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0. Let F# C be a local field of characteristic # 2, and n an integer 2 1. Denote 
by p : S, + 1 +SL(n + 1, F) the unique non-trivial topological double covering 
group of SL(n + 1, F). Choose a section 5 : SL(n + 1, F)-S,,, , corresponding 
to a choice of a two-cocycle p’: S, + I x S,,, 1--t ker p which defines the group 
law on Sn+,. Put G; =p ‘(t(G,?)), where z is the embedding G,, = GL(n, F)-+ 

SL(n + 1, F), by 

gc (“0 deti-I)’ 

Let(.,.):FXxFX-t{t-I} betheHilbertsymbol.Identifykerpwith{+l}. 
Put /3(g, g’) =p’(g, g’)(det g, det g’) (g, g’E G,,). Denote by G, the group which is 
equal to G; as a set, whose product rule is given by s(g)@(g’)[‘= s(gg’)[cp(g, g’). 
Let A and B be the groups of diagonal and upper-triangular matrices in G’,, 
and A and B their preimages in G,. The section 2 : C’,+G, is a homomorphism 
on the group A of upper-triangular unipotent matrices. Put N=?(R). Let 2 be 
the center of G’,, and 2 the center of G,. Put A2=pP1(ki2), where A2 is the 
group of squares in A. Then ZA2 is the center of A. Put z =2(z) for z in 
Z=FX, and a=$(~) for a=diag(ai,...,a,) in A. Note that 

’ Partially supported by Seed, Nato and NSF-grants. 
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Then Z=p-‘(Z2)=A2np-‘(2) when n is even. When n is odd then Z= 

P-v?. 
Define a character F=F,:A*C” by &diag(ai))= n,,;,, lail’-(“+‘)‘2. 

Given a non-trivial additive character I+V :F-+CX, define the function 
y=y,:FX-*CX by 

Y(a)=lay2 s w(- ax2/2)dx/ j I+V( - x2/2)dx; 

dx is a Haar measure on F. Then y is trivial on Fx2, and satisfies y(a)y(b) = 
y(ab)(a,b) (see [WI, p. 176). The function Z-+C’, @(~)~[y(z”‘“-‘)‘~) (c in 
kerp, z in FX =z), is a character. Define the function 6=6,,:ZA2-tCx by 

&Xza2)) = 5r(z cn-1’n2’2)8(a) ([Ekerp, ZEZ=F~,~EA). 

There exists a unique (up to isomorphism) irreducible representation ,Q=Q,,, 
of A whose restriction to ZA2 is 6. Extend Q to a representation of B trivial on 
N. Let (7r, Vind) = (7r,,, I$‘:,) be the G,-module normalizedly (see [BZ2], (1.8)) 
induced from Q. Then (n, Vnd) has a unique irreducible subrepresentation (see 
[KPl], p. 72), denoted by (0, Vsub) = (OW+, I$‘,“). This 0, which is sometimes 
called exceptional, or unipotent, corresponds to the trivial G-module II by the 
metaplectic correspondence of [FK] (when n = 3; for n>3, the statement 
O,-+II, follows from a certain conjecture concerning orbital integrals, see 
[FK], p. 67, [KP2] and also Hales [HI and Waldspurger [Wa]). By [KPl], Thm 
11.2.1, p. 118, this 0 is unitarizable. 

The representation 0 of the two-fold covering group G, of G’, = GL(n, F) is 
probably the most natural generalization of the Weil representation [W] of the 
two-fold covering of the symplectic group Sp(n). Indeed, it has recently been 
used (by Patterson and Piatetski-Shapiro [PSI when n = 3, and then for general 
n by D. Ginzburg (his proof was later simplified by Flicker-Rallis)) to construct 
an integral presentation of the symmetric square L-function attached to a 
cuspidal representation of GL(n). Analogous representations of higher fold 
covering groups of GL(n) have not yet been found to afford such meaningful 
applications. 

The purpose of this paper is to construct an explicit model of 0 = 0, for all 
n 2 3, and determine the unique unitary structure of 0, thus generalizing the 
Theorem of [FKS], using the methods of [FKS], from the context of n = 3 to 
that of any nz3. 

In fact, as in [FKS] we construct a model of the extension of 0 to the semi- 
direct product G # = G >a (o), where c is an involution of G defined as 
follows. Let w = w(n) be the anti-diagonal matrix (( - l)i+‘6i,,+I _j) in G, con- 
sidered as an element of SL(n + 1, F) via I. Denote by B the involution O(g) = 
W ’ ‘g - ‘w of SL(n + 1, F). The Steinberg group St(n + 1, F) is generated by 
elementary matrices (see [Ml, p. 39). Since d maps elementary matrices to 
elementary matrices, and it preserves the relations which define St(n + 1, F), it 
lifts to an involution of St(n + 1, F), hence to an involution 5 of G. Since 
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(; :-I)=(; -i)( _: “0’) = u( - l)d(l)u( - l)u(a - ‘)d( - a)u(a - ‘), 

where 

u(x)= :, ‘f , ( > d(x) = 54(x), 

it is easy to check that 
n-1 

d(:(diag@))) =s(diag(%+ii -j)). n ( I? aj, ai). 

r=l /=I+1 

Hence 

6(:(z)) = a(2 - I)( - 1, z) n0-1)/2 for ZEFX -2. 

