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PREFACE

This volume concerns two related but independent topics in the theory of
liftings of automorphic representations. These are the symmetric square
lifting from the group SL(2) to the group PGL(3), and the basechange
lifting from the unitary group U(3, E/F ) to GL(3, E), where E/F is a
quadratic extension of number fields. I initially considered these topics in
preprints dated 1981 and 1982, and since then found reasonably simple
proofs for many of the technical details, such as the fundamental lemma
and the unrestricted equality of the trace formulae. The fruits of these
efforts are the subject matter of the first two parts of this volume, which
are independent of each other, while the third part concerns applications
of the basechange theory for U(3) to the theory of Galois representations
which occur in the cohomology of the Shimura variety associated with U(3).

The method used relies on a comparison of trace formulae, the same as in
my Automorphic Forms and Shimura Varieties of PGSp(2), which concerns
a rank-two situation. Both topics considered in this volume are lower,
rank-one cases. They can be viewed as more elementary, certainly more
complete. The last part of the volume on PGSp(2), entitled Background,
contains many of the (standard) definitions used in this volume too. It is a
brief exposition to the principle of functoriality, which predicts the liftings
which concern us here, on a conjectural level, in terms of homomorphisms of
dual groups. Thus here we consider two rank-one examples of this principle.

To describe the first topic, let F be a number field. Denote by A its ring
of adèles. Let λ be the symmetric square (or adjoint) three-dimensional rep-
resentation of the dual group Ĥ = PGL(2,C) of the F -group H = SL(2) in
the dual group Ĝ = SL(3,C) of G = PGL(3). We study the lifting (or cor-
respondence) of automorphic forms on SL(2,A) to those of PGL(3,A) which
is compatible with λ. This lifting is defined by means of character relations.
It is studied using a trace formula twisted by the outer automorphism σ
of G, which takes a representation to its contragredient. Complete results
are obtained. We not only demonstrate the existence of the lifting but also
describe its image and fibers. Main results include an intrinsic definition
of packets of admissible and automorphic representations of SL(2, Fv) and
SL(2,A), a proof of multiplicity one theorem for the cuspidal representa-
tions of SL(2,A) and of the rigidity theorem for packets of such cuspidal
representations, and a determination of the selfadjoint automorphic repre-
sentations of PGL(3,A).

v
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Technical novelties include an elementary proof of the Fundamental
Lemma, a simplification of the trace formula by means of regular func-
tions, and a twisted analogue of Rodier’s theorem capturing the number of
Whittaker models of a (local) representation in the germ expansion of its
character.

In the second part, locally we introduce packets and quasi-packets of
admissible representations of the quasi-split unitary group U(3, E/F ) in
three variables, where E/F is a quadratic extension of local fields, and de-
termine their structure. We determine the admissible representations of
GL(3, E) which are invariant under the involution transpose-inverse-bar.
These (quasi) packets are defined by means of both the basechange lifting
from U(3, E/F ) to GL(3, E) and the endoscopic lifting from U(2, E/F ) to
U(3, E/F ). Globally, we introduce packets and quasi-packets of the discrete
-spectrum automorphic representations of U(3, E/F )(A) where E/F is a
quadratic extension of number fields, determine their structure, and deter-
mine the discrete-spectrum automorphic representations of GL(3,AE) fixed
by the same involution. In particular we prove multiplicity one theorem for
U(3, E/F ), determine which members of a (quasi-) packet are automor-
phic, establish a rigidity theorem for (quasi-) packets of U(3, E/F ), prove
the existence of the global basechange and endoscopic liftings, as well as
another twisted endoscopic lifting from U(2, E/F ) to GL(3, E), and show
that each packet of U(3, E/F ) which lifts to a generic representation of
GL(3, E) contains a unique generic member. Technical novelties include
a proof of multiplicity one theorem and counting the generic members in
packets, two elementary proofs of the Fundamental Lemma, and a simple
proof of the unrestricted equality of trace formulae for all test functions by
means of regular functions.

To emphasize, multiplicity one theorem was claimed as proved since
1982, but we noticed that the global proof was lacking and completed our
local proof (for all noneven places) only a few years before this local proof
appeared in 2004. For more details on the development of this area see the
concluding remarks section at the end of part 2.

The third part concerns the cohomology H∗c (SKf
⊗E Q,V) with com-

pact supports and coefficients in any local system (ρ, V ), of a Shimura
variety SKf

defined over its reflex field E, associated with the quasi-split
unitary group of similitudes G = GU(3, E/F ), where E is a totally imagi-
nary quadratic extension E of a totally real field F . It is a Hecke × Galois
bi-module. We determine its decomposition. The Hecke modules which ap-
pear are the finite parts πf of the discrete-spectrum representation πf⊗π∞
of G(AF ) such that π∞ has nonzero Lie algebra cohomology. We determine
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the πf -isotypic part H∗c (πf ) as a Gal(Q/E)-module in terms of the Hecke
eigenvalues of πf . In the stable case dim[H∗c (πf )] is 3[F :Q]. The dimension is
smaller in the unstable case. The cuspidal part ofH∗c (SKf

⊗EQ,V) coincides
with the cuspidal part of the intersection cohomology IH∗(S ′Kf

⊗E Q,V)
of the Satake Baily-Borel compactification S ′Kf

. Purity for the eigenvalues
of the Frobenius acting on IH∗, using a computation of the Lie algebra
cohomology of the π∞, implies the Ramanujan conjecture for the πf (with
the exception of the obvious counter examples “π(µ)”). More precisely we
show that the Satake parameters of each local component πv of πf are al-
gebraic, and if π 6= π(µ) that all of their conjugates lie on the unit circle
in the complex plane. A description of the Zeta function of H∗c formally
follows.

This third part uses the results of the second part, and compares the
trace formula with the Lefschetz-Grothendieck fixed point formula. This
comparison is greatly simplified on using the (proven) Deligne conjecture
on the form of the fixed point formula for a correspondence twisted by a
sufficiently high power of the Frobenius. The underlying idea is used in the
representation theoretic parts in the avatar of regular, Iwahori biinvariant
functions. It leads to a drastic simplification of the proof of the comparison
of trace formulae, on which the work of parts 1 and 2 is based. It was
found while working with D. Kazhdan on applications of Drinfeld moduli
schemes to the reciprocity law relating cuspidal representations of GL(n)
over a function field (which have a cuspidal component) with n-dimensional
Galois representations of this field (whose restriction to a decomposition
group is irreducible). This work relied on Deligne’s conjecture. First repre-
sentation theoretic applications, inspired by Deligne’s insight, were found
in the proof with Kazhdan of the metaplectic correspondence, and then to
prove basechange for GL(n). However, the higher-rank applications con-
cern only cuspidal representations with a cuspidal component, while in the
low-rank case considered here there are no restrictions. I then feel this idea
has not yet been fully exploited. It may lead to significant simplifications
in the use of the trace formula.

Yuval Flicker
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INTRODUCTION

Let F be a global field, Fv the completion at a place v, A the ring of adèles of
F . Let H, or H0, be the F -group SL(2), and G the F -group PGL(3). This
part studies the lifting (or correspondence) of automorphic forms of H(A) =
SL(2,A) to those of G(A) = PGL(3,A). It provides an intrinsic definition
of packets of admissible and automorphic representations of SL(2, Fv) and
SL(2,A). This definition is not based on relations to representations of
GL(2, Fv) and GL(2,A), but rather on character relations and the lifting.
This approach applies to groups other than SL(n). The work establishes
multiplicity one theorem for cuspidal representations of SL(2,A), proves
rigidity theorem for packets of these, computes the multiplicity of a cuspidal
representation in a packet of a cuspidal representation, and determines
the self-contragredient admissible representations of PGL(3, Fv) and the
self-contragredient automorphic representations of PGL(3,A). The lifting
is compatible with the symmetric square (or adjoint) three-dimensional
representation of the dual group Ĥ = PGL(2,C) of H in Ĝ = SL(3,C).
It is defined by means of twisted character relations. It is studied here by
means of comparison of orbital integrals and of twisted trace formulae.

The interest in the symmetric square lifting originates from Shimura’s
work [Sm]. Let f(z) =

∑∞
1 cne

2πinz be a holomorphic cusp form of weight
k and character ω, denote by ψ a primitive Dirichlet character of Z with
ψω(−1) = 1, and suppose that∑

n

cnn
−s =

∏
p

[(1− app−s)(1− bpp−s)]−1.

Using Rankin’s method Shimura [Sm] proved that the Euler product

π−3s/2Γ(s/2)Γ((s+ 1)/2)Γ( 1
2 (s− k + 2))

×
∏
p

[(1− ψ(p)a2
pp
−s)(1− ψ(p)apbpp−s)(1− ψ(p)b2pp

−s)]−1

is holomorphic everywhere except possibly at s = k or k − 1.

3



4 On the symmetric square lifting

Since f generates the space of a cuspidal representation π∗ of GL(2,A)
(F = Q, with a discrete-series component π0∞ at ∞), this statement can
be put in terms of a lifting of automorphic forms compatible with the
above dual group homomorphism which takes the diagonal complex ma-
trix diag(ap, bp) to diag(a2

p, apbp, b
2
p), or rather to diag(ap/bp, 1, bp/ap) in a

normalized (modulo the center) form.
To reformulate Shimura’s result Gelbart and Jacquet [GJ] put

L2(s, π0v, χv) = L(s, π0vχv × π̌0v)/L(s, χv)

and
ε2(s, π0v, χv;ψv) = ε(s, π0vχv × π̌0v;ψv)/ε(s, χv;ψv)

for any representation π0v of GL(2, Fv) and character χv of the multiplica-
tive group F×v of the completion Fv of F at a place v. Here π̌0v denotes
the contragredient of π0v, and ψv is a nontrivial additive character of Fv.
The representation π0v is said in [GJ] to L-lift to a representation πv of
Gv = G(Fv) if πv is self-contragredient, and for any χv,

L(s, πvχv) = L2(s, π0v, χv), ε(s, πvχv;ψv) = ε2(s, π0v, χv;ψv).

If π∗ is an automorphic representation of GL(2,A) and χ is a character of
A×/F×, put L2(s, π∗, χ) =

∏
v L2(s, π0v, χv). The main theorem of [GJ] is

obtained on adèlizing the method of [Sm]. It asserts that for any cuspidal
representation π∗ of GL(2,A) not of the form π∗(IndFE(µ∗)), see below,
the function L2(s, π∗, χ) is entire for all χ. This refines the statement of
[Sm], implies that each component π0v of π∗ L-lifts to some πv, and that
π = ⊗vπv is a cuspidal representation of G(A) = PGL(3,A).

Our approach to the lifting is different; it is motivated by the ideas
of Saito, Shintani and Langlands in the basechange theory. Following
Shintani, the local lifting is defined by means of character relations, and
following Saito, the global (and local) lifting is studied by means of the
(twisted) trace formula. It is shown that the above π∗ (cuspidal, not of
the form π∗(IndFE(µ∗)), lifts to a cuspidal π. This implies the holomorphy
of L2(s, π∗, χ) = L(s, πχ) for all χ. As obvious as it might be that the
ideas of Saito and Shintani apply in our case too, the techniques required
to carry out the work are less obvious. We describe them after we explain
our results.
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To describe our work, let L(G) be the space of automorphic forms
on G(A) = PGL(3,A). It consists of all right-smooth square-integrable
complex-valued functions φ on G\G(A), where G = G(F ). The group
G(A) acts on L(G) by right translation: (r(g)φ)(h) = φ(hg). The irre-
ducible constituents π of L(G) are called automorphic G(A)-modules, or
automorphic representations of G(A) (see, e.g., [BJ]).

Each such π is a restricted tensor product ⊗vπv of irreducible admissible
representations πv (see [BZ1]) of the local groups Gv = G(Fv), which are
unramified (contain a nonzero Kv = PGL(3, Rv)-fixed vector) for almost all
v. Each irreducible unramified Gv-module πv is isomorphic to the unique
unramified subquotient of a Gv-module I((µiv)) normalizedly induced from
an unramified character

(aij ; i ≤ j) 7→
∏
i

µiv(aii)

of the upper triangular subgroup. The character (µiv) is not uniquely
determined. Yet we obtain a unique conjugacy class t(πv) = diag(µiv(πππ))
(where πππ denotes a generator of the maximal ideal in the ring Rv of integers
in Fv) in the dual group Ĝ = SL(3,C) of G. The map πv 7→ t(πv) is a
bijection from the set of equivalence classes of irreducible unramified Gv-
modules to the set of conjugacy classes in Ĝ.

Similar description holds in the case of H = SL(2), where the auto-
morphic representations π0 = ⊗vπ0v have local components π0v which are
parametrized, in the unramified case, by conjugacy classes t(π0v) in the
dual group Ĥ = PGL(2,C) of H. A π0v is called unramified if it contains
a nonzero K0v = SL(2, Rv)-fixed vector.

We study lifting of automorphic forms of H(A) to those of G(A), which is
compatible with the symmetric square representation λ0 = λ = Sym2 : Ĥ
→ Ĝ of Ĥ = PGL(2,C) in Ĝ = SL(3,C). This is the irreducible three-
dimensional representation of Ĥ. It can be described also as the adjoint
representation of Ĥ on the Lie algebra of H. It maps the diagonal matrix
diag(a, b) to the diagonal matrix diag(a/b, 1, b/a). We say that the auto-
morphic H(A)-module π0 = ⊗vπ0v lifts to the automorphic G(A)-module
π = ⊗vπv if t(πv) = λ0(t(π0v)) for almost all v (where π0v and πv are both
unramified).

Our first global result asserts that each cuspidal H(A)-module lifts to an
automorphic G(A)-module. This result is contained in [GJ].
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We obtain more precise results. To state them, we prove a special case
of the principle of functoriality, thus we prove the existence of monomial
representations for SL(2) and GL(2).

Namely, let E be a quadratic extension of F , put E1 = {z ∈ E×; zz = 1}
and A1

E = {z ∈ A×E ; zz = 1} for the kernel of the norm map NE/F on E×

and A×E — bar denotes here the conjugation of E over F — and let µ′ be
a character of C1

E = A1
E/E

1. Denote by WF the Weil group ([D2], [Tt])
of F . Let IndFE(µ∗) be the two-dimensional complex representation of WF

induced from a character µ∗ of CE = A×E/E× = W ab
E = WE/E . It factorizes

through the quotient WE/F of WF , an extension of Gal(E/F ) by CE . If the
restriction of µ∗ to C1

E is µ′, the image of IndFE(µ∗) in PGL(2,C) depends
only on µ′. We denote it by IndFE(µ′)0. It is a two-dimensional projective
representation of WF .

At a place v of F where Ev = Fv⊕Fv, µ∗v is a pair (µ1v, µ2v) of characters
of CFv = F×v , the restriction of IndFE(µ∗) to WFv is the reducible µ1v⊕µ2v,
and we associate to it the normalizedly induced representation I(µ1v, µ2v)
of GL(2, Fv), and to the restriction to WFv of IndFE(µ′)0 the normalizedly
induced representation I0(µ1v/µ2v) of SL(2, Fv).

At a place v of F where Ev is a field and µ′v is unramified, we associate
to the restriction IndFv

Ev
(µ′v)0 of IndFE(µ′)0 to WFv

the induced I0(χEv
) of

SL(2, Fv), where χEv is the character of F×v with kernel NEv/Fv
E×v . If µ∗v

is unramified, or more generally if µ∗v = µ∗v, then there is a character µv
of F×v with µ∗v(z) = µv(zz) (z ∈ E×v ), and we associate I(µv, χEvµv) to
IndFv

Ev
(µ∗v).

We prove that for each E and µ′ 6= 1 there exists a cuspidal repre-
sentation π0(µ′), more precisely π0(IndFE(µ′)0), of SL(2,A), with the in-
dicated components. From this we deduce that for each E and µ∗ 6= µ∗

(µ∗(z) = µ∗(z)) there exists a cuspidal representation π∗(µ∗), or rather
π∗(IndFE µ

∗), of GL(2,A), with the indicated components. Further we prove
the existence of analogous local objects. The representations π0(µ′) and
π∗(µ∗) are called monomial.

The existence of the representation π∗(IndFE µ
∗) was proven in [JL] by

means of the converse theorem, and that of π0(IndFE(µ′)0) was deduced
from that in [LL]. As our work already contains this existence proof, we do
not need to send the reader to study [JL].

It is clear that if π of PGL(3,A) is a lift from SL(2,A) then it is self-
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contragredient, or as we prefer to say: σ-invariant. Here σ is the involution

of G given by σ(g) = J tg−1J , J =
(

0 1

−1

1 0

)
, and σπ(g) = π(σ(g)) is the

contragredient π̌ of π (see [BZ1]). A representation π is called σ-invariant
if π ' σπ.

Our next global result is a determination of the image of the lifting.
Thus we prove that if π is a cuspidal G(A)-module which is σ-invariant
then it is a lift of a cuspidal H(A)-module π0. This π0 is not of the form
π0(IndFE(µ′)0) for any E, µ′.

The cuspidal H(A)-module π0(IndFE(µ′)0), µ′ 6= 1, lifts to the normal-
izedly induced, noncuspidal, σ-invariant G(A)-module I(π∗(µ′′), χE). Here
µ′′(z) = µ′(z/z), z ∈ CE . Note that the central character of π∗(µ′′) is χE .
If µ′ = 1 then π0(µ′) is the induced I0(χE), and it lifts to the induced
I(χE , 1, χE). The trivial H(A)-module lifts to the trivial G(A)-module.

This gives a complete description of the image. Indeed, any σ-invariant
automorphic G(A)-module which is not in the above list, namely it does
not have a trivial component, it is not cuspidal and it is not of the form
I(π∗(µ′′), χE), must be of the form I(π1, 1), namely normalizedly induced
from a discrete-spectrum GL(2,A)-module π1 with a trivial central charac-
ter. Such I(π1, 1) are not obtained by the lifting.

The notion of lifting which we use is in fact a strong one, in terms of
all places. Namely we define local lifting of irreducible Hv-modules to such
Gv-modules, and show that if π0 lifts to π, then π0v lifts to πv for all places
v. The definition of local lifting is formulated in terms of identities of char-
acters of representations. It generalizes the notion of lifting of unramified
local representations described above.

The character relations compare the twisted character of πv, which is a σ-
stable function, with the sum of the characters of irreducible representations
π0v. This sum is a stable function, depending only on the stable conjugacy
class of the element where the characters are evaluated. We define the local
packet of π0v to consist of those representations which occur in the sum.
Thus the local lifting asserts that it is not a single Hv-module π0v which
lifts to πv, but it is the packet of π0v which lifts. This definition is inspired
by our definition of packets of representations of the unitary group in three
variables ([F3]) and of the projective symplectic group of similitudes of
rank two ([F4]). The packet of an Hv-module π0v coincides with the set of
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admissible irreducible Hv-modules of the form πg0v (g in GL(2, Fv)), where
πg0v(h) = π0v(g−1hg) (h in Hv), and with the set of irreducibles in the
restriction to SL(2, Fv) of a representation of GL(2, Fv).

Given local packets Pv for each place v of F such that Pv contains an
unramified Hv-module π0

0v for almost all v, we define the global packet
P to be the set of H(A)-modules ⊗vπ0v with π0v in Pv for all v and π0v

equivalent to π0
0v for almost all v. We say that the packet is automorphic,

or cuspidal, if it contains such a representation of H(A). In the case of
G(A), more generally for GL(n,A) and PGL(n,A), packets consist of a
single term.

We are now in a position to state the main lifting theorem. The lifting
defines a bijection from the set of packets of cuspidal representations of
H(A) to the set of σ-invariant representations of G(A) which are cuspidal
or of the form I(π∗(µ′′), χE), µ′′ 6= µ′′.

This permits the transfer of two well-known theorems from the context
of G(A) = PGL(3,A) to the context of H(A) = SL(2,A).

The first is a rigidity theorem for cuspidal representations of SL(2,A).
It asserts that if π0 = ⊗vπ0v and π′0 = ⊗vπ′0v are cuspidal representations
of H(A) and π0v ' π′0v for almost all v, then π0 and π′0 define the same
packet. The analogous statement for GL(n,A) is proven in [JS]. It does not
hold for SL(n,A), n ≥ 3 (see [Bla]).

The second application is multiplicity one theorem for SL(2,A). It asserts
that each cuspidal representation of SL(2,A) occurs in the cuspidal spec-
trum of L(H) with multiplicity one. The analogous statement for GL(n) is
well known (see [Sl]). It holds for PGL(n,A) = GL(n,A)/A×, but not for
SL(n), n ≥ 3 (see [Bla]). Since the completion of our work other proofs of
this result were claimed, but our technique of the trace formula still remains
the most direct and transparent, being a part of a generalizable program.

The rigidity theorem holds for packets, but not for individual represen-
tations. There do exist two inequivalent cuspidal H(A)-modules which are
equivalent almost everywhere.

The packets partition the discrete spectrum of SL(2,A). The packets
π0(µ′), or {π0(µ′)}, form the unstable spectrum, and the other packets make
the stable spectrum. The reason for these names is that the multiplicity of
each irreducible in a stable cuspidal packet is 1. But the multiplicity is not
constant on a packet {π0(µ′)}. To describe our formula for the multiplicity,
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note that when Ev is a field, if µ′v = 1, {π0(µ′v)} = I0(χEv ) has two
constituents; if µ′v

2 6= 1 the packet {π0(µ′v)} consists of two irreducibles;
and if µ′v 6= 1 = µ′v

2 there are 3 quadratic extensions E1v = Ev, E2v, E3v,
and µ′iv 6= 1 = µ′iv

2 on E1
iv with µ′1v = µ′v, and {π0(µ′1v)} = {π0(µ′2v)} =

{π0(µ′3v)} consists of 4 irreducibles. There are no other relations on the
packets.

The character relations partition each packet into two subsets π+
0 (µ′v)

and π−0 (µ′v) of equal cardinality (note that this partition depends on the
characters µ′iv when µ′v 6= 1 = µ′v

2, and π+
0 (µ′v) is unramified if µ′v is unrami-

fied). Write ε(π0v, µ
′
v) = ±1 if π0v ∈ π±0 (µ′v), and ε(π0, µ

′) =
∏
v ε(π0v, µ

′
v).

Almost all factors are 1. When Ev = Fv ⊕ Fv, µ′v is a character of
F×v = {(x, x−1) ∈ E×v } = E1

v , {π0(µ′v)} is I0(µ′v), and unless µ′v 6= 1 = µ′v
2

this induced is irreducible, in which case π+
0v is π0(µ′v) and π−0v is zero, and

ε(π0v, µ
′
v) = 1.

The multiplicity of π0 in π0(µ′), µ′2 6= 1, in the discrete spectrum is

m(π0) =
1
2

(
1 + ε(π0, µ

′)
)
.

If µ′ 6= 1 = µ′2 there are 3 quadratic extensions E1 = E, E2, E3, and
characters µ′i 6= 1 = µ2

i on C1
E = A1

E/E
1 with µ′1 = µ′ and {π0(µ′1)} =

{π0(µ′2)} = {π0(µ′3)}. We have
∏

1≤i≤3 ε(π0, µ
′
i) = 1, and an irreducible π0

in such a packet has multiplicity

m(π0) =
1
4

1 +
∑

1≤i≤3

ε(π0, µ
′
i)


in the cuspidal spectrum. There are no other relations among the packets.

Another corollary to the lifting theorem asserts that a σ-invariant cus-
pidal G(A)-module cannot have a component of the form I(π1v, 1), where
π1v is a square-integrable representation of GL(2, Fv).

Further, if π0 is a cuspidal GL(2,A)-module with a local component
I(µ1vν

t
v, µ2vν

−t
v ), t ≥ 0, normalizedly induced from the character

( a ∗
0 b

)
7→

µ1v(a)µv(b)|a/b|tv of the upper triangular subgroup, µ1v, µ2v unitary, then
we conclude (as in [GJ]) that t < 1

4 . The estimate t < 1
2 follows from

unitarity, and the equality t = 0 is asserted by the Ramanujan conjecture
for GL(2,A).
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As a final corollary we note that for cuspidal π0 which is not of the form
π0(IndFE(µ′)0), since the L-function L2(s, π0, χ) is equal to L(s, πχ), where
π is the lift of π0, we conclude, as noted above, that it is entire for each
character χ of A×/F×.

An irreducible representation π of GL(3, F ), F local, is said to be es-
sentially self-contragredient if its contragredient π̌ is equivalent to the twist
πχ of π by a character χ : GL(3, F ) → F×, g 7→ χ(det g). If the central
character of such a π is denoted by ω, then π(ωχ)−1 has trivial central char-
acter and is self-contragredient. Indeed π̌ ' πχ implies that ω−1 = ωχ3,
thus χ = (ωχ)−2, hence π̌ ' π(ωχ)−2 and (π(ωχ)−1)̌ ' π(ωχ)−1. The
central character of this last representation is ω(ωχ)−3 = 1. Thus the es-
sentially self-contragredient representations of GL(3, F ) are twists by char-
acters of self-contragredient representations of PGL(3, F ), characterized by
our work.

The σ-invariant representations πv ofGv not in the image of the λ0-lifting
are of the form I(πv, 1), where πv is a representation of H1v = H1(Fv),
H1 = PGL(2). This lifting, λ1, occurs naturally in our trace formulae
comparison. In fact our two liftings, from Hv and from H1v to Gv, are
best described as liftings compatible with the natural embeddings of the
two elliptic σ-endoscopic subgroups Ĥ = PGL(2,C) and Ĥ1 = SL(2,C) of
Ĝ = SL(3,C). These σ-endoscopic subgroups are simply the σ-centralizers
of σ-semisimple elements in Ĝ.

The character relation which defines the lifting from Hv to Gv takes
the form χσπ(δ) = χ{π0}(Nδ). Here χσπ indicates the twisted character of
the local representation π. It is a function of σ-conjugacy classes δ in Gv.
The χ{π0} is the character of the packet {π0} (sum of characters of the
irreducibles in the packet). It is a function of the stable conjugacy classes
in Hv. The character of a single representation of Hv is a function of
conjugacy classes in Hv, but it may be nonconstant on the stable orbit
(rational points in the orbit under SL(2, F v), or under GL(2, Fv) in our
case).

To state the character relation we need a notion of a norm map N . It
relates stable σ-conjugacy classes in Gv with stable conjugacy classes in Hv.
It generalizes the natural norm map diag(a, b, c) 7→ diag(a/c, 1, c/a). A
consequence of the existence of the character relation is that the twisted
character of the lift π = λ0(π0) is a stable σ-conjugacy class function,
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namely it is constant on stable σ-conjugacy classes. Moreover the lifting
relates a packet of Hv, not an individual representation.

The simple looking lifting λ1 : H1v → Gv, π1 7→ π = I(π1, 1), is also
defined by means of a natural yet very interesting character relation, which
takes the form ∆(δσ)χσπ(δ) = κκκ(δ)∆1(N1δ)χπ1(N1δ). Here ∆ and ∆1 are
some Jacobians (which appeared also in the case of λ0 but were equal to
each other in that case). The function N1 : Gv → H1v is a norm map,
relating stable σ-conjugacy classes in Gv with conjugacy classes in H1v.
This N1 generalizes the natural norm map diag(a, b, c) 7→ diag(a/c, 1, c/a)
if H1v is regarded as SO(3, Fv). A stable conjugacy class in H1v consists of
a single class. However, an elliptic σ-conjugacy class in Gv consists of two
σ-conjugacy classes. The character κκκ assigns the values ±1 to these two
classes.

It follows from this character relation that the π which are λ1-lifts (of
elliptic π1) are σ-unstable, that is, their σ-characters are not constant on
the stable σ-conjugacy classes. This surprising fact is interesting and merits
an independent local verification.

In the last chapter of this part we give an independent, direct compu-
tation of the very precise character calculation, by purely local means, not
using the trace formula and global considerations. This gives another as-
surance of the validity of the trace formula approach to the lifting project.

The present volume is based on the series of papers [F2;II], . . . , [F2;VI]
in our Symmetric Square project, as well as on the papers [FK4] with D.
Kazhdan and [FZ1] with D. Zinoviev. In these papers an attempt has been
made to isolate different ideas or techniques and make them as indepen-
dent as possible. The initial results and some of the techniques had been
described in [F2;VIII], and the preliminary draft [F2;IX]. The publication
of a series of papers could lead to confusion, as to what is the final out-
come. Some techniques and results were not known or foreseen at the initial
stages. Now that the work reached a stage of completeness, we rewrote it
in a unified, updated form.

Not all the material in [F2;II], . . . , [F2;VI], [FK4] and [FZ1] is used here.
In addition to rearranging the material our foci of interest shifted. For
example, §4 of the paper [F2;II] was made redundant by [F2;VII], so we
use only the fundamental lemma of [F2;VII] in our section II.1 here. The
second half of [FK4] is no longer needed, as it is replaced by [F2;VII], but
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its first half is used as the basis for [FZ1] in our chapter VI below.
In particular the chapters in the present part are labeled I to VI. They are

not linearly related to the papers, but chapter I here is related to [F2;III],
II to [F2;VII] and [F2;II], III to [F2;IV], IV to [F2;VI], V to [F2;V], and VI
to [FK4] and [FZ1]. We refer to the current part as [F2;I].

The contents of the chapters are as follows. The basic definitions of
local lifting of unramified and ramified representations are given in chapter
I. To study the σ-invariant G(A)-modules π not obtained by the lifting we
introduce in section I.1 the the map λ1 : Ĥ1 → Ĝ, where Ĥ1 = SL(2,C)
is the dual group of H1 = PGL(2) = SO(3), in addition to the symmetric
square map λ0 : Ĥ0 → Ĝ. We then introduce the dual maps λ̃∗i : HG →
Hi from the Hecke algebra HG of spherical functions on Gv to the Hecke
algebras Hi of Hiv (i = 0, 1).

In I.2 we define a norm map γ = Nδ from the set of stable σ-conjugacy
classes of δ in G to the set of stable conjugacy classes of γ in H.

In section II.1 it is shown that the stable twisted orbital integral of
the unit element of the Hecke algebra of PGL(3, Fv) is suitably related
to the stable orbital integral of the unit element of the Hecke algebra of
SL(2, Fv). Moreover, the unstable twisted orbital integral of the unit ele-
ment on PGL(3, Fv) is matched with the orbital integral of the unit element
on PGL(2, Fv). Thus these functions have matching orbital integrals. This
statement is called the Fundamental Lemma (in the theory of automorphic
forms (via the trace formula)). The direct and elementary proof of this
fundamental lemma which is given here is based on a twisted analogue of
Kazhdan’s decomposition of compact elements into a commuting product
of topologically unipotent and absolutely semisimple elements.

In section II.3 we transfer smooth compactly supported measures fvdgv
on Gv to such f0vdhv on Hv. The definition is based on matching stable
orbital integrals. Similar discussion is carried out for the transfer from Gv
to H1v.

In chapter III we give the global tool for the study of the lifting, an
identity of trace formulae. First we compute the trace formula for G(A)
twisted by the outer automorphism σ. Since σ does not leave all parabolic
subgroups of G invariant, we introduced in [F2;IX] a modification of the
truncation used by Arthur [A1] to obtain the trace formula. The subse-
quent computation of the twisted trace formula was carried out in [CLL],
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from which we quote (in section III.2) the contribution from the Eisenstein
series. Thus in chapter III we compute explicitly all needed terms in the
twisted formula, stabilize it, and compare it with a sum of trace formulae
for H(A) = SL(2,A) and H1(A) = PGL(2,A). The formulae in this chap-
ter III are greatly simplified by the introduction of regular functions (see
below).

In section V.1 we give an approximation argument to deduce from the
global identity of trace formulae the local (hence also global) results. It
is a new argument. It replaces the technique of [L5], which relies on the
theory of spherical functions. The new argument is based on the usage of
what we call regular functions, which are not spherical but in fact lie in the
Hecke algebra with respect to an Iwahori subgroup. Their main property is
that they both isolate the representations with a vector fixed by an Iwahori
subgroup and their support is easy to control and work with, in contrast
to that of a spherical function.

The approximation (or separation) argument given here applies in any
rank-one situation (since there are only finitely many reducibility points
of principal-series representations in this case) and does not use spherical
functions at all, except the case where f0v is the unit element f0

0v of H0 and
fv is the unit element in HG, which is proven in section II.1.

In deriving the main theorems in section V.2 we use the immediate
twisted analogue of Kazhdan’s fundamental study of characters [K2]. This
is formulated in section I.4. It is not proven here since the proof is entirely
parallel to that of [K2] and requires no new ideas (cf. [F1;II] in the case of
any reductive group). The only nonimmediate result needed to twist [K2]
is the analogue of [K2], Appendix. This is done in [F1;II], (I.4), in general;
the special case needed in this chapter is done here in V.1.7.

In III.3.5, together with V.1.6.2, we give a new argument for the compar-
ison of trace formulae for measures fdg = ⊗vfvdgv such that the transfer
f1udhv of fudgv vanishes for some u. This new argument uses the regular
functions mentioned above to annihilate the undesirable terms in the trace
formula. It replaces the technique of [L5], which relies on the computations
of singular and weighted orbital integrals and the study of their asymp-
totic behavior, and the correction technique of [F1;III]. In chapter IV this
argument is pursued to give a simple proof of the comparison of trace for-
mulae for all test measures fdg. Thus in chapter V we can deal with all
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automorphic representations of H(A).
The method of chapter IV establishes — by simple means — trace for-

mulae comparisons also in other rank-one situations. This method may
generalize to deal with groups of arbitrary rank and may give a simple
proof of any trace formulae comparisons for general test functions, but we
do not do this here. It affords a simple proof of the basechange lifting
for GL(2) (see [F1;IV]), and its analogues for the quasi-split unitary groups
U(2, E/F ) and U(3, E/F ). See [F3], where the automorphic and admissible
representations of U(2) and U(3) are classified, and compared with those of
the related general linear groups GL(2) and GL(3), and both rigidity and
multiplicity one theorems for U(2) and U(3), are proven.

The approach of [F3] — reducing the study of the representation theory
of U(3, E/F ) to basechange lifting to GL(3, E) — was found by us by direct
analogy with the techniques of the present part.

Our character relations, in V.2, take the form

trπv(fvdgv × σ) = (2m+ 1)
∑

trπ0v(f0vdhv),

where the sum ranges over the π0v in the packet π0v(IndFv

Ev
(µ′v)0), where

πv = I(π∗v(µ
′′
v), χEv ), and m is a nonnegative integer. Multiplicity one

theorem for SL(2,A) requires that and follows from: m = 0. We provide
two independent proofs that m = 0.

One proof is global. It appeared already in [F2;V]. It is based on a re-
markable result of [LL], 6.2 and 6.6, essentially derived only from properties
of induction, that if π0 is cuspidal and lies in a packet π0(IndFE(µ′)0), it oc-
curs with multiplicity one in the discrete spectrum. All other cuspidal rep-
resentations in the packet of such π0 are πg0 , g ∈ GL(2, F ), but those of the
form πg0 , g ∈ GL(2,A)−GL(2, F )G(π0), G(π0) = {g ∈ GL(2,A);πg0 = π0},
are not automorphic. The complete proof is given in V.2.3-V.2.4.

In V.2.5 we give a new, purely local proof that m = 0. It is based on a
twisted analogue of a theorem of Rodier, proven in V.3, which encodes the
number of Whittaker models of a representation in its character near the
origin. Since πv is generic, we conclude that m = 0 and only one π0v in its
packet is ψv-generic, for any character ψv.

The present work can be viewed as the first step in the study of the
self-contragredient representations of GL(n). This would lead to liftings of
representations of symplectic and orthogonal groups of the suitable index to
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the GL(n) in question. In the present work the twisted endoscopic groups
are the symplectic group Sp(1) = SL(2) and the orthogonal group SO(3) =
PGL(2). The next work in this project has recently been studied in [F4] in
the case of PGL(4), and its twisted endoscopic groups PGp(2) and SO(4).

As noted above, chapter VI offers a new technique to compute a special
twisted character. The approach of chapter VI is different from the well-
known, standard techniques of trace formulae and dual reductive pairs. It
will be interesting to develop this approach in other lifting situations. A first
step in this direction was taken in the work [FZ2], where the twisted — by
the transpose-inverse involution — character of a representation of PGL(4)
analogous to the one considered in chapter VI, is computed. The situation
of [FZ2] — see also [FZ3] — is new, dealing with the exterior product of
two representations of GL(2) and the structure of representations of the
rank-two symplectic group.



I. FUNCTORIALITY AND NORMS

Summary

The symmetric square lifting for admissible and automorphic representa-
tions, from the group H = H0 = SL(2), to the group G = PGL(3), is
defined by means of character relations. Its basic properties are derived:
the lifting is proven for induced, trivial and special representations, and
both spherical functions and orthogonality relations of characters are stud-
ied. The definition is compatible with dual group homomorphisms

λ0 = Sym2 : Ĥ = PGL(2,C) = SO(3,C) ↪→ Ĝ = SL(3,C)

and λ1 : Ĥ1 = SL(2,C) → Ĝ, where H1 = PGL(2). Of course it will be
compatible with the computation of orbital integrals (stable and unstable)
in chapters II and III.

Introduction

In this chapter we define the symmetric square lifting in terms of character
relations, and derive its basic properties. This work is required for the
study of the lifting of automorphic forms of H(A) to G(A), where H =
H0 = SL(2) and G = PGL(3), by means of the trace formula.

The lifting is suggested by the symmetric square, or adjoint, representa-
tion λ0 : Ĥ → Ĝ of the dual group Ĥ = PGL(2,C) of H in Ĝ = SL(3,C).
Put tg =transpose of g, and

σ(g) = J tg−1J, J =
(

0 1

−1

1 0

)
, s =

(
−1

−1

1

)
.

The group H is a σ-endoscopic group of G (see [KS]). Indeed, Ĥ =
SO(3,C) is the group Z

Ĝ
(σ) = {g ∈ Ĝ;σg = g} of points fixed by σ

in Ĝ. It is elliptic (Ĥ is not contained in a σ-invariant proper parabolic

16
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subgroup of Ĝ). But G has another elliptic σ-endoscopic group, which is
H1 = PGL(2):

λ1 : Ĥ1 = SL(2,C) = Z
Ĝ

(sσ) = {g ∈ Ĝ; sσ(g)s = g} ↪→ Ĝ,

h =
(
a b

c d

)
7→ h1 =

(
a b

1

c d

)
.

Via the Satake isomorphism, the maps λi formally define the lifting π =
λi(πi) of unramified Hi-modules πi to unramified G-modules π. Moreover,
we introduce in section 1 (of this chapter I) the dual maps λ∗i : H → Hi

from the Hecke algebra H of G to the Hecke algebra Hi of Hi. It follows
from the definitions that if fi = λ∗i (f) then the spherical functions f and
fi have matching orbital integrals on the split tori.

In section 2 we define lifting, denoted πi = λi(π), of admissible repre-
sentations πi of Hi to such representations π of G, by means of character
relations. The definition generalizes the spherical case, and uses packets
rather than a single irreducible. Basic examples of the stable lifting λ0 are
given. These concern induced, trivial, and special representations.

Section 3 concerns orthogonality relations for characters, needed in our
study of the local lifting. The cases of cuspidal G-modules and Steinberg π
are standard but useful. We also record the twisted orthogonality relation
for two tempered G-modules which are not relevant. The proof follows
closely that of the nontwisted case by Kazhdan [K2]. It depends on the
twisted analogue of the crucial appendix of [K2]; this is proven in [F1;II]
for a general group, and in chapter V, (1.8), in our case.

I.1 Hecke algebra

1.1 Dual groups. Let F be a global or local field of characteristic zero.
Put G = PGL(3), H = H0 = SL(2), and H1 = PGL(2) = SO(3), viewed
as Z-groups. For any field k denote by G(k), H(k) and H1(k) the group
of k-rational points of G, H and H1. We write G′ for the group G′(F )
of F -rational points, for any algebraic group G′ over F . Fix an algebraic
closure F of F .

Let Ĝ = SL(3,C) be the connected dual group of G (for any reductive
group G the connected dual group Ĝ is defined in [Bo2], where it is denoted
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by LG0). Consider the semidirect product Ĝ′ = Ĝ o 〈σ〉; 〈σ〉 denotes the
group generated by the automorphism σ(g) = J tg−1J of G of order 2.

The dual group Ĥ of H is PGL(2,C) ∼→SO(3,C). It is isomorphic to
the centralizer of 1× σ in the connected component of 1 in Ĝ′, and to the
σ-centralizer Ĝσ1 = {g in Ĝ; g−1σ(g) = 1} of 1 in Ĝ. The isomorphism is
given by (

a b

c d

)
7→ 1

x

(
a2 ab

√
2 b2

ac
√

2 ad+bc bd
√

2

c2 cd
√

2 d2

)
(x = ad− bc).

This map will be denoted by λ and by λ0 : Ĥ → Ĝ.
The dual group Ĥ1 of H1 = PGL(2) is SL(2,C), and the map

λ1 : h =
(
a b

c d

)
7→ h1 =

(
a 0 b

0 1 0

c 0 d

)
embeds Ĥ1 in Ĝ. The image is the centralizer of s × σ in Ĝ, where s is
the diagonal matrix diag(−1,−1, 1). Equivalently, it is the σ-centralizer
Ĝσs = {g ∈ Ĝ; sσ(g)s−1 = g} of s in Ĝ.

1.2 Hecke algebra. Let F be a p-adic field, R = {x in F ; |x| ≤ 1} its
ring of integers, and K = G(R) the standard maximal compact subgroup
of G. Fix a Haar measure dg on G. The Hecke algebra H = HG is the
convolution algebra Cc(K\G/K) of complex valued compactly supported
K-biinvariant measures fdg on G. Such fdg are called spherical.

Let π be an admissible irreducible representation of G on a complex
vector space V . A representation π is called smooth if each vector is fixed
by an open subgroup of G. It is called admissible ([BZ1]) if it is smooth
and if the subspace of V of vectors fixed by any open subgroup is finite
dimensional. A smooth irreducible representation is admissible by a well-
known theorem of Bernstein.

Put σπ(g) = π(σg) (g in G). Then σπ is an admissible irreducible
representation of G on V . We say that π is σ-invariant if π is equivalent
to σπ. In this case there is an invertible operator A : V → V with π(σg) =
Aπ(g)A−1 (g in G). Since π is irreducible and A2 intertwines π with itself,
Schur’s lemma ([BZ1]) implies that A2 is a scalar. Multiplying A by 1/

√
A2,

we assume that A2 = 1. Then A is unique up to a sign. We put π(σ) = A,
and define the operator π(fdg×σ) = π(fdgσ) = π(fdg)π(σ) to be the map
v 7→

∫
f(g)π(g)Av dg.
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If fdg is spherical (in HG) then π(fdg) factorizes through the projection
to the space πK of K-fixed vectors in (π, V ). If π is irreducible, dimC π

K ≤
1. The representation π is called unramified if πK 6= 0. Then (k ∈ K) acts
as the identity on πK . If π is irreducible, π(fdg) 6= 0 implies that the image
πK of π(fdg) is one dimensional.

If π is unramified, it lies in a representation I = I(η) of G induced from
an unramified character η of the upper triangular Borel subgroup B = TN

(e.g., [Bo3]). Here N denotes the unipotent upper triangular subgroup,
and T denotes the diagonal subgroup. In fact π is the unique unramified
constituent in the composition series of I.

Fix v in V so that w = π(fdg× σ)v is nonzero. Since σ(K) = K, Aw is
also a K-fixed vector, and Aw 6= 0, since A(Aw) = w 6= 0. Hence there is
a constant c with Aw = cw. As A2 = 1, c is 1 or −1. We replace A by cA
to have Aw = w. This normalization is compatible with the normalization
for generic representations, see chapter V, (1.1.1).

The character η is given by

η(δ) = µ1(a)µ2(b)µ3(c)

at an element δ = diag(a, b, c) in the diagonal torus T of G. Here µi are
characters of F× with µ1µ2µ3 = 1. The induced representation I = I(η)
consists of all (right) smooth φ : G→ C with

φ(nδg) = δδδ1/2(δ)η(δ)φ(g), g ∈ G, n ∈ N, δ ∈ T.

The action is by right translation: (I(g)φ)(h) = φ(hg). The value of the
factor

δδδ(δ) = |det(Ad(δ)|LieN)| is |a/c|2.

Here LieN denotes the Lie algebra of N .
Let πππ be a generator of the maximal ideal in the ring R of integers of F .

Consider the element

t = diag(µ1(πππ), µ2(πππ), µ3(πππ))

in the diagonal torus T̂ of Ĝ. Then the equivalence class of the unramified
representation π is uniquely determined by the conjugacy class in Ĝ of t.



20 I. Functoriality and norms

1.3 Orbital integrals. Fix a Haar measure da on the diagonal torus
T . The normalized orbital integral

F (δ, fdg) = ∆(δ)
∫
f(gδg−1)

dg

da
(g ∈ G/T ),

where

∆(δ) = δδδ−1/2(δ)|det(1−Ad(δ))|LieN | =
∣∣∣∣a− ba b− c

b

a− c
c

∣∣∣∣ ,
depends only on the image of

δ = diag(a, b, c) in T/T(R) ' X∗(T) = Hom(Gm,T)

when fdg is spherical. Indeed, writing g = an1k (and dg/da = dn dk)
and introducing n by n−1

1 δn1 = δn, changing variables on n in the orbital
integral gives the factor

|1−Ad(δ−1)|−1 = |Ad(δ)||1−Ad(δ)|−1.

Hence

F (δ, fdg) = δδδ1/2(δ)
∫
N

fK(δn)dn, where fK(g) =
∫
K

f(k−1gk)dk.

We denote this value of the orbital integral by F (n, fdg), n being the image
of δ in

X∗(T) ' {(n1, n2, n3); ni ∈ Z}/{(n, n, n); n ∈ Z}.

For t = diag(t1, t2, t3) in T̂ and n = (n1, n2, n3) in X∗(T), we put n(t) =
tn1
1 tn2

2 tn3
3 .

The Satake transform (fdg)̌ of fdg is abbreviated to f̌ and is defined by

f̌(t) = |T(R)|
∑
n

F (n, fdg)n(t) (n ∈ X∗(T̂ ) ' X∗(T)),

where |T(R)| denotes the volume of T(R) = T ∩K with respect to dt. The
map fdg 7→ f̌ is an isomorphism from the algebra HG to the algebra C[T̂ ]W

of finite Laurent series in t ∈ T̂ which are invariant under the action of the
Weyl group W of T̂ in Ĝ.
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Let C∞c (G) denote the space of all smooth compactly supported complex
valued functions on G. If π is an admissible representation, for any f in
C∞c (G) the operator π(fdg) =

∫
G
f(g)π(g)dg has finite rank. We write

trπ(fdg) for its trace. If π is irreducible but not equivalent to σπ, then
trπ(fdg×σ) is zero. If π is irreducible and unramified, and fdg is spherical,
then π(fdg) is a scalar multiple of the projection on the K-fixed vector w.
If, moreover, π ' σπ, then π(σ) acts as 1 on w, and trπ(fdg×σ) = trπ(fdg)
is this scalar. Let us compute it.

1.4 Lemma. Suppose that π is unramified and t = t(η) = t(π) is a
corresponding element in T̂ . If ση = η, then for any fdg in HG we have

trπ(fdg × σ) = trπ(fdg) = f̌(t).

Proof. Corresponding to g = nak there is a measure decomposition
dg = δδδ−1(a)dndadk. For a test function f ∈ C∞c (G) the convolution oper-
ator π(fdg) =

∫
G
π(g)f(g)dg maps φ ∈ π to

(π(fdg)φ)(h) =
∫
G

f(g)φ(hg)dg =
∫
G

f(h−1g)φ(g)dg

=
∫
N

∫
T

∫
K

f(h−1n1ak)(δδδ1/2η)(a)φ(k)δδδ−1(a)dn1dadk.

The change of variables n1 7→ n, where n is defined by n−1ana−1 = n1,
has the Jacobian |det(1 − Ad a)|LieN |. The trace of π(fdg) is obtained
on integrating the kernel of the convolution operator — viewed as a trivial
vector bundle over K — on the diagonal h = k ∈ K. Hence

trπ(fdg) =
∫
K

∫
N

∫
T

(∆η)(a)f(k−1n−1ank)dndadk

=
∫
T

η(a)
[
∆(a)

∫
G/T

f(gag−1)
dg

da

]
da. �

1.5 Definition. For δ in T put

Φ(δσ, fdg) =
∫
Tσ\G

f(gδσ(g)−1)
dg

da
.
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Here T σ = {a ∈ T ;σ(a) = a} is the group of σ-fixed points in T . Also put

δ̃ = JδJ (= diag(c, b, a) if δ = diag(a, b, c)), andT 1−σ = {tσ(t)−1; t ∈ T}.

The involution σ defines (via differentiation) an involution, which we denote
again by σ, on the Lie algebra LieG of G. It stabilizes LieN . Define

F (δσ, fdg) = ∆(δσ)Φ(δσ, fdg)

where
∆(δσ) = δδδ−1/2(δ)|det(1−Ad(δ)σ)|LieN |.

Note that

|det(1−Ad(δ)σ)|LieN | =
∣∣∣∣(1− a

c

)(
1 +

a

c

)∣∣∣∣, δδδ1/2(δ) = |a/c|,

hence ∆(δσ) = ∆0(Nδ), where Nδ = diag(a/c, c/a). Here

∆0(diag(x, y)) = |(x− y)2/xy|1/2

is the usual ∆-factor on GL(2). We usually use indices 0, 1 or 2 for objects
related to H = H0 = SL(2), H1 = PGL(2), and GL(2), respectively.

1.6 Lemma. For any character η of T we have

tr I(η; fdg × σ) =
∫
T 1−σ\T

1
2
[η(a) + η(ã)]F (aσ, fdg) da.

Proof. For π = I(η), we have

(π(σfdg)φ)(h) =
∫
G

f(g)φ(σ(h)g)dg =
∫
G

f(σ(h)−1g)φ(g)dg

=
∫
N

∫
T

∫
K

f(σ(h−1)nak)(δδδ1/2η)(a)φ(k)δδδ−1(a)dndadk.

Hence

trπ(σfdg) =
∫
K

∫
N

∫
T

f(σ(k)−1n1ak)(δδδ−1/2η)(a)dn1dadk.

We change variables n1 7→ n, where σ(n)−1ana−1 = n1, which has the same
Jacobian as if naσ(n)−1a−1 = n1, which is |det(1−Ad(a)σ)|LieN |, to get

trπ(fdg × σ) = trπ(σfdg) =
∫
T/T 1−σ

η(a)∆(aσ)da
∫
Tσ\G

f(σ(g)−1ag)
dg

da
.

�
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1.7 Cases of H and H1. Considerations analogous to (1.3), (1.4) apply
in the cases of the groups H = H0 = SL(2) and H1 = PGL(2) ' SO(3),
with respect to the maximal compact subgroups Ki = Hi(R). Unramified
representations π0, π1 are associated with I0(µ1, µ2), I1(µ, µ−1) and their
classes are represented by

t0 = diag(z1, z2), t1 = diag(z, z−1)

in Ĥ0, Ĥ1. Here zi = µi(πππ), z = µ(πππ). For fidhi in the Hecke algebras Hi of
compactly supported Ki-biinvariant measures on Hi, the Satake transform
is

f̌0(diag(z1, z2)) =|T0(R)|
∑
n

F (n, f0dh0)(z1/z2)n,

f̌1(diag(z, z−1)) =|T1(R)|
∑
n

F (n, f1dh1)zn.

The symbol |Ti(R)| denotes the volume of Ti(R) = Ti ∩Ki with respect
to dai. The expression F (n, fidhi) denotes the normalized orbital integral
of fidhi at regular elements diag(a, b) in Ti (diagonal subgroup of Hi) with
valuations (n,−n) (i = 0) and (m1,m2), m1 −m2 = n (i = 1). It depends
on the choice of Haar measures dhi, dai on Hi, Ti; but f̌i depends only on
dhi.

The standard computation of (1.3) shows that for spherical fidhi, πi, we
have

trπi(fidhi) = f̌i(ti) (ti = ti(πi)).

Recall (1.1) that we have maps λi : Ĥi → Ĝ and ((1.2), (1.5)) classes ti,
t in Ĥi, Ĝ for unramified representations πi, π of Hi, H (i = 0, 1).

1.8 Definition. The unramified representation πi lifts to π through λi
if t = λi(ti). In this case we write π = λi(πi).

The maps λ̃∗i : H → Hi dual to λi are defined by fidhi = λ̃∗i (fdg)
if f̌i(ti) = f̌(λi(ti)) for all ti in T̂i. Equivalently, fidhi = λ̃∗i (fdg) if
trπi(fidhi) = trπ(fdg×σ) for all πi and π = λi(πi). Note that π = λi(πi)
if and only if f̌i(ti) = f̌(t), where ti = ti(πi), t = t(π), for all fdg and
fidhi = λ̃∗i (fdg).

Note that I0(µ) dfn= I0(µ, 1), I1(µ) dfn= I1(µ, µ−1) both lift (through λ0, λ1)
to I(µ, 1, µ−1).
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There are several formal consequences concerning orbital integrals of
measures fdg, fidhi related by fidhi = λ̃∗i (fdg), as these integrals are the
coefficients of f̌ and f̌i.

1.9 Lemma. If

δ = diag(a, b, c), γ = diag(a/c, c/a), and γ1 = diag(a, c),

then

F (δσ, fdg) = F (γ, f0dh0) and F (δσ, fdg) = F (γ1, f1dh1).

Proof. If t1 = diag(t, t−1) lies in T̂1 then

|T(R)|
∑

m=(m1,m2,m3)

F (m, fdg)tm1−m3 = f̌(λ1(t1))

= f̌1(t1) = |T1(R)|
∑
n

F (n, f1dh1)tn.

Comparing coefficients of tn we obtain

|T1(R)|F (n, f1dh1) =
∑

{m;m1−m3=n}

|T(R)|F (m, fdg).

A simple change of variables shows that this is the product of |Tσ(R)|,
where

Tσ(R) = {t ∈ T(R); t = σ(t)},

and

F (nσ, fdg) = ∆(δσ)
∫
f(g−1δσ(g)) dg,

where

δ = diag(a, b, c), γ = diag(a/c, c/a), |a/c| = |πππ|n.

It is clear that the integral depends only on n, but not on the choice of δ.
In the case of H0 = SL(2), taking a representative t0 = (t, 1) in T̂0 we

have
|T(R)|

∑
m

F (m, fdg)tm1−m3 = f̌(λ0(t0))
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= f̌0(t0) = |T0(R)|
∑
n

F (n, f0dh0)tn.

Hence F (nσ, fdg) = F (n, f0dh0). �

Remark. (1) We normalize the measures so that |Ti(R)| = |Tσ(R)|;
the groups Ti and T σ are isomorphic to the multiplicative group Gm.
(2) Every f̌1 is so obtained from some f̌ , hence the f̌1 separate the π1.
Every f̌0 is so obtained from some f̌ , hence the f̌0 separate the π0.

I.2 Norms

2.1 Stability. To extend the study of lifting from the unramified case
to any admissible σ-invariant representation, we need to define norm maps
N and N1 to extend the definition suggested by the formal Lemma 1.9 on
diagonal matrices. Thus for δ = diag(a, b, c) we put:

N(δ) = diag(a/c, c/a) and N1(δ) = diag(a, c).

These norm maps will be used to relate orbital integrals and characters,
so they should be defined in terms of (twisted) conjugacy classes. More
precisely, the norm will be defined to be a map from the set of regular stable
σ-conjugacy classes in G to the sets of regular stable conjugacy classes in
H and H1. We begin with a description of these classes.

Let F be a local or global field of characteristic 0. Fix an algebraic
closure F of F . Let G be a reductive group defined over F and G = G(F )
the group of F -rational points of G. Denote by σ an automorphism of G
defined over F . The elements δ, δ′ of G are called σ-conjugate if there is h
in G with δ′ = hδσ(h−1). They are called stably σ-conjugate if there is h
in G(F ) with δ′ = hδσ(h−1). The term (stable) conjugacy (no mention of
σ) is employed if σ is the trivial automorphism.

The stable σ-conjugates of δ in G are described by the set A(δ) of g in
G(F ) with gδσ(g−1) in G. The map

A(δ) α′−→H1(F,ZG(δσ)), g 7→ {τ 7→ gτ = g−1τ(g)},

where
ZG(δσ) = {g ∈ G; gδσ(g−1) = δ},
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factors through

1 −→ D(δ) α−→H1(F,ZG(δσ)) −→ H1(F,G),

where the double coset space D(δ) = G\A(δ)/ZG(δσ)(F ) parametrizes the
σ-conjugacy classes within the stable σ-conjugacy class of δ.

The definitions introduced above will be used with G = PGL(3) and the
(involution) outer automorphism σ(g) = J tg−1J , and also with H = H0 =
SL(2), H1 = PGL(2) = SO(3) and the trivial σ. If γ ∈ H, ZH(γ) denotes
the centralizer of γ in H. Similarly, ZH1(γ1) is the centralizer of γ1 ∈ H1

in H1.
Note that every conjugacy class of H1 (and of GL(n, F ) or PGL(n, F ))

is stable. Indeed, the centralizer of a semisimple element γ in GL(n, F )
is a product

∏
j E
×
j , where Ej are field extensions of F with

∑
j [Ej : F ]

= n. We have H1(F,Gm) = {0}, hence D(γ) is trivial for GL(n, F ) or
PGL(n, F ).

However, for H = SL(2), the centralizer in H of a nonsplit γ is E1 =
kerNE/F , where E = F (γ) is the extension generated by γ. Hence the
set of conjugacy classes within the stable conjugacy class of a regular γ in
H is parametrized by F×/NE×, which is Z/2Z when F is local and γ is
elliptic, and {0} when the eigenvalues of γ are in F×. For this we need to
compute H1(F,T) = H1(Gal(E/F ), E×) where T is Gm over E and σ 6= 1
in Gal(E/F ) acts on T(E) = E× by σ(x) = x−1 (x is the conjugate of x in
E over F ). Then a cocycle is b = bσ ∈ E× with 1 = bσ2 = bσσ(bσ) = b/b,
thus b ∈ F×. The coboundaries are b/σ(b) = bb, thus NE/FE×.

There is of course an easy way in the case of SL(2, F ) (and more generally
SL(n, F )) to realize the stable conjugacy in GL(n, F ). If E = F (

√
A), a γ

in H splitting over E, thus with eigenvalues a ± b
√
A, is equal to

(
a bA

b a

)
up to stable conjugacy. A γ′ in H stably conjugate but not conjugate to
γ has the same eigenvalues as γ, hence it is conjugate to γ in GL(2, F ),

thus it is conjugate in SL(2, F ) to
(
D 0

0 1

)−1 (
a bA

b a

)(
D 0

0 1

)
, where D ∈

F× − NE/FE
×. Indeed, if D ∈ NE× then diag(D, 1) ∈ T (F ) SL(2, F )

where T (F ) is the centralizer of γ in GL(2, F ).

To realize γ′ as g−1γg, g ∈ SL(2, F ), we solve
(
D 0

0 1

)
g−1 =

(
x yA

y x

)
,

x = x′1 + x′2
√
A ∈ E, y = y′1 + y′2

√
A ∈ E, thus x2 − y2A = D. The

solutions are x = x1(x2 + 1) + x2

√
A, y = x2 + 1 + x1x2

A

√
A, provided
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2x2 + 1 = D
x2
1−A

. We take x1 = 0. Then x2 = − 1
2 (DA + 1), x = x2

√
A,

y = x2 + 1 = 1
2 (1− D

A ). Then

g =
1
D

(
− 1

2 ( D
A +1)

√
A −A

2 (1−D
A )

−1
2 (1−D

A ) − 1
2 ( D

A +1)
√
A

)(
D 0

0 1

)
satisfies

gσ = gσ(g)−1 = h−1
0

(
−A/D 0

0 −D/A

)
h−1

0

where
h0 =

(
1
√
A

−1
2
√

A

1
2

)
,

(
a bA

b a

)
= h−1

0

(
a+bA 0

0 a−bA

)
h0,

h0σ(h0)−1 =
(

0 2
√
A

−1
2
√

A
0

)
, h0gσ(h0g)−1 =

(
0 −2A

√
A

D
D

2A
√

A
0

)
,

and
h0g =

(√
A/D 0

0 1/
√
A

)
h0

(
D 0

0 1

)
so that g satisfies γ′ = g−1γg.

2.2 The Norm. Let δ be an element of G. The set of eigenvalues of
δσ(δ) is of the form {λ, 1, λ−1}. Indeed, if λ is an eigenvalue of δσ(δ) then
there is an eigenvector v with t(δσ(δ))v = λv. Hence

λ−1v = t(δσ(δ))−1v, and λ−1(δJv) = δJ tδ−1J(δJv),

that is, λ−1 is also an eigenvalue. It is clear that λ ∈ F× or that [F (λ) :
F ] = 2.

The element δ of G is called σ-regular if the eigenvalues λ, 1, λ−1 of
δσ(δ) are distinct. In this case let Nδ be the class in H determined by the
eigenvalues λ, λ−1 and N1δ the class in H1 with eigenvalues of ratio λ if
H1 is viewed as PGL(2), or with eigenvalues λ, 1, λ−1 if H1 is viewed as
SO(3).

For any h =
( x y

z t

)
in GL(2, F ) we put

h1 =
(
x 0 y

0 1 0

z 0 t

)
, e =

(
−1 0

0 1

)
, w =

(
0 1

1 0

)
.

Assume that δ is σ-regular. Replacing δσ(δ) by a conjugate g−1δσ(δ)g,
hence δ by a σ-conjugate g−1δσ(g), we may assume that δσ(δ) is of the form
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h1. Since δJ takes λ-eigenvectors of t(δσ(δ)) to λ−1-eigenvectors of δσ(δ),

the assumption δσ(δ) = h1 implies that δJ fixes the subspaces
(

0

∗
0

)
,

( ∗
0

∗

)
.

So does δ. Hence multiplying by a scalar we have δ = a1 for some a in
GL(2, F ).

Note that if δ = (ae)1, then Nδ = h1; here

h = aewta−1ew =
−1

det a
a2.

If δ′ = (a′e)1 and δ′ = β−1δσ(β) [hence δ′σ(δ′) = β−1δσ(δ)β and β = b1
for some b in GL(2, F )], then a′e = b−1aewtb−1w and

a′ = b−1a(ew)tb−1(ew)−1 =
1

det b
b−1ab.

Hence δ, δ′ are (stably) σ-conjugate if and only if a, a′ are projectively
(stably) conjugate.

2.3 Lemma. For any given regular γ in H there is a unique stable σ-
conjugacy class of δ with Nδ = γ. The σ-conjugacy classes within such a
stable class are parametrized by u in F×/NE×, E = F (δσ(δ)). A set of
representatives is given by δ = (uae)1.

Proof. If the eigenvalues λ, 1, λ−1 of δσ(δ) are distinct then they lie in
a quadratic extension of F (or in F ) and define a stable conjugacy class
Nδ in H with eigenvalues λ, λ−1, and a conjugacy class N1δ in H1 with
eigenvalues λ, 1, λ−1 in SO(3, F ) or λ, 1 in PGL(2, F ). Given λ there exist
α, β in F (λ)× with α/β = −λ. Here β = α and we use Hilbert Theorem
90 if λ /∈ F . The pair α, β is determined up to a multiple by a scalar u in
F×. The matrix δσ(δ) (where δ = (ae)1) has eigenvalues λ, 1, λ−1 iff a has
eigenvalues α, β so that −1

det aa
2 has eigenvalues −α/β, −β/α. Hence the

norm map is onto the set of regular elements of H, and the δ in G with a
fixed regular Nδ make a single stable σ-conjugacy class, as a and ua (u in
F×) are projectively stably conjugate.

But a and a′ = u−1a are projectively conjugate only if u−1a = 1
det bb

−1ab

for some b in GL(2, F ). Then u2 = det b2, and u = ±det b. If u = −det b
then −a = b−1ab, a has eigenvalues γ, −γ and h = I does not have eigen-
values different than 1. Hence u = det b, a = b−1ab and u = det b lies in
NE/FE

×, where E = F (a). �
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Thus the norm map has a particularly simple description in the case
where δσ(δ) has distinct eigenvalues. Up to a σ-conjugacy such δ can be
assumed to be of the form δ = (ae)1. Then γ = Nδ = (−1/det a)a2.

2.3.1 Corollary. Let F be a global field, u a place of F , and δ, δ′

stably σ-conjugate but non-σ-conjugate elements of G(F ). Then there is a
place v 6= u of F such that δ, δ′ are not σ-conjugate in G(Fv).

2.4 Definition. If Nδ is regular put δ̃ = 1
2 [δJ + t(δJ)]J . Note that

δ̃σ(δ̃) = 1. Hence δ̃J is symmetric (= t(δ̃J)). Define κκκ(δ) to be 1 if
SO(3, δ̃J) is split and −1 if not.

The function κκκ depends only on the σ-conjugacy class of δ. Indeed if δ
is replaced by βδJ tβJ then δJ + t(δJ) is replaced by

βδJ tβ + βJ tδtβ = β[δJ +t(δJ)]tβ,

and the form δJ + t(δJ) splits if and only if β[δJ + t(δJ)]tβ does.
If δ, δ′ are stably σ-conjugate with regular norm, but they are not con-

jugate, then the forms δ̃J and δ̃′J are not equivalent, and κκκ(δ′) = −κκκ(δ).
Thus if δ = (ae)1 and δ′ = (uae)1, then κκκ(δ′) = χ(u)κκκ(δ), χ being the
quadratic character of F× trivial on NE×, E = F (δσ(δ)).

If Nδ = γ is regular in H then ZG(δσ) ' ZH(γ). Indeed, if

g−1δσ(g) = δ then g−1δσ(δ)g = δσ(δ);

if δ = (ae)1 then g = b1 and b−1ab = a, since δσ(δ) = h1, h = −1
det aa

2.
Hence

b−1aewtb−1we = a, namely
1

det b
b−1ab = a,

so that det b = 1. It is clear that ZH(γ) = ZH(a).

The norm map can be extended to classes of δ in G which are not σ-
regular. This is done next.

2.5 Identity. We now deal with the (two) cases where all eigenvalues
of δσ(δ) are 1.

If δσ(δ) = 1 we write Nδ = 1 and N1δ = 1. Then δJ = t(δJ) is
symmetric, any two symmetric matrices are equivalent over F , hence for
each δ′ with δ′σ(δ′) = 1 there is S in G with δJ = Sδ′J tS, so that δ =
Sδ′σ(S−1), and the δ with δσ(δ) = 1 form a single stable σ-conjugacy class.
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For such δ the σ-centralizer

ZG(δσ) is (PO(3, δJ) =) SO(3, δJ),

the (projective =) special orthogonal group with respect to the form δJ .
Replacing δ by a σ-conjugate uδσ(u−1) or δJ by uδJ tu, implies replacing
ZG(δσ) by its conjugate uZG(δσ)u−1. Hence if F is R or p-adic then there
are two σ-conjugacy classes in the stable σ-conjugacy class of the δ with
Nδ = 1, corresponding to the split and nonsplit forms δJ . Put κκκ(δ) = 1
if ZG(δσ) = SO(3, δJ) splits and κκκ(δ) = −1 if it is anisotropic. If we put
γ = Nδ (= 1) then there is a natural surjection

ϕ : ZH(γ) = SL(2)→ ZG(δσ) = SO(3, δJ)

with kernel {±1}. The morphism ϕ is defined over F only if SO(3, δJ) is
split.

2.6 Unipotent. If δσ(δ) is unipotent but not 1 we check by matrix

multiplication that it is a regular unipotent (not conjugate to
(

1 0 1

0 1 0

0 0 1

)
).

Alternatively, δσ(δ)v = v if and only if (δJ − t(δJ))w = 0, where w =
t(δJ)−1v. Thus the 1-eigenspace of δσ(δ) has the same dimension as the
zero-eigenspace of the skew-symmetric matrix δJ − t(δJ), namely 1 or 3,
and δσ(δ) 6= 1 is regular unipotent. Up to stable σ-conjugacy we may

assume that δσ(δ) =
(

1 1 1/2

0 1 1

0 0 1

)
, a σ-invariant matrix. Hence δ commutes

with σ(δ) and δσ(δ), and it is unipotent of the form
(

1 x y

0 1 x

0 0 1

)
. These make

a single σ-conjugacy class. The σ-centralizer ZG(δσ) is the additive group
Ga, H1(F,Ga) is trivial, hence there is a unique σ-conjugacy class of δ with
δσ(δ) = unipotent 6= 1, and we put Nδ = unipotent in H.

