and of the multiplicative groups of some division algebras.

Our proof relies on the relation between automorphic representations for GL(n) and for

multiplicative groups of division algebras. More precisely, our results use the statement

1.13. How to extract this statement from the literature is explained in the Appendix. As

computations of numbers of various kinds of automorphic representations for multiplicative

groups of some division algebras, our results are independent of 1.13. It is the interpretation

of our results as computations of numbers of fixed points which makes our results interesting.

In §2, we state a first form (2.3) of our result. This form is the one to which an application

of the trace formula (compact quotient case) leads. It does not make clear that, as a function

of m, the number T (X1, S1, n, m) of fixed points of Fr∗m has the form m #→
∑

niγm
i .

After a discussion of division algebras and Tamagawa numbers in §3, the proof of 2.3 is

given in §4 and §5. It applies the trace formula in the compact quotient case of multiplicative

groups of division algebras. A categorical approach to the proof of the trace formula in the

compact quotient case we need is presented in §4, and the building of SL(n) is used in the

computations of §5.
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The reader is invited, at first reading, to jump from §2 to §6. In §6, 2.3 is massaged into

a form which cries for a geometric explanation, and makes clear that, as a function of m,

T (X1, S1, n, m) has the form

(1) m #−→
∑

niγ
m
i ,

where the ni are nonzero integers and the γi are distinct q-Weil numbers: for each γi there

exists an integer w, its weight, such that all complex conjugates of γi have absolute value

qw/2. For g = 0 and deg(S1) = 2, as well as for g = 0, n = 2 and deg(S1) = 3, the sum (1)

is empty: T (X1, S1, n, m) is identically zero.

After excluding these cases, we find the γi with the largest complex absolute value. It

occurs with multiplicity one and is an integral power of q. We also show that each γi is q

times an algebraic integer. Next, we consider how T (X1, S1, n, m) varies with (X1, S1), and

in 6.3.1 we ask for a topological understanding.

We do not understand the meaning of the change of summations from ΣaΣb in the expres-

sion (6.5.2) for T (X1, S1, n, 1) to ΣbΣa in the expression (6.6.4). It leads to a decomposition

of T (X1, S1, n, m) as a sum over the divisors b of n, each term of which has the form (1).

In §7, we look at one of the simplest examples: the case where X is of genus 0 and where

S consists of four points. An amusing trick allows us in that case to remove the assumption

N1 ≥ 2. The same trick implies a symmetry property of some automorphic representations,

of which we do not know of a proof not using [L].

0. Notations

0.1 We fix a finite field Fq with q elements and its algebraic closure F. The characteristic is

p, and Fqm is the degree m extension of Fq in F.

0.2. We fix a projective and smooth curve X1 over Fq, absolutely irreducible of genus g,

and a reduced divisor S1 ⊂ X1 consisting of N1 closed points. As Fq is a perfect field, it is

automatically étale over Spec(Fq). The field of rational functions on X1 will be denoted by

F1. It is a global field of characteristic p, with field of constants Fq. Closed points of X1

correspond one to one to places of F1; we identify the two. If s is a closed point, we denote

the local ring of X1 at s by O(s). It is a discrete valuation ring. We denote its completion

by Os. This is contrary to the usual usage. The residue field at s we denote by k(s). The

completion of F1 at the place s we denote by F1s. They are, respectively, the quotient of the

complete valuation ring Os by its maximal ideal ms, and the fraction field of Os.
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0.3. Suppressing the index 1 indicates an extension of scalars from Fq to F, and replacing it

by m an extension of scalars to Fqm . For instance, N is the number of points of X = X1⊗Fq F

in the inverse image S of S1. We write A for the ring of F1-adèles.

Exception: from §3 on, we do not use the function field F = F1 ⊗Fq F of X. To simplify

notations we will write simply F for F1, and D for a division algebra with center F1 (renamed

F ).

0.4. We fix a prime l &= p and an algebraic closure Ql of Ql.

0.5. The element σ : F → F, x #→ xq, of Gal(F/Fq) is called the Frobenius substitution. Its

inverse, denoted Frob, is the geometric Frobenius.

0.6. For any scheme Y over Fq, let ΦY be the endomorphism of Y which is the identity on

the underlying set, and for which Φ∗
Y (f) = f q. For any étale sheaf F on Y , the pullback

Φ∗
Y F is canonically isomorphic to F. If one pictures F as an (algebraic) space over Y , this

expresses the functoriality of Φ, which gives rise to a commutative diagram

(0.6.1)

F
ΦF−−−→ F

$
$

Y
ΦY−−−→ Y.

Special case: ΦX1 is an endomorphism of the Fq-scheme X1. Extending scalars to F, one

obtains the Frobenius endomorphism Fr of X.

0.7. The multiplicative group of an algebra A is denoted by A∗.

1. Dictionaries

The reader familiar with Ql-smooth sheaves and actions of Frobenius is invited to jump

to 1.4.

1.1. Warning: Ql-smooth sheaves, called “Ql-local systems” in the abstract, are not defined

to be locally constant for the étale topology. Rather, the category of Ql-smooth sheaves is

defined by limiting processes from categories of local systems with finite fibers, which are

locally constant for the étale topology. One proceeds in three steps:
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a) Let Eλ be a finite extension of Ql in Ql, Oλ its valuation ring, and mλ the maximal

ideal of Oλ. The category of Oλ-smooth sheaves on a scheme Y is the category of projective

systems (Fk)k ≥ 1 of locally constant sheaves of Oλ/mk
λ-modules of finite type, with

Fk/m
k′

λ Fk
∼→Fk′ for k′

≤ k.

b) [Assuming Y to be normal] The category of Eλ-smooth sheaves on Y is obtained from it

by tensoring over Oλ by Eλ: same objects, and Hom(F, G) = HomOλ
(F, G) ⊗Oλ

Eλ.

When Y is not assumed to be normal, a more complicated definition is required if one

wants categories of Eλ-smooth sheaves to form a stack for the étale topology. We will not

need this more general setting.

c) The set of finite extensions Eλ of Ql contained in Ql, ordered by inclusion, is filtering.

The category of Ql-smooth sheaves is the 2-inductive limit, along this set, of the categories

of Eλ-smooth sheaves. Those categories do not form an inductive system in the category of

categories, only a 2-inductive system in the 2-category of categories, hence the appearance

of 2-inductive limits.

Suppose the normal scheme Y is connected. If o is a geometric point of Y , the functor

“fiber at o” is an equivalence of categories from the category of Ql-smooth sheaves to the

category Rep(π1(Y, o), Ql) of continuous linear representations of the profinite fundamental

group of Y :

π1(Y, o) → GL(V ),

for V a finite dimensional vector space over Ql. In this statement, the topology used on

GL(n, Ql) is any such that the GL(n, Eλ) are closed subgroups, and the induced topology

on GL(n, Eλ) is the l-adic topology. A Baire category argument shows that a continuous

homomorphism from π1(Y, o) to GL(n, Ql) factors through a GL(n, Eλ).

1.2. The Galois group Gal(F/Fq) acts on F, hence on the scheme X − S = (X1 − S1)⊗Fq F,

and, by transport of structures, on the set of isomorphism classes of Ql-smooth sheaves on

X−S. Transport of structures (Bourbaki Ens Ch. IV) is the principle that any isomorphism

Y1 → Y2 extends to objects constructed from Y1 and Y2. When Y1 = Y2: symmetries extend.

The construction has to be canonical: not involving choices.

Example: If τ : K1 → K2 is an isomorphism between fields, the corresponding isomorphism

[τ ] : Spec(K1) → Spec(K2) is such that [τ ]∗(a) = τ−1(a) for a in K2. If τ is an automorphism

of K, the action by transport of structures of τ on Spec(K) is [τ ] : Spec(K) → Spec(K)

such that [τ ]∗(a) = τ−1(a).
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Lemma 1.3. The action, by transport of structures, of the geometric Frobenius Frob in

Gal(F/Fq) (0.5) on the set of isomorphism classes of Ql-smooth sheaves on X −S coincides

with the pullback by the Frobenius endomorphism Fr: X − S → X − S.

More precisely, if F is Ql-smooth sheaf on X−S, one has a canonical isomorphism between

Fr∗F, and the Ql-smooth sheaf obtained from F by transport of structures using Frob. This

is deduced from a similar result for étale sheaves, which we now explain, following SGA 5

XIV, §1,2.

Proof. The endomorphism ΦX−S (0.6) of X−S = (X1−S1)×Spec(Fq)Spec(F) is the composite

of the endomorphisms induced by ΦX1−S1 and by ΦSpec(F). The first is Fr : X − S → X − S.

By the example in 1.2, ΦSpec(F) = [Frob]. By (0.6.1), the pullback functor Φ∗
X−S is isomorphic

to the identity. It is the composite of Fr∗, and of (X1 − S1) ×Spec(F1) [Frob]∗. The latter is

the inverse of the action of Frob by transport of structures, and the claim follows. !

1.4. We now explain how the action 1.3 is expressed in the languages of representations of

Galois groups or of fundamental groups.

The function field F1 of X1 is a global field of characteristic p, with field of constants Fq.

The function field F of X is F1 ⊗Fq F. Fix a separable closure F of F . The Galois group

Gal(F/F1) is an extension

(1.4.1) 1 → Gal(F/F ) → Gal(F/F1) → Gal(F/F1) → 1

and

(1.4.2) Gal(F/F1)
∼→Gal(F/Fq).

We recall the identification 0.2 of closed points and places. If s is a closed point of X,

with image s1 in X1, the choice of a place s̄ of F above s defines a decomposition (= inertia)

group Is ⊂ Gal(F/F ) as well as a decomposition group Ds1
⊂ Gal(F/F1), and Is is the inertia

subgroup of Ds1 . If the closed point s1 is of degree d over Fq, the residue field k(s1), naturally

embedded in k(s) ∼← F, is Fqd. We have a comparison morphism relating (1.4.1) (with (1.4.2)

used to replace Gal(F/F1) by Gal(F/Fq)) and its local analogue:

(1.4.3)

1 −−−→ Is −−−→ Ds1 −−−→ Gal(F/Fqd) −−−→ 1
∩$ ∩$ ∩$

1 −−−→ Gal(F/F ) −−−→ Gal(F/F1) −−−→ Gal(F/Fq) −−−→ 1.

On the right, Gal(F/Fq) is Ẑ, generated by Frob, Gal(F/Fqd) is Ẑ, generated by its dth power,

and the vertical map is d : Ẑ → Ẑ.
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The geometric point Spec(F ) → X −S of X −S, as well as its image Spec(F ) → X1 −S1

in X1 − S1, will be denoted by o. Let F
S

be the maximal extension of F in F which is

unramified outside of S. The fundamental group π1(X − S, o) (resp. π1(X1 − S1, o)) is the

Galois group Gal(FS/F ) (resp. Gal(FS/F1)), and the homotopy sequence of fundamental

groups for the fibration X1 − S1 → Spec(Fq) is the quotient of the second line of (1.4.3)

obtained by replacing F by F
S
:

(1.4.4) 1 → π1(X − S, o) → π1(X1 − S1, o) → Gal(F/Fq) → 1.

As explained in 1.1, the functor “fiber at o” is an equivalence of categories from the

category of Ql-smooth sheaves on X − S to the category of continuous representations of

π1(X −S, o) on finite dimensional Ql-vector spaces. To compute in this language the action

by transport of structures of τ in Gal(F/Fq), one should first lift τ to an automorphism

of the geometric point o, i.e. of F . The induced automorphism τ̃ of F
S

is an element of

π1(X1 − S1, o). It acts on π1(X1 − S1, o) by the corresponding inner automorphism. The

induced action on π1(X − S, o) gives the action on representations: ρ #→ (g #→ ρ(τ̃−1gτ̃)).

As was clear a priori, the action obtained on isomorphism classes of representations (i.e.

Ql-smooth sheaves) does not depend on the lifting chosen. This will be used for τ = Frob.

1.5. To state the relation between Frobenius fixed points and automorphic representations,

it is convenient to replace Galois groups by Weil groups. Let W (X1 − S1, o) be the inverse

image in π1(X1 − S1, o) of the subgroup Z of Gal(F/Fq) = Ẑ. One gives it the topology for

which π1(X − S, o) is an open subgroup.

Locally, with the notations s, s1, s̄, Is, Ds1 and d of 1.4, let Ws1 be the inverse image in Ds1

of the subgroup Z of Gal(F/Fqd) = Ẑ, with the topology for which Is is an open subgroup.

From (1.4.3) we get

(1.5.1)

1 −−−→ Is −−−→ Ws1 −−−→ Z −−−→ 1
$

$
$

1 −−−→ π1(X − S, o) −−−→ W (X1 − S1, o) −−−→ Z −−−→ 1.

The left vertical map is trivial when s /∈ S, in which case we get from (1.5.1) a map

Z → W (X1 − S1, o). The image of 1 is called a Frobenius at s1.

From the computation 1.4 of the Frobenius action, we get

Lemma 1.6. Let F be a Ql-smooth sheaf on X − S. Its isomorphism class is fixed by

Frob ∈ Gal(F/Fq) (cf. 1.3) if and only if the corresponding representation of π1(X − S, o)

can be extended to W (X1 − S1, o).
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1.7. In the case of function fields, the notion of cuspidal automorphic representation is purely

algebraic. One can use as field of coefficients any algebraically closed field k of characteristic

zero, for instance Ql. Let A be the adèle ring of F1. In the case of GL(n), the multiplicity one

theorem allows us not to make a distinction between cuspidal automorphic representations π

of GL(n, A), viewed as subrepresentations of the space of k-valued locally constant cuspidal

functions on GL(n, F1)\GL(n, A), on which GL(n, A) acts by right translations, or viewed

as isomorphism classes of irreducible representations of GL(n, A) occuring in that space. As

representations, they are restricted tensor products of representations πs of the local groups

GL(n, F1s), s a place of F1. We will say that π is unramified at s if πs admits a nonzero

vector fixed by the maximal compact subgroup GL(n, Os) of GL(n, F1s).

By Lafforgue [L], the isomorphism classes of n-dimensional irreducible Ql-linear contin-

uous representations of W (X1 − S1, o) are in a natural bijective correspondence with the

Ql-cuspidal automorphic representations of GL(n, A) which are unramified outside of S1

(global Langlands correspondence). If ρ corresponds to π, the restriction (1.5.1) of ρ to Ws1

corresponds to πs1 by the local Langlands correspondence.

A surprising consequence: an algebraic isomorphism Ql
∼→Ql′ induces a bijection between

isomorphism classes of irreducible Ql-linear continuous representations of W (X1−S1, o), and

the same for Ql′, in spite of the fact that we are considering continuous representations for

the l- or l′-adic topologies. Representations correspond if the characteristic polynomials of

Frobeniuses do. Caveat: if one wants to use the so-called unitary correspondence between

representations of W (X1 − S1, o) and automorphic representations, one needs to choose a

square root of q in Ql.

1.8. Let F be a Ql-smooth sheaf on X−S. Let V := Fo be the corresponding representation

of π1(X − S, o). Suppose that the isomorphism class of F is fixed by the Frobenius, and

choose an extension of the representation V to a representations V1 of W (X1 − S1, o) (1.6).

In general, irreducibility of V1 does not imply irreducibility of V (equivalently: of F). The

1981 work of Drinfeld [D], in which S = ∅, suggests that it is the irreducibility of F we

should be concerned with. We are interested in the case when S &= ∅ and when the local

monodromy at each s in S is principal unipotent. This case is simpler.

As in 1.4, let Is be an inertia group at s. The largest pro-l quotient of Is is isomorphic to

Zl. “Principal unipotent local monodromy at s” means that the action of Is factors through

this Zl, with an element of Is with image a in Zl acting as exp(aN), where N is nilpotent

with one Jordan block.
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Lemma 1.9. (i) If at one s ∈ S the local monodromy is principal unipotent, then V is

irreducible as soon as V1 is.

(ii) If V is irreducible, any extension V ′
1 of V to a representation of W (X1 − S1, o) is of the

form V1 ⊗ χ, for χ : Z → Q
∗
l a character of the quotient Z of W (X1 − S1, o), and the V1 ⊗ χ

are all nonisomorphic.

Proof of (i). Any subrepresentation V ′ of V , being stable by the exp(aN) (a ∈ Zl), and

hence by N , will be of the form NkV . It will hence be the only subrepresentation of V of

its dimension. As π1(X − S, a) is an invariant subgroup of W (X1 − S1, 0), any element of

W (X1 − S1, o) will map V ′ to a subrepresentation of V , of the same dimension, hence to

itself: V ′ is a subrepresentation of V1.

Proof of (ii). By assumption, V1 and V ′
1 are identical as representations of π1(X, o). by

Schur’s lemma,

Homπ1(X−S,o)(V1, V
′
1)

is reduced to the line Ql of multiplication by scalars. It is a representation of the quotient

Z of W (X1 − S1, o), and is given by a character χ of Z. That

V1 ⊗ Homπ1(X−S,o)(V1, V
′
1)

∼→V ′
1

gives that V ′
1 is V1 ⊗ χ. Conversely, if we take V ′

1 = V1 ⊗ η, the character χ we obtain is η,

so that twists by distinct characters are non isomorphic.

1.10. The divisor of an idèle a = (as) is
∑

valuation(as) · s, where the sum is over all

closed points of X1. The degree of a is the degree
∑

valuation(as) · deg(s) of its divisor.

Equivalently, the degree map, from the idèle class group F ∗
1 \A∗ to Z, is characterized by

(1.10.1) ‖a‖ = q− deg(a).

Let χ : Z → Q
∗
l be a character of Z, where Z is viewed as the quotient deg ◦ det : GL(n, A) →

Z of GL(n, A) (resp. as the quotient Z of W (X1−S1, o)). The twist by χ, denoted π χ (resp,

V1χ), of a representation π of GL(n, A) (resp. V1 of W (X1 − S1, o)) is π ⊗ χ (resp. V1 ⊗ χ).

Such twists we name Fq-twists. If F1 is a Ql-smooth sheaf on X1 −S1, if V1 is the restriction

of the corresponding representation of π1(X1−S1, o) to W (X1−S1, o), and if χ is with values

in the units of Q
∗
l , hence extends to Ẑ, then V1χ is obtained from the tensor product of F1

with the pullback to X1 − S1 of a rank one Ql-sheaf on Spec(Fq). This is what motivates

the terminology.
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If π is automorphic, hence is a space of functions on GL(n, F1)\GL(n, A), then so is π χ: it

is the space of functions f ·χ(deg ◦ det) for f in π. With the notations of 1.7, if an irreducible

representation V1 of W (X1 − S1, o) corresponds by the global Langlands correspondence to

the cuspidal automorphic representation π of GL(n, A), then V1χ corresponds to π χ.