Put a(g>=( - 1,detp(g))(“-‘)‘23(g). Then oo~=:od on %i2, hence BV,n~o= 
6 V,n on ZA2. Consequently Q~,~o~=Q~,~ on A, and ~c~,~ocT=~~~,~ on G. 
We conclude that 0, n 0 cr = 0, ,, , namely there exists a non-zero operator 
1: p-sub, I/sub such that O(g)l=IO(og) for all g in G. Since 0 is irreducible, I2 
is a scalar by Schur’s lemma. Multiplying Z by a scalar we may assume that 
Z* =Zd. This determines Z uniquely up to a sign. The choice O(a) =Z deter- 
mines an extension of 0 to the semi-direct product G’ = G >Q (a). It is this 
extension of 0 to G# whose model we construct. 

1. To state the Theorem we need more notations. Consider Gj= GL(J, F), 

for 11jl n, as a subgroup of G,, via 

g 0 
gH 0 In-j . ( > 

Then Gj=P- ‘(~j) is a subgroup of G,, and G, is the direct product of FX and 
ker p. Put Hj= GjS(Zn). 

A genuine representation Q of a subgroup H of G = G, is one which satisfies 
@(Al) = [e(h) for [ in kerp, h in H. Let (Or, Vi) be the genuine representation 
of G, which is trivial on Fx . 

Let iji (2 ~j I n) be the upper-triangular parabolic subgroup of Gj of type 
(j- 1,l). Let Vj be the unipotent radical of ~j. Put Pj=p-‘(~jiZ,) and Uj= 
S( Uj). Then Pj = Hj Uj. Consider the surjection prj : Pj’Fj- ’ - {Q}, (pob)+ 

(Pj- 1, b; 15 b <j). It yields an isomorphism P,_ I Uj \ Pj= Fj- ’ - (0). Denote 
by ek the row vector of length j whose only non zero entry is 1, at the kth 
place. Define a section Sj : Fj- ’ - (0) ---t Pj by Sj(Xl”, . . . , xj(!jl) = s(A), where if 

(j) _ XI - **. =x(j) = 0, x,!(‘, #to, then A is the j by j matrix whose rows, from top 
to bottom, are e, ,..., ei,ei+2 ,,.., ej_t, (0 ,..., O,X~($’ ,,..., x,‘fi,,O),ej. 

As in [BZl] we denote by Ind the functor of (unnormalized) induction, and 
by ind the functor of induction with compact supports. Denote by Z and i 

normalized (as in [BZ2]) induction; thus 

icHe = i(e; G, H) = ind((6H/60)1’2e; G, H), 

where Q is an H-module, and dH = S,+ ‘, do = 8, ’ are defined in [BZ2], p. 444. 
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Our definition of the model (O,, V,) of the G,-module (O,, Vpb) is induc- 
tive. Given any model (On_*, Vi-Z) of On_*, let V,“_ 1 be the space of smooth 
genuine functions f. : G, _ , + Vi_ 2 which satisfy 

fo(r~(z)g,-2~g,-l)=rlZI-(n-‘)‘4~n-2(gn-2)fO(gn-l) 

where 
g,EG;, UEU+,, ZEP(Z,-~), CEkerp. 

The homogeneous space U, _ 1 G, _ 2 2, _ , \ G, _ 1 is compact. Thus, putting 
v(t)=ltl, we have 

here i is the normalized induction, while ind is not normalized. 
Let G,_r act on V,“-l by e(g)f#) = Idetp(g)11’2fo(hg). Then the G,_ r- 

module (Q, V,“_l) is isomorphic to 

v”2@ind( I/,ap2 x v (~-l)/4)=yl/4~i(~~_2~v-1/4xv(~-2)/4) 

LEMMA 1. The G, ~, -module i(0, _ 2 0 v - “4 x v@-~)‘~) has a unique irredu- 
cible submodule. 

PROOF. The G,_2-module 0, _2 is, by definition, the unique irreducible sub- 
module of 7r,_2. Since the functor i is exact, i(0,_2@v-1’4 x v@-~)‘~) is a 
submodule of II,- 1 = i(nnp2@ v 1’4, v@-‘)‘~). Since O,_ 1 is the unique irredu- 
cible submodule of rc,- 1, the lemma follows. 

Denote by (0, _ ,@ v”~, Vi_,) the unique irreducible submodule of 

k?, v,“- I). Denote the element 

-1 

-0 

of U,, by u(u,, . . . . u,_t). Let V,” be the space of smooth genuine functions 
f: P,,-+ Vi_2 which satisfy 

(0) f(@(z)g,-,U’UP,) =M%l)Y(z”‘“-1)‘2)@,~2(gn--2)f(Pn), 

where 
P,EP,,, g;EG;, U’E Un_,, zip, (Ekerp, u=u(u,,...,u,_~)E U,, 

and are compactly supported on U,, P+, \ P,,. Let Vz be the space of f in 
V,” such that there exist Af>O and f. in Vzcl, with f(p) =fo(p) on the p = 
s&l, .*., x,_~) in P, which satisfy max(lx,l; 1 ci<n)SAf. Let BP: P+lRF, be 
the character which maps PEP to the absolute value of the Jacobian of 
u-pup-‘, U+ U. Then Vz is a genuine P,,-module under the action 

(1) @,(Cg)f (p) = C&(g)1’2f (pg) (P E P,, g E P,- 1, C E ker P). 
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In particular 

(2) @,(u)f(P) = W( C uiXi)f(P) 
ISl<Tl 

for all 

u=u(u,, . . . . U,-i)EU~,p~~(p)=(Xi; lli<n), 

and 

@,(.s(z))f(x;“‘, . . . ) = (xl”‘, z)” - ’ y(z”(” ‘)“)f(xI”), . . . ) (z E Fx = Z). 