If γ = Nδ is unipotent then ZH(γ) = {±1} ×Ga and there is a natural
surjection ϕ : ZH(γ)→ ZG(δσ) with kernel {±1}.

2.7 Negative identity. It remains to deal with the case where two
eigenvalues of δσ(δ) are −1. Here ZG(δσ) ' ZH(γ), as we see next.

If δσ(δ) = h1 and h = −I in GL(2, F ) then a2 = det a (δ = (ae)1) and

a is a scalar
(
α 0

0 α

)
. We put Nδ = −I, and note that all δ with Nδ = −I

form a single σ-conjugacy class, since(
α 0

0 α

)
=
α

β

(
α/β 0

0 1

)(
β 0

0 β

)(
β/α 0

0 1

)
.
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2.8 Negative unipotent. If δσ(δ) = h1 and h = −unipotent 6= −I in

GL(2, F ), then up to conjugacy h = −
(

1 2α

0 1

)
, hence a = u−1

(
1 α

0 1

)
with

α ∈ F×, u ∈ F×. But a is equal to

1
u

(
u 0

0 1

)−1 (
1 αu

0 1

)(
u 0

0 1

)
,

hence it is projectively conjugate to(
1 αu

0 1

)
. Now

(
1 α

0 1

)
and

(
1 β

0 1

)
(α, β ∈ F×)

are (projectively) conjugate only if α/β is a square in F×; they are clearly
stably conjugate. Hence the σ-conjugacy classes within the single stable
σ-conjugacy class of our δ are parametrized by F×/F×2. If

δ = (ae)1, a =
(

1 α

0 1

)
, α 6= 0,

we let Nδ be the stable conjugacy class of h in H, and define N1δ to be
the conjugacy class in H1 of elements which generate F (

√
α) over F , and

the quotient of whose eigenvalues is −1. Such an element of GL(2, F ) is(
0 α

1 0

)
.

I.3 Local lifting

3.1 Orbital integrals. Let F be a local field. Fix a Haar measure
dg on G. For any σ-regular δ, the σ-centralizer ZG(δσ) of δ in G is a torus.
Fix a Haar measure dt on it. If δ′ in G is stably σ-conjugate to δ, ZG(δσ)
is isomorphic to ZG(δ′σ). We choose dt and dt′ on these groups to assign
their maximal compact subgroups the same volumes. The measures dg,
dt determine a measure on the quotient G/ZG(δσ). Let f ∈ C∞c (G) be a
smooth compactly supported function on G. Put

Φ(δσ, fdg) =
∫
G/ZG(δσ)

f(gδσ(g)−1)
dg

dt
.

If δ is σ-regular, put

Φst(δσ, fdg) =
∑
δ′

Φ(δ′σ, fdg).
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The sum is over a set of representatives for the σ-conjugacy classes in the
stable σ-conjugacy class of δ.

If f0 is a smooth compactly supported function on H define

Φ(γ, f0dh) =
∫
H/ZH(γ)

f0(hγh−1)
dh

dt
.

Here dh is a Haar measure on H and dt on the centralizer ZH(γ). Also put

Φst(γ, f0dh) =
∑
γ′

Φ(γ′, f0dh).

If γ = Nδ is regular then ZH(γ) ' ZG(δσ). The measures on the two
groups are related by assigning the maximal compact subgroup the same
volume.

The measures fdg and f0dh are said to have matching orbital integrals
and we write f0dh = λ∗(fdg) if for all γ, δ with regular γ = Nδ they satisfy
the relation

Φst(γ, f0dh) = Φst(δ, fdg).

3.2 Weyl integration formula. Let {T0} denote a set of representa-
tives for the conjugacy classes of tori of H over F . The regular set Hreg

of H (distinct eigenvalues) is the union over {T0} of Int(H/T0)(T
reg
0 ). The

Jacobian of the morphism

T0 ×H/T0 → H, (t, h) 7→ Int(h)t = hth−1,

is
D0(t) = |det(1−Ad t)|Lie(H/T0)|.

We have the Weyl integration formula∫
H

f0(h) dh =
∑
{T0}

|W (T0)|−1

∫
T0

∆0(t)2 dt
∫
H/T0

f0(hth−1)
dh

dt
.

Here W (T0) is the Weyl group of T0 (normalizer/centralizer), and ∆0(t)2 =
D0(t). It is Z/2 if T0 splits over F or −1 lies in NE/FE×, and {0} otherwise,
as the normalizer of T0 ' E1 is x 7→ x, realized by Int(diag(−1, 1)) with
the choices of section 2.1.
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Let {T0}s denote a set of representatives for the stable conjugacy classes
of tori of H over F . It consists of a representative, say the diagonal torus,
for the tori which split over F , and elliptic tori, which are parametrized by
the quadratic field extensions E of F , where T0 = E1. The Weyl group of
T0 in A(T0) (see section 2.1) is Z/2. Hence∫

H

f0(h) dh =
1
2

∑
{T0}s

∫
T0

∆0(t)2 dt
∑
t′

∫
H/ZH(t′)

f0(ht′h−1)
dh

dt
.

The sum over t′ ranges for a set of representatives for the conjugacy classes
within the stable conjugacy class of t in T0.

Next we write an analogue of the Weyl integration formula in the twisted
case. We use the observation of (1.9) that each σ-regular element in G is σ-
conjugate to an element δ = (ae)1 with a in GL(2, F ). Recall that δ = (ae)1
and δ′ = (a′e)1 are σ-conjugate if and only if a′ = (1/det b)b−1ab. Hence we
may take the a in NZ(E)\TE , where TE ranges over a set of representatives
for the conjugacy classes of tori T2 of GL(2) over F . If T2 splits over E (=
F or a quadratic extension of F ), we denote it by TE . We denote by Z the
center of GL(2) and by N the norm map form E to F .

Every σ-regular element of G has the form

gδσ(g)−1, δ ∈ T = T (TE/NZ(E)), g ∈ G/ZG(Tσ),

for some E. Here

T (TE/NZ(E)) = {δa = (ae)1; a ∈ TE/NZ(E)}.

The σ-centralizer of T in G,

ZG(Tσ) = {g ∈ G; gδσ(g)−1 = δ,∀δ ∈ T},

is isomorphic to ZH(NT ) where NT = N(T ) = T 1
E(= TE ∩ SL(2, F )).

The expression is unique up to the action of the σ-normalizer, which
consists of the w with w−1δσ(w) = δ′ = δ′(δ) ∈ T for all δ in T . Then
w−1δσ(δ)w = δ′σ(δ′). Modulo the centralizer there are two w’s, w = (e)1
represents the nontrivial one with the choices made in section 2.1.

The Jacobian of the morphism

T ×G/ZG(Tσ)→ G, (δ, g) 7→ gδσ(g)−1
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is
∆(δσ)2 = |det[1−Ad(δ)σ]|Lie(G/T σ)|.

The twisted Weyl integration formula is then (put δa for (ae)1)∫
G

f(g) dg =
1
2

∑
E

∫
TE/NZ(E)

∆(δaσ)2da
∫
G/ZG(Tσ)

f(gδaσ(g)−1)
dg

da
.

Let us compute ∆(δσ)2 explicitly. We may assume δ is diag(a, b, c).

LieG consists of X =
(
x1 x2 x3

x4 x5 x6

x7 x8 x9

)
modulo center. Thus we assume that

x5 = 0 to fix representatives. Note that LieZG(δσ) = {diag(x, 0,−x)},
since

−σX = J tXJ =
(

x9 −x6 x3

−x8 x5 −x2

x7 −x4 x1

)
,

X −Ad(δ)σX =


x1+x9 x2− a

b x6 (1+ a
c )x3

x4− b
ax8 2x5 x6− b

cx2

(1+ c
a )x7 x8− c

bx4 x1+x9

 .

Recalling that x5 = 0, and noting that in LieG/ZG(δσ) the x1 +x9 is a
single variable (alternatively, in X we could replace x9 by zero and x1 by
x1 + x9), we conclude that

∆(δσ)2 =
∣∣∣∣(1− a

c

)(
1 +

a

c

)(
1− c

a

)(
1 +

c

a

)∣∣∣∣.
The 4 factors correspond to change of variables on: (x2, x6), x3, (x4, x8),
x7. This ∆(δσ)2 is then equal to ∆0(γ)2, γ = Nδ. Indeed we may assume
that γ = diag(a/c, c/a), and then

∆0(γ)2 =
∣∣∣∣(ac − c

a

)2∣∣∣∣ = ∣∣∣∣a2 − c2

ac

∣∣∣∣2 = ∆(δσ)2.

3.3 Characters. Let F be a local (archimedean or not) field, fi a com-
pactly supported smooth function on Hi, πi an admissible irreducible rep-
resentation of Hi, and πi(fidhi) the convolution operator

∫
fi(g)πi(g) dg.

This operator has finite rank, see (1.3).



I.3 Local lifting 35

A well-known result of Harish-Chandra ([HC2]) asserts that there exists
a complex-valued conjugacy-class function χi = χπi on Hi which is smooth
on the regular set such that for all measures fidhi on the regular set

trπi(fidhi) =
∫
fi(g)χi(g) dg.

It is called the character of πi. It is locally integrable on Hi.
The twisted analogue of [HC2] (see [Cl2]) asserts that given a σ-invariant

admissible irreducible representation π of G, there exists a complex-valued
σ-conjugacy class function χσπ : g 7→ χπ(gσ) on G which is smooth on the
σ-regular set, such that

trπ(fdg × σ) =
∫
f(g)χσπ(g) dg

for all measures fdg on the σ-regular set. It is called the twisted character
of π. It is locally integrable on G, hence the identity extends to all measures
fdg.

Note that χσπ is the twisted character of π. It is not the character in
the usual sense. We also write χπ(gσ) for χσπ(g). Note that the (twisted)
character is defined only on the (σ-) regular set. We need the character
and its properties for the orthogonality relations, as well as for the study
of the approximation in section V.1, and lifting in section V.2.

A function χ on H is called a conjugacy class function if χ(h) = χ(h′)
whenever h, h′ are regular and conjugate in H. For example, characters of
representations are class functions. We shall later show that characters are
dense in the space of class functions. A class function is called a stable class
function if χ(h) = χ(h′) whenever h, h′ are regular and stably conjugate in
H (h′ = ghg−1 for some g ∈ H(F )).

Let {π0} be a set of irreducible admissible representations of H such
that χ{π0}, the sum of χπ′0 where π′0 ranges over {π0}, is a stable class
function. We say that {π0} is a stable set. Similar definition can be made
for a set with multiplicities. But in our case it turns out that the stable
class functions that we need are all of the form χ{π0}. Note that χ{π0} is
the character of the reducible admissible representation ⊕π′0, sum over the
π′0 in {π0}.
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Definition. The representation π0 of H0 lifts to the representation π

of G if π is σ-invariant and there is a stable set {π0} including π0 such that
whenever γ = Nδ is a regular element of H we have

χπ(δσ) = χ{π0}(γ).

In this case we write π = λ0(π0) or π = λ0({π0}).

Remark. This definition is based on the definition of the norm N in
(2.2). The norm relates stable σ-conjugacy classes in G and stable conju-
gacy classes in H. To lift, γ 7→ χ{π0}(γ) has to be a stable class function.
To be a lift of π0 the twisted character χσπ of π has to be a stable σ-class
function, namely χσπ(δ) = χσπ(δ

′) if δ and δ′ are stably σ-conjugate.

3.4 Lemma. We have π = λ0(π0) if and only if for all fdg, f0dh with
f0dh = λ∗0(fdg) we have trπ(fdg × σ) = tr{π0}(f0dh).

Proof. Suppose that trπ(fdg × σ) = tr{π0}(f0dh). We use the Weyl
integration formula of (3.2) to write trπ(fdg × σ) =

∫
f(g)χσπ(g) dg as∑

{E}

1
2

∫
NZ(E)\TE

∆0(γ)2χσπ((ae)1)Φ((ae)1σ, fdg)da.

Fix a quadratic extension E of F . Denote by TE the element of {T2} (i.e.,
a torus in GL(2, F )) which splits over E. Take fdg so that its twisted
orbital integral Φ(δσ, fdg) is supported on TE , namely on the σ-orbits of
the δa = (ae)1 with a in TE . We claim that

trπ(fdg × σ) =
1
2

∫
Z\TE

∆0(γ)2χσπ(δ)Φ
st(δσ, fdg)da (δ = (ae)1),

where Φst(δσ, fdg) denotes the stable twisted orbital integral of fdg at δ,
as in (3.1). To show this, note that the trace trπ(fdg×σ) depends only on
the stable twisted orbital integral of fdg, since it is equal to tr{π0}(f0dh).
If we take f0 = 0, then for each a in TE we have

Φ((uae)1σ, fdg) = −Φ((ae)1σ, fdg) (u ∈ F −NE/FE).

Since trπ(fdg × σ) vanishes for such fdg, we have∫
Z\TE

∆0(γ)2[χσπ((ae)1)− χσπ((uae)1)]Φ((ae)1σ, fdg)da = 0.
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Choosing fdg so that the support of Φ((ae)1σ, fdg) is small, we deduce
that

χσπ((ae)1) = χσπ((uae)1)

depends only on the stable σ-conjugacy class of (ae)1. Hence the claim
follows.

On the other hand,

tr{π0}(f0dh) =
∫
f0(g)χ{π0}(g) dg

=
∑
{T0}

[W (T0)]−1

∫
T0

∆0(γ)2χ{π0}(γ)Φ(γ, f0dh)dγ

=
1
2

∫
T0E

∆0(γ)2χ{π0}(γ)Φ
st(γ, f0dh)dγ.

The last equality follows from our assumption on f0: the stable orbital
integral Φst(γ, f0dh) of f0dh at γ is supported on (the stable conjugacy class
of) the torus T0E in {T0} which splits over E. Since the map F×\E× →
E1 by z 7→ z/z is a bijection and serves to relate measures from Z\TE
to the torus T0E of SL(2, F ), and f0dh = λ∗0(fdg) means Φst(δσ, fdg) =
Φst(γ, f0dh) for all δ, γ with Nδ = γ, it follows that π = λ0(π0).

The opposite direction is proven by reversing the above steps. �

3.5 Unstable characters. Recall that the norm mapN1 of (2.2) bijects
the stable σ-regular σ-conjugacy classes in G with the regular conjugacy
classes in H1 = SO(3, F ). In each stable σ-conjugacy class of elements δ
such that δσ(δ) has distinct eigenvalues there are two σ-conjugacy classes
(unless the eigenvalues of δσ(δ) lie in F×, in which case there is a single
σ-conjugacy class). They differ by whether ZG(δ′σ) is split or not for a
representative δ, and we write κκκ(δ) = 1 or −1 accordingly. Here we put
δ′ = 1

2 (δ + J tδJ) as in (2.4), and note that the σ-centralizer ZG(δ′σ) of δ′

depends only on the σ-conjugacy class of δ, up to conjugacy in G.
The twisted character χπ is a σ-class function on the σ-regular set,

namely,
χσπ(gδσ(g)−1) = χσπ(δ)

for all g in G. By an unstable σ-class function we mean a σ-class function
which satisfies χσπ(δ) = −χσπ(δ̃) whenever δ, δ̃ are stably σ-conjugate but
not σ-conjugate.
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Note that if δ̃, δ are stably σ-conjugate, but not conjugate, then up to
σ-conjugacy δ = (ae)1 and δ̃ = (uae)1 with u in F× but not in NE/FE

×,
where E/F is a quadratic extension determined by δ.

Definition. The representation π1 of H1 = SO(3, F ) lifts to the repre-
sentation π of G if χσπ is an unstable σ-class function and

|(1 + γ′)(1 + γ′′)|1/2χσπ(δ) = χπ1(γ1) (3.5.1)

for all γ1 in H1 and δ in G such that ZG(δ′σ) is split and N1δ = γ1 has
distinct eigenvalues as an element of H1 = SO(3, F ). Here γ′, γ′′ denote
the eigenvalues of γ1 which are not equal to 1. Note that χσπ(δ) = −χσπ(δ′)
whenever δ, δ′ are stably σ-conjugate but not σ-conjugate. We then write
π = λ1(π1).

We shall relate orbital integrals on G and on H1 = SO(3, F ).

3.6 Definition. If γ1 = N1δ has eigenvalues 1, γ′, γ′′ with γ′ 6= γ′′,
put

Φus(δσ, fdg) =
∑
δ′

κκκ(δ′)Φ(δ′σ, fdg).

If f1 is a smooth compactly supported function on H1 then for all regular
semisimple γ1 we put

Φ(γ1, f1dh1) =
∫
H1/ZH1 (γ1)

f1(hγ1h
−1)

dh

dt
.

We say that f1dh1 = λ∗1(fdg) if, when the measures dγ1, dδ used in the
definition of the orbital integrals assign the same volume to the maximal
compact subgroups of ZH1(γ1) and ZG(δσ), we have

Φ(γ1, f1dh1) = |(1 + γ′)(1 + γ′′)|1/2Φus(δσ, fdg)

for all γ1 = N1δ with distinct eigenvalues.

3.7 Lemma. We have trπ(fdg × σ) = trπ1(f1dh1) for all fdg, f1dh1

with f1dh1 = λ∗1(fdg) if and only if π = λ1(π1).

Proof. If trπ(fdg × σ) = trπ1(f1dh1) for fdg, f1dh1 with f1dh1 =
λ∗1(fdg), then trπ(fdg×σ) is equal to

∫
f1(g)χπ1(g) dg, which by the Weyl
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integration formula of (3.2), is∑
{T1}

1
2

∫
T1

∆1(γ1)2χπ1(γ1)Φ(γ1, f1dh1) dγ1

=
∑
{T1}

1
2

∫
T1

∆1(γ1)2χπ1(γ1)|(1 + γ′)(1 + γ′′)|1/2Φus(δσ, fdg) dγ1.

We write ∆1 to emphasize that the ∆-factor is on the group H1. The sum is
taken over a set of representatives for the conjugacy classes of tori T1 of H1

over F . Recall that H1 = SO(3) ' PGL(2), and in H1 a stable conjugacy
class is a conjugacy class.

The element δ, or rather its σ-conjugacy class, is uniquely determined by
γ1 and the requirement that ZG(δσ) be split over F . Moreover, Φus(δ̃σ, fdg)
is −Φus(δσ, fdg) if δ, δ̃ are stably σ-conjugate but not σ-conjugate.

Define χσπ by the equation (3.5.1) to be an unstable σ-conjugacy class
function. Then our sum becomes∑

{T2}

1
2

∫
Z\T2

∆0(γ)2χσπ(δ)Φ
us(δσ, fdg)da.

The sum is over conjugacy classes of F -tori T2 in GL(2, F ), δ = (ae)1,
γ = (−1/det a)a2, and a 7→ γ1 defines an isomorphism of Z\T2 and T1 for
tori T2, T1 which share their splitting field. Note that when the eigenvalues
of a are u, v, then those of γ are −u/v, −v/u, we have

∆0(γ) =
∣∣∣∣(uv − v

u

)2∣∣∣∣1/2 =
∣∣∣∣(1 +

u

v

)(
1− v

u

)∣∣∣∣ = ∣∣∣∣(1− u

v

)(
1 +

u

v

)
v

u

∣∣∣∣
and

∆1(γ1) =
∣∣∣∣ (u− v)2uv

∣∣∣∣1/2 =
∣∣∣∣(1− u

v

)(
1− v

u

)∣∣∣∣1/2 =
∣∣∣∣(1− u

v

)(
1− u

v

)
v

u

∣∣∣∣1/2.
Hence

∆0(γ)2 = ∆1(γ1)2|(1 + γ′)(1 + γ′′)|, γ′ = γ′′−1 =
u

v
.

The sum is equal to∑
{TE}

1
2

∫
NZ(E)\TE

∆0(γ)2χσπ(δ)Φ(δσ, fdg)dδ.
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This is ∫
f(g)χσπ(g) dg

by the twisted Weyl formula (3.2). Hence π = λ1(π1) by the definition of
χσπ and λ1. �

3.8 Induced. Let π = I(η) denote the representation of G normalizedly
induced from the character η(diag(a, b, c)) = µ(a/c) of the Borel subgroup
B, where µ is a character of F×. Denote by π0 = I0(µ) and π1 = I1(µ) the
representations of H0, H1 normalizedly induced from the characters( a ∗

0 a−1

)
7→ µ(a),

( a ∗
0 b

)
7→ µ(a/b)

of the upper triangular Borel subgroups. Then the computation of (1.6)
and the Weyl integration formulae of (3.2) show that the σ-character χσπ of
π = I(η) vanishes at δ unless δ is diagonal (up to σ-conjugacy), where

χσπ(δ) = ∆0(γ)−1(η(δ) + η(δ̃)) (δ̃ = JδJ, γ = Nδ).

Similar standard computations show that the χπi
are also supported on

the (conjugacy classes of) diagonal elements of Hi. They are given there
by

χπ0(γ) = ∆0(γ)−1(µ(a) + µ(a−1)), γ =
(
a 0

0 a−1

)
,

and
χπ1(γ1) = ∆1(γ1)−1(µ(a) + µ(a−1)), γ1 =

(
a 0

0 1

)
.

It follows that if π = I(η), π0 = I0(µ), π1 = I1(µ), then

Lemma. π = λ0(π0) = λ1(π1), namely I0(µ) and I1(µ) both lift to I(η).

Proof. The characters of π, πi are supported on the split tori, and the
stable σ-conjugacy class of an element where χσπ does not vanish consists
of a single σ-conjugacy class. �

Remark. Here the field F is any (archimedean or not) local field.

3.9 Special representation. Let F be nonarchimedean. Let ν denote
the valuation character of F×, thus ν(x) = |x|. The composition series of
the induced representation I0 = I0(ν) of H consists of the one-dimensional
representation 10 and of the special, or Steinberg, representation sp, of H.
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Note that sp is irreducible. But by Lemma 3.8 I0 lifts to the representation
π = I(η) of G, induced from the character η = (ν, 1, ν−1) of the upper
triangular Borel subgroup of G. The composition series of π consists of the
trivial representation 13, the irreducible representation πP1(sp(ν, 1), ν−1)
normalizedly induced from the representation sp(ν, 1) × ν−1 of the max-
imal parabolic subgroup P1 of type (2, 1), and the reducible represen-
tation IP2(ν, sp(1, ν−1)) induced from the maximal parabolic P2 of type
(1, 2). This last representation has composition series consisting of the
irreducible πP2(ν, sp(1, ν−1)) and the Steinberg representation St. This re-
sult is due to Bernstein-Zelevinsky [BZ2]. Now IP2(ν, sp(1, ν−1)) is not
σ-invariant, but St, being the unique square-integrable irreducible con-
stituent of I(η) ' σI(η), is σ-invariant. Hence, πP2(ν, sp(1, ν−1)), as well
as πP1(sp(ν, 1), ν−1) (for the same reason), is not σ-invariant. The one-
dimensional representation 13 of G is clearly σ-invariant. Hence

tr I(η)(fdg × σ) = tr St(fdg × σ) + tr13(fdg × σ).

Lemma. The trivial and special representations of H lift to the trivial
and Steinberg representations of G, respectively.

Proof. As the characters of both 10 and 13 are identically one, the
lemma follows at once from the definition (3.3) of the lifting. �

Remark. The only σ-invariant one-dimensional representation π of G
is the trivial one. Indeed, π is given by a character β of F× (namely,
π(g) = β(det g)) of order 3, thus β3 = 1. But π is σ-invariant only if
β = β−1. Hence β = 1 and π is trivial, as asserted.

I.4 Orthogonality

4.1 Orthogonality relations. For any conjugacy class functions χ, χ′

on the elliptic set He of H put

〈χ, χ′〉e =
∫
He/∼

χ(h)χ′(h)dh

=
∑
{T0}

[W (T0)]−1|T0|−1

∫
T0

∆0(γ)2χ(γ)χ′(γ)dγ.
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The sum ranges over a set of representatives T0 for the conjugacy classes
of elliptic tori of H over F . [W (T0)] is the cardinality of the Weyl group
of T0 (1 or 2). As usual, |T0| denotes the volume of T0. We write γ ∼
γ′ if γ, γ′ are conjugate. The measure dh on He/∼ is defined by the
last displayed equality. The Hermitian bilinear form 〈χ, χ′〉e satisfies the
Schwartz inequality

〈χ, χ′〉2e ≤ 〈χ, χ〉e · 〈χ′, χ′〉e.

If χ, χ′ are stable conjugacy class functions, 〈χ, χ′〉2e is equal to

〈χ, χ′〉e =
1
2

∑
{T0}s

[D(T0)]|T0|−1

∫
T0

∆0(γ)2χ(γ)χ′(γ)dγ.

Here the sum is taken over a set of representatives T0 for the stable conju-
gacy classes of elliptic tori of H over F . [D(T0)] is the number of conjugacy
classes within the stable conjugacy class of T0; it is 2 if T0 is elliptic, 1 if
T0 is split.

Tempered (irreducible) representations π, π′ of a reductive p-adic group
G are called relatives if both are direct summands of the representation
normalizedly induced from a tempered representation of a parabolic sub-
group of G (which is trivial on the unipotent radical). The orthogonality
relations for characters (see [K2], Theorems G, K) assert that 〈χπ, χπ′〉e is
zero unless the tempered π, π′ are relatives, and if one of them is square
integrable then the result is 1 if π ' π′ and 0 if not. Then

4.1.1 Lemma. Let {π0} and {π′0} be stable finite sets of admissible ir-
reducible tempered representations of H which are induced or square in-
tegrable. Then 〈χ{π0}, χ{π′0}〉e is equal to the number of square-integrable
irreducible representations in {π0} ∩ {π′0}. �

4.2 Twisted orthogonality. Let π be a σ-invariant irreducible repre-
sentation of G. As in (1.2) there is an intertwining operator A from the
space of π to itself such that σπ(g) = π(σ(g)) is equal to Aπ(g)A−1. Since
π is irreducible and A2 intertwines π with itself, by Schur’s lemma A2 is a
scalar, which we may normalize (by multiplying A with 1/

√
A2) to be 1.

Extend π to a representation π′ of G′ = Go 〈σ〉 by setting π(σ) = A.
As noted in (3.3), the twisted character χσπ′ of π′ is a σ-conjugacy class

function which is locally integrable on G and is smooth on the subset of G
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which consists of δ with regular γ = Nδ. Such δ is called σ-regular. Its
σ-centralizer ZG(δσ) in G is isomorphic to the centralizer ZH(γ) of γ in
H.

For any two σ-conjugacy class functions χσ and χ′σ on the σ-elliptic (δ
with elliptic N(δ)) subset Gσe of G define 〈χσ, χ′σ〉e to be

1
2

∑
E

|Z\TE |−1

∫
TE/NZ(E)

∆0(γ)2χ(δσ)χ′(δ′σ)da.

We write χ(δσ) for χσ(δ). The sum defines a measure dg on Gσe / ∼, where
δ ∼ δ′ if δ is σ-conjugate to δ′, for which

〈χσ, χ′σ〉e =
∫
Gσ

e /∼
χσ(g)χ′σ(g)dg.

If δ 7→ χ(δσ) is a stable σ-conjugacy class function, the inner product can
be written as

1
2

∑
E

|Z\TE |−1

∫
TE/Z

∆0(γ)2χ(δσ)
∑
δ′

χ′(δ′σ)da.

The sum over δ′ ranges over a set of representatives for the σ-conjugacy
classes within the stable σ-conjugacy class of δ. For a in TE we have δ =
(ae)1, and there are two δ′ in our case of δ with compact ZG(δσ) ' ZH(γ),
γ = N(δ).

4.2.1 Lemma. Given a stable conjugacy class function χ on He define
χG(δ) = χ(N(δ)). Given a stable σ-conjugacy class function χσ on Gσe
define χH(γ) = χ(δσ) for γ = N(δ). Then

〈χσ, χ′G〉e = 〈χσH , χ′〉e.

Proof. This is clear from the definitions. Note that the inner product
on the left is on G, while the one on the right is on H. �

Let π be a cuspidal σ-invariant representation. Such π do not exist
unless the residual characteristic of F is 2. (This is proven in chapter V
using the trace formula.). The orthogonality relations for characters assert
in this case the following.
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4.2.2 Lemma. Let π2 be a σ-invariant irreducible admissible represen-
tation of G and π a σ-invariant cuspidal representation of G. Suppose
that the function δ 7→ χπ(δσ) is a stable σ-conjugacy class function on Gσe .
Then 〈χσπ, χσπ2

〉e is equal to 0 unless π and π2 are equivalent, in which case
it is equal to 1.

Thus for π which is cuspidal and σ-stable (by which we mean that χσπ′
is a stable σ-class function), 〈χ, χ〉e (inner product on He/∼) is equal to 1,
where χ is the stable class function on H defined by χ(Nδ) = χπ′(δσ).

Proof. First suppose that π2 is equivalent to π. Put π′i = ωiπ′ (i =
0, 1), where ω is the character of G′ which attains the value 1 on G and the
value −1 at σ. The representations π′0, π

′
1 are inequivalent. Put

φ(g) = d(π)(π′(g)u, ũ), π′i(φdg) =
∫
G′
φ(g)π′i(g) dg.

Here d(π) denotes the formal degree of π; u, ũ are vectors in the space of
π and the contragredient of π, with (u, ũ) = 1. By the Schur orthogonality
relations for the square-integrable representations π′i we have

trπ′0(φdg) = 1, trπ′1(φdg) = 0.

Then

1 = trπ′0(φdg)− trπ′1(φdg) = 2
∫
G

φ(gσ)χπ(gσ)dg.

By the Weyl integration formula (3.2) this is equal to

2 · 1
2

∑
E

∫
NZ(E)\TE

∆0(γ)2χπ(δσ)da
∫
G/ZG(δσ)

φ(gδσ(g)−1)
dg

da

= 2 · 1
2

∑
E

∫
Z\TE

∆0(γ)2χπ(δσ)da
∑
δ′

∫
G/ZG(δ′σ)

φ(gδ′σ(g)−1)
dg

da
.

Harish-Chandra’s “Selberg principle” [HC1], Theorem 29 implies the
vanishing of the inner integral if ZG(δσ) ' ZH(γ) is a torus of H which
splits over F . If it is a compact torus of H = SL(2) over F then the proof
of [JL], Lemma 7.4.1, shows that

χπ(δσ) = d(π)
∫
G

[(π′(g · δσ · g−1)u, ũ) + (π′(gσ · δσ · (gσ)−1)u, ũ)]dg
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= 2 d(π)|ZG(δσ)|
∫
G/ZG(δσ)

(π′(gδσ(g)−1 · σ)u, ũ)
dg

da
.

Note that δσ(δ)σ(δ)−1 = δ for the last equality. We obtain

1
2

∑
E

|ZG(δσ)|−1

∫
ZH(γ)

∆0(γ)2χπ(δσ)
∑
δ′

χπ(δ
′σ)dγ.

We used the isomorphism Z\TE ' ZG(δσ) ' ZH(γ), and the relation dδ

(= da) = dγ of measures on the groups ZG(δσ), ZH(γ).
It remains to deal with the case where π and π2 are inequivalent. But

then (ωiπ′2)(φ) = 0 for both i, and the lemma follows using the same
argument. �

4.2.3 Lemma. We have that 〈χσπ, χσπ〉e is 1 if π is the σ-invariant Stein-
berg representation.

Proof. This follows from (4.1) and Lemma 3.9. The orthogonality
relation (4.1) for sp follows from the orthogonality relation for the trivial
representation of the group of elements of reduced norm 1 in the quaternion
division algebra, and the correspondence of [JL]. �

To deal with π which are not cuspidal or Steinberg, we record a special
case of a twisted analogue of [K2], Theorem G. The proof in the twisted
case, for an arbitrary reductive not necessarily connected p-adic group,
follows closely that of [K2], and will not be given here. Thus, let π, π′

be σ-invariant, tempered representations with characters χσπ, χ
σ
π′ . Each

of π, π′ defines a unique (up to association) parabolic subgroup and a
square-integrable representation ρ, ρ′ of its Levi factor, such that π is a
subrepresentation of I(ρ) and π′ of I(ρ′). Then π, π′ are called relatives if
ρ is equivalent to ρ′. Recall that we have the inner product

〈χσ, χ′σ〉e =
∑
E

|T0|−1

∫
TE/NZ(E)

∆0(γ)2χ(δσ)χ′(δσ) da.

4.2.4 Lemma ([K2]). If π, π′ are not relatives then 〈χσπ, χσπ′〉e = 0.

The same result holds also when F is the field of real numbers.
In our case of G = PGL(3), a G-module normalizedly induced from a

tempered one is irreducible, and we need only the following special case of
the lemma.
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4.2.5 Corollary. If π, π′ are inequivalent σ-invariant tempered G-
modules, then 〈χσπ, χσπ′〉e is zero.

The methods of [K2] do not afford computing the value 〈χσπ, χσπ′〉e. But
in the case of any (σ-stable) cuspidal π, we have 〈χσπ, χσπ〉e = 1 by (4.2.2).
In the local lifting theorem of chapter V we list all σ-stable elliptic π, and
compute 〈χσπ, χσπ〉e. It is equal to the cardinality of the set {π0} which lifts
to π.

4.3 Definition. Let J be a reductive group over a local field, π a square-
integrable irreducible J-module, and fdg a smooth compactly supported
(modulo center) measure on J . Then fdg is called a pseudo-coefficient of π
if trπ(fdg) = 1 and trπ′(fdg) = 0 for any irreducible tempered J-module
π′ inequivalent to π.

The existence of pseudo-coefficients for H = SL(2, F ) is well known.
Their existence for any p-adic group is proven in Kazhdan [K2], Theorem
K. The orbital integral of fdg is equal to |ZJ(γ)|−1χπ(γ) at an elliptic
regular γ (whose centralizer ZJ(γ) is a torus), and to zero on the regular
nonelliptic set.

Pseudo-coefficients of σ-invariant representations are analogously de-
fined: fdg is called a pseudo-coefficient of a σ-invariant (irreducible) repre-
sentation π if trπ(fdg × σ) = 1 and trπ′(fdg × σ) = 0 for any irreducible
tempered representation π′ of G which is not a relative of π. In fact the
name σ-pseudo-coefficient is more accurate, but too long, so we omit the
prefix σ in the context of representations of G. The σ-orbital integral of
fdg is equal to a nonzero multiple of |ZG(γσ)|−1χπ(δσ) at any σ-elliptic
σ-regular δ (whose σ-centralizer ZG(γσ) is a torus), and to zero on the
regular nonelliptic set.

4.3.1. Suppose that F is local, G is a reductive group over F , π is an
admissible representation of G, C is a compact open subgroup of F×, fdg
is the measure of volume 1 on G which is supported on C and is constant
there.

Lemma. The number trπ(fdg) is equal to the dimension of the space of
C-fixed vectors in π, namely it is a nonnegative integer.

Proof. The operator π(fdg) is the projection on the space of C-fixed
vectors in π. �
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Summary. It is shown that the stable twisted orbital integral of the unit
element of the Hecke algebra of PGL(3, F ) is suitably related to the stable
orbital integral of the unit element of the Hecke algebra of SL(2, F ), while
the unstable twisted orbital integral of the unit element on PGL(3, F ) is
matched with the orbital integral of the unit element on PGL(2, F ). The di-
rect and elementary proof of this fundamental lemma is based on a twisted
analogue of Kazhdan’s decomposition of compact elements into a commut-
ing product of topologically unipotent and absolutely semisimple elements.

II.1 Fundamental lemma

Let F be a p-adic field (p 6= 2), and F a separable closure of F . Put

H = H0 = SL(2), G = PGL(3) = GL(3)/Z, H1 = SO(3, J)

where Z is the center of GL(3) and J =
(

0 1

−1

1 0

)
. Put

H = H(F ), G = G(F ) (= GL(3, F )/Z, Z = Z(F )), H1 = H1(F ).

Put σ(g) = J · tg−1 · J for g ∈ GL(3, F ). The elements δ, δ′ of G are called
(stably) σ-conjugate if there is x in G (resp. G(F )) with δ′ = xδσ(x−1),
or δ′σ = Int(x)(δσ) in the semidirect product Go 〈σ〉. The elements γ, γ′

of H are called (stably) conjugate if γ′ = Int(x)γ for some x in H (resp.
H(F )); similar definitions apply to H1.

A norm map N , from the set of stable σ-conjugacy classes in G, to the
set of stable conjugacy classes in H, as well as such a map N1 to the set
of conjugacy classes in H1, is defined in chapter I, (2.2)-(2.8). To recall
this definition in the crucial, σ-regular case, note that for any δ ∈ G,
(δσ)2 = δσ(δ) ∈ SL(3, F ) has an eigenvalue 1 (chapter I, end of (1.8)).
Now if δσ(δ) is semisimple, with eigenvalues λ, 1, λ−1, then Nδ is the
stable class in H with eigenvalues λ, λ−1. If λ 6= −1 then N1δ is the class
in H1 with eigenvalues λ, 1, λ−1.

47
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Denote by ZG(δσ) the group of x in G with δσ = Int(x)(δσ), by ZH(γ)
the centralizer of γ in H, and by ZH1(γ1) the centralizer of γ1 in H1. For
f ∈ C∞c (G), f0 ∈ C∞c (H), f1 ∈ C∞c (H1), define the orbital integrals

Φ(δσ, fdg) =
∫
G/ZG(δσ)

f(Int(x)(δσ))
dx

dt
,

Φ(γi, fidhi) =
∫
Hi/ZHi

(γi)

fi(Int(x)(γi))
dx

dt
,

(i = 0, 1), where we put f(gσ) = f(g). These depend on choices of Haar
measures, denoted dg or dx or dhi depending on the context. In this section
we mostly omit the measures from the notations. The measures on the
centralizers are compatible with the isomorphisms ZG(δσ) ' ZH(Nδ) '
ZH1(N1δ) when λ 6= ±1 (in this case δσ, γ, γ1 are called regular).

Denote by {δ′} a set of representatives for the σ-conjugacy classes within
the stable σ-conjugacy class of δ ∈ G; it consists of one or two elements.
Define the stable σ-orbital integral of f at δ with λ 6= ±1 by

Φst(δσ, fdg) =
∑
{δ′}

Φ(δ′σ, fdg).

Similarly put
Φst(γ, f0dh0) =

∑
{γ′}

Φ(γ′, f0dh0).

Define
∆(δσ) = |(1 + λ)(1 + λ−1)|1/2.

Put κκκ(δ′) = 1 if

SO
(

1
2
[(δ′J) + t(δ′J)]

)
is split, and κκκ(δ′) = −1 otherwise.

Define Φus(δσ, fdg) to be Φ(δσ, fdg) if λ ∈ F×, but if λ /∈ F× it is∑
{δ′}

κκκ(δ′)Φ(δ′σ, fdg).

Let R be the ring of integers of F . Put K = G(R), K0 = H(R),
K1 = H1(R). Denote by f0 the function on G which is supported on K

and whose value there is 1/ vol(K) = |K|−1. Denote by f0
i the quotient

of the characteristic function chKi
of Ki in Hi by vol(Ki) = |Ki|, i = 0, 1.

Recall: p 6= 2.
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Theorem. For λ 6= ±1 we have Φst(δσ, f0dg) = Φst(Nδ, f0
0 dh0), and

∆(δσ)Φus(δσ, f0dg) = Φ(N1δ, f
0
1 dh1).

This is the fundamental lemma for the symmetric square lifting from
SL(2) to PGL(3) and the unit element of the Hecke algebra. A proof of
the first assertion — due to Langlands, based on counting vertices on the
Bruhat-Tits building associated with PGL(3) — is recorded in the paper
[F2;II], §4, but it is conceptually difficult, hence not used in this work.

The current simpler proof is based on a twisted analogue of Kazhdan’s
decomposition [K1], p. 226, of a compact element into a commuting product
of its absolutely semisimple and its topologically unipotent parts, on an
explicit and elementary computation of orbital integrals of the unit element
in the Hecke algebra of GL(2), and on the preliminary analysis of stable
twisted conjugacy classes from section I.2. For an extension of the Theorem
to general spherical functions, and for representation theoretic applications
see chapter V.

We argue that the (twisted) Kazhdan decomposition of Proposition 2
already reduces all computations to GL(2), and we carry out explicitly
these computations. This makes the proof of the fundamental lemma for the
symmetric square lifting entirely elementary. Our elementary and purely
computational proof extends to prove the fundamental lemma for the lifting
from U(2) to U(3), see [F3;VIII], and for the lifting from GSp(2) to GL(4)
twisted by an outer automorphism similar to the one considered here; see
[F4;I].

We need a twisted analogue of the following definitions and results of
[K1], p. 226.

Put Fq = R/πππR, where πππ generates the maximal ideal in the local ring
R.

Definition ([K1]). An element k ∈ G = GL(n, F ) is called absolutely
semisimple if ka = 1 for some positive integer a which is prime to p (=
residual characteristic of F ). A k ∈ G is called topologically unipotent if
kq

N → 1 as N →∞.

1. Proposition ([K1]). Any element k ∈ K = GL(n,R) has a unique
decomposition k = su = us, where s is absolutely semisimple, u is topolog-
ically unipotent, and s, u lie in K. For any k ∈ K and x ∈ G, if Int(x)k
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(= xkx−1) is in K, then x lies in KZG(s); here ZG(s) is the centralizer of
s in G. �

Let σ be an automorphism of G of order `, (`, p) = 1, whose restriction
to K is an automorphism of K of order `. Denote by 〈K,σ〉 the group
generated by K and σ in the semidirect product Go 〈σ〉.

Definition. The element kσ of Gσ ⊂ G o 〈σ〉 is called absolutely
semisimple if (kσ)a = 1 for some positive integer a indivisible by p.

2. Proposition. Any kσ ∈ Kσ has a unique decomposition kσ =
sσ · u = u · sσ with absolutely semisimple sσ and topologically unipotent u.
Both s and u lie in K.

Definition. This sσ is called the absolutely semisimple part of kσ and
u is the topologically unipotent part of kσ.

Proof. For the uniqueness, if s1σ · u1 = s2σ · u2 then ua1 = ua2 for
a = a1a2. Since (a, q) = 1, there are integers αN , βN with αNa+ βNq

N = 1.
Then

u2u
−1
1 = uαNa+βNq

N

2 u−αNa−βNq
N

1 = uβNq
N

2 u−βNq
N

1 → 1

as N →∞. For the existence, recall that the prime-to-p part of the number

of elements in GL(n,Fq) is c =
n∏
i=1

(qi − 1). Let {(kσ)q
mi} be a convergent

subsequence in the sequence

{(kσ)q
m

; qm ≡ 1(mod c`)} in 〈K,σ〉.

Denote the limit by sσ, s ∈ K. Then (sσ)c` = 1. Define u = kσ(sσ)−1.
Then uq

mi → 1 as mi →∞, and uq
N → 1 as N →∞. �

Corollary. The centralizer ZG (sσ · u) is contained in ZG(sσ). �

3. Proposition. Given k ∈ K, kσ = sσ · u, put σ̃(h) = sσ(h)s−1.
This is an automorphism of order ` on ZK((sσ)`). Suppose that the first
cohomology set H1(〈σ̃〉, ZK((sσ)`)), of the group 〈σ̃〉 generated by σ̃, with
coefficients in the centralizer ZK((sσ)`) of (sσ)` in K, injects in

H1(〈σ̃〉, ZG((sσ)`)).
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Then, any x ∈ G such that k′σ = Int(x)(kσ) is in Kσ, must lie in
KZG(sσ).

Proof. Put k′σ = s′σ · u′. Then

s′σ = lim(k′σ)q
mi = Int(x) lim(kσ)q

mi = Int(x)(sσ).

Hence (s′σ)` = Int(x)(sσ)`, and by Proposition 1 there is y ∈ K with

(sσ)` = Int(y)(s′σ)` = (tσ)`,

where t = ys′σ(y−1). Replacing x by yx and k′ by yk′σ(y−1), we may
assume that y = 1. Put a(1) = 1, and for 0 < r < `,

a(σr) = s′σ(s′) · · ·σr−1(s′)σr−1(s)−1 · · ·σ(s)−1s−1.

Then a(σr) ∈ ZK((sσ)`), and

a(σu)σ̃u(a(σr)) = a(σu+r) (0 ≤ u, r < `).

Hence
a = {σr 7→ a(σr)} ∈ H1(〈σ̃〉, ZK((sσ)`)).

Of course,
s′ = xsσ(x−1) = xσ̃(x−1)s

implies that a(σ) = s′s−1 = xσ̃(x−1), hence a is trivial in

H1(〈σ̃〉, ZG((sσ)`)).

The injectivity assumption then implies that s′s−1 = a(σ) is bσ̃(b−1) =
bsσ(b−1)s−1, and s′ = bsσ(b−1), with b ∈ ZK((sσ)`). It follows that

Int(b)(sσ) = s′σ = Int(x)(sσ).

Hence b−1x ∈ ZG(sσ), and x ∈ bZG(sσ) ⊂ KZG(sσ), as asserted. �

Remark. Let us verify the injectivity assumption of Proposition 3 in
the case considered in the Theorem. We use the fact (chapter I, end of
(2.1)) that if λ is an eigenvalue of sσ(s) then so is λ−1. Thus the semisim-
ple element sσ(s) in K is the identity, or has eigenvalues −1, 1, −1, or
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λ, 1, λ−1, λ2 6= 1. In the first case ZK(sσs) = K, and I = kσ̃k implies
ksJ = t(ksJ). This represents a quadratic form in 3 variables over R (=
ring of integers in F ), and these are parametrized by their discriminant,
in R×/R×2. If the form splits over F , thus the discriminant lies in F×2,
and in R×, then it lies in R×2, and the form splits already over R. The
injectivity follows.

In the second case, replacing s by a σ-conjugate (see (2.7)), we may
assume that sσ(s) = diag(−1, 1,−1), and s = diag(−1, 1,−1). Then an
element of ZG(sσ(s)) has the form a1 (a in GL(2, F ), entries of a1 indexed
by (i, j), i + j = odd, are 0), and σ̃a1 = ((det a)−1a)1. So 1 = a1σ̃a1

means a2 = det a, and a is a scalar, in R×. Taking any h ∈ GL(2, R) with
deth = a, we get h1σ̃(h−1

1 ) = a1.
In the third case, H1(〈σ̃〉, ZK((sσ)`)) is trivial (as in the second case) if

λ ∈ R×, so let us consider the case where F (λ) is a quadratic extension of
F . As in chapter I, (2.2), we may assume that T = ZG(sσ(s)) consists of
b1, b ∈ GL(2, F ), and s = (ae)1. Since sσ(s) = (−(det a)−1a2)1, a1 lies in
T , and σ̃(t) = sJ tb−1

1 Js−1

= (aewtb−1wea−1)1 = ((det b)−1aba−1)1 = ((det b)−1b)1.

Hence 1 = tσ̃(t) means that b is a scalar, in R×. The image in

H1(〈σ̃〉, ZG((sσ)`))

is trivial when b1 = c1σ̃(c−1
1 ) = (det c)1, where c1 ∈ T , hence b = det c lies

in the norm subgroup NF (λ)/FF (λ)×, and in R×, hence in NF (λ)/FR(λ)×,
where R(λ) denotes the ring of integers of F (λ). We conclude that c can
be taken in GL(2, R), and c1 in ZK(sσ(s)), as asserted. �

4. Proposition. If the elements kσ = sσ · u and k′σ = s′σ · u′ of Kσ
are stably conjugate, then sσ and s′σ are stably conjugate. If s = s′, then
u, u′ are stably conjugate in ZG(sσ).

Proof. Suppose that k′σ = Int(x)(kσ) for some x ∈ G = GL(n, F ),
where F is a finite Galois extension of F (in the course of this proof). We
have the K-decomposition

s′σ · u′ = Int(x)(sσ) · Int(x)u
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in G. The uniqueness of the K-decomposition in G implies that s′σ =
Int(x)(sσ), namely sσ, s′σ are stably conjugate. If sσ, s′σ are conjugate,
we may assume that s′σ = sσ, then

sσ · u′ = Int(x)(sσ) · Int(x)u

implies that x ∈ ZG(sσ) and Int(x)u = u′, as asserted. �

To prove the Theorem, decompose kσ = sσ · u (in our case σ(x) =
J · tx−1 · J−1). Then kσ(k) = sσ(s) · u2. We shall consider three different
cases, depending on whether sσ(s) is the identity I, or it is diag(−1, 1,−1),
or it is regular (its eigenvalues λ, 1, λ−1 are distinct). In all cases put

f̃0
sσ(u) =

∫
G/ZG(sσ)

f0(Int(x)(sσ · u))dx

=
∫
K/K∩ZG(sσ)

f0(Int(x)(sσ · u))dx = |K/K ∩ ZG(sσ)|f0(sσ · u),

(4.1)

where the second equality follows from Proposition 3. Note that f̃0
sσ(1) =

Φ(sσ, f0dh). Then

Φ(kσ, f0dg) =
∫
G/ZG(kσ)

f0(Int(x)(kσ))dx

=
∫
ZG(sσ)/ZG(sσ·u)

f̃0
sσ(Int(x)u)dx = Φ(u, f̃0

sσdx). (4.2)

Here Φ(u, f̃0
sσdx) denotes the orbital integral of the characteristic function

f̃0
sσ of the compact subgroup ZK(sσ) = K ∩ZG(sσ) of ZG(sσ) (multiplied

by |ZK(sσ)|−1) at the topologically unipotent element u in ZK(sσ).
As a useful example we compute explicitly the orbital integral of the

characteristic function 1K of the maximal compact subgroup K = GL(2, R)
in G = GL(2, F ), where — as usual — F is a local field of odd residual
characteristic with ring R of integers. Normalize the Haar measure on G to
assign K the volume |K| = 1. Put πππ for a generator of the maximal ideal
in R, q for the cardinality of the residue field R/πππR, | · | for the normalized
(by |πππ| = q−1) absolute value on F . Let E be a quadratic extension of F ;
then E = F (

√
θ) for some θ with |θ| equals 1 or q−1. The torus

T =
{
γ =

(
a bθ

b a

)
∈ G

}



54 II. Orbital integrals

in G is isomorphic to E×, it subgroup RT = T ∩K is isomorphic to R×E ,
the group of units in E×, via γ 7→ a+ b

√
θ.

5. Proposition. For a regular (b 6= 0) γ in RT , the orbital integral∫
G/T

1K(Int(x)γ)dx

is equal to

− 2/e
q − 1

+
q − 1 + 2/e

q − 1
|b|−1.

Here e = e(E/F ) is the ramification index of E over F . Note that b =
(γ − γ)/2

√
θ, where γ = a− b

√
θ.

Proof. One has the disjoint decomposition G =
⋃
m≥0

K
(

1 0

0 πππ−m

)
T , and

K ∩
(

1 0

0 πππ−m

)
T
(

1 0

0 πππm

)
=
{(

a πππmbθ

πππ−mb a

)
∈ K

}
' RE(m)×.

Here

RE(m) = {a+ b
√
θ; |b| ≤ |πππ|m, |a| ≤ 1} = R+ πmRE = R+Rπm

√
θ.

For any function f ∈ C∞c (G/T ) we then have∫
G/T

f(g)dg =
∑
m≥0

[R×E : RE(m)×]
∫
K

f

(
k
(

1 0

0 πππ−m

))
dk,

and so ∫
G/T

1K(Int(x)γ)dx =
∑
m≥0

[R×E : RE(m)×]1K
(

a πππmbθ

bπππ−m a

)

=
∑

0≤m≤B

[R×E : RE(m)×],

if |b| = |πππB |. Recall that πππ = πππeE and qE = q2/e for the uniformizer πππE and
residual cardinality qE of E. Since

[RE(m)× : 1 + πππmRE ] = [R× : R× ∩ (1 + πππmRE)] = (q − 1)qm−1,
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and
[R×E : 1 + πππmRE ] = (qE − 1)qem−1

E ,

we have that [R×E : RE(m)×] is qm if e = 2, while if e = 1 it is 1 when
m = 0 and (q+1)qm−1 when m ≥ 1. The proposition follows on taking the
sum over 0 ≤ m ≤ B. �

Proof of theorem; stable case. We deal separately with the three
cases, where the eigenvalues λ, 1, λ−1 of sσ(s) (sσ is the absolutely semisim-
ple part of δσ ∈ Kσ) have: I. λ 6= ±1; II. λ = −1; III. λ = 1. Of course, if
Φσ(δσ, f0dg) 6= 0, then we may assume that δ ∈ K.

Case I. Here δσ = sσ · u, and sσ(s) has distinct eigenvalues λ, 1, λ−1.
If δσ, δ′σ in Kσ are stably conjugate but not conjugate, then so are their
absolutely semisimple parts sσ, s′σ. Indeed, if sσ, s′σ are conjugate (in G),
then they are so in K by Proposition 3, hence we may assume that s = s′.
If δ′σ = Int(x)δσ then x ∈ ZG(sσ), and u, u′ ∈ ZG(sσ). As ZG(sσ) is a
torus, u′ = u.

Since λ, λ−1 are absolutely semisimple and distinct, neither λ nor −λ
are topologically unipotent (as this would imply λ = ±1, and these are
cases II, III). It follows that F (λ) is not ramified over F . Indeed, if it is,

λ = a+ b
√
θ, where |θ| = |πππ|, |a| = 1, |b| ≤ 1,

and
1 = λλ = a2 − b2θ = a2(1− θ(b/a)2).

But
(1− θ(b/a)2)q

N

→ 1 as N →∞.

Hence
a2qN

→ 1, and ± a = 1 + πππc, |c| ≤ 1,

for some choice of a sign. Then ±a, and consequently ±λ, is topologically
unipotent. For the same reason, if

λ = a+ b
√
θ, |θ| = 1, θ ∈ F − F 2,

and F (λ)/F is unramified, then |b| = 1 and |a| ≤ 1. A set of representatives
for the set of σ-conjugacy classes within the stable σ-conjugacy class of δ
is given (see (2.3)) by δy = (yhe)1,

e =
(
−1 0

0 1

)
, h ∈ GL(2, R) (if g =

(
a b

c d

)
then g1 =

(
a 0 b

0 1 0

c 0 d

)
),
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as y ranges over a set of representatives of F×/NE×, E = F (λ). Note that
δσ(δ) = ( −1

dethh
2)1. Take y = 1 to represent one class. When F (λ)/F is

unramified, the second representative y is not a unit, hence δy /∈ K, and
the stable orbital integral is the sum of a single integral (same conclusion
if λ ∈ F×):

Φst(δσ, f0dg) = Φ(δσ, f0dg) = |K/K ∩ ZG(sσ)|f0(sσ · u)

= |K ∩ ZG(sσ)|−1 = |ZK(sσ)|−1.

The same reasoning implies in our case (λ 6= ±1) that Φst(γ, f0
0 dh) =

Φ(γ, f0
0 dh), and λ ∈ F× or F (λ)/F is unramified, in which case γ can be

taken to be represented by
(
a bθ

b a

)
, |b| = 1 ≥ |a|. A stably conjugate, but

not conjugate, element, is of the form γ′ = Int
(

1 0

0 y

)
(γ), with y ∈ F −NE,

E = F (λ). In particular y is not a unit, and the conjugacy class of γ′

does not intersect KH (by Proposition 3, and since the eigenvalues of the
absolutely semisimple part sγ of γ are distinct). Hence

Φst(γ, f0
0 dh) = Φ(γ, f0

0 dh) =
∫
H/ZH(γ)

f0
0 (Int(x)(sγuγ))dx

= |K0/K0 ∩ ZH(sγ)|f0
0 (sγuγ) = |K0 ∩ ZH(sγ)|−1.

Since ZG(sσ) ' ZH(sγ), and the measures are chosen in a compatible
way, we conclude that Φst(δσ, f0dg) = Φst(Nδ, f0

0 dh) when δσ = sσ ·u, and
sσ(s) has distinct eigenvalues λ, 1, λ−1. The stable assertion of the theorem
is proven in case I. �

Case II. Here δσ = sσ ·u, sσ(s) has eigenvalues −1, 1,−1. All such s ∈ G
make a single σ-conjugacy class. Suppose that

δ′σ = s′σ · u′ = Int(x)(δσ)

for some x ∈ G(F ), F finite extension of F , with δσ, δ′σ in Kσ. Then
s′σ = Int(g)(sσ) with g in K by Proposition 3. Replacing x by g−1x, we
may assume that

s′ = s = diag(1, 1,−1).

Then u, u′ are stably conjugate in H. Hence

Φst(δσ, f0dg) =
∑
{u′}

Φ(sσ · u′, f0dg) =
∑
{u′}

Φ(u′, f̃0
sσdh) = Φst(u, f̃0

sσdh),
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where ZG(sσ) = H and f̃0
sσ = f0

0 . This we compare with Φst(u2, f0
0 dh).

Using the explicit computation of Proposition 5, it suffices to note that
for topologically unipotent µ, the value of |(µ − µ−1)2|1/2 is equal to that
of |(µ2 − µ−2)2|1/2, since |(µ + µ−1)2| = 1. This completes the proof of
Φst(δσ, f0dg) = Φst(Nδ, f0

0 dh) in Case II. �

Case III. By (2.5), there is one stable conjugacy class of δ ∈ G with
(δσ)2 = I, and it consists of two conjugacy classes, represented by σ and by
s′σ (s′ ∈ G). The centralizer ZG(σ) of σ in G is the split form SO(2, 1) =
PGL(2, F ), while that of s′σ, ZG(s′σ), is the anisotropic form SO(3) =
PD×, D = quaternion algebra over F .

6. Proposition. The orbit Int(G)(s′σ) does not intersect Kσ.

Proof. The element s′′ =
(

0 1

ε

πππ 0

)
, where ε is a nonsquare unit, lies in

Int(G)(s′σ), since the Witt invariant of

s′′J = diag(1,−ε,πππ) is (ε,πππ) = −1.

Note that the quadratic form associated to diag(a1, . . . , an) represents zero
precisely when its Witt invariant∏

j≤i

(ai, aj) is (−1,−1);

(·, ·) denotes the Hilbert symbol. If s′ lies in K, and s′J ts′J = 1, namely
s′J = t(s′J), then there is x ∈ K such that xs′J tx is diagonal, of the form
diag(u1, u2, u3), in K. Its Witt invariant is∏

j≤i

(ui, uj) = 1 = (−1,−1).

Hence s′J 6= zgs′′J tg for all g ∈ G. �

We conclude that at δσ = σ · u, u ∈ K topologically unipotent, u ∈
SO(2, 1) = ZG(σ) ' PGL(2, F ), we have

Φst(σu, f0dg) = Φ(σu, f0dg) = Φ(u, f̃0
σdh1).

Recall that the eigenvalues of uσ(u) = u2 are µ, 1, µ−1. Hence those of
u are µ′, 1, µ′−1, where µ′ is topologically unipotent in R×E with µ′2 = µ.
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Since µ′µ′ = 1, we have µ′ = ν/ν for some topologically unipotent ν in
R×E . Via the isomorphism SO(2, 1) ' PGL(2), u can be regarded as an
element of PGL(2, R) with eigenvalues ν, ν. The integral Φ(u, f̃0

σdh) is then
computed in Proposition 5. It has to be compared with the orbital integral
Φst(ν, f0

0 dh) on SL(2, F ), where ν is an element of K0 = SL(2, R) with
eigenvalue µ, µ−1. The stable orbital integral of a function f0 on SL(2, F )
coincides with its orbital integral over GL(2, F ), where f0 is extended to a
C∞c -function on GL(2, F ). This too is computed in Proposition 5. We are
reduced then to comparing

|(ν − ν)2/νν| 12 = |(1− ν/ν)(ν/ν − 1)| 12 = |(1− µ′)(1− µ′−1)| 12

= |(1− µ)(1− µ−1)| 12

with
|(µ− µ−1)2| 12 = |(µ2 − 1)(µ−2 − 1)| 12 .

These are equal since ν, µ′, µ are topologically unipotent.
This completes the proof of Φst(δσ, f0dg) = Φst(Nδ, f0

0 dh) in Case III,
hence in all stable cases. �

Proof of theorem; unstable case. Note that if λ, 1, λ−1 are the
(distinct) eigenvalues of the regular δσ(δ), δ ∈ K, then λ is a unit in F (λ),
and (1 + λ)(1 + λ−1), which lies in F , is a unit in F in cases I and III (−λ
is not topologically unipotent). But in case II we have

|(1 + λ)(1 + λ−1)| < 1.

In Case I, as noted in the discussion of the stable case, F (λ) is F or is
unramified over F , the unstable integral is a sum of a single term, and since
∆(δσ) = 1, if N1δ = γ1 is the regular class in H1 with eigenvalues λ, 1, λ−1,
and sγ1 is its absolutely semisimple part, we have

∆(δσ)Φus(δσ, f0dg) = Φ(δσ, f0dg)

= |K ∩ ZG(sσ)|−1 = |K1/K1 ∩ ZH1(sγ1)|f0
1 (γ1).

The tori ZG(sσ) and ZH1(sγ1) are isomorphic. The measures are chosen to
be compatible with this isomorphism. �
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In Case III, by Proposition 6 (and since ∆(δσ) = 1) we have the first
equality in

∆(δσ)Φus(δσ, f0dg) = Φ(σu, f0dg) = Φ(u, f̃0
σdh1) = Φ(u, f0

1 dh1).

Here δσ = σ · u, u being topologically unipotent. The second equality
follows from (4.2), and f0

1 = f̃0
σ by (4.1). Note that f0

1 is the characteristic
function of K1 = K ∩ ZG(σ) in H1 = ZG(σ) = SO(2, 1), divided by the
volume of the maximal compact K1 of H1. Now N1δ = u2. The eigenvalues
of u, viewed as an element of PGL(2, R), are ν, ν (topologically unipotent),
those of u2 are ν2, ν2, and |(ν2 − ν2)2| = |(ν − ν)2|, hence Proposition 5
implies that Φ(u2, f0

1 dh1) = Φ(u, f0
1 dh1). Hence

∆(δσ)Φus(δσ, f0dg) = Φ(u, f0
1 dg) = Φ(u2, f0

1 dh1) = Φ(N1δ, f
0
1 dh1).

�

In Case II, δσ = sσ · u ∈ Kσ,

sσ(s) = diag(−1, 1,−1), s = diag(−1, 1, 1),

and u ∈ SL(2, R) = ZK(sσ) has eigenvalues γ, γ−1. Then δσ(δ) has eigen-
values λ, 1, λ−1, where λ = −γ2, as does N1δ ∈ SO(2, 1). Also

∆(δσ) = |(1− ν2)(1− ν−2)|1/2 = |(ν − ν−1)2|1/2.

If λ ∈ F×, as an element of PGL(2, F ), γ1 is represented by diag(1, λ), and

Φ(γ1, f
0
1 dh1) =

∫
F

chK1

((
1 −x
0 1

)(
1 0

0 λ

)(
1 x

0 1

))
dx

=
∫
F

chK1

((
1 0

0 λ

)(
1 (1−λ)x

0 1

))
dx = 1,

where f0
1 = |K1|−1 chK1 , chK1 is the characteristic function of K1 in H1.

Indeed, −λ = ν2 is topologically unipotent, hence 1 − λ (and λ) are units
in R.

If λ /∈ F , it lies in a quadratic extension F (
√
θ), θ ∈ F −F 2, and we may

assume |θ| = 1 in the unramified case, and |θ| = |πππ| in the ramified case.
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Since νν = 1, we have ν = a+ b
√
θ, with a, b ∈ R. Since ν is topologically

unipotent, we have a ≡ 1 (modπππ), and |b2θ| < 1. Then

λ = −ν/ν = ν
√
θ/(ν
√
θ), ν

√
θ = bθ + a

√
θ,

and γ1, as an element of H1 = PGL(2, F ), is represented by
(
bθ aθ

a bθ

)
, with

eigenvalues bθ ± a
√
θ. In the ramified case, the determinant b2θ2 − a2θ

does not belong to R×F×2, hence Φ(γ1, f
0
1 dh1) = 0. In the unramified

case, γ1 = s1u1, where the absolutely semisimple part s1(∈ PGL(2, R)) has
eigenvalues whose quotient is −1. Hence

Φ(γ1, f1dh1) = |K1/ZK1(s1)|f1(γ1) = |ZK1(s1)|−1

by Proposition 1 (the integral ranges over the quotient of K1ZH1(s1) by
ZH1(γ1), and ZH1(s1) = ZH1(γ1) is a torus in H1).

Let us compare this with ∆(δσ)Φus(δσ, f0dg). If ν ∈ R×, then

Φus(δσ, f0dg) = Φ(sσ · u, f0dg)

=
∫
G/ZG(sσ·u)

f0(Int(x)(sσ · u))dx =
∫
H/ZH(u)

f0
0 (Int(x)u)dx.

Here H = ZG(sσ), and we used Proposition 3 in the last equality, not-
ing that f0(1) = |K|−1 and f0

0 (1) = |K0|−1. We may represent u by
diag(ν, ν−1), to get∫

F

chK0

((
1 −x
0 1

)(
ν 0

0 ν−1

)(
1 x

0 1

))
dx

=
∫
F

chK0

((
ν 0

0 ν−1

)(
1 (1−ν−2)x

0 1

))
dx = ∆(δσ)−1,

since |1− ν−2| = |ν − ν−1| = ∆(δσ), and ν is a unit.
If ν /∈ F×, then the stable conjugacy class of u in H contains a second

conjugacy class u′, represented by Int(g)u, where g ∈ H̃ = GL(2, F ) has
det g ∈ F −NE, E = F (ν); here NE = NormE/F E. Then

Φus(δσ, f0dg) = Φ(sσ · u, f0dg)− Φ(sσ · u′, f0dg)

=
∫
H/ZH(u)

f0
0 (Int(x)u)dx−

∫
H/ZH(u)

f0
0 (Int(gx)u)dx
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is zero when F (ν) is ramified over F , since g can be chosen in K0, with
det g in R×–R× ∩ NE, in this case. When F (ν) is unramified over F , we
have that NE× = πππ2ZR× ⊃ R×. Since H/ZH(u) is open in H̃/ZH̃(u),
the measure on H/ZH(u) defines one on H̃/ZH̃(u), and if κ denotes the
character of F× whose kernel is NE× (this is the unramified character of
F× of order exactly two), then

Φus(δσ, f0dg) =
∫
H̃/ZH̃(u)

f0
0 (Int(x)u)κ(detx)dx.

We may represent the topologically unipotent element u by
(
a bθ

b a

)
, θ ∈

R× −R×2.
It is important to note that δσ = sσ · u = u · sσ with

δJ = usJ =
(
bθ −a
−1

a −b

)
,

1
2
[(δJ) + t(δJ)] = diag(bθ,−1,−b).

The quadratic form associated to diag(a1, . . . , an) represents 0 precisely
when

∏
j≤i(ai, aj) is equal to (−1,−1), (·, ·) is the Hilbert symbol. Hence

κκκ(δ) is 1, and SO(diag(bθ,−1,−b)) splits, precisely when (−b, θ) = 1. In our
unramified case this happens precisely when b ∈ πππ2ZR×. Hence κ(b) = 1.
Note that

∆(δσ) = |(1− ν2)(1− ν−2)|1/2 = |(ν − ν−1)2|1/2

= |(ν − ν)2|1/2 = |4b2θ|1/2 = |b|.

Put t = |K0/ZK0(u)|. Then, with |b| = |πππn|,

∆(δσ)Φus(δσ, f0dg) = t
∞∑
m=0

δmκ(bπππ−m)|b|f0
0

((
a bθπππm

bπππ−m a

))

= tκ(b)|b|f0
0

((
a bθ

b a

))
+ t(1 + q−1)

∞∑
m=1

κ(bπππ−m)|bπππ−m|f0
0

((
a bθπππm

bπππ−m a

))

= [(−1)nq−n + (1 + q−1)
n∑

m=1

(−1)n−mqm−n]|ZK0(u)|−1 = |ZK0(u)|−1.