By the local Langlands correspondence, the condition that F has principal unipotent local

monodromy at s ∈ S, with image s1 in S1, corresponds to the condition on the automorphic

representation π that the local component πs1 be of the form

(1.10.2) Steinberg representation ⊗ χ(det),

for χ an unramified character F ∗
1s1

→ Q
∗
l .

Applying 1.9 we conclude:

Scholium 1.11. Assume that S is not empty.

(i) There is a bijective correspondence between

(A) isomorphism classes of rank n irreducible Ql-smooth sheaves on X − S, fixed by the

Frobenius, and with principal unipotent monodromy at each s ∈ S, and

(B) classes modulo Fq-twisting of cuspidal automorphic Ql-representations π of GL(n, A),

unramified outside of S1, such that for each s ∈ S1 the representation πs is of the form

(1.10.2).

(ii) For π as in (B), the Fq-twists are all distinct.

1.12. Suppose that D is a rank n division algebra over F1, unramified outside a subset 0S1

of the set of places S1, and for which at each s ∈ 0S1 the completion Ds is a division algebra

over F1s. Such a division algebra exists if and only if |S1| ≥ 2.

By abuse of notations, we denote by D∗ the algebraic group over F such that for any

commutative F -algebra R, the group D∗(R) of R-points of D∗ is the multiplicative group

(D⊗F R)∗ of D⊗F R. The group of F -points of D∗ is simply the multiplicative group of D.

The reduced norm defines an homomorphism det of algebraic groups from D∗ to the

multiplicative group Gm, and Fq-twists of automorphic representations of D∗(A) are defined

as for GL(n) (1.10).

Our results depend on the following statement. How to extract this statement from the

literature is explained in the Appendix.
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Statement 1.13. Suppose that n ≥ 2. There is then a bijective correspondence, compatible

with Fq-twists, between

(A) cuspidal automorphic representations π of GL(n, A), whose local components at each

s ∈ 0S1 is of the form (1.10.2), and

(B) automorphic representations π′ of D∗(A), other than one-dimensional, whose local com-

ponents at each s ∈ 0S1 is one-dimensional and of the form χ(det) for χ an unramified

character of F ∗
1s.

The representation π (resp. π′) occurs with multiplicity one in the cuspidal spectrum of

GL(n, A) (resp. D∗(A)). If π corresponds to π′, at each v /∈ 0S1 (so that D∗
s , GL(n, F1s)),

πs is isomorphic to π′
s.

The number of classes 1.11(A), or (B), is hence also the number of classes modulo Fq-

twisting of automorphic representations π′ of D∗(A) other than one-dimensional, with local

components at each s ∈ 0S1 as in 1.13 (B), with local components at each s ∈ S1 − 0S1 of

the form (1.10.2), and unramified outside of S1. Further, for π′ as in (B), the Fq-twists π′ χ

are all distinct.

So far, we have considered Ql-automorphic representations. The theory being algebraic,

nothing changes if one considers instead the usual C-automorphic representations.

2. Statement of the theorem: first form

2.1. Let T(n)(X, S), or simply T(n), be the set of isomorphism classes of rank n irreducible

Ql-smooth sheaves on X − S, with principal unipotent local monodromy at each s ∈ S (see

1.8).

The geometric Frobenius Frob ∈ Gal(F/Fq) acts on T(n) by transport of structures. This

action coincides with the pullback by the Frobenius endomorphism Fr: X − S → X − S

(1.3). Our aim is to compute the number T (X1, S1, n) of its fixed points. For each m ≥ 1, the

Frobenius endomorphism for (Xm − Sm)/Fqm is Frm. The number T (X1, S1, n, m) of fixed

points of the mth iterate of Frobenius is hence given by

(2.1.1) T (X1, S1, n, m) = T (Xm, Sm, n).

Before stating the result, we introduce some notations.
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2.2. The zeta function of X1 is a function of a complex variable usually called s. We will call

it z, to avoid confusion with points of X1. Rather than this variable, we will systematically

use the variable t = q−z. The function Z(X1, t) is defined by

(2.2.1) Z(X1, t) = ζ(X1, z)

when t = q−z. It depends not only on the scheme X1, but also on q such that X1 is a

Fq-scheme. It has the cohomological description

Z(X1, t) =
∏

det(1 − Frob · t, H i(X))(−1)i+1
(2.2.2)

=
det(1 − Frob · t, H1(X))

(1 − t)(1 − qt)

where Frob stands for the geometric Frobenius Frob ∈ Gal(F/Fq), acting on the l-adic

cohomology groups H∗(X) by transport of structures (1.2). Put

f(t) := det(1 − Frob · t, H1(X)).

It is a polynomial of degree 2g with integral coefficients. We will write α for a quantity

running over the inverse roots of f(t), counted with their multiplicities. One has

(2.2.3) f(t) =
∏

(1 − α t).

When X1/Fq is replaced by Xm/Fqm, the corresponding polynomial fm is

(2.2.4) fm(t) =
∏

(1 − αmt).

In (2.2.4), the relation between the variables t and z is t = q−mz. The value of fm at t = 1

is the number hm of Fqm-points of the jacobian Pic0(X1) of X1:

(2.2.5) fm(1) =
∏

(1 − αm) = hm := |Pic0(X1)(Fqm)|.

We define

(n/S1) := the largest divisor of n which is prime to all deg(s), for s in S1.(2.2.6)

nT1 := f(1) · 1

qn − 1
·

n−1∏

j=1

{
(1 − qj)−2 · f(qj) ·

∏

s∈S1

(1 − qj deg s)

}
.(2.2.7)

nTm := nT1 for (Xm, Sm) over Fqm.(2.2.8)

cm := #{x ∈ F∗
qm | x generates Fqm over Fq}.(2.2.9)

If m is prime to the degree of a closed point s1 of X1, then Fqm ⊗Fq k(s1) is a field and

[Fqm ⊗Fq k(s1) : Fqm] = [k(s1) : Fq].
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In geometric terms: there is a unique point sm of Xm above s1, and its degree, as a closed

point of Xm/Fqm, coincides with deg(s1). It follows that, when m | (n/S1), the étale divisor

Sm maps bijectively to S1 and if sm ∈ Sm has image s1 ∈ S1, the degree [k(sm) : Fqm ] of

the closed point sm of Xm is equal to the degree [k(s1) : Fq] of the closed point s1 of X1:

Nm = N1, and nTm is given by the formula (2.2.7) with f replaced by fm and q by qm.

Theorem 2.3. Suppose that n and N1 are ≥ 2. One then has

(2.3.1) f(1) + (−1)N1(n−1)T (X1, S1, n) =
∑

m|(n/S1)

cm · mN1−2 ·n/m Tm.

In section 4 (resp. 5), we will prove (2.3.1) under the assumption that n is odd or N1 even

(resp. that N1 ≥ 3 and that n or N1 is odd).

3. Division algebras and Tamagawa numbers

We will no more use the field F1 ⊗Fq F previously noted F . To lighten the notations we

will simply write F for F1. We fix a finite set S of places of F .

3.1. The central simple algebras D over F of dimension n2 are classified by their local

invariants inv(Dv) ∈ (Q/Z)n, where Dv is the completion D ⊗F Fv of D at the place v of

F . The only constraints on the local invariants are that almost all are zero and that their

sum is zero. The completion Dv is a matrix algebra (resp. a division algebra) if and only if

inv(Dv) = 0 (resp. inv(Dv) is of exact order n).

Proposition 3.2. Assume that |S| ≥ 2. Then, except in the case where n is even and |S| is

odd, there exists a D as in 3.1, such that Dv is a matrix algebra for v /∈ S, and a division

algebra for v ∈ S.

Proof. For D as in 3.1, define av = n inv(Dv) ∈ Z/n. The problem is to find a family of av,

for v ∈ S, of exact order n and sum zero. If |S| is even, take half of the av to be 1, and the

other half to be −1. If |S| ≥ 3 is odd and n is also odd, take two a′
vs to be (n − 1)/2, one to

be 1, and the others in (1,−1) pairs. !

3.3. If γ in D∗ is of finite order, it generates over Fq ⊂ F a finite extension, isomorphic to

Fqm for some m: γ is in the image of a morphism of Fq-algebras: Fqm → D. Such morphisms

correspond one-to-one to morphisms of F -algebras: Fm = Fqm ⊗ F → D. By a special case

of the Skolem-Noether theorem, a proof of which is recalled at the end of the proof of 3.5,
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any two such morphisms are conjugate by some d in the multiplicative group D∗ of D. With

the notation (n/S) of (2.2.6), one has:

Proposition 3.4. Let D be as in 3.2. There exists a morphism of F -algebras: Fm → D if

and only if m divides (n/S).

Before giving the proof of 3.4, we observe that 3.3 and 3.4 imply that there exists a

morphism of F -algebras ϕ : F(n/S) → D, inducing ϕ0 : Fq(n/S) → D, that any conjugacy

class of elements of finite order of D∗ meets ϕ0(F∗
q(n/S)), and that two elements of F∗

q(n/S) have

images in the same conjugacy class if and only if they are Gal(Fq(n/S)/Fq)-conjugate.

We will deduce 3.4 from the following well-known lemma:

Lemma 3.5. Let F be a field, D a division algebra with center F of dimension n2 over F ,

and Fm a field extension of degree m of F . The central simple algebra Dm := Fm ⊗F D over

Fm is isomorphic to a matrix algebra Mk(C) over a division algebra C with center Fm. One

has k | m and the following conditions are equivalent:

(i) Fm can be embedded, as an F -algebra, in D;

(ii) k = m.

The proof will repeat that of the Skolem-Noether theorem.

Proof. Conjugacy classes of F -algebra embeddings Fm → D correspond one-to-one to iso-

morphism classes of (Fm, D)-bimodules, of dimension one over D. By “bimodule” we mean

a bimodule for which the two induced F -module structures are equal; this is the same as a

right Dm-module. Indeed, if M is a (Fm, D)-bimodule, of dimension one over D, each e &= 0

in M is a basis of M over D, the map x #→ e−1xe : Fm → D such that xe = e(e−1xe) is

an embedding, and the x #→ e−1xe for e &= 0 in M form a conjugacy class of embeddings

Fm → D. If ϕ belong to that conjugacy class, corresponding to e ∈ M , M is isomorphic to

D, with D acting by right multiplication and x ∈ Fm acting by left multiplication by ϕ(x).

The isomorphism is given by 1 #→ e. The same construction shows that any embedding ϕ is

obtained from some (M, e): take M = D, e = 1 and actions of Fm and D as above.

If C is of dimension c2 over Fm, one has n = kc, and simple right Dm-modules are of

dimension kc2 over Fm, hence mkc2 over F , and mkc2/n2 = m/k over D. It follows that k

divides m, and that the dimensions over D of (Fm, D)-bimodules are the multiples of m/k.

The dimension one is possible if and only if k = m. If k = m, the (Fm, D)-bimodules of
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dimension one over D are the simple Dm-modules, they are all isomorphic, and this proves

that the embeddings Fm → D are all conjugate (Skolem-Noether theorem). !

Proof of 3.4. In our case, 3.5 shows that Fm embeds in D if and only if m divides n and the

local invariants of Dm are of order dividing n/m. If the place v of Fm is above the place s

of F , by extension of scalars the local invariant gets multiplied by [Fm,v : Fs]. This degree

is divisible by m if and only if s is inert in Fm. This is the case if and only if Fqm ⊗Fq Fs, or

equivalently Fqm ⊗Fq k(s), is a field, i.e. when m is prime to the degree of k(s) over Fq. We

need this to be the case at each s in S. !

3.6. We fix D as in 3.2. By an “order of D” we will mean an order containing the maximal

order of F . Orders cannot be defined, as in the number field case, as suitable subalgebras.

Such a description is available only on each affine chart of the projective curve X1. The

constant sheaf D on X1 is a quasi-coherent sheaf of algebras. An order of D (over X1) is a

coherent subsheaf of algebras, whose fiber at the generic point is D. Being contained in the

constant sheaf D, an order OD is torsion free, hence locally free as a sheaf of O-modules. It

is of rank n2, and over some open subset of X1 is a sheaf of Azumaya algebras.

Similarly, modules over an order OD are sheaves of OD-modules, quasi-coherent as sheaves

of O-modules. We will denote by Mod(−OD) the category of right OD-modules which are

coherent as sheaves of O-modules, and Mod∗(−OD) the subcategory of those which are

invertible, that is, locally free of rank one over OD. In parallel to the notations O(s), O∧

(s), Fs

of (0.2), we denote by OD,(s) the stalk of OD at the closed point s of X1, OD,s = OD,(s)⊗O(s)
Os

its completion, and Ds = OD,s⊗Os Fs the completion of D at s. Any other order O′
D coincides

with OD outside of a finite set of closed points, call it T , and is determined by the O′
D,t

⊂ Dt

for t in T . The O′
D,t are arbitrary orders of the Dt : Ot-subalgebras, generated as Ot-modules

by a basis of Dt over Ft.

If v /∈ S, Dv is isomorphic to End(V ) for V a vector space of dimension n over Fv.

The maximal orders of End(V ) are the EndOv(V
0) for V 0 a lattice in V : an Ov-submodule

generated over Ov by a basis of V over Fv. If OD,v is a maximal order of Dv, OD is Azumaya

at v.

If v ∈ S, the division algebra Dv admits a valuation and its unique maximal order is its

valuation ring. The order OD is maximal if and only if, at each closed point v of X1, OD,v is

a maximal order in Dv.
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3.7. As in 1.12, we denote by D∗ the obvious affine algebraic group over F with group of

rational points the multiplicative group of D. For any order OD of D, the adelic group D∗(A)

(A the ring of adèles of F ) is the restricted product of the D∗
v, relative to the compact open

subgroups O∗
D,v. Its center is the group A∗ of idèles of F .

3.8. We will use that the Tamagawa number τ(D∗) is 1. As D∗ is not semisimple, we use

Ono’s definition of Tamagawa numbers for reductive groups [O]. We need to explain how

Ono’s definition extends to the function field case.

Let G be a unimodular connected smooth linear algebraic group over F . A translation

invariant differential form of maximal degree on G, or equivalently, ω ∈
max
∧ Lie(G)∨, defines

at each place v of F a measure ‖ωv‖ on G(Fv). One would like to define the Tamagawa

measure on G(A) to be the product measure ‖ω‖ =
∏

v
‖ωv‖, independent of ω &= 0 by the

product formula, times q(1−g) dim G. When G is semisimple, this makes sense: the product is

absolutely convergent. When G is reductive and does not admit the multiplicative group Gm

as a quotient, the product is conditionally convergent in the following sense: if K =
∏

Kv is

a compact open subgroup of G(A), the product of the
∫

Kv
‖ωv‖ converges if one first groups

together the factors for which v has a given degree: the product over j

∏

j



 ∏

deg(v)=j

∫

Kv

‖ωv‖





is absolutely convergent.

When G admits Gm as a quotient, the same product vanishes, essentially because
∏

(1 − q−deg v) does. As it is the only case we will need, we will explain what is to be

done under the additional assumption that G is given with d : G → Gm, an epimorphism

whose kernel is the derived group of G. This applies to GL(n) and to D∗, with d = det.

For |t| < 1/q, the rational function Z(X1, t) (see 2.2) is the product over all places of the

local factors Zv(t) = (1 − tdeg v)−1. At the simple poles t = 1, 1/q, a regularized value Z# is

defined to be the negative of the residue of Z(X1, t)
dt
t .

Under our assumptions Ono’s Tamagawa measure on G(A) is

(3.8.1) µ := Z#(X1, 1/q)
−1 · q(1−g) dim G ·

∏

v
Zv(1/q) · ‖ωv‖.

Let G(A)0 be the kernel of the homomorphism

deg d : G(A) → Z,
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and kZ be its image. If G(A)(i) is the inverse image of i, the G(F )\G(A)(i) for i ∈ kZ have

all the same volume. It follows that µ(G(F )\G(A)) is infinite. This is a counterpart to the

divergence of Z(X1, t) at t = 1/q, which forced us to put Z#(X1, 1/q) rather than Z(X1, 1/q)

in (3.8.1). Under our assumptions Ono’s Tamagawa number τ(G) of G is

(3.8.2) τ(G) := µ(G(F )\G(A)0)/k.

For G = GL(n) or D∗, deg d is onto and we have simply τ(G) := µ(G(F )\G(A)0). Ono’s

general results imply that

(3.8.3) τ(GL(n)) = 1 and τ(D∗) = 1.

3.9. Remark. Ono considers the number field case. He uses the complex variable s (which

we call z, see 2.2), and the morphism log ‖d‖ : G(A) → R to define τ(G). His proofs work

as well in the function field case. One should, however, be aware of two differences between

his definition of τ(G) and the one we explained. They cancel each other.

(a) Ono uses as regularized value ζ#(X1, 1) the value at z = 1 of (z − 1)ζ(X1, z), equal to

the residue at 1 of ζ(X1, z)dz. As dt/t = − log q dz, one has

Z#(X1, 1/q) = log q · ζ#(X1, 1).

In the case we are considering, the measure µO used by Ono in [O] is hence log q times the

measure µ defined by (3.8.1).

(b) The right side of (3.8.2) should be viewed as the volume modulo G(F ) of the “complex”

G(A) → Z, for the measure µ on G(A) and the counting measure on Z. Ono uses the

“complex” log ‖d‖ : G(A) → R, µO on G(A) and dx on R. In the number field case, this

amounts to using the measure µO/dx on G(A)0.

In the function field case, the two constructions are possible. They are related by the

commutative diagram
G(A) −−−→ Z
∥∥∥

∩$− log q

G(A) −−−→ R.

When one uses the measure µ on G(A), the counting measure on Z, and the measure dx on

R, the volume modulo G(F ) of the second line is equal to the volume modulo G(F ) of the

first line, divided by log q =
∫

R/ log q·Z dx.

The following is well known.
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Proposition 3.10. For G = GL(n), the Tamagawa volume of
∏

GL(n, Ov) is

(−Z#(1)Z(q) · · ·Z(qn−1))−1.