We will define V, as a space of smooth genuine (in each variable) functions 

f:P,x”‘XP,_,jX”‘~C 

which satisfy 

f(Pn,..,,qUfUPn~2j,Pn-2j-2,...) 

= v/(“n-2j-1)dP, 2,m2(q)“2f(Pn, *..3 Pn-2j9 Pn-2j-249 ..*)v 

for any 0 ~j< (n - 2)/2 and 

qEPn_2j-2, U=U(Ui, ...3 U,-2j_I)E Un-zj, U’E Un-2j-1, PiEPi. 

Moreover, for every j (1 ~j< (n-2)/2) there is an operator kj: k’,+ V, such 
that 

(kjf )(Pn, . * * 3 Pn-2j+29 Pn-Zj,**’ ) 

= Sf(Pm... 7 Pnp2j+2,qn-2jj **.)Kj(qn-2j, ‘.. ; PPn-2j, a..) ,Il, dqn-2i 

for some kernel K,: (P,_2jx ..,)x(P,_,jX . ..)--+a=. with the following prop- 
erty: For every f in V,, we have 

f(Pw ..*7 ?(w(n-2j))Pn-2j9 Pn-2j-29 ...) 

= (k,f )(Pm . . ., Pn-2j+23 Pn-2j,... ). 

Since Gn-2, is generated by P,,_lj and s(w(n - 2j)), such a function is com- 
pletely determined by its values on 

( 

f(X[“‘)...) Xp,;...;Xy2J) ,...) xF_-&..., 
(3) 

=f(Sn(Xl”‘, . . ..Xr!.); **e; S~_2j(X~“-2j’, e.*,XF_-$?,); *e*)* 

Note that (O,, Vi) is always taken to be the genuine G,-module which is 
trivial on s(Gi), and (O,, k’,) is the genuine representation of G,= kerp. 
Having defined the G,_,-module (On_2, I’,_,) (n > l), using Vi_2 = I’,, _2 we 
obtain the G, _ 1-module (0, 1 @ v”~, Vi_l) and the P,,-module (O,,, I$“>. 

Put k’, = I$. Define an operator J on V, by 

(If )( . . . ; xi” - 2j), . . . , xr_-y ] ; . . . ) 
(4) 

=[nosjrn,*_, (1x1,-21’)1j+‘-n’2/y(XI”-2j)))].(JNf)(...), 
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where 

(J/&)(...)= jf(...;-xl”_2j),yln_2j) )..., JJ;_-222;...) 

*u/1 c c ( _ l)i- I,!, - 2j)x;_-29 i /x(n 
I 1 

ogrn/2- I laisn~2j~2 

. n &+W 
I . 

i, i 

_ ?i) I 

Note that when n ~3 the group CR = G, >a (a) is generated by P, and cr. It 
suffices to show that I’, is a CR-module, isomorphic to VFb. For then V, 
is a G,-module, isomorphic to VFb, and we obtain an inductive process, 
beginning with (O,, Vi), or (O,, I’,), to define an explicit realization of 
(Os, I’s), (O,, Vs), . . . , or (O,, V,), (O,, I’,), . . . , and finally (O,, V,), by means of 
unitary operators. 

THEOREM. (i) The space V,, is isomorphic to VFb. 
(ii) There exists c # 0, unique up to a sign, and a representation (denoted 0,) 

of CR on V,, given by (i)-(z) on P,, and with O,(a) = cJ. 
(iii) The G,#-module (O,,, V,) is isomorphic to (O,, VFb). 
(iv) By (j), the space V, can be regarded as a subspace of L2(F”-’ x . . . x 

F2). Then up to a scalar there exists a unique Hermitian scalar product on the 
unitarizable G,-module (O,, V,,). It is given by L2-product. 

REMARK. (i) When n = 2 the Theorem has been worked out in [FM]. For n = 3 
the Theorem coincides with the Theorem of [FKS]; our proofs generalize those 
of [FKS], and put the example of [FKS] in a general framework. It is likely to 
have applications in harmonic analysis as in [FKS], but these will not be dis- 
cussed here. 

(ii) By (iv), the unitary completion of (O,, V,) is (O,, L’(F”-* x . . . xF2)), 
where 0, acts by (I)-(2) on P,,, and by O,(a) = cJ. When n = 3 and F= R, the 
unitary Gs-module (O,, L2(lR2)), or at least its restriction to p-‘(SL(3, R)), was 
first constructed by Torasso [T]. 

(iii) The explicit realization (O,, V,) of the G,-module 0, is analogous to the 
realization of the representation of the two-fold covering group gp of the sym- 
plectic group Sp in Weil [WI. See the example below for the case of n = 2. As 
noted in Section 0, our 0, is the most useful (to the theory of L-functions) 
analogue of the representation of [WI, in the context of covering groups of 
CL(n). Some experts are more attracted to the analogue for the n-fold cover 
of CL(n). 

(iv) Our proofs are inductive, passing from n to n + 2. Hence the study of 0, 
for odd n is completely independent of the study of 0, for even n, and vice 
versa. 