Since ZH(u) and ZH1(γ1) are isomorphic tori, and the measures are chosen
in a compatible way, the theorem follows in the unstable case II as well, as
asserted. �
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II.1.1 SL(2) to tori

We shall use below the theory of endoscopy for H = SL(2). We then
prepare here the theory of transfer of orbital integrals from H to the proper
endoscopic groups of H. For this, note that the connected component of
the centralizer of a noncentral semisimple element s in Ĥ = PGL(2,C) is
the diagonal subgroup Â, up to conjugacy. The centralizer is connected,
hence gives a nonelliptic endoscopic group, unless s = diag(1,−1), in which

case Z
Ĥ

(s) = Âo〈w〉, w =
(

0 1

1 0

)
. Consequently the nonelliptic endoscopic

groups of H are TE , where E is a quadratic extension of F , LTE = T̂E o
WE/F , the Weil group WE/F acting via its quotient Gal(E/F ) on T̂E =
(C× × C×)/C× (C× embeds diagonally in C× × C×) by σ(x, y) = (y, x).
The embedding eE : LTE → LH is (x, y) 7→ diag(x, y), σ 7→ wσ.

The group TE is the F -group {(x, y);xy = 1} (= Gm) with Gal(F/F )-
action τ(x, y) = (τx, τy) if τ |E = 1 and τ(x, y) = (τy, τx) if τ |E 6= 1. Then
TE(E) = {(x, x−1);x ∈ E×} and TE = TE(F ) = {(x, σx);xσx = 1, x ∈
E×} = E1. The group TE is isomorphic to an elliptic torus in H which we

realize as γ =
(
a bθ

b a

)
if x = a + b

√
θ, where E = F (

√
θ), θ ∈ R − R2 if

E/F is unramified, θ is πππ if E/F is ramified.
A character µ′ : TE = E1 → C× is parametrized by a map WE/F →

LTE , E× 3 z 7→ (µ′(z/z), 1), σ 7→ σ. Recall that the relative Weil group
WE/F is generated by z ∈ E× and σ with σ2 ∈ F − NE and σz = zσ.
The composition with eE : LTE → LH is the image in PGL(2,C) of
z 7→ diag(µ∗(z), µ∗(z)), σ 7→ wσ, namely the image Ind(µ′;WE/F ,WE/E)0
in PGL(2,C) of the two-dimensional representation Ind(µ∗;WE/F ,WE/E)
induced from any extension µ∗ toWE/E = E× of our µ′. We denote the two-
dimensional representation also by IndFE(µ∗), and the image in PGL(2,C),
which depends only on the restriction µ′ of µ∗ to E1, by IndFE(µ′)0.

This IndFE(µ∗) is reducible if µ∗ = µ∗ as a character of E×, that is
µ′ = 1 on E1, in which case there is a character µ of F× with µ∗(z) =
µ(zz). Indeed in the direct product LH = PGL(2,C) ×WE/F the image

eE(t(µ′)) =
(
µ∗(z) 0

0 µ∗(z)

)
wσ of the class t(µ′) =

(
µ∗(z) 0

0 µ∗(z)

)
σ of µ′ is

conjugate to
(
µ∗(z) 0

0 −µ∗(z)

)
σ, and IndFE(µ∗) is the reducible representation

µ ⊕ µχE of WF/F . Here χE is the character of WF/F = F× of order
2 whose kernel is the norm subgroup NE/FE

×. The character on WE/F
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with E× 3 z 7→ µ∗(z) = µ(zz) factorizes via WE/F → WF/F , z 7→ Nz,
Gal(E/F ) 3 σ 7→ σ2 ∈ F× −NE×, and µ : WF/F = F× → C×, x 7→ µ(x).

The group TE is compact. Hence its spherical functions are the con-
stants.

The unstable orbital integral of f0dh in C∞c (H) at γ which generates the
quadratic extension E over F is

Φus(γ, f0dh) =
∫
H/TE

f0(hγh−1)dh−
∫
H/T ′

E

f0(hγ′h−1)dh

=
∫
H̃/TE

f0(gγg−1)κ(g)dg.

Here γ′ is stably conjugate but not conjugate to γ. Hence there is g ∈ H̃ =
GL(2, F ) with determinant in F −NE, where κ(g) = κ(det g) and κ is the
isomorphism of F×/NE× with {±1}.

Recall that ∆(γ) = |2b
√
θ|. It is |b| if E/F is unramified and p 6= 2.

7. Lemma. Let E/F be unramified. Then the normalized unstable or-
bital integral

κ(b)∆(γ)Φus(γ, f0dh)

of the unit element f0dh = f0
0 dh of the Hecke algebra of H is equal to 1.

Proof. The computation is as in Proposition 5, except that in the sum
we need to insert the factor κ(πππm) = (−1)m. We get

κ(b)|b|
(

1− (q + 1)
B∑

m=1

(−q)m−1

)
= (−1)B |b|[1− (q + 1)

(−q)B − 1
−q − 1

] = 1.

�

Other spherical functions of H (E/F unramified) are generated by

fM = (−1)M |πππM | ch(K diag(πππM ,πππ−M )K),

M ≥ 1. Then ∫
H̃/TE

κ(x)fM
(
Int(x)

(
a bθ

b a

))
dx

=
∑
m≥1

[R×E : RE(m)×](−1)mfM
((

πππmb−1 0

0 πππ−mb

))
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= (q + 1)q−1|πππM ||πππ−Mb−1|(−1)B =
(

1 +
1
q

)
∆(γ)−1κ(b)

as the only term in the sum is indexed by m = M +B.
For general measures f0dh ∈ C∞c (H), using the same decomposition

it is easy to see that κ(b)∆(γ)Φus(γ, f0dh) is a locally constant measure
on TE , and any locally constant measure on TE is of such form for some
f0dh ∈ C∞c (H).

For the global case we need to consider also places which split in the
quadratic extension, namely E = F ⊕ F . There κ = 1, γ = diag(a, a−1),
its stable conjugacy class consists of a single conjugacy class,

F (γ, f0dh) = |a− a−1|
∫
N

fK0 (n−1γn)dn = |a|
∫
N

fK0 (γn)dn

implies that fA(γ) = F (γ, f0dh) is locally constant and compactly sup-
ported on the diagonal torus A, it is the characteristic function of |a| = 1
if f0 = f0

0 , and spherical if f0 is.
Globally, fix γ0 ∈ TE with eigenvalue x0 = a0 + b0

√
θ. Then |b0|v = 1

for almost all v, and note that κ(b) = κ( γ−γ
γ0−γ0

).

The embedding eE : LTE → LH defines a lifting of representations
in the unramified case. In this case the unramified character of TE is
µ′ = 1. The class parametrizing µ′ = 1 is t(µ′) = (1, 1)σ, whose image
in LH is e(t(µ′)) = wσ, which is conjugate to diag(1,−1)σ in the direct
product LH = PGL(2,C)×WE/F . Thus the endoscopic eE-lift of µ′ = 1 is
π = I(µ, µχE) where µ = 1. Working with GL(2, F ), and the corresponding
eE and TE in GL(2, F ), if µ∗(z) = µ(zz), namely µ∗ = µ∗, then eE(t(µ∗))
is conjugate to t(I(µ, µχE)) in GL(2,C). In terms of the Satake transform
we have

trµ∗(fTE
dt) = f∨TE

(t(µ∗)) = f∨0 (e(t(µ∗)))

= f∨0

((
µ(πππ) 0

0 −µ(πππ)

)
σ

)
= tr I(µ, µχE ; f0dh).

Working with SL(2, F ) we replace µ∗ by its restriction µ′ to E1, and µ by
1.

At the places where the global quadratic extension E/F splits, the local
component of the global character µ′ of A1

E/E
1 is a pair of characters µ1,

µ2 = µ−1
1 of the local F×, and the endoscopic, eE-lift to H is the induced

representation I(µ1, µ2). In the unramified case we have

trµ′(fTE
dt) = f∨TE

(t(µ′)) = f∨0 (e(t(µ′)))
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= f∨0

((
µ1(πππ) 0

0 µ2(πππ)

)
σ

)
= tr I(µ1, µ2; f0dh).

In section I.4 we considered orthogonality relations for characters χ on
H = SL(2, F ) and for twisted characters χσ on G = PGL(3, F ), and their
relationship. We need analogous investigation of the relations between char-
acter relations on H and on an elliptic torus TE = E1 of H, where F is a
local field. Thus we view TE as the group of t =

(
a bθ

b a

)
with det(t) = 1,

a, b ∈ F . Denote by t′ an element stably conjugate but not conjugate to t.
Put t =

(
a −bθ
−b a

)
. Let fTE

dt be a measure on TE . Let µ′ be a character
on TE .

8. Proposition. If fTE
(t)dt = κ(b)∆0(t)[Φ(t, f0dh) − Φ(t′, f0dh)] is

obtained from the measure f0dh on H, then

µ′(fTE
dt) =

∫
TE

µ′(t)fTE
(t)dt

is equal to 〈χµ′ , ′Φ(f0dh)〉e where ′Φ(t, f0dh) = |ZH(t)|−1Φ(t, f0dh) and
χµ′ is the unstable (χµ′(t′) = −χµ′(t)) function on H which is zero on the
regular set of H except for the stable conjugacy classes of t ∈ TE where
χµ′(t) = κ(b)

∆0(t)
(µ′(t) + µ′(t)).

We have that 〈χµ′ , χµ′1〉e is zero unless µ′, µ′1 are characters on the same
E1 and µ′ equals µ′1 or µ′1

−1, in which case the inner product is 4 if µ′2 = 1
and 2 if µ′2 6= 1.

Proof. Note that µ′(t) = µ′(t)−1 = µ′(t) where the first bar in con-
jugation in E over F , and the last is complex conjugation. Note that t is
conjugate to t by diag(−1, 1).

We distinguish two cases. If −1 lies in NE/FE
×, then diag(−1, 1) can

be realized in H, in NormH(TE) − TE (it is in HZGL(2,F )(TE)). Hence
κ(−1) = 1, fTE

(t) = fTE
(t) and the Weyl group W (TE) has [W (TE)] = 2

elements. Then

µ′(fTE
dt) =

∑
{u}

∫
TE

∆0(t)2 ·
µ′(t) + µ′(t)

2
· κ(b)κ

κκ(u)
∆0(t)

Φ(tu, f0dh)dt

=
∑
E′

∑
{u}

[W (TE′)]−1

∫
TE′

∆0(t)2χµ′(tu)Φ(tu, f0dh)dt = 〈χµ′ , ′Φ(f0dh)〉e.
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Here u ranges over the two-element group such that {tu} is {t, t′}, and κκκ
is the nontrivial character on {u}.

If −1 6∈ NE/FE× then t is stably conjugate but not conjugate to t, so we
choose t′ = t. Then κ(−1) = −1, thus κ(b(t)) = −κ(b(t)), fTE

(t) = fTE
(t)

and [W (TE)] = 1. Then

µ′(fTE
dt) =

1
2

∫
TE

∆0(t)2 · (µ′(t) + µ′(t))
κ(b(t))
∆0(t)

[Φ(t, f0dh)− Φ(t, f0dh)]dt

= 2 · 1
2

∑
E′

∫
TE′

∆0(t)2χµ′(t)Φ(t, f0dh)dt = 〈χµ′ , ′Φ(f0dh)〉e.

We used: ∫
TE

(µ′(t) + µ′(t))κ(b(t))∆0(t)Φ(t, f0dh)dt

=
∫
TE

(µ′(t) + µ′(t))κ(b(t))∆0(t)Φ(t, f0dh)dt.

For the last claim of the proposition, since κ(b) ∈ {±1} and κκκ(u) ∈ {±1},
we see that 〈χµ′ , χµ′1〉e is zero unless µ′ and µ′1 are characters on the norm
one subgroup of the same quadratic extension E = E′ of F . Since χµ′χµ′1
is a stable function and 2 · 1

2 = 1, the inner product is

|TE |−1

∫
TE

(µ′(t) + µ′(t))(µ′1(t) + µ′1(t))dt.

We are done by the first comment in this proof. �

II.2 Differential forms

2.1 The regular set of H. To compare orbital integrals on different
groups we need to compare Haar measures, or invariant differential forms
of highest degree. Let Ga be the additive group and ζ : H→ Ga the trace
map. If γ ∈ H has distinct eigenvalues γ1, γ2 = γ−1

1 , then the differential
dζ of ζ at γ is given by

dζ = dγ1 + dγ2 = dγ1 −
dγ1

γ2
1

= γ1
dγ1

γ1
− γ−1

1

dγ1

γ1
= (γ1 − γ2)

dγ1

γ1
,
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and it is nonzero. At a neighborhood of γ =
(
a b

c d

)
with γ1 = γ2 we may

assume that a 6= 0, d = (1 + bc)/a (or that d 6= 0, a = (1 + bc)/d; this case
is analogously treated). Then ζ(γ) = a+ d has the differential

(1− a−2(1 + bc))da+
c

a
db+

b

a
dc.

It vanishes only if a2 = 1 + bc, b = 0, c = 0, namely at γ = ±I. The subset
Hreg of H where dζ is nonzero is called the regular set.

Fix (nonzero invariant) differential forms ωH and µ (of highest degrees
3 and 1) on H and on Ga. Then µ defines a nonzero invariant form ωγ(µ)
on ZH(γ) (which is independent of ωH). If µ = dx then ωγ(µ) = dγ1

γ1
if γ is

regular, or = dx if γ = ±
(

1 b

0 1

)
. If γ is stably conjugate to γ′ then ωγ′(µ)

is obtained from ωγ(µ) by the induced isomorphism of ZH(γ) and ZH(γ′).
The fibers of ζ are the stable conjugacy classes in Hreg. The quotient of
ωH by ωγ(µ) defines an invariant form on the fibers of ζ in Hreg.

The trace map ζ extends to a map ζ̃ from GL(2) to X = G2
a, defined by

ζ̃(γ) = (tr γ,det γ) = (a+ d, ad− bc).

It has 2× 4 differential

diag(da db dc dd) · t
(

1 0 0 1

d −c −b a

)
,

which is nonsingular if one of a−d, b, c is nonzero. The singular set consists
of the scalars.

2.2 The σ-regular set of G. Similarly, let ξ : G→ Ga be defined by
ξ(δ) = trNδ. To compute its differential note that ξ(δ) + 1 = tr(δJ tδ−1J).
Then dξ is the trace of the differential of the map δ 7→ δJ tδ−1J , which is

dδ · J tδ−1J + δJ · d(tδ−1) · J.

But
0 = dI = d(δδ−1) = dδ · δ−1 + δ · dδ−1,

hence
dδ−1 = −δ−1 · dδ · δ−1,
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and

tr[δJ ·tδ−1 · d(tδ) ·tδ−1 · J ] = tr[Jδ−1 · dδ · δ−1J tδ] = tr[dδ · δ−1 · J tδJδ−1].

So
dξ = tr dδ[σ(δ)− δ−1σ(δ−1)δ−1].

Then dξ is zero for all dδ only if δσ(δ) = (δσ(δ))−1, thus δσ(δ) has square
1, hence has eigenvalues 1 or −1. Since δσ(δ) also has determinant 1, it is
semisimple and Nδ is ±I. We conclude that the σ-regular set Gσ-reg of G,
defined to consist of the δ with dξ 6= 0, consists of all δ with Nδ 6= ±I.

The fibers of ξ on the regular set Gσ-reg are stable σ-conjugacy classes.
We fix an invariant differential form ωG of highest degree on G. As above
µ determines an invariant form ωδ(µ) of maximal degree on ZG(δσ). If δ′

is stably σ-conjugate to δ then ZG(δ′σ) is isomorphic to ZG(δσ) over F
and ωδ(µ) transforms to a form ωδ′(µ) of ZG(δ′σ) via this isomorphism.

2.3 Differential forms on G. Suppose that δ × σ is semisimple in
Go 〈σ〉 (namely (δσ)2 = δσ(δ) is semisimple, hence γ = Nδ and γ1 = N1δ

are semisimple inH andH1). Here F is a local field and as usualG = G(F ).
Choose a neighborhood Xδ of the trivial coset ZG(δσ) in ZG(δσ)\G, a
section s : ZG(δσ)\G → G, and a σ-invariant neighborhood Yδ of the
identity in ZG(δσ) (all defined over F ) so that the morphism

Yδ ×Xδ → G, by (ε, g) 7→ s(g)−1εδσ(s(g)),

is an immersion (its differential is nonsingular at each point). For the
F -rational points we have that the map Yδ × Xδ → G is an analytic iso-
morphism onto an open subset of G. The neighborhoods Xγ , Yγ , Xγ1 ,
Yγ1 can be introduced for γ in H, γ1 in H1. Let Θ(ε) be the determinant
of the transformation Ad(εδ)σ − 1 on the Lie algebra Lie(ZG(δσ)\G) of
ZG(δσ)\G.

Lemma. Locally the invariant form ωG on G can be taken to be Θ(ε)ω1
δ∧

ω2, where ω1
δ is an invariant form of maximal degree on ZG(δσ), and ω2

is a highest degree invariant form on ZG(δσ)\G.

Proof. To compute the differential we introduce an extension F (η) of
F , the quotient of the polynomial ring F [x] by the ideal (x2). For any
algebraic group J over F there is an exact sequence

0→ LieJ→ J(F (η))→ J→ 1,
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with maps X 7→ I + ηX, h(I + ηX) 7→ h. To study the map (ε, h) 7→
h−1 · εδ × σ · h (ε in ZG(δσ), h in ZG(δσ)\G), we replace h by (I + ηY )h,
where Y is in Lie(ZG(δσ)\G), and εδ × σ by (I + ηX)(εδ × σ). Note that
(I+ ηY )−1 = I− ηY , and aY a−1 = Ad(a)Y . Then h−1 · εδ×σ ·h becomes

h−1(I − ηY )(I + ηX)(εδ × σ)(I + ηY )h

= h−1(I + η(X − Y ))(I + η ·Ad(εδ)σ)Y · εδ × σ · h
= h−1[I + η(X − (I −Ad(εδ)σ)Y )] · εδ × σ · h.

Then
ωG(X + Y ) = ω1(X) ∧ ω2([Ad(εδ)σ − I]Y )

= Θ(ε) · ω1(X) ∧ ω2(Y ),

as asserted. �

2.4 Lemma. Let J be a linear algebraic group defined over a local field
F , contained in the matrix algebra M. Suppose that δ is in J and ε in the
centralizer ZJ(δ) of δ in J . If ε is near 1, then ZJ(εδ) ⊂ ZJ(δ).

Proof. The group J acts on M by inner automorphisms. Enlarge F to
include all eigenvalues λ of δ. Let M(λ) be the corresponding eigenspace.
Then M = ⊕M(λ). The group ZJ(δ) is the intersection of J and M(1).
Since ε lies in ZJ(δ), εδ leaves each M(λ) invariant. If ε is near 1 all fixed
vectors of εδ lie in M(1). Indeed, if v lies in M(λ), then v = εδ · v = λε · v
and λ−1 is an eigenvalue of ε. This is impossible if λ 6= 1 and ε is near 1.
But then ZJ(εδ) ⊂ J ∩M(1) = ZJ(δ), as asserted. �

Applying the lemma with J = G o {1, σ} and δ in G, we have:

Corollary. If ε is in ZG(δσ) near 1 then ZG(εδσ) ⊂ ZG(δσ).

2.5 Lemma. (i) If Nδ = 1, ε ∈ ZG(δσ) is near 1 and N(εδ) has distinct
eigenvalues, then κκκ(εδ) = κκκ(δ).
(ii) If Nδ = −I; ε, ε′ in ZG(δσ) ' H are stably conjugate but not conjugate,
and N(εδ) has distinct eigenvalues, then κκκ(εδ) = −κκκ(ε′δ).

Proof. (i) Note that

εδJ + t(εδJ) = εδJ + t(δJ tε−1) = εδJ + ε−1t(δJ) = (ε+ ε−1)δJ.

Hence the value of κκκ(εδ) is 1 if and only if ZG( 1
2 (ε+ε−1)δσ) splits. But this

is contained in ZG(δσ) by Corollary 2.4. Hence the two special orthogonal
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groups split together.
(ii) We may assume that δ = e1, e =

(
−1 0

0 1

)
, and then ε = a1, ε′ = a′1,

with a, a′ in SL(2, F ). The elements εδ and ε′δ are σ-conjugate (and define
equivalent forms) if and only if a and a′ are conjugate (not only projectively
conjugate, since N(εδ) has distinct eigenvalues). �

2.6 Jacobians. Let ξ′ : ZG(δσ) → Ga be ξ′(ε) = ξ(εδ) = trN(εδ)
(ξ is defined in (2.2)). If ε ∈ ZG(δσ) is near 1 then ξ′, µ and ω1

δ can be
used as above to define a form ω′ε(µ) on the centralizer of ε in ZG(δσ).
This centralizer is equal to ZG(εδσ) by Corollary 2.4. One has ω′ε(µ) =
Θ(ε)ωεδ(µ).

Similarly we have

ωH = θ(η)ω1
γ ∧ ω2, ωH1 = θ1(η1)ω1

γ1 ∧ ω
2,

where θ(η) and θ1(η1) are the functions

det[Ad(ηγ)− I]LieZH(γ)\H, det[Ad(η1γ1)− I]LieZH1 (γ1)\H1 ,

on ZH(γ) and ZH1(γ1). The maps

ζ ′(η) = tr(ηγ), ζ ′1(η1) = tr(η1γ1)

are used to define ω′η(µ), ω′η1(µ), and we have

ω′η(µ) = θ(η)ωηγ(µ), ω′η1(µ) = θ1(η1)ωη1γ1(µ).

If γ = Nδ, γ1 = N1δ and ε is in ZG(δσ), then εδσ(εδ) = ε2δσ(δ) and ε

commutes with δσ(δ), so that

N(εδ) = ηγ (η ∈ ZH(γ)), N1(εδ) = η1γ1 (η1 ∈ ZH1(γ1)).

To compute Θ(ε), θ(η), θ1(η1), we may assume that ε, hence η, η1 are
semisimple, since these functions depend only on the semisimple parts of
ε, η, η1 in their Jordan decomposition. Further, we can work over the
algebraic closure F , and take δ to be the diagonal matrix diag(a, b, c). Then
ε can also be taken to be diagonal; hence ε = diag(d, 1, d−1) since it lies in
ZG(δσ). If the eigenvalues of N(εδ) are denoted by β1(= ad2/c), β2 = β−1

1 ,
then it can be checked that:
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2.7 Twisted Jacobian. If γ = I then θ(η) = 1 and since a 3×3 matrix
X = σX has the form (

x1 x2 0

x4 0 x2

0 x4 −x1

)
,

we have
Θ(ε) = (1 + d)(1 + d−1)(1 + d2)(1 + d−2).

If γ = −I, take δ = diag(−1, 1, 1), then θ(η) = 1 and since a 3×3 matrix

X = Ad(δ)σX has the form
(
x1 0 x3

0 0 0

x7 0 −x1

)
, we have

Θ(ε) = (1 + d2)(1 + d−2).

If γ 6= ±I then θ1(η1) = (1 − β1)(1 − β2), and since X = Ad(δ)σX has
the form diag(x1, 0,−x1), we have

Θ(ε) = (1− β2
1)(1− β2

2), θ(η) = (1− β2
1)(1− β2

2).

2.8 Pullback. The map ϕ : ZH(γ) → ZG(δσ) of I.2 can be used to
pull back the form ωδ(µ) to a form ϕ∗(ωδ(µ)) on ZH(γ). The comparison
is given by

2.8.1 Lemma. The form ϕ∗(ωδ(µ)) is equal to ωγ(µ).

The trace map ζ1 : H1 = SO(3)→ Ga is smooth on the regular set Hreg
1

of γ1 with distinct eigenvalues, and ωγ1(µ) can be introduced for such γ1.
Note that the centralizer ZH1(γ1) of γ1 in H1 is isomorphic to ZG(δσ).
The pullback of ωδ(µ) to ZH1(γ1) is denoted again by ωδ(µ).

2.8.2 Lemma. If γ1 = N1δ has distinct eigenvalues 1, γ′, γ′′ = γ′−1

(see I .2.3) then
ωγ1(µ) = (1 + γ′)(1 + γ′′)ωδ(µ).

Proof. To verify the lemmas it suffices to take the standard form µ =
dx on Ga. If Nδ has distinct eigenvalues then ZG(δσ) is abelian, one-
dimensional, and isomorphic to ZH(γ) and to ZH1(γ1). As in (2.1) we
compute

(ξ′)∗(µ) = dξ′ = (β1 − β2)
dβ1

β1
.
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But ω1
δ = edβ1

β1
for some constant e. It is the product of ω′ε(µ) and the

quotient ω1
δ/(ξ

′)∗(µ) = e/(β1 − β2) of one-forms on ZG(δσ) and Ga. The
same computation yields the same value for ω′η(µ) and ω′η1(µ). So it remains
to note that Θ(ε)/θ(η) = 1 and that

Θ(ε)/θ1(η1) = (1 + β1)(1 + β2),

and βi = γi when ε = I, to deduce the lemmas for δ with Nδ 6= ±I.
It remains to complete the proof of lemma 2.8.1. If γ = Nδ is I or

−I then the epimorphism ϕ : ZH(γ) → ZG(δσ), ϕ(η1) = ε, satisfies η =
N(ϕ(η1)) = ηm1 with m = 4 if γ = I and m = 2 if γ = −I. Indeed, if γ = I

we may take δ = I and

η1 =
(
a 0

0 a−1

)
∈ ZH(γ) = SL2

ϕ7→ ε =
(
a2 0

1

0 a−2

)
∈ ZG(δσ) = SO(3)

N7→ η =
(
a4 0

0 a−4

)
.

If γ = −I we may take δ =
(
−1 0

1

0 1

)
and

η1 =
(
a 0

0 a−1

)
∈ ZH(γ) = SL2

ϕ7→ ε =
(
a 0

1

0 a−1

)
∈ ZG(δσ)

N7→ η =
(
a2 0

0 a−2

)
.

Given ε near 1 we may choose η1 near 1. Then ZH(η1γ) = ZH(ηγ) and
ZG(εδσ) = ϕ(ZH(η1γ)).

It remains to show that ϕ∗(ω′ε(µ)) = m2ω′η(µ) at a unipotent ε in
ZG(δσ), for then

Θ(ε)ϕ∗(ωεδ(µ)) = m2θ(η)ωηγ(µ)

and at ε = 1, ϕ∗(ωδ(µ)) = ωγ(µ) (since θ(η) = 1 and Θ(ε)→ m2 as ε→ 1).
Let Oη, Oη1 , Oε be the conjugacy classes of η, η1, ε. Since we have a

commutative diagram

ZH(η1γ)\ZH(γ) ' Oη1 ↪→ ZH(γ)
'↓ ϕ ↓ ϕ ,

ZG(εδσ)\ZG(δσ) ' Oε ↪→ ZG(δσ)



II.3 Matching orbital integrals 73

the pullback ϕ∗(ω′ε(µ)) of the form ω′ε(µ) on ZG(εδσ) is a form on ZH(η1γ)
defined by the function ξ′◦ϕ : ZH(γ)→ Ga and the form ϕ∗(ω1

δ ) on ZH(γ).
Define ψ(η1) = ηm1 . Then

ξ′(ϕ(η1)) = trN(εδ) = tr ηγ = tr(ηa1γ) = ζ ′(ψ(η1)).

There is also a commutative diagram

ZH(η1γ)\ZH(γ) ' Oη1 ↪→ ZH(γ)
'↓ ψ ↓ ψ,

ZH(ηγ)\ZH(γ) ' Oη ↪→ ZH(γ)

hence ϕ∗(ω′ε(µ)) = ψ∗(ω′η(µ)). But

ψ∗(ω′η(µ))/ω′η(µ) = ψ∗(ϕ∗(ω1
δ ))/ϕ

∗(ω1
δ )

= θ(η)/θ(η1) =
(1− β2m

1 )(1− β2m
2 )

(1− β2
1)(1− β2

2)

is equal to m2 as β1 → 1. This completes the proof of lemma 2.8.1. �

II.3 Matching orbital integrals

3.1 Definitions. Let F be a local field. All objects below are defined
over F . A highest degree invariant differential form ωG determines a Haar
measure dg = dGg = dG on G. A maximal degree F -rational invariant
form ωδ on ZG(δσ) determines a measure dδ = dδt on ZG(δ′σ) for any
δ′ in G stably σ-conjugate to δ. The two measures dg, dδ′t determine a
quotient measure on the quotient ZG(δ′σ)\G. Let f be a smooth compactly
supported function on G, and put

Φ(δσ, fdg) = Φ(δσ, f ; dδ, dG) =
∫
ZG(δσ)\G

f(g−1δσ(g))
dg

dδt
.

If Nδ 6= 1 put

Φst(δσ, fdg) = Φst(δσ, f ; dδ, dG) =
∑
δ′

Φ(δ′σ, fdg).
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The sum is over a set of representatives for the σ-conjugacy classes in the
stable σ-conjugacy class of δ. If Nδ = 1 put

Φst(δσ, fdg) =
∑
δ′

κκκ(δ′)Φ(δ′σ, fdg).

If f0 is a smooth compactly supported function on H define

Φ(γ, f0dh) = Φ(γ, f0; dγ , dH) =
∫
ZH(γ)\H

f0(g−1γg)
dHh

dγt0

and
Φst(γ, f0dh) = Φst(γ, f0; dγ , dH) =

∑
γ′

Φ(γ′, f0dh).

Here dγ is a measure on ZH(γ), and dH is a measure on H. If γ = Nδ then
there is ϕ : ZH(γ) � ZG(δσ), and we take dγ = |[kerϕ]|−1ϕ∗(dδ). Thus the
dγ-volume of the maximal compact subgroup of ZH(γ) is |[kerϕ]|−1 times
the dδ-volume of the maximal compact subgroup of ZG(δσ), γ = Nδ.

If the functions f and f0 satisfy the relation

Φst(γ, f0; dγ , dH) = Φst(δσ, f ; dδ, dG)

for all γ, δ with γ = Nδ, we write f0dh = λ∗(fdg).

3.2 Proposition. For each fdg there is f0dh with f0dh = λ∗(fdg).
For each f0dh there is fdg with f0dh = λ∗(fdg).

Proof. Applying partition of unity and translating, when passing from
f to f0 (resp. f0 to f) we may assume that f (resp. f0) is supported on
a small neighborhood of a fixed semisimple element δ0 (resp. γ0). The
proposition is proved by dealing with the various possible γ0, δ0. If δ0 and
γ0 are such that γ0 = Nδ0 is nonscalar then the proof is simple, and it
remains to deal with γ0 = −I and γ0 = I.

Suppose that γ0 = −I. Fix a section s of ZG(δ0σ)\G in G. Given f and
η1 in ZH(γ0) = H, put ε = ϕ(η1). For η in some fixed neighborhood of I
define

f0(ηγ0) = f ′0(η1), f ′0(η1) =
∫
ZG(δ0σ)\G

f(g−1εδ0σ(g))
dG
dδ0

. (3.2.1)
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Here ψ : H → H, η1 7→ η = ηm1 (m = 2) has analytic inverse for η
near 1, and we put η1 = ψ−1(η). Put f0(ηγ0) = 0 otherwise. Note that
ϕ(H) = ZG(δ0σ), that ϕ(ZH(η′1)) = ZZG(δ0σ)(ε) = ZG(ε′δ0σ) if η′1 is near
1 and ε′ = ϕ(η′1). Further, dH = dγ0 = ϕ∗(dδ0), dη1 = ϕ∗(dεδ0), dη = dη1 .
Hence

Φst(ηγ0, f0; dη, dγ0) =
∑
η′

∫
ZH(η′)\H

f0(h−1η′γ0h)
dγ0
dη

=
∑
η′1

∫
ZH(η′1)\H

f ′0(h
−1η′1h)

dγ0
dη′1

= Φst(η1, f ′0; dη1 , dγ0)

=
∑
η′1

∫
ZH(η′1)\H

∫
ZG(δ0σ)\G

f(g−1ϕ(h−1η′1h)δ0σ(g))
dγ0
dη1

dG
dδ0

=
∑
ε′

∫
ZG(ε′δ0σ)\G

f(g−1ε′δ0σ(g))
dG
dεδ0

= Φst(εδ0σ, f ; dεδ0 , dG).

Here η ∈ H is near 1, and η′ ∈ H ranges over a set of representative for
the conjugacy classes within the stable conjugacy class of η. The element
η′ can be taken to be near 1. The same comment applies to η′1 = ψ−1(η′).
Then ε′δ0 (ε′ = ϕ(η′1) ∈ ZG(δσ)) ranges over a set of representatives for
the σ-conjugacy classes within the stable σ-conjugacy class of εδ0. Note
that ηγ0 = N(εδ0), so that f0 is the desired function.

Conversely, given f0 with support near γ0, (3.2.1) defines f ′0 for η1 ∈ H
near 1, and f is defined by

f(s(g)−1εδ0σ(s(g))) = f ′0(η1)β(g),

where β is a smooth compactly supported function on ZG(δ0σ)\G with∫
ZG(δ0σ)\G

β(g)dg = 1.

Next we deal with the case where γ = I. We replace H by an inner
form H ′ if necessary, so that ϕ : H′ → ZG(δσ) be defined over F . Then
ϕ : H ′ → ZG(δσ) is a local isomorphism and (3.2.1) defines a function
f ′0 on H ′. If η1 6= I then ϕ restricted to ZH(η1) = ZH′(η1) is not ϕη1 :
ZH(η1)→ ZZG(δσ)(ε) = ZG(εδσ), but its square. Here we take η1 near ±I.
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Hence dη1 = 1
|2|ϕ

∗(dεδ0). We have taken dγ0 = 1
|2|ϕ

∗(dδ0). As in the case
of γ = −I above, we have

Φst(η1, f ′0; dη1 , dγ0) = Φst(εδ0σ, f ; dεδ0 , dG).

Both sides are 0 when η1 is not close to ±I. Since ψ : η1 7→ η′ = ηm1
(m = 4) has an analytic inverse on H ′ in a neighborhood of I, we may
define a function f ′′0 on H ′ by f ′′0 (η′) = f ′0(η1).

As is well known, the orbital integrals of f ′′0 can be transferred to H.
This is clear if H ′ is isomorphic to H over F . Otherwise there exists f0 on
H with

Φst(η, f0; dη, dH) = Φst(η′, f ′′0 ; dη′ , dH′)

when η in H is regular and corresponds to η′ in H ′, and with

Φst(η, f0; dη, dH) = 0

if η has distinct eigenvalues in F× or it is a scalar multiple of a nontrivial
unipotent. In this case f0(±I) = −f ′′0 (±I). This is the required f0. The
passage back from f0 to f is done as in the case of γ = −I, but we have to
choose δ0 with Nδ0 = I and κκκ(δ0) = 1. �

3.3 Corollary. If f , f0 are compactly supported smooth functions on
G, H with

Φst(γ, f0; dγ , dH) = Φst(δσ, f ; dδ, dG)

for all γ = Nδ with distinct eigenvalues, then λ∗(f) = f0.

Proof. Choose f ′0 with f ′0 = λ∗(f). Then the stable orbital inte-
grals of f0 − f ′0 are 0 on the regular semisimple set, hence identically 0,
since the germs of Φst(f) at u = ±I are scalar multiples of f0(u) and

Φst
(
u
(

1 1

0 1

)
, f0

)
. �

3.4 Unstable lifting. Analogous discussion has to be carried out for
the transfer of functions from G to H1 = SO(3, F ). If γ = N1δ has eigen-
values 1, γ′, γ′′ with γ′ 6= γ′′, put

Φus(δσ, f) = Φus(δσ, f ; dδ, dG) =
∑
δ′

κκκ(δ′)Φ(δ′σ, f ; dδ, dG).
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If f1 is a smooth compactly supported function on H1 then

Φ(γ, f1dh1) = Φ(γ, f1; dγ , dH1) =
∫
ZH1 (γ)\H1

f1(h−1γh)
dh

dγt
,

for all regular semisimple γ. We say that f1 = λ∗1(f) if

Φ(γ, f1dh1) = |(1 + γ′)(1 + γ′′)|1/2Φus(δσ, fdg)

for all γ = N1δ with distinct eigenvalues, where dγ = ϕ∗(dδ) and ϕ :
ZH1(γ)→̃ZG(δσ).

Proposition. For each fdg there is f1dh1, and for each f1dh1 there is
fdg, with f1dh1 = λ∗1(fdg).

Proof. This is easily verified for a function f with support near δ0 and
a function f1 with support near a fixed element γ0, if γ0 = N1δ0 has distinct
eigenvalues, due to Lemma 2.8.2. The difficulty is when Nδ0 is −I, for then
there are several conjugacy classes in H1 of elements γ0 with eigenvalues 1,
−1, −1. For each quadratic extension of F there is such a γ0 in H1 (with

representative
(

0 θ

1 0

)
in GL(2, F ), θ in F but not in F 2). The proposition

defines Φ(γ, f1; dγ , dH1) at any γ in H1 with distinct eigenvalues; it is 0
unless the eigenvalues of γ are close to those of γ0. It has to be shown that
the function Φ(γ, f1dh1) is smooth at γ0 to use the classification theorem
of orbital integral on H1 to deduce the existence of f1. Namely, we have to
establish the smoothness at γ0 of the sum∑

ε′

κκκ(ε′δ)Φ(ε′δ0σ, f ; dδ, dG) =
∑
η′1

κκκ(ε′δ0)Φ(η′1, f
′
0; dη1 , dγ0)

of the proof of (3.2), multiplied by

|(1 + γ′)(1 + γ′′)|1/2 = |γ′′|1/2|1 + γ′|.

Here ϕ(η′1) = ε′, ϕ : H → ZG(δσ), and the product is smooth, since the
eigenvalues γ′, γ′−1 of γ = N(εδ0) are near −1. �

3.5 Unstable germs. It was noted above that there is a natural bi-
jection between the conjugacy classes of γ in H1 with eigenvalues 1, −1,
−1 and the quotient F×/F×2. The σ-conjugacy classes of δ in G with Nδ
equals the product of −1 and a nontrivial unipotent are also parametrized
by F×/F×2. The Hilbert symbol defines a pairing, which we denote by
〈γ, δ〉.
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Proposition. If γ in H1 has eigenvalues 1, −1, −1 and f1dh1 =
λ∗1(fdg), then

lim
γ1→γ

|(1 + γ′1)(1 + γ′′1 )|1/2Φ(γ1, f1; dγ1(µ), dH1)

=
∑
δ

〈γ, δ〉Φ(δσ, f ; dδ(µ), dG).

The sum is over σ-conjugacy classes of δ in G with Nδ = −1 times a
nontrivial unipotent. The eigenvalues of γ1 are 1, γ′1, γ

′′
1 .

Proof. As in (3.4) the expression on the left is

|(1 + γ′1)(1 + γ′′1 )|1/2Φ(γ1, f1; dγ′(µ), dH1) = Φus(δ1σ, f ; dδ′(µ), dG)

where δ1 = εδ0 and Nδ1 = γ1. If ϕ(η′1) = ε′, ϕ : H→̃ZG(δ0σ), by Lemma
2.8.1 this is equal to (the sum is over the conjugacy classes η′1 in the stable
class) ∑

η′1

κκκ(ϕ(η′1)δ0)Φ(η′1, f
′
0; dη′1(µ), dH).

Here η′1 is a regular element of H, and lies in some torus T .
The right side ∑

{δ;Nδ=− unip 6=−I}

〈γ, δ〉Φ(δσ, f ; dδ(µ), dG)

is equal to ∑
η1

〈γ, ϕ(η1)δ0〉Φ(η1, f ′0; dη1(µ), dH),

where δ = ϕ(η1)δ0, and the sum ranges over the nontrivial unipotent classes
η1 inH. It suffices to show the equality of the two sums only for f supported
on a small neighborhood of δ′ = ϕ(η′1)δ0, where δ′ is close to δ = ϕ(η1)δ0,
where η1 is a nontrivial unipotent in H.

So we may assume that

δ0 =
(
−1 0

1

0 1

)
, δ =

(
1 x

1

0 1

)
δ0, δ1 =

(
α αx

1

αε α

)
δ0,

where x ∈ F×, η1 =
(

1 x

0 1

)
, ε is near 0, η′1 =

( α αx

αε α

)
where α2(1−εx) = 1

since 1 − εx ∈ F×2 as ε is small; we may assume that α is also a square,
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since it is close to 1. It has to be shown that: when Nδ1 = γ1 → γ,
and δ1 is near δ, namely η′1 lies in the centralizer ZH(γ) of γ in H (as
Nδ1 = −1

det η′1
η′21), and it is near η1, then κκκ(δ′) = 〈γ, δ〉. But

1
2
[δ′J + t(δ′J)] =

(
xα 0

−1

0 −εα

)
,

hence κκκ(δ′) = (x,−ε). The centralizer ZH(γ) of γ splits over F (λ) with
λ2 − c = 0 for some c in F×, hence 〈γ, δ〉 = (c, x). But η′1 lies in ZH(γ)
only if (λ − 1)2 − εx = 0 splits in F (λ), namely if εx/c is a square in F×.
Hence

〈γ, δ〉 = (x, c) = (x, εx) = (x,−ε) = κκκ(δ1),

as asserted. �

3.6 Proposition. If λ∗1(fdg) = f1dh1 then f1(1) = |2|
∑

Φ(δσ, fdg),
where the sum is over the σ-conjugacy classes of δ with Nδ = 1. If γ = Nδ

is a nontrivial unipotent then

Φ(γ, f1; dγ(µ), dH1) = |2|Φ(δσ, f ; dδ(µ), dG). (3.6.1)

Proof. If Nδ = 1 and f ′0 is defined by (3.2.1) then

Φus(εδσ, f ; dεδ, dG) = κκκ(δ)Φ(η1, f ′0; dη1 , dH)

where ϕ : H → ZG(δ0σ), η1 is near 1 with ϕ(η1) = ε, hence κκκ(εδ) = κκκ(δ)
by Lemma 2.5. The factor |(1 + γ′)(1 + γ′′)|1/2 is smooth for γ′ near 1, the
asymptotic behavior permits the application of [L5], Lemma 6.1, hence f1
satisfies f1(1) = κκκ(δ)|2|f ′0(1). When κκκ(δ) = 1 the right side of (3.6.1) is the
limit of ∆1(η1)Φ(η1, f ′0dh) as η1 → 1, and the left side is the corresponding
limit of ∆1Φ(f1) as

N(εδ) = ε2Nδ = ε2 = η4
1 → 1;

η1 can be taken in the split set. �
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II.4 Germ expansion

This section is not used anywhere else in this work. We sketch the well-
known germ expansion of orbital integrals (cf. Shalika [Sl], Vigneras [Vi]),
from which one can deduce that the fundamental lemma of II.1 implies the
matching result of II.3.

For any g in G, the centralizer ZG(g) of g in G is unimodular (see,
e.g., Springer-Steinberg [SS], III, (3.27b), p. 234). By Bernstein-Zelevinski
[BZ1], (1.21), it follows that there is a unique (up to a scalar multiple)
nonzero measure (positive distribution) on every Int(G)-orbit O. By Rao
[Ra] for a general G in characteristic zero, and Bernstein [B], (4.3), p. 70,
for G = GL(n) in any characteristic, this extends to a unique (nonzero)
Int(G)-invariant measure ΦO on G whose support is the closure O of O in
G (ΦO is the orbital integral over O; it is a linear form on C∞c (G) — not
only C∞c (O) — which takes positive values at positive valued functions).

Let s be a semisimple element in a p-adic reductive group G. Its central-
izer ZG(s) in G is reductive, and also connected when the derived group
of G is simply connected ([SS], II, (3.19), p. 201). Lemma 19 of Harish-
Chandra [HC1], p. 52, can be used to reduce the G-orbital integrals near s
to ZG(s)-orbital integrals near the identity.

The set X of the elements in G whose semisimple part is in Int(G)s is
closed (see, e.g., [SS], III, Theorem 1.8(a), p. 217). There are only finitely
many Int(G)-orbits O in X (see Richardson [Ri], Proposition 5.2, and Serre
[Se], III, 4.4, Cor. 2). Since O is open in O, and dimO′ < dimO for every
orbit O′ ⊂ O, O′ 6= O (see Borel [Bo1], I.1.8 (“Closed Orbit Lemma”), and
Harish-Chandra [HC1], Lemma 31, p. 71), there are fO ∈ C∞c (G) with
ΦO(fO′) = δO,O′ for all orbits O,O′ in X. In fact, the O can be numbered
Oi (1 ≤ i ≤ k), with O1 = Int(G)s, Oj = ∪

i≤j
Oi closed in G, and Oj open

in Oj for all j. The fOj can then be chosen to be zero on Oi (i < j). We
may subtract a multiple of fOi (i > j) to have ΦOi(fOj ) = 0 also for i > j.

Lemma. For every f ∈ C∞c (G) there exists a G-invariant neighborhood
Vf of the identity in G, such that the orbital integral Φ(γ, f) of f is equal
to
∑
O ΦO(f)Φ(γ, fO) for all γ in Vf . The germ ΓO(γ) of Φ(γ, fO) at the

identity in G is independent of the choice of fO.

Proof. The function f ′ = f −
∑
O ΦO(f)fO satisfies ΦO(f ′) = 0 for
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all O ⊂ X. Denote by C∞c (X)∗ the space of distributions on X, and by
C∞c (X)∗G the subspace of Int(G)-invariant ones. Denote by C∞c (X)0 the
span of ~− g · ~ (~ ∈ C∞c (X), g ∈ G), where g · ~(x) = ~(Int(g−1)x). Then
C∞c (X)∗G = (C∞c (X)/C∞c (X)0)∗. The ΦO span C∞c (X)∗G. Hence f ′ is
annihilated by any element of (C∞c (X)/C∞c (X)0)∗. Then the restriction f

′

of f ′ to the closed subset X (see [BZ1], (1.8)) is in C∞c (X)0. Hence there
are finitely many ~i in C∞c (X), and gi ∈ G, with f

′
=
∑
i

(~i − gi · ~i).

Extend (by [BZ1], (1.8)) ~i to elements hi of C∞c (G). Then

f −
∑
O

ΦO(f)fO −
∑
i

(hi − gi · hi)

is (compactly) supported in the (G-invariant) open set G − X. Hence there
is a (G-invariant) neighborhood Vf of the identity in G where

f =
∑
O

ΦO(f)fO +
∑
i

(hi − gi · hi),

and the lemma follows. �

The fundamental lemma of II.1 can be deduced from the matching the-
orem of II.3 on using the following homogeneity result of Waldspurger.

Let G be any of the groups considered in [W2] (these include all the
groups considered here) g its Lie algebra, K a standard maximal compact
subgroup (i.e. the fixer of each point of a fixed face of minimal dimension
in the building of the reductive connected F -group G whose group of F -
points is G), and k its Lie algebra (which is a sub-R-algebra of g). Denote
by chK and chk the characteristic functions of K in G and k in g. Then
[W2] defines an isomorphism e : gtn → Gtu from the set gtn = {X ∈
g; lim
N→∞

XN = 0} of topologically nilpotent elements of g to the set Gtu =

{u ∈ G; lim
N→∞

uq
N

= 1} of topologically unipotent elements in G, named the

truncated exponential map. Let Onil denote the set of nilpotent orbits in
g. For each O ∈ Onil fix a G-invariant measure on O, and denote by ΦO(f)
the orbital integral of f ∈ C∞c (g) over O. Fix a maximal F -torus T , let t

be its Lie algebra, and denote by Treg and treg their regular subsets. For
each O ∈ Onil there exists a unique real positive valued function ΓTO on treg
satisfying the homogeneity relation

ΓTO(µ2H) = |µ|− dimOΓTO(H)
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for all µ ∈ F×,H ∈ treg, and such that for each f ∈ C∞c (g) one has that
the orbital integral

Φf (H) =
∫
G/ZG(H)

f(Int(x)H)

is equal to
∑

O∈Onil

ΓTO(H)ΦO(f) for each H in a neighborhood of 0 in treg.

Waldspurger’s fundamental coherence result — which is not used in our
proof — is the following (see [W2], Proposition V.3 and V.5).

Proposition ([W2]). For a sufficiently large p, for any H in treg∩gtn,
we have

Φ(e(H), chK) =
∑
O∈Onil

ΓTO(H)ΦO(chk).



III. TWISTED TRACE FORMULA

Summary. A trace formula — for a smooth compactly supported measure
fdg on the adèle group PGL(3,A) — twisted by the outer automorphism σ

— is computed. The resulting formula is then compared with trace formulae
for H = H0 = SL(2) and H1 = PGL(2), and matching measures f0dh and
f1dh1 thereof. We obtain a trace formula identity which plays a key role
in the study of the symmetric square lifting from H(A) to G(A). The
formulae are remarkably simple, due to the introduction of a new concept,
of a regular function. This eliminates the singular and weighted integrals
in the trace formulae.

Introduction

The purpose of this chapter is to compute explicitly a trace formula for
a test measure fdg = ⊗vfvdgv on G(A), where G = PGL(3) and A is the
ring of adèles of a number field F . This formula is twisted with respect to
the outer twisting

σ(g) = J tg−1J, J =
(

0 1

−1

1 0

)
,

and plays a key role in the study of the symmetric square lifting. We also
stabilize the formula and compare it with the stable trace formula for a
matching test measure f0dh = ⊗vf0vdhv on H(A), H = SL(2), and the
trace formula for a matching test function f1dh1 = ⊗vf1vdh1v on H1(A),
H1 = PGL(2). The final result of this section concerns a distribution I in
fdg, f0dh, f1dh1 of the form

I = I +
1
2
I ′ +

1
4
I ′′ +

1
2
I ′1 −

[
I0 +

1
4

∑
E

I ′′E −
1
2

∑
E

I ′E −
1
2

∑
E

IE +
1
2
I1

]
,

where each I is a sum of traces of convolution operators. The result asserts:
(3.5(1)) I = 0 if fdg has two discrete components;

83



84 III. Twisted trace formula

(3.5(2)) I is equal to a certain integral if fdg has (i) a discrete component
or (ii) a component which is sufficiently regular with respect to all other
components.

The result (3.5(1)) is used in the study of the local symmetric square
lifting in chapter V. The result (3.5(2)) can be used to show that I = 0
and to establish the global symmetric square lifting for automorphic forms
with an elliptic component.

The vanishing of I for general matching functions is proven in chapter
IV.

Our formulae here are essentially those of the unpublished manuscript
[F2;IX], where we suggested, in the context of the (first nontrivial) sym-
metric square case, a truncation with which the trace formula, twisted by
an automorphism σ, can be developed. This formula was subsequently
computed in [CLL] to which we refer for proofs of the general form of the
twisted trace formula. Our formulae here are considerably simpler than
those of [F2;IX]. This is due to the fact that we introduce here a new no-
tion, of a regular function, and compute only an asymptotic form of the
formula for a test function with a component which is sufficiently regular
with respect to all other components. For such a function f the truncation
is trivial; in fact f vanishes on the G(A)-σ-orbits of the rational elements
(in G) which are not σ-elliptic regular, and no weighted orbital integrals
appear in our formulae. In chapters V and IV we show that this simple,
asymptotic form of the formula suffices to establish the symmetric square
lifting, unconditionally. Similar ideas are used in [F1;IV] to give a simple
proof of basechange for GL(2), and in our work on basechange for U(3) (see
[F3]) and other lifting problems.

III.1 Geometric side

1.1 The kernel. Let F be a number field, A its ring of adèles, G
a reductive group over F with an anisotropic center, and L the space of
complex valued square-integrable functions ϕ on G\G(A). The group G(A)
acts on L by right translation, thus (r(g)ϕ)(h) = ϕ(hg). Each irreducible
constituent of the G(A)-module L is called an automorphic G(A)-module
(or representation). Let σ be an automorphism of G of finite order, and
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G′ = G o 〈σ〉 the semidirect product of G and the group 〈σ〉 generated by
σ. Extend r to a representation of G′(A) on L by putting (r(σ)ϕ)(h) =
ϕ(σ−1(h)). Fix a Haar measure dg = ⊗vdgv on G(A). Let f be any smooth
complex valued compactly supported function on G(A). Let r(fdg) be the
(convolution) operator on L which maps ϕ to

(r(fdg)ϕ)(h) =
∫
f(g)ϕ(hg)dg (g ∈ G(A)).

Then r(fdg)r(σ), which we also denote by r(fdg × σ), is the operator on
L which maps ϕ to

h 7→
∫
G(A)

f(g)ϕ(σ−1(hg))dg

=
∫
G(A)

f(h−1σ(g))ϕ(g)dg =
∫
G\G(A)

K(h, g)ϕ(g)dg,

where

K(h, g) = Kf (h, g) =
∑
γ∈G

f(h−1γσ(g)). (1.1.1)

The theory of Eisenstein series provides a direct sum decomposition of
the G(A)-module L as Ld ⊕ Lc, where Ld, the “discrete spectrum”, is a
direct sum with finite multiplicities of irreducibles, and Lc, the “continu-
ous spectrum”, is a direct integral of such. This theory also provides an
alternative formula for the kernel. The Selberg trace formula is an identity
obtained on (essentially) integrating the two expressions for the kernel over
the diagonal g = h. To get a useful formula one needs to change the order
of summation and integration. This is possible if G is anisotropic over F
or if f has some special properties (see, e.g., [FK2]). In general one needs
to truncate the two expressions for the kernel in order to be able to change
the order of summation and integration.

When σ is trivial, the truncation introduced by Arthur [A1] involves
a term for each standard parabolic subgroup P of G. For σ 6= 1 it was
suggested in [F2;IX] (in the context of the symmetric square) to truncate
only with the terms associated with σ-invariant P, and to use a certain
normalization of a vector which is used in the definition of truncation. The
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consequent (nontrivial) computation of the resulting twisted (by σ) trace
formula is carried out in [CLL] for general G and σ. In (2.1) we record
the expression, proven in [CLL], for the analytic side of the trace formula,
which involves Eisenstein series. In (2.2) and (2.3) we write out the various
terms in our case of the symmetric square.

In this section we compute and stabilize the “elliptic part” of the geo-
metric side of the twisted formula in our case. Namely we take G = PGL(3)
and σ(g) = J tg−1J , and consider

∫
G\G(A)

[∑
δ∈G

f(g−1δσ(g))

]
dg, (1.1.2)

where the sum ranges over the δ in G whose norm γ = Nδ in H, H =
SL(2, F ), is elliptic. Here we use freely the norm map N of section I.2, and
its properties.

In [F2;IX] the integral of the truncated
∑
δ∈G f(g−1δσ(g)) was explic-

itly computed, and the correction argument of [F1;III] was applied to the
hyperbolic weighted orbital integrals, to show that their limits on the sin-
gular set equal the integrals obtained from the δ with unipotent Nδ. These
computations are not recorded here for the following reasons. We need
the trace formula only for a function f which has a regular component or
two discrete components (the definitions are given below). In the first case
f(g−1δσ(g)) = 0 for every g in G(A) and δ in G such that Nδ is not elliptic
regular in H; hence the geometric side of the trace formula (twisted by σ)
is (1.1.2). In the second case the computations of [CLL], which generalize
those of [F2;IX], suffice to show the vanishing of all terms in the geometric
side, other than those obtained from (1.1.2).

1.2 Elliptic part. To compute and stabilize (1.1.2) let ZG(δσ) = {g ∈
G; g−1δσ(g) = δ} be the σ-centralizer of δ, and

Φ(δσ, fdg) =
∫
ZG(δσ)(A)\G(A)

f(g−1δσ(g))
dg

dt

the σ-orbital integral of fdg at δ. Implicit is a choice of a Haar measure
dt on ZG(δσ)(A), which is chosen to be compatible with isomorphisms (of
ZG(δσ) with ZG(δ′σ), or ZH(Nδ), etc.). Let {δ} denote the set of σ-
conjugacy classes in G of elements δ such that Nδ is elliptic in H. Then
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(1.1.2) is equal to

∑
{δ}

∫
ZG(δσ)\G(A)

f(g−1δσ(g))dg =
∑
{δ}

c(δ)Φ(δσ, fdg). (1.2.1)

The volume

c(δ) = |ZG(δσ)\ZG(δσ)(A)|

is finite since Nδ is elliptic in H. It is equal to |ZH(γ)\ZH(γ)(A)| if γ = Nδ

is elliptic regular (in H). For completeness we deal also with δ such that
Nδ = γ is ±I. Then c(δ) is |H\H(A)| if γ = −I, and |H1\H1(A)| if γ = I,
where H1 = PGL(2).

Recall from section I.2 that D(δ/F ) denotes the set of σ-conjugacy
classes within the stable σ-conjugacy class of δ in G. Thus D(δ/Fv) de-
notes the local analogue for any place v of F . For any local or global field,
D(δ/F ) is a pointed set, isomorphic to H1(F,ZG(δσ)), and we put

D(δ/A) = ⊕vD(δ/Fv) and H1(A, ZG(δσ)) = ⊕vH1(Fv, ZG(δσ))

(pointed direct sums). If γ = Nδ is −I, we have ZG(δσ) = H = SL(2) and
H1(F,ZG(δσ)) and H1(A, ZG(δσ)) are trivial. If γ = Nδ is I or elliptic
regular then H1(F,ZG(δσ)) embeds in H1(A, ZG(δσ)) and the quotient is
a group of order two. Denote by κκκ the nontrivial character of this group.

Denote by Φ(δσ, fvdgv) the σ-orbital integral at δ in Gv = G(Fv) of a
smooth compactly supported complex valued measure fvdgv on Gv. If Fv
is nonarchimedean, denote its ring of integers by Rv. Let f0

v dgv be the unit
element in the Hecke algebra Hv of compactly supported Kv = G(Rv)-
biinvariant measures on Gv. Consider fdg = ⊗vfvdgv, product over all
places v of F , where fvdgv = f0

v dgv for almost all v. Then, for every δ in
G we have Φ(δσ, fdg) =

∏
v Φ(δσ, fvdgv), where the product is absolutely

convergent. Since fdg is compactly supported the sum∑
δ′∈D(δ/F )

Φ(δ′σ, fdg) =
∑

δ′∈Im[D(δ/F )→D(δ/A)]

∏
v

Φ(δ′σ, fvdgv)

is finite for each fdg and δ. If γ = Nδ is elliptic regular or the identity
and κκκv is the component at v of the associated quadratic character κκκ on
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D(δ/A)/D(δ/F ), then the sum can be written in the form

1
2

∏
v

 ∑
δ′∈D(δ/Fv)

Φ(δ′σ, fvdgv)


+

1
2

∏
v

 ∑
δ′∈D(δ/Fv)

κκκv(δ′)Φ(δ′σ, fvdgv)

 . (1.2.2)

Note that for a given fdg and δ, for almost all v, the integral Φ(δ′σ, fvdgv)
vanishes unless δ′ and δ are equal σ-conjugacy classes in Gv.

Denote by f0
0vdhv the unit element of the Hecke algebra H0v of Hv =

H(Fv) with respect to K0v = H(Rv). Similarly introduce K1v, H1v, and
f0
1vdh1v. Recall that the norm maps N , N1 from the set of σ-stable conju-

gacy classes in G to the set of stable conjugacy classes in H, H1 are defined
in section I.2.

To rewrite (1.2.2) we recall the following

1.3 Proposition. (1) For each smooth compactly supported fvdgv on
Gv there exist smooth compactly supported f0vdhv on Hv and f1vdh1v on
H1v such that for all δ with regular γ = Nδ

Φst(Nδ, f0vdhv) =
∑

δ′∈D(δ/Fv)

Φ(δ′σ, fvdgv) (1.3.1)

and

Φ(N1δ, f1vdh1v) = |(1 + a)(1 + b)|1/2v

∑
δ′∈D(δ/Fv)

κκκv(δ′)Φ(δ′σ, fvdgv).

(1.3.2)

Here a, b denote the eigenvalues of Nδ.
(2) Moreover, if δ = I then

f0v(I) =
∑

κκκv(δ′)Φ(δ′σ, fvdgv) and f1v(I) =
∑

Φ(δ′σ, fvdgv),

where the sums are taken over δ′ in D(δ/Fv). If Nδ = −I then f0v(−I) =
Φ(δσ, fvdgv).

(3) If Fv has odd residual characteristic, then the triple f0vdhv = f0
0vdhv,

fvdgv = f0
v dgv, f1vdh1v = f0

1vdh1v satisfies (1.3.1) and (1.3.2).

Proof. (3) is proven in section II.1. (1) and (2) follow from this by a
theorem of Waldspurger [W3]. They are proven directly in section II.3. �
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Definition. The measures fvdgv, f0vdhv (resp. fvdgv, f1vdh1v) are
called matching if they satisfy (1.3.1) (resp. (1.3.2)) for all δ such that
γ = Nδ is regular.

Corollary. Put f0dh = ⊗vf0vdhv and f1dh1 = ⊗vf1vdh1v, where
fvdgv, f0vdhv and fvdgv, f1vdh1v are matching for all v, and f0vdhv =
f0
0vdhv and f1vdh1v = f0

1vdh1v for almost all v. Then (1.1.2) = (1.2.1) is
the sum of

Ĩ0 = |H\H(A)|[f0(I) + f0(−I)]

+
1
2

∑
{T}st

1
2
|T\T(A)|

∑
γ∈T

Φst(γ, f0dh) (1.3.3)

and 1
2 times

Ĩ1 = |H1\H1(A)|f1(I) +
1
2

∑
{T}

|T\T(A)|
∑

′
γ∈T

Φ(γ, f1dh1). (1.3.4)

In (1.3.3) {T}st indicates the set of stable conjugacy classes of elliptic
F -tori T in H.

In (1.3.4) {T} is the set of conjugacy classes of elliptic F -tori T in
H1 = SO(3).

The sum
∑′ in (1.3.4) ranges over the γ in T ⊂ SO(3, F ) whose eigen-

values are distinct (not −1). The sums are absolutely convergent.

Proof. (1.2.1) is a sum over σ-stable conjugacy classes δ which are
equal to c(δ) times (1.2.2) if Nδ is I or elliptic regular. If Nδ is elliptic
regular then the first term in (1.2.2) makes a contribution in the sum of
(1.3.3) by (1.3.1), and the second term in (1.2.2) contributes to (1.3.4) by
(1.3.2). If Nδ = I then the order is reversed, by (2) in the proposition. The
single σ-conjugacy class δ in G with Nδ = −I makes the term of f0(−I) in
(1.3.3). The coefficient of f0(I) in (1.3.3) is |H\H(A)| since the Tamagawa
number of SO(3) = PGL(2) is twice that of SL(2). The first one-half which
appears in (1.3.3) and (1.3.4) exists since the number of regular γ in T

which share the same set of eigenvalues is two. The sums in (1.3.3) and
(1.3.4) are absolutely convergent since they are parts of the trace formula
for f0 on H(A) and f1 on H1(A). �
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III.2 Analytic side

2.1 Spectral side. As suggested in (1.1) we shall now record the expres-
sion of [CLL] for the analytic side, which involves traces of representations,
in the twisted trace formula. Let P0 be a minimal σ-invariant F -parabolic
subgroup of G, with Levi subgroup M0. Let P be any standard (con-
taining P0) F -parabolic subgroup of G; denote by M the Levi subgroup
which contains M0 and by A the split component of the center of M. Then
A ⊂ A0 = A(M0). Let X∗(A) be the lattice of rational characters of A,
AM = AP the vector space X∗(A) ⊗ R = Hom(X∗(A),R), and A∗ the
space dual to A. Let W0 = W (A0, G) be the Weyl group of A0 in G. Both
σ and every s in W0 act on A0. The truncation and the general expression
to be recorded depend on a vector T in A0 = AM0 . In the case of (2.2)
below, this T becomes a real number, the expression is linear in T , and we
record in (2.2) only the value at T = 0.

Proposition [CLL]. The analytic side of the trace formula is equal to
a sum over
(1) The set of Levi subgroups M which contain M0 of F -parabolic subgroups
of G.
(2) The set of subspaces A of A0 such that for some s in W0 we have
A = As×σM , where As×σM is the space of s × σ-invariant elements in the
space AM associated with a σ-invariant F -parabolic subgroup P of G.
(3) The set WA(AM ) of distinct maps on AM obtained as restrictions of
the maps s×σ (s in W0) on A0 whose space of fixed vectors is precisely A.
(4) The set of discrete-spectrum representations τ of M(A) with (s×σ)τ '
τ , s× σ as in (3).

The terms in the sum are equal to the product of

[WM
0 ]

[W0]
(det(1− s× σ)|AM/A)−1 (2.1.1)

and ∫
iA∗

tr[MT
A(P, λ)MP |σ(P )(s, 0)IP,τ (λ; fdg × σ)]|dλ|.

Here [WM
0 ] is the cardinality of the Weyl group WM

0 = W (A0,M) of A0

in M ; P is an F -parabolic subgroup of G with Levi component M; MP |σ(P )
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is an intertwining operator; MT
A(P, λ) is a logarithmic derivative of inter-

twining operators, and IP,τ (λ) is the G(A)-module normalizedly induced
from the M(A)-module m 7→ τ(m)e〈λ,H(m)〉 (in standard notations).

Remark. The sum of the terms corresponding to M = G in (1) is equal
to the sum I =

∑
trπ(fdg × σ) over all discrete-spectrum representations

π of G(A), counted with their multiplicity.

2.2 Case of PGL(3). We shall now describe, in our case of G =
PGL(3) and σ(g) = J tg−1J , the terms corresponding to M 6= G in (1) of
Proposition 2.1. There are three such terms. Let M0 = A0 be the diagonal
subgroup of G.

(a) For the three Levi subgroups M ⊃ A0 of maximal parabolic sub-
groups P of G we have A = {0}. The corresponding contribution is

∑
M

∑
τ

2
6
· 1
2

trM(s, 0)IP,τ (0; fdg × σ)

=
1
2

∑
τ

trM(α2α1, 0)IP1(τ ; fdg × σ). (2.2.1)

Here P1 denotes the upper triangular parabolic subgroup of G of type (2,1).
We write α1 = (12), α2 = (23), J = (13) for the transpositions in the Weyl
group W0.

(b) The contribution corresponding to M = M0 and A = {0} is

1
6
· 1
4

∑
τ

trM(J, 0)IP0(τ ; fdg × σ)

+
1
6

∑
τ

trM(α1, 0)IP0(τ ; fdg × σ) +
1
6

∑
τ

trM(α2, 0)IP0(τ ; fdg × σ).

(2.2.2)

(c) Corresponding to M = M0 and A 6= {0} we obtain three terms, with
A = {(λ, 0,−λ)} and s = 1, with A = {(λ,−λ, 0)} and s = α2α1, and with
A = {(0, λ,−λ)} and s = α1α2. The value of (2.1.1) is 1

12 . It is easy to see
that the three terms are equal and that their sum is

1
4

∑
τ

∫
iR

tr[M(λ, 0,−λ)IP0,τ ((λ, 0,−λ); fdg × σ)]|dλ|. (2.2.3)
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The operator M is a logarithmic derivative of an operator M = m ⊗v
Rv. Here Rv denotes a normalized local intertwining operator. It is nor-
malized as follows. If I(τv) is unramified, its space of Kv-fixed vectors
is one dimensional, and Rv acts trivially on this space. In particular
R′τv

(λ)Iτv
(λ; fvdgv × σ) is zero if fvdgv is spherical, where R′τv

(λ) is the
derivative of Rτv (λ) with respect to λ.

The τ in (2.2.3) are unitary characters (µ1, µ2, µ3) of M0(A)/M0, which
are σ-invariant; thus µ2 = 1 and µ1, µ3 = 1. According to [Sh], where the
Rv are studied, the normalizing factor m = m(λ) is the quotient

L(1− 2λ, µ3/µ1)/L(1 + 2λ, µ1/µ3)

of L-functions. In this case the logarithmic derivative M has the form

m′(λ)/m(λ) + (⊗vR−1
v )

d

dλ
(⊗vRv).

Hence (2.2.3) is equal to 1
4 (S + S′), where

S =
∑
τ

∫
iR

m′(λ)
m(λ)

[
∏
v tr Iτv (λ; fvdgv × σ) ] |dλ| (2.2.4)

and

S′ =
∑
τ

∑
v

∫
iR

[trRτv (λ)−1Rτv (λ)′Iτv (λ; fvdgv × σ)]

·
∏
w 6=v

tr Iτw
(λ; fwdgw × σ) · |dλ|. (2.2.5)

In view of the normalization of the Rv = Rτv
(λ), the inner sum in S′

extends only over the places v where fv is not spherical.
The terms (2.2.1) and (2.2.2) contain arithmetic information which is

crucial for the study of the symmetric square. They are analyzed in (2.3)
and (2.4) below.