Sketch of Proof. For the additive group Ga, and ω = dx, the volume of Ov for ‖ωv‖, and

the volume of
∏

Ov for ‖ω‖, are 1. The intersection F ∩
∏

Ov is Fq, F\A/
∏

Ov is H1(O)

and the volume of F\A = Ga(F )\Ga(A) for ‖ω‖ is hence qg−1. This, and the wished

for multiplicativity in G, are the reasons for the factor q(1−g) dim G in the definition of the

Tamagawa measure: it ensures that τ(Ga) = 1.

Let us temporarily forget that
∏

(1 − q−deg v) diverges. The Tamagawa measure of
∏

GL(n, Ov) would then be the measure of
∏

GL(n, Ov), viewed as a subspace of
∏

Mn(Ov).

The case of the additive group tells us that the Tamagawa volume of
∏

Mn(Ov) is q(1−g)n2
.

For
∏

GL(n, Ov), the Tamagawa volume is then

q(1−g)n2 ·
∏ |GL(n, k(v))|

|Mn(k(v))|
= q(1−g)n2 ·

∏

v
((1 − q−1

v ) · · · (1 − q−n
v ))

= q(1−g)n2 · (Z(q−1) · · ·Z(q−n))−1.

The required regularization replaces Z(q−1) by Z#(q−1).

One then uses the functional equation

Z(t) = (qt2)g−1Z(1/qt).

As t #→ 1/qt maps dt
t to −dt

t , the same holds up to sign for the regularized values at t = 1,

1/q. We get

Z#(q−1)Z(q−2) · · ·Z(q−n) = −(q−1 · · · q−(2n−1))g−1Z#(1)Z(q) · · ·Z(qn−1)

= −q(1−g)n2
Z#(1)Z(q) · · ·Z(qn−1)

and the proposition. !

One has Z(t) = f(t)/(1− t)(1− qt) and Z#(1) is the value at 1 of f(t)/(1− qt). One can

hence rewrite 3.10 as

(3.10.1) µ (
∏

GL(n, Ov)) =

[

f(1) · 1

qn − 1
·

n−1∏

j=1
f(qj)/(1 − qj)2

]−1

.

The analogous question for D∗ is reduced to 3.10 by a standard argument:
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Proposition 3.11. Let OD be a maximal order of D as in 3.2. Define qv = |k(v)| = qdeg(v).

Then, for G = D∗, the Tamagawa volume of
∏

O∗
D,v is

(3.11.1) µ
(∏

O∗
D,v

)
=
∏

v∈S
δv · µ

(
∏

v
GL(n, Ov)

)

with

(3.11.2) δv =
[
(qv − 1) · · · (qn−1

v − 1)
]−1

.

Plugging (3.10.1) in (3.11.1) and using that (n− 1)|S| is even, one can rewrite (3.11.1) as

(3.11.3) µ
(∏

O∗
D,v

)
=

[

f(1) · 1

q2 − 1
·

n−1∏

j=1

{
(1 − qj)−2 · f(qj)

∏

s∈S
(1 − qj deg(s))

}]−1

.

For S = S1, (3.11.3) is the inverse of nT1 (2.2.7).

Sketch of Proof. The algebra D over F is obtained from the n × n matrix algebra Mn by

twisting by a PGL(n)-torsor. The algebraic group D∗ as well as
max
∧ Lie(D∗)∨ are similarly

obtained from GL(n) and
max
∧ Lie(GL(n))∨. As PGL(n) acts trivially on

max
∧ Lie GL(n)∨,

max
∧ Lie(D∗)∨ is canonically isomorphic to

max
∧ Lie(GL(n))∨. This isomorphism is compatible

with extensions of scalars. It induces a correspondence between the Haar measures on

GL(n, Fv) and D∗
v. Taking products, it induces also a correspondence between the Haar

measures of GL(n, A) and D∗(A). The Tamagawa measures µ correspond to each other. If

the µv are corresponding Haar measures for the local groups, this gives

(3.11.4) µ
(∏

O∗
D,v

)
/µ (

∏
GL(n, Ov)) =

∏
µv(O

∗
D,v)/µv(GL(n, Ov)).

It suffices to extend the product on the right only over the set S of places where Dv is not

isomorphic to Mn(Fv).

For v ∈ S, O∗
D,v is an Iwahori subgroup of D∗

v. Let Tv be the subalgebra of Mn(Ov) con-

sisting of the matrices whose reduction in Mn(k(v)) is upper triangular. The multiplicative

group Iv := T ∗
v is an Iwahori subgroup of GL(n, Fv). As multiplicative groups of Ov-algebras

which as Ov-modules are free of finite type, O∗
D,v and Iv are the groups of Ov-points of group

schemes smooth over Spec(Ov).

Suppose that G is a reductive group over Fv, F ′
v an unramified extension of Fv and O′

v its

valuation ring. By Bruhat-Tits, an Iwahori subgroup of G, that is of G(Fv), is in a natural

way the group of Ov-points of a smooth group scheme I over Spec(Ov), with generic fiber G.

Further, I(O′
v) is an Iwahori subgroup of G′ := G ⊗Fv F ′

v and I ⊗Ov O′
v is the corresponding

smooth group scheme over Spec(O′
v). We use here that, as the residue fields are finite, we
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are in the residually split case. This is in fact how Iwahori subgroups are constructed: one

finds an Iwahori subgroup I ′ of G′ fixed by Gal(F ′
v/Fv), and one constructs I from I′ by étale

descent.

In our case, choose F ′
v such that Dv and Mn become isomorphic after extension of scalars

to F ′
v. For GL(n), an Iwahori subgroup I ′ determines the corresponding order T ′ of Mn, of

which it is the multiplicative group. Let I ′ be an Iwahori subgroup of (Dv⊗F ′
v)

∗ , GL(n, F ′
v)

and T ′ be the order of Dv ⊗ F ′
v of which I ′ is the multiplicative group. If I ′ is stable by

Gal(F ′
v/Fv), T ′ descends to an order T of Dv. As T ∗ is the Iwahori subgroup of D∗

v , T must

be OD,v.

We conclude that OD,v⊗F ′
v

⊂ Dv⊗F ′
v , Mn(F ′

v) is conjugate to Tv (we will also check this

directly in 3.12), and that the Haar measures µv on D∗
v and GL(n, Fv) defined by generators

of
max
∧ Lie(O∗

D,v) and
max
∧ Lie(T ∗

v ) correspond to each other.

On O∗
D,v, µv is induced by the Haar measure on Dv for which OD,v has volume one. On

GL(n, Ov), µv is determined by the Haar measure on Mn(Fv) for which Tv has volume one.

Using that OD,v is a valuation ring with residue field Fqn
v
, we get

µv(O
∗
D,v) = 1 − 1

qn
v

.

The µv-volume of GL(n, Ov) is

|image of GL(n, Ov) in Mn(k(v))|/|image of Tv in Mn(k(v))|

= qn2

v

(
1 − 1

qv

)
· · ·

(
1 − 1

qn
v

)
/qn(n+1)/2

v

= (qv − 1) · · · (qn−1
v − 1)

(
1 − 1

qn
v

)
.

This gives

µv(O
∗
D,v)/µv(GL(n, Ov)) =

[
(qv − 1) · · · (qn−1

v − 1)
]−1

and (3.11.1) follows from (3.11.4). !

3.12. Let k be the residue field of Fv, and choose an isomorphism of Fv with k((t)). Let

k′ be a degree n extension of k, and F ′
v := k′((t)). For some generator τ of Gal(F ′

v/Fv) ,
Gal(k′/k) , Z/n, the division algebra Dv admits the following model as a crossed product:

one adds to F ′
v an element π such that π

n = t and πf = τ(f)π for f in F ′
v.

The elements of Dv can be written as Laurent series
∑

anπ
n, with an in k′, and the

product is such that π a = τ(a)π for a in F ′
v: Dv is a twisted Laurent formal power series
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field k′((π))τ . It admits the valuation
∑

anπ
n #−→ inf{n | an &= 0}.

The valuation ring is the twisted formal power series ring k′[[π]]τ .

The tensor product F ′
v ⊗Fv F ′

v is a product of copies of F ′
v, indexed by Gal(F ′

v/Fv). The

coordinates of the isomorphism are the

prα : F ′
v ⊗Fv F ′

v → F ′
v : x ⊗ y #−→ α(x)y.

They are permuted by τ , acting on the first factor F ′
v : prα(τ(x) ⊗ y) = ατ(x) ⊗ y =

prατ (x⊗ y). The algebra D′
v := Dv ⊗Fv F ′ is obtained by adding to this product of copies of

F ′
v an element π such that π

n = t and π(xα) = (xατ )π.

Let us identify Gal(k′
v/kv) with Z/n by using τ as a generator. One then defines an

isomorphism of D′
v with Mn(F ′

v) by mapping F ′
v ⊗ F ′

v = F ′
v

Z/n to the diagonal matrices, and

π to the matrix 1 just above the diagonal, t on the lower left corner, and 0 elsewhere. With

Tv as in 3.11, by this isomorphism, OD,v ⊗ k′[[t]] maps to Tv ⊗ k′[[t]].

4. Proof of 2.3: Masses of categories

In this section, we prove 2.3 under the assumption that there exists a division algebra D

with center F of dimension n2 over F , such that Dv is a division algebra for v ∈ S1, and a

matrix algebra over Fv for v /∈ S1. As explained in 3.2, this amounts to assuming that n is

odd, or that N1 (assumed to be ≥ 2) is even. In both cases, N1(n − 1) is even and the sign

(−1)N1(n−1) in (2.3.1) is +1.

4.1. As we recalled in 1.11 and 1.13, the number T (X1, S1, n) we want to compute is also the

number of classes modulo Fq-twists of automorphic representations π of D∗(A) such that

(i) π is unramified outside of S1;

(ii) for v in S1, the local component πv is of the form χ(det) for χ an unramified character

of F ∗
v ;

(iii) π is not one-dimensional.

To count these representations up to Fq-twists, we will proceed in two steps. Let a be an

idèle of F of positive degree: deg(a) > 0. Identifying A∗ with the center of D∗(A), one has

deg det(a) = deg(an) = n deg(a).
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It follows that for χ a character of the quotient Z of D∗(A),

ωπχ(a) = ωπ(a)χ(n deg a)

and any π has an Fq-twist π′ such that ωπ′(a) = 1. This π′ is not unique: one remains free

to twist it by a character of Z/n deg(a). We conclude that T (X1, S1, n) is the number of

automorphic representations of D∗(A) obeying (i), (ii), (iii) and

(iv) ωπ(a) = 1,

taken modulo Fq-twists by a character of Z/n deg a. These twists being distinct, we have

Lemma 4.2. The number T (X1, S1, n) is 1/n deg(a) times the number of automorphic rep-

resentations of D∗(A) obeying (i), (ii), (iii), (iv) of 4.1.

In the rest of this section, we take a to be of degree one.

4.3. Let us fix a maximal order OD of D (3.6). The space of locally constant functions on

D∗\D∗(A)/aZ is the direct sum of the automorphic representations π for which ωπ(a) = 1.

This direct sum decomposition, being D∗(A)-equivariant, is compatible with taking the

invariants by
∏

O∗
D,v. The π for which (i), (ii) hold are those for which the subspace of

vectors fixed by
∏

O∗
D,v is nontrivial. This subspace is then of dimension one. It follows that

the number of automorphic representations of D∗(A) for which (i), (ii) holds is the dimension

of the space of functions on D∗\D∗
A/
∏

O∗
D,v · aZ:

Lemma 4.4. The number of automorphic representations of D∗(A) for which (i), (ii), (iv)

hold is the number of elements of the finite set

(4.4.1) D∗\D∗(A)/
∏

O∗
D,v · aZ.

Lemma 4.5. There are n h1 one-dimensional automorphic representations of D∗(A) for

which (i), (ii), (iv) hold.

Proof. The map det maps D∗(A) (resp. D∗, resp. O∗
D,v) onto A∗ (resp. F ∗, resp. O∗

v).

The representations considered may hence be identified with the unramified characters χ of

the idèle class group such that χ(an) = 1. As F ∗\A∗/
∏

O∗
v · anZ is an extension of Z/n by

Pic0(X1)(Fq), the lemma follows. !

From 4.4 and 4.5, we get
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Lemma 4.6. We have T (X1, S1, n) + h1 = 1
n |D

∗\D∗(A)/
∏

O∗
vD · aZ|.

Let D∗(A)(i) be the coset of D∗(A)0 (notation of 3.8) on which deg det = i. One has
∐

0≤ i<n
D∗\D∗(A)(i)/

∏
O∗

D,v
∼→D∗\D∗(A)/

∏
O∗

D,v · aZ.

We will not need the following variant of 4.6.

Proposition 4.7. The D∗\D∗(A)(i)/
∏

O∗
D,v have all the same number of elements. As a

consequence,

T (X1, S1, n) + h1 = |D∗\D∗(A)0/
∏

O∗
D,v|.

Proof. The group (Z/n)∨ of characters χ of Z/n acts on the space L of functions on

D∗\D∗(A)/
∏

O∗
D,v · aZ by multiplication by χ(deg det). The space L is a direct sum of

lines, indexed by the automorphic representations obeying (i), (ii), (iv), and (Z/n)∨ acts

freely on this set of lines: L is a multiple of the regular representation of (Z/n)∨ and each

character of (Z/n)∨ occurs in it with the same multiplicity. One concludes by observing that

the multiplicity of the character χ #→ χ(i) is |D∗\D∗(A)(i)/
∏

O∗
D,v|. !

4.8. Let ϕ0 be the Haar measure with mass one of
∏

O∗
D,v, extended by zero to a measure on

D∗(A). Convolution with ϕ0 is an idempotent projection from locally constant functions on

D∗\D∗(A)/aZ to functions on D∗\D∗(A)/
∏

O∗
D,v · aZ. Its trace is |D∗\D∗(A)/

∏
O∗

D,v · aZ|.
The trace formula (compact quotient case) expresses it as a sum over the conjugacy classes

of γ in D∗ contained in a D∗(A)-conjugate of
∏

O∗
D,v · aZ.

Lemma 4.9. Any γ in D∗ contained in a D∗(A)-conjugate of
∏

O∗
D,v ·aZ is of finite order.

Proof. As deg det(γ) = 0, γ will be in a D∗(A)-conjugate of
∏

O∗
D,v. For any d in D∗(A),

the intersection D∗
∩d
∏

O∗
D,vd

−1 is discrete and compact, hence finite. !

With essentially no change in content, the trace formula computation can be expressed

using masses of suitable categories (cf. 4.18). The direct use of the trace formula has the

advantages of being more directly applicable in the number field case, and of clearly sepa-

rating local and global questions. The use of masses is more geometric. As the equivalence

between the two approaches seemed to us interesting, we will use masses. We first review

their formalism.
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4.10. The mass of a category C is the sum, over the isomorphism classes of objects,

(4.10.1) mass(C) :=
∑

1/|Aut(X)|.

Let Cis be the subcategory of C with the same objects, and for which the morphisms are

the isomorphisms in C. The category Cis is a groupoid. It has the same mass as C. A

category and its opposite have the same mass. Two equivalent categories have the same

mass. If C is a finite sum (resp. product) of categories Ci, one has

mass (
∐

Ci) =
∑

mass(Ci)(4.10.2)

mass (
∏

Ci) =
∏

mass(Ci).(4.10.3)

More generally, suppose each object X of C is given a weight w(X), and that isomorphic

objects have the same weight. The weighted mass of (C, w) is the sum, over isomorphism

classes of objects,

(4.10.4) mass(C, w) =
∑

w(X)/|Aut(X)|.

In our applications, the groups of automorphisms Aut(X) will all be finite.

Suppose T : C → D is a functor. The fiber CY of C/D at the object Y of D is the

category of objects X of C, given with an isomorphism α : T (X) → Y . A morphism from

(X ′,α′) to (X ′′,α′′) is u : X ′ → X ′′ such that α′′T (u) = α′. Maybe this should be called

“homotopy fiber”. The naive definition of fiber: (T−1(Y ), T−1(IdY )) is no good, as it is

not compatible with equivalences. If, however, C is fibered over D, the two definitions give

equivalent categories. If Y and Y ′ are isomorphic, the fibers CY and CY ′ are equivalent,

hence have the same mass.

Lemma 4.11. Let T : C → D be a functor. The mass of C is the weighted mass of D,

weighted by the mass of the fibers. Special case: if all fibers have the same mass, one has

(4.11.1) mass(C) = mass(D) · mass(any fiber).

Proof. One reduces to the case where all morphisms in C and D are isomorphisms. Using

(4.10.2) and its analogue for weighted masses, one may assume that C and D have only one

isomorphism class of objects. Replacing C, D by equivalent categories, one may assume that

C (resp. D) has only one object X (resp. Y ). The functor T is then given by a morphism

of groups T from G = Aut(X) to H = Aut(Y ).

An object of the fiber CY is the data of h ∈ H : T (X) = Y → Y . A morphism from

(X, h′) to (X, h′′) is g in G such that h′′T (g) = h′. This identifies the set of isomorphism
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classes in CY with H/T (G), and the group of automorphisms of any object with Ker(T ).

Then (4.11.1) reduces to

1/|G| = 1/|H| · (|H/T (G)|/|Ker(T )|). !

The same proof shows that if C is given with a weight, its weighted mass is the weighted

mass of D, for the weighted masses of the fibers.

4.12. Suppose a group Γ acts on a set E. The category [Γ\E] is defined as follows: the set

of objects is E, a morphism from x to y is γ in Γ such that y = γx, and the composition

of morphisms is the product in Γ. Variant: suppose given a (left) action of Γ1, and a

right action of Γ2, that is an action of the opposite group Γ0
2. If the actions commute,

Γ1 × Γ0
2 acts and one defines [Γ1\E/Γ2] = [Γ1 × Γ0

2\E]. If Γ2 acts freely, the natural functor

[Γ1\E/Γ2] → [Γ1\(E/Γ2)] is an equivalence. More generally, if the normal subgroup Γ0 of Γ

acts freely on E, [Γ\E] → [(Γ/Γ0)\(Γ0\E)] is an equivalence.

The mass of [Γ\E] is the sum, over representatives of the orbits of Γ,

(4.12.1) mass([Γ\E]) =
∑

orbits

1/| Stabilizer(e)|.

Lemma 4.13. If Γ′ is a subgroup of finite index of Γ, then

(4.13.1) mass([Γ′\E]) = |Γ/Γ′| · mass([Γ\E]).