EXAMPLE. As noted in [FM], when n = 2, our model is easily obtained from 
the well-known model of the genuine p- ‘(SL(2, F))-model ,Q constructed in 
Weil [WI. To see this, recall that there is a choice y( - 1)-“2 of a square-root 
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F, by 

Since p-‘(Z) is the center of p-‘(Z-%(2, F)), this Q extends to a 
p- ‘(2. X(2, F))-module by Q(.s(z))~ = y(z)u, (ZE Z=F “); note that v is as- 
sumed to be even. Then 0, is ind(e@v 1’2; G2, p- ‘(2. SL(2, F))). Choosing the 
section 

x 0 
x++ 0 1 ( > 

to the isomorphism p- ‘(SL(2, F)) \ G2-+Fx, g- det p(g), the space of O2 con- 
sists of f: FX x F-*C with f(x, t) = /t j1’2 f(xt2, 1) (note that f is even in t). 
Putting f(x) =f(x, l), the group G, acts as follows: 

@(s(tl Y)) f(x) = lef(~x), 
+(a Z)) 

f(x) = (x9 Z)Y(df (x) > 

0 ( > ; ; f(x) = Wx/2)f (x)3 

Since v, E Q is locally constant on F, in particular it is constant in some neigh- 
borhood of 0 in F. Hence f (x, t) is constant near t = 0 for each fixed x, and for 
every f e 0 there is A/, and f. : FX +Cx satisfying fo(xa2) = la/ -“2fo(x) 

(x, a E FX), such that f(x) =fo(x) for Ix/ <Af. This determines the space of 0, 
and the action of G. It is easy to check that 

(@(a)f )(x) = Y( - 1) 1’2Y(x) - If ( -x) 

defines an extension of 0 from G to G# = GM (a>, unique up to a sign, 
which is consistent with (4). 

Of course the unitary structure on 

<.A;f’> = s f(x)P(x)dx. 

0 = {f } is given by 

2. In the proof we use the functor r of coinvariants. Let I,u,,, : U-+C’ be a 
character (possibly degenerate) of the unipotent radical U of a parabolic sub- 
group P of G. Let V be a smooth P-module, and put 

V u, yu = I//( 7c(u)o - lyr/(u)fJ; u E v, u E U). 
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It is a Stab,,,(P)-module. Put ru,wuV= 6, l/2@ Vu,wu. Then ru,wu is the 
normalized functor of coinvariants, from the category M(P) of smooth P- 
modules, to the category M(Stab,JP)) of smooth Stab,,,(P)-modules. Of 
course, when v/u is trivial, U acts trivially on V,= I/u,,,, and ru,Iu, which we 
now denote by ru, maps M(P) to M(P/U). 

The proof of the Theorem is based on a study of the restriction T= 0 1 P of 
the G,-module (O,, V,Sub) to its subgroup P=P,. The space of T is V= V,SUb. 
Put U=U,, and denote by IJ=I,U~ the character u(u,,...,u,_,)~~(u,_~) 

: F-+Cx is the non-trivial character of F fixed in the definition of 
O= 0,. In particular we have the (normalized) functors 

ru: M(P,)+M(G,-i), ru,i,w: M(P,)-tM(P,-i), 

of coinvariants, and 

i,: M(G,-,)+M(P,), iu, VI’ I, w 

rn+l=OCrnC...Cr,=~, where 5/,=i~,~‘.r~,~l(r))EM(P,). 

The composition factors are 

‘kp ’ fkitk+ I =‘lJ,i,w 0 iu(rck)) = i&’ 0 iuo rue r&‘(5) E M(P,). 

For any k (1 sk<n), let r(n-k,k) denote the normalized functor of coin- 
variants with respect to the standard (containing B) parabolic subgroup Pn-k,k 
of G, of type (n-k, k). It maps M(G,) to M(G,_kX Gk), and M(P,J to 
M(G, _ k X Pk). Similarly introduce a,,, _ k, k). 

LEMMA 2. (i) For each k (1 I k< n) we have 

r(n_k,k~On=v-k’400n_kXv’“-k”400k. 

(ii) The dimension of r&,‘@k is one if k = 2 and zero if k> 2. 

PROOF. (i) The functor r,: M(G,)+ M(A,), where as usual N is the unipotent 
radical of B = B,, yields an equivalence of the category M(A,) with the sub- 
category Mh/$G,) of M(G,) consisting of the G,-modules whose irreducible 
constituents are all subquotients of G,-modules of the form @; G,, A,N), 
where @ E M(A,) is extended trivially on N. Similarly the functor rk = ‘N, k X 
r,,,k establishes an equivalence of M A,_,(Gn-k) X ~?vI~JG,) with M(A,). Since 
the functor r is transitive, we have rk 0 rCn _ k,k) = r,. The An-module r,O, is 
computed in [KPl], Thm 1.2.9(e); it is irreducible. Using [KPl], Thm 1.2.9(e), 
it is easy to see that r,+[r(n_k,k)(@n)] is equivalent to rk[v-k’4@@n_kX 
v(“-k)‘4@@k], and so (i) follows. 

(ii) According to [KPl], p. 74, the space r&,,‘@k is dual to the space Wh(@k) 
of Whittaker functionals on @k, and by [KPl], Cor. 1.3.6, dim Wh(Ok) is 1 if 
k= 2 and 0 if k>2, as asserted. 
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PROPOSITION 1. There is an exact sequence O+ VO+ V+ V”-+O of P= P,,- 
modules. The P-module Vu is isomorphic to ~~‘~00, _ , as a G,_ ,-module; it 
is irreducible. The P-module VO is irreducible; it is equivalent to 

v, = &‘” 
* *- 

@ind 

i-i 

Q(z) : 1 x 
I 

- ir(z “‘“-““)w(x)o,_,(g); P, P’U ; 
001 1 

(3) 

here P’= P,_ , . 