2.3 Contribution from maximal parabolics. We shall now study
the representations τ which occur in (2.2.1). Such a τ is a discrete-spectrum
representation of the Levi component M(A) of a maximal parabolic sub-
group of G(A). Hence τ has the form (π̃, χ), where π̃ is a discrete-spectrum
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representation of GL(2,A) and χ is a (unitary) character of A×/F×. The
central character of π̃ is χ−1 since G is the projective group PGL(3). Since
I(τ) ' σI(τ) ' I(στ) implies τ ' στ , the representation τ = (π̃, χ) is
σ-invariant. Hence χ = χ−1, and π̃ is equivalent to its contragredient π̃∨

which is π̃χ−1.
If χ = 1, then π̃ is a representation π1 of PGL(2,A).
If χ 6= 1 then χ is quadratic. Its kernel is F×NE/FA×E where E is a

quadratic extension of F . We conclude that (2.2.1) is equal to 1
2 (I ′1 + I ′).

Here

I ′1 =
∑
π1

tr IP1((π1, 1); fdg × σ) (2.3.1)

where π1 ranges over the discrete spectrum of H1(A), and

I ′ =
∑
χ

∑
π2

tr IP1((π2, χ); fdg × σ). (2.3.2)

The first sum of I ′ ranges over all quadratic characters χ(6= 1) of A×/F×.
The second sum of I ′ ranges over all discrete-spectrum representation π2 of
GL(2,A) with central character χ and π2 = χπ2. Such π2 is cuspidal, as it
cannot be one-dimensional. The intertwining operator M(s, π) of (2.2.1),
π = I(τ), is equal to ⊗vR(s, πv), where R(s, πv) takes I(τ), τ = (π̃, χ), to
I(χ, π̃), which is then taken by σ to I(π̃∨, χ−1). To simplify the notations
we write tr IP1(τ ; fdg × σ) for trR(s, πv)IP1(τ ; fdg × σ).

2.4 Contribution from minimal parabolics. The representations τ
which appear in (2.2.2) are (unitary) characters η = (µ1, µ2, µ3), µi being
a character of A×/F×, and µ1µ2µ3 = 1. In the first sum appear all η with
µ2
i = 1, but in the other two sums appear only the η with (s × σ)η =
η, namely η = (1, 1, 1). Since all representations which appear here are
irreducible, the intertwining operators M(s, η) are scalars. They can be
seen to be equal to −1, as in the case of GL(2), unless µi are all distinct,
where they are equal to 1. It remains to note that in the first sum each
representation I(η) with µi 6= 1 (i = 1, 2, 3) occurs six times, three times
if µi = 1 for a single i, and once if µi = 1 for all i. Then (2.2.2) takes the
form 1

4I
′′ − 3

8I
∗ − 1

8I
∗∗, where

I ′′ =
∑

η={χ,µχ,µ}

tr I(η; fdg × σ) (2.4.1)
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and

I∗ = tr I(1; fdg × σ), I∗∗ =
∑

η=(µ,1,µ)

tr I(η; fdg × σ). (2.4.2)

The χ and µ are characters of A×/F× of order exactly two. The symbol
{χ, µχ, µ} means an unordered triple of distinct characters.

III.3 Trace formulae

3.1 Twisted trace formula. We shall next state the twisted trace
formula. This can be done for a general test function f on using the com-
putations of [F2;IX] of the weighted orbital integrals on the nonelliptic
σ-orbits. However, we shall use the formula only for f with a regular com-
ponent or two discrete components (definitions soon to follow). For such f
the formula simplifies considerably, and we consequently state the formula
only in this case.

Definition. The function f = ⊗vfv on G(A) is of type E if for every δ
in G and g in G(A) we have f(g−1δσ(g)) = 0 unless Nδ is elliptic regular
in H.

Example. If f has a component fv which is supported on the set of g
in Gv such that Ng is elliptic regular in Hv, then f is of type E.

If f is of type E then K(g, g) of (1.1.1) is equal to the integrand of
(1.1.2), and the truncation which is applied to K(g, g) in [CLL] is trivial
(it does not change K(g, g)). Hence the computations of sections 1 and 2
(in this chapter III) imply the following form of the twisted trace formula.
Put

I =
∑
π

trπ(fdg × σ), (3.1.1)

where π ranges over all discrete-spectrum (cuspidal or one-dimensional)
G(A)-modules which are σ-invariant: π is called σ-invariant if π ' σπ,
where σπ(g) = π(σ(g)). By multiplicity one theorem for GL(n) the sum
ranges over π up to equivalence.
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Proposition. Suppose that f is a function of type E. Then we have

Ĩ0 +
1
2
Ĩ1 = I +

1
2
I ′1 +

1
2
I ′ +

1
4
I ′′ − 3

8
I∗ − 1

8
I∗∗ +

1
4
S +

1
4
S′.

Ĩ0 is defined in (1.3.3), Ĩ1 in (1.3.4), I in (3.1.1), I ′1 in (2.3.1), I ′ in (2.3.2),
I ′′ in (2.4.1), I∗ and I∗∗ in (2.4.2), S in (2.2.4), and S′ in (2.2.5). These
are distributions in fdg.

3.2 Regular functions. We shall next introduce a class of functions f
of type E which suffices to establish in chapters V and IV the symmetric
square lifting. Fix a nonarchimedean place u of F . Denote by ordu the
normalized additive valuation on Fu; thus ordu(πππu) = 1 for a uniformizer
πππu in Ru. Put qu for the cardinality of the residue field Ru/(πππu). Given an
element δ of Gu, denote by a, a−1 the eigenvalues of Nδ and put

F (δσ, fudgu) = |a− a−1|1/2u Φ(δσ, fudgu);

here | · |u is the valuation on Fu which is normalized by |πππu|u = q−1
u .

Definition. Let n be a positive integer. The function fu on Gu is called
n-regular if it is (compactly) supported on the set of δ with |ordu(a)| = ±n,
and F (δ, fudgu) = 1 there.

3.2.1 Proposition. For every fu = ⊗vfv (product over v 6= u) there
exists n′ > 0, such that f = fu ⊗ fu is of type E if fu is n-regular with
n ≥ n′.

Proof. Given fu there exists Cv ≥ 1 for each v 6= u, with Cv = 1
for almost all v (Cv depends only on the support of fv) with the following
property. Let Au be the ring of adèles of F without component at u. If δ
is an element of G such that the eigenvalues a, a−1 of Nδ lie in F×, then
C−1
v ≤ |a|v ≤ Cv (v 6= u). Put Cu =

∏
v 6=u Cv. The product formula∏

v |a|v = 1 on F× implies that C−1
u ≤ |a|u ≤ Cu. The least integer n′ with

qn
′

u > Cu has the property asserted by the proposition. �

Let µu be a σ-invariant character of the diagonal subgroup A(Fu). Then
there is a character µ0u of Fu with µu(diag(a, b, c)) = µ0u(a/c). Denote by
I(µu) the Gu-module normalizedly induced from the associated character
µu of the upper triangular subgroup, and by I0(µ0u) theHu-module normal-

izedly induced from
(
a b

0 a−1

)
7→ µ0u(a). A standard computation (I.3.10)
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implies that if fudgu, f0udhu are matching then

tr I(µu; fudgu × σ) = tr I0(µ0u; f0udhu). (3.2.2)

If fu is n-regular, then f0u is n-regular: it is supported on the orbits of

γ =
(
a 0

0 a−1

)
with |ordu(a)| = n,

and F (γ, f0udhu) = 1 there. If now (3.2.1) is nonzero, then µ0u and µu are
unramified. Put z = µ0u(πππu). We conclude

3.2.3 Lemma. If fu is n-regular then (3.2.2) is zero unless µu is unram-
ified, in which case we have tr I(µu; fudgu × σ) = zn + z−n.

Definition. The function fv on Gv is called discrete if Φ(δσ, fvdgv) is
zero for every δ such that the eigenvalues a, a−1 of Nδ are distinct and lie
in F×v .

Example. If fv is supported on the σ-elliptic regular set then it is dis-
crete.

3.2.4 Corollary. Fix a finite place u of F . For every fu = ⊗v 6=ufv
which has a discrete component (at u′ 6= u) there exists a bounded integrable
function d(z) on the unit circle in the complex plane with the following
property. For every n ≥ n′(fu) and n-regular fu, we have

Ĩ0 +
1
2
Ĩ1 = I +

1
2
I ′ +

1
4
I ′′ +

1
2
I ′1 +

∫
|z|=1

d(z)(zn + z−n)|d×z|.

Proof. Recall that the I are linear functionals in f = fu ⊗ fu. Since
fu, hence also f , has a discrete component, it is clear (from (3.2.2)) that
I∗ = I∗∗ = S = 0, and that the sum over v in (2.2.5) (where S′ is defined)
ranges over v = u′ only. The sum over τ in (2.2.5) ranges over a set
of representatives for the connected components of the one-dimensional
complex manifold of σ-invariant characters of A(A)/A whose component
τu at u is unramified. We may choose τ with τu = 1. Put z = qλu for λ in
iR. Then tr Iτu

(λ; fudgu × σ) = zn + z−n by Lemma 3.2.3. Of course, z
depends on λ only modulo 2πiZ/ log qu. Since the sum over τ , the integral
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over iR, and product over w 6= u, u′ in (2.2.5) are absolutely convergent,
the function

d(z) =
∑
τ

∑
k∈A

[
trRτu′ (λ+ k′)−1Rτu′ (λ+ k′)Iτu′ (λ+ k′; fu′dgu′ × σ)

]
·
∏

w 6=u,u′
tr Iτw

(λ+ k′; fwdgw × σ),

where k′ = k2πi/ log qu, has the required properties. �

This corollary can be used to prove the symmetric square lifting for au-
tomorphic representations with an elliptic component. However, in chapter
IV we prove an identity of trace formulae for sufficiently many test mea-
sures to deal with all automorphic representations. For the local work in
chapter V we use also a simpler form of the formula, as follows.

3.2.5 Proposition. If f = ⊗vfv has two discrete components then

Ĩ0 +
1
2
Ĩ1 = I +

1
2
I ′ +

1
4
I ′′ +

1
2
I ′1.

Proof. The terms in the geometric side of the twisted trace formula
which are associated with nonelliptic σ-conjugacy classes are computed
explicitly in [F2;IX] and also in [CLL]. They are similar to those obtained
in the trace formulae of groups of rank one. In particular, they vanish if f
has two discrete components. As noted in (3.2.4) we have I∗ = I∗∗ = S = 0
if f has a single discrete component. It is clear that S′ = 0 if f has two
discrete components, and the proposition follows. �

Remark. If f has a discrete component and a component as in Example
(3.2.3) then f is of type E and Proposition 3.2.5 follows at once from
Proposition 3.1.

3.3 Trace formula for H. The twisted trace formula for a function
f on G(A) is analogous to the familiar trace formula for a function f0 on
H(A). We briefly recall this formula. Again we use only a function of type
E, for which the weighted and singular orbital integrals vanish. The elliptic
regular part, computed analogously to (1.1.2) and 1.2, has the form∫

H(A)/H

∑
γ∈H′

f0(hγh−1)dh =
∑
γ∈H′

c(γ)Φ(γ, f0dh)
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=
1
2

∑
γ∈H′

c(γ)Φst(γ, f0dh) +
1
2

∑
E

c(E)
2

∑
γ∈T ′

E

Φus(γ, f0dh).

Here H ′ denotes the set of regular elliptic elements in H; E ranges over
the quadratic field extensions of F ; T ′E indicates the regular elements in TE
(thus γ 6= ±1); c(γ) = c(E) = |ZH(γ,A)/ZH(γ)| = |A1

E/E
1| = 1. The 2nd

1
2 in the sum over E is there since Φus(γ) = Φus(γ), so γ and γ are counted
twice.

By Lemma II.1.7 we introduce

fTE ,v(γ) = κv(b)∆v(γ)Φus(γ, f0vdhv)

for γ ∈ TE,v. Note that fTE
depends on the choice of measure dt on

ZH(γ,A) which has c(E) = 1. By the product formula

fTE
(γ) =

∏
v

fTE ,v(γ)

is equal to Φus(γ, f0dh). The trace formula for TE(A) = A1
E , which is

the Poisson summation formula, expresses
∑
γ∈TE

fTE
(γ) as

∑
µ′ µ
′(fTE

dt),
where µ′ ranges over the characters A1

E/E
1 → C×. Note that with µ′(t) =

µ′(t) (= µ′(t)−1) we have

µ′(fTE
dt) =

∫
A1

E
/E1

µ′(t)fTE
(t)dt =

∫
A1

E
/E1

µ′(t)fTE
(t)dt = µ′(fTE

dt).

Hence 1
4

∑
µ′ µ
′(fTE

dt) = 1
2I
′
E + 1

4IE ,

I ′E =
∑
µ′ 6=µ′

′ µ′(fTE
dt), IE =

∑
µ′=µ′

µ′(fTE
dt),

where
∑′ means here a sum over a set of representatives of equivalence

classes µ′ ∼ µ′. Also note that µ′(fTE
dt) = trµ′(fTE

dt).
On the other hand the geometric side of the trace formula is equal to

the spectral side, which is I0 + 1
4

∑
E I
′′
E + 1

2S0 + 1
2S
′
0. Here

I0 =
∑
π0

m(π0) trπ0(f0dh).
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The sum over π0 ranges over all equivalence classes of discrete-spectrum
irreducible representations of H(A), and m(π0) indicates the multiplic-
ity of π0 in the discrete spectrum. Further, in standard notations, I ′′E =
trM(χE)I0(χE , f0dh),

S0 =
∫
iR

∑
η

m(η)′

m(η)
tr I0(η, f0dh)|dλ|

and

S′0 =
∫
iR

∑
η

∑
v

tr{Rv(η)−1Rv(η)′I0(η; f0vdhv)}·
∏
w 6=v

tr I(ηw; f0wdhw)·|dλ|.

We conclude

Proposition. (1) For every fu0 dh = ⊗vf0vdhv (v 6= u) there is n′ > 0
such that for every n-regular f0u with n ≥ n′ we have

Ĩ0 = I0 +
1
4

∑
E

I ′′E −
1
2

∑
E

I ′E −
1
4

∑
E

IE −
1
4
I∗0 +

1
2
S0 +

1
2
S′0.

(2) If in addition fu0 has a discrete component f0u′ then there is a func-
tion d0(z), bounded and integrable on |z| = 1, depending only on fu0 , such
that

Ĩ0 = I0 +
1
4

∑
E

I ′′E −
1
2

∑
E

I ′E −
1
4

∑
E

IE +
∫
|z|=1

d0(z)(zn + z−n)|d×z|

for every n-regular f0u with n ≥ n′.
(3) If f0 = ⊗vf0v has two elliptic components then

Ĩ0 = I0 +
1
4

∑
E

I ′′E −
1
2

∑
E

I ′E −
1
4

∑
E

IE .

Proof. It remains to recall that Ĩ0 is defined in (1.3.3) and I∗0 =
tr I(1, f0dh) is equal to I∗ of (2.4.2) for fdg matching f0dh. �

3.4 Trace formula for H1H1H1. We also need the trace formula for a test
function f1 = ⊗vf1v on H1(A) = PGL(2,A). It suffices to consider f1
analogous to the f0 of (3.3). We first state the formula and then explain
the notations.
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Proposition. (1) For every fu1 = ⊗v 6=uf1v there is n′ > 0 such that
for every n-regular f1u with n ≥ n′ we have

Ĩ1 = I1 −
1
4
I∗1 −

1
4
I∗∗1 +

1
2
S1 +

1
2
S′1.

(2) If in addition fu1 has a discrete component f1u′ , then there is a function
d1(z), bounded and integrable on |z| = 1, depending only on fu1 , such that

Ĩ1 = I1 +
∫
|z|=1

d1(z)(zn + z−n)|d×z|

for every n-regular f1u with n ≥ n′.
(3) If f1 = ⊗vf1v has two elliptic components then Ĩ1 = I1.

Proof. Here I1 =
∑

trπ1(f1dh1). The sum ranges over all cuspidal
and one-dimensional H1(A)-modules. Multiplicity one theorem for PGL(2)
implies that π1 ranges over equivalence classes of representations. The sums
I∗1 and I∗∗1 are defined analogously to I∗ and I∗∗ of (2.4.2). They are equal
to I∗ and I∗∗ for fdg matching f1dh1. Their sum is

I∗1 + I∗∗1 =
∑
wη=η

tr I1(η; f1dh1);

for a character η of the diagonal subgroup of H1(A) we put wη(diag(a, b)) =
η(diag(b, a)). As usual,

S1 =
∫
iR

m(η)′

m(η)
tr I1(η; f1dh1)|dλ|

and S′1 is∫
iR

∑
η

∑
v

tr[Rv(η)−1Rv(η)′I1(η; f1vdh1v)] ·
∏
w 6=v

tr I1(ηw; f1wdh1w) · |dλ|.

�

3.5 Comparison. Finally we compare the formulae of (3.2), (3.3), (3.4)
for measures fdg = ⊗vfvdgv on G(A), f0dh = ⊗vf0vdhv on H(A), and
f1dh1 = ⊗vf1vdh1v on H1(A), such that f0vdhv matches fvdgv for all v,
and f1vdh1v matches fvdgv for all v. (Had we not known that f0

1vdh1v and
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f0
v dgv match we could work with f which has a component fv such that
f1v = 0 matches fvdgv and f1 = 0). Define I to be the difference

I = I +
1
2
I ′ +

1
4
I ′′ +

1
2
I ′1 −

[
I0 +

1
4

∑
E

I ′′E −
1
2

∑
E

I ′E −
1
4

∑
E

IE +
1
2
I1

]
.

It is an invariant distribution in fdg, depending only on the orbital integrals
of fdg.

Proposition. (1) If f has two discrete components then I = 0.
(2) Suppose that fu = ⊗v 6=ufv has a discrete component. Then there

exists an integer n′ ≥ 1 and a bounded integrable function d(z) on |z| = 1,
depending only on fu, fu0 , f

u
1 , such that for all n-regular functions fu, f1u,

and f0u with n > n′ we have

I =
∫
|z|=1

d(z)(zn + z−n)|d×z|.

Proof. This follows at once from (3.2.4), (3.2.5), (3.3), and (3.4). �

Concluding remarks. (1) is used in the local study of chapter V. In
chapter IV we prove (2) without the assumption that fu has a discrete
component. This is used in chapter V to show that I = 0 for any matching
fdg, f0dh, f1dh1. This is used in chapter V to establish the symmetric
square lifting for all automorphic representations.
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Summary. The techniques of chapter III, based on the usage of regular
functions to simplify the trace formula, are pursued to extend the results of
chapter III to sufficiently many test functions to permit proving in chapter
V the symmetric square lifting for all representations of SL(2,A) and self-
contragredient representations of PGL(3,A).

Introduction

Put H1 = PGL(2). Let fv (resp. f0v, f1v) denote a complex-valued,
smooth (that is, locally-constant if Fv is nonarchimedean), compactly-
supported function on Gv (resp. Hv, H1v). If Fv is nonarchimedean put
K1v = H1(Rv), and let f0

v (resp. f0
0v, f

0
1v) be the measure of volume one

which is supported on Kv (resp. K0v, K1v) and is constant on this group.
Here we used the uniqueness of the Haar measure (up to a constant) to
identify the space of locally-constant compactly-supported measures with
the space of locally-constant compactly-supported functions on Gv (resp.
Hv, H1v) once a Haar measure is chosen.

At any place v, the functions fv and f0v (resp. fv and f1v) are called
matching if they have matching orbital integrals. For a definition see section
II.3. Briefly, they satisfy

∆(δσ)Φst(δ, fvdg) = ∆0(γ)Φst(γ, f0vdh)

for every δ in Gv with regular norm γ = Nδ, and

∆(δσ)Φus(δ, fvdg) = ∆1(γ1)Φ1(γ1, f1vdh1)

for every δ in Gv with regular norm γ1 = N1δ. Here Φst(δ, fvdg) means
“stable σ-orbital integral of fvdg at δ”, and Φus(δ, fvdg) is the “unstable
σ-orbital integral of fvdg at δ”. These are defined and studied in section
II.3.

The Theorem of section II.1 asserts that f0
v dg and f0

0vdh are matching,
and that f0

v dg and f0
1vdh1 are matching. This local proof relies on a twisted

102
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analogue of Kazhdan’s decomposition of a compact element into its topo-
logically unipotent and its absolutely semisimple parts. There are other
proofs of these assertions (see, e.g., §4 of the paper [F2;II], for a proof of
the first assertion), but they seem to be more complicated.

Let fdg = ⊗vfvdgv (resp. f0dh = ⊗vf0vdhv, f1dh1 = ⊗vf1vdh1v) be
measures on G(A) (resp. H(A), H1(A)) such that (1) fvdgv = f0

v dgv,
f0vdhv = f0

0vdhv, f1vdh1v = f0
1vdh1v for almost all v, and such that (2)

fvdgv and f0vdhv, and fvdgv and f1vdh1v, are matching for all v. The mea-
sures fdg, f0dh, f1dh1 exist since the conditions (1) and (2) are compatible,
namely f0

v dgv and f0
0vdhv as well as f0

v dgv and f0
1vdh1v are matching.

In section III.3, we defined various sums, denoted by I∗i , of traces (such as
trπ0(f0dh), trπ1(f1dh1), trπ(fdg×σ)) of convolution operators (π0(f0dh),
π1(f1dh1) and π(fdg × σ)). The sums I, I ′, I ′′, I ′1 depend on fdg. The
sums I0, IE , I ′E , I ′′E depend on f0dh, and I1 on f1dh1. Put

I = I +
1
2
I ′ +

1
4
I ′′ +

1
2
I ′1 − I0 −

1
4

∑
E

I ′′E +
1
2

∑
E

I ′E +
1
4

∑
E

IE −
1
2
I1.

We show in section V.2, that the global symmetric square lifting is a con-
sequence of the following

Theorem. We have I = 0 for any matching fdg, f0dh, f1dh1 as above.

It is also shown in section V.2, that when I = 0 then I relates to I0 and
to the µ′(fTE

dt), and I1 = I ′1. Our proof is based on the usage of regular,
or Iwahori type, functions.

It is clear from the proof given below that it applies to establish relatively
effortlessly, and conceptually, the analytic part of the comparison of trace
formulae for general test functions in any lifting situation where all groups
involved have (split) rank bounded by one. In our case the (“twisted”)
rank of G = PGL(3) is one. In particular our technique establishes the
comparison of trace formulae for any test functions in the cases of (1)
basechange from U(3) to GL(3, E) which is studied in [F3] ([F3;IV], [F3;V],
[F1;II] chapter IV, [F3;VI] and [F3;VIII]; [F3;VII] contains another proof
of the trace formulae comparison for a general test function in the case of
basechange from U(3) to GL(3, E); it relies on properties of quasispherical
functions, but does not generalize to establish our Theorem); (2) cyclic
basechange lifting for GL(2) (see [F1;IV] where our present technique is
used to give a simple proof of this comparison); (3) basechange from U(2)
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to GL(2, E) (see [F3;II]); (4) metaplectic correspondence for GL(2) (see
[F1;I]).

The proof of the Theorem is based on the usage of regular functions in
the sense of chapter III, [FK1], [FK2], and [F1;II], chapters III, IV. That
such functions would be useful in this context was discovered by us while
working on the joint paper [FK1] with D. Kazhdan, being inspired by the
proof — see [FK1], sections 16, 17 — of the metaplectic correspondence for
representations of GL(n) with a vector fixed by an Iwahori subgroup.

IV.1 The comparison

Although these functions can be introduced for any quasi-split group, to
simplify the notations we discuss these functions here only in the case of
the group GL(n) (and SL(n), PGL(n)).

Let F be a local nonarchimedean field, R its ring of integers, πππ a local
uniformizer in R,q = πππ−1, q the cardinality of the residue field R/(πππ), | · |
the valuation on F normalized to have |πππ| = q−1 (thus |q| = q), G the group
GL(n, F ), K = GL(n,R) a maximal compact subgroup in G, B the Iwahori
subgroup of G which consists of matrices in K which are upper triangular
modulo πππ, A the diagonal subgroup of G, A(R) = A ∩ K = A ∩ B, and
U the upper triangular unipotent subgroup; AU is a minimal parabolic
subgroup.

The vector m = (m1, . . . ,mn) in Zn is called regular if mi > mi+1 for all
i (1 ≤ i < n). Let qm be the matrix diag(qm1 , . . . ,qmn) in A. The matrix
a = diag(a1, . . . , an) in A is called strongly regular if |ai| > |ai+1| for all i,
and m-regular if a = uqm for a regular m and u in A(R). A conjugacy
class in G is called strongly (resp. m-)regular if it contains a strongly (resp.
m-) regular element. An element of G is called regular if its eigenvalues are
distinct.

Denote by J the matrix whose (i, j) entry is δi,n−j . Put σ(g) = J tg−1J .
The elements g and g′ of G are called σ-conjugate if there is x in G with
g′ = xgσ(x)−1. For

m = (m1, . . . ,mn) ∈ Zn put σm = (−mn, . . . ,−m2,−m1),

and say that m is σ-regular if m + σm is regular. The element a of A
is called m-σ-regular if m is σ-regular and aσ(a) is (m + σm)-regular; a
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is called strongly σ-regular if it is m-σ-regular for some m. A σ-conjugacy
class in G is called strongly (or m-) σ-regular if it contains a strongly (or m)
σ-regular element in A. Note that if a is m-regular then a is m-σ-regular
since aσ(a) is (m + σ(m))-regular. We have

1. Proposition. If a is m-regular then
(1) Each conjugacy class in G which intersects BaB is m-regular.
(2) Each σ-conjugacy class in G which intersects BaB contains an m-
regular element in A; in particular it is m-σ-regular.

Proof. We shall prove (2); (1) follows by the same method on erasing
σ throughout. Write g′ ∼ g if g is σ-conjugate to g′ in G. We have to show
that any b′ab (b′, b in B) is σ-conjugate to an m-regular element. Since
σB = B, up to σ-conjugacy we may assume that b′ = 1. Each element b in
B can be written in a unique way as a product

b0b−b+, b0 ∈ A(R), b− = 1 + n−, b+ = 1 + n+,

where n− (resp. n+) is a lower (resp. upper) triangular nilpotent matrix.
Put ã = ab0. Then

ab = ãb−b+ ∼ σ(b+)ãb− = (ãb−ã−1)ã(b−1
− ã−1σ(b+)ãb−)

∼ ã(b−1
− ã−1σ(b+)ãb−)σ(ãb−ã−1).

Denote by |x| the maximum of the valuations of the entries of a matrix
x in G. Put

b′+ = ã−1σ(b+)ã, b′− = σ(ãb−ã−1),

and also n′+ = b′+−1 and n′− = b′−−1. Since σ stabilizes every congruence
subgroup of G, and ã is m-regular, we have |n′+| < |n+| and |n′−| < |n−|.
Moreover, it is clear that

b−1
− b′+b−b

′
− = b′′0b

′′
−b
′′
+ with max(|n′′−|, |n′′+|) ≤ max(|n′−|, |n′+|).

Repeating this process we obtain a matrix of the form a′(1 + ε) with m-
regular a′ and ε with |ε| smaller than any given positive number. The
proposition now follows. �

Let f be a locally constant compactly supported complex valued function
on G, dx a Haar measure on G, and

Φσ(γ, fdx) = Φ(γσ, fdx) =
∫
f(x−1γσ(x))dx/dγ
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the (twisted or) σ-orbital integral of fdg at the element γ of G (the integra-
tion is taken over ZG(γσ)\G, where ZG(γσ) is the σ-centralizer of γ in G,
and dγ is a Haar measure on ZG(γσ)). Denote by Lie(G) the Lie algebra of
G. If G = GL(n) then Lie(G) = Mn (the algebra of n × n matrices). Put
σX = −J tXJ for X in Lie(G). Denote by Ad(γ) the adjoint action of γ on
Lie(G). We say that γ is σ-regular if γσ(γ) is regular (has distinct eigen-
values) in G. If γ is σ-regular, its σ-orbit is closed, and the convergence of
Φ(γσ, fdg) is clear; this is the only case to be used in this chapter, but the
convergence of Φ(γσ, fdg) is known in general. Put

∆(γσ) = |det(1−Ad(γ)σ)|Lie(ZG(γσ)\G) |1/2.

This is well defined since Ad(γ)σ acts trivially on ZG(γσ) and therefore
trivially also on Lie(ZG(γσ)). Put

Fσ(γ, fdg) = F (γσ, fdg) = ∆(γσ)Φ(γσ, fdg).

Let U be the unipotent upper triangular subgroup in G, A the diagonal
subgroup, and K the maximal compact subgroup GL(n,R). Each of A, U ,
K is σ-invariant, and A normalizes U . Put Aσ = {a ∈ A;σa = a}. For γ
in A put

δδδ(γ) = |det Ad(γ)σ|Lie(U)| = |det Ad(γ)|Lie(U)|

(= |a/c|2 if γ = diag(a, b, c)) and

fσU (γ) = δδδ(γ)1/2
∫
Aσ\A

∫
U

∫
K

f(σ(k)−1σ(a)−1γ auk) dk du da.

A standard formula of change of variables (see, e.g., A1.3) asserts that
for any σ-regular γ in A we have F (γσ, fdg) = fσU (γ). Consequently it is
clear from Proposition 1(2) that if f is (a multiple of) the characteristic
function of BaB, where a is an m-regular element, then F (γσ, fdg) is a
scalar multiple of the characteristic function of the union of the σ-conjugacy
classes in G which contain an m-regular element, namely of the set of the
m-σ-regular σ-conjugacy classes in G. Consequently we can introduce the
following
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Definition. For any regular m in Zn let φm,σ denote the multiple of
the characteristic function of BqmB such that F (γσ, φm,σdg) is zero unless
γ lies in an m-σ-regular σ-conjugacy class in G, where F (γσ, φm,σdg) = 1.

Analogous definitions will now be introduced in the nontwisted case. We
simply have to erase σ everywhere. Thus the orbital integral of a locally-
constant compactly-supported complex-valued measure fdg on G at γ in G
is denoted by Φ(γ, fdg) =

∫
f(x−1γx)dx/dγ . Here x ranges over ZG(γ)\G,

where ZG(γ) is the centralizer of γ in G. If γ is regular, namely it has
distinct eigenvalues γ1, . . . , γn, the orbit of γ is closed and Φ(γ, fdg) is
clearly convergent. Put

∆(γ) = |det(1−Ad(γ))|Lie(ZG(γ)\G)|1/2;

it is equal to ∣∣∣∣∏
i<j

(γi − γj)2
∣∣∣∣1/2/|det γ|(n−1)/2.

Put F (γ, fdg) = ∆(γ)Φ(γ, fdg). If γ lies in A put

δδδ(γ) = |det Ad(γ)|Lie(U)|.

It is equal to
∏
i<j |γi/γj |. Put

fU (γ) = δδδ(γ)1/2
∫
U

∫
K

f(k−1γnk) dk dn.

Since F (γ, fdg) = fU (γ) for all regular γ in A it is clear from Proposition
1(1) that if f is (a multiple of) the characteristic function of BaB, where
a is an m-regular element, than F (γ, fdg) is a scalar multiple of the char-
acteristic function of the union of the m-regular conjugacy classes in G.
Consequently we can introduce the following

Definition. Denote by φm the multiple of the characteristic function
of BqmB such that F (γ, φmdg) is 0 unless γ lies in an m-regular conjugacy
class, where F (γ, φm) = 1.

Let π be an admissible G-module. Let π(fdg) be the convolution op-
erator

∫
f(g)π(g)dg; it is of finite rank, hence has a trace, denoted by

tr π(fdg). It is easy to see that there exists a conjugacy invariant locally-
constant complex-valued function χ on the regular set (distinct eigenvalues)
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of G, with tr π(fdg) =
∫
G
χ(g)f(g)dg for any fdg supported on the regular

set of G. The function χ = χπ is called the character of π; it is clearly
independent of the choice of the measure dg.

If V is the space of π, then VU = {π(u)v−v; v in V , u in U} is stabilized
by A since A normalizes U , and V/VU is an admissible (namely it has
finite length) A-module denoted by π′U . The A-module πU = δδδ−1/2π′U is
called the A-module of U -coinvariants of π. The composition series of the
admissible A-module πU consists of finitely many irreducible A-modules,
namely characters on A (since A is abelian). These characters are called
here the exponents of π. The character χ(πU ) of πU is the sum of the
exponents of π.

If πU 6= {0} then by Frobenius reciprocity π is a subquotient of the G-
module I(µ) = ind(δδδ1/2µ;AU,G) normalizedly induced from the character
µ of A extended to AU by one on U ; here µ is any exponent of π. Let
W = N(A)/A be the Weyl group of A in G; N(A) is the normalizer of A in
G. Put wµ for the character a 7→ µ(w(a)) of A. Define J = (δi,n+1−i). The
Theorem of [C1] asserts that (∆χπ)(a) = (χ(πU ))(JaJ) for every strongly
regular a in A. Hence χ(I(µ)U ) = Σwµ (sum over w in W ), and each
exponent of π is of the form w in W . Since φm is supported on the m-
regular set, the Weyl integration formula implies that

tr π(φmdg) = [W ]−1

∫
A

(∆χπ)(a)F (a, φmdg)da

= (χ(πU ))(qm)
∫
A(R)

µ(a)da.

Namely the trace tr π(φmdg) is zero unless the composition series of
πU consists of unramified characters, in which case (for a suitable choice
of measures) tr π(φmdg) is the sum of µ(qm) over the exponents (with
multiplicities) of π. We conclude:

2. Proposition. If µ is an unramified character of A then

tr I(µ;φmdg) =
∑
w

(wµ)(qm) (w in W ).

Let V denote the space of π, VB(π) the subspace of B-fixed vectors in V ,
and VB(µ) the space VB(π) when π = I(µ). Then π(φmdg) acts on VB(π),
and we have
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3. Proposition. If µ in an unramified character of A then the di-
mension of VB(µ) is the cardinality [W ] of W . The set {ψw;w in W} of
functions on G such that ψw is supported on AUwB and satisfies

ψw(auwb) = (µδδδ1/2)(a) (a ∈ A, u ∈ U, b ∈ B),

is a basis of the space VB(µ).

Proof. This is clear from the decomposition

AU\G = (AU) ∩K\(AU) ∩K ·W ·B. �

For each i (1 ≤ i ≤ n) let ei be the vector (0, . . . , 0, 1, 0, . . . , 0) in Zn;
the nonzero entry is at the i-th place. A vector αij = ei − ej (i 6= j) is
called here a root of A. It is called positive if i < j, negative if i > j, and
simple if j = i+ 1 (1 < i < n). Put

ρ =
∑
α>0

α (= (n− 1, n− 3, . . . , 1− n)).

Then
δδδ(qm) = q〈ρ,m〉.

Denote by U the unipotent lower triangular subgroup. We have

4. Proposition. (1) If m = (m1, . . . ,mn) =
∑n
i=1miei satisfies m1 ≥

· · · ≥ mn, and h = qm, then the cardinality of the set BhB/B is δδδ(h).
(2) Put B− = B ∩ U . Then for every w in W , the cardinality of the set

w[h−1B−h/B− ∩ h−1B−h]w−1/U ∩ wh−1B−hw
−1

is δδδ1/2(h)/δδδ1/2(whw−1).

Proof. If B+ = B ∩ U,B0 = B ∩A, then

B = B−B0B+, h−1B−h ⊃ B−, h−1B+h ⊂ B+

and

BhB/B ' h−1Bh ·B/B = h−1B−h ·B/B ' h−1B−h/h
−1B−h ∩B−;

(1) follows; the proof of (2) is similar. �

The Weyl group W is isomorphic to the symmetric group Sn on n letters.
It is generated by the simple transpositions si = (i, i+ 1) (1 ≤ i ≤ n). The
length function ` on W associates to each w in W the least nonnegative
integer `(w) such that w can be expressed as a product of `(w) simple
transpositions. It is easy to verify that (π(φmdg)ψw)(u) is zero for every
u 6= w in W with `(u) ≥ `(w).
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5. Proposition. For every w in W we have

(π(φmdg)ψw)(w) = µ(whw−1)

(where h = qm), and φmdg is equal to

|BhB|−1δδδ1/2(h) ch(BhB)dg.

Proof. Compute:

(π(ch(BhB)dg)ψw)(w) =
∫

BhB

ψw(wx)dx = |B|
∑

x∈BhB/B

ψw(wh · h−1x)

= |B|(µδδδ1/2)(whw−1)
∑

x∈h−1B−h/B−∩h−1B−h

ψw(wxw−1 · w)

= |B|(wµ)(h) · δδδ1/2(whw−1) · (δδδ1/2(h)/δδδ1/2(whw−1))ψw(w)

= |B|(wµ)(h)δδδ1/2(h)ψw(w) = |BhB| · δδδ−1/2(h) · (wµ)(h).

Conclude:

tr π[|BhB|−1δδδ1/2(h) ch(BhB)dg] =
∑
w

(wµ)(h) = tr π(φmdg).

Since φm is by definition a multiple of ch(BhB), the proposition follows.�

We conclude that the matrix of π(φmdg) with respect to the basis {ψw;w
in W} of VB(µ) (this basis is partially ordered by the length function ` on
W ) is of the form Z+N , where Z is a diagonal matrix with diagonal entries
µ(whw−1) (w in W ), and N is a strictly upper triangular nilpotent matrix
of size [W ]× [W ]. Thus we have N [W ] = 0.

6. Proposition. If m = (mi) and m′ = (m′i) satisfy

mi ≥ mi+1, m′i ≥ m′i+1 (1 ≤ i < n)

then
π(φmdg)π(φm′dg) = π(φm+m′dg).

Proof. Since hB−h−1 ⊂ B− and h−1B+h ⊂ B+, we have

BqmBqm′
B = Bqmqm′

B = Bqm+m′
B. �
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We shall consider only operators π(φmdg) with regular m. Since the
semigroup of m in Zn with mi ≥ mi+1 ≥ 0 (1 ≤ i < n) is generated by

j∑
i=1

ei = (1, . . . , 1, 0, . . . , 0) (1 ≤ j < n),

we need only consider (products of finitely many commuting) matrices of
the form (Z +N)m, m ≥ 0.

7. Proposition. Let Z be a diagonal matrix with entries zα along
the diagonal. Let N = (nα,β) be a strictly upper triangular matrix with
Ns = 0. Then (Z+N)m is the matrix whose (α1, αr) entry is the sum over
r = 1, . . . , s of ∑

{α1<α2<···<αr}

nα1,α2 · · ·nαr−1,αr

∑
1≤k≤r

(−1)k−1zmαk

∏
1≤i<j<r

i,j 6=k

(zαi − zαj )/
∏

1≤i<j≤r

(zαi − zαj ).

Proof. This is easily proven by induction. To obtain this formula, we
argue as follows. The noncommutative binomial expansion, easily verified
by induction, asserts

(Z +N)m =
s∑
r=1

 ∑
{(ij);

∑r

j=1
ij=m+1−r}

Zi1NZi2 · · ·NZir

 .

Here
Zi1N · · ·NZir = (zi1α1

)(nα1,α2)(z
i2
α2

) · · · (nαr−1,αr )(z
ir
αr

)

=

 ∑
α2,α3,...,αr−1

nα1,α2nα2,α3 · · ·nαr−1,αr · zi1α1
· · · zirαr

 .

To take the sum over (ij) we note that by induction we have

∑∑r

j=1
ij=m+1−r

zi11 · · · zirr =
r∑

k=1

(−1)k+1zmk
∏

1≤i<j<r
i,j 6=k

(zi−zj)/
∏

1≤i<j≤r

(zi−zj).



112 IV. Total global comparison

The proposition follows. �

As usual, let µ be an unramified character on A. Let ψK,µ be the function
on G defined by

ψK,µ(pk) = (µδδδ1/2)(p) (p ∈ P = AN, k ∈ K).

It lies in the space of I(µ). Put µi = µ(qei). Suppose that µi 6= qµj for all
i 6= j. Put

cα(µ) =
1− µi/µj
1− µi/qµj

if α = αij , (7.1)

and
cw(µ) =

∏
α

cα(µ) (α > 0, wα < 0).

The Weyl group W acts on the set of roots. Suppose that µi 6= µj for
all i 6= j. Then for each w in W there exists a unique G-morphism Rw,µ
from I(µ) to I(wµ) which maps ψK,µ to ψK,wµ; this is the content of
[C2], Theorem 3.1, where our µ is denoted by χ, our cw(µ) is denoted by
cw(χ)−1 in [C2], and it is shown in [C2], (3.1), that our Rw,µ has the form
cw(χ)−1Tw (in the notations of [C2]). The uniqueness of Rw,µ implies that
if w = wt · · ·w2w1 in W , then

Rw,µ = Rwt,wt−1···w2w1µ · · ·Rw2,w1µRw1,µ. (7.2)

Put ci(µ) for csi(µ). The action of Rw,µ on VB(µ) is described in [C2],
Theorem 3.4, which asserts the following

8. Proposition. For each i (1 ≤ i < n), put Ri = Rsi,µ. If `(siw) >
`(w), then

Ri(ψw) = (1− ci(µ))ψw + q−1ci(µ)ψsiw

and
Ri(ψsiw) = ci(µ)ψw + (1− q−1ci(µ))ψsiw.

Next we analyze in greater detail the case when G is H = SL(2, F ). Here

we put m = (m,−m) where m is a positive integer, h = qm =
(

qm 0

0 q−m

)
.
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Note that δδδ(h) = q2m. Let z be a nonzero complex number, and µ the
unramified character of

A =
{(

a 0

0 a−1

)}
with µ

((
q 0

0 1/q

))
= z.

Thus, if µ̃ is an extension of µ to the diagonal subgroup in GL(2), then
z = µ̃1/µ̃2 in our previous notations. The Weyl group W consists of two
elements. If s denotes the nontrivial one, put c for cs(µ); then c = (1 −
z)/(1− z/q). With respect to the basis {ψ1, ψs}, the matrix of

R = Rs,µ is
(

1−c c

c/q 1−c/q

)
.

Then

dc

dz
= q(1− q)/(q − z)2 and detR = (1− qz)/(z − q).

Hence

R−1 =
z − q
1− qz

(
1−c/q −c
−c/q 1−c

)
, R′ =

d

dz
R =

1− q
(z − q)2

(
−q q

1 −1

)
,

and
R′R−1 =

q − 1
(z − q)(qz − 1)

(
−q q

1 −1

)
.

9. Proposition. The matrix of the operator π(φmdg), where π = I(µ)
and

φm = |BhB|−1δδδ1/2(h) ch(BhB),

with respect to the basis {ψ1, ψs}, is(
zm (q−1)z(1−z)−1(z−m−zm)

0 z−m

)
.

Proof. For w, u in W = {1, s}, we are to compute

|B|−1(π(ch(BhB)dg)ψw)(u) =
∑

x∈h−1B−h/h−1B−h∩B−

ψw(uhx).

If u = s we obtain |BhB|ψw(sh), which is zero if w = 1 and

|BhB|(µδδδ1/2)(shs−1) if w = s.
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If u = 1 we obtain

(µδδδ1/2)(h)
∑
x

ψw

((
1 0

q2m−1x 1

))
(x ∈ R/πππ2mR).

Using the relation(
1 0

t 1

)
=
(

1 1/t

0 1

)(
1/t 0

0 t

)(
0 −1

1 0

)(
1 1/t

0 1

)
it is clear that when w = 1 only the term of x = 0 in R/πππ2mR is nonzero,
and we obtain (µδδδ1/2)(h). When w = s only the terms of x 6= 0 are nonzero;
there are (q − 1)q2m−i−1 elements x in R/πππ2mR with absolute value q−i

(0 ≤ i < 2m), and our sum becomes

(q − 1)
2m−1∑
i=0

q2m−i−1(µδδδ1/2)
(

q1−2mqi 0
0 q−iq2m−1

)

= (q − 1)
2m−1∑
i=0

q2m−i−1(qz)i+1−2m

= (q − 1)z1−m(1− z)−1(z−m − zm).

Since (µδδδ1/2)(h) = (qz)m and |BhB|−1δδδ1/2(h) = q−m, the proposition
follows. �

10. Corollary. For any m ≥ 0 we have

tr[R′ ·R−1 · I(µ, φmdg)]

=
(q − 1)/z

(z − q)(z−1 − q)
[z−m + qzm − (q − 1)z(z − 1)−1(zm − z−m)].

(10.1)

We shall now use these computations to express the trace formula for
H(A) = SL(2,A) in a convenient form. Thus let F be a global field, fix
a nonarchimedean place u of F , fix a function f0v for all v 6= u such that
f0v = f0

0v for almost all v.
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11. Proposition. There exists a positive integer m0, depending on
{f0v; v 6= u}, with the following property. Suppose that m ≥ m0; f0u is the
function φm on Hu; f0 is ⊗vf0v; and x is an element of H with eigenvalues
in F×. Then f0(x) = 0.

Proof. Denote the eigenvalues of x by a and a−1. If f0(x) 6= 0 then
f0v(x) 6= 0 for all v, and there are C0v ≥ 1 with C0v = 1 for almost all v
such that

C−1
0v ≤ |a|v ≤ C0v (∗)v

holds for all v 6= u. Since a lies in F× we have
∏
v |a|v = 1. Hence (∗)u holds

with C0u =
∏
v 6=u C0v. But if f0u = φm and f0u(x) 6= 0 then |a|u = qmu or

q−mu . The choice of m0 with qm0
u > C0u establishes the proposition. �

We conclude that for f0 = ⊗vf0v as in Proposition 11, the group the-
oretic side of the trace formula consists only of orbital integrals of elliptic
regular elements; weighted orbital integrals and orbital integrals of singular
classes do not appear.

In the representation theoretic side of the trace formula there appears
a sum of traces tr π0(f0dh), described as I0, tr η(fTE

dt) in Proposition
III.3.3(1), and chapter V, (1.3). There are two additional terms, denoted
by S0, S′0 in Proposition III.3.3(1). They involve integrals over the analytic
manifold of unitary characters µ(a) = µ0(a)|a|s (s in iR) of A×/F×; each
connected component of this manifold is isomorphic to R. The first term,
denoted by S0/2 in Proposition III.3.3(1), is

1
2

∑
µ0

∫
iR

m′(µ)
m(µ)

∏
v

tr I0(µv; f0vdhv)|ds|. (11.1)

The sum ranges over a set of representatives for the connected components,
m(µ) is the quotient L(1, µ)/L(1, µ−1) of values of L-functions (see section
III.3). Since all sums and products in the trace formula are absolutely
convergent we obtain ∫

|z|=1

d(z)(zm + z−m)|d×z|. (11.1)′

Here d(z) is an integrable functions on the unit circle |z| = 1 in C. We used

the fact that tr I0(µu;φmdh) = zm + z−m, where z = µu

((
q 0

0 q−1

))
.
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The second term, denoted by S′0/2 in Proposition III3.3(1), is the sum
over all places w of the terms

1
2

∑
µ0

∫
iR

tr[R−1
w R′wI0(µw)](f0wdhw) ·

∏
v 6=w

tr[I0(µv)](f0vdhv)|ds|.

(11.2)w

The summands (11.2)w which are indexed by w 6= u depend on f0u via
tr[I0(µu)](f0udhu) = zm + z−m; they can be included in the expression
(11.1)′ on changing d(z) to another function with the same properties. Left
is only (11.2)u, in which tr[R−1

w R′wI0(µw, f0wdh0w)] is given by Corollary
10.

This completes our discussion of the trace formula for H(A) = SL(2,A).
Clearly this discussion applies also in the case of H1(A) = PGL(2,A).
Again we take a global measure f1dh1 = ⊗vf1vdh1v (matching, as in
the statement of the Theorem), whose component f1udh1u at u is suffi-
ciently regular with respect to the other components, so that the analogue
of Proposition 11 holds. The group theoretic part of the trace formula
for H1(A) then consists of orbital integrals of elliptic regular elements.
There appears a sum of traces trπ1(f1dh1), described as Ĩ1 in Proposi-
tion III.3.4(1) and in chapter V, (1.3), and a term analogous to (11.1) (or
(11.1′), denoted by S1/2 in Proposition III.3.4(1), and a sum of terms of
the form (11.2)w over all places w of F , which comes from the term S′1/2 of
Proposition III.3.4(1). Note that the contribution of Ĩ1 to I is multiplied
by 1/2.

We need consider only the analogue for H1(A) of (11.2)u, since (11.2)w
for w 6= u can be included in (11.1)′. Here write z for µ(q), when the
induced representation I1(µ) of H1(Fu) from the character

( a ∗
0 b

)
7→ µ(a/b)

is considered. Then

µ1 = z, µ2 = z−1 and c = (1− z2)/(1− z2/q)

in the notations of (6.1). Hence

dc

dz
= 2zq(1− q)/(q − z2)2, detR = (1− qz2)/(z2 − q),

R =
(

1−c c

c/q 1−c/q

)
, R−1R′ =

2z(q − 1)
(z2 − q)(1− qz2)

(
q −q
−1 1

)
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and

I1(φ1,m) =
(
zm (q−1)z(zm−z−m)/(z−z−1)

0 z−m

)
where I1 = I1(µ) (= I1(z)) and

φ1,m = |BhB|−1δδδ1/2(h) ch(BhB)

is the function associated with h =
(

qm 0

0 1

)
in H1(Fu). Namely we have

12. Proposition. For every m ≥ 0 we have

tr[R−1R′I1(µ, φ1,mdh1)] =
2(q − 1)/z

(z2 − q)(z−2 − q)
· [qzm + z−m − (q − 1)z(zm − z−m)/(z − z−1)]. (12.1)

This completes our discussion of the trace formula for H1 = PGL(2).

Remark. The above discussion applies for any group of rank one. For
example it applies also in the case of the unitary group U(3) in three vari-
ables, defined by means of a quadratic extension E/F (see [F3;IV], [F3;V]
and [F3;VI]). Here we take a place u which stays prime in E, and note that
the definition of cw(µ) in the quasi-split case is different from the split case
discussed here; see [C2], p. 397.

It remains to carry out analogous discussion of the twisted trace formula
of G(A) = PGL(3,A) for a function f = ⊗vfv as in the Theorem whose
component fu at u is sufficiently regular with respect to the other compo-
nents. Again the trace formula consists of:
(1) twisted orbital integrals of σ-elliptic regular elements only, by virtue of
the immediate twisted analogue of Proposition 11;
(2) discrete sum described as I in chapter III, Remark 2.1, and I ′, I ′′ in
chapter III, (2.3.2) and (2.4.1), and chapter V, (1.3);
(3) an integral as in (11.1)′, see S of chapter III, (2.2.4);
(4) a sum over w of terms analogous to (11.2)w, see S′ of chapter III, (2.2.5).
Note that the contribution to our formulae is (S + S′)/4, see the line prior
to (2.2.4), chapter III. Only the term at w = u has to be explicitly evalu-
ated, and we proceed to establish the suitable analogue of Corollary 10 and
Proposition 12 for PGL(3), twisted by σ.
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Recall that if π is a G-module we define σπ to be the G-module σπ(g) =
π(σg). A G-module π is called σ-invariant if π ' σπ. If µ′ is a character of
A, put σµ′ for the character µ′ ◦ σ of A. Then σI(µ′) is I(σµ′). We denote
by π(σ) the operator from I(µ′) to I(σµ′) which maps ψ in the space of
I(µ′) to ψ ◦ σ. In particular, when µ′ is unramified, π(σ) maps ψw,µ′ in
VB(µ′) to ψσw,σµ′ in VB(σµ′). If I(µ′) is σ-invariant then the classes [I(µ′)]
and [I(σµ′)] are equal as elements of the Grothendieck group K(G, σ), and
there exists w in W with σµ′ = wµ′.

If G = PGL(3, F ) and µ′ = σµ′ then there is a character µ of F× such
that µ′(diag(a, b, c)) = µ(a/c). Suppose in addition that µ′ is unramified,
and fix as a basis of VB(µ′) = VB(σµ′) the set ψ1 = ψid, ψ2 = ψ(12),

ψ3 = ψ(23), ψ4 = ψ(23)(12), ψ5 = ψ(12)(23), ψ6 = ψ(13),

where
W = {id, (12), (23), (12)(23), (23)(12), (13)}.

Then the matrix of π(σ) with respect to this basis is the 6×6 matrix whose
nonzero entries are equal to one and located at (1, 1), (2, 3), (3, 2), (4, 5),
(5, 4), (6, 6). Here π = I(µ′). Denote by A the matrix of π(φmdg), with
m = (1, 0, 0), with respect to our basis, and by B the matrix of π(φmdg)
with m = (1, 1, 0). Then An (resp. Bm) is the matrix of π(φmdg) with
m = (n, 0, 0) (resp. m = (m,m, 0)), and AnBm = BmAn by Proposition
6. A direct computation, as in Proposition 9, shows that

A =


z (q−1)z 0 0 0 q(q−1)z

0 1 0 q−1 0 0

0 0 z (q−1)z (q−1)z (q−1)2z

0 0 0 z−1 0 0

0 0 0 0 1 q−1

0 0 0 0 0 z−1


and

B =


z 0 (q−1)z 0 0 q(q−1)z

0 z 0 (q−1)z (q−1)z (q−1)2z

0 0 1 0 q−1 0

0 0 0 1 0 q−1

0 0 0 0 z−1 0

0 0 0 0 0 z−1

 .

Here z = µ(q). Proposition 7 implies that

An =


zn (q−1)zα(n) 0 (q−1)2zβ(n) 0 q(q−1)zγ(n)

0 1 0 (q−1)δ(n) 0 0

0 0 zn (q−1)zγ(n) (q−1)zα(n) (q−1)2z(γ(n)+β(n))

0 0 0 z−n 0 0

0 0 0 0 1 (q−1)δ(n)

0 0 0 0 0 z−n

 ,
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where α(n) = (zn − 1)/(z − 1); β(n)

= [zn(1− z−1)− (z − z−1) + z−n(z − 1)]/(z − 1)(1− z−1)(z − z−1);

γ(n) = (zn − z−n)/(z − z−1); δ(n) = (1− z−n)/(1− z−1);

and

Bm =


zm 0 (q−1)zα(m) 0 (q−1)2zβ(m) q(q−1)zγ(m)

0 zm 0 (q−1)zα(m) (q−1)zγ(m) (q−1)2z(β(m)+γ(m))

0 0 1 0 (q−1)δ(m) 0

0 0 0 1 0 (q−1)δ(m)

0 0 0 0 z−m 0

0 0 0 0 0 z−m

 .

In particular we conclude the following

13. Proposition. For any m = (m1,m2,m3) with m1 ≥ m2 ≥ m3 we
have

tr[π(φmdg)π(σ)] = µ′(hm) + µ′(JhmJ) = µ(hmσ(hm)) + µ(Jhmσ(hm)J),

where hm = qm, that is, the trace is = zm1−m3 + zm3−m1 .

On the other hand it is easy to compute the twisted character χ = χπ
of π = I(µ′); see I.1.6. Recall that χ is a locally constant function on the
σ-regular set of G with tr π(fdg × σ) =

∫
f(g)χ(g)dg for every locally-

constant function on the σ-regular set of G. Now the twisted character χ
of π = I(µ′) is supported on the set of g in G such that gσ(g) is conjugate
to a diagonal element, where

∆(h)χ(h) = zm1−m3 + zm3−m1 at h = hm.

Using the Weyl integration formula we conclude that

tr[π(φm,σdg)π(σ)] = zm1−m3 + zm3−m1 ,

where φm,σ is the unique multiple of ch(BhmB) with Fσ(hm, φm,σdg) = 1.
It follows from Proposition 13 that we have

14. Proposition. We have

φm,σ = φm (= δδδ1/2(hm)|BhmB|−1 ch(BhmB)).
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The operator R = R((13)) from VB(µ′) to VB(Jµ′) is the product of
three operators, according to (7.2). Write

VB(µ1, µ2, µ3) for VB(µ′) if µi (i = 1, 2, 3)

are the parameters associated to µ′ in (7.1). Then R is the product of
R1 = R((12)) from VB(z, 1, z−1) to VB(1, z, z−1), then R2 = R((23)) to
VB(1, z−1, z), and then R3 = R((12)) to VB(z−1, 1, z). Put

c1 = (1− z)/(1− z/q), c2 = (1− z2)/(1− z2/q),

and

A1 =


−1 1 0 0 0 0

1/q −1/q 0 0 0 0

0 0 −1 0 1 0

0 0 0 −1 0 1

0 0 1/q 0 −1/q 0

0 0 0 1/q 0 −1/q

 ,

A2 =


−1 0 1 0 0 0

0 −1 0 1 0 0

1/q 0 −1/q 0 0 0

0 1/q 0 −1/q 0 0

0 0 0 0 −1 1

0 0 0 0 1/q −1/q

 .

Then R1 = R3 = I + c1A1 and R2 = I + c2A2; further, R = R3R2R1. Now
denote (the right side of) (10.1) by X(z;m), that of (12.1) by Y (z;m), and
tr[R−1R′AnBmπ(σ)] by Z(z;n,m). Then we have

15. Proposition. For every m,n ≥ 0 we have

2X(z;n+m) + Y (z;n+m) = Z(z;n,m).

Proof. We proved this using the symbolic manipulation language Ma-
thematica. The difference of the two sides of the Proposition is denoted
by DIFF in the file given in the Appendix below. It takes a computer a
moment to arrive at the conclusion that DIFF=0. In this Appendix we
denote A1 by A, A2 by B, c1 by c, c2 by d, Ri by Ri, R−1 by S, π(σ) by s,
α(n), etc., by an, etc., An, Bm by An,Bm, Z(z;n,m) by Z, X(z;n +m)
by X, Y (z;n+m) by Y . �

Remark. The fact that Z(z;n,m) depends only on n+m is remarkable.
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16. Corollary. The sum of twice (11.2)u for H = SL(2, F ) with
(11.2)u for H1 = PGL(2, F ) is equal to the term (11.2)u for G = PGL(3, F ).

Proof. It follows from Proposition 14 that the measure φm,σdg with
m = (m + n, n, 0) matches the measure φ(m+n,−m−n)dh on H = SL(2, F )
and the measure φ(m+n,0)dh1 on H1 = PGL(2, F ). Using Proposition
III.3.1, Proposition III.3.3(1), and Proposition III.3.4(1), we obtain that
I of chapter III, 3.5, is equal to

(S + S′)/4− (S0 + S′0)/2− (S1 + S′1)/4

in the notations of chapter III. The S′i are those leading to the (11.2)u here.
The corollary then follows from Proposition 15. �

The Theorem can now be proven by a standard argument, see chapter
V, (1.6.2). On the one hand I of the Theorem is a discrete sum of the form∑

i

ci(zmi + z−mi ) +
∑
j

ajz
m
j ,

where zj lies in the finite set

{q, q−1, q1/2, q−1/2, −q1/2, −q−1/2},

and zi in |zi| = 1 or q−1/2 < zi < q1/2 or −q1/2 < zi < −q−1/2. On
the other hand I is equal to an integral of the form (11.1)′. Here m is
a sufficiently large positive integer. The argument of chapter V, (1.6.2),
implies that the coefficients ci and aj are zero. In particular I = 0, and
the Theorem follows. �

IV.2 Appendix: Mathematica program

Here is a Mathematica program to compute DIFF:
A={{−1,1,0,0,0,0},{1/q,−1/q,0,0,0,0},{0,0,−1,0,1,0},
{0,0,0,−1,0,1},{0,0,1/q,0,−1/q,0},{0,0,0,1/q,0,−1/q}};

B={{−1,0,1,0,0,0},{0,−1,0,1,0,0},{1/q,0,−1/q,0,0,0},
{0,1/q,0,−1/q,0,0},{0,0,0,0,−1,1},{0,0,0,0,1/q,−1/q}};

c=(1−z)/(1−z/q);
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d=(1−z ∧ 2)/(1−z ∧ 2/q);
h=IdentityMatrix[6];
R1=Together[h+c˜ A];
R2=Together[h+d˜ B];
R=Together[R1.(R2.R1)];
R′=Together[D[R,z]];
S1=Together[Inverse[R1]];
S2=Together[Inverse[R2]];
S=Together[S1.(S2.S1)];
s={{1,0,0,0,0,0},{0,0,1,0,0,0},{0,1,0,0,0,0},
{0,0,0,0,1,0},{0,0,0,1,0,0},{0,0,0,0,0,1}};

T1=Together[(s.S).R′];
an=(z ∧ n−1)/(z−1);
am=(z ∧ m−1)/(z−1);
bn=(z ∧ n (1−1/z)−(z−1/z)+(1/z ∧n)(z−1))/((z−1)(1−1/z)(z−1/z));
bm=(z ∧ m (1−1/z)−(z−1/z)+(1/z ∧m)(z−1))/((z−1)(1−1/z)(z−1/z));
cn=(z ∧ n−1/z ∧ n)/(z−1/z);
cm=(z ∧ m−1/z ∧ m)/(z−1/z);
dn=(1−1/z ∧ n)/(1−1/z);
dm=(1−1/z ∧ m)/(1−1/z);
An={{z ∧ n,(q−1) z an,0,(q−1) ∧ 2 z bn,0,q (q−1) z cn},
{0,1,0,(q−1) dn,0,0},
{0,0,z ∧ n,(q−1) z cn, (q−1) z an, (q−1) ∧2 z (cn+bn)},
{0,0,0,1/z ∧ n,0,0},{0,0,0,0,1,(q−1) dn}, {0,0,0,0,0,1/z ∧ n}};

Bm={{z ∧ m,0,(q−1) z am,0,(q−1) ∧ 2 z bm,q (q−1) z cm},
{0,z ∧ m,0,(q−1) z am,(q−1) z cm,(q−1) ∧ 2 z (bm+cm)},
{0,0,1,0,(q−1) dm,0},{0,0,0,1,0,(q−1) dm},
{0,0,0,0,1/z ∧ m,0},{0,0,0,0,0,1/z ∧ m}};

T=Together[T1.(An.Bm)];
Z=Simplify[Sum[T[[i,i]],{i,6}]];
X=(1−q)(1/z ∧ (n+m)+q z ∧ (n+m)−(q−1) z (z ∧ (n+m)
−1/z ∧ (m+n))/(z−1))/((q−z)(1−z q));

Y=2(1−q)z(q z ∧ (m+n)+1/z ∧ (m+n)−(q−1) z (z ∧ (m+n)
−1/z ∧ (m+n))/(z−1/z))/((q−z ∧ 2)(1−q z ∧ 2));

DIFF=Factor[PowerExpand[Simplify[Z−(2 X+Y)]]]



V. APPLICATIONS OF

A TRACE FORMULA

Summary. In this chapter the existence of the symmetric-square lifting
of admissible and of automorphic representations from the group SL(2)
to the group PGL(3) is proven. Complete local results are obtained, re-
lating the character of an SL(2)-packet with the twisted character of a
self-contragredient PGL(3)-module. The global results include introducing
a definition of packets of cuspidal representations of SL(2,A) and relating
them to self-contragredient automorphic PGL(3,A)-modules which are not
induced I(π1) from a discrete-spectrum representation π1 of the maximal
parabolic subgroup with trivial central character. The sharp results, which
concern SL(2) rather than GL(2), are afforded by the usage of the trace
formula. The surjectivity and injectivity of the correspondence implies that
any self-contragredient automorphic PGL(3,A)-module as above is a lift,
and that the space of cuspidal SL(2,A)-modules admits multiplicity one
theorem and rigidity (“strong multiplicity one”) theorem for packets (and
not for individual representations).

V.1 Approximation

1.1 Discrete spectrum. Let G be a reductive group over a number
field F with an anisotropic center. Let dg be a Haar measure on G(A).
Let L = L2(G\G(A)) denote the space of square-integrable complex val-
ued functions ϕ on G\G(A) which are right smooth. The group G(A) acts
on L by (r(g)ϕ)(h) = ϕ(hg). An automorphic representation is an irre-
ducible G(A)-invariant subquotient, of the G(A)-module L. The theory
of Eisenstein series decomposes L as a direct sum of the discrete spectrum
Ld, which is the sum of all irreducible submodules in L, and the continuous
spectrum Lc. The continuous spectrum Lc is a direct integral of induced
representations.

The space Ld decomposes as a direct sum with finite multiplicities of
irreducible inequivalent representations, called discrete spectrum. Denote

123
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by L0 the subspace of all cuspidal functions ϕ in L. Then L0 is a G(A)-
submodule of Ld. Its irreducible constituents are called cuspidal.

Every irreducible admissible representation of G(A) factors as a re-
stricted product π = ⊗vπv over all primes v of local admissible irreducible
representations πv. This means that for almost all places πv is unramified,
namely has a nonzero Kv = G(Rv)-fixed vector ξ0v , necessarily unique up to
scalar. For all v the component πv is admissible. The space of π is spanned
by the products ⊗vξv, ξv ∈ πv for all v, ξv = ξ0v for almost all v.

Put G = PGL(3), H = H0 = SL(2), H1 = PGL(2). The discrete-spec-
trum representations of any of these groups are cuspidal or one-dimensional
automorphic representations. The notion of local lifting for unramified rep-
resentations with respect to the dual groups homomorphisms λ0 : Ĥ → Ĝ,
λ1 : Ĥ1 → Ĝ is defined in section I.1. We shall generalize this definition to
deal with any local representation on formulating it in terms of characters.
We shall write πv = λi(πiv) when πiv lifts to πv with respect to λi, once
the notion is defined.

1.1.1 Normalization. Let π be a σ-invariant representation of G(A).
Namely π is equivalent to the representation σπ(g) = π(σg) of G(A). Then
there exists an intertwining operator A on the space of π with Aπ(g)A−1 =
π(σg) for all g in G(A). Assume that π is irreducible. Then by Schur’s
lemma the operator A2, which intertwines π with itself, is a scalar which
we normalize to be equal to 1. This specifies A up to a sign.

Fix a nontrivial additive character ψψψ of A modF . Denote by ψ the
character of the upper triangular unipotent subgroup N(A), defined by
ψ(n) = ψψψ(x+ z), where

n =
(

1 x y

0 1 z

0 0 1

)
.

Note that ψ(σn) = ψ(n). Assume that π is generic, or realizable in the
space of Whittaker functions. Namely there is a G(A)-equivariant map
Y : {W} → π onto π from the space of (Whittaker) functions W on
G(A). These W satisfy W (ngk) = ψ(n)W (g) for all g in G(A), n in
N(A), and k in a compact open subgroup of G(A), depending on W . G(A)
acts by (ω(g)W )(h) = W (hg). Then σπ is generic since Yσ : {W}σ → π by
Yσ(W ) = Y (σW ) is onto and G(A)-equivariant:

Yσ(ω(g)W ) = Y (σ(ω(g)W )) = Y (ω(σg)σW ) = σπ(g)Y (σW ).
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We take A to be the operator on the space of π which maps Y (W ) to
Y (σW ).

This gives a normalization of the intertwining operator A on the generic
representations, which is also local in the following sense. Each component
πv of π = ⊗vπv is generic, thus there is a Gv-equivariant map Yv onto πv
from the space of Whittaker functions Wv (which satisfy

Wv(nvgvkv) = ψv(nv)Wv(gv),

where ψv is the restriction of ψ to Nv = N(Fv)). Moreover, each W is
a finite linear combination of products ⊗vWv; where for almost all v the
component Wv is the (unique up to a scalar multiple) unramified (i.e.,
right Kv = G(Rv)-invariant) Whittaker function W 0

v . In fact Yv is Wv 7→
Y (Wv ⊗⊗u 6=wWu) where Wu (u 6= v) are fixed, Wu = W 0

u at almost all u,
such that Yv 6= 0.

Now we can write A as a product ⊗vAv over all places, where Av is the
operator intertwining πv with σπv, which maps Y (Wv) to Y (σWv). This is
the normalization of the local operators used below. We put πv(σ) = Av,
and πv(fvdgv × σ) for the operator πv(fvdgv)Av when πv is a generic rep-
resentation. Moreover, if π is normalizedly induced I(τ) from a generic
representation of a parabolic subgroup and τ is σ-invariant, then the in-
duction functor I defines Aπ = I(Aτ ).