Proof. We apply (4.11.1) to the natural functor [Γ′\E] → [Γ\E]. An object of the fiber at e

is (e′, γ) with γ e′ = e. It is determined by γ, has no nontrivial automorphism, and (γ−1e, γ)

is isomorphic to (δ−1e, δ) if and only if γ and δ have the same image in Γ′\Γ. All fibers have

hence mass |Γ/Γ′|. !

Example 4.14. If E and Γ are finite,

(4.14.1) mass([Γ\E]) = |E|/|Γ|.

Indeed, take Γ′ in 4.13 to be trivial.

Example 4.15. Let a finite group Γ act on itself by conjugation. For this action, the

stabilizer of γ in Γ is the centralizer Z(γ) of γ. Applying (4.12.1) and (4.14.1), we get that

the sum over representatives of conjugacy classes

(4.15.1)
∑

1/|Z(γ)| = 1 (sum over conjugacy classes).
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The same holds for twisted conjugacy and twisted centralizer: if Γ1 is an extension of Z by

the finite group Γ, one applies (4.14.1) to the conjugation action of Γ on the inverse image

of 1.

For C a category, let C# be the category of objects X of C, given with an automorphism

α. A morphism from (X ′,α′) to (X ′′,α′′) is a morphism f : X ′ → X ′′ such that α′′f = fα′.

Proposition 4.16. If the groups of automorphisms of objects of C are finite, the mass of

the category C# is the number of isomorphism classes of C.

Proof. As (C#)is = (Cis)#, we may and shall assume that C = Cis. We apply 4.11 to the

forgetful functor (X,α) #→ X from C# to C. The fiber at X is equivalent to the discrete

category with set of objects Aut(X). The mass of C# is the weighted mass of C, for the

weight |AutX|: the sum over isomorphism classes in C
∑

|Aut(X)|/|Aut(X))| =
∑

1. !

If we take for C a category with one object whose group of automorphisms is Γ, and

compute the mass of C# by (4.10.1), we recover (4.15.1).

Example 4.17. For E and Γ as in 4.12, the objects of [Γ\E]# are the pairs (e, γ) with e

fixed by γ: e ∈ Eγ. The objects isomorphic to (e, γ) are the (δe, δγδ−1). This shows that

the conjugacy class of γ depends only on the isomorphism class of (e, γ), and that if we fix

a set R of representatives of the conjugacy classes, any object of [Γ\E]# is isomorphic to a

(e, γ) with γ in R. A morphism from (e, γ) to (e′, γ) is δ in Γ such that δe = e′ and γδ = δγ.

The category [Γ\E]# is hence equivalent to the disjoint sum, over representatives γ of the

conjugacy classes, of the categories [Z(γ)\Eγ ]. We get

(4.17.1) |Γ\E| =4.16 mass([Γ\E]#) =
∑

mass([Z(γ)\Eγ]),

the sum being over a set of representatives of the conjugacy classes of Γ. It suffices to

consider those for which Eγ is not empty.

Example 4.18. Let G be a totally disconnected locally compact group, K an open compact

subgroup, Γ a cocompact discrete subgroup and consider the action of Γ on E = G/K. The

formula (4.17.1) expresses the number of double cosets of Γ, K in G as a sum over conjugacy

classes in Γ. For γ in Γ, Eγ is the set of g−1K such that γg−1K = g−1K, that is γ ∈ g−1Kg.

Let ZΓ(γ) (resp. ZG(γ)) be the centralizer of γ in Γ (resp. G). Let us check that the term

mass([ZΓ(γ)\Eγ]) in (4.17.1) is an orbital integral. Recall that orbital integrals associate

a function on the set of conjugacy classes to a density. The density one takes here is the
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Haar measure of K giving it volume 1, extended by 0, that is 1Kdg, for 1K the characteristic

function of K and dg the Haar measure of G giving K the volume 1:

(4.18.1) mass([ZΓ(γ)\Eγ]) =

∫

G/ZΓ(γ)

1K(gγg−1)dg.

Indeed, the double coset ZΓ(γ)g−1K (resp. KgZΓ(γ)) contributes to the mass (resp. integral)

if and only if gγg−1 ∈ K, in which case the contribution is 1/|gZΓ(γ)g−1
∩K|.

The formula (4.17.1) hence gives

(4.18.2) |Γ\G/K| =
∑∫

G/ZΓ(γ)

1K(gγg−1)dg

(sum over conjugacy classes in Γ). The trace formula (compact quotient case), after telling

the same, introduces a Haar measure dz on the centralizer ZG(γ) of γ in G and rewrites each

term as ∫

ZG(γ)/ZΓ(γ)

dz ·
∫

G/ZG(γ)

1K(gγg−1)dg/dz.

4.19. The number of double cosets |D∗\D∗(A)/
∏

O∗
D,v · aZ| appearing in 4.6 will now be

computed using these methods. By 4.9, only the conjugacy classes of elements of finite order

of D∗ need to be considered. We recall that (n/S1) is the largest divisor of n prime to the

degrees deg(v) for v in S1. It will be convenient to choose an Fq-algebra embedding of Fq(n/S1)

in D (3.4), and to choose the maximal order OD to contain this Fq(n/S1) . This is possible: as

Fq(n/S1) is finite, it is contained in a maximal compact subgroup of D∗(A), and these are the
∏

O∗
D,v for OD a maximal order.

Fix γ in Fq(n/S1). Let m be the degree [Fq(γ) : Fq]: the element γ is in the image of Fqm

and generates it over Fq. The contribution of γ to the number of double cosets is

(4.19.1) mass([Z(γ)\(D∗(A)/
∏

O∗
D,v · aZ)γ],

where Z(γ) is the centralizer of γ in D∗ and ( . . . )γ is the set of fixed points of γ. The

centralizer Z(γ) is the multiplicative group of Dγ, the subalgebra of D consisting of the

elements which commute with γ or, what amounts to the same, with each element of Fq(γ) ⊂

Fq(n/S1) ⊂ D. As we used in the proof of 4.9, (D∗(A)/
∏

O∗
D,v · aZ)γ = (D∗(A)/

∏
O∗

D,v)
γ/aZ,

and (D∗(A)/
∏

O∗
D,v)

γ consists of the cosets of d in D∗(A) such that γ, or, what amounts to

the same, F∗
qm , is contained in d ·

∏
O∗

D,v ·d−1. Such a coset is fixed, not only by γ, but by all

elements of F∗
qm. It follows that (4.19.1) depends only on m. As the orbits of Gal(Fq(n/S1)/Fq)

acting on F∗
q(n/S1) map bijectively onto the conjugacy classes of elements of finite order of D∗
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(3.4), the number of double cosets is

(4.19.2) |D∗\D∗(A)/
∏

O∗
D,v · aZ| =

∑

m|(n/S1)

cm

m
(mass(4.19.1) for Fq(γ) = Fqm).

The category C = [D∗\D∗(A)/
∏

O∗
D,v], the disjoint summand [Dγ∗\(D∗(A)/

∏
O∗

D,v)
γ ] of

C#, and their analogues when one divides also by aZ, have a concrete interpretation, which

we now explain (4.20–4.23). Our proof of 2.3 will not rely on this interpretation.

Construction 4.20. The category [D∗\D∗(A)/
∏

O∗
D,v] is naturally equivalent to the cate-

gory Mod∗
is(−OD).

For the notation Mod∗
is, see 3.6 and 4.10.

Construction. To x = (xv) in D∗(A) one attaches the coherent sub-OD-module of D whose

completion at v is xvOv,D ⊂ Dv. Call it xOD. It depends only on the coset x·
∏

O∗
D,v. For any

invertible right OD-module E, a trivialization of E at the generic point defines an isomorphism

of it with some xOD. An OD-module isomorphism from xOD to yOD has the form f #→ df ,

where d in D∗ is such that dx
∏

O∗
D,v = y

∏
O∗

D,v. This defines the announced equivalence

to Mod∗
is(−OD). !

Define Mod(Fqm −OD) to be the category of (Fqm , OD)-bimodules, where the two implied

Fq-module structures are assumed to agree. A decoration ∗ means that we consider only

those which are invertible as OD-modules.

Construction 4.21. The category [Dγ∗\(D∗(A)/
∏

O∗
D,v)

γ] is naturally equivalent to the

category Mod∗
is(Fqm − OD).

Construction. The coset x
∏

O∗
D,v is fixed by γ if and only if xOD ⊂ D is a left Fqm-module.

If the cosets of x and y are fixed by γ, an OD-module isomorphism, defined as in 4.20 by d in

D∗, respects the Fqm-module structure if and only if d is in Dγ∗. This defines the functor, and

proves it is fully faithful. To see that it is essentially surjective, one uses that an Fqm-module

structure on xOD is given by an embedding Fqm → D, and that two such embeddings are

D∗-conjugate. !

Variants 4.22. (i) Define A to be the divisor of the idèle a. The OD-module xaOD is

naturally isomorphic to xOD(−A) = xOD ⊗O O(−A), and the xOD(kA) for k ∈ Z are

nonisomorphic: their degrees are distinct. It follows that [D∗\D∗(A)/
∏

O∗
D,v ·aZ] is naturally

equivalent to the category Mod∗
is(−OD)/a of invertible right OD-modules E, taken up to
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E #→ E(kA). In this category, E′ and E′′ are isomorphic if and only if for some k′, k′′

the modules E′(k′A) and E′(k′′A) are isomorphic. In this case, (k′, k′′) is unique up to

(k′, k′′) #→ (k′ + c, k′′ + c), and Hom/a(E′, E′′) is any of the Isom(E′((k′ + c)A), E′′((k′′ + c)A)),

between which one has a transitive system of bijections.

(ii) Similarly, [Z(γ)\(D∗(A)/
∏

O∗
D,v · aZ)γ] is naturally equivalent to the category

Mod∗
is(Fqm − OD)/a of bimodules E in Mod∗

is(Fqm − OD), taken up to E #→ E(kA).

Remark 4.23. The decomposition 4.17

[D∗\D∗(A)/
∏

O∗
D,v]

# =
∐

[Z(γ)\(D∗(A)/
∏

O∗
D,v)

γ ]

becomes – via 4.20 and 4.21 – the fact that the algebra of endomorphisms of an invertible

left OD-module E is a finite field, and that the category of the (E,α),α an automorphism of

E which generates an extension of degree m of Fq and has a specified minimal polynomial

over Fq, is equivalent to the category Mod∗
is(Fqm − OD) of (Fqm, OD)-bimodules.

4.24. The tensor product Fqm⊗FqFqm is the product of copies of Fqm , indexed by Gal(Fqm/Fq).

The projections are the

x ⊗ y #−→ τ(x)y : Fqm ⊗ Fqm → Fqm.

An Fqm ⊗Fq Fqm-module structure on M hence gives a decomposition of M in submodules

Mτ , which we will view as a grading, with group of degrees Gal(Fqm/Fq) , Z/m.

We can apply this to D, as well as to OD, on which Fqm acts by left and right multipli-

cations. On the τ -component, λd = dτ(λ), for λ in Fqm . The degree zero component of D

(resp. OD) is the commutant Dγ (resp. O
γ
D) of Fqm. The embedding of Fqm in D (resp. OD)

extends to an embedding of Fm = F ⊗Fq Fqm (resp. Om = O⊗Fq Fqm), and Dγ (resp. O
γ
D) is

also the commutant of Fm (resp. Om). The division algebra Dγ is of degree (n/m)2 over its

center Fm.

So far, we have viewed Om and O
γ
D as sheaves over X1. The sheaf Om is the direct image,

from Xm to X1, of the structural sheaf of Xm. As Xm is finite over X1, the direct image

functor is an equivalence from coherent sheaves on Xm to coherent sheaves of Om-modules

on X1. We will tacitly use this equivalence to view O
γ
D as an order, over Xm, of the central

simple algebra Dγ over Fm. The completion O
γ
D,v is the product, over the places v(i) of Xm

above v, of the completions O
γ
D,v(i) of O

γ
D, viewed as an order over Xm. The proofs of 4.25

and 4.26 will show that the O
γ
D,v(i) are maximal orders of the Dγ

v(i): O
γ
D is a maximal order

of Dγ over Xm.
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To compute the category (4.19.1), we will first consider the fixed point set of γ, acting on

D∗(A)/
∏

O∗
D,v. It is the restricted product of the fixed points of γ acting on the D∗

v/O
∗
D,v.

Proposition 4.25. If v /∈ S1, O
γ∗
D,v is a maximal compact subgroup in Dγ∗

v and

Dγ∗
v /Oγ∗

D,v
∼→ (D∗

v/O
∗
D,v)

γ.

Proof. Let V be a vector space of dimension n over Fv. As v /∈ S1, there exists an isomorphism

Dv
∼→End(V ). We choose one, and identify Dv with End(V ). The maximal order OD,v ⊂ Dv

is End(E0), for E0 a lattice in V : a free Ov-module such that Fv ⊗Ov E0
∼→V . The completion

Fm,v = Fv⊗Fq Fqm is a product of local fields F (i): the product of the completions of Fm at the

points of Xm above v. The completion Om,v = Ov ⊗Fq Fqm is the product of their valuation

rings O(i). By assumption, Fm,v embeds in End(V ), turning V into an Fm,v-module, i.e. into

a product of vector spaces V (i) over the F (i), while Om,v embeds into End(E0), turning E0

into a product of lattices E
(i)
0 in V (i).

The map d #→ dE0 induces a bijection from D∗
v/O

∗
D,v to the set of lattices in V . Indeed,

any lattice E1, being a free Ov-module, is the image of E0 by some element of GL(V ). The

fixed points by γ are the lattices which are Om,v-modules, that is product of lattices E
(i)
1 in

V (i). They are the images of E0 by some d in
∏

GLF (i)(V (i)) = Dγ∗
v , with d unique up to

∏
GLO(i)(E

(i)
0 ) = O

γ∗
D,v. The claim follows. !

4.26. For v in S1, Dv is a division algebra with center Fv and OD,v is its valuation ring.

The map det : D∗
v → F ∗

v is onto, and induces a bijection from D∗
v/O

∗
D,v, the group of the

valuation of Dv, to the group Z of the valuation of Fv. The action of d in D∗ is by “adding

the valuation of d at v”. Special case: γ, being of finite order, acts trivially.

Recall that m is prime to deg(v), and that the field (Fm)v = Fv ⊗Fq Fqm is contained in

Dv, with commutant Dγ
v . The reduced norms for Dγ

v , with center Fm,v, and for Dv, with

center Fv, are related by the commutative diagram

(4.26.1)

Dγ∗
v −−−→ F ∗

m,v

∩$
$Norm

Dv −−−→ Fv.
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Identifying the groups of the valuations of Dγ
v and Dv with Z, a quotient of (4.26.1) is

Dγ∗
v /Oγ∗

D,v
∼−−−→ Z

∩$
$m

D∗
v/O

∗
D,v

∼−−−→ Z.

We conclude that

(4.26.2) (D∗
v/O

∗
D,v)

γ = D∗
v/O

∗
D,v =

1

m
(Dγ∗

v /Oγ∗
D,v).

4.27. From (4.26.2) we get a decomposition of the category

[Dγ∗\(D∗(A)/
∏

v
O∗

D,v)
γ ]

as the disjoint sum of mN1 subcategories, indexed by (Z/m)S1 . By 4.25, the subcategory

with index 0 is

[Dγ∗\Dγ∗(A)/
∏

O
γ∗
D,v].

The others are equivalent to it: if πv is of valuation one in Dv (v ∈ S1), the equivalences are

given by right multiplication by the
∏

π
av
v , 0 ≤ av < m.

Similarly,

[Dγ∗\(D∗(A)/
∏

O∗
D,v)

γ/aZ]

is the disjoint sum of mN1 subcategories equivalent to

(4.27.1) [Dγ∗\Dγ∗(A)/
∏

O
γ∗
D,v · aZ].

In (4.27.1), Dγ is a central simple division algebra of dimension (n/m)2 over Fm. The

adelization Dγ(A) = Dγ ⊗F A (A adèles of F ) can be viewed also as the adelization of Dγ,

viewed as an Fm-algebra, that is Dγ ⊗Fm Am for Am the adèles of Fm, while
∏

v
O

γ
D,v can be

viewed as the product of the completions of a maximal order of Dγ over Xm. As an adèle of

Fm, a is still of degree one, and the corresponding divisor on Xm/Fqm is of degree one. One

has Sm
∼→S1, Dγ is a division algebra at each v in Sm, and a matrix algebra elsewhere. The

same assumptions as those we started with, but over Xm, and a dimension (n/m)2 for Dγ.

4.28. We now work over Xm. The mass of the category (4.27.1) is the volume of the double

coset Dγ∗\Dγ∗(A)/aZ for the Haar measure on Dγ∗(A) which gives
∏

O
γ∗
D,v the volume one.

The product is over the places of Xm, and by 4.25 and 4.26 O
γ
D is a maximal order in Dγ . Let

Dγ∗(A)0 be the subgroup of d in Dγ∗(A) on which the degree of det(d) is zero, and Dγ∗(A)(i)

the coset on which it is i. The Dγ∗\Dγ∗(A)(i) have all the same volume, and their disjoint
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sum, for 0 ≤ i < n/m, maps bijectively onto Dγ∗\Dγ∗(A)/aZ. If µ is the Tamagawa measure

on Dγ∗(A), the Tamagawa number τ(Dγ∗) = µ(Dγ∗\Dγ∗(A)0) is 1 and we conclude that

(4.28.1) mass(4.27.1) =
n

m
· µ
(∏

O
γ∗
D,v

)−1
.

Lemma 4.6 and 4.19.2 give

Lemma 4.29. We have T (X1, S1, n) + h1 =
∑

m|(n/S1)

cm
m · mN1 · 1

m · µ
(∏

v
O

γ∗
D,v

)−1
where γ

is such that Fq(γ) = Fqm, µ is the Tamagawa measure for Dγ∗, viewed as a reductive group

over Fm, and the product is over the places v of Fm. !

Proof of 2.3 when N1(n − 1) is even and N1 ≥ 2. As O
γ
D is a maximal order of Dγ over

Xm, the Tamagawa volumes in 4.29 have been computed in (3.11.1). Applying (3.11.3) to

the (Xm, Sm, Dγ, Oγ
D), one obtains 2.3. !