REMARK. Cor. 1.3.6 of [KPl] is claimed only for F with 12) = 1, but the proof 
there extends also to F with 121 f 1 once it is shown that 0, corresponds to the 
trivial &module via the metaplectic correspondence. This correspondence is 
reduced (for k> 3) in [KP2] and [FK] to a certain conjecture concerning non- 
metaplectic orbital integrals. Progress towards a proof of this conjecture has 
recently been announced by Hales [HI and Waldspurger [Wa]. 

PROOF. By Lemma 2(i), rUV is v -1’4 @O,_ , as a G,_ ,-module, and 8;” = 
v”~@Z,,_, as a G,_,-module. Hence VU=v”4@On_I. 

Proposition 3.2(e) of [BZ2] asserts that the kernel V, of the P-module mor- 
phism V-+ VU is T,. Since the fun&or r is transitive we have (by Lemma 2(i)) 

rue r$,Jv’r = v -k’4@@,_kx v(“-k)‘4@r&,‘@k. 

Lemma 2(ii) asserts that ru,i,w k-1O, is zero for kz3. Hence rk=O for kr3, and 
52 = r2/r3. Consequently 

VO=~z/r3=iU,w oi~or~or~,w(7) 

=ind(6~,/~2,2~0[~-1’20n_2~ru,W(~(n-2)’4002)1; P, PCn_2,2j). 

AS 

6:n/12,2)=voI,_2xv-(“-2)‘2012, 

and 

8~‘2=6~,/1,,,)=v”2~zn_,xv-(“-2)‘4, 

we have 

g * * 
V,= ind T?(z) 0 1 x c <y(z”‘“- ‘)‘2)w(x)(v1’2@0n_2)(g); P, P’U 

Ii 1 0 0 1 1 
=ah’2@ind(v@@,_2; P, P’U). 

Since the stabilizer in P of the character 
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of U is P’U, and I+Y@@,_, is an irreducible P’U-module, V0 is irreducible by 
Mackey’s Theorem 4.2(i) of [FKS], as required. 

3. As in [FKS], (4.1), given a group Hand a smooth H-module V= V(H), let 
V’(N) be the Hermitian dual of V, namely the smooth H-module obtained on 
conjugating the complex structure of the smooth dual of V. Write V’ for V’(H) 
when H is specified. Note that an H-invariant Hermitian form on V is equi- 
valent to an H-invariant map from V to v’. 

In our case, since (0, V) is unitarizable we obtain a sequence 

of P-modules. Here V’= V’(P), Vb= Vb(P). Mackey’s Theorem 4.2(iv) of 
[FKS] implies that 

[6~‘2@ind(~@0,_2; P, P’U)]’ 

=s,“201nd[(~P,LI/BP)O(~-‘I00:,_2); P, P’U] 

as P-modules. Since 0:,_2=On_2 (as G,_2-modules), and I,-‘=@, and 
apfLI/Bp = BP, = BP on P’U, we conclude that 

(6) V~=6~‘2@Ind(~@00,_2; P, P’U). 

We shall now show that V is a P-submodule of V; and later characterize V 
in Vh. 

PROPOSITION 2. (i) The composition a, : V-+ I/‘+ V; is an embedding. More- 
over, the map I/‘-+ V; is also an embedding. 

(ii) We have Horn,,, V,, Vb) = C. In particular the restriction of v, to V, is a 
multiple of the natural inclusion 

6b’2@ind(W@0,_2; P, P’U)~8~‘2@Ind(~@0,_2; P, P’U). 

PROOF. (i) The kernel of a, consists of all u E V such that (u, uo> = 0 for all 
IJ~E Vo. Since Vo= ker( I/-+ V,) is spanned by the vectors u - O(u)u, u E V, 
u E U, the space ker a, consists of vectors fixed under the action of U. The claim 
then follows from the following variant of a result of Howe-Moore [HM], 
Prop. 5.5, p. 85. 

LEMMA 3. Let G be a covering group of GL(n, F), and V a non-trivial irre- 
ducible unitarizable G-module. Then the only vector in V fixed by a one- 
parameter additive subgroup of G is the zero vector. 

The injectivity of I/‘+ Vh follows analogously. 

(ii) By (6) and Frobenius reciprocity (see [BZ2], (1.9(b)), p. 445), we have 

Hom,(Vo, V~)=Hom,,,((Vo)u,.U,s~~20(wOo,-2)). 
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Since the functor of coinvariants is exact we have (V&, vu= VU,~,. As in the 
proof of Proposition 1, we have rU, wUV= ioo rUorU, u/oV. BY Lemma 2(i), we 
have 

r(n_2,2j0n= v-“2@0,_2 X V(n-2)‘4@02. 

Since iU is simply multiplication by Sbl’, and ru, wU02 = V/U, we conclude that 
rU,vuV=0,-20v~. Hence Vo, ,rU = SL’“O ru, wU V=C~~!~@(V/@@,_~). Conse- 
quently 

Hom& VO, 6) = Howd VU, wuy VU, ,& 

and this is one-dimensional since On_2 is irreducible. Hence (ii) follows. 

We can now describe V as a P-submodule of Vh. 