In the special case when πv is unramified, there exists a unique Whit-
taker function W 0

v in the space of πv with respect to ψv (provided ψv is
unramified), with W 0

v (kv) = 1 for kv in Kv = G(Rv). It is mapped by
πv(σ) = Av to σW 0

v , which satisfies σW 0
v (kv) = 1 for all kv in Kv since

Kv is σ-invariant. Namely Av maps the unique Kv-fixed vector W 0
v in the

space of πv to the unique Kv-fixed vector σW 0
v in the space of σπv, and we

have σW 0
v = W 0

v .
Hence Av acts as the identity on the Kv-fixed vectors, and our local

normalization coincides (for generic unramified representations) with the
one used in the study of spherical functions in section I.1.2.

We take π(σ) to be the identity if π is the (nongeneric) trivial represen-
tation of G(A). If π = I(1;P(A),G(A))

= {φ : G(A)→ C;φ(pg) = δδδ
1/2
P (p)φ(g), g ∈ G(A), p ∈ P(A)}

is the G(A)-module normalizedly induced from the trivial representation
1 of the maximal parabolic subgroup P(A) of G(A) of type (2, 1) (δδδP is
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the modular function of P ), then the conjugate representation σπ is the
induced I(1; σP(A),G(A)) from the trivial representation of the parabolic
σP(A) of type (1, 2). In this case we define π(σ) by (π(σ)φ)(g) = φ(σg).

1.2 (Quasi) lifting. The automorphic representation πi = ⊗vπiv of
Hi(A) (quasi-)lifts to the automorphic representation π = ⊗vπv of G(A) if
πv = λi(πiv) for (almost) all v.

1.2.1 Case of λ1(π1) = I(π1, 1). Let π1 = ⊗vπ1v be an automorphic
representation of H1(A). Let π = ⊗vπv be the representation I(π1, 1) of
G(A) normalizedly induced from the representation π1 × 1 of its maximal
parabolic subgroup P(A) = M(A)N(A). Note that the Levi factor M(A)
of P(A) is isomorphic to GL(2,A) and π1 defines a representation of M(A)
which is trivial on the center. Then π is irreducible, and also σ-invariant,
since (1) σπ is the representation I(π̌1) induced from the contragredient
π̌1 of π1, (2) π̌1 is equivalent to π1, being a representation of H1(A) =
PGL(2,A). We have that π1 quasilifts to π by virtue of I.1.8 and I.3.10.

1.2.2 Case of λ0({π0(µ′)}) = I(π(µ′′), χE), µ′′(z) = µ′(z/z). Let F be
a local or global field. Let E be a quadratic extension of F . Put CE for
the Weil group WE/E (it is isomorphic to E× if E is local, and to A×E/E×

if E is global). Put C1
E for the kernel of the norm map from CE to CF .

Similarly we have E1 and A1
E . Note that A1

E/E
1 ' C1

E . The Weil group
WE/F is an extension of Gal(E/F ) by CE . The sequence 1 → WE/E →
WE/F → Gal(E/F ) → 1 is exact. This WE/F can be described as the
group generated by the z in CE and τ with τ2 in CF −NE/FCE , under the
relation τz = zτ ; the bar indicates the action of the nontrivial element of
Gal(E/F ).

Let µ∗ be a character of CE . The two-dimensional induced representa-
tion IndFE(µ∗) = Ind(µ∗;WE/E ,WE/F ) of WE/F in GL(2,C) can be realized
as

WE/E 3 z 7→
(
µ∗(z) 0

0 µ∗(z)

)
× z, τ 7→

(
0 1

µ∗(τ2) 0

)
× τ.

The image IndFE(µ′)0 of IndFE(µ∗) in the dual group Ĥ = PGL(2,C) of
H = SL(2) is a projective two-dimensional representation. It depends only
on the restriction µ′ of µ∗ of C1

E .
Denote by χE the nontrivial (quadratic) character of CF whose kernel

is NE/FCE .
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If F is local and µ∗ = µ∗ (µ∗ is the character defined by µ∗(z) = µ∗(z)
for all z ∈ CE), then there is a character µ of CF with µ∗(z) = µ(Nz)
(Nz = zz). We define the representation π(µ∗) of GL(2, F ) associated
with µ∗ — or rather with IndFE(µ∗) — to be the induced representation
I(µ, µχE). In this case, where µ′(z/z) = (µ∗(z/z) =)1, we define the
packet {π0} = {π0(µ′)} of representations of H = SL(2, F ) associated with
IndFE(µ′)0 to be the set of irreducible subquotients of the representation

I0(χE) normalizedly induced from the character
(
a b

0 a−1

)
7→ χE(a) of the

Borel subgroup. This is the restriction of I(µ, µχE) to H. It consists of
two elements. In this case {π0(µ′)} is independent of µ∗ since µ∗ is trivial
on C1

E . The dependence of {π0(µ′)} on µ′ = 1 on C1
E is via E, that is χE .

If F is global, for almost all places v of F the character µ′ is unramified,
and then at an inert v we have µ′v = 1 on E1

v . At v which splits in E/F the
restriction of IndFE(µ∗) to WEv/Fv

is a direct sum of two characters: µ1v,
µ2v. This defines a representation π(µ∗v) = I(µ1v, µ2v) of GL(2, Fv) induced
from the Borel subgroup. We denote by {π0(µ′v)} the set of constituents
in the restriction of I(µ1v, µ2v) to Hv = SL(2, Fv). We shall denote by
π0(µ′) (resp. π(µ′)) any discrete-spectrum automorphic representation of
SL(2,A) (resp. GL(2,A)) whose components for almost all v are in the
above {π0(µ′v)} (resp. π(µ∗v)).

Applying the map λ0 = Sym2 to IndFE(µ′)0, we get the representation

z 7→ diag(µ′(z/z), 1, µ′(z/z))× z, τ 7→
(

0 1

−1

1 0

)
× τ,

of WE/F in Ĝ = SL(3,C). It is the direct sum of the two-dimensional
representation

IndFE(µ′′) = Ind(µ′′;WE/E ,WE/F )

and the one-dimensional representation x 7→ χE(x) of WF/F , where we put
µ′′(z) = µ′(z/z) (z ∈ CE) and again χE is the quadratic character of WF/F

associated with the quadratic extension E/F by class field theory.
This direct sum parametrizes the representation π of G(A) induced

from the representation π∗ × χ of a maximal parabolic P , if there exists a
GL(2,A)-module π∗ = π∗(µ′′). The representation π is σ-invariant, since
σπ is the representation induced from π̌∗×χ−1. But χ is of order two, and
for our π∗ of the form π∗(µ′′), the contragredient π̌∗ is π∗χ ' π∗. It follows
from I.1.8 that π0 quasilifts to π.
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Note that IndFE(µ′′) is reducible precisely when µ′′ = µ′′ (= µ′′−1), equiv-
alently: µ′′2 = 1. In this case there is µ on CF , µ2 = 1, with µ′′(z) = µ(zz),
and IndFE(µ′′) = µ⊕ µχE , and π∗(µ′′) = I(µ, µχE).

More generally, if π0 is an automorphic representation (or rather its
“packet”, to be defined below) which conjecturally corresponds to a map
ρ : WF → Ĥ, and π is one parametrized by the composition λ0 ◦ ρ of ρ and
λ0 : Ĥ → Ĝ, then it is clear that π0 quasilifts to π upon restricting ρ to the
local Weil groups WFv . But it is not clear that given π0, there exists such
π which is the quasilift of π0. For this we need to use the trace formula,
which yields also local lifting at all places and global lifting.

1.3 Trace formula. To formulate the identity of traces of σ-invariant
representations in L2(G\G(A)), and traces of representations in the spaces
L2(H\H(A)) and L2(H1\H1(A)), with which we study the lifting, we now
describe the terms which appear in it.

I =
∑
π

m(π)
∏
v

trπv(fvdgv × σ).

This sum is taken over a set of representatives for the equivalence classes
of discrete-spectrum representations π = ⊗vπv of G(A), and m(π) =
dimC HomG(A)(π, Ld) is the multiplicity of π in the discrete spectrum Ld.
Multiplicity one theorem for GL(3,A) asserts that m(π) = 1 for all π. For
almost all v the component πv is unramified.

I ′ =
∑
E

∑
τ

∏
v

tr Iv((τv, χEv ); fvdgv × σ).

Here the first sum is over all quadratic extensions E of F , and χE denotes
the quadratic character of F×\A× whose kernel is NE/F (A×E). The second
sum is over all cuspidal representations τ of GL(2,A) with τ ' τ̌(= χEτ).

I ′′ =
∑
η

∏
v

tr Iv(η; fvdgv × σ).

The sum is over the unordered triples η = {χ, ξχ, ξ}, where χ, ξ are char-
acters of WF/F = A×/F× of order 2 (not 1), and χ 6= ξ.

I1 =
∑
π1

∏
v

trπ1(f1vdh1v),
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and
I ′1 =

1
2

∑
π1

∏
v

tr Iv((π1v, 1); fvdgv × σ).

Both sums extend over a set of representatives for the equivalence classes
of the discrete-spectrum representations π1 of H1(A) = PGL(2,A). Mul-
tiplicity one implies that m(π1) = 1, namely that each equivalence class
consists of a single representation.

I0 =
∑
π0

m(π0)
∏
v

trπ0v(f0vdhv).

The sum ranges over a set of representatives for the equivalence classes of
the discrete-spectrum representations π0 of H(A) = SL(2,A). They occur
with finite multiplicities m(π0).

1
4

∑
E

I ′′E −
1
2

∑
E

I ′E −
1
4

∑
E

IE .

Here I ′′E = trM(χE)I0(χE , f0dh),

I ′E =
∑
µ′ 6=µ′

′ µ′(fTE
dt), IE =

∑
µ′=µ′

′ µ′(fTE
dt),

where
∑′ means here a sum over a set of representatives of equivalence

classes µ′ ∼ µ′.
Fix a representation πv of Gv for almost all v. The rigidity theorem for

GL(3,A) of [JS] implies that each of I, I ′1, I
′ and I ′′ consists of at most

one entry π with the above components for almost all v, and, moreover, at
most one of the four terms has such a nonzero entry.

1.4 Lemma. Let F be a local field. Suppose π = I(π′, χ) is a σ-invariant
representation of PGL(3, F ) induced from a maximal parabolic subgroup,
where π′ is a square-integrable representation of the 2 × 2 factor and χ is
a character. Then either χ = 1 and π′ is a representation π1 of H1 =
PGL(2, F ), or χ is a character of order 2, π′ has central character χ, and
π′ ' π̌′ (= χπ′).

Remark. The lemma and its proof are valid also in the case where F
is global and π is an automorphic representation of G(A) = PGL(3,A).
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Proof. By definition of induction, σπ is I(π̌′, χ−1), where π̌′ is the
contragredient of π′. Since I(π′, χ) is tempered, the square-integrable data
(π′, χ) is uniquely determined. Hence, as I(π′, χ) is equivalent to I(π̌′, χ−1),
our π′ is equivalent to π̌′ and χ = χ−1. The central character of π′ is
χ = χ−1 since π is a representation of PGL(3, F ). If χ = 1 then π′ is a
representation π1 of GL(2, F ) with trivial central character. If χ 6= 1, since
π̌′ = χπ′ we have π′ = χπ′. �

1.5 Regularity. Let F be a nonarchimedean local field, n a positive
integer, µ a unitary character of R×, hence of A0(R) = {diag(a, a−1); |a| =
1}. We write H, G for H(F ), G(F ), etc. Recall that we write Φ(γ, f0dh0)
for the orbital integral of f0dh0 at γ, and F (γ, f0dh0) for ∆0(γ)Φ(γ, f0dh0).
Let πππ be a generator of the maximal ideal in the ring R of integers in F .

Definition. Let S be the open closed set of γ in H which are conjugate
to
(
aπππn 0

0 a−1πππ−n

)
in H, where a lies in R×. The function f0 is called regular

of type (n, µ) if f0 is supported on S and

F (diag(aπππn, a−1πππ−n), f0dh) = µ(a)−1

for every a in R×. When µ = 1 we say that f0 is regular of type n.

Analogous definition applies to f1 and f . For example, we say that f is
regular of type (n, µ) if the value of f at δ in G is zero unless δ is σ-conjugate
to diag(aπππn, 1, 1), and then

Fσ(diag(aπππn, 1, 1), fdg) = µ(a)−1.

1.5.1 Modules of coinvariants [BZ2]. Let (π, V ) be an admissible
G-module, N the upper triangular subgroup, VN the quotient of V by the
span of n · v − v (n in N , v in V ). It is an A-module, as A normalizes N .
The associated representation of A is denoted by ′πN , and we put

πN = δδδ−1/2 ′πN , where δδδ(diag(a, b, c)) = |a/c|2.

It is an admissible representation, studied in [BZ2]. The function δδδ is
introduced to preserve unitarity ([BZ2], p. 444, last line). Since π is σ-
invariant and N is σ-invariant, VN is an A o 〈σ〉-module, and πN is a σ-
invariant representation of A. Its character on A×σ is denoted by χσ(πN )
(or χσπN

), so that

trπN (fda× σ) =
∫
A

f(a)(χσ(πN ))(a) da
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for any smooth compactly supported function f on A. If πi are all of
the irreducible subquotients of πN (repeated with multiplicities) which are
equivalent to their σ-conjugates, then χσ(πN ) =

∑
i χ

σ(πi). The Deligne-
Casselman theorem [C1] generalizes to our twisted case, and asserts that
χσπ(δ) = χσ(′πN )(δ) (these are the unnormalized characters). Hence

(∆χσπ)(δ) = (χσ(πN ))(δ) for δ = diag(ab, 1, b) with |a| < 1.

Similar definitions hold for representations π0 of H. Again N is the
upper triangular subgroup (of H), ′π0N is defined as above and so is π0N ,
where δδδ(diag(a, a−1)) = |a|2. The Theorem of [C1], which is stated for the
unnormalized characters, implies that

(∆0χπ0)(γ) = (χ(π0N ))(γ) at γ = diag(a, a−1) with |a| < 1.

For any measure f0dh on H, where dh = δδδ−1(a)dndadk = dadndk, put

f0N (γ) = δδδ1/2(γ)
∫
H(R)

∫
N

f0(k−1γnk) dn dk.

1.5.2 Computation. Let µ be a character of F×. The space of an in-
duced representation I0(µ) of H = SL(2, F ) consists of all smooth ϕ : H →
C with ϕ(n diag(a, a−1)k) = |a|µ(a)φ(k) (here δδδ(diag(a, a−1)) = |a/a−1| =
|a|2). It is reducible when µ = ν−1 (ν(a) = |a|), where the composition
series is described by the exact sequence 0 → 1 → I0(ν−1) → sp → 0,
where 1 denotes the trivial representation of H and sp the Steinberg (or
special) representation of H; or µ = ν, where 0 → sp → I0(ν) → 1 → 0 is
exact; or µ has order precisely two, where I0(µ) is tempered, equal to the
direct sum of the irreducible representations I+

0 (µ) and I−0 (µ) of H.
Let f0 be a regular function of type (n, µ), and π0 an irreducible repre-

sentation of H. Then, using the Weyl integration formula (see I.3.5), we
have

trπ0(f0dh) = trπ0N (f0Nda) =
1
2

∫
A0

χ(π0N )(a)F (a, f0dh) da

=
∫
A0(R)

χ(π0N )(diag(aπππn, a−1πππ−n))µ−1(a) da.

If µ is ramified, that is, µ 6= 1, then trπ0(f0dh) vanishes unless π0 is a
subquotient of the induced representation I0(µ1) of H, in the notations of
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I.3.10, where µ1 is a character of A0 ' F× with µ1 = µ on A0(R) ' R×.
Then

(χ(π0N ))(diag(a, a−1)) = µ1(a) + µ1(a−1),

and trπ0(f0dh) is equal to µ1(πππn) if µ2 6= 1 on A0(R). If µ2 = 1 but
µ2

1 6= 1 then I0(µ1) is irreducible and trπ0(f0dh) is equal to zn + z−n,
where z = µ1(πππn). If µ2

1 = 1 but µ1 6= 1 then I0(µ1) is reducible and
trπ0(f0dh) = µ1(πππn) for any of the two constituents π0 of I0(µ1).

Suppose that µ = 1. In this case, if trπ0(f0dh) 6= 0 then π0 is a con-
stituent of I0(µ1) where µ1 is unramified. Hence π0 has a nonzero vector
fixed under the action of an Iwahori subgroup, by [Bo3], Lemma 4.7. We
have

tr I0(µ1; f0dh) = µ1(πππn) + µ1(πππn)−1,

and this is the value of trπ0(f0dh) when I0(µ1) is irreducible. Reducibility
occurs when z = µ1(πππ) is equal to q = |πππ|−1, q−1 or −1. If z = q or q−1,
then the composition series of I0(µ1) consists of the trivial representation 1
and the special representation sp. Then tr1(f0dh) = qn and tr sp(f0dh) =
q−n. If z = −1 then I0(µ1) is the direct sum of two irreducibles π0, and
trπ0(f0dh) = (−1)n for each of them.

1.5.3 Twisted computation. Let f be a regular function of type
(n, µ), and π a σ-invariant irreducible representation of G. The twisted
Weyl integration formula (see I.3.5) implies that

trπ(fdg × σ) =
∫
R×

(χ(πN ))(diag(aπππn, 1, 1)× σ)µ−1(a) da.

This vanishes unless π is a subquotient of a representation I(η) of G induced
from a character η = (µ1, µ2, µ3) of A, such that µ2 = 1 and µ1µ3 = 1 (by
σ-invariance) and µ1 = µ on R×. As explained in (1.5.1), we have

χ(πN )(diag(a, b, c)× σ) = µ1(a/c) + µ1(c/a).

Put z = µ1(πππn). Then tr I(η)(fdg × σ) is equal to zn, unless µ2 = 1 when
it is equal to zn + z−n. These are the values of trπ(fdg × σ) if π is an
irreducible I(η).

The reducibility results of [BZ2] imply that if I(η) is reducible, and its
twisted character χσI(η) is nonzero, then its twisted character is equal to
that of

I(ν−1, 1, ν) or I(χν−1/2, 1, χν1/2),
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where χ is a character of F× with χ2 = 1, and ν denotes the character
ν(x) = |x|. Then µ = 1 or µ = χ (respectively), and tr I(η)(fdg × σ) =
zn + z−n. Here z equals q or q1/2χ(πππ), and χ(πππ) equals 1 or −1.

In the first case, where z = q, the composition series of I(η) consists of
(1) the trivial representation 1, and tr1(fdg × σ) = qn; (2) the Steinberg
representation st, and tr st(fdg×σ) = q−n; and some other non-σ-invariant
irreducibles.

In the second case, where z = χ(πππ)q1/2, the composition series of I(η)
consists of two σ-invariant irreducibles. Let sp(χ) and 1(χ) denote the
special and one-dimensional subquotients of the induced representation
I(ν1/2, ν−1/2)χ of GL(2,F). Let P denote a maximal proper parabolic sub-
group of G; its Levi factor is isomorphic to GL(2). Then the composition
series of I(η) consists of the irreducibles IP (sp(χ), 1) and IP (1(χ), 1) nor-
malizedly induced from P , and

tr[IP (sp(χ), 1)](fdg × σ) = z−n, tr[IP (1(χ), 1)](fdg × σ) = zn.

It is clear that when µ = 1 and trπ(fdg × σ) 6= 0, then the irreducible π
has a vector fixed by the action of an Iwahori subgroup, again by [Bo3],
Lemma 4.7.

1.6 Comparison. Let F be a global field. Suppose that fdg = ⊗vfvdgv
and fidhi = ⊗vfivdhiv are products of smooth compactly supported mea-
sures fvdgv and fivdhiv on Gv and Hiv. Suppose that fvdgv and fivdhiv are
the unit elements f0

v dgv and f0
ivdhiv in the Hecke algebras H and Hi (see

I.1.2) of Gv and Hiv for almost all v. Suppose that fivdhiv = λ∗i (fvdgv) for
all v in the notations of section II.3, namely Φst(δσ, fvdgv) = Φst(γ, f0vdhv)
whenever γ = Nδ (see II.3.1), and a similar statement of matching or-
bital integrals for f1vdh1v, relating Φus(δσ, fvdgv) with Φ(N1δ, f1vdh1v)
(see II.3.4). It is shown in section II.3 that for each fvdgv there exists
fivdhiv and for each fivdhiv there exists fvdgv with fivdhiv = λ∗i (fvdgv),
and in section II.1 that f0

0vdhv = λ∗0(f
0
v dgv) and that f0

1vdh1v = λ∗1(f
0
v dgv).

Had we not proved that f0
1vdh1v = λ∗1(f

0
v dgv) we could have worked

with fdg which has the property that there is a place u′ of F such that
Φus(δσ, fu′dgu′) = 0 for all σ-regular δ in Gu′ .

Recall that δ is called σ-regular in Gv (resp. σ-elliptic, σ-split) if γ = Nδ

is regular (resp. elliptic, split) in Hv, where N is the norm map defined in
I.2.
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Working with such fdg we could choose f1udh1u to be 0, hence f1dh1 =
⊗vf1vdh1v to be 0, and I1 = 0. Consequently, we would not need to
know that f0

1vdh1v = λ∗1(f
0
v dgv) for almost all v. But then we could derive

only partial results, on cuspidal representations π with a discrete-series
component.

Fix a finite place u of F . Fix fvdgv, f0vdhv, f1vdh1v, for all v 6= u to be
matching. Put fudgu = ⊗vfvdgv, fu0 dhu = ⊗vf0vdhv, fu1 dhu = ⊗vf1vdh1v

(product over v 6= u). Proposition III.3.5 and the last paragraph of section
IV show that we have

1.6.1 Lemma. There exists an absolutely integrable function d(z) on
the unit circle in C×, and a positive integer n′ depending on fudgu, fu0 dh

u,
fu1 dh

u
1 , such that if fudgu, f0udhu, f1udh1u are regular of type n, n ≥ n′,

then

In = I + 1
2I
′ + 1

4I
′′ + 1

2I
′
1 −

[
I0 + 1

4

∑
E

I ′′E − 1
2

∑
E

I ′E − 1
4

∑
E

IE

]
− 1

2I1

is equal to

Jn =
∫
|z|=1

d(z)(zn + z−n) d×z.

Indeed, tr I0(µ, fudgu) = zn + z−n, where z = µ(πππ).

Remark. As the one-dimensional representation which appears in I0
lifts to the one-dimensional representation in I, we may assume that I and
I0 consist of cuspidal representations only.

1.6.2 Proposition. The function d(z) in the integral Jn is equal to 0.

Proof. The sum of the I’s in In can be written as∑
i

ci(zni + z−ni ) + a0q
n + a1q

−n + a2q
n/2

+ a3q
−n/2 + a4(−q1/2)n + a5(−q−1/2)n,

where ai and ci are complex numbers, the sum is absolutely convergent,
and ci is a sum of trπu(fudgu × σ), trπu0 (fu0 dh

u) etc. with coefficient 1, 1
2

or 1
4 , over the πu, . . . such that π = πu ⊗ πu, . . . appears in the sum of
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I, . . . , where πu = I(η) determines zi as in (1.5.2), (1.5.3) (with µ = 1).
Here zi 6= q, q−1, q1/2, q−1/2,−q1/2,−q−1/2, q = qu.

We shall use the following comments. All representations in the trace
formula have unitarizable components. Hence each zi lies in the compact
subset X ′ = X ′(q) in C which is the union of the unit circle |z| = 1 and
the real segments q−1 ≤ z ≤ q and q−1 ≤ −z ≤ q. Let X = X(q) be
the quotient of X ′ by the equivalence relation z−1 ∼ z. Then X is a
compact Hausdorff space. Let B = B(q) be the space spanned over C by
the functions fn(z) = zn + z−n on X, where n ≥ 0. It is closed under
multiplication, contains the scalars, and separates points of X. Moreover,
if f lies in B then its complex conjugate f does too. Hence the Stone-
Weierstrass theorem implies the following

Lemma. B is dense in the sup norm in the space of complex-valued
continuous functions on X.

Our argument is based on the observation that the terms in the identity
In = Jn with coefficients ai are finite in number. We shall first prove that
Jn = 0 and d(z) = 0 and ci = 0 for all i. It will then follow from a standard
linear independence argument for finitely many characters that each ai is
zero. Since we do not know apriori that a2i = a2i+1, we cannot express In
in terms of values of fn. The first step of the proof is then to eliminate
the ai. This would let us express In in terms of values of fn, but we need
to observe that only sufficiently large n are known to us now to satisfy
In = Jn.

To eliminate the terms ai we construct a rational function r(x) whose
zeroes are precisely q±1, q±1/2, −q±1/2, and whose pole is only at 0. Namely

r(x) = (qx2 − 1)(qx−2 − 1)(qx− 1)(qx−1 − 1)

= q2x3 − q(q2 + 1)x2 − q(q2 − q + 1)x+ (q2 + 1)2

− q(q2 − q + 1)x−1 − q(q2 + 1)x−2 + q2x−3.

Note that r(x−1) = r(x).
Correspondingly we define

Gn = q2fn+3 − q(q2 + 1)fn+2 − q(q2 − q + 1)fn+1

+(q2 + 1)2fn − q(q2 − q + 1)fn−1 − q(q2 + 1)fn−2 + q2fn−3,
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and we take the linear combination of In’s:

q2In+3 − q(q2 + 1)In+2 − q(q2 − q + 1)In+1 + (q2 + 1)2In

− q(q2 − q + 1)In−1 − q(q2 + 1)In−2 + q2In−3.

The terms with coefficients ai become zero, and we obtain∑
i

ciGn(zi) =
∫
|z|=1

d(z)Gn(z)d×z.

Note that

Gn+3(z) = (zn+3 + z−n−3)r(z) = fn+3(z)r(z).

Hence for n ≥ n′ + 3 we have∑
i

cir(zi)fn(zi) =
∫
|z|=1

d(z)r(z)fn(z)d×z. (1.6.3)

The zi are all on the unit circle S1. Let S be the quotient of S1 by the
relation z ∼ z−1. Suppose that the sum is nonempty, that is, there is some
zi ∈ S with ci 6= 0. Rearranging indices we may assume that i = 0. The
absolute convergence of the sum and integral implies that there is c > 0
with ∫

|z|=1

|d(z)r(z)|d×z ≤ c,

and for a given ε > 0, an m > 0 with∑
i≥m

|cir(zi)| < ε.

The Lemma implies that there is a function f in B, which is a linear
combination of fn’s over C, with f(z0) = 1, which is bounded by 2 on S

and whose value outside a small neighborhood of z0 is small. The only
problem is that (1.6.3) holds only for n bigger than some n′. To overcome
this, take k larger than the sum of n′ and the degree of f (deg fn = n),
such that zk0 is close to one. Then |zk + z−k| ≤ 2 on S, and we may apply
(1.6.3) with fn(z) replaced by

g(z) = f(z)(zk + z−k)

to obtain a contradiction to c0 6= 0. Of course r(z0) 6= 0 as r 6= 0 on S.
The same proof shows that d(z) is zero on S1. Indeed, as ci = 0 for all i, if
d(z0) 6= 0, we apply (1.6.3) with fn replaced by f which is small outside a
small neighborhood of z0, and with f(z0) = 1. The proposition follows. �
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1.6.4 Correction. In the proof of Proposition 5 in [F1;IV] we should
work with

r(x) = −(q1/2x− 1)(q1/2x−1 − 1) = q1/2x− (q + 1) + q1/2x−1

and
Gn = q1/2fn+1 − (q + 1)fn + q1/2fn−1

which satisfy Gn+1(z) = fn+1(z)r(z), instead of with Fn of page 756, line
2 from the bottom, of [F1;IV].

1.7 Density. For a global function f whose components at u′, u′′ are
supported on the σ-elliptic regular set, the twisted trace formula takes the
form (see chapter III, (3.2.5)).

I + 1
2I
′ + 1

4I
′′ + 1

2I
′
1 =

∑
{δ}

cγΦ(δσ, fdg). (1.7.1)

The sum is over all conjugacy classes of elements δ in G whose norm γ = Nδ

in H is elliptic regular. The cγ are volume factors, see chapter III, (1.2.1).
The sum is finite. With analogous conditions on f0dh, the stable trace
formula for H takes the form

I0 + 1
4

∑
E

I ′′E − 1
2

∑
E

I ′E − 1
4

∑
E

IE =
∑
{γ}

cγΦst(γ, f0dh).

The sum over {γ} is over all stable conjugacy classes of elliptic regular
elements in H. The cγ are as above and the sum is again finite. The
following is a twisted analogue of Kazhdan [K2].

Proposition. Let Fu be a local field. Suppose that trπu(fudgu×σ) = 0
for all admissible πu. Then the twisted orbital integral Φ(δ, fudgu) of fudgu
is 0 for all δ in Gu.

Remark. It suffices to make the assumption of the proposition only for
the πu which are the component at u of the π which make a contribution
(1.7.1).

Proof. By virtue of II.3 it suffices to consider only σ-regular δ. Choose
a global field F whose completion at a place u is our Fu. Choose places u′,
u′′. Since G is dense in Gu and Φ(δσ, fudgu) is smooth on the σ-regular
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set, it suffices to show that in each neighborhood of δ in Gu there exists
a σ-regular δ0 in G with Φ(δ0σ, fudgu) = 0. We choose such δ0 which is
σ-elliptic at the places u′, u′′. We choose fdg whose components at u′,
u′′ are supported on the σ-regular elliptic set, so that (1.7.1) holds, such
that the component of fdg at u is our fudgu, and Φ(δ0σ, fvdgv) 6= 0 for all
v 6= u. The assumption of the proposition implies that∑

{δ}

cγΦ(δσ, fdg) = 0.

The sum ranges over all σ-conjugacy classes of σ-elliptic regular δ in G.
Since fdg is compactly supported it is clear that the eigenvalues of Nδ
lie in a finite set (depending on the support of fdg). These eigenvalues
determine the stable σ-conjugacy class of δ. By Corollary I.2.3.1, given a
place u and stably σ-conjugate δ, δ′ which are not σ-conjugate, there is a
place v 6= u where δ, δ′ are not σ-conjugate. Hence we may restrict the
support of fudgu = ⊗v 6=ufvdgv to have Φ(δσ, fudgu) = 0 for all δ in the
sum unless δ is σ-conjugate to δ0. Since

Φ(δ0σ, fudgu) 6= 0 and Φ(δ0σ, fdg) = 0,

and cγ 6= 0, it follows that Φ(δ0σ, fudgu) = 0, as asserted. �

We shall now adapt the above techniques to show that corresponding
spherical functions have matching stable orbital integrals, using the Funda-
mental Lemma of section II.1, that the unit elements of the Hecke algebras
are matching. Our method is new. It is based on the usage of regular func-
tions. The method was extended in [FK1] and [F1;V] to deal with groups
of general rank. As noted in [F1;VI], page 3, there is a gap in [F1;V]. It is
filled in an appendix of the paper [F2;V], and by Labesse, Duke Math. J.
61 (1990), 519-530, Proposition 8, p. 525. We checked — but did not write
up — that this result can also be proven by a method of Clozel, which is
also global (both Clozel’s and our technique are motivated by the global
technique of Kazhdan [K2], Appendix), but relies instead on properties of
spherical, not Iwahori, functions. In fact Clozel writes in [Cl2], p. 151, line
3, that his method is the one used in this work. But his assertion is not true.
Langlands wrote an unpublished long set of notes, using combinatorics on
buildings, to prove the matching statement. In any case we believe that
our method is the simplest available.
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As in I.3.4, I.3.8 and II.3.1, we write λ∗0(fdg) = f0dh if fdg and f0dh

are matching (have matching stable orbital integrals), and λ̃0(fdg) = f0dh

if fdg and f0dh are corresponding spherical functions (see I.1; they satisfy
trπ(fdg × σ) = trπ0(f0dh) for all unramified π0 and π with π = λ0(π0)).

1.7.2 Proposition. For each fdg in H we have λ∗0(fdg) = f0dh if
λ̃0(fdg) = f0dh.

Proof. As in (1.7) it suffices to consider a σ-regular δ0 in G which is σ-
elliptic at u′, u′′. We choose fudgu = ⊗vfvdgv (v 6= u) whose components
at u′, u′′ are supported on the σ-regular set, with Φus(fu′dgu′) identically
zero and Φst(δ0σ, fudgu) 6= 0. The component at u is taken to be a regular
measure of any type n. The measure f0dh = fu0 dh

u ⊗ f0udhu is taken in a
parallel fashion, so that fdg, f0dh have matching orbital integrals. Hence∑

cγΦst(γ, f0dh) =
∑

cγΦst(δσ, fdg), (1.7.3)

where the sums, which range over stable conjugacy classes, are finite. Re-
call from I.2.3 that the norm map is a bijection from the set of stable
σ-conjugacy classes in G, to the set of stable conjugacy classes in H. By
(1.7.1) we obtain the identity In = 0, where In is defined in Lemma 1.6.1.
We write In = 0 as in the proof of (1.6.2) in the form∑

c(π0u) trπ0u(f0udhu) = 0 or
∑

ci(zni + z−ni ) = 0. (1.7.4)

As in (1.6.2) we conclude that each coefficient ci, or c(π0u), is zero. In
particular we can take the subsum in (1.7.4) over spherical π0u only, and
it is equal to zero also when f0udhu, fudgu are replaced by corresponding
spherical functions as in our proposition. Hence we obtain (1.7.3) where
f0udhu, fudgu are now corresponding spherical functions. As the sums are
finite we can reduce the support of the component f0u′dhu′ , so that the
only entry to the sums in (1.7.3) is δ0. Indeed, a stable σ-conjugacy class δ
is determined by the eigenvalues of δσ(δ). Since Φst(δ0, fudgu) is nonzero
by construction, we have

Φst(δ0σ, fudgu) = Φst(Nδ0, f0udhu)

for all σ-regular δ0 (in G, hence in Gu), as asserted. �
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1.8 Proposition. Let V be a finite set of places of F including the
archimedean places. Fix a conjugacy class tv in Ĥ for all v outside V .
For any choice of matching fvdgv, f0vdhv (= λ∗0(fvdgv)), and f1vdh1v (=
λ∗1(fvdgv)) for v in V , we have

I + 1
2I
′ + 1

4I
′′ + 1

2I
′
1 = I0 + 1

4

∑
E

I ′′E − 1
2

∑
E

I ′E − 1
4

∑
E

IE + 1
2I1,

(1.8.1)

where I, I0, I1, IE, . . . are defined by products
∏
v∈V trπv(fvdgv×σ), . . . ,

over v in V only, the sums in I, I0, I1, IE, . . . are taken only over those
π, π0, π1, µ′ on A1

E/E
1, . . . whose component at v outside V is unramified

and parametrized by the conjugacy class λ0(tv) in Ĝ or tv in Ĥ or λ1(tv)
in Ĥ1 or η′v(πππ) with image tv under λE.

Proof. The proof of (1.6.2) applied inductively to the elements in a set
U of places outside V , implies that∑

i

ci
∏

v/∈V ∪U

f∨0v(tiv) = 0.

Here the product ranges over v outside V ∪U , the sum is over all sequences
{tiv; v outside V } in Ĥ with tiv = tv for v in U , and ci is defined by
the difference of the left and right sides of (1.8.1) (corresponding to the
sequence {tiv}). We have to show that ci = 0 for all i. Suppose c0 6= 0.
Choose a positive m with ∑

i≥m

|ci| < 1
2 |c0|,

and a set U disjoint from V so that for each 1 ≤ i < m there is u in U

with tiu 6= tu. Applying our identity with this U and with f∨0v = 1 (thus
f0v = f0

0v) for all v outside V ∪ U , we obtain a contradiction which proves
the proposition. �

1.8.2 Theorem. Under the conditions of (1.8) at most one of the sums
I, I ′, I ′′, I ′1 is nonempty, and consists of a single summand.

Proof. This follows from the rigidity theorem of [JS]. �
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1.8.3 Corollary. Fix a nonarchimedean u in V and a character µ1u

of F×u . Then the trace identity (1.8.1) holds where the products in I, I0,
IE, . . . are taken to range only over the places v 6= u in V , and the sums in
I, I0, IE, . . . are the subsums of those specified in (1.8) where π0 has the
component I0(µ1u) at u, π has the component λ(I0(µ1u)) = I(µ1u, 1, 1/µ1u)
at u, π1 has the component λ−1

1 (I(µ1u, 1, 1/µ1u)) = I1(µ1u, 1/µ1u), and µ′

on A1
E/E

1 has λE(µ′E) = I0(µ1u).

Proof. Denote by µ the restriction of µ1u to R×u . The case of µ =
1 is dealt with in Proposition 1.6.2 (or (1.8)). That of µ2 = 1 is the
same. If µ2 6= 1 let f ′0u be a regular function of type (n, µ), and consider
f0u = f ′0u + f

′
0u; note that the complex conjugate f

′
0u is of type (n, µ−1).

Then trπ0u(f0udhu) vanishes unless π0u is a constituent of an induced
I0(µ1u) from a character µ1u of F×u = A0u whose restriction to R×u is µ, in
which case trπ0u(f0udhu) equals zn + z−n for a suitable z. As the same
observations apply on the twisted side, and for H1u, applying the Stone-
Weierstrass theorem as in (1.6.2) the corollary follows. �

It would simplify matters to remove the terms associated with H1 in our
trace identity (1.8.1).

1.9 Proposition. Let Fu be a local field. Every irreducible admissible
representation π1u of H1u λ1-lifts to the σ-invariant representation πu =
I(π1u) of Gu.

Proof. If π1u is fully induced, the result is proven in I.3.10. Suppose
that u is nonarchimedean and π1u is square integrable. Choose a totally
imaginary number field whose completion at a place u is our Fu. Choose two
nonarchimedean places u1, u2 6= u of F . Choose cuspidal representations
π′1ui

of H1ui . Construct cuspidal representations π̃1 and π̃′1 of H1(A) whose
components at u1, u2 are our cuspidal π′1ui

; outside u, u1, u2 and the
archimedean places the components are unramified; and at u we take π̃1

to have our component π′1u, while π̃′1 is taken to have (at u) an unramified
component. Such π̃1 and π̃′1 are constructed using the simple trace formula
on H1(A). Note that if π1u is special, the fact that π̃′1u1

is cuspidal would
guarantee that the component of π̃1 at u is the special π1u and not the
one-dimensional complement in the induced representation.

We now apply the trace identity (1.8.1) fixing the conjugacy classes
{tv; v /∈ V } so that the sum I ′1 has the contribution I(π̃1). Consequently the
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sums I, I ′, I ′′ are empty. We evaluate at a test measure such that f1u1dh1u1

is supported on the elliptic set of H1u1 and trπ′1u1
(f1u1dh1u1) 6= 0. We can

then choose f0u1dhu1 to be identically zero, and fu1dgu1 to be a matching
function on Gu1 . Then the terms I0, I ′E , IE are zero. The trace identity
(1.8.1) reduces to I ′1 = I1, and there is only one entry in each sum, thus∏

v

tr I(π̃1v; fvdgv × σ) =
∏
v

tr π̃1v(f1vdh1v). (1.9.0)

Now the product can be taken only over the set {u, u1, u2}, as all other
components of π̃1 are induced. Working with the cuspidal representation
π̃′1 instead of with π̃1, we obtain the same identity (1.9.0), but with product
ranging only over the set of v in {u1, u2}. The quotient of the two identities
is

tr I(π1u; fudgu × σ) = trπ1u(f1udh1u).

This holds for all matching measures f1udh1u and fudgu. Hence π1u λ1-lifts
to I(π1u).

If π1u is one dimensional it is contained in an induced I1u whose com-
position series consists of π1u and a special representation sp1u. The result
(character relation) for I1u and for sp1u implies the result for π1u. This
comment applies also when Fu = C, the field of complex numbers, where
the trivial representation is the difference between two fully induced repre-
sentations of H1(C). This comment would apply also when Fu = R is the
field of real numbers once we prove the proposition for square-integrable
representations of H1(R).

To deal with the real case we take F = Q. Then Fu = R. We construct
a cuspidal representation π1 of H1(A) whose component at the real place is
the π1u of the proposition, and whose component at some nonarchimedean
place w is cuspidal. Once again we apply (1.8.1) to get I ′1 = I1 with a single
term π1, and the products in (1.9.0) reduce to v = u by virtue of the result
for the nonarchimedean places. �

1.9.1 Corollary. In the trace identity (1.8.1) we have I ′1 = I1. Ev-
ery discrete-spectrum representation π1 of H1(A) λ1-lifts to the σ-invariant
representation I(π1, 1) of G(A). Every σ-invariant representation of G(A)
of the form I(π1, 1) is the λ1-lift of π1 on H1(A). A σ-invariant representa-
tion of G(A) which has a component I(π1u) where π1u is not fully induced,
is of the form I(π1, 1) for a discrete-spectrum π1. The σ-twisted character
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of a σ-invariant representation πu = I(π1u) is σ-unstable (χσπ(δ) = −χσπ(δ′)
if δ, δ′ are stably σ-conjugate but not σ-conjugate). If a σ-invariant repre-
sentation of G(A) has a σ-elliptic σ-unstable component, then it is of the
form I(π1, 1). Any σ-invariant σ-elliptic σ-unstable representation πu of
Gu is of the form I(π1u). Any σ-invariant σ-elliptic representation πu of
Gu is either σ-stable or σ-unstable.

Proof. The σ-twisted character of I(π1u) is σ-unstable by the character
relation

trπ1u(f1udh1u) = tr I(π1u; fudgu × σ).

Since I ′1 = I1, every component of a contribution to the sums I, I ′, I ′′

in (1.8.1) are stable (depend only on f0vdhv, or on the stable σ-orbital
integrals of fvdgv, for every v). Using a pseudo-coefficient of πu and the
twisted trace formula we can construct a σ-invariant representation π of
G(A) which occurs in I, I ′, I ′′ or I1 whose component at u is our πu. If
πu is σ-unstable, π must occur in I1 and πu = I(π1u). If not, π will occur
in I, I ′ or I ′′. �

Now that we eliminated the terms I ′1 = I1 in (1.8.1), and we know that
no factors tr I(π1u; fudgu × σ) may appear in I, I ′, I ′′, we may rewrite
(1.8.1) in the form∑

π

∏
v

trπv(fvdgv × σ) + 1
2

∑
E

∑
τ

∏
v

tr I((τv, χEv ); fvdgv × σ)

+ 1
4

∑
η

∏
v

tr I(ηv; fvdgv × σ)

=
∑
π0

m(π0)
∏
v

trπ0v(f0vdhv)− 1
2

∑
E

∑
µ′ 6=µ′

′
∏
v

µ′v(fTEv
dt)

+ 1
4

∑
E

∏
v

trR(χEv )I0(χEv , f0vdhv)− 1
4

∑
E

∑
µ′=µ′

∏
v

µ′v(fTEv
dt).

(1.9.2)

On the left the first sum ranges over the set of discrete-spectrum σ-invariant
automorphic representations of G(A).
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The second sum is over all quadratic extensions E of F , and χE denotes
the quadratic character of A×/F× whose kernel is NE/F (A×E). The second
sum is over all cuspidal representations τ of GL(2,A) with τ ' τ̌(= χEτ).

The third sum is over the unordered triples η = {χ, µχ, µ}, where χ, µ
are characters of WF/F = A×/F× of order 2 (not 1), and χ 6= µ.

The first sum on the right is over the equivalence classes of discrete-
spectrum automorphic representations π0 of H(A). The coefficients m(π0)
are the multiplicities. The last two sums range over the quadratic extensions
E of F , and all characters µ′ of A1

E/E
1, up to the equivalence relation

µ′ ∼ µ′. This is indicated by the prime in
∑′.

The products are taken over v in V , as specified in (1.8) and (1.8.3).
Namely we fix classes tv in Ĥ for all v 6∈ V , or I0(µ1v), and only those π,
π0, µ′ on A1

E/E
1 that have components at v 6∈ V specified by tv or I0(µ1v)

via our liftings (t(πv) = λ(tv), t(π0v) = tv, λE(µ′v) = tv) occur in our sums.

1.9.3 Lemma. (1) The conclusion of (1.8.3) holds at a complex place.
(2) If F is totally imaginary then (1.8.1) holds where all archimedean

places are omitted (in the sense of (1.8.3)) from V ; then the sums in (1.9.2)
are finite for a fixed choice of f0vdhv, fvdgv (v in V , v 6=∞).

Proof. (1) Let π be an irreducible admissible σ-invariant representa-
tion of G(C) which appears as a component at a complex place of an
automorphic representation on the left of (1.9.2). Since the trivial repre-
sentation of H(A) lifts to the trivial representation of G(A), we may assume
that π is generic, in which case it is induced from a character of a Borel
subgroup, hence it is the lift of an induced π0; here we use the description
[Vo], Theorem 6.2(f), of generic (= large) representations of G(C).

For (2), the sums are finite by a classical theorem of Harish-Chandra
(see [BJ], 4.3(i), p. 195), which asserts that there are only finitely many
automorphic representations π of G(A) with a fixed infinitesimal character
and a C-fixed vector; C is an open compact subgroup of G(Af ), and Af
denotes the finite adèles. The conditions of this theorem are satisfied in our
case since we fixed the archimedean components of the π and the π0, and
we choose fvdgv (v 6=∞) to be invariant under such fixed C. �

1.10 Lemma. Let Ei be quadratic extensions of F and µ′i (i = 1, 2)
characters of A1

Ei
/E1

i such that the two-dimensional projective (image in
PGL(2,C)) representations (IndFE1

µ′1)0v and (IndFE2
µ′2)0v are equivalent for

all v outside a finite set V . Then (1) E1 = E2 and µ′1 = µ′2 or µ′2
−1, or (2)
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µ′i
2 = 1 6= µ′i and {µ1, χE1µ1, χE1} = {µ2, χE2µ2, χE2} where µi is defined

by µ′′i (z) = µi(NEi/F z) (it is unique up to multiplication by χEi), and µ′′i
is defined by µ′′i (z) = µ′i(z/z), z ∈ A×Ei

/E×i .

Proof. By Chebotarev’s density theorem we may assume (IndFE1
µ′1)0 '

(IndFE2
µ′2)0. Applying λ0 we then get IndFE1

µ′′1 ⊕χE1 ' IndFE2
µ′′2 ⊕χE2 . If

one of the Ind is irreducible we obtain that both are irreducible, χE1 = χE2

so E1 = E2, and µ′1 = µ′2 or µ′2
−1.

If the Ind are reducible, µ′i
2 = 1. If µ′i = 1, IndFEi

µ′′i = χEi⊕1. If µ′i 6= 1
(= µ′i

2) then IndFEi
µ′′i = µi ⊕ µiχEi , so the lemma follows. �

Remark. Analogous proof — based on applying λ0 — establishes the
local analogue, namely that if (IndFE1

µ′1)0 and (IndFE2
µ′2)0 are equivalent

then (1) or (2).

1.10.1 Corollary. Let E be a quadratic extension of F . Let µ′ 6= 1 be
a character of A1

E/E
1 with µ′u 6= 1 at a place u of F where Eu is a field.

Then there exists a cuspidal representation π0 = π0(µ′) of SL(2,A) with
λE(t(µ′v)) = t(π0v) for almost all v. If µ′ = 1 the conclusion holds with
π0 = I0(χE).

Proof. Set up (1.9.2) with V such that µ′v is unramified outside V , such
that our E and µ′ make the only contribution on the right. At u ∈ V choose
f0u with Φst(γ, f0udhu) ≡ 0, and Φus(γ, f0udhu) ≡ 0 unless γ ∈ E1

u, γ 6= γ,
and µ′u(fTEu

dt) 6= 0. For fdg matching f0dh the sums I, I ′, I ′′ are zero,
and (1.9.2) becomes

∑
π0
m(π0)

∏
v trπ0v(f0vdhv) = 1

2

∏
v µ
′
v(fTEv

) 6= 0.
Hence there is π0 with λE(µ′v) = π0v for all v 6∈ V . �

Remark. The assumption that there is a place u where Eu is a field
and µ′u 6= 1 will be removed once we complete the local theory.

1.10.2 Construction. Given a quadratic extension E1 of the global
field F , and a character µ′1 6= 1 = µ′1

2 of A1
E1
/E1

1 , let us find the E2

and µ′2 with (IndFE2
µ′2)0 = (IndFE1

µ′1)0. For this, note that there is a
quadratic character µ1 of A×F /F×A×2

F , nontrivial on F×NE1/FA×E1
/F×A×2

F ,
such that µ′′1(z) = µ′1(z/τ1z) is µ1(zτ1z) for all z ∈ A×E1

. Here τ1 generates
Gal(E1/F ). Indeed, we have µ′′1 = µ′′1 where µ′′1(z) = µ′′1(z), and the
sequence 1 → E1

1 → E×1 → NE1/FE
×
1 → 1 defined by the norm NE1/F

is exact. This µ1 is determined uniquely up to multiplication by χ1 =
χE1 , the nontrivial character of A×F /F×NE1/FA×E1

. Now the characters
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χ2 = µ1 and χ3 = µ1χ1 determine the quadratic extensions E2 and E3 of
F , and the biquadratic extensions EiEj of F for any i 6= j are all equal
to E1E2E3. Define characters µ′′i on A×Ei

/E×i A×F and µ′i on A1
Ei
/E1

i by
µ′′i (z) = µ′i(z/τiz) = µi(zτiz), where τi generates Gal(Ei/F ) and µi = χ1

(or = χ1χi).
Analogous construction applies in the local case.

V.2 Main theorems

Let F be a global field. Fix a place u to be nonarchimedean, unless
otherwise specified. Put H = SL(2), H1 = PGL(2), G = PGL(3). An irre-
ducible σ-invariant Gu-module πu is called σ-elliptic if its twisted character
is not identically zero on the σ-elliptic regular set.

2.1 Proposition. Given a cuspidal representation π′0u of Hu there ex-
ists (i) a σ-invariant σ-stable σ-elliptic generic tempered representation πu
of Gu which is not Steinberg, and (ii) for each π0u a nonnegative integer
m(π0u) with m(π′0u) 6= 0 which is equal to 0 if π0u is one dimensional or
special, such that for all matching fudgu, f0udhu we have

trπu(fudgu × σ) =
∑

m(π0u) trπ0u(f0udhu). (2.1.1)

Given an open compact subgroup Cu of Hu = H(Fu), there are only finitely
many terms π0u in the sum which have nonzero Cu-fixed vector.

For each σ-invariant σ-stable σ-elliptic representation πu of Gu there
are m(π0u) for which (2.1.1) holds.

If u is real and π′0u is square integrable, (2.1.1) holds with an absolutely
convergent sum.

Remark. (2.1.1) holds of course when π′0u is special. Then πu is Stein-
berg, and the sum consists of π′0u alone.

Proof. Choose a totally imaginary field F whose completion at a place
u is our local field Fu. Let π′0 be a cuspidal representation of H(A) which has
the component π′0u at u, its component at another finite place w is special,
and it is unramified at any other finite place. It is easy to construct such π′0
using the trace formula for H(A), and a function f0dh = ⊗vf0vdhv whose
component at u is a matrix coefficient of π0u, at w it is a pseudo-coefficient
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of the special representation, at the other finite places it is the unit element
of the Hecke algebra, and at the infinite places the component has small
compact support near the identity.

Apply Proposition 1.8 with π′0 and the set V = {u,w}. By 1.9.1 I ′1 = I1
is removed from (1.8.1). Take f0wdhw to be a pseudo-coefficient of the
special representation. Its orbital integrals are stable, namely fTEw

≡ 0 for
all Ew, hence all terms on the right of (1.8.1) belong to I0. We obtain the
right side of (2.1.1). If we take f0udhu to be a matrix-coefficient of π′0u we
obtain a positive integer (the multiplicity of π′0 in the cuspidal spectrum
of H(A)) on the right of (1.8.1). Hence there exists a (necessarily unique
under the conditions of (1.8)) term π on the left of (1.8.1). If fwdgw is a
measure which matches a pseudo-coefficient of the special representation,
then

〈χπw , χStw〉e = trπw(fwdgw × σ) 6= 0

by the orthogonality relations I.4.7. Hence the component of π at w is
the Steinberg Stw. Then π is a σ-invariant cuspidal representation in I

of (1.8.1), and (2.1.1) follows. Note that πu is σ-stable since the right
side depends only on f0udhu. Moreover, πu is generic since π is cuspidal.
Consequently πu is tempered, since it is σ-elliptic and generic.

Further, πu is not Steinberg. Indeed, if it were, then it would be the lift
of the special π′′0u, and (2.1.1) would become

trπ′′0u(f0udhu) =
∑

m(π0u) trπ0u(f0udhu).

Taking f0udhu to be a matrix-coefficient of π′0u we would conclude that
m(π′0u) is 0.

No π0u is special. Indeed, taking f0udhu to be a pseudo-coefficient of a
special π0u, we obtain m(π0u) on the right of (2.1.1), and on the left 0, by
the twisted orthogonality relations of I.4.7.

Harish-Chandra’s theorem quoted in (1.9.3) implies the finiteness claim.
The final claim was already observed in 1.9.1: using a pseudo-coefficient

of πu and the twisted trace formula we may construct π in I with the
component πu (and a Steinberg component). �

2.1.2 Proposition. Only square-integrable π0u appear in the sum of
(2.1.1). This holds also when u is real.

Proof. In the nonarchimedean case the π0u on the right are cuspidal
H0u-modules, or irreducible constituents in the composition series of an



148 V. Applications of a trace formula

induced H0u-module. Fix a character µ1 of A0(Ru) ' R×u , and let f0udhu
be an (n, µ1)-regular function with n ≥ 1. Then

trπ0u(f0udhu + f0udhu)

vanishes unless π0u is a constituent of I0(µ) with µ = µ1 on R×u , where its
value is zn + z−n, where z = µ(πππ). Hence the right side takes the form∑
i ci(z

n
i +z−ni ). The sum is absolutely convergent, and |zi| = 1, or zi = zi,

and q−1
u < |zi| < qu (by unitarity). It is also clear from the last assertion

of Proposition 2.1 that this sum is finite. On the left, since πu is σ-elliptic
and generic, if the value of trπu(fudgu × σ) is not zero then πu is induced
from the special representation of a maximal parabolic subgroup of Gu,
and trπu(fudgu × σ) is equal to q

−n/2
u . Applying the Stone-Weierstrass

theorem as in (1.6.2) we conclude that ci = 0 for all i. In particular the
π0u on the right are cuspidals, and πu on the left is not induced from the
special representation of the maximal parabolic.

When Fu is real, the sum is again absolutely convergent. The represen-
tation π0u is either square integrable, and then trπ0u(f0udhu) = zn for a
suitable f0u = f0u(n) and z = z(π0u) with |z| < 1, or

trπ0u(f0udhu) = tr[I0(µ)](f0udhu)

has the form zn+ z−n. The argument of (1.6.2) implies the proposition. �

2.1.3 Proposition. The sum of (2.1.1) is finite.

Proof. For simplicity, omit u from the notations. The equality (2.1.1)
shows that fdg depends only on its stable σ-orbital integrals. Hence the
σ-character χσπ of π is a σ-stable function. Then we can define χH(Nδ) =
χσπ(δ) on the σ-regular σ-elliptic set. List the π0 with m(π0) ≥ 1 on the
right of (2.1.1) as π0i (i = 1, 2, . . . ). Choose matrix coefficients f0i of π0i.
Put f0dh =

∑
1≤i≤a f0idh. Put ′Φ(γ, f0dh) = |ZH(γ)|−1Φ(γ, f0dh). For

our f0dh it is equal to
∑

1≤i≤a χπ0i(γ). Then the left side of (2.1.1) is

trπ(fdg × σ) = 〈χH , ′Φ(f0dh)〉e

≤ 〈χH , χH〉1/2e ·

〈 ∑
1≤i≤a

χπ0i ,
′Φ(f0dh)

〉1/2

e

.
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Note that 〈
∑

1≤i≤a χπ0i ,
′Φ(f0dh)〉e = a. The right side of (2.1.1) is∑

1≤i≤a

m(π0i) ≥ a.

But a ≤ 〈χH , χH〉1/2e
√
a implies a ≤ 〈χH , χH〉e. Hence the sum of (2.1.1)

is finite. �

2.1.4 Proposition. In (2.1.1), the square-integrable π0u determines
uniquely the tempered πu.

Proof. For simplicity, omit u. Set up (2.1.1) for π and π′. Thus
χπ,H(Nδ) = χσπ(δ) =

∑
π0
m(π, π0)χπ0(Nδ) and χπ′,H(Nδ) = χσπ′(δ) =∑

π0
m(π′, π0)χπ0(Nδ). The sums are finite and m(π, π0) ≥ 0, m(π′, π0) ≥

0. Orthogonality relations for characters on H give

〈χπ,H , χπ′,H〉e =
∑
π0

m(π, π0)m(π′, π0) ≥ 0.

This is nonzero iff there is a π0 with m(π, π0) > 0 and m(π′, π0) > 0, in
which case π ' π′ by the orthogonality relations for twisted characters. �

It follows that the relations (2.1.1) define a partition of the set of square-
integrable representations of Hu into finite sets.

Definition. The set of irreducible representations πu which occur in
the sum of (2.1.1) is called a packet.

The packets then partition the set of equivalence classes of square-integ-
rable representations of Hu. The packet of a Steinberg (= special) represen-
tation sp(χ) of Hu consists only of sp(χ). Here χ : F×u /F

×
u

2 → {±1}, and
sp(χ) = χ sp is defined by the exact sequence 0 → sp(χ) → I0(χν

1/2
u ) →

χ1u → 0. We define the packet of a one-dimensional representation χ1u to
consist only of χ1u. The same applies to any nontempered representation
and to any irreducible induced representation I0(µu), thus µu 6= χν

1/2
u ,

χν
−1/2
u , χ 6= 1 = χ2. In these cases (2.1.1) holds:

tr St(χ)(fudgu × σ) = tr sp(χ)(f0udhu),

trχ1PGL(3,Fu)(fudgu × σ) = trχ1(f0udhu),

tr I(µu, 1, µ−1
u ; fudgu × σ) = tr I0(µu; f0udhu).
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When µu 6= 1 = µ2
u the induced I0(µu) is the direct sum of two irre-

ducible representations I+
0 (µu) and I−0 (µu), and we define them to be in

the same packet. In this case (2.1.1) holds with πu = I(µu, 1, µu). The
superscript + or − is determined by:

2.1.5 Proposition. Let µ′u be the trivial character on E1
u, where Eu

is the quadratic extension determined by χE,u 6= 1 = χ2
E,u. For matching

f0udhu, fTEu
dt we have

µ′u(fTEu
dt) = tr I+

0 (χE,u)(f0udhu)− tr I−0 (χE,u)(f0udhu).

Proof. Several proofs of this are known. See [LL], Lemma 3.6, or [K1].
We shall use (1.9.2). For that we choose a global quadratic extension E/F
whose completion at a place u is our Eu/Fu, which is unramified at all
other places, and write (1.9.2) such that (only) the terms associated with
E and µ′ = 1 on A1

E/E
1 contribute. The intertwining operator M(χE) is

the product of the scalar m(χE) = L(1, χ−1
E )/L(1, χE) = 1 and ⊗vR(χE,v),

where the normalized intertwining operator R(χE,v) acts on I+
0 (χE,u) as 1

and on I−0 (χE,u) as −1 (defining the superscript). Applying “generalized
linear independence” of characters at the places other than u, (1.9.2) takes
the form

trR(χE,u)I0(χE,u)(f0udhu) = µ′u(fTEu
dt). �

Let Eu be a quadratic field extension of Fu; denote by E1
u the group of

elements in Eu whose norm in Fu is one, as usual.

2.2 Proposition. Given a character µ′u of C1
Eu

= E1
u there are non-

negative integers m′(π0u) and a cuspidal (if µ′u 6= 1) representation π(µ′′u)
of GL(2, Fu) such that

µ′u(fTEu
dt) + tr I(π(µ′′u), χEu; fudgu × σ) = 2

∑
m′(π0u) trπ0u(f0udhu)

(2.2.1)

for all matching f0udhu, fudgu, fTEu
dt, where µ′′u(z) = µ′u(z/z) (z ∈ E×u ).

The sum is absolutely convergent and includes neither the trivial nor the
special representation.

Remark. Here u may be a real place.
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Proof. If u is nonarchimedean we work with a totally imaginary F .
If u is real take F = Q and imaginary quadratic E. The claim is clear if
(1) u splits E/F or, by 2.1.5, if (2) µ′u = 1, where π0(µ′u) is the induced
representation I0(χEu), π(µ′′u) is I(χEu , 1) and

µ′u(fTEu
dt) = tr I+

0 (χEu)(f0udhu)− tr I−0 (χEu)(f0udhu),

tr I(χEu , 1, χEu ; fudgu × σ) = tr I0(χEu , f0udhu).

If µ′u 6= 1 on E1
u we fix a finite split place w 6= u and a character µ′w

of E1
w with µ′w

2 6= 1. Let µ′ be a character of C1
E which has the specified

components at u and w, and all its components at the finite v 6= u,w are
unramified, except perhaps at a place v′ 6= u,w which splits in E if u is
real. It is easy to construct such µ′ using the trace (or Poisson summation)
formula for the pair A1

E and E1, and a function f = ⊗vfv with f(1) 6= 0;
with fu = µ′u; fw = µ′w; fv is the characteristic function of the maximal
compact subgroup of E1

v for all finite v 6= u,w, v′; and fv is supported on a
small compact neighborhood of 1 if v is complex (when u is finite) or if v
is v′ (if u is real).

Since µ′w
2 6= 1 we have µ′2 6= 1. We apply Proposition 1.8 with µ′ on

the right of (1.9.2). Then π0(µ′) appears on the right, in I0.
We claim that there is a nonzero term on the left of (1.9.2), namely

in I, I ′ or I ′′. If not, using the usual argument of linear independence
of characters of (1.8.3), and Lemma 1.10, we conclude from (1.9.2) that∑
π0u

m′(π0u) trπ0u(f0udhu) = 1
2µ
′
u(fTEu

dt). As m′(π0u) ≥ 0, the argu-
ment of 2.1.2 shows that only square-integrable π0u would occur here. As
m(π0u) ≥ 0, we may use the orthogonality relations on Hu with (2.1.1):∑

π0u

m(π0u) trπ0u(f0udhu) = trπu(fudgu × σ),

to conclude that since µ′u defines a σ-unstable function χµ′u on the elliptic
set Hue of Hu, and χσπu

a σ-stable function χπu,H on Hue, they are orthog-
onal to each other, so 0 =

∑
π0u

m(π0u)m′(π0u) ≥ 0 and all m′(π0u) are
zero. Here we used the finiteness of (2.1.1), and that each π0u occurs in
(2.1.1) for some πu. We conclude that there is a (unique) contribution π

to one of I, I ′ or I ′′. Clearly its local components are the same as those of
what I(π(µ′′), χE) should be at all split and unramified places. So we have
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a term π in I ′, which we name I(π(µ′′), χE). In particular its component
at u is denoted I(π(µ′′u), χEu).

To obtain (2.2.1) we apply the argument of (1.8.3) at all places (including
w, v′ or the complex places). �

Corollary. (2.1.1) holds with πu = I(π(µ′′u), χEu).

Proof. In (2.2.1), fudgu depends only on its stable σ-orbital inte-
grals. Hence the stable σ-orbital integrals of a pseudo-coefficient fπudgu of
I(π(µ′′u), χEu) are nonzero on the σ-regular σ-elliptic set. Use the twisted
trace formula with a test measure fdg with the component fπu

dgu at a
place u, and a pseudo-coefficient of a Steinberg representation (which is
σ-invariant) at a place w, to create a global σ-invariant cuspidal π on G(A)
with component πu at u, Steinberg at w, unramified elsewhere. Apply
(1.9.2) as in (2.1) to get (2.1.1) with πu = I(π(µ′′u), χEu). �

In particular we conclude that π(µ′′u) is uniquely determined by µ′u, by
2.1.4.

2.2.2 Proposition. If µ′u 6= 1, only square-integrable π0u appear in the
sum of (2.2.1). The same holds also when u is real.

Proof. The proof of 2.1.2 applies here too. �

2.2.3 Proposition. The sum of (2.2.1) is finite.

Proof. For simplicity, omit u from the notations. The sum of (2.1.1)
is finite. We substitute it for tr I(· · · ) in (2.2.1), to get

µ′(fTE
dt) =

∑
i≥1

m′′i trπ0i(f0dh).

Here we labeled the π0 with 2m′(π0) − m(π0) 6= 0 by i ≥ 1, m′′i are the
integers 2m′(π0i) − m(π0i), 2m′(π0i) is from (2.2.1) and m(π0i) are the
(finitely many nonzero) coefficients from (2.1.1).

Recall that we have fTE
(t)dt = κ(b)∆0(t)Φus(t, f0dh) on t ∈ TE . In

Proposition II.1.8 we defined a function χ(t) = χµ′(t) on t in the regular
set of H to be the unstable function which is zero unless t ∈ T0 (up to
stable conjugacy), in which case it is κ(b)∆0(t)−1µ′(t). By Proposition
II.1.8 µ′(fTE

dt) = 〈χ, ′Φ(f0dh)〉e. This is

≤ 〈χ, χ〉1/2e ·

〈
′Φ(f0dh),

∑
1≤i≤a

|m′′i |
m′′i

χπ0i

〉1/2

e
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for f0dh =
∑

1≤i≤a
|m′′i |
m′′

i
fπ0idh. Here fπ0idh is a pseudo-coefficient of π0i.

Hence µ′(fTE
dt) ≤ 〈χ, χ〉1/2e

√
a. But for our f0dh,

∑
i≥1m

′′
i trπ0i(f0dh) =∑

1≤i≤a |m′′i | ≥ a. Hence a ≤ 〈χ, χ〉e, our sum is finite and so is the sum of
(2.2.1). �

2.2.4 Corollary. Let F be a local field. If µ′2 6= 1 there exist irre-
ducible inequivalent cuspidal representations π+

0 (µ′) and π−0 (µ′) such that
for all matching measures f0dh and fTE

dt we have

µ′(fTE
dt) = trπ+

0 (µ′)(f0dh)− trπ−0 (µ′)(f0dh).

If µ′ 6= 1 = µ′2 the same holds except that π+
0 (µ′) and π−0 (µ′) are sums

with multiplicity one of irreducibles, have no irreducible in common, and
contain together 4 irreducibles.

Proof. Since µ′1 defines a σ-unstable function χµ′1 on the elliptic set He

of H for all µ′1, and χσπ a σ-stable function χπ,H on He, they are orthogonal
to each other. Therefore 0 =

∑
π0
m(π0)m′′(π0), and m(π0) ≥ 0 for all π0,

imply that m′′(π0) takes both positive and negative values for each µ′.
Proposition II.1.8 asserts that 〈χµ′ , χµ′〉e of the proof of 2.2.3 is 2 if

µ′2 6= 1 and 4 if µ′2 = 1. The (end of the) proof of 2.2.3 shows that
(
∑
i≥1 |m′′i |)2 ≤ a〈χµ′ , χµ′〉e. If 〈χµ′ , χµ′〉e = 2, a = 2 and |m′′i | = 1. If

〈χµ′ , χµ′〉e = 4, a might be 2, 3 or 4 (but not 1, as m′′i takes both positive
and negative values). Had there been an m′′i with absolute value at least
2, (
∑
i≥1 |m′′i |)2 would be at least (2 + a − 1)2 > 4a. Hence all (nonzero)

|m′′i | are 1. Then χµ′ is the difference of the characters of two disjoint (have
no irreducible in common) cuspidal representations of H, which we name
π+

0 (µ′) and π−0 (µ′). From 〈χµ′ , χµ′〉e = 4 we conclude that π+
0 (µ′)⊕π−0 (µ′)

is the direct sum of 4 irreducibles. �

If µ′2 6= 1, substituting the identity displayed in (2.2.4) back in (2.2.1)
we get

tr I(π(µ′′), χE ; fdg × σ) = (2m(π+
0 (µ′)) + 1) trπ+

0 (µ′)(f0dh)

+ (2m(π−0 (µ′)) + 1) trπ−0 (µ′)(f0dh) + 2
∑
π0

m(π0) trπ0(f0dh).