5. Proof of 2.3: Using the building

In this section, we prove 2.3 under the assumption that for some w in S1, there exists a

division algebra D with center F of dimension n2 over F such that Dv is a division algebra

for v ∈ Sw
1 := S1 − {w}, and a matrix algebra over Fv for v /∈ Sw

1 . As explained in 3.2, this

amounts to assuming that N1 ≥ 3, and that n or N1 is odd; the place w can then be chosen

freely in S1. The integers N1(n−1) and n−1 have the same parity, and the sign (−1)N1(n−1)

in (2.3.1) is (−1)n−1.

The constructions made in section 4 apply to D and Sw
1 . With the notation of 2.2, one has

that (n/S1) divides (n/Sw
1 ) which divides n. As in 4.19, we choose an Fq-algebra embedding

of F
q(n/Sw

1 ) in D, and a maximal order OD of D containing this F
q(n/Sw

1 ) .

5.1. As recalled in 1.11 and 1.13, the number T (X1, S1, n) we want to compute is equal to

the number of classes modulo Fq-twists of automorphic representations π of D∗(A) such that

(i) π is unramified outside of S1;

(ii) for v in Sw
1 , the local component πv is of the form χ(det) for χ an unramified character

of F ∗
v ;

(iii) the local component of π at w is of the form

Steinberg representation ⊗ χ(det)

for χ an unramified character of F ∗
v .
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Let a be an idèle of degree > 0. Let (iv) be the condition

(iv) The central character ωπ of π is trivial on a.

The same proof as in 4.2 gives

Lemma 5.2. The number T (X1, S1, n) is 1/n deg(a) times the number of automorphic rep-

resentations of D∗(A) for which (i), (ii), (iii), (iv) hold.

5.3. Let (iii)′ be the condition

(iii)′ the local component of π at w is of the form χ(det), for χ an unramified character of

F ∗
w.

The algebraic subgroup SD∗ := Ker(det : D∗ → Gm) of D∗, being a form of SL(n), is

simply connected. By the strong approximation theorem applied to SD∗, an automorphic

representation π of D∗(A) for which (iii)′ holds factors through det : D∗(A) → A∗. Indeed, for

any automorphic function f in π, and any d in D∗(A), f is constant on SD∗(F )·d·SD∗(Fw) =

SD∗(F ) ·SD∗(Fw) · d, which is dense in SD∗(A)d. As in 4.5, if π satisfies (i), (ii), (iii)′, (iv),

it is of the form χ(det), for χ an unramified character of the idèle class group of F , trivial

on an. There are n deg(a)h1 such characters.

5.4. The space of locally constant functions on D∗\D∗(A)/aZ is the direct sum of the auto-

morphic representations π of D∗(A) for which (iv) holds. Those for which (i), (ii) hold are

those whose local component πv have, for v &= w, a nontrivial subspace of vectors fixed by

O∗
D,v, and this subspace is then of dimension 1. The space L of locally constant functions on

D∗\D∗(A)/
∏

v *=w
O∗

D,v · aZ is hence isomorphic, as a representation of D∗
w, to the direct sum

of the components πw of the automorphic representations of D∗(A) for which (i), (ii), (iv)

hold. We get:

Lemma 5.5. The number of automorphic representations of D∗(A) for which (i), (ii), (iii),

(iv) hold is the sum, over the unramified characters χ of F ∗
w for which χn(a) = 1,

(5.5.1) T (X1, S1, n) =
1

n deg(a)

∑

χ

[L : Steinberg⊗ χ(det)].

5.6. Let E be a nonarchimedian local field, val : E∗ → Z its valuation, O its valuation ring

and t a uniformizing parameter. The case we need is E = Fw. Define GL(n, E)0 by the short



34 PIERRE DELIGNE AND YUVAL Z. FLICKER

exact sequence

(5.6.1) 1 → GL(n, E)0 → GL(n, E)
val det−→ Z → 1.

Define GL(n, E)(i) to be the coset of GL(n, E)0 on which val(det) is i. Dividing by the center

E∗ of GL(n, E), its intersection O∗ with GL(n, E)0 and its image nZ in Z, we obtain from

(5.6.1) an exact sequence

(5.6.2) 1 → PGL(n, E)0 → PGL(n, E)
val det−→ Z/n → 1.

The group GL(n, E) acts by conjugation on SL(n, E), and hence on its building. This

action factors through PGL(n, E). The vertices of the building B of SL(n, E) are the lattices

(= O-submodules, free of rank n) Λ in En, taken up to dilations Λ #→ tiΛ. If e1, . . . , en is a

basis of Λ, the valuation of e1∧ · · · ∧en ∈
n
∧En , E depends only on Λ. Its class in Z/n is

the same for Λ and tiΛ. We call it the type of the corresponding vertex. The group SL(n, E)

acts transitively on the vertices of each type. The group GL(n, E) permutes the types: g in

GL(n, E) maps the vertex {tiΛ} to the vertex {tigΛ}, of type that of {tiΛ} plus val(det g).

The types of vertices (of the building) are the vertices of the affine Dynkin diagram of

SL(n, E). The subgroup PGL(n, E)0 of PGL(n, E) is the subgroup acting trivially on this

Dynkin diagram. By [BTI, 1.2.13–1.2.17], applied to the natural homomorphism ϕ : SL(n, E)

→ PGL(n, E)0 or to SL(n, E) → GL(n, E)0, the building of SL(n, E) is also the building of

a Tits system of PGL(n, E)0, as well as of GL(n, E)0.

A chamber of the building is spanned by vertices represented by lattices Λi (0 ≤ i ≤ n − 1)

forming a cyclic chain of distinct lattices

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn−1 ⊂ t−1Λ0.

If (ei)1≤ i ≤n is the standard basis of En, the fundamental chamber C is the chamber obtained

when Λi is spanned by t−1e1, . . . , t−1ei, ei+1, . . . , en.

The type of a face (= simplex) of B is the set of types of its vertices. By the properties of

Tits systems, any face of B is GL(n, E)0-conjugate to the unique face of C of the same type,

and the stabilizer in GL(n, E)0 of a face (a parahoric subgroup) fixes it. We will orient each

face by the ordering of its vertices induced by the ordering 0 < 1 < · · · < n − 1 of the types

of vertices. If σ is the face of type S ⊂ Z/n of C and Kσ ⊂ GL(n, E)0 its stabilizer, the set

of (oriented) faces of B of type S is the orbit GL(n, E)0/Kσ.

For any i, one still has a bijection

(5.6.3)
∐

σ
GL(n, E)(i)/Kσ ∼ set of faces of B,
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compatible with the action of GL(n, E)0. This times, if σ is the face of C of type S ⊂ Z/n,

GL(n, E)(i)/Kσ is the set of faces of type S + i.

The component Cd(B) of the chain complex C∗(B) of oriented chains, computing the

homology of B, is

(5.6.4) Cd(B) =
⊕

dim σ=d
C(GL(n,E)0/Kσ).

The group GL(n, E)0 acts on this complex. As B is contractible, it is a resolution of the

trivial representation 1. We will not use the fact that GL(n, E) acts too. Its action introduces

signs, because GL(n, E) permutes types and does not respect the orientations of faces which

we used.

5.7. By representation we will always mean C∞ representation: the stabilizers of vectors

are open. The cohomology used below is the analogue, in that setting, of continuous coho-

mology, as in Casselman [C]. To apply 5.5, we need to detect, in a unitary representation

of GL(n, E), the occurrences of the representations Steinberg⊗χ(det), for χ a unitary un-

ramified character of E∗. The following lemma is a corollary of [C]. (We write unitary for

unitarizable.)

Lemma 5.8. Put H∗(π) for H∗(GL(n, E)0, π). The irreducible unitary representations π

of GL(n, E) with H∗(π) &= 0 are the representations Steinberg⊗χ(det) and χ(det), for χ

a unitary unramified character of E∗. The nonzero H i are a one-dimensional Hn−1 in the

Steinberg case, a one-dimensional H0 in the other.

Proof. If the cohomology is not zero, the center O∗ of GL(n, E)0 must act trivially. Twisting

by a χ(det), which is trivial on GL(n, E)0, has no effect on the cohomology. Replacing π by

a twist, we are reduced to considering only representations with trivial central character, i.e.

of PGL(n, E). As O∗ is compact,

H∗(PGL(n, E)0, π) ∼→H∗(GL(n, E)0, π).

On the left, we have the cohomology of π, restricted to PGL(n, E)0. As PGL(n, E)0 is of

finite index in PGL(n, E), it is the same as the cohomology of PGL(n, E), with coefficient

in the induced (= coinduced) of this restriction to PGL(n, E). This is the direct sum of the

twists π ⊗ χ(val(det)), for χ a character of Z/n. By Casselman, H∗ &= 0 is nonzero if and

only if one of these twists is Steinberg or trivial, and such a twist contributes respectively to

a one-dimensional Hn−1 or H0. As the twists are nonisomorphic, the lemma follows. !
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5.9. For L a representation of GL(n, E), to compute

H∗(GL(n, E)0, L) = Ext∗GL(n,E)0(1, L)

one can use the resolution (5.6.4) of the trivial representation 1 of GL(n, K)0. It gives us a

complex C∗(L) computing the cohomology, with components the

(5.9.1) Cd(L) =
⊕

dim σ=d
LKσ

(sum over faces σ of the fundamental chamber C).

In particular, if the LKσ are finite dimensional, we have
∑

(−1)i dim H i(GL(n, E)0, L) =
∑

(−1)dim σ dim LKσ .

Moreover, if L is the direct sum of irreducible unitary representations of GL(n, E), one has

(5.9.2)
∑

σ

(−1)dim σ dim LKσ =
∑

χ

[L : χ(det)] + (−1)n−1
∑

χ

[L : Steinberg ⊗ χ]

with χ running over the unitary unramified characters of E∗.

5.10. We now take E = Fw, choose an isomorphism of Dw with the matrix algebra Mn(Fw)

and identify D∗
w with GL(n, Fw). For L the representation 5.4 of D∗

w, LKσ can be identified

with the space of functions on the finite set D∗\D∗(A)/
∏

v *=w
O∗

D,v · Kσ · aZ.

By 5.3 and 5.4, the sum of the one-dimensional subrepresentations of L which are isomor-

phic to a χ(det) with χ unramified, is of dimension n deg(a)h1. By (5.5.1) and (5.9.2), one

has

Lemma 5.11. With the notations of 5.10, we have

(5.11.1) h1 + (−1)n−1T (X1, S1, n) =
1

n deg(a)

∑

σ

(−1)dim σ|D∗\D∗(A)/
∏

v *=w
O∗

D,v · Kσa
Z|,

the sum being over the faces of the fundamental chamber of the building of SL(n, Fv). !

The trace formula (compact quotient case) expresses the right side of (5.11.1) in terms

of alternating sums (
∑

(−1)dim σ . . . ) of orbital integrals (cf. 4.18). Similar sums appear

in Kottwitz [K], and we might have quoted the computations of [K], except that they are

written for the characteristic zero case, and mainly for semisimple simply connected groups.

We prefer to use the methods of [K], restricted to the case we need, couched in the language

of masses.

5.12. We use the arguments of 4.16–4.18 to express the numbers of double cosets appearing

in (5.11.1) as sums of masses of categories. Each sum is over conjugacy classes in D∗. As
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in 4.19, only the conjugacy classes of elements of finite order need to be considered. They

have representatives in our chosen F
q(n/Sw

1 ) ⊂ D, and this representative is unique up to the

Gal(F
q(n/Sw

1 )/Fq) action. Fix γ in F∗
q(n/Sw

1 ). Define m := [Fq(γ) : Fq]. As in 4.19 and 4.24,

the commutant Dγ of γ in D is also the commutant of Fqm ⊂ F
q(n/Sw

1 ), as well as of Fm. The

contribution of the conjugation class of γ to the right side of (5.11.1) is

(5.12.1)
1

n deg(a)

∑

σ

(−1)dim σmass([Dγ∗\(D∗(A)/
∏

v *=w
O∗

D,v · Kσ · aZ)γ ]).

It depends only on m, not on the chosen γ. Indeed, Kσ is the multiplicative group of an

order in OD,w, and one argues as in 4.19. The right side of (5.11.1) becomes

(5.12.2)
∑

m|(n/Sw
1 )

cm

m
{(5.12.1) for γ such that Fq(γ) = Fqm}.

It will be convenient to choose a = (av) such that av = 1 for v &= w, and that aw is a

uniformizing parameter of Fw. The degree of a is deg(w). By abuse of notations, aw will

also be denoted a. The fixed point sets occuring in (5.12.1) are the restricted products over

v of

– for v in Sw
1 : 1

m(Dγ
v/O

γ∗
D,v), as in (4.26.2);

– for v not in S1: Dγ∗
v /Oγ∗

D,v, as in 4.25;

– for v = w: (D∗
w/Kσ · aZ)γ .

The corresponding categories decompose into the disjoint sum of m|Sw
1 | subcategories, each

equivalent to the one obtained by replacing 1
m Dγ∗

v /Oγ∗
D,v by Dγ∗

v /Oγ∗
D,v. The proof is as in

4.27. Denoting restricted direct product by
∏∐

, we conclude:

Lemma 5.13. The contribution (5.12.1) of the conjugacy class of γ to the right side of

(5.11.1) is

(5.13.1)
1

n deg(a)
mN1−1

∑

σ

(−1)dim σmass[Dγ∗\
∏∐

v *=w
Dγ∗

v /Oγ∗
D,v × (D∗

w/Kσ · aZ)γ],

where the sum is over the faces σ of the fundamental chamber of SL(n, Fw).

5.14. Let D∗(A)0 (resp. D∗0
v ) be the kernel of deg ◦ det : D∗(A) → Z (resp. val ◦ det : D∗

v →
Z), and Dγ∗(A)0 (resp. Dγ∗0

v ) be its intersection with Dγ∗(A) (resp. Dγ∗
v ). As in 4.27 and

4.28, Dγ is a division algebra with center Fm, and Dγ∗(A) can be identified with its adelic
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multiplicative group, over Fm. The diagram

Dγ∗(A) −−−→ idèles of Fm
deg−−−→ Z

∩$
$Norm

$m

D∗(A) −−−→ idèles of F −−−→ Z

is commutative. The notation Dγ∗(A)0 above hence agrees with that (“over Fm”) of 4.28.

If δ in D∗γ fixes xv in Dγ∗
v /Oγ∗

D,v, its image in Dγ∗
v is in the conjugate xvO

γ∗
D,vx

−1
v of O

γ∗
D,v.

Hence it is in D∗0
v . By the product formula, deg(det(δ)) = 0. It follows that if δ fixes

x in
∏

v *=w
Dγ∗

v /Oγ∗
D,v, then its image in Dγ∗

w is in Dγ∗0
w . As Dγ is a division algebra, Dγ∗ is

cocompact in Dγ∗(A)0: it acts with finitely many orbits in
∏

v *=w
Dγ∗

v /Oγ∗
v , and for each x in

∏

v *=w
Dγ∗

v /Oγ∗
v , the stabilizer Γx of x in Dγ∗ is cocompact in Dγ∗0

w . The group Γx admits torsion

free subgroups of finite index (Serre [S, Th. 4(b)]). For any place v &= w, the kernel of the

reduction mod v, from Γx to (xvO
γ
D,vx

−1
v ⊗ Ov/mv)∗, is such a subgroup.

5.15. Recall that we have chosen an isomorphism of Dw with Mn(Fw), that D∗(i)
w is the

coset of D∗0
w

⊂ D∗
w on which the valuation of det is i, and that for each i the D∗(i)

w /Kσ =

GL(n, Fw)(i)/Kσ are the facets of one copy B(i) of the building of SL(n, Fv) (5.6.4). Because

γ is in GL(n, Fw)0, the fixed locus B(i)γ of γ on B(i) is a union of facets. Because γ is of

finite order, this fixed locus is not empty, hence is contractible. As in [K], p. 635, all the

conditions of [S], 3.3, are satisfied by the action of Dγ∗0
w on B(i)γ .

If Γ′
x is a torsion free subgroup of finite index of Γx, its action on B(i) is free, its cohomology

is that of Γ′
x\B(i), and its Euler-Poincaré characteristic is

χ(Γ′
x) =

∑
(−1)dim Γ · |Γ′

x\(D∗(i)
w /Kσ)

γ|.

Dividing both sides by [Γx : Γ′
x], one obtains that the virtual Euler-Poincaré characteristic

of Γx is

(5.15.1) χ(Γx) =
∑

σ

(−1)dim σ · mass[Γx\(D∗(i)
w /Kσ)

γ].

Let µw,EP be the invariant measure on Dγ∗
w whose restriction to Dγ∗0

w is the Euler-Poincaré

measure of Dγ∗0
w . By the definition of µw,EP ,

∑
(−1)dim σmass[Γx\(D∗(i)

w /Kσ)
γ ] = µw,EP (Γx\Dγ0

w ).

As (D∗
w/Kσa

Z)γ is the disjoint sum of the (D∗(i)
w /Kσ)γ for 0 ≤ i < n, we also have

∑
(−1)dim σmass[Γx\(D∗

w/Kσa
Z)γ] = nµw,EP (Γx\Dγ0

w ).
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Hence
∑

σ

(−1)dim σmass([Dγ∗\
∏∐

v *=w
(Dγ∗

v /Oγ∗
D,v) × (D∗

w/Kσa
Z)γ])

= n
∑

x

µw,EP (Γx\Dγ0
w ),

(5.15.2)

the sum being over representatives of the orbits of Dγ∗ acting on
∏∐

v *=w
Dγ∗

v /Oγ∗
D,v.

5.16. Let c be the greatest common divisor of m and deg(w) and suppose that c > 1. There

are c places of Xm above w, and (Fm)w = Fw ⊗Fq Fqm is the product of the completions of

Fm at these places. The completion (Fm)w is hence the product of c > 1 fields, and Dγ
w is a

product of matrix algebras over these fields. The multiplicative group Dγ∗
w admits a quotient

Zc, and Dγ∗0
w a quotient Zc−1. As c > 1, its Euler-Poincaré measure is 0. If m = [Fq(γ) : Fq]

is not prime to deg(w), (5.15.2) implies that
∑

σ

(−1)dim σmass([Dγ∗\
∏∐

v *=w
(Dγ∗

v /O∗
v) × (D∗

w/Kσa
Z)γ ]) = 0

and γ does not contribute to the right side of (5.11.1).

5.16. Suppose now that m is prime to deg(w), that is that m | (n/S1). In this case, (Fm)w is

the local field of Xm at the unique place above w, and Dγ∗
w is a matrix algebra Mn/m(Fm,w).