PROPOSITION 3. The space of V consists of all f in the P-module cSL’~O 
Ind(y/@0,_2; P, P’U) for which there is A,>O, and f. in the unique irre- 
ducible subspace 0, _ ,@ v”~ (see Lemma 1) of 

i(0,_2@v -l/4,&-2)/4)@,,1/4, 

such that f = f. on the p = s,(xl, . . . , x,_~) in P with max(lxil; 1 li<n)lAt. 

PROOF. The space V is a subspace of V; = 6b/201nd(ly00,_2; P, P’U) 
which contains Vo=6b’2@ind(~@0,_2; P, P’U). Write f for the class of 
f E V; modulo V,. According to Proposition 1, V is the space off in Vh such 
that flies in VU= v~‘~@@~_ ,. Hence for any f in V we have that 

ltl-(“-1)‘20,(diag(t2, . . . . t2, l))j’=$in v”~@@,_, = V/V,. 

Consequently 

ltl-(“-1)‘20,(diag(t2, . . . . t2, l))f-f lies in V. (t in FX). 

Then there is Af> 0, and c(0 < c < l/2), such that / t I (“-1)‘2f(p(t2))=f(p(1)) for 
p(t2)=s,(t2x1, . . . . t2xn_1) in P with max(lxjl; lsi<n)<Af and c<ltlll 
(since f is locally constant and the domain of t is compact). But then this re- 
lation holds for all t with 0 < ( t I I 1. Define f. by fo(p(1)) = ( t l(n-1)‘2f (p(t2)) 
for t such that max(l t”Xii; 1 li< n)lAf. It follows that given an f E V there is 
Af>O and f. in the space 

= i(v -1/200~_~~~(“-3)/4)=~-~/~0i(~-~‘~00~_~~~(”-2)/4) 

[thus fo: Gn-l+On-2 satisfies fo(g,-2ug,-lt2)= Itl-‘“-1’o,_2(g,_2)f0(gn_l) 
k,EG;,UE Un-*N, such that f(s,(xl,...,x,-l))=fo(s,,(xl,...,x,-l)) for 
max(lxl; l~icn)~A~. Note that G,_, acts on f. by q(g)f,(p)= 
ldetp(g)11’2fo(pg). Hence f. lies in the G,_ ,-module 

ind(@,_2xv(“-1)‘4)@v”2=i(0,_2@v-1’4x~(”-2)’4), 

427 



which according to Lemma 1 has a unique irreducible submodule O,_ 1 0 v~‘~. 
But Proposition 1 then asserts that f0 lies in this submodule O,_ ~OV”~, and 
the proposition follows. 

4. Proposition 3 determines I/ as a P-submodule of the induced P-module 
V,$=6~2@Ind(y/@0,_2; P, P’U). It remains to extend the action of P on V 
to an action of G, or in fact G# =Gx (a), on V. Since G# is generated by 
P and a when n 2 3 (as we now assume), it remains to describe the action of 
a. To do that we construct below an irreducible B-submodule IV, = W,,, of the 
P-module V,, and define (the restriction of) a on W, by a formula which 
extends to V. The first step in this plan is to find an irreducible P”-submodule 
W of V,,, where P”=p- ‘(I”‘) is the pullback of the intersection P” of P with 
a(P). 

Let w’ be the transposition (1, n - 1) in the Weyl group of G. Namely it is the 
image under _s of the matrix in G whose non-zero entries are 1, located at 
(i,j)=(l,n-1), (n-1,1), (k,k) (k=n or l<k<n-1). We have the disjoint 
union decomposition 

P = P’UP”U P’Uw’B = P’UP”U P’Uw’P”. 

The subset P* = P,* = P’Uw’B = P’Uw’P” of P consists of all p E P with xi # 0, 
where pr,(p)=(x;; 1 <i<n). The space W of the elements f  of V, which are 
supported on P* is then a P”-module. It is 

W=~~‘2@ind[(W@0,_z)W’; P”, w’P’Uw’nP”]. 

Since the w’P’Uw’n P”-module 

is irreducible, W is an irreducible P”-module by Mackey’s Theorem (4.2(ii)) of 
[FKS]. Let W’= W’(P”) be the Hermitian dual of the P”-module W. By 
Mackey’s Theorem [FKS], (4.2(iv)), we have 

W’=s~‘2@Ind[(~@0,_2)W’; P”, w’P’Uw’nP”]. 

This W’ consists of all functions f: P*+0n_2 smooth under the action (I), (2) 
of P”. Hence we have the following inclusions of P”-modules: 

WC v,c vc V= VyP)C v; = Vh(P)C w’= W(Pl). 

PROPOSITION 4. Let J: w’-+ w’ be a P”-module morphism such that 
J(W)C W, J2=Id, and JO(p”)=O(ap”)Jfor allp”EP”. Then J(V)CVaand 
J 1 I/ is equal to I (up to a sign). 

PROOF. For any m E F let u(m) be the matrix in fi whose only non-zero entry 
above the diagonal is m, located at (i, j) = (1, n). The subgroup iVi,, = {:(u(m)); 
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m EF} of N acts on W’, according to (J), by 

@,@(rn))f(Xi, **a, x,- I) =f(sn(.% . ..> x,- &(m)) 

=f(u(mx&& . . . . x,-l>)=w(mxl)f(xl,...,x,-l). 

Hence the only Ni,,-fixed vector in W’ is the zero vector (W’ consists of the 
f on x1 # 0). Moreover, for every f E W’ and m E F it is clear that O,(u(m))f-f 
lies in W. Namely O,(u(m))f=f in W’/W, and Nr,, acts trivially on W’/W. 
Since WC VC W’ it follows that 

Homs(V/W, W’)=O, HomB(( I’/ W)‘, W’) = 0. 