(2.2.5)
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The sum over π0 is finite and the m are nonnegative integers. Apply-
ing orthogonality (stable character against an unstable character) with the
identity of (2.2.4) we conclude that m(π+

0 (µ′)) = m(π−0 (µ′)).
Denote by Ei (1 ≤ i ≤ 3) distinct quadratic extensions of the local

field F , and by µ′i a quadratic character of E1
i . Thus µ′′i (z) = µ′i(z/z) =

µ′′i (z) = µi(NEi/F z), where µi is a quadratic character of F× nontrivial on
NEi/FE

×
i . We choose µi to be trivial on NEj/FE

×
j , j 6= i.

2.2.6 Proposition. There are cuspidal irreducible representations π0j,
1 ≤ j ≤ 4, such that

µ′i(fTEi
dt) = trπ01(f0dh) + trπ0i+1(f0dh)− trπ0j(f0dh)− trπ0j′(f0dh)

where {i+ 1, j, j′} = {2, 3, 4}.

Proof. The character relation µ′i(fTEi
dt) =

∑
1≤j≤4 εij trπ0j(f0dh),

where π0j are irreducible cuspidal and {εij ; 1 ≤ j ≤ 4} = {1,−1}, implies
the character relation, with nonnegative coefficients, where µi = χEi is
associated with Ei (1 ≤ i ≤ 3),

tr I(µ1, µ2, µ3; fdg × σ) =
∑

1≤j≤4

(2mj + 1) trπ0j(f0dh) (2.2.7)

+2
∑

π0 6=π0j

m(π0) trπ0(f0dh).

Namely the π0j are those with odd coefficients. Hence the set {π0j} is
independent of i (that is, of µ′i).

Our claim is that for each i, 1 ≤ i ≤ 3, precisely two out of the four εij ,
1 ≤ j ≤ 4, are 1. If not, we may assume that ε1j = (1,−1,−1,−1). Using
the orthogonality relations

0 = 〈χµ′
i
, χµ′

j
〉e =

∑
1≤k≤4

εikεjk

we may assume that ε2j = (−1, 1,−1,−1). Using orthogonality of the
stable σ-character of I(µ1, µ2, µ3) against the unstable characters χµ′

i
, i =

1, 2, we conclude that

2m1 + 1 = 2m2 + 1 + 2m3 + 1 + 2m4 + 1,
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2m2 + 1 = 2m1 + 1 + 2m3 + 1 + 2m4 + 1.

Hence m3 +m4 + 1 = 0, contradicting mj ≥ 0. Hence precisely two out of
εij , 1 ≤ j ≤ 4, are 1, for each i. Using the orthogonality of χµ′

i
and χµ′

j
we

conclude that up to reordering, ε1j = (1, 1,−1,−1), ε2j = (1,−1, 1,−1),
ε3j = (1,−1,−1, 1). �

Put π+
0 (µ′i) = π01⊕ π0i+1 and π−0 (µ′i) = π0j ⊕ π0j′ (when µ′i 6= 1 = µ′i

2).
Note that the superscript + or − depends on i in µ′i. Recall that packets
were defined after 2.1.4.

The next result holds for all tr I(π(µ′′), χE ; fdg × σ). It asserts that all
m(π0) in (2.2.5) and (2.2.7) are 0.

2.2.8 Proposition. (1) The (finite) sum over π0 in (2.2.5) and in
(2.2.7) is empty.
(2) The mj in (2.2.7) are independent of j.

Proof. (1) Introduce the class functions on the elliptic regular set of
H:

χ1 = (2m+ 1)
∑

1≤j≤4

χπ0j if µ′ 6= 1 = µ′2 6= 1

(= (2m+ 1)(χπ+ + χπ−) if µ′2 6= 1) and χ0 = 2
∑
π0
m(π0)χπ0 . Also write

χσI for the class function on the regular set of H whose value at the stable
conjugacy class Ng is χI(π(µ′′),χE)(g × σ).

Our first claim is that χ1 (and χ0) is stable. It suffices to show that
〈χ1, χµ′1〉e is 0 for every quadratic extension E of F and every character
µ′1 of E. But this follows on applying orthogonality relations with the
identities of 2.2.4 and 2.2.6, and on using 2.1.4.

Next we claim that χ0 is zero. If not,

χ = 〈χ1 + χ0, χ1〉0 · χ0 − 〈χ1 + χ0, χ0〉0 · χ1

is a nonzero stable function on the elliptic regular set of H. (Note that
〈χ0, χ1〉0 = 0). Choose f ′v0dgv0 on Gv0 such that ′Φ(t, f ′v0dgv0×σ) = χ(Nt)
on the σ-elliptic σ-regular set of Gv0 and it is zero outside the σ-elliptic set.
As usual fix a totally imaginary field F and create a cuspidal σ-invariant
representation π which is unramified outside v0, v1, has the component Stv1
at v1 and trπv0(f

′
v0dgv0×σ) 6= 0. Since π is cuspidal as usual by generalized

linear independence of characters we get the local identity

trπv0(fv0dgv0 × σ) =
∑
π0,v0

m1(π0,v0) trπ0,v0(f0,v0dhv0)
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for all matching fv0dgv0 , f0,v0dhv0 . The local representation π = πv0 is
perpendicular to I(π(µ′′), χE) since 〈χ, χ0 + χ1〉0 = 0, and χ0 + χ1 =
χσI(π(µ′′),χE). Since χ1+χ0 is perpendicular to the σ-twisted character χσΠ of
any σ-invariant representation Π inequivalent to I(π(µ′′), χE), χ is also per-
pendicular to all χσΠ, hence trΠ(f ′v0dgv0×σ) = 0 for all σ-invariant represen-
tations Π, contradicting the construction of πv0 with trπv0(f

′
v0dgv0×σ) 6= 0.

Hence χ = 0, which implies that χ0 = 0, as required.
(2) follows on using orthogonality of the σ-character of the stable, in-

duced I(µ1, µ2, µ3), against the unstable characters χµ′
i
, i = 1, 2. �

An irreducible representation of SL(2, Fu) (resp. GL(2, Fu)) is called
monomial if it is of the form π0(µ′u) (resp. π(µ∗u)) for a character µ′u of
E1
u (resp. µ∗u of E×u ) where Eu is a quadratic extension of Fu. A cuspidal

representation is called nonmonomial if it is not monomial. A packet is
defined to be the set of π0 which appear on the right of (2.1.1).

2.2.9 Proposition. (1) If πu on the left of (2.1.1) is cuspidal then π′0u
is nonmonomial, it is the only term on the right of (2.1.1), and m(π′0u) = 1.
The residual characteristic is 2.
(2) The packet {π0(µ′)} is the set of irreducibles in π+

0 (µ′) and in π−0 (µ′).
It consists of four irreducibles if µ′ 6= 1 = µ′2, in which case there are three
pairs (Ei, µ′i) with µ′1 = µ′ and {π0(µ′j)} = {π0(µ′)}, 1 ≤ j ≤ 3, and of 2
irreducibles otherwise. If µ′ = 1 on E1 then π±0 (µ′) = I±0 (χE). In all other
cases a packet consists of a single irreducible.

Proof. (1) For a cuspidal πu we have twisted orthonormality relations
for its character (II.4.3.1), namely 〈χπu , χπu〉e = 1 in the notations of II.4.4.
On the right the orthogonality relations for characters (II.4.2) imply that〈∑

m(π0u)χπ0u
,
∑

m(π0u)χπ0u

〉
is equal to

∑
m(π0u)2. It follows that the sum consists of a single π0u

with coefficient m(π0u) = 1. It is nonmonomial since the cuspidal πu is
orthogonal to any I(π(µ′′), χE).

Nonmonomial representations exist only in even residual characteristic
p = 2. See Deligne [D5], Proposition 3.1.4, and Tunnell [Tu].

(2) follows on applying 2.1.4 to 2.2.7, using 2.2.8. The right side of
(2.1.1) defines a packet. �
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Remark. A packet {π0} contains an unramified π0
0 and has cardinality

[{π0}] 6= 1 only if it is I0(χE) where E is the unramified extension of F .

2.3 Proposition. For g ∈ GL(2, F ) put πg0(h) = π0(g−1hg). Put

G(π0) = {g ∈ GL(2, F );πg0 ' π0},

GE = {g ∈ GL(2, F ); det g ∈ NE/FE×}.

Then:
(0) The packet {π0} of π0 consists of the distinct irreducibles πg0 , g ∈
GL(2, F ).
(1) If [{π0}] = 1 then G(π0) = GL(2, F ).
(2) If [{π0}] = 2, thus {π0} = π0(µ′), µ′2 6= 1, µ′ on E1, then G(π0) = GE.
(3) If [{π0}] = 4, thus {π0} = π0(µ′i), µ

′
i 6= 1 = µ′2, µ′i on E1

i (1 ≤
i ≤ 3), then G(π0) = ∩1≤i≤3GEi . Moreover, each π±0 (µ′i) consists of two
irreducibles π±0ij(j = 1, 2) with π±0i2 = π±g0i1, g ∈ GEi −G(π0).

Proof. We use the identity

πg0(f0dh) =
∫
π0(g−1hg)f0(h)dh =

∫
π0(h)f0(ghg−1)dh = π0(gf0dh),

and the fact that f0dh and gf0dh have the same stable orbital integrals.
The distribution f0dh 7→

∑
{π0} trπ0(f0dh) is stably invariant (it depends

only on the stable orbital integrals of f0dh), since

trπ(fdg × σ) = (m+ 1)
∑
{π0}

trπ0(f0dh)

for the lift π of {π0}. Hence we have∑
{π0}

trπ0(f0dh) =
∑
{π0}

trπ0(gf0dh) =
∑
{π0}

trπg0(f0dh).

Hence {πg0} = {π0} (the packet of πg0 is the same as that of π0; g 7→ πg0
permutes the irreducibles in the packet {π0}). Then [GL(2, F ) : G(π0)] =
[{π0}] and in particular (0) and (1) follow.

For a quadratic extension E of F and a torus TE ' E1 in SL(2, F ),
fTE

(t)dt depends on Φ(t, f0dh)−Φ(tg, f0dh) with any g ∈ GL(2, F )−GE .
The centralizer ZGL(2,F )(t) of t in GL(2, F ) is the torus T ∗E in GL(2, F )
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centralizing TE . It has detT ∗E = NE×, hence Φ(t, f0dh) = Φ(t, hf0dh) for
all h ∈ SL(2, F )T ∗E , thus for all h ∈ GE (same holds with t replaced by tg).
Then the character relation

µ′(fTE
dt) = trπ+

0 (µ′)(f0dh)− trπ−0 (µ′)(f0dh)

does not change on replacing f0dh by hf0dh if deth ∈ NE×. Hence for such
h, if π0 ∈ π±0 (µ′) then πh0 ∈ π±0 (µ′). (2) and (3) follow. �

2.3.1 Lemma. Let H ′′ be a subgroup of index 2 in H ′.
(1) The restriction π|H ′′ to H ′′ of an admissible irreducible representation
π of H ′ is irreducible or the direct sum of two irreducibles π1, π2 with
π2 = πg1 for any g ∈ H ′ −H ′′.
(2) Any irreducible admissible representation π1 of H ′′ is contained in the
restriction to H ′′ of an irreducible admissible representation of H ′.

Proof. (1) If the restriction of π to H ′′ is reducible, its space, V , con-
tains a nontrivial irreducible H ′′-invariant subspace W . If g ∈ H ′ − H ′′

then V = W + π(g)W and W ∩ π(g)W is H ′-invariant, hence zero. Thus
V = W ⊕ π(g)W and π|H ′′ = π1 ⊕ π2 with π2 = πg1 .

(2) Define π = IndH
′

H′′ π1. If πg1 6= π1 for some, hence any, g ∈ H ′ −H ′′,
then π is irreducible, ωπ = π if ω|H ′′ = 1, and the restriction of π to H ′′

contains π1. Otherwise let A : W →W be an operator intertwining πg1 with
π1 (W denotes the space of π1): Aπ1(g−1hg) = π1(h)A (h ∈ H ′′). Schur’s
lemma permits us to choose A2 = π1(g2). Extend π1 to a representation π′

of H ′ by π′(g) = A. Then π is π′ ⊕ ωπ′ where ω is the nontrivial character
of H ′/H ′′. The restriction of π′ to H ′′ is π1. �

2.3.2 Proposition. For every packet {π0} of SL(2, F ) and character
ω of F× = Z(F ) (= center of GL(2, F )) with ω(−I) = π0(−I) there exists
a unique irreducible representation π∗ of GL(2, F ) with central character ω
whose restriction to SL(2, F ) contains π0 ∈ {π0}. We have that π∗|SL(2, F )
is the direct sum of the π0 in {π0}, and µπ∗ ' π∗ iff µ is 1 on G(π0) =
{g ∈ GL(2, F );πg0 = π0}.

Proof. Extend π0 to SL(2, F )Z(F ) by ω on Z(F ). Extend π0 from
SL(2, F )Z(F ) to G(π0). If [{π0}] = 1, G(π0) = GL(2, F ) and we obtain an
irreducible π∗ of GL(2, F ) whose restriction to SL(2, F ) is π0. Moreover,
µπ∗ = π∗ for a character µ of GL(2, F ) only if µ = 1.
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If [{π0}] = 2, define π∗ = IndGL(2,F )
GE

(π0). It is irreducible, χEπ∗ = π∗

where χE is the nontrivial character on GL(2, F ) with kernel GE , and
π∗|GE = π0 ⊕ πg0 with g ∈ GL(2, E)−GE , thus π|SL(2, F ) = {π0}.

If [{π0}] = 4, π0 ∈ π±0 (µ′i), put π̃±0 (µ′i) = IndGEi

G(π0)
(π0). It is irreducible,

χEj · π̃±0 (µ′i) = π̃±0 (µ′i) for the character χEj of GEi/G(π0) (which is the re-
striction to GEi of the character of GL(2, F )/GEj where {π0} = {π0(µ′j)},
µ′j on E1

j , j 6= i), and π̃±0 (µ′i)|GEi = π±0 (µ′i), a direct sum of two ir-

reducibles. Further we put π∗ = IndGL(2,F )
GEi

(π̃+
0 (µ′i)). It is irreducible,

χEj
· π∗ = π∗ for all j = 1, 2, 3, and π∗|GEi

= π̃+
0 (µ′i) ⊕ π̃−0 (µ′i), and

π∗|G(π0) is the direct sum of the irreducibles in {π0} (as is π∗|SL(2, F )).
Moreover, π∗ is independent of j (= 1, 2, 3), and ωπ∗ = π∗ only for ω = χEj

(j = 1, 2, 3) or ω = 1. �

The packet {π0(µ′)} depends on the projective induced representation
IndWF

WE
(µ′)0, hence {π0(µ′)} = {π0(µ′)} where µ′(x) = µ′(x), conjugation of

E over F . Thus a better notation is {π0(IndFE(µ′)0)}. Extending the char-
acter µ′ of C1

E to µ∗ on CE we lift the projective representation IndFE(µ′)0
to the two-dimensional representation IndFE(µ∗) of WE/F (= WF /W

c
E):

CE 3 z 7→
(
µ∗(z) 0

0 µ∗(z)

)
, σ 7→

(
0 1

µ∗(σ2) 0

)
.

Thus IndFE(µ′)0 is the composition of IndFE(µ∗) and GL(2,C)→ PGL(2,C);
it depends only on the restriction µ′ of µ∗ from CE to C1

E . The determinant
of IndFE(µ∗) is

CE 3 z 7→ µ∗(zz), σ 7→ χE(σ2)µ∗(σ2).

It factorizes as the composition of the normN : WE/F → CF , CE 3 z 7→ zz,
σ 7→ σ2 ∈ CF −NE/FCE , and the character ω(x) = χE(x)µ∗(x) on CE .

Definition. The representation π(µ∗), or more precisely π(IndFE µ
∗), of

GL(2, F ), is the π∗ of 2.3.2 associated with ω = χE · µ∗|F× and {π0(µ′)},
µ′ = µ∗|E1, if µ∗ 6= µ∗ (or µ′ 6= 1).

If µ∗ = µ∗, thus µ′ = 1, then IndFE(µ∗) = µ ⊕ χEµ is reducible,
where µ∗(z) = µ(zz)(z ∈ E×) defines µ and χEµ on F×. Define π(µ∗),
or π(IndFE µ

∗), to be the induced representation I(µ, χEµ) of GL(2, F ).
Its restriction to SL(2, F ) is I0(χE), a tempered reducible representation,
= π+

0 (χE)⊕ π−0 (χE).



160 V. Applications of a trace formula

Note that given µ′ on E1 and ω on F× with ω(−1) = χE(−1)µ′(−1)
there is µ∗ on E× extending µ′ and ω.

We have π(µ∗)|SL(2, F ) = {π0(µ′)} and χE · π(µ∗) = π(µ∗). If µ∗2 6=
µ∗2, thus µ′2 6= 1, then η · π(µ∗) = π(µ∗) implies η = χE or 1.

If µ∗ 6= µ∗ but µ∗2 = µ∗2, thus µ′ 6= 1 = µ′2, then η · π(µ∗) = π(µ∗)
implies that η = χEi (or 1), where E1, E2, E3 are the quadratic extensions
of F with {π0(µ′)} = {π0(µ′i)}. If E1 = E and µ′1 = µ′, recall that Ei,
µ′i are defined by µ′1(z/z) = µ′1(z/z) = µ1(zz) (z ∈ E×1 ), µ1 extends to
F× from NE1/FE

×
1 as χE2 or χE3 = χE2χE1 (these are the only characters

whose restriction to NE×1 is the quadratic character µ1, thus µ′1, namely
µ1 defines E2, E3), and we define µ′i(z/z) = µ′i(z/z) = µi(zz) on z ∈ E×i
where now bar indicates Gal(Ei/F )-action, where µi = χEj |NE×i (j 6= i).
The signs ω(−1) = χEi(−1)µ′i(−1) are independent of i since {π0(µ′i)}
share central character, being independent of i. We extend µ′i and ω to µ∗i
on E×i to get π(µ∗) = π(µ∗1) = π(µ∗2) = π(µ∗3) with η · π(µ∗) = π(µ∗) iff
η = χEi

(1 ≤ i ≤ 3) or η = 1. Note that on F× we have χEi
(x)µ∗i (x) =

ω(x) = χEj (x)µ
∗
j (x), thus µ∗j (x) = χEi(x)χEj (x)µ

∗
i (x) on F×.

The groups SL(2) and GL(2) = SL(2) o Gm are closely related. It is
useful to compare their representation theories. Generalizing the question
a little, put — in the rest of this subsection 2.3 —

G = GSp(n) = {g ∈ GL(2n);t gJg = λJ}, J =
(

0 w

−w 0

)
,

w = antidiag(1, . . . , 1), for the group of symplectic similitudes of (semisim-
ple) rank n and H = Sp(n) = {g ∈ GL(2n);t gJg = J} for the symplectic
group of rank n. Note that H ⊂ SL(2n), GSp(1) = GL(2), Sp(1) = SL(2),

and GSp(n) = Sp(n) o Gm by h = g
(

1 0

0 λ−1

)
∈ Sp(n) if λ is the factor of

similitude of g ∈ GSp(n). For g ∈ GL(2), λ(g) = det g.
Let F be a local field of characteristic 0, put G = GSp(n, F ), H =

Sp(n, F ), Z for the center of G (it consists of the scalar matrices zI, z ∈ F×,
and λ(zI) = z2, I = I2n), and H+ = ZH. Let Λ be a subgroup of F×

containing F×2. Define HΛ = {g ∈ G;λ(g) ∈ Λ}. Then HF×2 = H+,
HF× = G, and G/HΛ = F×/Λ, HΛ/H = Λ/F×2. Since the product HZ
is direct, and Z ∩ H is the center {±I} of H, an irreducible admissible
representation π0 of H extends to H+ on extending its central character
from {±I} to F×.
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2.3.3 Proposition. (1) The restriction π|HΛ to HΛ of an admissible
irreducible representation π of G is the direct sum of ≤ [F×/Λ] irreducible
representations πΛ. If π|HΛ contains πΛ and π′Λ then π′Λ = πgΛ for some
g ∈ G.
(2) Any irreducible admissible representation of HΛ is contained in the re-
striction to HΛ of an irreducible admissible representation of G.

Proof. Since F×/F×2 is a finite product of copies of Z/2, it suffices to
prove the claims with G, HΛ replaced by H ′′ = HΛ′′ ⊃ H ′ = HΛ′ . This is
done in Lemma 2.3.1. �

Let N denote the unipotent upper triangular subgroup of G. Then
N ⊂ H. Let ψ be a generic character of N , thus

ψ = ψα : (uij) 7→ ψ0

(∑
αiui,i+1

)
, αi ∈ F×, 1 ≤ i ≤ n

and ψ0 : F → C1 is a nontrivial character. There is a single orbit of generic
characters under the action of the diagonal subgroup of G : a · ψ1(u) =
ψ1(Int(a)u) = ψα(u), where ψ1 is ψα with all αi = 1, Int(a)u = aua−1, and

a = diag(a1, . . . , an, λ/an, . . . , λ/a1)

with ai/ai+1 = αi(1 ≤ i < n) and an/(λ/an) = αn. The orbits of the
generic ψ under the action of diagonal subgroup of HΛ are parametrized
by F×/Λ, as λ ∈ Λ.

If A ⊂ B, denote by IndBA the functor of induction from A to B, and
by ResBA the functor of restriction from B to A ([BZ1]). An irreducible
representation πΛ of HΛ is called ψ-generic if πΛ ↪→ IndHΛ

N ψ. Clearly πΛ

is ψ-generic iff it is a · ψ-generic, for any a in HΛ. Thus we can talk about
generic representations of G without specifying ψ. We say that πΛ is generic
if it is ψ-generic for some ψ. Every infinite-dimensional representation of
GL(2, F ) is generic.

2.3.4 Proposition. (1) Suppose π is a generic irreducible representa-
tion of G. Any constituent πΛ of ResGHΛ

π occurs with multiplicity one and
is ψ-generic for some ψ.
(2) Any ψ-generic πΛ is contained in ResGHΛ

π where π is generic.

Proof. For (2), if πΛ ⊂ IndHΛ
N ψ then π = IndGHΛ

πΛ ⊂ IndGN ψ and
πΛ ⊂ ResGHΛ

π.
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For (1), if π ⊂ IndGN ψ then

πΛ ⊂ ResGHΛ
π ⊂ ResGHΛ

IndGN ψ =
∑
λ

IndHΛ
N (λ · ψ),

where the sum ranges over λ ∈ G/HΛ = F×/Λ. Since πΛ is irreducible there
is a λ with πΛ ⊂ IndHΛ

N (λ · ψ), hence IndGHΛ
πΛ ⊂ IndGN ψ. By Frobenius

reciprocity

HomHΛ(ResGHΛ
π, πΛ) = HomG(π, IndGHΛ

πΛ).

Composing π ↪→ IndGHΛ
πΛ → IndGN ψ, since dimC HomG(π, IndGN ψ) ≤ 1 (by

the uniqueness of the Whittaker model) the proposition follows, namely the
multiplicity of πΛ in ResGHλ

π is at most one. �

Definition. Given πΛ of HΛ let Γ(πΛ) ⊂ F× be the group of fac-
tors of similitudes λ = λ(g) of the g ∈ G with πgΛ ' πΛ, where πgΛ(h) =
πΛ(g−1hg)(h ∈ HΛ). Since λ(HΛ) = Λ, Γ(πΛ) ⊃ Λ. Given π of G, put
X(π) = {ω ∈ Hom(G,C×); ωπ ' π}. Note that a character ω : G → C×

factorizes via λ, thus ω(g) = ω0(λ(g)) for a character ω0 : F× → C×. For
such ω0 we also write ω0π : g 7→ ω0(λ(g))π(g). As usual ωπ : g 7→ ω(g)π(g).

2.3.5 Proposition. πΛ is ψ-generic and ψ′-generic iff ψ′ = a · ψ for a
diagonal a with λ(a) ∈ Γ(πΛ).

Proof. If πΛ lies in IndHΛ
N ψ = {ϕ : HΛ → C; ϕ(uh) = ψ(u)ϕ(h),

ϕ smooth} and λ(a) ∈ Γ(πΛ), then πΛ ⊂ {ϕ′;ϕ′(h) = ϕ(Int(a)h)}, and
ϕ′(uh) = ψ(Int(a)u)ϕ′(h).

If πΛ ⊂ IndHΛ
N (ψ) and πΛ ⊂ IndHΛ

N (a · ψ) then πaΛ ⊂ IndHΛ
N (ψ) where

πaΛ(h) = πΛ(a−1ha). The uniqueness of the Whittaker model forHΛ implies
πΛ ' πaΛ, hence λ(a) ∈ Γ(πΛ). �

2.3.6 Proposition. Suppose (π, V ) is generic and

(πΛ, V1) ⊂ ResGHΛ
(π, V ).

(1) ω ∈ X(π) iff ω is trivial on G(πΛ) = {g ∈ G;λ(g) ∈ Γ(πΛ)}.
(2) The number of irreducibles in ResGHΛ

π is
#X(π) = [G : G(πΛ)] = [F× : Γ(πΛ)].
(3) If πΛ lies also in (σ,W ) then σ ' ωπ, ω|HΛ = 1. If π and ωπ contain
the same πΛ then ω = ω1ω2, ω2|HΛ = 1, ω2π ' π.
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Proof. Suppose ResGHΛ
(π, V ) = ⊕1≤i≤r(πΛi, Vi), (πV i, Vi) irreducible,

and πΛ1 = πΛ. Then V1 is invariant under G(πΛ). Denote the representa-
tion of G(πΛ) on V1 by π1. Then π = IndGG(πΛ) π1. Hence r = [G : G(πΛ)]
and every character of G/G(πΛ) lies in X(π). If ω ∈ X(π) and A inter-
twines π and ωπ, then A : Vi → Vi (since Vi, Vj are inequivalent for i 6= j,
as π is generic) acts as a scalar on the irreducible Vi. Hence πΛ and ωπΛ

are equal, not only equivalent. Hence ω is trivial on G(πΛ).
For (3), if πΛ lies also in (σ,W ) then σ is generic and ResGHΛ

(σ,W ) =
⊕1≤i≤r(σΛi,Wi), σΛi irreducible, inequivalent, with σΛ1 = πΛ. Again r =
[G : G(πΛ)], and G(πΛ) acts on W1. Then σ1 = ω1π1 with a character
ω1 of G(πΛ)/HΛ. Then σ = IndGG(πΛ) σ1 is equivalent to ωπ, where ω is
any extension of ω1 from G(πΛ) to G. Thus, if π and ωπ have the same
restriction to HΛ then there is ω1 on G/HΛ with ωπ = ω1π, so ω = ω1ω2

where ω2 = ωω−1
1 satisfies ω2π ' π. �

2.4 Definition. Let F be a number field. For each place v of F , let
{π0v} be a packet of representations of Hv = SL(2, Fv). Suppose {π0v}
contains an unramified π0

0v for almost all v. An irreducible π0
0v is called

unramified if it has a nonzero K0v = SL(2, Rv)-fixed vector. The global
packet {π0} associated with this local data is the set of all products ⊗vπ0

0v

with π0v ∈ {π0v} for all v and with π0v = π0
0v for almost all v.

Let E/F be a quadratic extension, and µ′ a character of C1
E = A1

E/E
1.

Then the local packets {π0(µ′v)} define a global packet, denoted {π0(µ′)}. If
µ′ = 1 it is the set of constituents of the representation I0(χE) normalizedly
induced from the character χE : A×/F×NE/FA×E

∼→{±1}. If µ′ 6= 1 the
packet {π0(µ′)} contains a cuspidal representation. If µ′ 6= 1 = µ′2 there
are 3 quadratic extensions E1 = E, E2, E3 of F and characters µ′1 = µ, µ′2,
µ′3 of C1

E1
, C1

E2
, C1

E3
with {π0(µ′1)} = {π0(µ′2)} = {π0(µ′3)}.

All irreducibles in a packet have the same central character, which is
trivial at almost all places since the center of SL(2, Fv) is ±I. If the packet
contains an automorphic representation, its central character is trivial on
the rational element −I.

Let ω be a character of CF = A×/F× whose restriction to the center
ZH(A) of H(A) coincides with the central character of {π0}. Then {π0v}
and ωv define a unique representation π∗v of GL(2, Fv) with central character
ωv as in 2.3.2. It is unramified wherever {π0v} and ωv are. Define π∗ =
⊗vπ∗v to be the representation of GL(2,A) associated with {π0} and ω.
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In particular, the extension µ∗ to CF of the character µ′ of C1
F defines a

representation π∗(µ∗), or π∗(IndFE µ
∗), on using {π0(µ′)} and the (central)

character ω = χE · µ∗|CF on CF . If µ∗ = µ∗ then there is µ : CF → C×

with µ∗(z) = µ(zz) (z ∈ CE), IndFE µ
∗ = µ⊕ µχE and π∗(µ∗) = I(µ, µχE).

Moreover, π∗(µ∗ · µ ◦ NE/F ) = µ · π∗(µ∗) for any characters µ of CF and
µ∗ of CE .

Our aim is to show that the integer m(= m(π+
0 ) = m(π−0 ) in (2.2.5),

= mj in (2.2.7)) is zero. Our purely local proof is given in Proposition 2.5.
We begin with a global proof, patterned on [LL], which shows that there is
at most one cuspidal representation in any packet {π0(µ′)}, µ′ 6= 1, and its
multiplicity is one. Using the trace identity (1.9.2) and the local character
relations 2.2.5 and 2.2.7, it follows at once that m = 0 in (2.2.5) and (2.2.7).

2.4.1 Lemma. Let π0 be an irreducible representation of SL(2,A) such
that m(πg0) 6= m(π0) for some g ∈ GL(2,A). Then there is a quadratic
extension E of F and a character µ′ 6= 1 of A1

E/E
1 such that π0 ∈ {π0(µ′)}.

Proof. This follows at once from the identity (1.9.2) and the local
character relations 2.2.4-7, and Proposition 2.2.8. �

2.4.2 Lemma. Let E be a quadratic extension of F and µ∗ a character
of CE = A×E/E×. Then π∗(µ∗) is automorphic, cuspidal if µ∗ 6= µ∗.

Proof. If µ∗ 6= µ∗ then µ′ = µ∗|C1
E is 6= 1, and the claim follows from

each of the following propositions. �

In the following proposition we take H = Sp(n), G = GSp(n).

2.4.3 Proposition. (1) Every automorphic cuspidal representation π0

of H(A) is contained in an automorphic cuspidal representation π of G(A).
(2) If π contains π0 and π′0 then π′0 = πh0 for some h in G(A), where
πh0 (g) = π0(h−1gh).
(3) If π and π′ are generic and contain π0 then π′ = ωπ for a character ω
of A×.

Proof. (2) follows from 4.1(1), and (3) from 4.4(3). For (1), extend π0

to an automorphic representation of H+(A), H+ = ZH, by extending the
central character of π0 to Z\Z(A); Z denotes here the center of G. Put

(π, Vπ) = Ind((π0, Vπ0);H
+(A),G(A)).
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Here the space Vπ0 of π0 is a subspace of the space L2(H+\H+(A)) of cusp
forms on H+(A). Define a linear functional l : Vπ0 → C by l(ϕ) = ϕ(1).
Note that

l(π0(γ)π0(g)ϕ) = ϕ(γg) = ϕ(g) = l(π0(g)ϕ)

for all γ in H+ since ϕ is automorphic. It suffices to construct an embed-
ding of the space Vπ of π into L0(G\G(A)). The induced representation π
operates by right translation in the space Vπ of functions f : G(A) → Vπ0

which are compactly supported modulo H+(A) and satisfy

f(sg) = π0(s)f(g) (s ∈ H+(A), g ∈ G(A)).

Define a functional L on the space Vπ of π by

L(f) =
∑

u∈F×/F×2

l
(
f
(
u 0

0 1

))
.

The sum converges since f is compactly supported modulo H+(A). Since

L(π(g)f) =
∑

l
(
f
((

u 0

0 1

)
g
))

and l isH+-invariant, it follows that L isG-invariant. The map intertwining
Vπ and L2(G\G(A)) is defined by

f 7→ φf , φf (g) = L(π(g)f).

It is clearly nonzero. Since the unipotent radical of any parabolic subgroup
of G lies in H, φf is a cusp form. The induced representation π is reducible,
and we deduce that one of its irreducible components is automorphic and
cuspidal. �

Let π∗ = ⊗π∗v be an irreducible representation of GL(2,A). Let π0 be
an irreducible constituent of the restriction of π∗ to H(A) = SL(2,A). Any
other constituent has the form πg0 : h 7→ π0(g−1hg) for a g in GL(2,A).
The group G(π0) = {g ∈ GL(2,A); πg0 ' π0} contains SL(2,A), hence it is
normal in GL(2,A) and depends only on π∗; denote it also by G(π∗). Let
X(π∗) be the group of characters ω : A× → C× with ωπ∗ = π∗. It consists
of the characters trivial on G(π∗) = G(π0), hence depends only on π0 and
can be denoted by X(π0). Let Y (π∗) be the set of characters ω of A×

for which ωπ∗ is automorphic and cuspidal. Put Y = Hom(A×/F×,C×).
Then X(π∗) and Y act on Y (π∗) by multiplication.



166 V. Applications of a trace formula

2.4.4 Proposition. Let π0 be an irreducible infinite dimensional rep-
resentation of SL(2,A) with π0(−I) = 1. Then Y (π∗)/Y X(π∗) has cardi-
nality Σgm(πg0), where m(π0) denotes the multiplicity of π0 in

L2(SL(2, F )/SL(2,A))

and g ranges over GL(2,A)/G(π0) GL(2, F ).

Proof. Extend π0 to G(A) by the central character χ of π∗, where G =
ZSL(2) and Z is the center of GL(2). Since SL(2, F ) · ZS(A)\SL(2,A) =
G(F )Z(A)\G(A), where ZS = Z∩SL(2) and Z is the center of G, it suffices
to prove the proposition for a π0 of G(A) with π0|Z(A) = π∗|Z(A), where
m(π0) is the multiplicity of π0 in L2

0(G(F )\G(A))χ, the space of cusp forms
on G(A) transforming under Z(A) by χ. We have

L0 = L2(G(F )\G(A))χ, L1 = L2(GL(2, F )\GL(2, F )G(A))χ,

L∗ = L2(GL(2, F )\GL(2,A))χ.

Let s0, s1, s∗ be the representations of G(A), GL(2, F )G(A), GL(2,A), on
L0, L1, L∗. As spaces, L0 = L1. As representations,

s∗ = Ind(GL(2,A),GL(2, F )G(A), s1).

Let π0 be an irreducible occurring in s0 with multiplicity m(π0). Put
G1(π0) = G(π0) ∩ GL(2, F )G(A). Then π0 extends to a representation
σ of G(π0) on the same space. Put σ1 = σ|G1(π0).

Let V0 be the subspace of L0 transforming according to π0. UnderG1(π0)
it transforms according to

⊕m(π0)
i=1 ωiσ1,

where ωi are characters of G(A)/G1(π0). The smallest invariant subspace
V1 of L1 containing V0 transforms according to

⊕i Ind(GL(2, F )G(A), G1(π0), ωiσ1).

Each summand here is irreducible. From s∗ = Ind(s1) we obtain

s∗ = ⊕
π0/∼

⊕m(π0)
i=1 Ind(GL(2,A), G1(π0), ωiσ1),
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where π0 ∼ π′0 if π′0 = πg0 , g ∈ GL(2, F ), as such πg0 defines the same σ1 as
π0 does.

The induction can be performed in two steps, the first being

Ind(G(π0), G1(π0), ωiσ1) = ⊕
ω
ωσ,

where the sum ranges over all characters ω of G(π) which equal ωi on
G1(π0); note that G(π0)/G1(π0) is a subquotient of A×/F×A×2, hence
compact. Then s∗ = ⊕

π0/≈
s∗π0

, where

s∗π0
= ⊕
g∈GL(2,A)/G(π0) GL(2,F )

m(πg
0 )

⊕
i=1
⊕
ω

Ind(GL(2,A), G(π0), ωσg),

and π0 ≈ π′0 if π′0 = πg0 for some g ∈ GL(2,A). Each summand in s∗π0
is

irreducible and its restriction to G(A) contains π0, hence consists of πg0 ,
g ∈ GL(2,A). Since Ind(GL(2,A), G(π0), ωσg), where σg is the extension
of πg0 to G(π0), is independent of g, by multiplicity one for GL(2,A) there
is at most one g in GL(2,A)/G(π0) GL(2, F ) with m(πg0) 6= 0.

Since π∗ = ω · Ind(GL(2,A), G(π0), σ) for some character ω of GL(2,A),
Y (π∗) is empty precisely when m(πg0) = 0 for all g. If Y (π∗) is not empty,
we may assume that π∗ is automorphic cuspidal. We claim that Y (π∗) =
Y Y ′(π∗), where Y ′(π∗) consists of ω1 ∈ Y (π∗) with ω2

1 = 1. Indeed,
identifying characters of GL(2,A) and A× via det (thus ω(g) = ω(det g)),
a character ω in Y (π∗) is a character on A×/F×2. Define a character
η : F×A×2 → C× by η|F× = 1 and η(x2) = ω(x2), x ∈ A×2. It is well
defined as F× ∩ A×2 = F×2 and ω|F×2 = 1. Extend η to A×/F×, and
define ω1 by ω = ηω1. Then ω1π

∗ ⊂ s∗ and ω2
1 = 1. Thus ω1 ∈ Y ′(π∗).

Each element of X(π̃) is of order 2, and Y ′ = Y ∩ Y ′(π∗) is the group of
characters ω : A×/F×A×2 → C×. We then wish to compute the cardinality
of

Y (π∗)/Y X(π∗) = Y ′(π∗)Y/Y X(π∗)

= Y ′(π∗)/X(π∗) · Y ∩ Y ′(π∗) = Y ′(π∗)/X(π∗)Y ′.

Then multiplying Ind(GL(2,A), G(π0), ωσ), where ω|G1(π0) = ωi, by a
character ω∗ of GL(2,A) whose restriction to G1(π0) is ωj/ωi, we shall get
Ind(GL(2,A), G(π0), ω′σ) where σ′|G1(π0) = ωj . Multiplying

Ind(GL(2,A), G(π0), ωσ)



168 V. Applications of a trace formula

by ω∗ on GL(2,A) whose restriction toG1(π0) is 1 simply permutes the sum-
mands in the sum over ω such that ω|G1(π0) = ωi. The characters ωi are
all different, by multiplicity one theorem for GL(2,A). A character lies in
X(π∗) iff it is trivial on G(π0). It is in Y ′ iff it is 1 on G(A) GL(2, F ). Hence
it lies in Y ′X(π∗) iff it is trivial on G1(π0). It follows that Y ′(π∗)/X(π∗)Y ′

acts simply transitively on the set of irreducibles in s∗π0
, a set with cardi-

nality
∑
gm(πg0), g ranges over the finite set GL(2,A)/G(π0) GL(2, F ), and

all multiplicities m(πg0) but one are zero. �

2.4.5 Proposition. Let ω 6= 1 be a character of CF with ωπ∗ = π∗; π∗

is a cuspidal representation of GL(2,A). Then ω = χE for some quadratic
extension E of F , and π∗ = π∗(µ∗) for a character µ∗ 6= µ∗ of CE.

Proof. As ωπ∗ = π∗, ω2 = 1 and ω = χE for some E. Put GE(A) =
{g ∈ GL(2,A); det g ∈ NE/FA×E}. The restriction of π∗ to kerχE =
GE(A) GL(2, F ) is π1 ⊕ π2, πi irreducible, π2 = πg1 , χE(g) = −1. The
restriction map from L2

0(GL(2, F )\GL(2,A)) to

L2
0(GL(2, F )\GL(2, F )GE(A))⊕ L2

0(GL(2, F )\GL(2, F )GE(A)g),

restricted to the space Vπ∗ of π∗, is nonzero, hence one of π1, π2 is cuspidal
automorphic.

Put GE = {g ∈ GL(2, F ); det g ∈ NE/FE
×}. If both π1 and π2 are

cuspidal, namely contained in

L2
0(GL(2, F )\GL(2, F )GE(A)) = L2

0(GE\GE(A)),

we view π1, π2 as cuspidal representations of GE(A).
Taking the Fourier expansion with respect to N(A)/N(F ) we conclude

that there are characters ψ1, ψ2 of A/F such that

πi ⊂ Ind(GE(A),N(A), ψi).

As π2 = πg1 , we have

π2 ⊂ Ind(GE(A),N(A), ψg1), ψg1(x) = ψ1(xdet g).

But ψ2(x) = ψ1(βx) for some β ∈ F×. As GE(Fv) = G(π2v) for all v, by
Proposition 4.3 we have 1 = χE(β) = χE(det g) = −1. The contradiction
implies that only one of π1, π2 is cuspidal. Hence the multiplicity m(πg0),
where π0 is an irreducible in the restriction of π1 to SL(2,A), is not constant
in g ∈ GL(2,A). The proposition follows by Lemma 2.4.1. �
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2.4.6 Proposition. Let E/F be a quadratic extension, µ∗ a character
of CE with µ∗ 6= µ∗, π∗ = π∗(µ∗), and ω a character of A× such that π∗ω =
ωπ∗ is automorphic. Then there is a character β of A× with βπ∗ = π∗,
and a character α of A×/F×, with ω = αβ.

Proof. We have χE · π∗ = π∗, hence χEπ∗ω = π∗ω. By 2.4.5 there is
a character µ∗ω 6= µ∗ω of CE with π∗ω = π∗(µ∗ω). Since π∗(µ∗ω) = ωπ∗(µ∗),
the projective representations IndFE(µ∗ω)0 and IndFE(µ∗)0 have equivalent
restrictions to the local Weil groups WEv/Fv

at every place v. Hence their
symmetric squares are equivalent locally, whence globally by Chebotarev’s
density theorem. As

Sym2(IndFE(µ∗ω)0) = IndFE(µ∗ω/µ
∗
ω)⊕ χE ,

we conclude that µ∗ω/µ
∗
ω is equal to µ∗/µ∗ or to µ∗/µ∗. Hence µ∗ω/µ

∗, or
µ∗ω/µ

∗, takes the same value at z and z in CE . Then there exists a character
α of A×/F× with µ∗ω(z) = µ∗(z)α(NE/F z) or µ∗ω(z) = µ∗(z)α(NE/F z). In
both cases π∗ω = απ∗, and β = ω/α satisfies βπ∗ = π∗. �

It follows from Propositions 2.4.4 and 2.4.6 that (1) in each packet
{π0(µ′)}, µ′ 6= 1 a character of C1

E , there is a cuspidal representation
π0; (2) any other cuspidal representation has the form πg0 , g ∈ GL(2, F );
(3) all other representations in the packet, which are of the form πg0 ,
g ∈ GL(2,A)−GL(2, F )G(π), do not occur in the cuspidal spectrum.

The cuspidal representations occur with multiplicity one.
Indeed, applying the trace identity (1.9.2) in the form 1

2I
′ = I0 − 1

2I
′
E

(see (1.8.1)) where µ′2 6= 1 makes the only contribution to I ′E , and using
the character relations 2.2.4-7 (recall that the m(π0) are 0 by Proposition
2.2.8) to replace the representations in I ′, I ′E by π0 on SL(2,A), we conclude
that the m(π+

0 ) = m(π−0 ) of 2.2.5 and m = mj of 2.2.7 are zero for each
component of our global character µ′. The identity (1.9.2) then takes the
form∏

v∈V
(2mv + 1) tr{π0v}(f0vdhv) +

∏
v∈V

[trπ+
0v(f0vdhv)− trπ−0v(f0vdhv)]

= 2
∑
π0

m(π0)
∏
v∈V

trπ0v(f0vdhv).
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The set V is finite, and the sum ranges over the cuspidal π0 with unramified
component in {π0v(µ′v)} for all v /∈ V . Since there is a π0 in the sum with
m(π0) = 1, we cannot have 2mv + 1 > 1 for any v (in V ).

Since each local character µ′v 6= 1 of E1
v can be embedded as a local

component of a global character µ′, µ′2 6= 1, of A1
E/E

1, we proved the
following.

2.5 Proposition. The integer m (= m(π+
0 ) = m(π−0 ) in (2.2.5), = mj

in (2.2.7)) is 0. For every a ∈ F× there is just one ψψψaH-generic πH in the
sum (dimC 6= 0, necessarily = 1).

We now give a purely local proof of this proposition, which is independent
of the subsections 2.3 and 2.4 above. It is based on the following theorem
of Rodier [Rd], p. 161, (for any split group H) which computes the number
of ψψψH -Whittaker models of the admissible irreducible representation πH of
H in terms of values of the character trπH or χπH

of πH at the measures
ψH,ndh which are supported near the origin.

2.5.1 Proposition. The multiplicity dimC HomH(indHUH
ψψψaH , πH) is

= lim
n
|Hn|−1 trπH(ψaH,ndh)

(
= lim

n
|Hn|−1

∫
Hn

χπH
(h)ψaH,n(h)dh

)
.

The limit here and below stabilizes for large n. We proceed to explain the
notations. Thus ψψψH : UH → C1(= {z ∈ C; |z| = 1}) is a generic (nontrivial
on each simple root subgroup) character on the unipotent radical UH of a
Borel subgroup BH of H.

A ψψψH -Whittaker vector is a vector in the space of the compactly in-
duced representation indHUH

(ψψψH). This space consists of all functions ϕ :
H → C with ϕ(uhk) = ψψψH(u)ϕ(h), u ∈ UH , h ∈ H, k ∈ Kϕ, where Kϕ

is a compact open subgroup depending on ϕ, which are compactly sup-
ported on UH\H. The group H acts by right translation. The multiplicity
dimC HomH(indHUH

ψψψH , πH) of any irreducible admissible representation πH
of H in the space of ψψψH -Whittaker vectors is known to be 0 or 1. In the
latter case we say that πH has a ψψψH -Whittaker model or that it is ψψψH -
generic.

The maximal torus AH in BH normalizes UH and so acts on the set of
generic characters by a ·ψψψH(u) = ψψψH(Int(a)u). We need this only for our

H = SL(2, F ). We may take UH = {u =
(

1 x

0 1

)
}, and define ψψψaH : UH → C1
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by ψψψaH(u) = ψ(ax), where a ∈ F× and ψ : F → C1 is a fixed additive
character which is 1 on the ring R of integers of F , but 6= 1 on πππ−1R.
Since diag(a, a−1) · ψψψbH = ψψψba

2

H , the AH -orbits of generic characters are
parametrized by F×/F×2.

Let H0 be the ring of 2 × 2 matrices with entries in R and trace zero.
Write Hn = πππnH0 and Hn = exp(Hn). For n ≥ 1 we have Hn =
tUH,nAH,nUH,n, where UH,n = UH ∩ Hn, and AH,n is the group of di-
agonal matrices in Hn. Define a character ψaH,n : H → C1, supported on
Hn, by

ψaH,n(
tbu) = ψ(axπππ−2n) at tb ∈ tUH,nAH,n, u =

(
1 x

0 1

)
∈ UH,n.

Alternatively, by

ψaH,n(expX) = chHn(X)ψ(tr[Xπππ−2nβH,a]),

where chHn indicates the characteristic function of Hn = πππnH0 in H, and

βH,a =
(

0 0

a 0

)
.

We need a twisted analogue of Rodier’s theorem. It can be described as
follows.

Let π be an admissible irreducible representation of G which is also
σ-invariant: π ' σπ, where σπ(σ(g)) = π(g). Then there exists an inter-
twining operator A : π → σπ, with Aπ(g) = π(σ(g))A for all g ∈ G. Since
π is irreducible, by Schur’s lemma A2 is a scalar which we may normalize
by A2 = 1. Thus A is unique up to a sign. Denote by G′ the semidirect
product G o 〈σ〉. Then π extends to G′ by π(σ) = A. If π is generic,
namely HomG(indGU ψψψ, π) 6= 0 where indGU ψψψ is the space of Whittaker func-
tions (ϕ : G → C with ϕ(ugk) = ψψψ(u)ϕ(g), u ∈ U , g ∈ G, k in a compact
open subgroup Kϕ of G depending on ϕ, ϕ compactly supported on U\G),
then A is normalized by Aϕ = σϕ where σϕ(g) = ϕ(σ(g)).

Let G = GL(3, F ) and a, b ∈ F×. Define a character ψψψa,b : U →

C1 on the unipotent subgroup U =
{
u =

(
1 x z

0 1 y

0 0 1

)}
of G by ψψψa,b(u) =

ψ(ax + by). This one-dimensional representation has the property that
ψψψa,b(σ(u)) = ψψψa,b(u) for all u in U precisely when a = b. Put ψψψa =
ψψψa,a. The group {diag(a, 1, 1/a)} of σ-invariant diagonal matrices in G

acts simply transitively on the set of σ-invariant characters ψψψa.
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Let g0 be the ring of 3×3 matrices with entries R. Write gn = πππng0 and
Gn = exp(gn). For n ≥ 1 we have Gn = tUnAnUn, where Un = U∩Gn, and
An is the group of diagonal matrices in Gn. Define a character ψan : G→ C1

supported on Gn by ψan(
tbu) = ψ(a(x+y)πππ−2n) where tb ∈ tUnAn, u ∈ Un.

Alternatively, ψan : G→ C1 is defined by

ψan(expX) = chgn(X)ψ(tr[Xπππ−2nβa]) where βa =
(

0 0 0

a 0 0

0 a 0

)
.

This ψan is σ-invariant, and multiplicative on Gn.
The σ-twisted analogue of Rodier’s theorem of interest to us (see E3

below) is as follows. Let chGσ
n

denote the characteristic function of Gσn =
{g = σg; g ∈ Gn} in Gn.

Proposition 2.5.2. The multiplicity

dimC HomG′(indGU ψψψ
a, π) = dimC HomG(indGU ψψψ

a, π)

is (independent of a and) equal, for all sufficiently large n, to

|Gσn|−1

∫
Gσ

n

χσπ(g)ψ
a
n(g)dg.

Proof of Proposition 2.5. We are given the identity

trπ(fdg × σ) = (2m+ 1)
∑
πH

trπH(fHdh).

The sum ranges over finitely many (in fact, two times the cardinality of the
packet of π0(µ′)) inequivalent square-integrable irreducible admissible rep-
resentations πH of SL(2, F ), and π is generic with trivial central character.
The number m is a nonnegative integer, independent of πH . Note that in
this proof we use the index H for what is usually indexed by 0 in this part,
to be consistent with the notations of 2.5.1 and 2.5.2.

The identity for all matching test measures fdg and fHdh implies an
identity of characters:

χσπ(δ) = (2m+ 1)
∑
πH

χπH
(γ)
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for all δ ∈ G = GL(3, F ) with regular norm γ ∈ H = SL(2, F ). The
norm map δ 7→ Nδ sends the stable σ-conjugacy class of δ to the stable
conjugacy class of Nδ, which is determined by the two non-1 eigenvalues
of δσ(δ). If δ ∈ Gσn then σδ = δ, δσδ = δ2, and we are interested in
the eigenvalues of δ2. Now δ = expX, X ∈ gσn, σδ = exp(dσX), where

dσX = −J tXJ , and X = dσX has the form
(
x y 0

z 0 y

0 z −x

)
. Its eigenvalues are

0, ±
√
x2 + yz. Thus the norm Nδ is the stable conjugacy class in SL(2, F )

of expY , Y = 2
( x y

z −x
)
, as the eigenvalues of Y are ±2

√
x2 + yz. The

norm map is compatible then with the isomorphism Gσn
∼→Hn, eX 7→ eY ,

when p 6= 2.
For X ∈ gσn the value

ψan(expX) = chgn(X)ψ(tr[Xπππ−2nβa]) = chgσ
n
(X)ψ(2ayπππ−2n)

is equal to ψaH,n(expY ) = chHn(Y )ψ(2ayπππ−2n), namely for δ ∈ Gσn we have
ψan(δ) = ψaH,n(Nδ). Then

|Gσn|−1

∫
Gσ

n

χσπ(δ)ψ
a
n(δ)dδ = |Hn|−1

∫
Hn

(2m+ 1)
∑
πH

χπH
(γ)ψaH,n(γ)dγ.

It follows that for any a in F× we have

1 = dimC HomG(indGU ψψψ
a, π) = (2m+ 1)

∑
πH

dimC HomH(indHUH
ψψψaH , πH).

Hence m = 0 and there is precisely one ψψψaH -generic πH in the sum (dimC 6=
0, necessarily = 1), for every a. �

We say that π0 λ0-lifts to the (necessarily σ-invariant) representation π
of G (and we write π = λ0(π0)) if π0 and π satisfy (2.1.1). In terms of
characters this can be rephrased as follows (cf. (I.3.3)).

Definition. An irreducible admissible representation π0 of H0 λ0-lifts
to the representation π of G (and we write π = λ0(π0)) if

χπ(δσ) = χ{π0}(Nδ)

for all σ-regular elements δ of G, where {π0} denotes the packet of π0.
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2.6 Theorem. Let F be a local field.
(1) A one-dimensional, special, nonmonomial, type π0(µ′), representation
of H, lifts to a one-dimensional, Steinberg, cuspidal, I(π(µ′′), χE), repre-
sentation of G (respectively).
(2) A σ-invariant admissible irreducible representation π of G is a λ0-lift
of a packet {π0} of H precisely when it is σ-stable (χσπ(δ) depends only on
the stable σ-conjugacy class of δ in G). Thus a σ-invariant π is a λ0-lift
unless it is of the form I(π1, 1), where π1 is an elliptic representation of
H1. In particular, a σ-invariant irreducible cuspidal representation π of
G is σ-stable and is the λ0-lift of a nonmonomial representation π0 of H.
This case may occur only if the residual characteristic of F is 2.

Proof. This follows from I.3.9 (case of special and trivial representa-
tions), 2.2.9(1) (nonmonomial case), (1.9) (case of I(π1, 1)), as well as (1.4)
(list of σ-invariant representations), and 2.2.9(2), which asserts that π0(µ′u)
lifts to I(π(µ′′u), χu).

If π is a σ-invariant cuspidal representation of a local G, using the twisted
trace formula we can construct a global cuspidal σ-invariant cuspidal rep-
resentation of G(A) whose component at some place is our π. The global
representation cannot be of the form I(π1, 1), hence our local π is σ-stable,
as asserted. �

Remark. It will be interesting to give a direct local proof (not using
the trace formulae) that every σ-invariant cuspidal G-module π is σ-stable.

Definition. Let F be a number field. For each place v of F , let {π0v}
be a packet of representations of Hv = SL(2, Fv), containing an unramified
π0

0v for almost all v. We say that π0
0v is unramified if it has a nonzero

K0v-fixed vector where K0v = SL(2, Rv).
The associated global packet is the set of products ⊗vπ0v with π0v ∈

{π0v} for all v and with π0v = π0
0v for almost all v.

If E is a quadratic extension of F and µ′ a character of A1
E/E

1, define
{π0(µ′)} by {π0(µ′v)} for all v.

Write ε(µ′v, π0v) = ±1 if π0v ∈ π±0 (µ′v). Note that ε(µ′v, π
0
0v) = 1.

For π0 = ⊗vπ0v ∈ {π0(µ′)} put ε(µ′, π0) =
∏
v ε(µ

′
v, π0v).

If µ′2 6= 1 put m(π0) = 1
2 (1 + ε(µ′, π0)).

If µ′ 6= 1 = µ′2 there are three pairs (Ei, µ′i) such that µ′1 = µ′ and
{π(µ′i)} = {π(µ′)}, i = 1, 2, 3. For π0 = ⊗vπ0v ∈ {π0(µ′)} put m(π0) =
1
4 [1 +

∑
1≤i≤3 ε(µ

′
i, π0)].
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The unstable discrete spectrum of L(SL(2, F )\SL(2,A)) is defined to
consist of all packets of the form {π(µ′)}. The stable spectrum is its com-
plement. A packet is named (un)stable if it lies in the (un)stable spectrum.

Our main goal is to describe all automorphic discrete-spectrum repre-
sentations of H(A) = SL(2,A), namely the decomposition of the discrete
spectrum of L(SL(2, F )\SL(2,A)).

2.7 Theorem. Let F be a number field.
(1) The packets partition the discrete spectrum of SL(2,A). Thus if π′0 and
π0 are cuspidal, and π′0v ' π0v for almost all v, then {π0} = {π′0}.
(2) Every packet {π0} of representations of SL(2,A) λ0-lifts to a unique
automorphic representation π of PGL(3,A). The λ0-lift π is one dimen-
sional if π0 is one dimensional. It is cuspidal if {π0} is cuspidal but not
of the form {π0(µ′)}. It is of the form I(π(µ′′), χE), µ′′(z) = µ′(z/z)
on z ∈ A×E, if π0 is in a packet {π0(µ′)} associated with a character µ′

of A1
E/E

1. If µ′ 6= 1 = µ′2 then I(π(µ′′), χE) = I(µ, µχE , χE) where
µ′(z) = µ(zz) (z ∈ A×E) defines µ on A×/F× up to multiplication by
χE : A×/F×NE/FA×E

∼→{±1}.
(3) Each cuspidal π0 occurs only once in the cuspidal spectrum of

L(SL(2, F )\SL(2,A)).

Every π0 in a stable packet (not of the form π(µ′)) occurs with multiplicity
one in the cuspidal spectrum. A π0 ∈ π(µ′), µ′2 6= 1, occurs with multiplic-
ity m(π0) = 1

2 (1 + ε(µ′, π0)).
A π0 ∈ π(µ′), µ′ 6= 1 = µ′2, occurs with multiplicity m(π0) equal to

1
4 [1 +

∑
1≤i≤3 ε(µ

′
i, π0)].

(4) Every σ-invariant automorphic representation π of PGL(3,A) which
is neither of the form I(µ, 1, µ−1), where µ is a character of A×/F×,
nor of the form I(π1, 1), where π1 is a discrete-spectrum representation
of PGL(2,A), is the λ0-lift of a unique cuspidal packet {π0} of SL(2,A).
Such a π has no component of the form I(π1v, 1) where π1v is elliptic.

Remark. (1) is the rigidity theorem for packets of the cuspidal repre-
sentations of SL(2,A). (3) is the multiplicity one theorem for the cuspidal
representations of H(A) = SL(2,A).

Proof. This follows from the trace formulae identity (1.8.1), noting as
in 1.9.1 that I ′1 = I1 can be removed, and from our local lifting results,
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on applying our usual arguments of “generalized linear independence of
characters”. Indeed, fixing E and µ′, using 1.10 we see that (1.8.1) takes
the form 1

2I
′ + 1

2I
′
E = I0 namely

1
2

∏
v 6∈V

tr I(π(µ′′v), χE,v; fvdgv × σ) +
1
2

∏
v 6∈V

µ′v(fEvdtE,v)

=
∑
π0

m(π0)
∏
v 6∈V

trπ0v(f0vdhv)

if µ′2 6= 1, or 1
4I
′ + 1

4

∑
E IE = I0, namely

1
4

∏
v 6∈V

tr I(µ1v, µ2v, µ3v; fvdgv × σ) +
1
4

∑
1≤i≤3

∏
v 6∈V

µ′iv(fEivdtEiv)

=
∑
π0

m(π0)
∏
v 6∈V

trπ0v(f0vdhv)

with {µ1, µ2, µ3} = {µ, µχE , χE}. The local lifting results and linear inde-
pendence of characters show that there are π0 on the right which λ0-lift to
I(π(µ′′), χE) if µ′2 6= 1 or to I(µ, µχE , χE) if µ′ 6= 1 = µ′2, and all the π0

that occur are in the packet {π0(µ′)}, with multiplicities as stated in the
last two sentences of (3).

At this stage (1.8.1) is reduced to I = I0. Then (4) is clear, as by
1.4 we need to consider only a σ-invariant cuspidal π. It contributes the
only term in I, hence π is the λ0-lift of some {π0}, again by the local
character relations and linear independence of characters. Each member of
{π0} occurs with multiplicity m(π0) = 1, by the local character relations.

It remains to show that each cuspidal π0 lifts to some π, namely that if
π0 contributes to I0 in the equality I = I0, then I is not empty. But this
follows from linear independence of characters, or alternatively on using
I.4.3.1. �

2.7.1 Corollary [GJ]. If a unitary cuspidal representation π̃0 of
GL(2,A) has a local component π̃0v of the form I0v(µ1ν

t
v, µ2ν

−t
v ), |µi| = 1,

νv(x) = |x|v, t ≥ 0, then t < 1
4 .

Proof. This follows at once from the existence of the lifting λ0. The
restriction {π0} of π̃0 to H(A) is a discrete-spectrum packet, which lifts
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to an automorphic representation π of G(A). In particular, the induced
π̃0(µ1ν

t
v, µ2ν

−t
v ) lifts to I(µν2t

v , 1, µν
−2t
v ), µ = µ1/µ2, which is unitarizable

only if 2t < 1
2 . �

For any representation π̃0v of GL(2, Fv) and character χv of F×v put

L2(s, π̃0v, χv) = L(s, π̃0vχv × ˇ̃π0v)/L(s, χv),

and
ε2(s, π̃0v, χv;ψv) = ε(s, π̃0vχv × ˇ̃π0v;ψv)/ε(s, χv;ψv).

Here ˇ̃π0v is the contragredient of π̃0v and ψv is a nontrivial additive char-
acter of Fv. The L-functions depend only on the packet {π0v} defined by
π0v. As in [GJ], we say that π̃0v L-lifts to a representation πv of Gv if πv
is σ-invariant and

L(s, πvχv) = L2(s, π̃0v, χv), ε(s, πvχv;ψv) = ε2(s, π̃0v, χv;ψv),

for any character χv of F×v . Here πv is viewed as a representation of
GL(3, Fv) with a trivial central character. Gelbart and Jacquet [GJ], Propo-
sitions 3.2, 3.3, showed for nonmonomial π̃0v that {π0v} L-lifts to the lift
πv of {π0v}. If π̃0 is an automorphic representation of GL(2,A) and χ is
a character of F×\A×, then the function L2(s, π̃0, χ) is defined to be the
product over all v of the L2(s, π̃0v, χv).

2.7.2 Corollary [GJ]. If π0 is cuspidal and not monomial (of the
form π0(µ′)), then

L2(s, π0, χ) = L(s, πχ)

for any character χ of F×\A×, where π is the lift of π0. Hence L2(s, π0, χ)
is entire for any χ.

Proof. The local factors of the two global products are equal unless πv
is cuspidal, but then both local factors are equal to 1.

It is easy to deduce from this [GJ], p. 535, that π0v L-lifts to its lift πv
in the remaining case, where πv is cuspidal. �

Corollary 2.7.2 was proved directly using the Rankin-Shimura method
in [GJ], where it was used as the key tool to prove that each π0v and π0

L-lift to their lifts. The advantage of the trace formula is in characterizing
the image of the lifting, establishing character relations and proving the
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multiplicity one theorem and the rigidity theorem for SL(2,A), in addition
to proving the existence of the lifting.

2.7.3 Multiplicities. Following [LL], the packets can be described in
duality with the dual group. Namely, if F is local, the character relations
define a duality 〈., .〉 : Cϕ × {π0} → {±1} between the packet {π0} which
is parametrized by ϕ : WF → LH = Ĥ ×WF , and Cϕ = Cϕ/C

0
ϕ. Here Cϕ

is the centralizer Z(ϕ(WF ), LH) of ϕ(WF ) in LH; as usual, superscript 0
means connected component of the identity. Indeed, suppose ϕ is

(IndWF

WE
µ′)0 : WF → Ĥ = PGL(2,C).

When µ′ = 1 on E1, ϕ = (χE ⊕ 1)0 on WF factorizes via F×, and Cϕ =
〈w0, A〉, where A is the diagonal subgroup, w is the antidiagonal matrix,
and index 0 means image in PGL(2,C). Hence Cϕ is Z/2. If µ′2 6= 1 then
Cϕ = 〈w0〉. If µ′2 = 1 6= µ′ then Cϕ = 〈w0,diag(−1, 1)0〉 is Z/2× Z/2.

If {π0} is a global packet containing a cuspidal representation, which
is associated with a homomorphism ϕ : WF → LH, then the local packet
{π0v} is associated with the restriction ϕv of ϕ to the decomposition group
WFv , Cϕ = Z(ϕ(WF ), LH) ⊂ Cϕv = Z(ϕ(WFv ), LH), C0

ϕ ⊂ C0
ϕv

induce
Cϕ → Cϕv

. For π0 in {π0} let 〈s, π0〉 be
∏
v〈s, π0v〉. Then the multiplicity

m(π0) of π0 in the discrete spectrum is |Cϕ|−1
∑
s∈Cϕ
〈s, π0〉, at least where

we know to associate {π0} with ϕ, namely in the monomial case.
Unipotent, nontempered representations, their quasipackets and multi-

plicities in the discrete spectrum, are described by conjectures of Arthur
[A2]. However, for our group SL(2) these are only the trivial representation.

V.3 Characters and genericity

In this section we reduce Proposition 2.5.2 to Proposition 2.5.1 for G
(not for H), so we begin by recalling the main lines in Rodier’s proof in the
context of G. Fix d = diag(πππ−r+1,πππ−r+3, . . . ,πππr−1). Put Vn = dnGnd

−n

and ψψψn(u) = ψn(d−nudn) (u ∈ Vn). Note that θ(d) = d, θ(Gn) = Gn,
θ(Un) = Un, θψn = ψn, and that the entries in the jth line (j 6= 0) above
or below the diagonal of v = (vij) in Vn lie in πππ(1−2j)nR (thus vi,i+j ∈
πππ(1−2j)nR if j > 0, and also when j < 0). Thus Vn ∩ U is a θ-invariant
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strictly increasing sequence of compact and open subgroups of U whose
union is U , while Vn∩ (UH) — where UH is the lower triangular subgroup
of G — is a strictly decreasing sequence of compact open subgroups of G
whose intersection is the element I of G.

Note that ψψψn = ψψψ on Vn ∩ U .
Consider the induced representations indGVn

ψψψn, and the intertwining op-
erators

Amn : indGVn
ψψψn → indGVm

ψψψm,

(Amn ϕ)(g) = ((|Vm|−11Vmψψψm) ∗ ϕ)(g) = |Vm|−1

∫
Vm

ψψψm(u)ϕ(u−1g)du

(g in G, ϕ in indGVn
ψψψn, |Vm| denotes the volume of Vm, 1Vm denotes the

characteristic function of Vm). Note that for m ≥ n ≥ 1

(Amn ϕ)(g) = ((|Vm ∩ U |−11Vm∩Uψψψ) ∗ ϕ)(g)

= |Vm ∩ U |−1

∫
Vm∩U

ψψψ(u)ϕ(u−1g)du.

Hence A`m◦Amn = A`n for ` ≥ m ≥ n ≥ 1. So (indGVn
ψψψn, A

m
n (m ≥ n ≥ 1)) is

an inductive system of representations of G. Denote by (I,An : indGVn
ψψψn →

I) (n ≥ 1) its limit.
The intertwining operators φn : indGVn

ψψψn → indGU ψψψ,

(φn(ϕ))(g) = (ψψψ1U ∗ ϕ)(g) =
∫
U

ψψψ(u)ϕ(u−1g)du,

satisfy φn◦Amn = φn if m ≥ n ≥ 1. Hence there exists a unique intertwining
operator φ : I → indGU ψψψ with φ ◦ An = φn for all n ≥ 1. Proposition 3 of
[Rd] asserts that

Lemma 3.1. The map φ is an isomorphism of G-modules.

Lemma 3.2. There exists n0 ≥ 1 such that

ψψψn ∗ψψψm ∗ψψψn = |Vn||Vm ∩ Vn|ψψψn

for all m ≥ n ≥ n0.

Proof. This is Lemma 5 of [Rd]. We review its proof (the first displayed
formula in the proof of this Lemma 5, [Rd], p. 159, line -8, should be
erased).
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There are finitely many representatives ui in U ∩ Vm for the cosets of
Vm modulo Vn ∩ Vm. Denote by ε(g) the Dirac measure in a point g of G.
Consider

(ε(ui) ∗ψψψn1Vm∩Vn)(g) =
∫
G

ε(ui)(gh−1)(ψψψn1Vm∩Vn)(h)dh

= ψψψn(u−1
i g) = ψψψm(ui)−1ψψψm(g).