Define µEP to be the measure on Dγ∗(A) which is the product of the Haar measures on the

Dγ∗
v giving volume one to O

γ∗
D,v, for v &= w, and of µw,EP on Dγ∗

w . As Dγ∗0
w is of index n

m in

Dγ∗
w /aZ, (5.15.2) is equal to

(5.16.1) m
∑

µw,EP (Γx\Dγ
w/aZ) = mµw,EP (Dγ∗\Dγ∗(A)/aZ);

the sum is over representatives of orbits, as in (5.15.2). As Dγ is central simple of dimension
n
m over Fm, and deg(a) is the same, whether a is viewed as an idèle of F/Fq, or of Fm/Fqm,

when we plug (5.15.2) and (5.16.1) in 5.13, we get that (5.13.1) equals

(5.16.2)
1

n deg(a)
mN1µEP (Dγ∗\Dγ∗(A)/aZ) =

1

n deg(a)
mN1

n

m
deg(a)µEP (Dγ∗\Dγ∗(A)0).

By (5.12.2), (5.11.1) becomes

(5.16.3) h1 + (−1)n−1T (X1, S1, n) =
∑

m|(n/S1)

cm

m
· mN1 · 1

m
µEP (Dγ∗\Dγ∗(A)0).

If µ is the Tamagawa measure on Dγ∗, and µw the measure on Dγ∗
w giving O

γ∗
D,w the volume

one, the Tamagawa number τ(Dγ∗) = µ(Dγ∗\Dγ∗(A)0) is 1 and the term of index m in the
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sum (5.16.3) can be rewritten as

(5.16.4)
{cm

m
· mN1 · 1

m
· µ
(∏

O∗
D,v

)−1}
· µw,EP/µw.

The factor in curly brackets appeared in 4.29. As there, it is n/mTn for (X1, Sw). The

subgroups SL(n/m, Fm,w) of GL(n/m, Fm,w)0, and SL(n/m, Om,w) of GL(n/m, Om,w) are

both of the same finite index q∗w−1. It follows that the restriction of µw,EP to SL(n/m, Fm,w)

is (qm
w − 1) times its Euler-Poincaré measure, and that the ratio of measures in (5.16.4) is

the Euler-Poincaré volume of the subgroup SL(n/m, Om,w) of SL(n/m, Fm,w). By [S, Th. 7],

it is
n/m−1∏

i=1
(1 − qmi

w )

and 2.3 follows. !

6. Lefschetz type form of the theorem

We keep the notation of section 2.

6.1. Formula (2.3.1), applied to (Xm, Sm), gives the number T (X1, S1, n, m) = T (Xm, Sm, n)

of fixed points of Fr∗m acting on the set T(n) of 2.1. In the form given, it is not helpful to

understand how this number varies with m. One of the difficulties is that when (X1, S1) over

Fq is replaced by (Xm, Sm) over Fqm, the divisor (n/S1) of n can change. The cardinality

N1 of S1 changes too (it becomes Nm), as well as the degrees of the elements of S1. Our

first aim in this section is to give the right side of (2.3.1) a more convenient form. In this

rewriting, until 6.16 we do not assume that n ≥ 2. We do assume that n ≥ 1 and that N1 ≥ 2.

6.2. Let B′ be the sum of the multisets (a) and (bs) for s in S1 described below.

(a) The multiset of the eigenvalues of Frob acting on H1(X), counted with their multiplicity.

The polynomial f(t) := det(1 − Frob · t, H1(X)) has integral coefficients. It is the product,

over the multiset (a), of the (1 − αt). The complex absolute value of each α is q1/2.

(bs) The set of deg(s)th roots of unity.

The multiset (a) and the sets (bs) are viewed as multisets in a fixed algebraically closed

extension Q. It does not matter which.

The number 1 appears once in each (bs). It hence appears N1 times in B′. We define

(6.2.1) B := B′ minus twice {1}.
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The sum of the sets (bs) is the multiset of the eigenvalues of the Frob acting on QS . Indeed,

S is the disjoint union of the fibers of the projection S → S1. The fiber at s ∈ S1 has deg(s)

elements, permuted cyclically by the Frobenius. The exact sequence

(6.2.2) 0 → Ql → QS
l → H1

c (X − S) → H1(X) → 0

shows that B is the multiset of eigenvalues of Frob acting on H1
c (X − S), minus {1}. It has

2g + N − 2 elements.

Fix a divisor m of n. We will write
∏

ζm=1 (resp.
∏′

ζm=1) or simply
∏

and
∏′, for the

product over the mth roots of unity (resp. mth roots of unity other than 1). We define

(6.2.3) T ′
m =

∏

β∈B

[
∏ ′(1 − ζβ) ·

n/m−1∏

j=1

∏
(1 − ζβqj)

]

.

Proposition 6.3. (i) If the divisor m of n does not divide (n/S1), then T ′
m = 0.

(ii) If m divides (n/S1), one has

(6.3.1) mN1−2 ·n/m Tm = f(1) · 1

qn − 1
· T ′

m.

Proof of (i). Suppose m ! (n/S1). For some s in S1, m is not prime to deg(s): there is a

deg(s)th-root of unity β &= 1 which is an mth root of unity, and the mth-root of unity ζ := β−1

contributes a factor 1 − ζβ = 0 to T ′
m.

Proof of (ii). Suppose that m divides (n/S1). As observed at the end of 2.2, n/mTm is then

the product of

fm(1) =
∏

α
(1 − αm) =

∏

α

∏
(1 − ζα) = f(1) ·

∏

α

∏ ′(1 − ζα),

1

(qm)n/m − 1
=

1

qn − 1

and for each j, 1 ≤ j < n/m,

(1 − qmj)−2fm(qmj)
∏

s∈S1

(1 − qmj deg(s)) =
∏

β∈B
(1 − βmqmj)

=
∏

β∈B

∏
(1 − ζβqj).

The right side of (6.3.1) is the product of these same factors, and of

(6.3.2)
∏

β

∏ ′(1 − ζβ) for β in the multiset sum of the sets (bs), minus twice {1}.
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For each s in S1, ζ #→ ζdeg(s) is a permutation of the mth roots of unity other than 1. This

allows the rewriting of (6.3.2) as
∏ ′(1 − ζ)−2 ·

∏

s∈S1

∏

ηdeg(s)=1

∏ ′(1 − ζη)

=
∏ ′(1 − ζ)−2 ·

∏

s∈S1

∏ ′(1 − ζdeg(s)) =
∏ ′(1 − ζ)N1−2.

One has
∏ ′(1 − ζ) =

1 − tm

1 − t t=1
= m,

and (6.3.2) is equal to the factor mN1−2 on the left of (6.3.1). !

Corollary 6.4. The right side of (2.3.1) is equal to

(6.4.1) f(1) · 1

qn − 1
·
∑

m|n

cmT ′
m.

We recall that the Möbius function µ(a) is (−1)d when a is the product of d distinct

primes, and is 0 otherwise.

Lemma 6.5. One has

(6.5.1) cm =
∑

a|m

µ(a)(qm/a − 1).

Proof. Any element of F∗
qm is, for some divisor a of m, a generator of Fqa over Fq: for each

m,

qm − 1 =
∑

a|m

ca.

The formula (6.5.1) follows by Möbius inversion. !

Substituting (6.5.1) in the last factor of (6.4.1), we get

(6.5.2)
∑

m|n

cmT ′
m =

∑

ab|n

µ(a)(qb − 1)T ′
ab,

(the sum on the right is over all integers a, b ≥ 1 with ab|n), which, plugged in (6.4.1), gives

Proposition 6.6. The right side of (2.3.1) is equal to

(6.6.1) f(1)
∑

ab|n

µ(a)
qb − 1

qn − 1
T ′

ab

(sum over (a, b) such that ab divides n). !
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Let us, in the second factor of (6.6.1), “consider q and the β in B as indeterminates”. We

introduce an indeterminate Q and 2g + N − 2 indeterminates Xi, and define for m|n (resp.

b|n) polynomials with integral coefficients, symmetric in the Xi

T ′
m(Q; (Xi)) :=

∏

i

{ ∏ ′

ζm=1
(1 − ζXi)

∏

1≤ j<n/m

∏

ζm=1
(1 − ζXiQ

j)
}

,(6.6.2)

Sn
b (Q; (Xi)) :=

∑

ab|n

µ(a)T ′
ab(Q; (Xi)) (sum over a).(6.6.3)

The second factor of (6.6.1) is obtained by evaluating Q at q, and the Xi at the β in B,

in the sum over a, b given by

(6.6.4)
∑

ab|n

µ(a)
Qb − 1

Qn − 1
T ′

ab(Q; (Xi)) =
∑

b|n

Qb − 1

Qn − 1
Sn

b (Q; (Xi)).

Proposition 6.7. For each divisor b of n, the rational function

Qb − 1

Qn − 1
Sn

b (Q; (Xi))

lies in Z[Q, (Xi)].

Proof for b = 1. We have to show that the polynomial with integral coefficients Sn
1 (Q; (Xi))

is divisible by the polynomial (Qn − 1)/(Q − 1). This is equivalent to the vanishing of the

polynomial in the Xi

Sn
1 (u; (Xi)) =

∑

a|n

µ(a)
∏

i

∏ ′

ζa=1
(1 − ζXi)

n/a−1∏

j=1

∏

ζa=1
(1 − ζXiu

j)

whenever u is an nth root of unity other than 1. It suffices to prove this vanishing for the

product of Sn
1 (u; (Xi)) with

∏
(1 − Xi). This product is

(6.7.1)
∑

a|n

µ(a)
∏

i

∏

ζa=1

∏

0≤ j<n/a

(1 − ζXiu
j).

We will show that the terms in the sum over a cancel two by two. More precisely, let r

be a prime which divides the order m of u. We will show that the coefficients of µ(a), for

a = a0 prime to r, and for a = a0r, are equal (recall that µ(a) is zero unless a is a product

of distinct primes). This means the equality, for these two values of a, of the multisets

(6.7.2) {the ζuj for ζa = 1 and 0 ≤ j < n/a}.

The multiset (6.7.2) is the inverse image, by z #→ za, of the multiset of the uaj (0 ≤ j < n/a).

The root of unity ua has order m/(m, a). As the order of ua divides n/a, the multiset of the
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uaj is a multiple of the set of roots of unity of order dividing m/(m, a). Its inverse image

by z #→ za is the same multiple of the set of roots of unity of order dividing am/(a, m), the

lowest common multiple of a and m. As r | m, this l.c.m is the same for a0 and for a0r. The

multiplicity will be the same as well, as both multisets have the same number n of elements.

Proof of 6.7 (general case). For each divisor b of n, we have
∏

ζab=1

(1 − ζXiQ
j) = 1 − Xab

i Qabj =
∏

ζa=1
(1 − ζXb

i Q
bj), and

∏ ′

ζab=1

(1 − ζXi) = (1 − Xab
i )/(1 − Xi) =

1 − Xb
i

1 − Xi
· 1 − Xab

i

1 − Xb
i

=
1 − Xb

i

1 − Xi

∏ ′

ζa=1
(1 − ζXb

i ).

It follows that

Qb − 1

Qn − 1
Sn

b (Q; (Xi)) =
∏

i

(1 − Xb
i )

1 − Xi
· Qb − 1

(Qb)n/b − 1
· Sn/b

1 (Qb; (Xb
i )).

This identity reduces 6.7 to the case b = 1, n being replaced by n/b. !

Corollary 6.8. When (X1, S1)/Fq is replaced by (Xm, Sm)/Fqm, the second factor of (6.6.1),

as a function of m, has the form

(6.8.1)
∑

j

njγ
m
j .

In (6.8.1), the nj are integers, and each γj is the product of a root of unity and of a monomial

in q and the eigenvalues of Frob acting on H1(X).

The expression (6.8.1) is not unique. It becomes unique if one imposes that the γj be

distinct and the nj &= 0. We then call γj the eigenvalues occuring with nonzero multiplicity;

we call nj the multiplicity of γj. The motivation for this terminology is 6.25.

Proof. The polynomial (6.6.4) depends only on n and the number of Xi. One obtains a

description (6.8.1) of the right side of (6.6.1), for (Xm, Sm), by decomposing it as a linear

combination of monomials. Indeed, when passing from (X1, S1)/Fq to (Xm, Sm)/Fqm, q is

replaced by qm, and the β in B by their mth powers: B is the multiset of eigenvalues of Frob

acting on H1
c (X − S), minus {1}, and Frob gets replaced by Frobm. By definition, the β in

B are roots of unity or eigenvalues of Frobenius acting on H1(X). !

Corollary 6.9. The same property holds for (6.6.1), the right side of (2.3.1).
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Proof. The product of two functions of m of the form (6.8.1) is again of this form, and the

first factor f(1) of (6.6.1) is

∏
(1 − α)

for α the eigenvalues of Frob acting on H1(X). Again, when one goes from X1/Fq to Xm/Fqm,

Frob is replaced by Frobm. !

6.10. We define polynomials Rk in the variables Xi by

∑

k
QkRk(Xi) :=

∑

b|n

Qb − 1

Qn − 1
Sn

b (Q; (Xi))(6.10.1)

=
∑

ab|n

µ(a)
Qb − 1

Qn − 1
T ′

ab(Q; (Xi)).

Each Rk is a symmetric polynomial with integer coefficients.

Example 6.11. If n = 2, one has

R0 = 1,(6.11.1)

Rk = (−1)k+1
∑

j>k

σj , (for k ≥ 1),(6.11.2)

where the σj are the elementary symmetric polynomials.

Proof. When n is prime, the sum (6.10.1) over (a, b) has only the three terms for (a, b) =

(1, 1), (n, 1) or (1, n). When ab = 1, the factor
∏

′ in T ′
ab(Q; (Xi)) is one. When ab = n, the

product over j in T ′
ab(Q; (Xi)) is one. For n prime, (6.10.1) hence reduces to

(6.11.1)
Q − 1

Qn − 1

[∏

i

∏

1 ≤ j<n
(1 − XiQ

j) −
∏

i

∏ ′

ζn=1
(1 − ζXi)

]
+
∏

i

∏ ′

ζn=1
(1 − ζXi).

For n = 2, this reduces to

(6.11.2)
1

Q + 1

[∏

i
(1 − XiQ) −

∏

i
(1 + Xi)

]
+
∏

i
(1 + Xi),
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which we rewrite as

−1

1 − (−Q)

∑

j

(1 − (−Q)j)σj +
∑

σj(6.11.3)

= −
∑

j

σj

∑

k<j

(−Q)k +
∑

σj

=
∑

k ≥ 0

(−1)k+1Qk
∑

j>k

σj +
∑

σj

= 1 +
∑

k ≥ 1

(−1)k+1Qk
∑

j>k

σj .

!

Example 6.12. If n = 1, or if B is empty (which occurs only for g = 0 and N = 2), (6.10.1)

reduces to 1.

Proof. If n = 1, only the term (a, b) = (1, 1) occurs in (6.10.1), and all its factors are 1.

If B is empty, the polynomials T ′
m are 1, and (6.10.1) reduces to

∑

ab|n

µ(a)
Qb − 1

Qn − 1
=
∑

b|n

Qb − 1

Qn − 1

∑

a|(n/b)

µ(a).

The sum over a vanishes, except when n = b and the claim follows. !

Proposition 6.13. R0 = 1.

Proof. The polynomial R0 is obtained by taking Q = 0 in (6.10.1). At Q = 0, the quotient

(Qb − 1)/(Qn − 1) is one, and (6.10.1) reduces to
∑

m|n

T ′
m(Q; (Xi)) ·

∑

a|m

µ(a).

Except for m = 1, the sum over a vanishes, and at Q = 0, T ′
1(Q, (Xi)) is one. !

Proposition 6.14. (i) In the following two cases, (6.10.1) is reduced to 1 : |B| = 0 (that is

g = 0, N = 2); |B| = 1 (that is g = 0, N = 3) and n = 2.

(ii) Let d be the largest of the integers k such that Rk &= 0. Excluding the cases (i), one has

d = |B| n(n − 1)

2
+ 1 − n,(6.14.1)

Rd = (−1)N(n−1)
(∏

Xi

)n−1
.(6.14.2)

(iii) Each Rk is a linear combination of monomials dividing
(∏

Xi

)n−1
.
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Proof. The cases (i) are covered by 6.11 and 6.12. To compute d and Rd, we will expand

(6.10.1) around Q = ∞. This means embedding the ring of polynomials in Q and the Xi in

the ring of Laurent formal power series in Q−1, with cofficients polynomials in the Xi, that

is in Z[(Xi)][[Q−1]][Q], and computing there, using that

(6.14.3)
Qb − 1

Qn − 1
= Qb−n 1 − Q−b

1 − Q−n
= Qb−n(1 − Q−b)

∑

r ≥ 0

Q−nr.

This expansion shows that to prove (iii), it suffices to prove that for each divisor m of n,

when one expands the product (6.6.2) defining T ′
m(Q; (Xi)), the monomials occuring are of

the form

(power of Q)·
(
monomial dividing

(∏
Xi

)n−1)
.

The largest power of Xi occuring is indeed

(m − 1) + m
( n

m
− 1

)
= n − 1.

Expanding (6.6.2), one sees that the highest power with which Q occurs in T ′
m(Q; (Xi)) is

|B| · m ·
∑

1 ≤ j< n
m

j = |B| · m · n

m
·
( n

m
− 1

)
/2 = |B| · n ·

( n

m
− 1

)
/2.

In µ(a) Qb−1
Qn−1 T ′

m(Q; (Xi)), it is the same plus b−n, which at a given m is maximum for b = m.

This maximum is

(6.14.4) |B| · n
( n

m
− 1

)
/2 + m − n =

(
|B| n2

2
· 1

m
+ m

)
−
(
|B| n

2
+ n

)
.

Define A := |B|n2

2 . For x ≥ 0, the function A
x + x decreases from x = 0 to its minimum at

x =
√

A =
(

|B|
2

)1/2

· n. If |B| ≥ 2, the divisor m of n at which A
m + m takes its largest value

is hence m = 1, while for |B| = 1 it is 1 or n. For |B| = 1, the values of A
m + m for m = 1

and n are
n2

2
+ 1 and

3

2
n.

When |B| = 1, we assumed that n ≥ 3, and the value at m = 1 is again the largest.

We conclude that in (6.10.1) only one term contributes the largest power of Q: the term

(a, b) = (1, 1), and 6.14 is now easily checked. !