Since 

HomB( W, V/W&Horn&( V/ W)‘, W’), 

we further have that Horn&W, V/W) = 0. 

We conclude that I: V+ I/ maps W to W. If not, the operator Z induces 
a non-zero P”-module morphism W-+ V/W. But this is impossible since 
Homs( W, V/W) = 0. 

Since W is irreducible, any P”-module morphism J: W-t W with J2 = Id and 
JO(p”) = O(op”)J for all P”E P” has to be equal to II W up to a sign. 

Finally we claim that the restriction J 1 Y to V of J of the proposition is equal 
to Z, up to a sign. Indeed, if JI W=Zl W then the P”-module morphism 
J 1 V-Z: V/W-+ W’ is well-defined. Since Horn,,, V/ W, W’) = 0, the propo- 
sition follows. 

5. Put B” = Bf7 w’P’UW’. Since P = P’UP”U P’Uw’B, and P’U \ P’Uw’B= 
B” \ B, as a B-module the restriction of W to B is 

W(B=6~‘2@ind((ty@0,_2)w’IB”; B, B”). 

Then W (B is reducible since O,_21 B, _ z is reducible. We shall construct an 
irreducible B-module W, = W,,, of W= W,, by induction, as follows. By in- 
duction on n, we have inclusions of B”-modules: 

W”_2,OC w,_,c V,_,,,C V,_,C v;_,c v;_,,,c . . . . 

Here W,, _ 2, o is an irreducible B, _ 2-submodule of the irreducible P&2-module 
W, _2. This W, _ 2 consists of the restrictions f 1 P,*_ 2 (namely restrictions to the 
subvariety of Fne3 - {O} determined by x~“-~)#O) of the SE V,_2,0. In turn 
vn-2.0 is the unique proper (necessarily irreducible) P,_2-submodule of 
VH_2=0,_21B,_z. 

DEFINITION. Put W,= W,,,=8g2@ind(y1@ W,_,,,; B, B”). 

Then W. is an irreducible B-module by Mackey’s Theorem (4.2(iv)) of 
[FKS], since W,_,, is irreducible. This W. is the desired irreducible B-sub- 
module of 
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f 1 0 . . . 0 x 

‘? b I - Q/(x)y(z”(” - 1)‘2)On -2(b); B, B” 

(0 . . . 0 l_ 

Note that W, consists of the f:  P,,x . . . XPn_,jX . ..4C in W which are sup- 
ported on P,f x . . . X P,*_,j X . . . . If the elements f of W are regarded as func- 
tions of (Z’“~‘-{~})X...X(F”~~~-~-{(O})X... as in (3), then W,, consists of 
the restrictions of the f~ W to the subvariety determined by 

x(“) # 0 1 x(“-2j)#o, . . . . , --*, 1 

Let W;= Wh(B) be the Hermitian dual of the irreducible B-module W,. As 
usual, we have inclusions of B-modules: 

w,c WC Vc W& 

PROPOSITION 5. Let J : W;+ W;, be a B-module morphism such that J( W,,) c 
WO, J2 = Id, and JO(b) = O(ob)Jfor all b E B. Then J(V) c V and J 1 I/ is equal 
to Z (up to a sign). 

PROOF. The proof follows that of Proposition 4. For any m E F let u’(m) be 
the matrix in IV whose only non-zero entry above the diagonal is m, located at 
(i,j) =(2, n - 1). The subgroup N2,n_l = {s(u’(m)); mEF} of N acts on Wb, 
according to (z), by 

@,(f4’(m))f(xy), . . . . x~!~;x?-~), . ..)=f(s.(xy’, . . . . x~~,)~‘(rn))(x~-~), . ..) 

=@,_,(u(m)).f(x~) ,..., ~F!~;x(ln-~) ,... )=y~(mx~-~)).f(x~) ,... ). 

Since W,!, consists off on the variety determined in particular by xrp2) # 0, the 
only N2,n_ t-fixed vector in W; is the zero vector. 

Moreover, for every f  c W; and m E F it is clear that @,(u’(m))f-f lies in 
W,. Namely O,(u’(m))f=f in Wb/W,, and N2,n_ 1 acts trivially on Wb/W,,. 
Since W,C VC W,$ we conclude that 

Horn,,, WO, I// WO)( C Horn&( V/ W,)‘, Wh)) = 0, Horn&V/W,,, W;) = 0. 

It follows that I: V+ I/ maps W, to WO. Otherwise the operator Z induces a 
non-zero B-module morphism W,-+ V/W,. But this is impossible since 
Horn,,, W,, V/W,,) = 0. 

Since W, is irreducible, any B-module morphism J: W,-+ W, with J2 =Zd 
and JO(b) = O(ab)J for all b E B has to be equal to Z up to a sign. 