Note here that if the left side is nonzero, then g ∈ ui(Vm ∩ Vn) ⊂ Vm.
Conversely, if g ∈ Vm, then g ∈ ui(Vm ∩ Vn) for some i. Hence ψψψm =∑
iψψψm(ui)ε(ui) ∗ψψψn1Vm∩Vn , thus

ψψψn ∗ψψψm ∗ψψψn =
∑
i

ψψψm(ui)ψψψn ∗ ε(ui) ∗ψψψn1Vm∩Vn
∗ψψψn.

Since ψψψn1Vm∩Vn
∗ ψψψn = |Vm ∩ Vn|ψψψn, this is =

∑
iψψψm(ui)|Vm ∩ Vn|ψψψn ∗

ε(ui) ∗ ψψψn. But the key Lemma 4 of [Rd] asserts that ψψψn ∗ ε(u) ∗ ψψψn 6= 0
implies that u ∈ Vn. Hence the last sum reduces to a single term, with
ui = 1, and we obtain

= |Vm ∩ Vn|ψψψn ∗ψψψn = |Vm ∩ Vn||Vm|ψψψn.

This completes the proof of the lemma. �

Lemma 3.3. For an inductive system {In} of G-modules we have

HomG(lim
−→

In, π) = lim
←−

HomG(In, π).

Proof. See, e.g., Rotman [Rt], Theorem 2.27. �

Corollary. We have

dimC HomG(indGU ψψψ, π) = lim
n
|Gn|−1 trπ(ψndg).

Proof. As the dimC HomG(indGVn
ψψψn, π) are increasing with n, if they

are bounded we get that they are independent of n for sufficiently large n.
Hence the left side of the corollary is equal to limn dimC HomG(indGVn

ψψψn, π).
This is equal to limn dimC HomG(indGGn

ψn, π) since ψψψn(v) = ψn(d−nvdn).
This is equal to limn dimC HomGn(ψn, π|Gn) by Frobenius reciprocity. This
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is equal to the right side of the corollary since |Gn|−1π(ψndg) is a projection
from π to the space of ξ in π with π(g)ξ = ψn(g)ξ (g ∈ Gn), a space whose
dimension is then |Gn|−1 trπ(ψndg). �

We can now discuss the twisted case. Note that since θψψψn = ψψψn, the
representations indGVn

ψψψn are θ-invariant, where θ acts on ϕ ∈ indGVn
ψψψn by

ϕ 7→ θϕ, (θϕ)(g) = ϕ(θg). Similarly θψψψ = ψψψ and indGU ψψψ is θ-invariant.
We then extend these representations ind of G to the semidirect product
G′ = Go 〈θ〉 by putting (I(θ)ϕ)(g) = ϕ(θ(g)).

Let π be an irreducible admissible representation of G. Suppose it is
θ-invariant. Thus there exists an intertwining operator A : π → θπ, where
θπ(g) = π(θ(g)), with Aπ(g) = π(θ(g))A. Then A2 commutes with every
π(g) (g ∈ G), hence A2 is a scalar by Schur’s lemma, and can be normalized
to be 1. We extend π from G to G′ = Go 〈θ〉 by putting π(θ) = A once A
is chosen.

If HomG(indGU ψψψ, π) 6= 0, its dimension is 1. Choose a generator ` :
indGU ψψψ → π. Define A : π → π by A`(ϕ) = `(I(θ)ϕ). Then

HomG(indGU ψψψ, π) = HomG′(indGU ψψψ, π).

Similarly we have HomG(indGVn
ψψψn, π) = HomG′(indGVn

ψψψn, π).
The right side in the last equality can be expressed as

HomG′(indGGn
ψn, π) = HomG′n(ψ′n, π|G′n) (G′n = Gn o 〈θ〉).

The last equality follows from Frobenius reciprocity, where we extended ψn
to a homomorphism ψ′n on G′n whose value at 1×θ is 1. Thus ψ′n = ψ1

n+ψθn
with ψαn(g × β) = δαβψn(g), α, β ∈ {1, θ}.

Now HomG′n(ψ′n, π|G′n) is isomorphic to the space π1 of vectors ξ in π

with π(g)ξ = ψn(g)ξ for all g in G′n. In particular π(g)ξ = ψn(g)ξ for
all g in Gn, and π(θ)ξ = ξ. Clearly |G′n|−1π(ψ′ndg

′) is a projection from
the space of π to π1. It is independent of the choice of the measure dg′.
Its trace is then the dimension of the space Hom. We conclude a twisted
analogue of the theorem of [Rd]:

Proposition 3.1. We have

dimC HomG′(indGU ψψψ, π) = lim
n
|G′n|−1 trπ(ψ′ndg

′)
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where the limit stabilizes for a large n.

Note that G′n is the semidirect product of Gn and the two-element group
〈θ〉. With the natural measure assigning 1 to each element of the discrete
group 〈θ〉, we have |G′n| = 2|Gn|. The right side is then

1
2

lim
n
|Gn|−1 trπ(ψndg) +

1
2

lim
n
|Gn|−1 trπ(ψndg × θ)

(as ψ′n = ψ1
n + ψθn, ψ

1
n = ψn and trπ(ψθndg) = trπ(ψndg × θ)). By the

nontwisted version of Rodier’s theorem,

dimC HomG(indGU ψψψ, π) = lim
n
|Gn|−1 trπ(ψndg),

we conclude that for θ-invariant π

Proposition 3.2. We have

dimC HomG′(indGU ψψψ, π) = lim
n
|Gn|−1 trπ(ψndg × θ). �

Proposition 3.3. The terms in the limit on the right of Proposition 2
are equal to

|Gθn|−1

∫
Gθ

n

χθπ(g)ψn(g)dg.

Proof. Consider the map Gθn × Gθn\Gn → Gn, (u, k) 7→ k−1uθ(k).
It is a closed immersion. More generally, given a semisimple element s
in a group G, we can consider the map ZG0(s) × ZG0(s)\G0 → G0 by
(u, k) 7→ k−1usks−1. Our example is: (s,G) = (θ,Gn × 〈θ〉).

Our map is in fact an analytic isomorphism since Gn is a small neighbor-
hood of the origin, where the exponential e : gn → Gn is an isomorphism.
Indeed, we can transport the situation to the Lie algebra gn. Thus we
write k = eY , u = eX , θ(k) = e(dθ)(Y ), k−1uθ(k) = eX−Y+(dθ)(Y ), up
to smaller terms. Here (dθ)(Y ) = −J−1tY J . So we just need to show
that (X,Y ) 7→ X − Y + (dθ)(Y ), Zgn(θ) + gn(modZgn(θ)) → gn, is bi-
jective. But this is obvious since the kernel of (1 − dθ) on gn is precisely
Zgn

(θ) = {X ∈ gn; (dθ)(X) = X}.
Changing variables on the terms on the right of Proposition 2 we get the

equality:

|Gn|−1

∫
Gn

χθπ(g)ψn(g)dg
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= |Gn|−1

∫
Gθ

n

∫
Gθ

n\Gn

χθπ(k
−1uθ(k))ψn(k−1uθ(k))dkdu.

But θψn = ψn, ψn is multiplicative on Gn, Gn is compact, and χθπ is a
θ-conjugacy class function, so we end up with

= |Gθn|−1

∫
Gθ

n

χθπ(u)ψn(u)du.

Our proposition, and Proposition 2.5.2, follow. �

V.3.1 Germs of twisted characters

Harish-Chandra [HC2] showed that χπ is locally integrable (Thm 1, p.
1) and has a germ expansion near each semisimple element γ (Thm 5, p.
3), of the form:

χπ(γ expX) =
∑
O
cγ(O, π)µ̂O(X).

Here O ranges over the nilpotent orbits in the Lie algebra m of the central-
izer M of γ in G, µO is an invariant distribution supported on the orbit
O, µ̂O is its Fourier transform with respect to a symmetric nondegenerate
G-invariant bilinear form B on m and a selfdual measure, and cγ(O, π) are
complex numbers. Both µO and cγ(O, π) depend on a choice of a Haar
measure dO on the centralizer ZG(X0) of X0 ∈ O, but their product does
not. The X ranges over a small neighborhood of the origin in m. We shall
be interested only in the case of γ = 1, and thus omit γ from the notations.

Suppose that G is quasi-split over F , and U is the unipotent radical of
a Borel subgroup B. Let ψψψ : U → C1 be the nondegenerate character of
U (its restriction to each simple root subgroup is nontrivial) specified in
Rodier [Rd], p. 153. The number dimC Hom(indGU ψψψ, π) of ψψψ-Whittaker
functionals on π is known to be zero or one. Let g0 be a selfdual lattice
in the Lie algebra g of G. Denote by ch0 the characteristic function of
g0 in g. Rodier [Rd], p. 163, showed that there is a regular nilpotent
orbit O = Oψψψ such that c(O, π) is not zero iff dimC Hom(indGU ψψψ, π) is one,
in fact µ̂O(ch0)c(O, π) is one in this case. Alternatively put, normalizing
µO by µ̂O(ch0) = 1, we have c(O, π) = dimC Hom(indGU ψψψ, π). This is
shown in [Rd] for all p if G = GL(n, F ), and for general quasi-split G for
all p ≥ 1 + 2

∑
α∈S nα, if the longest root is

∑
α∈S nαα in a basis S of the
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root system. A generalization of Rodier’s theorem to degenerate Whittaker
models and nonregular nilpotent orbits is given in Moeglin-Waldspurger
[MW]. See [MW], I.8, for the normalization of measures. In particular they
show that c(O, π) > 0 for the nilpotent orbits O of maximal dimension with
c(O, π) 6= 0.

Harish-Chandra’s results extend to the twisted case. The twisted char-
acter is locally integrable (Clozel [Cl2], Thm 1, p. 153), and there exist
unique complex numbers cθ(O, π) ([Cl2], Thm 3, p. 154) with χθπ(expX) =∑
O c

θ(O, π)µ̂O(X). Here O ranges over the nilpotent orbits in the Lie al-
gebra gθ of the group Gθ of the g ∈ G with g = θ(g). Further, µO is an
invariant distribution supported on the orbit O (it is unique up to a con-
stant, not unique as stated in [HC2], Thm 5, and [Cl2], Thm 3); µ̂O is its
Fourier transform, and X ranges over a small neighborhood of the origin
in gθ.

In this section we compute the expression displayed in Proposition 3
using the germ expansion χσπ(expX) =

∑
O c

σ(O, π)µ̂O(X). This expan-
sion means that for any test measure fdg supported on a small enough
neighborhood of the identity in G we have∫

gσ

f(expX)χσπ(expX)dX

=
∑
O
cσ(O, π)

∫
O

[ ∫
gσ

f(expX)ψ(tr(XZ))dX
]
dµO(Z).

HereO ranges over the nilpotent orbits in gσ, µO is an invariant distribution
supported on the orbit O, µ̂O is its Fourier transform. The X range over
a small neighborhood of the origin in gσ. Since we are interested only in
the case of the symmetric square, and to simplify the exposition, we take
G = GL(n, F ) and the involution σ, σ(g) = J−1tg−1J . In this case there
is a unique regular nilpotent orbit O0.

We normalize the measure µO0 on the orbit O0 of β in gσ by the re-
quirement that µ̂O0(ch

σ
0 ) is 1, thus that

∫
β+πππngσ

0
dµO0(X) = qn dim(O0) for

large n. Equivalently a measure on an orbit O ' G/ZG(Y ) (Y ∈ O) is
defined by a measure on its tangent space m = g/Zg(Y ) ([MW], p. 430) at
Y , taken to be the selfdual measure with respect to the symmetric bilinear
nondegenerate F -valued form BY (X,Z) = tr(Y [X,Z]) on m.
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Proposition 3.4. If π is a σ-invariant admissible irreducible represen-
tation of G and O0 is the regular nilpotent orbit in gσ, then the coefficient
cσ(O0, π) in the germ expansion of the σ-twisted character χσπ of π is equal
to

dimC HomG′(indGU ψψψ, π) = dimC HomG(indGU ψψψ, π).

This number is one if π is generic, and zero otherwise.

Proof. We compute the expression displayed in Proposition 3 as in
[MW], I.12. It is a sum over the nilpotent orbits O in gσ, of cσ(O, π) times

|Gσn|−1µ̂O(ψn ◦ e) = |Gσn|−1µO(ψ̂n ◦ e) = |Gσn|−1

∫
O
ψ̂n ◦ e(X)dµO(X).

The Fourier transform (with respect to the character ψE) of ψn ◦ e,

ψ̂n ◦ e(Y ) =
∫

gσ

ψn(expZ)ψE(trZY )dZ =
∫

gσ
n

ψE(trZ(πππ−2nβ − Y ))dZ,

is the characteristic function of πππ−2nβ + πππ−ngσ0 = πππ−2n(β + πππngσ0 ) multi-
plied by the volume |gσn| = |Gσn| of gσn. Hence we get

=
∫
O∩(πππ−2n(β+πππngσ

0 ))

dµO(X) = qn dim(O)

∫
O∩(β+πππngσ

0 )

dµO(X).

The last equality follows from the homogeneity result of [HC2], Lemma 3.2,
p. 18. For sufficiently large n we have that β + πππngσ0 is contained only in
the orbit O0 of β. Then only the term indexed by O0 remains in the sum
over O, and ∫

O0∩(β+πππngσ
0 )

dµO0(X) =
∫
β+πππngσ

0

dµO0(X)

equals q−n dim(O0) (cf. [MW], end of proof of Lemme I.12). The proposition
follows. �



VI. COMPUTATION OF A

TWISTED CHARACTER

Summary. We provide a purely local computation of the (elliptic) twi-
sted (by “transpose-inverse”) character of the representation π = I(1) of
PGL(3, F ) over a p-adic field F induced from the trivial representation of
the maximal parabolic subgroup. This computation is purely local, and
independent of our results on the theory of the symmetric square lifting of
automorphic and admissible representations of SL(2) to PGL(3), derived
using the trace formula. This independent purely local computation gives
an alternative verification of a special case of our results on character re-
lations. The material of this chapter is based on the works [FK4] with D.
Kazhdan and [FZ1] with D. Zinoviev.

Introduction

Let F be a local field. Put G = PGL(3), G = G(F ),

H1 = PGL(2), H1 = H1(F ), J =
(

0 1

1

1 0

)
,

and σδ = J tδ−1J for δ in G. Fix an algebraic closure F of F . The elements
δ, δ′ of G are called (stably) σ-conjugate if there is g in G (resp. G(F ))
with δ′ = g−1δσ(g). To state our result, we first recall the results of I.2
concerning these classes. For any δ in GL(3, F ), δσ(δ) lies in SL(3, F )
and depends only on the image of δ in G. The eigenvalues of δσ(δ) are
λ, 1, λ−1 (see end of I.2.1), with [F (λ) : F ] ≤ 2; δ is called σ-regular if
λ 6= ±1. In this case we write (as in I.2.2) γ1 = N1δ for the conjugacy
class in H1 which corresponds to the conjugacy class with eigenvalues λ,
1, λ−1 in SO(3, F ) under the isomorphism H1 = SO(3, F ) (i.e., γ1 is the
image in H1 of a conjugacy class in GL(2, F ) with eigenvalues a, b with
a/b = λ). It is shown in I.2.3 that the map N1 is a bijection from the set
of stable regular σ-conjugacy classes in G to the set of regular conjugacy

186
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classes in H1 (clearly, we say that a conjugacy class γ1 in H1 is regular if
λ = a/b 6= ±1). The set of σ-conjugacy classes in the stable σ-conjugacy
class of a σ-regular δ is shown in I.2.3 to be parametrized by F×/NE×,
where E is the field extension F (λ) of F , and N is the norm from E to F .
Explicitly, if the quotients of the eigenvalues of the regular element γ1 are
λ and λ−1, choose α, β in E with λ = −α/β (for example with β = 1 if
E = F , and with β = α if E 6= F ). Let a be an element of GL(2, F ) with
eigenvalues α, β. Put

e =
(
−1 0

0 1

)
, and h1 =

(
x 0 y

0 1 0

z 0 t

)
if h =

( x y

z t

)
.

Then δu = (uae)1 is a complete set of representatives for the σ-conjugacy
classes within the stable σ-conjugacy class of the δ with N1δ equals γ1, as
u varies over F×/NE× (a set of cardinality one or two). In addition we
associate (in I.2.4) to δ a sign κκκ(δ), as follows: κκκ(δ) is 1 if the quadratic
form

x (∈ F 3) 7→ txδJx (equivalently x 7→ 1
2
tx[δJ + t(δJ)]x)

represents zero, and κκκ(δ) = −1 if this quadratic form is anisotropic. It is
clear that κκκ(δ) depends only on the σ-conjugacy class of δ, but it is not
constant on the stable σ-conjugacy class of δ.

Put
∆1(γ1) = |(a− b)2/ab|1/2

if a, b are the eigenvalues of a representative in GL(2, F ) of γ1, and

∆(δ) = |(1− λ2)(1− λ−2)|1/2

if λ = a/b. Thus

∆1(γ1) = |(1−λ)(1−λ−1)|1/2, and ∆(δ)/∆1(γ1) = |(1+λ)(1+λ−1)|1/2.

Suppose that F is a nonarchimedean; denote by R its ring of integers.
Put K = G(R), K1 = H1(R). By a G-module π (resp. H1-module π1)
we mean an admissible representation of G (resp. H1) in a complex space.
An irreducible G-module π is called σ-invariant if it is equivalent to the G-
module σπ, defined by σπ(g) = π(σg). In this case there is an intertwining
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operator A on the space of π with π(g)A = Aπ(σg) for all g. Since σ2 = 1
we have π(g)A2 = A2π(g) for all g, and since π is irreducible A2 is a
scalar by Schur’s lemma. We choose A with A2 = 1. This determines
A up to a sign, and when π has a Whittaker model, V.1.1.1 specifies a
normalization of A which is compatible with a global normalization. A G-
module π is called unramified if the space of π contains a nonzero K-fixed
vector. The dimension of the space of K-fixed vectors is bounded by one if
π is irreducible. If π is σ-invariant and unramified, and v0 6= 0 is a K-fixed
vector in the space of π, then Av0 is a multiple of v0 (since σK = K),
namely Av0 = cv0, with c = ±1. Replace A by cA to have Av0 = v0, and
put π(σ) = A. As verified in V.1.1.1, when π is (irreducible) unramified and
has a Whittaker model, both normalizations of the intertwining operator
are equal.

For any π and locally constant compactly supported (test) function f on
G the convolution operator

π(fdg) =
∫
G

f(g)π(g)dg

has finite rank. If π is σ-invariant put

π(fdg × σ) =
∫
G

f(g)π(g)π(σ)dg.

Denote by trπ(fdg × σ) the trace of the operator π(fdg × σ). It depends
on the choice of the Haar measure dg, but the (twisted) character χσπ of
π does not; χσπ is a locally-integrable complex-valued function on G (see
[Cl2], [HC2]) which is σ-conjugacy invariant and locally-constant on the
σ-regular set, with

trπ(fdg × σ) =
∫
G

f(g)χσπ(g)dg

for all test functions f on G.
A Levi subgroup of a maximal parabolic subgroup P of G is isomorphic

to GL(2, F ). Hence an H1-module π1 extends to a P -module trivial on
the unipotent radical N of P . Let δδδ denote the character of P which is
trivial on N and whose value at p = mn is |deth| if m corresponds to h
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in GL(2, F ). Explicitly, if P is the upper triangular parabolic subgroup of
type (2,1), and m in M is represented in GL(3, F ) by

m =
(
m′ 0

0 m′′

)
, then δδδ(m) = |(detm′)/m′′2|

(m′ lies in GL(2, F ), m′′ in GL(1, F )). Denote by I(π1) the G-module
π = ind(δδδ1/2π1;P,G) normalizedly induced from π1 on P to G. It is clear
from [BZ1] that when I(π1) is irreducible then it is σ-invariant, and it is
unramified if and only if π1 is unramified.

We say that a σ-invariant irreducible representation π of G is σ-unstable
if for any σ-regular stably σ-conjugate but not σ-conjugate elements δ, δ′

of G we have χσπ(δ
′) = −χσπ(δ).

Of course δ 6= δ′ as here exist only when F (λ) 6= F , namely when N1δ

is elliptic regular.
Let χπ1 be the character of π1; it is a locally-integrable complex-valued

conjugacy-invariant function on H1 which is smooth on the regular set and
satisfies

trπ1(f1) =
∫
H1

f1(g)χπ1(g)dg

for all f1 on H1. We now assume that F has characteristic zero and odd
residual characteristic.

In this chapter we prove, by direct, local computation, the following

Theorem. If 1 is the trivial H1-module, π = I(1), and δ a σ-regular
element of G with elliptic regular norm γ1 = N1δ, then

(∆(δ)/∆1(γ1))χσπ(δ) = κκκ(δ).

VI.1 Proof of theorem, anisotropic case

To compute the character of π we shall express π as an integral operator
in a convenient model, and integrate the kernel over the diagonal. Denote
by µ = µs the character µ(x) = |x|(s+1)/2 of F×. It defines a character
µP = µs,P of P , trivial on N , by

µP (p) = µ((detm′)/m′′2)
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if p = mn andm =
(
m′ 0

0 m′′

)
withm′ in GL(2, F ),m′′ in GL(1, F ). If s = 0,

the µP = δδδ1/2. Let Ws be the space of complex-valued smooth functions ψ
on G with ψ(pg) = µP (p)ψ(g) for all p in P and g in G. The group G acts
on Ws by right translation: (πs(g)ψ)(h) = ψ(hg). By definition, I(π1) is
the G-module Ws with s = 0. The parameter s is introduced for purposes
of analytic continuation.

We prefer to work in another model Vs of the G-module Ws. Let V de-
note the space of column 3-vectors over F . Let Vs be the space of smooth
complex-valued functions φ on V − {0} with φ(λv) = µ(λ)−3φ(v). The ex-
pression µ(det g)φ(tgv), which is initially defined for g in GL(3, F ), depends
only on the image of g in G. The group G acts on Vs by

(τs(g)φ)(v) = µ(det g)φ(tgv).

Let v0 6= 0 be a vector of V such that the line {λv0;λ in F} is fixed under
the action of tP . Explicitly, we take v0 = t(0, 0, 1). It is clear that the map

Vs →Ws, φ 7→ ψ = ψφ,

where
ψ(g) = (τs(g)φ)(v0) = µ(det g)φ(tgv0),

is a G-module isomorphism, with inverse

ψ 7→ φ = φψ, φ(v) = µ(det g)−1ψ(g)

if v = tgv0 (G acts transitively on V − {0}).
For v = t(x, y, z) in V put |v| = max(|x|, |y|, |z|). Let V 0 be the quotient

of the set of v in V with |v| = 1 by the equivalence relation v ∼ αv if α is
a unit in R. Denote by PV the projective space of lines in V − {0}. If Φ
is a function on V − {0} with Φ(λv) = |λ|−3Φ(v) and dv = dx dy dz, then
Φ(v)dv is homogeneous of degree zero. Define

∫
PV

Φ(v)dv to be ∫
V 0

Φ(v)dv.

Clearly we have

∫
PV

Φ(v)dv = ∫
PV

Φ(gv)d(gv) = |det g| ∫
PV

Φ(gv)dv.

Put ν(x) = |x| and m = 3(s − 1)/2. Note that ν/µs = µ−s. Put 〈v, w〉 =
tvJw. Then

〈gv, σ(g)w〉 = 〈v, w〉.
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1. Lemma. The operator Ts : Vs → V−s,

(Tsφ)(v) = ∫
PV
φ(w)|〈w, v〉|mdw,

converges when Re(s) > 1/3 and satisfies

Tsτs(g) = τ−s(σg)Ts

for all g in G where it converges.

Proof. We have

(Ts(τs(g)φ))(v) = ∫(τs(g)φ)(w)|twJv|mdw = µ(det g) ∫ φ(tgw)|twJv|mdw
= |det g|−1µ(det g) ∫ φ(w)|t(tg−1w)Jv|mdw
= (µ/ν)(det g) ∫ φ(w)|twJ · Jg−1Jv|mdw
= (µ/ν)(det g) ∫ φ(w)|〈w, σ(tg)v〉|mdw = (ν/µ)(detσg) · (Tsφ)(σ(tg)v)

= [(τ−s(σg))(Tsφ)](v),

as required. �

The spaces Vs are isomorphic to the spaceW of locally-constant complex-
valued functions on V 0, and Ts is equivalent to an operator T 0

s on W . The
proof of Lemma 1 implies also

1. Corollary. The operator T 0
s ◦ τs(g−1) is an integral operator with

kernel
(µ/ν)(detσg)|〈w, σ(tg−1)v〉|m (v, w in V 0)

and trace

tr[T 0
s ◦ τs(g−1)] = (ν/µ)(det g)

∫
V 0
|tvgJv|mdv.

Remark. (1) In the domain where the integral converges, it is clear
that tr[T 0

s ◦ τs(g−1)] depends only on the σ-conjugacy class of g if (and
only if) s = 0. (2) We evaluate below this integral at s = 0 in a case
where it converges for all s, and no analytic difficulties occur. However, to
compute the trace of the analytic continuation of T 0

s ◦ τs(g−1) it suffices to
compute this trace for s in the domain of convergence, and then evaluate
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the resulting expression at the desired s. Indeed, for each compact open σ-
invariant subgroup K of G the space WK of K-biinvariant functions in W is
finite dimensional. Denote by pK : W →WK the natural projection. Then
pK ◦T 0

s ◦ τs(g−1) acts on WK , and the trace of the analytic continuation of
pK ◦T 0

s ◦τs(g−1) is the analytic continuation of the trace of pK ◦T 0
s ◦τs(g−1).

Since K can be taken to be arbitrarily small the claim follows.
Next we normalize the operator T = Ts so that it acts trivially on the

one-dimensional space of K-fixed vectors in Vs. This space is spanned by
the function φ0 in Vs with φ0(v) = 1 for all v in V 0. Fix a local uniformizer
πππ in R. Let q be the cardinality of the quotient field of R. Normalize the
valuation | · | by |πππ| = q−1. Normalize the measure dx by

∫
|x|≤1

dx = 1, so
that

∫
|x|=1

dx = 1− q−1. In particular, the volume of V 0 is

(1− q−3)/(1− q−1) = 1 + q−1 + q−2.

2. Lemma. We have

(Tφ0)(v0) = (1− q−3(s+1)/2)(1− q(1−3s/2)−1φ0(v0).

When s = 0 the constant is

−q−1/2(1 + q−1/2 + q−1).

Proof.

∫ φ0(v)|tvJv0|mdv = ∫
V 0
|x|mdx dy dz

= (1− q−3(s+1)/2) ∫
|x|≤1

|x|mdx/ ∫
|x|=1

dx,

as asserted. �

To complete the proof of the proposition we have to compute

tr[T ◦ τs(δ−1)], T = T 0
s .

Put a =
(
α 1

θ α

)
with α 6= 0 in F and θ in F −F 2 with |θ| = 1 or |θ| = q−1.

Put

δ = δu = u(u−1ae)1 =
(−α 0 1

0 u 0

−θ 0 α

)
,
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where u ranges over a set of representatives in F× for F×/NE×, where
E = F (θ1/2). Then det δ = u(θ − α2). The eigenvalues of

δσ(δ) = (−(det a)−1a2)1

are λ, 1, λ−1 where

λ = −(α+ θ1/2)/(α− θ1/2).

We have

(1 + λ)(1 + λ−1) =
(

1− α+ θ1/2

α− θ1/2

)(
1− α− θ1/2

α+ θ1/2

)
=
−4θ
α2 − θ

,

hence (ν/µ)(det δ)∆(δ)/∆1(γ1) is equal to

|u(α2 − θ)|(1−s)/2|4θ/(α2 − θ)|1/2 = |4uθ|1/2|u(α2 − θ)|−s/2.

Further,

δJ =
(

1 0 −α
0 u 0

α 0 −θ

)
,

hence tvδJv = x2 + uy2 − θz2. Consequently

∆(δ)
∆1(γ1)

tr[T ◦ τs(δ−1)]

= |4uθ|1/2|u(α2 − θ)|−s/2 ∫
V 0
|uy2 + x2 − θz2|3(s−1)/2dxdydz.

We are interested in the value of this expression at s = 0. When κκκ(δ) =
1 the quadratic form uy2 + x2 − θz2 represents zero. Then the integral
converges only for s with Re(s) > 2/3, but not at s = 0. At s = 0
the integral can be evaluated by analytic continuation. However when
κκκ(δ) = −1 the quadratic form uy2 +x2−θz2 is anisotropic, hence reaches a
nonzero minimum (in valuation) on the compact set |v| = 1. Consequently
the integral converges for all values of s, and we may restrict our attention
to the case of s = 0. Here the character depends only on the σ-conjugacy
class of δ, and we may take |u| = 1 if |θ| = q−1, and |u| = q−1 if |θ| = 1.
Then |uθ|1/2 = q−1/2 and

∫
|v|=1

|uy2 + x2 − θz2|−3/2dxdydz = (1 + q−1/2 + q−1) ∫
|x|=1

dx.
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We conclude that

∆(δ)
∆1(γ1)

tr[τs(δ) ◦ T ] = κκκ(δ)(Tφ0)(v0)

when κκκ(δ) = −1. Since

χσπ(δ) = tr[τs(δ) ◦ T ]/(Tφ0)(v0),

the theorem follows for δ with κκκ(δ) = −1.

VI.2 Proof of theorem, isotropic case

When κκκ(δ) = 1 we prove the theorem on computing tr[T 0
s ◦ τs(δ−1)] by

analytic continuation, namely first for large Re(s) and then on evaluating
the resulting expression at s = 0.

The theorem asserts that the value at s = 0 of

|4uθ|1/2|u(α2 − θ)|−s/2
∫
V 0
|x2 + uy2 − θz2|3(s−1)/2 dxdydz

is
−κκκ(δ)q−1/2(1 + q−1/2 + q−1).

This equality is verified in the last section when the quadratic form
x2 + uy2 − θz2 is anisotropic, in which case κκκ(δ) = −1 and the integral
converges for all s.

Here we deal with the case where the quadratic form is isotropic, in
which case κκκ(δ) = 1, the integral converges only in some half plane of s,
and the value at s = 0 is obtained by analytic continuation.

Recall that F is a local nonarchimedean field of odd residual character-
istic; R denotes the (local) ring of integers of F ; πππ signifies a generator of
the maximal ideal of R. Denote by q the number of elements of the residue
field R/πππR of R. By F we mean a set of representatives in R for the finite
field R/πππ. The absolute value on F is normalized by |πππ| = q−1.

The case of interest is that where E = F (
√
θ) is a quadratic extension

of F , thus θ ∈ F× − F×2. Since the twisted character depends only on the
twisted conjugacy class, we may assume that |θ| and |u| lie in {1, q−1}.
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0. Lemma. We may assume that the quadratic form x2 + uy2 − θz2

takes one of three avatars:

x2− θz2− y2, θ ∈ R−R2; x2−πππz2 +πππy2; or x2−πππz2− y2.

Proof. (1) If E/F is unramified, then |θ| = 1, thus θ ∈ R× − R×2.
The norm group NE/FE

× is π2ZR×. If x2 − θz2 + uy2 represents 0 then
−u ∈ R×. If −1 is not a square, thus θ = −1, then u is −1 (get x2−z2−y2)
or u = 1 (get x2 − z2 + y2, equivalent case). If −1 ∈ R×2, the case of

u = θ (x2 − θz2 + θy2 = θ(y2 + θ−1x2 − z2))

is equivalent to the case of u = −1. So wlog u = −1 and the form is
x2 − θz2 − y2, |uθ| = 1.
(2) If E/F is ramified, |θ| = q−1 and NE/FE

× = (−θ)ZR×2. The form
x2 − θz2 + uy2 represents zero when −u ∈ R×2 or −u ∈ −θR×2. Then the
form looks like x2 − θz2 + θy2 with u = θ and |θu| = q−2, or x2 − θz2 − y2

with u = −1 and |θu| = q−1. The Lemma follows. �

We are interested in the value at s = −3/2 of the integral Is(u, θ) of
|x2 + uy2 − θz2|s over the set V 0 = V/∼, where

V = {v = (x, y, z) ∈ R3;max{|x|, |y|, |z|} = 1}

and ∼ is the equivalence relation v ∼ αv for α ∈ R×.
The set V 0 is the disjoint union of the subsets

V 0
n = V 0

n (u, θ) = Vn(u, θ)/∼,

where

Vn = Vn(u, θ) = {v;max{|x|, |y|, |z|} = 1, |x2 + uy2 − θz2| = 1/qn},

over n ≥ 0, and of the set {v;x2 +uy2−θz2 = 0}/∼, whose volume is zero.
Thus we have

Is(u, θ) =
∞∑
n=0

q−ns Vol(V 0
n (u, θ)).
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Proposition. The value of |uθ|1/2Is(u, θ) at s = −3/2 is

−q−1/2(1 + q−1/2 + q−1).

The problem is simply to compute the volumes

Vol(V 0
n (u, θ)) = Vol(Vn(u, θ))/(1− 1/q) (n ≥ 0).

1. Lemma. When θ = πππ and u = −1, thus |uθ| = 1/q, we have

Vol(V 0
n ) =


(1− 1/q), if n = 0,
2q−1(1− 1/q) + 1/q2, if n = 1,
2q−n(1− 1/q), if n ≥ 2.

Proof. Recall that

V0 = V0(−1,πππ) = {(x, y, z); max{|x|, |y|, |z|} = 1, |x2 − y2 − πππz2| = 1}.

Since |z| ≤ 1, we have |πππz2| < 1, and

1 = |x2 − y2 − πππz2| = |x2 − y2| = |x− y||x+ y|.

Thus |x− y| = |x+ y| = 1. If |x| 6= |y|, |x± y| = max{|x|, |y|}. We split V0

into three distinct subsets, corresponding to the cases |x| = |y| = 1; |x| = 1,
|y| < 1; and |x| < 1, |y| = 1. The volume is then

Vol(V0) =
∫
|z|≤1

∫
|x|=1

[∫
|y|=1,|x−y|=|x+y|=1

]
dydxdz

+
∫
|z|≤1

[∫
|x|=1

∫
|y|<1

+
∫
|x|<1

∫
|y|=1

]
dydxdz

=
∫
|x|=1

[∫
|y|=1,|x−y|=|x+y|=1

]
dydx+

2
q

(
1− 1

q

)
=
(

1− 1
q

)2

.

To consider the Vn with n ≥ 1, where |x2− y2−πππz2| = 1/qn, recall that
any p-adic number a such that |a| ≤ 1 can be written as a power series in
πππ:

a =
∞∑
i=0

aiπππ
i = a0 + a1πππ + a2πππ

2 + · · · (ai ∈ F).



VI.2 Proof of theorem, isotropic case 197

In particular |a| = 1/qn implies that a0 = a1 = · · · = an−1 = 0, and an 6= 0.
If

x =
∞∑
i=0

xiπππ
i, y =

∞∑
i=0

yiπππ
i, z =

∞∑
i=0

ziπππ
i (xi, yi, zi ∈ F),

then

x2 =
∞∑
i=0

aiπππ
i, y2 =

∞∑
i=0

biπππ
i, z2 =

∞∑
i=0

ciπππ
i,

where

ai =
i∑

j=0

xjxi−j , bi =
i∑

j=0

yjyi−j , ci =
i∑

j=0

zjzi−j (ai, bi, ci ∈ F).

We have

x2 − y2 − πππz2 =
∞∑
i=0

fiπππ
i (fi ∈ F),

where f0 = a0−b0, fi = ai−bi−ci−1 (i ≥ 1). Since |x2−y2−πππz2| = 1/qn,
we have that f0 = f1 = · · · = fn−1 = 0, and fn 6= 0. Thus we obtain the
relations (for a, b, c in the set F, which (modulo πππ) is the field R/πππ):

a0−b0 = 0, ai−bi−ci−1 = 0 (i = 1, ..., n−1), an−bn−cn−1 6= 0.

Recall that together with max{|x|, |y|, |z|} = 1, these relations define the
set Vn.

To compute the volume of Vn we integrate in the order: · · · dydzdx.
From a0 − b0 = 0 it follows that y0 = ±x0, and from ai − bi − ci−1 (i ≥ 1)
it follows that

2y0yi = ai − ci−1 −
i−1∑
j=1

yjyi−j ,

where in the case of i = 1 the sum over j is empty.
Let n ≥ 2. When i = 1 we have 2x0x1− 2y0y1− z2

0 = 0. So if x0 = 0 (in
R/πππ, i.e. |x| < 1), it follows that y0 = 0 and z0 = 0 (i.e. |y| < 1, |z| < 1).
This contradicts the fact that max{|x|, |y|, |z|} = 1. Thus |x| = 1. In this
case y0 6= 0 and (for n ≥ 2) we have:

Vol(Vn) =
∫
|x|=1

∫
|z|≤1

[∫
dy

]
dzdx,
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where the variable y is such that once written as y = y0 + y1πππ+ y2πππ
2 + · · · ,

it has to satisfy: y0 = ±x0, and yi (i = 1, . . . , n − 1) is defined uniquely
from ai− bi− ci−1 = 0, and yn 6= some value defined by an− bn− cn−1 6= 0.
Thus when n ≥ 2,

Vol(Vn) =
2
q

(
1
q

)n−1(
1− 1

q

)2

=
2
qn

(
1− 1

q

)2

.

Let n = 1. When i = 1 we have 2x0x1 − 2y0y1 − z2
0 6= 0. So if x0 = 0

(i.e. |x| < 1), it follows that y0 = 0 and z0 6= 0 (i.e. we have an additional
contribution from |x| < 1, |y| < 1, |z| = 1). Thus,

Vol(V1) =
2
q

(
1− 1

q

)2

+
1
q2

(
1− 1

q

)
.

The lemma follows. �

2. Lemma. When u and θ equal πππ, thus |uθ| = 1/q2, we have

Vol(V 0
n ) =


1, if n = 0,
q−1(1− 1/q), if n = 1,
2q−n(1− 1/q), if n ≥ 2.

Proof. To compute Vol(V0), recall that

V0 = {(x, y, z);max{|x|, |y|, |z|} = 1, |x2 + πππ(y2 − z2)| = 1}.

Since |y| ≤ 1, |z| ≤ 1, we have |x2 + πππ(y2 − z2)| = |x2| = 1, and so

Vol(V0) =
∫
|z|≤1

∫
|y|≤1

∫
|x|=1

dxdydz = 1− 1
q
.

To compute Vol(Vn), n ≥ 1, recall that

Vn = {(x, y, z);max{|x|, |y|, |z|} = 1, |x2 + πππ(y2 − z2)| = 1/qn}.

Following the notations of Lemma 1 we write

x2 + πππ(y2 − z2) =
∞∑
i=0

fiπππ
i (fi ∈ F),
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where f0 = a0 and fi = ai + bi−1 − ci−1 (i ≥ 1). The condition which
defines Vn is that f0 = f1 = · · · = fn−1 = 0 and fn 6= 0. The equation
f0 = 0 implies that x0 = 0 (i.e. |x| < 1). We arrange the order of
integration to be: · · · dydzdx.

When n ≥ 2, since x0 = 0, f1 = 0 implies that y2
0 − z2

0 = 0. Using
max{|x|, |y|, |z|} = 1 we conclude that y0 = ±z0 6= 0 (i.e. |z| = 1, |z2−y2| <
1). Thus we have

Vol(Vn) =
∫
|x|<1

∫
|z|=1

[∫
dy

]
dzdx

where the variable y is such that once written as y = y0 + y1πππ+ y2πππ
2 + · · · ,

it has to satisfy: y0 = ±z0, and yi (i = 1, . . . , n−2) is defined uniquely from
ai + bi−1 − ci−1 = 0, and yn−1 6= some value defined by an + bn−1 − cn−1 6=
0. Thus when n ≥ 2,

Vol(Vn) =
1
q

2
q

(
1
q

)n−2(
1− 1

q

)2

=
2
qn

(
1− 1

q

)2

.

When n = 1 we have f0 = 0, f1 6= 0. These amount to x0 = 0, y0 6= ±z0.
Separating the two cases z0 = 0, and z0 6= 0, we obtain

Vol(V1) =
∫
|x|<1

∫
|z|<1

∫
|y|=1

dydzdx+
∫
|x|<1

∫
|z|=1

∫
|y2−z2|=1

dydzdx

=
1
q2

(
1− 1

q

)
+

1
q

(
1− 1

q

)(
1− 2

q

)
=

1
q

(
1− 1

q

)2

.

The Lemma follows. �

3. Lemma. When E/F is unramified, thus |uθ| = 1, we have

Vol(V 0
n ) =

{
1, if n = 0,
q−n(1− 1/q)(1 + 1/q), if n ≥ 1.

Proof. First we compute Vol(V0). Recall that

V0 = {(x, y, z);max{|x|, |y|, |z|} = 1, |x2 − y2 − θz2| = 1}.
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Since |x2 − y2 − θz2| ≤ max{|x|, |y|, |z|},

V0 = {(x, y, z) ∈ R3; |x2 − y2 − θz2| = 1}.

Making the change of variables u = x+ y, v = x− y, we obtain

V0 = {(u, v, z) ∈ R3; |uv − θz2| = 1}.

Assume that |uv| < 1. Since |uv − θz2| = 1, it follows that |z| = 1. The
contribution from the set |uv| < 1 is∫

|z|=1

[∫
|u|<1

∫
|v|≤1

+
∫
|u|=1

∫
|v|<1

]
dudvdz

=
(

1− 1
q

)(
1
q

+
(

1− 1
q

)
1
q

)
=

1
q

(
1− 1

q

)(
2− 1

q

)
.

Assume that |uv| = 1, i.e. |u| = |v| = 1. We arrange the order of
integration as: dudvdz. If |z| < 1 then |uv − θz2| = |uv| = 1. If |z| = 1 we
introduce U(v, z) = {u; ‖u| = 1, ‖uv − θz2| = 1}, a set of volume 1 − 2/q,
and note that the contribution from the set |uv| = 1 is∫

|z|<1

∫
|v|=1

∫
|u|=1

dudvdz +
∫
|z|=1

∫
|v|=1

∫
U(v,z)

dudvdz.

The sum of the two integrals is

1
q

(
1− 1

q

)2

+
(

1− 1
q

)2(
1− 2

q

)
=
(

1− 1
q

)3

.

Adding the contributions from |uv| < 1 and |uv| = 1 we then obtain

Vol(V0) =
1
q

(
1− 1

q

)(
2− 1

q

)
+
(

1− 1
q

)3

= 1− 1
q
.

Next we compute Vol(Vn), n ≥ 1. Recall that

Vn = {(x, y, z);max{|x|, |y|, |z|} = 1, |x2 − y2 − θz2| = 1/qn}.

Making the change of variables u = x+ y, v = x− y, we obtain

Vn = {(u, v, z);max{|u+ v|, |u− v|, |z|} = 1, |uv − θz2| = 1/qn}.
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Since the set {v = 0} is of measure zero, we assume that v 6= 0. Then
|uv − θz2| = 1/qn implies that u = θz2v−1 + tv−1πππn, where |t| = 1. There
are two cases.

Assume that |v| = 1. Note that if |z| = 1, then max{|u+v|, |u−v|, |z|} =
1 is satisfied, and if |z| < 1, then (recall that n ≥ 1)

|u| = |θz2v−1 + tv−1πππn| ≤ max{|z2|, q−n} < 1,

and |u + v| = |v| = 1. So |v| = 1 implies max{|u + v|, |u − v|, |z|} = 1.
Further, since |v| = 1, we have du = q−ndt. Thus the contribution from
the set with |v| = 1 is∫

|z|≤1

∫
|v|=1

∫
|uv−θz2|=1/qn

dudvdz

=
∫
|z|≤1

∫
|v|=1

∫
|t|=1

dt

qn
dvdz =

1
qn

(
1− 1

q

)2

.

Assume that |v| < 1. Note that if |z| = 1, since |u| ≤ 1 we have
q−n = |uv − θz2| = |θz2| = 1, a contradiction. Thus |z| < 1, and in
order to satisfy max{|u+ v|, |u− v|, |z|} = 1, we should have |u| = 1. The
contribution from the set with |v| < 1 is∫

|z|<1

∫
|u|=1

∫
|uv−θz2|=1/qn

dvdudz.

We write v = θz2u−1+tu−1πππn, where |t| = 1, and dv = q−ndt. The integral
equals ∫

|z|<1

∫
|u|=1

∫
|t|=1

dt

qn
dudz =

1
q

1
qn

(
1− 1

q

)2

.

Adding the contributions from |v| = 1 and |v| < 1 we obtain

Vol(Vn) =
1
qn

(
1− 1

q

)2

+
1
q

1
qn

(
1− 1

q

)2

=
1
qn

(
1− 1

q

)2(
1 +

1
q

)
.

The Lemma follows. �

This completes the proof of the proposition, so that we provided a purely
local proof of (the character relation of) the theorem. We believe that
analogous computations can be carried out in other lifting situations, to
provide direct and local computations of twisted characters. A step in this
direction is taken in [FZ2] and in [FZ3].





PART 2. AUTOMORPHIC

REPRESENTATIONS OF THE

UNITARY GROUP U(3,E/F)





INTRODUCTION

1. Functorial overview

Let E/F be a quadratic Galois extension of local or global fields. Let G
denote the quasi-split unitary group U(3, E/F ) in 3 variables over F which
splits over E. Our aim is to determine the admissible and automorphic
representations of this group by means of the trace formula and the theory
of liftings.

To be definite, we define G by means of the form J =
(

0 1

−1

1 0

)
. Thus

τ ∈ Gal(F/F ) acts on g = (gij) ∈ G(F ) = GL(3, F ) by τg = (τgij)
if τ |E = 1, and τg = θ(τgij) if τ |E 6= 1 where θ(g) = J tg−1J , and tg

indicates the transpose (gji) of g. Denote by x 7→ x the action of the
nontrivial element of Gal(E/F ) on x ∈ E and componentwise g = (gij) on
g in G(E) = GL(3, E). Put σ(g) = θ(g). Thus the group G = G(F ) of
F -points on G is

{g ∈ G(E); gJ tg = J} = {g ∈ GL(3, E); σ(g) = g}.

Write U(n,E/F ) for the group U(n,E/F )(F ) of F -points on U(n,E/F ).
When F is the field R of real numbers, the group G(R) of R-points on G

is usually denoted by U(2, 1; C/R), and the notation U(3; C/R) is reserved
for its anisotropic inner form. We too shall use the R-notations in the
R-case (but only in this case).

When E = F ⊕ F is not a field, G(F ) = GL(3, F ).
Our work is based on basechange lifting to U(3, E/F )(E) = GL(3, E).

We define this last group as an algebraic group over F by G′ = RE/F G.
Thus G′(F ) = GL(3, F ) × GL(3, F ), and τ ∈ Gal(F/F ) acts as τ(x, y) =
(τx, τy) if τ |E = 1, and τ(x, y) = ιθ(τx, τy) if τ |E 6= 1. Here θ(x, y) =
(θ(x), θ(y)) and ι(x, y) = (y, x). In particular G′(E) = GL(3, E)×GL(3, E)
while G′ = G′(F ) = {(x, σx);x ∈ GL(3, E)}. Another main aim of this
part is to determine the admissible representations Π of GL(3, E) and the
automorphic representations Π of GL(3,AE) which are σ-invariant: σΠ '
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Π, where σπ(g) = π(σ(g)), and again σ(g) = θ(g) and θ(g) = J tg−1J . In
other words, we are interested in the representations Π′(x, σx) = Π(x) of G′

or G′(A) — admissible or automorphic — which are ι-invariant: ιΠ′ ' Π′,
where ιΠ′(x, σx) = Π′(σx, x).

The lifting, part of the principle of functoriality, is defined by means
of an L-group homomorphism b : LG → LG′. We are interested in this
and related L-group homomorphisms not in the abstract but since via the
Satake transform they specify an explicit lifting relation of unramified rep-
resentations, crucial for stating the global lifting, from which we deduce
the local lifting. For our work it suffices to specify the lifting of unramified
representations. For this reason we reduce the discussion of functorial-
ity here to a minimum. Thus the L-group LG (see [Bo2]) is the semidi-
rect product of the connected component, Ĝ = GL(3,C), with a group
which we take here to be the relative Weil group WE/F . We could have
equally worked with the absolute Weil group WF and its subgroup WE .
Note that WF /WE ' WE/F /WE/E ' Gal(E/F ), WE/F = WF /W

c
E , and

WE/E = WE/W
c
E = W ab

E is the abelianized WE . Here W c
E is the commu-

tator subgroup of WE (see [D2], [Tt]). Now the relative Weil group WE/F

is an extension of Gal(E/F ) by WE/E = CE , = E× (locally) or A×E/E×

(globally). Thus

WE/F = 〈z ∈ CE , σ;σ2 ∈ CF −NE/FCE , σz = zσ〉

and we have an exact sequence

1→WE/E = CE →WE/F → Gal(E/F )→ 1.

Here WE/F acts on Ĝ via its quotient Gal(E/F ) = 〈σ〉, σ : g 7→ θ(g) =
J tg−1J . Further, LG′ is Ĝ′ o WE/F , Ĝ′ = GL(3,C) × GL(3,C), where
WE/F acts via its quotient Gal(E/F ) by σ = ιθ, θ(x, y) = (θ(x), θ(y)),
ι(x, y) = (y, x).

The basechange map b : LG→ LG′ is x×w 7→ (x, x)×w. In fact G is an
ι-twisted endoscopic group of G′ (see Kottwitz-Shelstad [KS]) with respect
to the twisting ι. Namely Ĝ is the centralizer Z

Ĝ′
(ι) = {g ∈ Ĝ′; ι(g) = g}

of the involution ι in Ĝ′. Note that G is an elliptic ι-endoscopic group,
which means that Ĝ is not contained in any parabolic subgroup of Ĝ′.

The F -group G′ has another elliptic ι-endoscopic group H, whose dual
group LH has connected component Ĥ = Z

Ĝ′
((s, 1)ι), where



1. Functorial overview 207

s = diag(−1, 1,−1). Then Ĥ consists of the (x, y) with

(x, y) = (s, 1)ι · (x, y) · [(s, 1)ι]−1 = (s, 1)(y, x)(s, 1) = (sys, x),

thus y = x and x = sys = sxs. In other words Ĥ is GL(2,C) × GL(1,C),
embedded in Ĝ = GL(3,C) as (aij), aij = 0 if i + j is odd, a22 is the
GL(1,C)-factor, while [a11, a13; a31, a33] is the GL(2,C)-factor. Now LH

is isomorphic to a subgroup LH1 of LG′, and the factor WE/F , acting on Ĝ′

by σ = ιθ, induces on Ĥ1 the action σ(x, x) = (θx, θx), namely WE/F acts
on Ĥ1 via its quotient Gal(E/F ) and σ(x) is θ(x). If we write x = (a, b) with

a in GL(2,C) and b in GL(1,C), σ(a, b) is (wta−1w, b−1), where w =
(

0 1

1 0

)
.

We prefer to work with H = U(2, E/F )×U(1, E/F ), whose dual group
LH is the semidirect product of Ĥ = GL(2,C) × GL(1,C) (⊂ Ĝ) and
WE/F which acts via its quotient Gal(E/F ) by σ : x 7→ εθ(x)ε, ε =
diag(1,−1,−1). We denote by e′ : LH → LG′ the map Ĥ ↪→ Ĝ′ by
x 7→ (x, x), and σ 7→ (θ(ε), ε)σ, z 7→ z (∈ WE/F ). Here U(1, E/F )
is the unitary group in a single variable: its group of F -points is E1 =
{x ∈ E×;xx = 1} = {z/z; z ∈ E×}. The quasi-split unitary group
U(2, E/F ) in two variables has F -points consisting of the a in GL(2, E)
with a = εwta−1wε.

The homomorphism e′ : LH → LG′ factorizes through the embed-
ding i : LH ′ → LG′, where H′ is the endoscopic group (not elliptic and
not ι-endoscopic) of G′ with Ĥ ′ = Z

Ĝ′
((s, s)). Thus Ĥ ′ = Ĥ × Ĥ ⊂

Ĝ′, Gal(E/F ) permutes the two factors, and H′ = RE/F U(2, E/F ) ×
RE/F U(1, E/F ), so that H ′ = H′(F ) = GL(2, E) × GL(1, E). The map
b′′ : LH → LH ′ is the basechange homomorphism, b′′ : x 7→ (x, x) for
x ∈ Ĥ, z 7→ z, σ 7→ (θ(ε), ε)σ on WE/F . Thus e′ = i ◦ b′′.

The lifting of representations implied by b is the basechange lifting, de-
scribed in the text below. On the U(1, E/F ) factor it is µ 7→ µ′, where
µ′ is a character of GL(1, E) which is σ-invariant, thus µ′ = σµ′ where
σµ′(x) = µ′(x−1). Then µ′(x) = µ(x/x), x ∈ E×, where µ is a character of
E1 = U(1, E/F ). The lifting implied by the embedding i : LH ′ → LG′ is
simply normalized induction, taking a representation (ρ′, µ′) of GL(2, E)×
GL(1, E) to the normalizedly induced representation I(ρ′, µ′) from the par-
abolic subgroup of type (2, 1). In particular, if ρ′ is irreducible with central
character ωρ′ and Π = I(ρ′, µ′) has central character ω′, then ω′ = ωρ′ · µ′,
and so µ′ = ω′/ωρ′ is uniquely determined by ω′ and ωρ′ . Since we fix the
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central character ω′ (= σω′), we shall talk about the lifting i : ρ′ → Π,
meaning that Π = I(ρ′, ω′/ωρ′).

Similarly if e′ maps a representation (ρ, µ) ofH = U(2, E/F )×U(1, E/F )
to Π = I(ρ′, µ′) where (ρ′, µ′) = b((ρ, µ)), then ωΠ(x) = ωρ(x/x)µ(x/x),
and so µ is uniquely determined by the central character ω′ = ωΠ of Π
and ωρ of ρ. Hence we talk about the lifting e′ : ρ 7→ Π, meaning that
Π = I(b(ρ), ω′/ω′ρ), where ω′ρ(x) = ωρ(x/x) and b(ρ) is the basechange of
ρ.

The (elliptic ι-endoscopic) F -group G (of G′) has a single proper ellip-
tic endoscopic group H. Here Ĥ = Z

Ĝ
(s) and WE/F acts via its quotient

Gal(E/F ) by σ(x) = εθ(x)ε−1, x ∈ Ĥ. Thus to define LH → LG to
extend Ĥ ↪→ Ĝ and σ 7→ ε × σ to include the factor WE/F , we need to
map z ∈ CE = WE/E = ker[WE/F → Gal(E/F )] = E× or A×E/E×, to
diag(κ(z), 1, κ(z)) × z, where κ : CE/NE/FCE → C× is a homomorphism
whose restriction to CF is nontrivial (namely of order two). Indeed, σ2 ∈
CF − NE/FCE , and σ2 7→ εθ(ε) × σ2, where εθ(ε) = diag(−1, 1,−1) = s.
We denote this homomorphism by e : LH → LG and name it the “endo-
scopic map”. The group H is U(2, E/F )×U(1, E/F ). If a representation
ρ × µ of H = H(F ) or H(A) e-lifts to a representation π of G = G(F )
or G(A), then ωπ = κωρµ, where the central characters ωπ, ωρ, µ are all
characters of E1 (or A1

E/E
1 globally). Note that κ(z/z) = κ2(z). We fix

ω = ωπ, hence µ = ωπ/ωρκ is determined by κ and by the central character
ωρ of ρ, and so it suffices to talk on the endoscopic lifting ρ 7→ π, meaning
(ρ, ω/ωρκ) 7→ π.

The homomorphism e factorizes via i : LH ′ → LG′ and the unstable
basechange map b′ : LH → LH ′, x 7→ (x, x) for x ∈ Ĥ, σ 7→ (εθ(ε), 1)σ,
z 7→ (κ(z)1, κ(z)1)z for z ∈ CE . Here κ(z)1 indicates diag(κ(z), 1, κ(z)).
The basechange map on the factors U(1, E/F ) and GL(1,C) is µ 7→ µ′,
µ′(z) = µ(z/z), and b : LU(1) → LU(1)′ is x 7→ (x, x), b|WE/F is the
identity.

Let us summarize our L-group homomorphisms:
LG = GL(3,C) oWE/F

b→ LG′

e ↑ i ↑ ↖e′

LH = GL(2,C) oWE/F →
b′

LH ′ ←
b′′

LH = GL(2,C) oWE/F

where LG′ = [GL(3,C)×GL(3,C)] oWE/F

and LH ′ = [GL(2,C)×GL(2,C)] oWE/F .
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Implicit is a choice of a character ω′ on CE and ω on C1
E related by

ω′(z) = ω(z/z).
The definition of the endoscopic map e and the unstable basechange

map b′ depend on a choice of a character κ : CE/NE/FCE → C1 whose
restriction to CF is nontrivial.

An L-groups homomorphism λ : LG → LG′ defines — via the Satake
transform — a lifting of unramified representations. It leads to a definition
of a norm map N relating stable (σ-) conjugacy classes in G′ to stable
conjugacy classes in G based on the map δ 7→ δσ(δ), G′ → G′. In the local
case it also leads to a suitable definition of matching of compactly supported
smooth (locally constant in the p-adic case) complex valued functions on
G and G′. Functions f on G and φ on G′ are matching if a suitable
(determined by λ) linear combination of their (σ-) orbital integrals over a
stable conjugacy class, is related to the analogous object for the other group,
via the norm map. Symbolically: “Φκφ(δσ) = Φst

f (Nδ)”. We postpone the
precise definition to the text below (in brief, the stable orbital integrals of
f match the σ-twisted stable orbital integrals of φ, the orbital integrals of
′φ match the σ-twisted unstable orbital integrals of φ, and the unstable
orbital integrals of f match the stable orbital integrals of ′f), but state the
names of the related functions according to the diagram of the L-groups
above:

f
b←− φ

e ↓ ↘e′

′f ′φ

In fact we fix characters ω′, ω on the centers Z ′ = E× of G′ = GL(3, E),
Z = E1 of G = U(3, E/F ), related by ω′(z) = ω(z/z), z ∈ Z ′ = E×,
and consider φ on G′ with φ(zg) = ω′(z)−1φ(g), z ∈ Z ′ = E×, smooth
and compactly supported modZ ′, f on G with f(zg) = ω(z)−1f(g), z ∈
Z = E1, smooth and compactly supported modZ, but according to our
conventions ′f ∈ C∞c (H) and ′φ ∈ C∞c (H) are compactly supported, where
now H = U(2, E/F ).

Our representation theoretic results can be schematically put in a dia-
gram:

π
b↔ Π I(ρ′ ⊗ κ)

e ↑ ↑ i
ρ

b′−→ ρ′ ⊗ κ

I(ρ′)
i ↑ ↖e′

ρ′ ←
b′′

ρ
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Here we make use of our results in the case of basechange from U(2, E/F ) to
GL(2, E), namely that b′′(ρ) = ρ′ iff b′(ρ) = ρ′⊗κ, in the bottom row of the
diagram. We describe these liftings in the next section, and in particular
the structure of packets of representations on G = U(3, E/F ). Both are
defined in terms of character relations.

Nothing will be gained from working with the group of unitary simili-
tudes

GU(3, E/F ) = {(g,λλλ) ∈ GL(3, E)× E×; gJ tg = λλλJ},

as it is the product E× ·U(3, E/F ), where E× indicates the diagonal scalar
matrices, and E× ∩ U(3, E/F ) is E1, the group of x = z/z, z ∈ E×.
Indeed, the transpose of gJ tg = λλλJ is gJ tg = λλλJ , hence λλλ = λλλ(g) ∈ F×,
and taking determinants we get xx = λλλ3 where x = det g. Hence λλλ ∈
NE/FE

× ⊂ F×, say λλλ = (uu)−1, u ∈ E×, then ug ∈ U(3, E/F ). Since an
irreducible representation has a central character, working with admissible
or automorphic representations of U(3, E/F ) is the same as working with
such a representation of GU(3, E/F ): just extend the central character from
the center Z = Z(F ) = E1 (locally, or Z(A) = A1 globally) of G = G(F )
(or G(A)), to the center E× (or A×E) of the group of similitudes.



2. Statement of results

We begin with our local results. Let E/F be a quadratic extension of
nonarchimedean local fields of characteristic 0, put G′ = GL(3, E), and
denote by G or U(3, E/F ) the group of F -points on the quasi-split unitary
group in three variables over F which splits over E. We realize G as the
group of g in G′ with σ(g) = g, where σ(g) = θ(g), θ(g) = J tg−1J , g = (gij)
and tg = (gji) if g = (gij), and

J =
(

0 1

−1

1 0

)
.

Similarly, we realize the group of F -points on the quasi-split unitary group
H, or U(2, E/F ), in two variables over E/F as the group of h in H ′ =
GL(2, E) with σ(h) = εθ(h)ε, θ(h) = wth−1w, ε = diag(1,−1) and

w =
(

0 1

1 0

)
.

Let N denote the norm map from E to F , and E1 the unitary group
U(1, E/F ), consisting of x ∈ E× with Nx = 1.

Let φ, f , ′f denote complex valued locally constant functions on G′, G,
H. The function ′f is compactly supported. The functions φ, f transform
under the centers Z ′ ' E×, Z ' E1 of G′, G by characters ω′−1, ω−1

which are matching (ω′(z) = ω(z/z), z ∈ E×), and are compactly sup-
ported modulo the center. The spaces of such functions are denoted by
C∞c (G′, ω′−1), C∞c (G,ω−1), C∞c (H). Assume they are matching. Thus the
“stable” orbital integrals “Φst(Nδ, fdg)” of fdg match the twisted “stable”
orbital integrals “Φσ,st(δ, φdg′)” of φdg′, and the unstable orbital integrals
of fdg match the stable orbital integrals of ′fdh. These notions are defined
in I.2 below; dg is a Haar measure on G, dg′ on G′, dh on H.

By a G-module π, or a representation π of G, we mean an admissible
representation of G. If such a π is irreducible it has a central character by
Schur’s lemma. We work only with π which has the fixed central character
ω, thus π(zg) = ω(z)π(g) for all g ∈ G, z ∈ Z. For fdg as above the
operator π(fdg) has finite rank, hence it has trace trπ(fdg) ∈ C. We
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denote by χπ the character [HC2] of π. It is a complex valued function
on G which is conjugacy invariant and locally constant on the regular set,
with central character ω. Moreover it is locally integrable with trπ(fdg) =
∫ χπ(g)f(g)dg (g in G) for all measures dg on G and f in C∞c (G,ω−1).

Definition. A G′-module Π is called σ-invariant if σΠ ' Π, where
σΠ(g) = Π(σ(g)).

For such Π there is an intertwining operator A : Π→ σΠ, thus AΠ(g) =
Π(σg)A for all g ∈ G. Assume that Π is irreducible. Then Schur’s lemma
implies that A2 is a (complex) scalar. We normalize it to be 1. This
determines A up to a sign. Extend Π to G′ o 〈σ〉 by Π(σ) = A.

The twisted character g 7→ χσΠ(g) = χΠ(g × σ) of such Π is a function
on G′ which depends on the σ-conjugacy classes and is locally constant on
the σ-regular set. Further it is locally integrable ([Cl2]) and satisfies, for
all measures φdg,

trΠ(φdg × σ) =
∫
χσΠ(g)φ(g)dg (g in G′).

Definition. A σ-invariant G′-module Π is called σ-stable if its twisted
character χσΠ depends only on the stable σ-conjugacy classes in G, namely
trΠ(φdg′ × σ) depends only on fdg. It is called σ-unstable if

χσΠ(δ) = −χσΠ(δ′)

whenever δ, δ′ are σ-regular σ-stably conjugate but not σ-conjugate, equiv-
alently, trΠ(φdg′ × σ) depends only on ′fdh.

An element of G′ is called σ-elliptic if its norm in G is elliptic, namely
lies in an anisotropic torus. It is called σ-regular if its norm is regular,
namely its centralizer is a torus.

A σ-invariant G′-module Π is called σ-elliptic if its σ-character χσΠ is not
identically zero on the σ-elliptic σ-regular set.

We first deal with the σ-unstable σ-invariant representations.

Unstable Representations. Every σ-invariant irreducible represen-
tation Π is σ-stable or σ-unstable. All σ-unstable σ-elliptic Π are of the
form I(ρ′), normalizedly induced from the maximal parabolic subgroup; on
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the 2× 2 factor the H ′-module ρ′ is obtained by the stable basechange map
b′′ from an elliptic representation ρ of H. We have

tr I(ρ′;φdg′ × σ) = tr ρ(′fdh)

for all matching measures ′fdh and φdg′.

Our preliminary basechange result is

Local Basechange. Let Π be a σ-stable tempered G′-module. For ev-
ery tempered G-module π there exist nonnegative integers m′(π) = m′(π,Π)
which are zero except for finitely many π, so that for all matching φdg′, fdg
we have

trΠ(φdg′ × σ) =
∑
π

m′(π) trπ(fdg). (∗)

This relation defines a partition of the set of (equivalence classes of) tem-
pered irreducible G-modules into disjoint finite sets: for each π there is a
unique Π for which m′(π) 6= 0.

Definition. (1) We call the finite set of π which appear in the sum
on the right of (∗) a packet. Denote it by {π}, or {π(Π)}. It consists of
tempered G-modules.
(2) Π is called the basechange lift of (each element π in) the packet {π(Π)}.

To refine the identity (∗) we prove that the multiplicities m′(π) are equal
to 1, and count the π which appear in the sum. The result depends on the
σ-stable Π. First we note that:

List of the σ-stable Π. The σ-stable Π are the σ-invariant Π which
are square integrable, one dimensional, or induced I(ρ′⊗κ) from a maximal
parabolic subgroup, where on the 2 × 2 factor the H ′-module ρ′ ⊗ κ is the
tensor product of an H ′-module ρ′ obtained by the stable basechange map b′′

in our diagram, and the fixed character κ of CE/NCE which is nontrivial
on CF .

In the local case CE = E× and N is the norm from E to F . Namely
ρ′⊗κ is obtained by the unstable map b′ in our diagram, from a packet {ρ}
of H-modules (defined in [F3;II]). Our main local results are as follows:
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Local Results. (1) If Π is square integrable then it is σ-stable and the
packet {π(Π)} consists of a single square-integrable G-module π. If Π is of
the form I(ρ′⊗κ), and ρ′ is the stable basechange lift of a square-integrable
H-packet {ρ}, then Π is σ-stable and the cardinality of {π(Π)} is twice that
of {ρ}.

Remark. In the last case we denote {π(Π)} also by {π(ρ)}, and say
that {ρ} endo-lifts to {π(ρ)} = {π(I(ρ⊗ κ))}.

Let {ρ} be a square-integrable H-packet. It consists of one or two ele-
ments.

Local Results. (2) If {ρ} consists of a single element then {π} con-
sists of two elements, π+ and π−, and we have the character relation

tr ρ(′fdh) = trπ+(fdg)− trπ−(fdg)

for all matching measures ′fdh, fdg. If {ρ} consists of two elements, then
there are four members in {π(ρ)}, and three distinct square-integrable H-
packets {ρi} (i = 1, 2, 3) with {π(ρi)} = {π(ρ)}. With this indexing, the
four members of {πi} can be indexed so that we have the relations

tr{ρi}(′fdh) = trπ1(fdg) + trπi+1(fdg)− trπi′(fdg)− trπi′′(fdg)

(∗∗)

for all matching fdg, ′fdh. Here i′, i′′ are so that {i+1, i′, i′′} = {2, 3, 4}.
A single element in the packet has a Whittaker model. It is π+ if [{ρ}] = 1,
and π1 if [{ρ}] = 2.

Remark. The proof that a packet contains no more than one generic
member is given only in the case of odd residual characteristic. It depends
on a twisted analogue of Rodier [Rd].

In the case of the Steinberg (or “special”) H-module s(µ), which is the
complement of the one-dimensional representation 1(µ) : g 7→ µ(det g) in
the suitable induced representation of H, we denote their stable basechange
lifts by s′(µ′) and 1′(µ′). Here µ is a character of C1

E = E1 (norm-one
subgroup in E×), and µ′(a) = µ(a/a) is a character of CE = E×.