The product of the β in B is the determinant of Frob acting on H1
c (X − S). By (6.2.2),

this determinant is the product of the following two factors: ε(S), the determinant of Frob

acting on ZS , that is, the signature of the permutation Frob of S, and the determinant of

Frob acting on H1(X), equal to qg:

(6.14.5)
∏

β∈B
β = ε(S)qg.
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Corollary 6.15. If we exclude the cases 6.14(i), in the decomposition (6.8.1) of the second

factor of (6.6.1) for (Xm, Sm)/Fqm, the eigenvalue ε(S)n−1qD′/2, with

D′ = (2g − 2)(n2 − 1) + N(n2 − n),

occurs with multiplicity (−1)N(n−1). The other eigenvalues occuring with nonzero multiplicity

have strictly smaller complex absolute values.

Proof. One applies the description of the eigenvalues given in the proof of 6.8, applied to

(6.10.1). The β in B have complex absolute value 1 or q1/2, and by 6.14 the top eigenvalue

is (∏
βi

)n−1
qd,

occuring with multiplicity (−1)N(n−1). By (6.14.5), it equals

ε(S)n−1qg(n−1)+d,

and

g(n − 1) + d = [(g − 1)(n − 1) + (n − 1)] + [(2g − 2 + N)
n(n − 1)

2
− (n − 1)]

= (g − 1)((n − 1) + n(n − 1)) + N
n(n − 1)

2

=
1

2
[(2g − 2)(n2 − 1) + N(n2 − n)]. !

From now on, we again assume that n ≥ 2.

6.16. Over C, let us consider a compact Riemann surface
∑

of genus g, a set S of N points

of Σ, the inclusion j of Σ−S in Σ, and, on Σ−S, irreducible complex local systems of rank n,

with trivial determinant and–at each s in S–with local monodromy which is unipotent with

one Jordan block (principal unipotent). Let M be the moduli space of these local systems.

In the cases 6.14(i) it is empty. We exclude these cases.

The deformation theory of local systems V as above is controlled by H∗(Σ, j∗End0(V )),

where End0(V ) is the local system of trace zero endomorphisms of V . The local system

End0(V ) is self dual, for the pairing Tr(uv). From this pairing we get a perfect pairing

between H0 and the H2 of j∗End0(V ), and a symplectic form on the H1. By Schur’s lemma,

the H0 vanishes. By duality, so does H2: the deformation theory is unobstructed, and M is

smooth. Its tangent space at V is H1(Σ, j∗End0(V )), and the autoduality of this H1 turns

M into a complex symplectic manifold, of dimension

dim M = dim H1(Σ, j∗End0(V )) = −χ(j∗End0(V )).
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The local system End0(V ) on Σ− S is of rank n2 − 1, and the fiber of j∗End0(V ) at each

s ∈ S is of rank n − 1 (it is the centralizer of the local monodromy in a nearby fiber of

End(V )0). By additivity of Euler-Poincaré, this gives

χ(j∗End0V ) = χ(Σ− S) · (n2 − 1) + N(n − 1)

= χ(Σ)(n2 − 1) = N(n2 − n) = −(2g − 2)(n2 − 1) − N(n2 − n),

showing that the complex dimension of M is D′. We do not understand why q at the power

half the dimension of M appears in 6.15.

6.17. Let us write Rk(B) for the value of the polynomial Rk at a point (xi) where the xi run

over the multiset B. By (2.3.1), (6.6.1) and the definition 6.10 of the Rk, one has

(6.17.1) T (X1, S1, n) = (−1)N1(n−1)[−f(1) + f(1)
∑

k

qkRk(B)].

By 6.13, the k = 0 term in the sum cancels −f(1). If a permutation σ of N letters has N1

cycles, its signature is (−1)N−N1 . Plugging this in (6.17.1), we get

Theorem 6.18 (second form of theorem 2.3). One has

(6.18.1) T (X1, S1, n) = (−1)N(n−1)ε(S)n−1f(1)
∑

k ≥ 1

qkRk(B).

In the exceptional cases 6.14(i), the right side vanishes. Otherwise, the sum over k ranges

from 1 to d (6.14.1), and d ≥ 1.

When we go from (X1, S1)/Fq to (Xm, Sm)/Fqm , the sign ε(S) = det(Frob, ZS) is replaced

by its mth power. As a function of m, all factors ε(S), f(1) =
∏

(1 − α),
∑

k ≥ 1
qkRk(B)

of (6.18.1), and hence T (Xm, Sm, n) have the form (6.8.1): a sum
∑

njγm
j , reminiscent of

a Lefschetz trace formula. If we exclude the cases 6.14(i), the top eigenvalue for m #→
T (Xm, Sm, n) is the product of that for m #→ fm(1), that is qg, of ε(S)n−1, and of the top

eigenvalue computed in 6.15, that is ε(S)n−1qD′/2. Its multiplicity is (−1)N(n−1) times the

multiplicity (−1)N(n−1) of 6.15: it is one.

Corollary 6.19. (i) As a function of m, the number T (X1, S1, n, m) = T (Xm, Sm, n) of

fixed points of Frm∗ has the form explained in (6.8.1) :

(6.19.1)
∑

niγ
m
i .

The γi are products of a strictly positive power of q, of a root of unity, and of eigenvalues of

Frob acting on H1(X).
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(ii) If g = 0, N = 2 or if g = 0, N = 3, n = 2, T (X1, S1, n, m) = 0. Otherwise, the

eigenvalue qD/2, with D = D′+2g = (2g−2)(n2−1)+N(n2−n)+2g, occurs in (6.19.1) with

multiplicity one, and the other eigenvalues occuring with nonzero multiplicity have strictly

smaller complex absolute values. !

6.20. In parallel to 6.16, and excluding the cases 6.14(i), D is the dimension of the space of

irreducible complex local systems of dimension n and principal unipotent local monodromy

at each point of S.

A similar phenomenon occurs for n = 2 in the case of no ramification, studied by Drinfeld

[D], and in cases of fixed and “generic” tame local ramifications, studied by Arinkin.

Corollary 6.21. The number T (X1, S1, n) is divisible by q. !

6.22. Somewhat abusively, we will write “virtual object of A” to mean “element of the

Grothendieck group of the abelian category A”. The polynomial Rk, being symmetric and

with integral coefficients, is the character of a virtual polynomial representation of GL(2g +

N − 2), evaluated at the diagonal matrix with diagonal entries the Xi. We write Rk also for

this virtual representation. It is a difference of two representations, say R+
k and R−

k .

Example 6.23. The elementary symmetric polynomial σj is the character of
j
∧ V , for V the

defining representation of the linear group. For n = 2 and k ≥ 1, 6.11 tells that the virtual

representation Rk is

(6.23.1) Rk = (−1)k+1
∑

j ≥ k+1

j
∧ V (for n = 2, k ≥ 1).

6.24. Representations of the linear group GL(M) can be identified (equivalence of categories)

with functors from the category of vector spaces of dimension M , with isomorphisms as mor-

phisms, to the category of vector spaces and linear maps. For instance, to the representation
j
∧ V , for V the defining representation of GL(M), corresponds the functor j-th exterior

power. The equivalence is (functor T ) #→(representation T (V )). Such a functor T can be

applied to smooth l-adic sheaves of rank M .

6.25. Let Hc − 1 be the quotient of H1
c (X − S) by a line fixed by Frob. The assumption

N1 ≥ 2 ensures there is one. The eigenvalues of Frob acting on Hc − 1 are the β in B. It
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follows that Rk(B) of 6.17 is

Rk(B) = Tr(Frob, Rk(Hc − 1))(6.25.1)

:= Tr(Frob, R+
k (Hc − 1)) − Tr(Frob, R−

k (Hc − 1)).

The other pieces in (6.18.1) have a similar interpretation: q is the eigenvalue of Frob acting

on Ql(−1) = H1(Gm), ε(S) is the eigenvalue of Frob acting on the top exterior power of QS
l ,

and

f(1) =
∑

i
(−1)iTr(Frob,

i
∧H1(X)).

Let us write W (−k) for W ⊗ Ql(−1)⊗k, and εl(S) for the top exterior power of QS
l . We get

T (X1, S1, n)

(6.25.2)

= Tr

(

Frob, (−1)N(n−1)εl(S)⊗(n−1) ⊗
∑

i
(−1)i i

∧H1(X) ⊗
d∑

k=1

Rk(Hc − 1)(−k)

)

.

Example 6.26. If n = 2, (6.23.1) gives

Rk(B) = (−1)k+1Tr

(

Frob,
∑

j ≥ k+1

j
∧(Hc − 1)

)

(for k ≥ 1).

Define Hc := H1
c (X −S). As

j+1
∧ Hc is an extension of

j+1
∧ (Hc −1) by

j
∧(Hc −1), one also has

(6.26.1) Rk(B) = (−1)k+1Tr

(

Frob,
∑

j ≥ 1

k+2j
∧ Hc

)

(for n = 2, k ≥ 1)

from which it follows that, under our standing assumption N1 ≥ 2,

(6.26.2) T (X1, S1, 2) =

Tr

(

Frob, (−1)Nεl(S) ⊗
∑

i
(−1)i i

∧H1(X) ⊗
∑

k ≥ 1

(−1)k+1
∑

j ≥ 1

(k+2j
∧ Hc

)
(−k)

)

.

6.27. Let Mg,[N ] be the moduli stack, over Spec(Z), of curves of genus g given with a set S

of N distinct points. More precisely, a morphism Y → Mg,[N ], or equivalently an object of

Mg,[N ] over the scheme Y , is a proper and smooth morphism a : X → Y whose geometric

fibers are irreducible curves of genus g, given with a relative divisor S ⊂ X, finite étale of

degree N over Y .
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The moduli stack Mg,N of curves of genus g given with an ordered set of N distinct points

is a Galois covering of Mg,[N ], with Galois group the symmetric group SN . More precisely,

it is an SN -torsor over Mg,[N ].

Fix a decomposition N = N ′ + N ′′, with N ′, N ′′
≥ 1. Corresponding to the subgroup

SN ′ × SN ′′ of SN , we have between Mg,N and Mg,[N ] the moduli stack Mg,[N ′,N ′′] of curves of

genus g given with disjoint sets of N ′ and N ′′ distinct points. An object of Mg,[N ′,N ′′] over

Y is a : X → Y as above, given with disjoint relative divisors S ′, S ′′, finite étale of degrees

N ′, N ′′ over Y . We put S := S ′
∪S ′′.

For each such stack M, we denote by M[1/l] the open substack where l is invertible.

A Ql-smooth sheaf on a stack M is the data, for each Y → M, of a Ql-smooth sheaf whose

formation is compatible with pullbacks by maps Y ′ → Y . Here are examples of Ql-smooth

sheaves on Mg,[N ][1/l], defined by giving their value on a : (X, S) → Y , object of the stack

over Y . By pullback, they give similar smooth sheaves on Mg,[N ′,N ′′][1/l].

• H : R1(a : X → Y )∗Ql. It is of rank 2g.

• S : a(S → Y )∗Ql. It is of rank N .

• εl(S) :=
N
∧ S, of rank one.

• Hc : R1(a : X − S → Y )!Ql. It is of rank 2g + N − 1 and sits in an exact sequence

whose geometric fibers are given by (6.2.2):

(6.27.1) 0 → Ql → S → Hc → H → 0.

On Mg,[N ′,N ′′][1/l], Hc contains a copy of the constant sheaf Ql. Indeed, S decomposes into

the sum of S′ : (a : S ′ → Y )∗Ql and S′′ : (a : S ′′ → Y )∗Ql, the map Ql → a∗a∗Ql embeds

Ql into both S′ and S′′, and (6.27.1) embeds Ql , Ql ⊕ Ql/(diagonal Ql) into Hc. On

Mg,[N ′,N ′′][1/l], we define Hc/Ql to be the quotient of Hc by this copy of Ql.

If W is a Ql-smooth sheaf, or more generally a Ql-sheaf, on a stack M, if x : Spec(Fq) → M

is an Fq-point of M, and x̄ : Spec(F) → Spec(Fq) → M a corresponding geometric point, the

geometric Frobenius Frob ∈ Gal(F/Fq) acts on the fiber of W at x̄. One defines

Tr(Frobx, W) := Tr(Frob, Wx̄).

This definition extends by additivity to the case of virtual smooth sheaves, that is of elements

of the Grothendieck group of the category of Ql-smooth sheaves.

The formula (6.25.2) can now be translated as follows.
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Proposition 6.28. Let x be an Fq-point of Mg,[N ′,N ′′][1/l], that is (X1, S ′
1, S

′′
1 ) over Fq, and

let S1 := S ′
1 ∪S ′′

1 . Then T (X1, S1, n) is the trace of Frobx on the virtual smooth sheaf

(6.28.1) (−1)N(n−1)εl(S)⊗(n−1) ⊗
∑

i
(−1)i i

∧H ⊗
d∑

k=1

Rk(Hc/Ql)(−k).

Conjecture 6.29. Let us drop our standing assumption N1 ≥ 2. We conjecture that for any

g ≥ 0, N ≥ 0 and n ≥ 2, there exists a virtual Ql-smooth sheaf W(n) on Mg,[N ][1/l] such that

for x an Fq-point of Mg,[N ][1/l], that is (X1, S1) over Fq, one has

T (X1, S1, n) = Tr(Frobx, W
(n)).

This implies a dependence on m of the form (6.8.1) for T (Xm, Sm, n). An optimistic

version of the conjecture would be that for some virtual polynomial representations R(n)
k of

GL(2g + N − 1), W(n) is of the form

W(n) = εl(S)⊗(n−1) ⊗
∑

i
(−1)i i

∧H ⊗
∑

k
R(n)

k (Hc)(−k).

If N > 0, one might also hope that the sum over k is over positive k’s.

For n = 2 and N = 0, the conjecture (in its optimistic form) is a corollary of what Drinfeld

proves in [D].

For n = 2 and N ≥ 1, one of us (Y.F.) has checked, using the trace formula in its full gory,

that (6.26.2) continues to hold for N1 = 1. From this the optimistic version of the conjecture

(for n = 2 and N ≥ 1) readily follows.

For N ≥ 2, and N = N ′ + N ′′ with N ′, N ′′
≥ 1, the conjectural W(n) on Mg,[N ] would

have (6.28.1) as inverse image on Mg,[N ′,N ′′]. For n = 2, this made (6.26.2) a plausible

guess. One should, however, beware that there are virtual Ql-smooth sheaves on Mg,[N ] all

of whose inverse images to the Mg,[N ′,N ′′] (N = N ′ + N ′′, N ′, N ′′
≥ 1) are zero. Examples are

∑
(−1)i

i
∧Hc and

∑
(−1)i

i
∧(S/Ql). The latter boils down to the following fact. Given a

finite group H , with representation ring R(H), and a family of subgroups Hj , if ∪Hj does

not meet all conjugacy classes in H , the restriction map

R(H) →
∏

R(Hj)

is not injective. In the case of SN , the family of subgroups SN ′ × SN ′′ (N = N ′ + N ′′,

N ′, N ′′
≥ 1) misses the conjugacy class of cycles of length N . If V is the representation
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CN/(diagonal C) of SN , its restriction to SN ′ × SN ′′ contains a copy of the trivial represen-

tation 1, and as

j
∧(W + 1) =

j
∧ W ⊕

j−1
∧ W

(with
−1
∧ W := 0), the restriction of

∑
(−1)j

j
∧ V to each SN ′ ×SN ′′ vanishes. The character

of
∑

(−1)j
j
∧ V vanishes outside of the conjugacy class of cycles of length N , where its value

is N .

6.30. The conjecture 6.29 should not be specific to the case of principal unipotent local

monodromy. It should hold, with other virtual Ql-smooth sheaves W, when one imposes the

local monodromy at each s in S. When the local monodromy imposed is tame (and makes

sense in characteristic not dividing P ), the relevant moduli stack M will be over Z[1/lP ].

It is the moduli stack of curves of genus g given with a set of N points decorated by the

imposed monodromy. When the local monodromy imposed is not tame, one might have to

stay in a specific characteristic, and consider points decorated by a local parameter given up

to some order.

Question 6.31. The virtual Ql-smooth sheaf (6.28.1) is the formal difference of local sys-

tems built out of the local systems of cohomology of X, S ′ and S ′′. We used l-adic coho-

mology, but (6.28.1) would make sense for any of the standard cohomology theories. It is

“motivic”. Over C, the same construction gives a virtual variation of Hodge structures on

Mg,[N ′,N ′′](C).

Over C, to each curve X of genus g given with a set S = S ′
∪S ′′ of N = N ′ + N ′′ points,

one can attach the moduli space TX,S of rank n irreducible complex local systems on X −S,

with principal unipotent local monodromy at each s in S.

These spaces are the fibers of a morphism a : T → Mg,[N ′,N ′′]. Can one relate the virtual

variation (6.28.1) and this family of spaces? From the complex analytic point of view, this

family is locally constant, because it can be interpreted in terms of representations of the

fundamental group of X − S, itself locally constant. This should be related to the fact that

T (X1, S1, n) is controlled by a virtual Ql-smooth sheaf, rather than a virtual Ql-sheaf.

The analogue of 6.19(ii) is that the top weight part of the variation (6.28.1) is a Q(−D/2),

of Hodge type (D/2, D/2), where D is the (complex) dimension of the TX,S.



COUNTING LOCAL SYSTEMS 55

7. Example: g = 0, N = 4, n = 2

The case of rank 2 local systems over the projective line minus an étale divisor of degree

four is among the simplest nontrivial cases. It has been investigated numerically by Kont-

sevich (cf. [Kn], 0.1). It might be a useful testing ground to tentative answers to question

6.31.

In this section, we do not assume N1 ≥ 2: X1 is a projective line over Fq and the degree

four reduced divisor S1 is allowed to consist of one closed point of degree four.

Proposition 7.1. With the above notations, one has

(7.1.1) T (X1, S1, 2) = q.

As g = 0, one has f(1) = 1. When N1 ≥ 2,

D = D′ = (2g − 2)(n2 − 1) + N(n2 − n) = 2

and the dominant term q computed in 6.19 (ii) is the only term by 6.19 (i). This leaves out

the case where S1 consists of a single point of degree 4. We will explain in 7.8 how this case

can be reduced to the case N1 ≥ 2.

7.2. Let E be a set with four elements. We denote by VE the Vierergruppe of E, that is

the subgroup of the symmetric group of E consisting of the identity and of the three (2, 2)

permutations of E. The action of VE on E is simply transitive: when viewed as a right

action, it turns E to a VE-torsor. When we need to emphasize this, we write t(E) for E.