Finally we claim that the restriction J 1 V to I/ of J of the proposition is equal 
to I, up to a sign. Indeed, if JI V=Z on W, then the B-module morphism 
J( V-Z: V/W,+ Wh is well-defined. Since Horn,,, V/W,, W;) =0, the propo- 
sition follows. 
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6. To complete the construction of the model of 0, it remains to write down 
an explicit expression for J of Proposition 5. We shall use the notations of (3), 
and claim that up to a scalar, which is unique up to a sign, J is given by (4). 
To check that one needs to write explicitly the action of B =AN onfe Wh. For 
that, given u E F and 14 i’< j’s n, denote by u(u; i’, j’) the unipotent matrix 
whose only non-zero entry above the diagonal is u at (i’, j’). Then 

O(u(u; i’, j’))f(xy’, . . . ) 

= y(ux,‘?$:~)f(. . . ) xj”’ + uxy, . . . ; . . . ) xjy’ + ux,(y, . . . ; . . . ); 

in the last expression, only variables affected by the action of u(u; i’, j’) are 
written out. Since 

a(u(u; i’, j’)) = u(( - 1)’ +i’-i’u; n + 1 -j’, n + 1 - i’), 

we also have 

O(a(u(u; i’, j’))f(xy), . . . ) = ty(( - 1)’ +“+j’Ux$~_;?$) 

.f( . ..) x~~l_i,-(-l)“+j’ux~~,_j ,,...; 

. ..) x~~~~~,_j-(-l)i’+j’~x~~,~~,_j ,...; . ..). 

It is easy to see that 

(JNf)(...)= s f(...; -X~-zj),y~-zj), . ..) yr_-;J!2; . ..) 

.wl c c 
05/5”/2-1 Ici5nm2j-2 

(_ l)~-ly)“-2j)x~_-~~i/x~~-2j)]. n dyjn-2A 

satisfies JN(O(u(u; i’, j’))f) = O(o(u(u; i’, j’)))J,f, 
Using the decomposition 

and the multiplication law in G (see [KPl]), it is 

SM.% ea.9 x,-i)).s(diag(ai, . . ..a.)) 

=&z,).:(diag(a2/a,, . . ..~.,_,/a,, 1,l)) 

for all i’< j’ and u E F. 

easy to verify that 

sW@ x1 Ia,, . . . , a,_,x,_,/a,).((-l)“-‘xl,a2...a,) 

.(a,, ,<ycn (-aj)j-')*(a,, -IT'. 
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Applying induction on j, and the recurrence relations 

f‘(..*vqPn-2j+2, Pn-2j, ***) 

= 6, 2, (4) ’ ‘“A ...,Pn-Zj+2,Pn-2jq,...), qEPn-2j, 

it is easy to verify that 

O@(diag(a,, . . . , a,)))f( . . . , xi(np2j! . . .) 

=f(a,xy)/a, ,..., a,_lX~~,/a,;...;aj,IX~-2j~/a,_j, . . . . 

‘((-1)“m’X~-2i’, n (Uk/Un+]~j))'(a,_j/an_j+], 
j+l<kan-j 

(- 1)~~‘. n (-Clk+j/a,+I_j)k-l)' n lai/Q,_j11'2]* 
l<k<nm2J  j<i<n-J  

Here O,@(a)) is multiplication by the scalar y(a”@- ‘j/2). 
Recall that a(g) = ( - 1, det p(g))‘” 1)n2’2c$g) and that 

n-l 
@z(diag(aj))) =:(diag(a;j 1  - j )*  n  (  f i  aj ,a; ) .  

i=l  j=r+l  

Hence 

O(o(z(diag(ar, . . . . a,))))f( . . . . xi(np2j), . ..) = (- 1, ala2 . . . a,)(“- ‘N*‘~ 

n-1 
. II ( ii QjPai)* 

n/2&1 

TI [@, - 2j (S(uj /aj + 1)) 
1=1 j=i+l j-0 

’ (( - l)“- 'Xl"-'j', ‘~-’ (ak/aj))' (aj/aj+ 1, (- l)‘-l 
k=J+I 

n (-aj/a,+l_k_j)k-l)' II laj+lian+l-i11’21 
l<k<n-2j j<i<n-j 

.f(a,xi”)/a,, . . . . a,x(“) n-1 /a2; . . . . Clj+1X~-2j)/a,_j, . . . . a X'n~2j' /azj+z;...). J+l n-2j+l 

One can then check that 

(Jf )( . . . . xy ,... )=[ n (IXln-2j)lj+l-n/2/y(X1”-2j))l 
or,5n/2s1 

.(JNf)( . . . . xi(n-2j) ,... ), 

satisfies 

J(O(diag(a;))f) = (O(o(diag(ai)))J)f. 

Hence J2 is a scalar, and the product of J with some constant c satisfies 
(cJ)~ = Id. This completes the proof of (i)-(iii) 

7. It remains to prove (iv) in the Theorem. 
dim Homp( V,, I’,$) = 1. By Proposition 2(i), we 
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in the Theorem. 

By Proposition 2(ii) we have 
have v’c, I’;. Hence the space 



Hom,(V,,, V’) is a subspace of Hom,(VO, Vk), necessarily one-dimensional. 
Consider the map Hom,(V, V’)+Hom,(I/,, v’), obtained by restriction from 
I/ to I’,. Its kernel is Homp(V/VO, P”). Now V/k’,= VU, and U acts trivially 
on VU. On the other hand, the only vector in IV’, and in particular in its sub- 
space v’, which is fixed by U, is the zero vector. Hence Homp(V, v’) injects in 
Horn,,, VO, I”), and it is one-dimensional. The L2-product on V yields a 
P-invariant Hermitian form on V, hence a non-zero P-module morphism 
i : V-t v’. The unitary structure on I/ yields a non-zero morphism j : I/+ v’ of 
G-modules. In particular j is a P-module morphism. Since dim HomP( V, V’) = 
1, j is a multiple of i, as required. 
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