The abelian group VE being killed by 2, t(E) is its own opposite: the torsor sum t(E)+ t(E)

is the trivial VE-torsor VE. As VE acts on E, the twist Et(E) of E by t(E) is defined. It is

just t(E) + t(E) = VE. It has a canonical point 0.

7.3. Let P be a projective line over a field k. If (s1, s2, s3, s4) and (s′1, s
′
2, s

′
3, s

′
4) are two

quadruples of distinct k-points of P with the same cross ratio, there is a unique automorphism

of P over k mapping the first quadruple to the second. Special case: the cross ratio being

invariant by a permutation of a quadruple of points which belongs to the Vierergruppe, if

S ⊂ P (k) consists of four points, the action of VS on S extends (uniquely) to an action on

P . A twist P t(S) of P by the torsor t(S) is hence defined. It contains the twist St(S) = VS

of S by t(S). Concrete description: one takes four copies P [s] of P indexed by S; one has

a transitive system of isomorphisms between the P [s]: as isomorphism from P [s] to P [t], one
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takes the action of the unique element of VS mapping s to t; the twist P t(S) is the “common

value” (projective limit) of the P [s]. In other words,

P t(S) = (P × S)/VS

(diagonal action). The canonical point 0 ∈ VS = St(S) ⊂ P t(S) is the image of the diagonal S

of S × S ⊂ P × S.

By étale descent, this construction continues to make sense for P a projective and smooth

curve of genus 0 over k, and for S a divisor of degree 4, étale over k. The group VS

is now a group scheme étale over k. It acts on S, on P , on P t(S) = (P × S)/VS and

0 ∈ VS = St(S) ⊂ P t(S) is again the image of the diagonal of S × S.

7.4. We now suppose that k = C. Let T((P, S)/C) denote the set of isomorphism classes of

irreducible rank 2 complex local systems on P−S, with principal unipotent local monodromy

at each s in S (6.16). The group VS acts on this set by transport of structures.

Proposition 7.5. The action of VS on T((P, S)/C) is trivial.

Fix an involution σ in VS, and label S by Z/4, in such a way that σ is si #→ si+2.

Proposition 7.5 results from the more general

Proposition 7.6. Let V be an irreducible rank 2 complex local system on P − S. Assume

that the local monodromy transformations are in SL(2), and that for each s ∈ S the local

monodromies around s and σ(s) are conjugate. Then, V is isomorphic to σ∗V.

Proof. All involutions in Aut(P ) are conjugate: we may and shall choose a coordinate z

such that the automorphism σ of P is z #→ −z. The claim is invariant under deformation of

S. We may assume that S consists of the points ±1 ± i, labelled by Z/4 as in the following

picture.
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Take the fixed point z = 0 of σ as base point. The fundamental group π1(P − S, 0) is

generated by the loops γi (i ∈ Z/4) pictured in (7.6.1), with γ1γ2γ3γ4 = 1 as the only

relation, and σ maps γi to γi+2.

To give a local system V on P − S amounts to giving its fiber V0 at 0, and the action of

π1(P − S, 0) on it. Let Ai be the image of γi. For our V, if we choose an isomorphism of V0

with C2, the representation of π1 is given by four Ai in SL2(C), obeying

(7.6.2) A1A2A3A4 = 1.

Our assumptions are that the representation is irreducible and that Ai is conjugate to Ai+2.

Our claim is that the quadruples (A1, A2, A3, A4) and (A3, A4, A1, A2) are conjugate, in other

words that the corresponding representations of π1 are isomorphic. For this, it suffices (by

irreducibility) to check that they have the same character: that for any word
∏

Aε(k)
i(k) in the

A±
i ,

(7.6.3) Tr
∏

Aε(k)
i(k) = Tr

∏
Aε(k)

i(k)+2.

We are in rank n = 2. By Procesi [P], Theorem 3.4 (a) p.316, applied to the Ai and their

inverses, it suffices to check (7.6.3) for words of length ≤ 2n − 1 = 3. Words can be viewed

as circular words. By the identities A−1
i = Tr(Ai)−Ai and A2

i = Tr(Ai)Ai − 1, it suffices to

consider words in the Ai, for which consecutive Ai have distinct indices. For circular words

of length ≤ 3, this means all indices distinct. We now check (7.6.3) for these words. We will

use that in SL(2), Tr(A) = Tr(A−1).

We assumed Tr(Ai) = Tr(Ai+2). That Tr(AiAi+2) = Tr(Ai+2Ai) is clear. By (7.6.2), one

has

Tr(A3A4) = Tr((A1A2)
−1) = Tr(A1A2)

and similarly for AiAi+1. The case of A1A2A3 is reduced to that of A4 by

Tr(A1A2A3) = Tr(A−1
4 ) = Tr(A4).

The case of Tr(A1A3A2) follows, thanks to the identity

Tr(ABC)+Tr(ACB) − Tr(A)Tr(BC) − Tr(B)Tr(CA)(7.6.4)

− Tr(C)Tr(AB) + Tr(A)Tr(B)Tr(C) = 0,

which follows from the vanishing of the antisymmetrization operator a =
∑

ε(τ)τ of (C2)⊗3:

one expands

Tr(A ⊗ B ⊗ C ◦ a) = 0.

Similarly for (1, 2, 3) replaced by (i, i + 1, i + 2). This concludes the required check. !
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Suppose now that k is any algebraically closed field, and consider Ql-smooth sheaves in

the étale sense of 1.1.

Corollary 7.7. For (P, S)/k as above, 7.6 remains valid provided the local monodromy is

tame. As a consequence, 7.5 remains valid.

Tameness is needed already to make sense of “conjugate local monodromy”.

Proof for k = C. The proof of 7.6 is algebraic, hence holds also for local systems of Ql-vector

spaces on P (C) − S. It remains to observe that the functor

(Ql-smooth sheaves on P − S) → (local systems of Ql-vector spaces on P (C) − S)

is fully faithful. Indeed, both categories are 2-inductive limits of similar categories, with Ql

replaced by a finite extension Eλ of Ql in Ql. This reduces us to the Eλ case. Let Oλ be the

valuation ring of Eλ and fix a base point 0. Local systems on P (C) − S are representations

of π1(P (C) − S, 0) on an Eλ-vector space of finite dimension. The Eλ-smooth sheaves on

P −S are those representations V which extend to continuous representations of the profinite

completion of π1, that is for which V contains a lattice V 0 (a free Oλ-submodule of V which

generates V over Eλ) stable by the action. Morphisms are the same.

Proof in characteristic zero. This case follows from the case k = C, by invariance of the

algebraic π1 upon extension of scalars from one algebraically closed field of characteristic

zero to another one.

Proof in characteristic p. Grothendieck proved that the tame π1 is a quotient of the char-

acteristic 0 group π1. We will show that his proof reduces the characteristic p case to the

characteristic zero case. Let W (k) be the ring of Witt vectors over k. Let K be an alge-

braic closure of the field of fractions K of W (k). Consider a lifting (PW , SW ) of (P, S) to

W (k). The action of VS lifts. A Ql-local system on PS which is tamely ramified along S lifts

uniquely to PW − SW , and pulls back to (PW , SW ) ⊗W K. By Grothendieck, the resulting

functor from tame local systems on P − S to local systems on PK − SK is fully faithful,

reducing us to the characteristic zero case.

7.8. End of Proof of 7.1. Define (X ′
1, S

′
1) to be the twist of (X1, S1) by t(S1). Over F, we

have a natural system of four isomorphisms between (X, S) and (X ′, S ′), exchanged by the

Vierergruppe. By 7.5, they all induce the same bijection from T(2)(X, S) to T(2)(X ′, S ′). By
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transport of structure, this bijection is compatible with the action of Frob. It follows that

T (X1, S1, 2) = T (X ′
1, S

′
1, 2).

The divisor S ′
1 contains a rational point. For (X ′

1, S
′
1), one hence has N1 ≥ 2, and (7.1.1) for

(X1, S1) results from (7.1.1) for (X ′
1, S

′
1). !

Translating the generalization 7.7 of 7.5 using the global Langlands correspondence [L],

one obtains the following result, of which we do not know a proof not using [L].

Proposition 7.9. Let S1 be an étale divisor of degree four of P1/Fq, and σ an involutive

automorphism of (P1, S1) which acts on S by an element of VS. Suppose that the automor-

phic representation π of GL(2, A) is cuspidal, unramified outside of S1, and that its local

component at each s in S1 is of the form

Steinberg ⊗ χ(det)

with χ unramified.

Under these assumptions, σ(π) is an Fq-twist of π : there exists a sign ε = ±1 such that

σ(π) is the twist of π by the character a #→ εdeg(a) of the idèle class group. As a consequence,

for any closed point x /∈ S1, the Hecke eigenvalue of π at x is εdeg(a) times the Hecke

eigenvalue of π at σ(x).

The pair (P1, S1) admits an involution σ as in 7.9 as soon as S1 does, that is, except in

the case where S1 contains a rational point and a point of degree 3.

Proof. Let F1 be the smooth l-adic sheaf on (P1 − S1)/Fq attached to π. As π is cuspidal,

F1 is irreducible. Its local monodromy at each s ∈ S1 is principal unipotent. By 1.9(i), its

inverse image F on (P1−S)/F is still irreducible. By 7.7, σ∗F is isomorphic to F. By 1.9(ii),

σ∗F1 is an Fq-twist of F1. It follows that σ(π) is an Fq-twist of π: for some character χ of

the quotient Z of the idèle class group, σ(π) = πχ. Applying σ, we get that π = σ(π)χ, and

π = πχ2. By 1.9(ii), χ2 = 1: χ is of the form εdeg(a) for some sign ε. !

1. APPENDIX. Transfer of special automorphic representations

Yuval Z. Flicker

The purpose of this appendix is to extract the statement 11.3 from the literature.

The correspondence, relating discrete spectrum automorphic representations π′ of any

inner form G′ of G = GL(n) (multiplicative group of a simple algebra of dimension n2) with

discrete spectrum representations of G, is known unconditionally when the base field is a
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number field F , by Arthur’s work on the trace formula. The case where π and π′ have a

cuspidal ([BZ]) component at a place v where G′
v is GL(n, Fv) had been proven in [FK] (after

previous work of [BDKV] and [F1;III] on π, π′ with two such components), using the simple

trace formula of [FK]. The latter method applies also when the base field F is a function field,

but does not cover the case which we need, which concerns automorphic representations π′

of D∗(A), where D is a central division algebra over F , such that no component π′
v of π′

corresponds to a cuspidal representation πv of Gv = GL(n, Fv) by the local correspondence.

To establish the correspondence in the case stated in 1.13 we shall use the trace formula for

GL(n) over a function field F as developed by Lafforgue [Laf], where the formula is proven

for any inner form of GL(n). The case we need is where at two places v = v1, v2 (denoted

0 and ∞ in [Laf]) the test function f = ⊗fv (denoted h in [Laf]) has a discrete component

fv. A test (compactly supported locally constant) function fv is called discrete if for every

proper standard parabolic subgroup P = MN of G = GL(n), with unipotent radical N and

standard Levi subgroup M , it satisfies the identity
∫

Kv

∫

Nv

fv(k
−1
v mvnvkv)dnvdkv = 0

for every mv ∈ Mv. A discrete pseudo coefficient of the Steinberg representation is con-

structed in [Lau], Theorem (5.1.3), p. 133, after previous work by Kottwitz. Replacing fv

by g #→
∫

Kv
fv(k−1

v gkv)dkv, Kv = GL(n,Ov), we may assume fv satisfies fv(k−1
v gkv) = fv(g)

(kv ∈ Kv, g ∈ Gv). For f with a discrete component fv the truncation ([Laf], pp. 225-227)

is trivial.

Theorem 10, p. 241, V.2.d, of [Laf] implies that for f with two discrete components the

geometric side of the trace formula reduces to
∫

G(F )\G(A)/aZ

∑

γ

f(g−1γg)dg =
∑

{γ}

∫

ZG(γ)(F )\G(A)/aZ

∑

γ

f(g−1γg)dg

where the sum on the left ranges over the elements γ in G(F ) whose characteristic polynomial

is a power of an irreducible polynomial, while the sum on the right ranges over a set of

representatives for the conjugacy classes of such γ in G(F ), and ZG(γ) denotes the centralizer

of γ in G. To simplify things we may choose f with a component fv3 which vanishes on the

singular set (the set of γ with at least two equal eigenvalues). As explained in the last

paragraph below, this does not reduce the applicability of our techniques. Then the γ in the

sum are elliptic regular (regular: distinct eigenvalues): F [γ] is a separable field extension of

F of degree n.
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This sum is equal to the analogous sum for the inner form G′, recorded in (2), p. 191, of

[FK], for matching test functions f = ⊗fv on G(A) and f ′ = ⊗f ′
v on G′(A). In particular

fv = f ′
v at the v where Gv , G′

v, and fv, f ′
v have matching orbital integrals (at all regular

elements γ′ in G′
v and the γ in Gv with the same characteristic polynomials; the orbital

integral of fv at the regular elements which do not come from G′
v in this sense are zero, for

all v). Note that the usage of Theorem 10, p. 241, V.2.d, of [Laf] is made for convenience.

The method of “n-admissible spherical functions” of [FK], p. 192, could be used too.

For a test function f with a cuspidal component (thus at some place v, for every proper

parabolic subgroup Pv = MvNv of Gv we have
∫

Nv
fv(xny)dn = 0 for all x, y ∈ Gv), the

convolution operator r(f) splits through the projection to the cuspidal spectrum. The spec-

tral side of the trace formula becomes the sum
∑

π m(π) trπ(f), where π ranges over the

equivalence classes of the irreducible representations in the cuspidal spectrum of G(A), and

m(π) denotes the multiplicity of π in the cuspidal spectrum (m(π) is known to be 1 for

G = GL(n)). For a general test function f , which may not have a cuspidal component, one

needs to use the spectral decomposition of the space of automorphic forms and compute the

spectral side of the trace formula. This is done in [Laf], Theorem 12, p. 309, VI.2.f, in the

case we need, namely GL(n) over a function field F .

In the number field case Arthur has shown (“a splitting property”) that for a test func-

tion f = ⊗fv with two discrete components the spectral side reduces to a discrete sum
∑

π m(π) trπ(f), where π ranges over the equivalence classes of the irreducible representa-

tions π in the discrete spectrum of G(A), and m(π) is the multiplicity of π in the discrete

spectrum. In the function field case this has not yet been done, so we proceed differently

(and in fact deduce this result).

Fix a new place u ( &= v1, v2) of F . Let the component fu be spherical (Ku-biinvariant).

Denote by f∨
u the Satake transform of fu. Then the spectral side, described by Theorem 12,

p. 309, VI.2.f, of [Laf], has the form

∑

i

cif
∨
u (ti) +

∑

j

∫

T̃j

cj(t)f
∨
u (t)djt

where the ci are complex numbers, the ti lie in the compact Hausdorff space T̃ defined in

the first lines of [FK], proof of Theorem 2, p. 197, the T̃j are compact submanifolds of T̃

(all irreducible components of a T̃j have the same dimension j (1 ≤ j < n)), the cj(t) are

complex valued functions on T̃j which are measurable with respect to a bounded measure

djt on T̃j which has the property that vol(T̃ε(t))/ε is bounded uniformly in ε (see [FK], first
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paragraph in the proof of the Proposition, p. 198), and

∑

i

|ci| +
∑

j

supt∈T̃j
|cj(t)| +

∑

j

∫

T̃j

|cj(t)||djt|

is finite.

Now the trace formula asserts that the spectral side equals the geometric side of the trace

formula. As we saw above, the geometric side is a sum of orbital integrals (for f with discrete

fv1 , fv2). For matching test functions f and f ′ the geometric sides of the trace formulae for

f on G(A) = GL(n, A) and for f ′ on G′(A) = D∗(A), are equal. Hence the spectral sides

are equal. As is well known (see, e.g., [FK], Proposition, p. 191), the spectral side in the

anisotropic case (of G′ = D∗) is discrete: has the form
∑

i c
′
if

′
u
∨(t′i). We combine this last

sum with the sum
∑

i cif∨
u (ti), for new ci’s. The Proposition on p. 198 of [FK], prepared

precisely for a situation as the present one, implies that all (new) ci are zero (namely c′i = ci

and t′i = ti).

We conclude that for a test function f = ⊗fv with two discrete components, the spectral

side, as described in Theorem 12, p. 309, VI.2.f, of [Laf], reduces to a discrete sum. Then

for matching test functions f = ⊗fv on G(A) = GL(n, A) and f ′ = ⊗f ′
v on G′(A) = D∗(A)

we have the identity
∑

π

m(π) trπ(f) =
∑

π′

m(π′) trπ′(f ′),

where the sum on the left (resp. right) ranges over the equivalence classes of the irreducible

representations π (resp. π′) in the discrete spectrum of G(A) (resp. G′(A)), and m(π) (resp.

m(π′)) signifies the multiplicity of π (resp. π′) in the discrete spectrum.

A standard argument of “generalized linear independence of characters” implies that on

fixing a representation πS
0 = ⊗v/∈Sπ0v of G(AS) = G′(AS), where S is the set of places of F

such that G′
v , Gv for all v /∈ S, the sums over π and π′ can be taken to range over the

subsets of π with πv = π0v and π′ with π′
v = π0v for all v /∈ S. Rigidity theorem (“strong

multiplicity one theorem”) implies that the sum over π reduces to at most one term (with

m(π) = 1, by multiplicity one theorem for GL(n)).

Since in our case D is a division algebra, a result of Godement-Jacquet can be used as in

[F2] to show that the sum over π′ is finite. As explained in [F2], using matching functions fv

on Gv and f ′
v on G′

v for v ∈ S which are supported only on the regular set (in particular we

may use fv3 as above), linear independence of characters implies character relations between

πv and π′
v for all v ∈ S. The character determines πv and π′

v uniquely since it is locally

integrable (a function field analogue of this result of Harish-Chandra in the characteristic 0
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case was proven by Lemaire [Le]). This implies the correspondence which we need: if π is

a cuspidal representation of G(A) whose components at v ∈ S are Steinberg twisted by an

unramified character, there is precisely one (thus m(π′) = 1) cuspidal representation π′ of

G′(A) with π′
v , πv for all v /∈ S. Then π′

v corresponds to πv by the local correspondence,

thus π′
v is one dimensional unramified character, for all v ∈ S. Conversely, given cuspidal π′

with dim π′ > 1 there exists a unique corresponding π.
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