Local Results. (3) The packet {π(s(µ))} consists of a cuspidal π− =
π−µ , and the square-integrable subrepresentation π+ = π+

µ of the induced
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G-module I = I(µ′κν1/2). Here I is reducible of length two, and its non-
tempered quotient is denoted by π× = π×µ . The character relations are

tr(s(µ))(′fdh) = trπ+(fdg)− trπ−(fdg),

tr(1(µ))(′fdh) = trπ×(fdg) + trπ−(fdg),

tr I(s′(µ′)⊗ κ;φdg′ × σ) = trπ+(fdg) + trπ−(fdg),

tr I(1′(µ′)⊗ κ;φdg′ × σ) = trπ×(fdg)− trπ−(fdg).

As the basechange character relations for induced modules are easy, we
obtained the character relations for all (not necessarily tempered) σ-stable
G′-modules.

If π is a nontempered irreducible G-module then its packet {π} is defined
to consist of π alone. For example, the packet of π× consists only of π×.
Also we make the following:

Definition. Let µ be a character of C1
E = E1. The quasi-packet {π(µ)}

of the nontempered subquotient π× = π×µ of I(µ′κν1/2) consists of π× and
the cuspidal π− = π−µ .

Note that π× is unramified when E/F and µ are unramified.
Thus a packet consists of tempered G-modules, or of a single nontem-

pered element. A quasi-packet consists of a nontempered π× and a cuspidal
π−. The packet of π− consists of π− and π+, where π+ is the square-
integrable constituent of I(µ′κν1/2). These local definitions are made for
global purposes.

We shall now state our global results.
Let E/F be a quadratic extension of number fields, AE and A = AF

their rings of adèles, A×E and A× their groups of idèles, N the norm map
from E to F , A1

E the group of E-idèles with norm 1, CE = A×E/E× the idèle
class group of E, ω a character of C1

E = A1
E/E

1, ω′ a character of CE with
ω′(z) = ω(z/z). Denote by H, or U(2, E/F ), and by G, or U(3, E/F ),
the quasi-split unitary groups associated to E/F and the forms εw and J

as defined in the local case. These are reductive F -groups. We often write
G for G(F ), H for H(F ), and G′ = GL(3, E) for G′(F ) = G(E), where
G′ = RE/F G is the F -group obtained from G by restriction of scalars from
E to F . Note that the group of E-points G′(E) is GL(3, E)×GL(3, E).
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Denote the places of F by v, and the completion of F at v by Fv. Put
Gv = G(Fv), G′v = G′(Fv) = GL(3, Ev), Hv = H(Fv). Note that at
a place v which splits in E we have that U(n,E/F )(Fv) is GL(n, Fv).
When v is nonarchimedean denote by Rv the ring of integers of Fv. When
v is also unramified in E put Kv = G(Rv). Also put KHv = H(Rv)
and K ′v = G′(Rv) = GL(3, RE,v), where RE,v is the ring of integers of
Ev = E ⊗F Fv. When v splits we have Ev = Fv ⊕Fv and RE,v = Rv ⊕Rv.

Write L2(G,ω) for the space of right-smooth complex-valued functions φ
onG\G(A) with φ(zg) = ω(z)φ(g) (g ∈ G(A), z ∈ Z(A), Z being the center
of G). The group G(A) acts by right translation: (r(g)φ)(h) = φ(hg).
The G(A)-module L2(G,ω) decomposes as a direct sum of (1) the discrete
spectrum L2

d(G,ω), defined to be the direct sum of all subrepresentations,
and (2) the continuous spectrum L2

c(G,ω), which is described by Langlands
theory of Eisenstein series as a continuous sum.

The G(A)-module L2
d(G,ω) further decomposes as a direct sum of the

cuspidal spectrum L2
0(G,ω), consisting of cusp forms φ, and the residual

spectrum L2
r(G,ω), which is generated by residues of Eisenstein series.

Each irreducible constituent of L2(G,ω) is called an automorphic repre-
sentation, and we have discrete-spectrum representations, cuspidal, residual
and continuous-spectrum representations. Each such has central character
ω. The discrete-spectrum representations occur in L2

d with finite multiplic-
ities. Similar definitions apply to the groups H, G′ and H′.

By a G(A)-module we mean an admissible representation of G(A). Any
irreducible G(A)-module π is a restricted tensor product ⊗vπv of admissible
irreducible representations πv of Gv = G(Fv), which are almost all (at most
finitely many exceptions) unramified. A Gv-module πv is called unramified
if it has a nonzero Kv-fixed vector. It is a rare property for a G(A)-module
to be automorphic.

An L-groups homomorphism LH → LG defines via the Satake transform
a lifting ρv 7→ πv of unramified representations. Given an automorphic
representation ρ of H(A), the L-groups homomorphism LH → LG defines
then unramified πv at almost all places. We say that ρ quasi-e-lifts to π if
ρv e-lifts to πv for almost all places v. Our preliminary result is an existence
result, of π in the following statement.

Quasi-Lifting. Every automorphic ρ quasi-e-lifts to an automorphic
π.
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Every automorphic π quasi-b-lifts to an automorphic σ-invariant Π on
GL(3,AE).

The same result holds for each of the homomorphisms in our diagram.
To be pedantic, under the identification GL(3, E) = G′, g 7→ (g, σg), we

can introduce Π′(g, σg) = Π(g). Then σΠ = ιΠ′, where ι(x, y) = (y, x).
Thus Π is σ-invariant as a GL(3, E)-module iff Π′ is ι-invariant as a G′-
module (and similarly globally).

Our main global results consist of a refinement of the quasi-lifting to lift-
ing in terms of all places. To state the result we need to define and describe
packets of discrete-spectrum G(A)-modules. To introduce the definition,
recall that we defined above packets of tempered Gv-modules at each v,
as well as quasi-packets, which contain a nontempered representation. If
v splits then Gv = GL(3, Fv) and a (quasi-) packet consists of a single
irreducible.

Definition. (1) Given a local packet Pv for all v such that Pv contains
an unramified member π0

v for almost all v, we define the global packet P
to be the set of products ⊗πv over all v, where πv lies in Pv for all v, and
πv = π0

v for almost all v.
(2) Given a character µ of C1

E = A1
E/E

1, the quasi-packet {π(µ)} is defined
as in the case of packets, where Pv is replaced by the quasi-packet {π(µv)}
for all v, and π0

v is the unramified π×v at the v where E/F and µ are
unramified.
(3) The H(A)-module ρ = ⊗ρv endo-lifts to the G(A)-module π = ⊗πv if
ρv endo-lifts to πv (i.e. {ρv} endo-lifts to {πv}) for all v. Similarly, π = ⊗πv
basechange lifts to the GL(3,AE)-module Π = ⊗Πv if πv basechange lifts
to Πv for all v.

A complete description of the packets is as follows.

Global Lifting. The basechange lifting is a one-to-one correspon-
dence from the set of packets and quasi-packets which contain an auto-
morphic G(A)-module, to the set of σ-invariant automorphic GL(3,AE)-
modules Π which are not of the form I(ρ′). Here ρ′ is the GL(2,AE)-module
obtained by stable basechange from a discrete-spectrum H(A)-packet {ρ}.

As usual, we write {π(ρ)} for a packet which basechanges to Π =
I(ρ′ ⊗ κ), where the H′(A)-module ρ′ is the stable basechange lift of the
GL(2,AE)-packet {ρ}. We conclude:
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Description of packets. Each discrete-spectrum G(A)-module π lies
in one of the following.
(1) A packet {π(Π)} associated with a discrete-spectrum σ-invariant repre-
sentation Π of GL(3,AE).
(2) A packet {π(ρ)} associated with a cuspidal H(A)-module ρ.
(3) A quasi-packet {π(µ)} associated with an automorphic one-dimensional
H(A)-module ρ = µ ◦ det.

Packets of type (1) will be called stable, those of type (2) unstable, and
quasi-packets are unstable too. The terminology is justified by the following
result.

Multiplicities. (1) The multiplicity of a G(A)-module π = ⊗πv from
a packet {π(Π)} of type (1) in the discrete spectrum of G(A) is one. Namely
each element π of {π(Π)} is automorphic, in the discrete spectrum.
(2) The multiplicity of π from a packet {π(ρ)} or a quasi-packet {π(µ)} in
the discrete spectrum of G(A) is equal to one or zero. This multiplicity is
not constant over {π(ρ)} and {π(µ)}. If π lies in {π(µ)} it is given by

m(µ, π) =
1
2

[
1 + ε(µ′, κ)

∏
v

εv(µv, πv)
]

where ε(µ′, κ) is a sign (1 or −1) depending on µ (or µ′(x) = µ(x/x)) and
κ, and where εv(µv, πv) = 1 if πv = π×µv

and εv(µv, πv) = −1 if πv = π−µv
.

If π lies in {π(ρ)}, and there is a single ρ which endo-lifts to π, then the
multiplicity is

m(ρ, π) =
1
2

(
1 +

∏
v

ε(ρv, πv)
)
,

where εv(ρv, πv) = 1 if πv lies in π(ρv)+, and εv(ρv, πv) = −1 if πv lies in
π(ρv)−.

Let π lie in {π(ρ1)} = {π(ρ2)} = {π(ρ3)} where {ρ1}, {ρ2}, {ρ3} are
distinct H(A)-packets. Then the multiplicity of π is 1

4 (1 +
∑3
i=1〈εi, π〉).

The signs 〈εi, π〉 =
∏
v〈εi, πv〉 are defined by (∗∗).

The sign ε(µ′, κ) is likely to be the value at 1/2 of the ε-factor ε(s, µ′κ) of
the functional equation of the L-function L(s, µ′κ) of µ′κ. This is the case
when L( 1

2 , µ
′κ) 6= 0, in which case π×µ =

∏
v π
×
µv

is residual and ε( 1
2 , µ
′κ)

is 1. When L( 1
2 , µ
′κ) = 0 the automorphic representation π×µ is discrete
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spectrum (necessarily cuspidal) iff ε(µ′, κ) = 1. An irreducible π in the
quasi-packet of π×µ which is discrete spectrum (thus m(µ, π) = 1) with at
least one component π−v is cuspidal since π−v is cuspidal.

In particular we have the following

Multiplicity One Theorem. Each discrete-spectrum automorphic
representation of G(A) occurs in the discrete spectrum of L2(G(A), ω) with
multiplicity one.

Rigidity Theorem. If π and π′ are discrete-spectrum representations
of G(A) whose components πv and π′v are equivalent for almost all v, then
they lie in the same packet, or quasi-packet.

Genericity. Each Gv- and G(A)-packet contains precisely one generic
representation. Quasi-packets do not contain generic representations.

Corollary. (1) Suppose that π is a discrete-spectrum G(A)-module
which has a component of the form π×w . Then π lies in a quasi-packet
{π(µ)}, of type (3). In particular its components are of the form π×v for
almost all v, and of the form π−v for the remaining finite set (of even car-
dinality iff ε(µ′, κ) is 1) of places of F which stay prime in E.
(2) If π is a discrete-spectrum G(A)-module with an elliptic component at a
place of F which splits in E, or a one-dimensional or Steinberg component
at a place of F which stay prime in E, then π lies in a packet {π(Π)},
where Π is a discrete-spectrum GL(3,AE)-module.

A cuspidal representation in a quasi-packet {π(µ)} of type (3) (for ex-
ample, one which has a component π−v ) makes a counter example to the
naive Ramanujan conjecture: almost all of its components are nontem-
pered, namely π×v . The Ramanujan conjecture for GL(n) asserts that all
local components of a cuspidal representation of GL(n,A) are tempered.
The Ramanujan conjecture for U(3) should say that all local components
of a discrete-spectrum representation π of U(3, E/F )(A) which basechange
lifts to a cuspidal representation of GL(3,A) are tempered. This can be
shown for π with discrete-series components at the archimedean places by
using the theory of Shimura varieties associated with U(3).

The discrete-spectrum G(A)-modules π with an elliptic component at a
nonarchimedean place v of F which splits in E (such π are stable of type
(1)) can easily be transferred to discrete-spectrum ′G(A)-modules, where
′G is the inner form of G which is ramified at v. Thus ′G is the unitary
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F -group associated with the central division algebra of rank three over E
which is ramified at the places of E over v of F .

Our local results hold for every local nonarchimedean field, of any char-
acteristic, since by the Theorem of [K3] our results can be transfered from
the case of characteristic zero to the case of positive characteristic. Conse-
quently (once the σ-twisted trace formula for GL(3,AE) is made available
in the function field case) our global results hold for every global field, in
particular function fields, not only number fields.

This part is a write-up of our work on the representation theory of the
unitary group in three variables, which started with the 1982 Princeton
preprint “L-packets and liftings for U(3)”, where we introduced the defini-
tion of packets and quasi-packets, and explained that contrary to opinions
at the time, the lifting from U(2) to U(3) cannot be proven without simul-
taneously proving the basechange lifting from U(3, E/F ) to GL(3, E). We
were motivated by our then recent work on the symmetric square lifting,
SL(2) to PGL(3), where the trace formula twisted by an outer automor-
phism was stated (a new point was that the twisted trace formula was to be
computed by truncation of the kernel at only the parabolic subgroups fixed
by the twisting). The twisted trace formula was established in [CLL]. A
better exposition of the 1982 preprint was given in [F3;IV], [F3;V], [F3;VI].

The global results were nevertheless restricted to discrete-spectrum rep-
resentations with two (or one) elliptic component, as we searched for a
simple, conceptual proof for the identity of trace formulae for sufficiently
general test functions. Such a proof was found in [F3;VII] where we show
that using regular spherical functions such a general identity can be es-
tablished without computing the weighted orbital integrals and the orbital
integrals at the singular classes, thus giving a satisfactorily short proof
without restricting the generality of the results. This is given in section
II.4 here. However our proof works so far only in rank one (and twisted-
rank one) cases. It is of great interest to extend this kind of simple proof
to the higher case situation.

The fundamental lemma is a prerequisite for deducing any results at
all from the trace formulae. This we establish, by means of elementary
computations, in [F3;VIII], and in section I.3 here. The proof uses an in-
termediate double coset decomposition. In addition we record in section I.6
another proof of the fundamental lemma, which J.G.M. Mars wrote to me,
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confirming my computations. It is pleasing to have different proofs, which
agree in the results of rather complicated computations. The fundamental
lemma that we prove is for endoscopy, from U(2) to U(3). The fundamen-
tal lemma for basechange, from U(3, E/F ) to GL(3, E), has a satisfactory,
general proof (see Kottwitz [Ko4]). These two together imply the lemma
for the twisted endoscopic lifting from U(2, E/F ) to GL(3, E), see section
I.2.

The only proof currently known for the multiplicity one theorem is given
here in detail in section III.4 (and Proposition III.3.5). It is based on a
twisted analogue of Rodier’s theorem on the interpretation of the coeffi-
cients of regular orbits in the germ expansion of the character near the
identity in terms of the number of Whittaker models of the representation
in question. This is the local proof sketched in [F3;VI], Proposition 3.5, p.
47. The global proof of [F3;VI], p. 48, is incomplete.

The purpose of this part is then to give a complete and unified exposition
to our work. We refer to this part in this book as [F3;I]. We also refer
frequently to the papers in [F3] to indicate where notions and techniques
were first introduced, although a unified exposition is given in this book.
Additional remarks on the development of the area are given in section
III.6.
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Introduction

The aim of the first section is to classify the conjugacy and stable conjugacy
classes in our unitary group G over the field F , as well as the twisted conju-
gacy classes in G′ = GL(3, E). We give an explicit set of representatives for
the classes within a stable class. This is used in section I.3 to compute the
orbital integrals and prove the fundamental lemma. Our character relations
are stated in terms of these classes, and the trace formula is expressed in
terms of integrals over such classes.

In the second section (in this chapter I) we define the orbital integrals,
the stable orbital integrals and the unstable ones, as well as the twisted
analogues. We state the fundamental lemmas — for the unit elements of
the Hecke algebras — for endoscopy, basechange, and twisted endoscopy, as
well as the generalized fundamental lemma, for general spherical functions
which are corresponding by a map dual to the dual-groups homomorphisms.
Further we state that matching test functions exist as a consequence of the
fundamental lemmas. We show that the fundamental lemma for twisted
endoscopy follows from that for endoscopy, and vice-versa, on using the
known fundamental lemma for basechange.

In the third section we prove the fundamental lemma for our (quasi-split)
unitary group U(3, E/F ) in three variables associated with a quadratic ex-
tension of p-adic fields, and its endoscopic group U(2, E/F ), by means of an
elementary technique. This lemma is a prerequisite for an application of the
trace formula to classify the automorphic and admissible representations of
U(3) in terms of those of U(2) and basechange to GL(3). It compares the
(unstable) orbital integral of the characteristic function of the standard
maximal compact subgroup K of U(3) at a regular element (whose cen-
tralizer T is a torus), with an analogous (stable) orbital integral on the
endoscopic group U(2). The technique is based on computing the sum over
the double coset space T\G/K which describes the integral, by means of
an intermediate double coset space H\G/K for a subgroup H of G = U(3)
containing T . The lemma is proven for both ramified and unramified regu-
lar elements, for which endoscopy occurs (the stable conjugacy class is not
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a single orbit). In the sixth section we record an alternative computation
of the orbital integrals, due to J.G.M. Mars, based on counting lattices.

In the fourth section we introduce basic results on admissible represen-
tations that we need. These concern lifting of induced, one-dimensional
and Steinberg representations, characters and twisted characters, Weyl in-
tegration formulae, description of reducibility of induced representations of
U(3), and properties of modules of coinvariants.

The fifth section describes the representation theory of the real group
U(2, 1; C/R).

I.1 Conjugacy classes

1.1 Let G be a connected reductive group defined over a local or global
field F . Fix an algebraic closure F . Denote by G = G(F ) the group of
F -points on the variety G. Now Gal(F/F ) acts on G. The group G(F ) of
fixed points is denoted by G. An F -torus T in G is a maximal F -subgroup
F -isomorphic to a power of Gm. Its group T of F -points is also called a
torus. An element t of G is regular if the centralizer ZG(t) of t in G is
a maximal F -torus T. The elements t, t′ of G are conjugate if there is g
in G with t′ = gtg−1. They are stably conjugate if there is such a g in G.
Tori T and T ′ are stably conjugate if there is g in G with T ′ = gTg−1, so
that the map Int(g) : T → T′, Int(g)(t) = gtg−1, is defined over F . Then
gτ = g−1τ(g) centralizes T for all τ in Gal(F/F ), hence lies in T , since G
is connected and reductive.

Of course the notion of stable conjugacy can be defined by t′ = g−1tg,
which will lead to the definition of the cocycle as gτ = gτ(g−1). The change
from g to g−1 should lead to no confusion, and we use both conventions.

We shall now list all stable conjugacy classes of tori in G. Let T∗ be
a fixed F -torus, N its normalizer in G, and W = T∗\N = N/T∗ the
absolute Weyl group. For each T there is g in G(F ) with T = gT∗g−1.
Since T is defined over F , gτ normalizes T∗, and the cocycle τ 7→ gτ
defines a class in the first cohomology group H1(F,N) of Gal(F/F ) with
coefficients in N(F ). Denote by {g′τ} the image of {gτ} under the natural
map H1(F,N)→ H1(F,W), obtained from N→W.

The stable conjugacy classes are determined by means of the following.
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1. Proposition. The map T 7→ {g′τ} injects the set of stable conju-
gacy classes of tori in G into the image in H1(F,W) of ker[H1(F,N) →
H1(F,G)]. This map is also surjective when G is quasi-split.

Proof. If T = gT∗g−1 and T′ are stably conjugate, then there is x in
G with T′ = xTx−1 = xgT∗(xg)−1, and (xg)τ = g−1xτg ·gτ has the image
g′τ in H1(F,W), since g−1xτg lies in T

∗
(xτ in T ). Hence the map of the

proposition is well defined.
Conversely, if T = gT∗g−1, T′ = g′T∗g′−1, and gτ = a(τ)g′τ with

a(τ) in T
∗
, then a(τ) = g′−1x(τ)g′ with x(τ) in T

′
, and the map t 7→

gg′−1t(gg′−1)−1 [t in T
′
] is defined over F . Hence the map of the proposition

is injective.
For the second claim, if {gτ} lies in ker[H1(F,N) → H1(F,G)], then it

defines a new Gal(F/F )-action by τ̂(h) = g−1
τ τ(h)gτ (h = t∗ in T

∗
). If h is

a fixed τ̂ -invariant regular element, then τ(h) = gτhg
−1
τ , and the conjugacy

class of h in G is defined over F . When G is quasi-split, a theorem of
Steinberg and Kottwitz [Ko1] implies the existence of h′ in G which is
conjugate to h in G, since the field F is perfect. The centralizer of h′ in
G is a torus whose stable conjugacy class corresponds to {gτ}. Hence the
map is surjective. �

Remark. Implicit in the proof is a description — used below — of the
action of the Galois group on the torus. Let us make this explicit. All tori
are conjugate in G, thus T = g−1T

∗
g for some g in G. For any t in T there

is t∗ in T
∗

with t = g−1t∗g. For t in T , we have

σg−1σt∗σg = σt = t = g−1t∗g,

hence σt∗ = g−1
σ t∗gσ ∈ T

∗
. Taking regular t (and t∗), gσ ∈ N is uniquely

determined modulo T
∗
, namely in W . For any t∗ in T

∗
we then have

σ(g−1t∗g) = g−1(gσ(g−1))σ(t∗)(σ(g)g−1)g,

hence the induced action on T
∗

is given by

σ∗(t∗) = gσσ(t∗)g−1
σ .

The cocycle ρ = ρ(T ): Γ → W , given by ρ(σ) = gσ modT
∗
, determines T

up to stable conjugacy.
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1.2 Here A(T/F ) is the pointed set of g in G(F ) so that T′ = gT =
gTg−1 is defined over F . Then the set

B(T/F ) = G\A(T/F )/T(F )

parametrizes the morphisms of T into G over F , up to inner automorphisms
by elements of G. If T is the centralizer of x in G then B(T/F ) parametrizes
the set of conjugacy classes within the stable conjugacy class of x in G. The
map

g 7→ {τ 7→ gτ = g−1τ(g); τ ∈ Gal(F/F )}

defines a bijection

B(T/F ) ' ker[H1(F,T)→ H1(F,G)].

Let p : Gsc � Gder denote the simply connected covering group of the
derived group Gder of G. If T is an F -torus in G, let Tsc = p−1(Tder)
of Tder = T ∩Gder. Then G = TGder and G/p(Gsc) = T/p(Tsc). Then
the pointed set B(T/F ) is a subset of the group C(T/F ), defined to be
the image of H1(F,Tsc) in H1(F,T). If H1(F,Gsc) = {0}, for example
when F is a nonarchimedean local field, then B(T/F ) = C(T/F ). If F is
a global field with a ring A of adèles, then we put C(T/A) = ⊕vC(T/Fv),
B(T/A) = ⊕vB(T/Fv). The sums are pointed. They range over all places
v of F .

Let K be a finite Galois extension of F over which T splits. Denote
H−1(Gal(K/F ), X) by H−1(X) and Hom(Gm,T) by X∗(T). In the local
case the Tate-Nakayama duality (see [KS]) identifies C(T/F ) with the im-
age of H−1(X∗(Tsc)) in H−1(X∗(T)). In the global case it yields an exact
sequence

C(T/F )→ C(T/A)→ Im[H−1(X∗(Tsc))→ H−1(X∗(T))].

The last term here is the quotient of the Z-module of µ in X∗(Tsc) with∑
τ τµ = 0 (sum over τ in Gal(K/F )), by the submodule spanned by µ−τµ,

where µ ranges over X∗(T) and τ over Gal(K/F ).
We denote by W (T ) the Weyl group of T in G, by W = S3 the Weyl

group of T∗ in G, and by W ′(T ) the Weyl group of T in A(T/F ). We
write σ for the nontrivial element in Gal(E/F ).
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1.3 We shall now discuss the above definitions in our case where G =
U(3, E/F ). The centralizer E′ of T in the algebra M(3, E) of 3×3 matrices
over E, is a maximal commutative semisimple subalgebra. Hence it is
isomorphic to a direct sum of field extensions of E.

There are three possibilities.
(1) E′ = E ⊕ E ⊕ E.
(2) E′ = E′′ ⊕ E, [E′′ : E] = 2.
(3) E′ is a cubic extension of E.

The absolute Weyl group W is the symmetric group on three letters,
generated by the reflections (12), (23), (13). Note that σ(12) = (23), σ(13)
= (13). In view of Proposition 1, the stable conjugacy classes are deter-
mined by H1(F,W). We also note that if the eigenvalues of g in G are α,
β, γ in K, then τ in Gal(K/F ) whose restriction to E is nontrivial, maps α,
β, γ to τα−1, τβ−1, τγ−1. The lattice X∗(T) is the group of µ = (x, y, z)
in Z3, and X∗(Tsc) is the subgroup of µ with x + y + z = 0. Indeed,
Gsc = SU(3). If τ |E 6= 1 it maps the set {x, y, z} to the set {−x,−y,−z}.

2. Proposition. (1) There are two stable conjugacy classes of F -tori
in G which split over E. One, named of type (0), consists of a single
conjugacy class, represented by the torus T∗ with

T ∗ = {diag(a, b, σa−1); a ∈ E×, b ∈ E1 = {x ∈ E×;xσx = 1}}.

We have W ′(T ∗) = W (T ∗) = Z/2. The other stable conjugacy class, named
of type (1), consists of tori T with T = (E1)3, and C(T/F ) = {(a, b, c) ∈
F×/NE×; abc = 1}. We have W ′(T ) = S3, and this group acts transitively
on the nontrivial elements in (and characters of ) C(T/F ).
(2) The stable conjugacy classes of F -tori in G whose splitting fields are
quadratic extensions of E, named of type (2), split over biquadratic exten-
sions EL of F . Then Gal(EL/F ) = Z/2 × Z/2 is generated by σ which
fixes L and τ which fixes E; put K = (EL)στ . Each such torus is T '
{(a, b, σa−1); a ∈ (EL/K)1, b ∈ E1}. Here (EL/K)1 = {a ∈ EL; aστa =
1}. Further C(T/F ) = K×/NEL/K(EL)× = Z/2 and W ′(T ) = Z/2.
(3) The stable conjugacy classes of F -tori in G whose splitting fields are
cubic extensions of E, named of type (3), are split over cubic extensions
ME of E, where M is a cubic extension of F . Each stable class consists
of a single conjugacy class. If EM/F is not Galois then W ′(T ) is trivial.
If Gal(EM/F ) = S3 or Z/3 then W ′(T ) is Z/3.
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Proof. A cocycle inH1(Gal(E/F ),W) is determined by wσ in W = S3

with 1 = wσ2 = wσσ(wσ). Thus wσ is 1 or (13), or (12)(23) or (23)(12).
As

σ((23))[(12)(23)](23) = 1 = σ((12))[(23)(12)](12),

the last two are cohomologous to 1. The cocycle wσ = 1 defines the action
σ∗(t∗) = σ(t∗) on T

∗
. To determine C(T∗/F ), note that H1(F,T∗) =

H1(Gal(E/F ),T∗(E)) is the quotient of the cocycles tσ = diag(a, b, c) ∈
T∗(E) = E×3, tσσ(tσ) = tσ2 = 1, thus tσ = diag(a, b, σa), a ∈ E×,
b ∈ F×, by the coboundaries tσσ(t−1

σ ) = diag(aσc, bσb, cσa). Since Gsc

is the subgroup of G of elements of determinant 1, the cocycles which
come from H1(F,T∗sc) have the form tσ = diag(a, 1/aσa, σa). These are
coboundaries: uσσ(u−1

σ ), with uσ = (a, 1/a, 1), hence C(T∗/F ) is trivial.
The cocycle wσ = (13) defines the action

σ∗(diag(a, b, c)) = diag(σa−1, σb−1, σc−1)

on T
∗
. Then T = g−1T∗g for some g in G with gσ(g−1) = J (mod T

∗
),

and T = T(F ) = g−1(E1)3g. A cocycle tσ = diag(a, b, c) ∈ (E×)3 of
Gal(E/F ) in T∗(E) satisfies 1 = tσ2 = tσσ

∗(tσ) = diag(a/σa, b/σb, c/σc),
thus a, b, c ∈ F× and it comes from T∗sc(E) if abc = 1. The cobound-
aries take the form tσσ

∗(tσ)−1 = diag(aσa, bσb, cσc), hence C(T/F ) =
{(a, b, c) ∈ (F×/NE×)3; abc = 1}.

Consider next an F -torus T in G which splits over a quadratic extension
L1 of E, but not over E. We claim that L1/F is Galois. Indeed, the
involution ι(x) = J txJ stabilizes T = T(F ), and its centralizer L×1 × E×

in GL(3, E). It induces on L1 an automorphism whose restriction to E

generates Gal(E/F ). Hence L1/F is Galois.
We claim that the Galois group of L1/F is not Z/4. Indeed, had

Gal(L1/F ) = Z/4 been generated by τ , then τ2 be trivial on E, (wτ2)2 =
wτ4 = 1 implies wτ2 = 1 or (13) up to coboundaries. But (13) = wτ2 =
wττ(wτ ) = wτ (13)wτ (13) implies w2

τ = (13), which has no solutions, and
wτ2 = 1 implies that T splits over E. Then Gal(L1/F ) = Z/2×Z/2, and L1

is the compositum of E and a quadratic extension L of F , not isomorphic
to E. There are two such L (up to isomorphism), both ramified if E/F is
unramified.

The Galois group Gal(LE/F ) is generated by σ whose restriction to L
is trivial, and τ whose restriction to E is trivial. Up to coboundaries, wτ
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is 1 or (13). If wσ = (13), then wτ 6= 1 is of order 2. Up to coboundary
which does not change wσ, we have wτ = (13), and replacing σ by στ (thus
changing L) we may assume wσ = 1. If wσ = 1, wτwσ = wτσ = wστ =
wσσ(wτ ) = wσ(13)wτ (13) implies that wτ (6= 1) commutes with (13), hence
wτ = (13). Up to isomorphism, T consists of (a, b, c) ∈ (LE)×3 which are
fixed by σ∗(a, b, c) = (σc−1, σb−1, σa−1) and τ∗(a, b, c) = (τc, τb, τa). Thus
b = τb = σb−1 lies in E1, and c = σa−1 = τa, namely T ' {(a, b, σa−1); a ∈
(EL/K)1, b ∈ E1}, where (EL/K)1 = {a ∈ EL; aστa = 1}.

It is simplest to compute C(T/F ) using Tate-Nakayama duality. Locally,
the image of

Ĥ−1(F,X∗(Tsc)) = {X = (x, y, z) ∈ Z3;x+ y+ z = 0}/〈X − σX,X − τX〉

in

Ĥ−1(F,X∗(T)) = Z3/〈X−τσX = (2x, 2y, 2z), X−τX = (x−z, 0, z−x)〉

is Z/2.
Here is an explicit computation of H1(Gal(LE/F ),T(LE)). We replace

T by T∗ if ρ ∈ Gal(LE/F ) acts by ρ∗. To compute note that a cocycle in
H1(Gal(LE/F ),T∗(LE)) is defined by {tσ, tτ , tστ} satisfying the cocycle
relations. Thus tτ = (a, b, c) ∈ (EL)×3 satisfies 1 = tτ2 = tττ

∗(tτ ) =
(a, b, c)(τc, τb, τa). So b = b′/τb′ and if g = (a, b′, 1), replacing our cocycle
{tρ} by its product {tρg−1ρ∗(g)} with a coboundary, we may assume that
tτ = 1. If tτσ = (u, v, w) then

1 = t(τσ)2 = tτσ(στ)∗(tτσ) = (u, v, w)(τσu−1, τσv−1, τσw−1).

Hence (u, v, w) ∈ K×3. Here K is the fixed field of τσ in LE. Further,
tτσ(τσ)∗(tτ ) = tσ = tττ

∗(tτσ). Hence tτσ = (u, v, w) = (τw, τv, τu) =
(u, v, τu), u ∈ K×, v ∈ F×. We can still multiply our cocycle tρ by
a coboundary g−1ρ∗(g) with g = τ(g) (to preserve tτ = 1). Thus g =
(x, y, τx), y = τy ∈ E×. Then g−1(τσ)∗(g) = (1/u, 1/yσ(y), 1/τ(u)), u =
xτσ(x). Now H1(Gal(LE/F ),Tsc(LE)) is spanned by the tτσ = (u, v, τu),
u ∈ K×/NEL/K(EL)×, vuτu = 1. Then Im[H1(F,Tsc) → H1(F,T)] is
represented by

(u, 1/uτu, τu), u ∈ K×/NEL/K(EL)× ' Z/2.
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Consider next an F -torus T in G which splits over a cubic extension
M1 of E, but not over E. The involution ι(x) = J txJ stabilizes T =
T(F ), and its centralizer M×1 in GL(3, E). It induces on the field M1

an automorphism, denoted σ, whose restriction to E generates Gal(E/F ).
Define M to be the subfield of M1 whose elements are fixed by σ. It is
a cubic extension of F , M1 = ME, and M1/F is Galois precisely when
M/F is. If M ′ is a Galois closure of M1/F , then there is τ in Gal(M ′/F )
with τ(x, y, z) = (z, x, y) (up to order). But µ − τµ = (x, y,−x − y) if
µ = (x, x+ y, 0). Hence C(T/F ) is {0}.

There are two possible actions of the Galois group of the Galois closure
of M1 over F . In both cases we may assume that τ∗(x, y, z) = (τz, τx, τy).
If σ∗(x, y, z) = (σz−1, σy−1, σx−1) then τσ = στ2, the Galois group is S3,
and T ∗ consists of (x, τx, τ2x), x ∈M1 with xτσx = 1.

If σ∗(x, y, z) = (σx−1, σy−1, σz−1) then τσ = στ , the Galois group is
Z/2, and T ∗ consists of (x, τx, τ2x), x ∈M1 with xσx = 1. �

Here is an explicit realization of the stable conjugacy classes which
consist of several conjugacy classes. They are parametrized by the tori
T = (E1)3 and T = (EL/K)1 × E1. This is useful for example in compu-
tations of orbital integrals.

3. Proposition. Let T∗ be the diagonal torus. Put r = diag(ρ−1, ρ, 1)
with ρ ∈ F −NE, T0 = T∗(E1), thus

T0 = {t0 = diag(a, b, c); a, b, c ∈ E1}, h =
(

1 1

1

−1 1

)
,

T1 = h−1T0h and T2 = (hr)−1T0hr. Then T1 and T2 are tori in H ⊂ G,
H = ZG(diag(1,−1, 1)). A complete set of representatives for the conjugacy
classes within the stable conjugacy class of a regular t1 = h−1 diag(a, b, c)h
in T1 (thus a 6= b 6= c 6= a), is given by ti, 1 ≤ i ≤ 4, where

t1 =
( 1

2 (a+c) 1
2 (a−c)

b
1
2 (a−c) 1

2 (a+c)

)
and t2 = r−1h−1 diag(a, b, c)hr. When there is x ∈ E with xx = 2, for
example when E/F is unramified and p 6= 2, we can take

t3 = r−1h−1 diag(a, c, b)hr
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in H, and when there is x ∈ E with xx = −2, for example when E/F is
unramified and p 6= 2, we can take t4 = r−1h−1 diag(b, a, c)hr in H.

Suppose that E = F (
√
D) = (EL)τ , L = F (

√
A) = (EL)σ, K =

F (
√
AD) = (EL)στ , are distinct quadratic extensions of F . We write

Gal(EL/K) = 〈τ, σ〉. We may assume D, A lie in the set {u,πππ, uπππ}, where
u is a nonsquare unit in F . A set of representatives for the conjugacy
classes of tori ' (LE/K)1 × E1 is given by

TH =
{(

α Aβ/
√
D

b

β
√
D α

)
; b ∈ E1; α, β ∈ E; (α+ β

√
A)(α− β

√
A) = 1

}

=
{
h−1

(
a 0

b

0 τa

)
h; b ∈ E1, a = α+ β

√
A ∈ (EL/K)1

}
,

where

h =

(
1

√
A/D

1
−
√

D/A

2
1
2

)
= σ(h).

=
{
d

(
α Aβ/

√
D

b

β
√
D α

)
; b, d ∈ E1; α, β ∈ F ; α2 − β2A = 1

}
⊂ H = ZG(diag(1,−1, 1)) = U

(
0 1

1 0

)
× E1 ⊂ G = U(J),

and

TH′ =
{(

α Aβ

β α

b

)
; b ∈ E1; α, β ∈ E; (α+ β

√
A)(α− β

√
A) = 1

}

=
{
d

(
α Aβ

β α

b

)
; b, d ∈ E1; α, β ∈ F ; α2 − β2A = 1

}
⊂ H ′ = ZG′(diag(1, 1,−1)) = U

(
A 0

0 −1

)
× E1 ⊂ G′ = U(J ′),

Here J ′ =
(
A 0

−1

0 −A−1

)
. Then J = gJ ′tg with g =

(
1

2A 0 −1
2

0 1 0

1 0 A

)
, so that

G′ = g−1Gg.

Proof. An F -torus T within the stable conjugacy class defined by the
cocycle {σ 7→ (13)} in H1(Gal(E/F ),W ) takes the form h−1T∗h, with h

in G(E) = GL(3, E) such that hσ = hσ(h−1) is (13) in W . The h of the
proposition satisfies σ(h−1) = h, and h2 = diag(2,−1,−2)J .
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A stably conjugate t2 = g−1
2 t1g2 = (hg2)−1t0hg2 is defined by g2 ∈ G(E)

such that g2σ = g2σ(g2)−1 = h−1a2σh. We take the elements of C(T1/F )
to be represented by a1σ = 1, a2σ = diag(ρ, ρ−2, ρ), a3σ = diag(ρ, ρ, ρ−2),
a4σ = diag(ρ−2, ρ, ρ), ρ ∈ F − NE. In this case h−1a2σh = a2σ. Thus
we need to solve g2J tg2 = a2σJ . Bar indicates componentwise action of σ.
Clearly g2 = r is a solution.

The next stably conjugate element is t3 = g−1
3 t1g3 = (hg3)−1t0hg3,

where g3 satisfies g3σ = g3σ(g−1
3 ) = h−1a3σh ∈ T1. Thus we need to solve

hg3J
t(hg3) = hg3σ(hg3)−1J = a3σhσ(h)−1J = diag(2ρ,−ρ,−2ρ−2).

Define g3 by hg3 = uιhg2, ι =
(

1

0 1

1

)
, for which

hg3J
t(hg3) = uι diag(2ρ,−ρ−2,−2ρ)ιtu = u diag(2ρ,−2ρ,−ρ−2)tu.

There is u for which this is diag(2ρ,−ρ,−2ρ−2). When E/F is unramified
and p 6= 2, there is x ∈ E with xx = 2. We take u = diag(1, x−1, x).

For the last case, replace the index 3 by 4, and note that a solution to
hg4J

t(hg4) = diag(2ρ−2,−ρ,−2ρ) is given by g4 defined by

hg4 = u

(
1

1 0

1

)
hg2 with u

(
−ρ−2

2ρ

−2ρ

)
tu =

(
2ρ−2

−ρ
−2ρ

)
.

When E/F is unramified and p 6= 2, there is y ∈ E with yy = −2. We take
u = diag(y, y−1, 1).

To exhibit nonconjugate (in G) tori ' (LE/K)1×E1 in G, we construct
one (TH) in the quasi-split subgroup H = U(1, 1)×U(1) of G, and another
(TH′) in the anisotropic subgroup H ′ = U(2) × U(1) of G. To simplify
the notations, we omit the factor E1 from the notations. To describe TH ,
consider the torus

T̃1 =
{(

α βA

β α

)
= h−1

0

(
α+β

√
A 0

0 α−β
√
A

)
h0

}
, h0 =

(
1
√
A

−1
2
√

A

1
2

)
in GL(2, F ). Here α, β ∈ F . Note that

E×GL(2, E/F ) = E×U2, GL(2, E/F ) = {x ∈ GL(2, F ); detx ∈ NE×}.
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Here U2 = U
(

0 1

−1 0

)
. The centralizer of T̃1 in GL(2, E) is

T1 =
{
h−1

0

(
α+β

√
A 0

0 α−β
√
A

)
h0 ∈ GL(2, E)

}
,

thus α, β ∈ E. The corresponding torus in U2 is U2 ∩T1. But H =
U
(

0 1

1 0

)
= D−1

1 U2D1, where D1 = diag(
√
D, 1). Put h = D−1

1 h0D1. The
corresponding torus in H is then

TH = {h−1 diag(a, b, τa)h; b ∈ E1, a = α+ β
√
A ∈ (EL/K)1}.

To describe TH′ and H ′, note that up to F -isomorphism there is only
one form of the unitary group in 3 variables associated with a quadratic
extension E/F of p-adic fields. We then work with G′ = U(J ′), which
is g−1Gg as stated in the proposition. In this case the anisotropic H ′ is
easily specified as the centralizer ZG′(diag(1, 1,−1)). Note that we could
alternatively work with

H ′′ = gH ′g−1 = ZG

(
0 1

2A

1

2A 0

)
.

NowH ′ consists of diag(h, b), b ∈ E1, and h ∈ GL(2, E) with h
(
A

−1

)
th =(

A

−1

)
. Clearly deth = u ∈ E1 (= v/v for some v ∈ E×). Solving the

equation we see that h =
(
α uβA

β uα

)
with αα − Aββ = 1, u ∈ E1, or

alternatively h = v−1
(
a cA

c a

)
with aa − Acc = vv. Here given a, c, v, put

α = a/v, β = c/v, u = v/v. Given α, β, u, for any v with u = v/v put
a = αv, c = βv.

A maximal torus splitting over EL, in H ′, is given by the centralizer
in H ′ of diag(h, b), h =

(
x yA

y x

)
, x, y ∈ F . The centralizer in GL(3, E)

consists of diag(h, b), h =
(
x yA

y x

)
, x, y ∈ E. Such h has the form

(
α uβA

β uα

)
with αα−Aββ = 1, u ∈ E1, precisely when α = uα, uβ = β, thus αβ = αβ

and so TH′ is as asserted.
Note that α+ β

√
A lies in (EL/K)1 iff αα− ββA = 1 and αβ = αβ. Any

v ∈ E× with α/α = β/β = v/v has α + β
√
A = 1

v (a+ c
√
A) with a = vα,

c = vβ in F . Here v ∈ E×, a + c
√
A ∈ L×. As NE/FE×∩NL/FL× = F×2,
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there is r ∈ F× with vv = r2. Replacing a, c, v by their quotients by r we
may assume v ∈ E1 and a+ b

√
A ∈ L1, as stated in the proposition. �

Remark. The Weyl group W (T ) of T = T1 in G is S3 when p 6= 2 and

E/F is unramified. Indeed, h−1

(
y 0

y−1

0 1

)(
1

1 0

1

)
h lies in G if yy = −2.

It represents the reflection (12).
All unitary groups G(J) = {g in GL(3, E); gJtg = J}, where J is any

form (symmetric matrix in GL(3, F )), are isomorphic over F . We normally
work with J = J since then the proper parabolic subgroup of G = G(J) is
the upper triangular subgroup. Suppose now that J = diag(1, 1, j), where
j lies in F×, and put G(j) for G(J). Denote the diagonal subgroup of G(j)
by T (j) ' (E1)3. It is clear that: (a) If j lies in NE× then W (T (j)) = S3.
(b) If j lies in F − NE then W (T (j)) contains the transposition (12) and
W (T (j)) = Z/2.

The Weyl group W (T ∗) of T ∗ in G consists of 1 and (13) only.

1.4 In the case of H = U(2), each torus T splits over a biquadratic
extension of F , and C(T/F ) is trivial, unless T splits over E and σ acts
by σ(x, y) = (−x,−y), where C(T/F ) is Z/2 in the local case.

1.5 We also need a a twisted analogue of the above discussion. Let
G′ = RE/F G be the group obtained from G = U(3, E/F ) upon restricting
scalars from E to F . It is defined over F . In fact, G′(F ) = G(F )×G(F ),
and Gal(F/F ) acts on G′(F ) by τ(x, y) = (τx, τy) if τ |E = 1, or by
τ(x, y) = ι(τx, τy) if τ |E 6= 1. Here ι(x, y) = (y, x). Further we have
G′(E) = G(E) × G(E), and G′ = G′(F ) consists of all (x, σx), x in
G(E) = GL(3, E). The group G embeds in G′ as the diagonal.

Denote by ZG′(xι) the ι-centralizer of x = (x′, x′′) in G′. It consists
of the y = (y′, y′′) in G′ with (y′, y′′)(x′, x′′) = (x′, x′′)ι(y′, y′′). These
y satisfy y′x′x′′ = x′x′′y′, y′′ = x′−1y′x′. If x = (x′, σ(x′)) lies in G′,
T = ZG′(xι) is defined over F , since ι is. The group T of F -rational points
consists of such y with y′′ = σy′. The ι-centralizer T is isomorphic to the
σ-centralizer of x′ in G.

The elements x and x1 in G′ are called (stably) σ-conjugate if there
is y in G′ (resp. G′(F )) so that yx = x1ι(y). In this case τx = x for
all τ in Gal(F/F ), and τ(y)x = x1ι(τy). Hence the σ-conjugacy classes
within the stable σ-conjugacy class of x are parametrized by the elements
{τ 7→ yτ = y−1τ(y)} of the kernel B′′(T/F ) of the natural map from
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H1(F,T) to H1(F,G′). Here T denotes the ι-centralizer of x = (x′, x′′) in
G′.

The conjugacy class in G(F ) of x′x′′ = x′σ(x′) is defined over F . Hence
it contains a member Nx of G by [Ko1]. The element Nx is determined
only up to stable conjugacy. The group T is isomorphic to the centralizer
of Nx in G, over F , by the map (y′, y′′) 7→ y′. The pointed set H1(F,G′)
is trivial. Hence B′′(T/F ) = H1(F,T).

We introduce the notion of (stable) σ-conjugacy since we shall use below
orbital integrals

∫
φ(gxσ(g)−1)dg/dt over G′/ZG′(x) of functions φ which

transform under the center Z ′ = E× of G′ = GL(3, E) via a character
ω′(z) = ω(z/z) of z ∈ E×. In particular φ transforms trivially on F×.
Hence the actual notion of stable σ-conjugacy that we need is yxι(y)−1 =
zx, for z in F×, viewed as (z, σ(z) = z−1) in G′.

The map z 7→ {zτ = (z, 1)τ(z, 1)−1} embeds F× in B′′(T/F ). Here zτ
acts on x in G′ by

(z, 1)xι(z, 1)−1 = zx (= (zx′, σ(zx′)) ifx = (x′, σx′)).

Thus z maps the member {yτ = y−1τ(y)} of B′′(T/F ) to {(zy)τ}, which
sends x to

[(z, 1)y]xι[(z, 1)y]−1 = (z, z−1)yxι(y−1).

The quotient of B′′(T/F ) under this action of F× is denoted by B′(T/F ).
Put

B′(T/A) = ⊕vB′(T/Fv)

(pointed sum) if F is global.
The Tate-Nakayama theory implies that B′(T/F ) (in the local case) or

B′(T/A)/Image B′(T/F ) (in the global case), is the quotient of the Z-
module of the µ in X∗(T) modulo Z with

∑
τ τµ = 0 (τ in Gal(K/F )), by

the span of µ − τµ for all µ in X∗(T) and τ in Gal(K/F ), where K is a
Galois extension of F over which T splits.

The map x 7→ Nx gives a bijection from the set of stable σ-conjugacy
classes in G′ (parametrized by B′(T/F )), to the set of stable conjugacy
classes in G. In fact, for our present work it suffices to consider regular x
in G (x with distinct eigenvalues), and σ-regular x in G′ (Nx is regular).
Hence there are four types of stable σ-conjugacy classes of σ-regular ele-
ments in G′, denoted by (0), (1), (2), (3) as in the nontwisted case. Using
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the Tate-Nakayama theory we see (in the local case) that B′(T/F ) is trivial
if T is T∗, and in case (3); it is Z/2 in case (2); it is Z/2⊕ Z/2 if T splits
over E but T is not (stably) conjugate to T∗.

To compute orbital integrals, we need explicit representatives.

4. Lemma. If T splits over E but is not T∗,

H1(F,T)/F× = F×3/F×NE×3.

If T splits over a biquadratic extension LE of F , Gal(LE/F ) = 〈τ, σ〉,
L = (LE)σ, E = (LE)τ , K = (LE)στ are the quadratic extensions of F in
EL, then H1(F,T)/F× is K×/NLE/K(LE)×.

Proof. If T splits over E but is not T∗, a cocycle tσ = (a, b, c) in
H1(E,T(E)) satisfies

1 = tσ2 = tσσ
∗(tσ) = (a, b, c)(σa−1, σb−1, σc−1).

Thus (a, b, c) lies in F×3. A coboundary has the form

tσσ
∗(tσ)−1 = (a, b, c)(σa, σb, σc).

Hence we get NE×3, and H1(F,T)/F× is F×3/F×NE×3, where F× em-
beds diagonally.

If T splits over a biquadratic extension LE of F , the group

H1(Gal(LE/F ),T(LE))

is computed in the proof of Proposition 2. Then

H1(Gal(LE/F ),T(LE))/F×

is represented by

tτσ = (u, 1, τu), u ∈ K×/NLE/K(LE)×,

which is Z/2Z. �

We also need an explicit realizations of the twisted stable conjugacy
classes in the cases that they contain several twisted conjugacy classes,
namely the cases corresponding to the tori T = (E1)3 and T = (EL/K)1×
E1. This is useful in computations of twisted orbital integrals and twisted
characters.
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5. Proposition. A set of representatives for the σ-conjugacy classes
within the stable σ-conjugacy class of x in GL(3, E) with norm in an
anisotropic torus which splits over E, thus Nx = h−1 diag(a/a, b/b, c/c)h

in a torus T1 = h−1T∗(E1)h, h =
(

1 1

1

−1 1

)
, is given by

x1 = h−1 diag(a, b, c)h, x2 = h−1 diag(a, bρ, c)h,

x3 = h−1 diag(aρ, b, c)h, x4 = h−1 diag(a, b, cρ)h,

where a, b, c lie in E×, ρ ∈ F −NE.
A set of representatives for the σ-conjugacy classes within the stable σ-

conjugacy class of x in GL(3, E) with norm in a torus which splits over a
biquadratic extension EL of F , where L = F (

√
A) = (EL)σ, E = (EL)τ =

F (
√
D), and K = (EL)στ = F (

√
DA) are the distinct quadratic extensions

of F , with {A,D,AD} = {πππ, u, uπππ} and a unit u in RE−R2
E, can be realized

by

t = h−1

(
(a+b

√
A)α

c

(a−b
√
A)τ(α)

)
h, h =

(
1

√
A/D

1

−
√

D/A

2
1
2

)
,

where a, b, c ∈ E× and α ∈ K×/NEL/K(EL)×. Then

Nt = tσ(t) = h−1 diag((a+ b
√
A)/(a− b

√
A), c/c, (a− b

√
A)/(a+ b

√
A))h.

The norm map is surjective.

Proof. First note that x1 = h−1 diag(a, b, c)h satisfies

Nx1 = x1σ(x1) = h−1 diag(a, b, c)h · σ(h−1) diag(1/c, 1/b, 1/a)σ(h).

Since σ(h−1) = h and h2 = diag(2,−1,−2)J , this is

= h−1 diag(a/a, b/b, c/c) diag(2,−1,−2)th−1J.

But diag(2,−1,−2)th−1J = h. In particular the norm N is onto the torus
T ' (E1)3, which we realize as T1 = h−1T0h.

The stable ι-conjugates of x1 are given by y′x1y
′′−1 where

yσ = y′−1σ(y′′) ∈ H1(F,T1)/F×, T1 = h−1T∗h,
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where T∗ denotes the diagonal torus. A set of representatives for the stable
ι-conjugates of x1 up to ι-conjugacy is given as yσ ranges over h−1th, where
t ranges over T∗(F )/Z(F )NT∗(E); Z is the diagonal. Choose ρ ∈ F −NE.
Thus we may take t to be 1, diag(1, ρ, 1), diag(ρ, 1, 1), diag(1, 1, ρ). Taking
y′′ to be 1, we choose y′ = h−1th, to get xi (1 ≤ i ≤ 4) of the proposition.

In the case of the torus splitting over EL and isomorphic to kerNEL/K×
E1, note that σ(h) = h, and that σ∗(a, b, c) = (σc−1, σb−1, σa−1). We
write σa = a, and σ fixes

√
A. The σ-conjugacy classes within the stable

σ-conjugacy class are parametrized in Lemma 4. �

I.2 Orbital integrals

To write the stable trace formula of H(A) = U(2, E/F )(A) as the unsta-
ble part of the stabilized trace formula for G(A) = U(3, E/F )(A), and the
stable trace formula of G(A) as the stable part of the stabilized twisted trace
formula for G′(A) = GL(3,A), we shall need to introduce a suitable com-
bination Φκ(x, fdg) of orbital integrals of the test measure fdg = ⊗fvdgv
on G(A) and express it as the stable orbital integral Φst(x, ′fdh) of a test
measure ′fdh = ⊗′fvdhv on H(A). Similar such definitions are to be made
for our other groups.

To formulate the desired local relation, suppose that E/F is a quadratic
extension of nonarchimedean local fields. Put G = G(F ), H = H(F ). Let
ω be a character of E1 = kerN , where N = NE/F is the norm from E to
F , and ω′(z) = ω(z/z) a character of E×. Note that up to isomorphism
the quasi-split unitary group U(2, E/F ) is unique, so we take here its form
H which is contained in G as ZG(diag(1,−1, 1)).

Let C∞c (G,ω−1) denote the space of (complex valued) smooth (locally
constant in the nonarchimedean case) functions f on G with f(zg) =
ω(z)−1f(g) (z ∈ Z, g ∈ G) which are compactly supported modulo the
center Z of G. Let dg be a Haar measure. Note that C∞c (G,ω−1) is a
convolution algebra. Similarly we have C∞c (H) and C∞c (G′, ω′−1). These
are convolution algebras of functions ′f on H (compactly supported), and
φ on G′, once Haar measures dh and dg′ are chosen.

For almost all places the component f (resp. ′f , φ) of the global test
function is the unit element f0 (resp. ′f0, φ0) in the convolution Hecke
algebra Cc(K\G/K,ω−1) (resp. Cc(KH\H/KH), Cc(K ′\G′/K ′, ω′−1)) of
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spherical functions of G (resp. H, G′). Thus f0 is supported on ZK, where
K = G(R) is the maximal compact subgroup of G and Z is the center
of G, and f0(zk) = ω(z)−1/|K| there, φ0 is supported on Z ′K ′, where
K ′ = G′(R) is the maximal compact subgroup of G′ and Z ′ is the center
of G′, and φ0(z′k′) = ω′(z′)−1/|K ′| there, while ′f0 is the characteristic
function of ′K = H(R) divided by the volume |′K|. The volumes are
measured using the Haar measures dg (and dh, dg′).

For f in C∞c (G,ω−1) and x in G define the orbital integral Φ(x, fdg) to
be
∫
f(gxg−1)dgdt (g ∈ G/T ), where T = ZG(x) is the centralizer of x in

G. It depends on a choice of Haar measures dg and dt on G and T . We
shall be concerned only with regular elements x, those whose centralizer is
a torus.

In comparing orbital integrals of measures (such as fdg) on different
groups, the measures dt are taken to be compatible using the fact that
the centralizers T on both sides are isomorphic. Note that we compare
orbital integrals of measures, e.g., fdg and ′fdh and φdg′. It is not useful
to note separate dependence on the function and on the Haar measure.
However, a misleading standard convention, that we shall often follow too,
is to omit the Haar measure dg etc. from the notations. In calculations
it is sometimes convenient to choose dg which assigns the volume 1 to the
maximal compact subgroup of G.

Let x be an element of the subgroup H̃ = {(aij); aij = 0 if i + j is
odd} ' H × E1 of G. Its eigenvalues are a, b = a22, c. We view H as the
subgroup H × 1 (a22 = 1) of G. Then H̃ = HZ. An element, conjugacy
class, or stable conjugacy class in H defines one in G. But note that the 3
distinct stable conjugacy classes in H̃ with eigenvalues a, b, c in E1 define
the same stable conjugacy class in G.

As explained in Proposition I.1.3, there are two types of elliptic regular
stable conjugacy classes in G with a representative in H. The type which
splits over E has 4 conjugacy classes within the stable conjugacy class x,
denoted in Proposition I.1.3 by ti ∈ Ti = ZG(ti), 1 ≤ i ≤ 4. Write Φ(x, f, κ)
or Φκf (x) for

Φκ(x, fdg) = Φ(t1, fdg) + Φ(t2, fdg)− Φ(t3, fdg)− Φ(t4, fdg),

and
Φst(x, ′fdh) = Φ(t1, ′fdh) + Φ(t2, ′fdh),
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where x indicates the stable conjugacy class and ti its representative in Ti.
The other type of stable conjugacy class splits over a biquadratic extension
EL of F . For such a class x, represented by t ∈ H, we put

Φκ(x, fdg) = Φ(t, fdg)− Φ(t′, fdg), Φst(x, ′fdh) = Φ(t, ′fdh),

where t′ denotes the conjugacy class in the stable conjugacy class of x,
which is not in the conjugacy class of t.

Thus κ is the nontrivial character of the quotient C(T/F )/ ImC(TH/F ),
of the conjugacy classes within a stable conjugacy class in G, by the set of
conjugacy classes within the corresponding stable conjugacy class in H̃ =
ZG(diag(1,−1, 1)). The combination Φκ(x, fdg) can then be described as
the sum over the conjugacy classes tδ, δ ∈ C(T/F ), in the stable conjugacy
of t in G, of κ(δ)Φ(tδ, fdg).

Fix a character κ of E× which is trivial on NE×, but nontrivial on
F×. Put κκκ(x) = κ(−(1 − a/b)(1 − c/b)). If x = diag(a, b, c) then c =
a−1, and κκκ(x) = κ(a/b). Put ∆(x) = |1 − det(Ad(x))|Lie(G/ZG(x))|1/2

and ∆′(x) = |1 − det(Ad(x))|Lie(H/ZH(x))|1/2, where |ε|2 is |Nε|. Then
∆(x) = |(ε− 1)(ε′− 1)(ε− ε′)| and ∆′(x) = |ε′− ε| if ε = a/b and ε′ = c/b.

In section I.3 we prove the key Fundamental Lemma for the endoscopic
lifting e:

1. Proposition. Suppose that E/F and κ are unramified. Then

κκκ(x)∆(x)Φ(x, f0dg, κ) = ∆′(x)Φst(x, ′f0dh).

For the study of the local lifting we will need an approximation argument
based on a generalization of the Fundamental Lemma to the context of an
arbitrary spherical function. We give this generalization here as it explains
the appearance of the lifting. So we fix an unramified quadratic extension
E/F , and an unramified character κ of E×/NE× which is nontrivial on
F×. The Hecke convolution algebra H consists of K-biinvariant compactly
supported functions, named spherical. The Satake isomorphism identifies
H with the algebra C[Ĝ0 × σ]W of W -invariant finite Laurent series on
the conjugacy classes in the dual group LG (see [Bo2]) of G of the form
t′×σ, where t′ lies in the connected component Ĝ = GL(3,C). The Satake
transform f 7→ f∨ is given by f∨(t′ × σ) =

∑
n∈Z F (xn, fdg)tn, where

t′ = diag(t, 1, 1), t ∈ C× (see, e.g., [F3;II], p. 714).
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The spherical function f is completely determined by the coefficients of
f∨. These are the normalized orbital integrals

F (xn, fdg) = ∆(xn)Φ(xn, fdg)

at the diagonal regular elements xn = (uπππn, 1, u−1πππ−n), where u is a unit,
and πππ a uniformizer. This F (xn, fdg) is independent of u, and we denote
it by F (n, fdg).

Note that the dual group LG used here is the semidirect product Ĝ o
WE/F . The connected component of the identity is denoted by Ĝ, and
WE/F is the Weil group of E/F , namely an extension of Gal(E/F ) by E×.
The nontrivial element σ of Gal(E/F ) has σ2 in F −NE; it acts on Ĝ by
σx = J tx−1J .

Similarly, we have the Hecke algebra ′H on H and dual group LH =
Ĥ oWE/F , where σ acts on Ĥ = GL(2,C) by σx = wtx−1w−1. Here w =(

0 1

−1 0

)
. We write F (n, ′fdh) for the value of F (x, ′fdh) = ∆′(x)Φ(x, ′fdh)

at x = (uπππn, u−1πππ−n).
To relate f and ′f it suffices to relate F (n, fdg) and F (n, ′fdh). We

need to observe that when x = (ε, 1, ε−1), we have κ(x) = κ(ε). So we
want (−1)nF (n, fdg) = F (n, ′fdh), and in fact use this as a definition of a
map H → ′H, f 7→ ′f . This map is dual to the endo-lift homomorphism
e∗ : LH → LG, defined by

h =
((

a b

c d

)
, e

)
7→
(
a 0 b

0 e 0

c 0 d

)
= h1;

σ 7→ (1, 1,−1)× σ; E× 3 z 7→ (κ(z), 1, κ(z))× z.

A standard global argument, applied e.g. in [F2;I], shows that the Fun-
damental Lemma implies the Generalized Fundamental Lemma

2. Proposition. For spherical functions f , f ′ related by the map e∗ :
H→ H′ we have

Fκ(x, fdg) = F st(x, ′fdh).

Here Fκ(x, fdg) is κκκ(x)∆(x)Φκ(x, fdg), and

F st(x, ′fdh) = ∆′(x)Φst(x, ′fdh).

A theorem of Waldspurger [W3] permits to deduce from the Fundamental
Lemma the Matching Orbital Integrals Lemma:



I.2 Orbital integrals 241

3. Proposition. For each smooth compactly supported measure fdg on
G with f in C∞c (G,ω−1) there exists a smooth compactly supported measure
′fdh on H with ′f in C∞c (H), and for each ′fdh there exists an fdg, so that
Fκ(x, fdg) = F st(x, ′fdh).

This statement is easy if Φ(x, fdg) is supported on the regular set. A
direct proof can also be given, along the lines of the proof given in [F2;I].
We say that f , ′f are matching if Fκ(x, fdg) = F st(x, ′fdh) for all regular
x.

The dual group LG′ of G′ is the semidirect product of the connected
component Ĝ = GL(3,C) × GL(3,C) with WE/F . The group WE/F acts
through its quotient Gal(E/F ), by σ(x, y) = (θy, θx). The diagonal map
b : LG→ LG′, x 7→ (x, x), w 7→ (1, 1)×w, indicates a dual map b∗ : H′ → H
of Hecke algebras, called basechange.

For a smooth compactly supported modulo center function φ on G′, in
C∞c (G′, ω′−1), put

Φ′(xσ, φdg′) =
∫
G′/Z′

G′
(xσ)

φ(gxσ(g)−1)
dg

dt
,

where
Z ′G′(xσ) = {y ∈ G′; yxσ(y)−1 = zx, z ∈ F×}.

Since ω′(z) = ω(z/z) is trivial on (z ∈) F×, φ(zg) = ω′(z)−1φ(g) (z ∈ E×)
implies φ(zg) = φ(g) for all z ∈ F×.

By Φ′st(xσ, φdg′) we mean the sum of Φ′(x′σ, φdg′) over a set of repre-
sentatives x′ for the σ-conjugacy classes within the stable σ-conjugacy class
of x. Then we have the (Generalized) Fundamental Lemma as well as the
Matching Orbital Integrals Lemma for basechange:

4. Proposition. (1) Suppose E/F is unramified, and φ maps to f

under the map b∗ : H′ → H. Then Φ′st(xσ, φdg′) = Φst(Nx, fdg) for all
σ-regular x in G′. In particular Φ′st(xσ, φ0dg′) = Φst(Nx, f0dg).
(2) For any quadratic extension E/F , for every φ there exists a matching
f , and for every f there exists a matching φ.

We say that φ, f are matching if Φ′st(xσ, φdg′) = Φst(Nx, fdg) for all
σ-regular x in G′. The general case of (1) again follows as in [F2;I] from
the case of the unit elements in the Hecke algebras.
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The matching statement (2) follows from (1) by [W3]. A direct proof
can perhaps be given too, as in [F2;I]. At a split place v, if φv = (f ′v, f

′′
v )

then fv = f ′v ∗ f ′′v .
The case of (φ, f) = (φ0, f0) is due to Kottwitz (see [Ko4]), except that

[Ko4] considers the characteristic function φ′ of K ′ in G′ instead of our φ0

which is the characteristic functions of K ′Z ′. Note that the center Z of G
is contained in K. For φ′ ∈ Cc(G′) the orbital integral is defined by

Φ(xσ, φ′dg) =
∫
G′/ZG′ (xσ)

φ′(gxσ(g)−1)dg

where ZG′(xσ) = {g ∈ G′; gxσ(g)−1 = x} and we write dg for dg′ here. In
the integral write g = zg1 with z ∈ E×/E1 and g1 ∈ G′/Z ′ZG′(xσ) to get∫

G′/Z′ZG′ (xσ)

∫
NE×

φ′(zgxσ(g)−1)dzdg.

Now gxσ(g)−1 = uπππoddx (u ∈ R×E) implies πππ3 odd = N(det g) = πππeven

up to units, a contradiction. Hence in the last integral we may replace
G′/Z ′ZG′(xσ) by G′/Z ′G′(xσ). In fact the integral over NE× can be re-
placed by an integral over F×, and even E× = πππZRE , since φ′(g) 6= 0
if and only if φ′(πππg) = 0. Since φ0(g) =

∫
E×

φ′(zg)dz, we conclude that
Φ′(xσ, φ0) = Φ(xσ, φ′dg).

For the local study of unstable σ-invariant local G′-modules, and for
complete study of the automorphic G(A)-modules, we need the Hecke al-
gebras σ-endo-lift map e′∗ : H′ → H, φ 7→ ′φ, dual to the dual groups
σ-endo-lift homomorphism e′ : LH → LG′ by h 7→ (h1, h1) and σ 7→
[(1, 1,−1), (−1, 1, 1)] × σ. We denote smooth compactly supported func-
tions on H by ′φ. Recall that a character κ on E×/NE× was fixed, as well
as factors κ(x) on the regular elliptic elements of G of types (1) and (2),
and ∆(x) on G and ∆′(x) on H.

To state the Fundamental Lemma put

F ′κ(xσ, φdg′) = κκκ(Nx)∆(Nx)Φ′κ(xσ, φdg′),

where Φ′κ(xσ, φdg′) is
∑
x κ(x)Φ

′(xσ, φdg′), a sum over a set of represen-
tatives for the σ-conjugacy classes within the stable σ-conjugacy class of
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x. Here κ indicates a character on the group H1(F,T)/F× parametriz-
ing the σ-conjugacy classes within the stable σ-conjugacy class of x. Thus
Φ′κ(xσ, φdg′) is

∑
i ι(i)Φ

′(xiσ, φdg′) if x is of type (1) and ι(i) is 1 if i = 1, 2
and −1 if i = 3, 4, and it is

∑
α κ(α)Φ′(tασ, φdg′) if x is of type (2) and κ

denotes the nontrivial character of α ∈ K×/NLE/K(LE)×, see Proposition
I.1.5.

We say that φ and ′φ are matching if F ′κ(xσ, φdg′) = F st(Nx, ′φdh) for
all σ-regular x in G′. Then we have the (Generalized) Fundamental Lemma
as well as the Matching Orbital Integrals Lemma for the σ-endo-lift e′:

5. Proposition. (1) If E/F and κ are unramified then

F ′κ(xσ, φ0dg′) = F st(Nx, ′φ0dh)

for all σ-regular x in G′. If φ maps to ′φ under H′ → ′H, then φ and ′φ
are matching.
(2) For any quadratic extension E/F and every φ there is a matching φ′,
and for every φ′ there is a matching φ.

As usual, (2) follows here from (1), and the Generalized Fundamental
Lemma follows from the Fundamental Lemma. As for the Fundamental
Lemma itself we have:

6. Proposition. The Fundamental Lemma for the endo-lift e (of Pro-
position 1) is equivalent to the Fundamental Lemma for the σ-endo-lift e′

(of Proposition 5).

Proof. The result of [Ko4] applies with any character κ of the group
Im[H1(F,Tsc)→ H1(F,T)] ' H1(F,T)/F× (thus

{(a, b, c) ∈ (F×/NE×)3; abc = 1} ' (F×/NE×)3/F× or (Z/2)2,

if x is elliptic of type (1), or Z/2Z if x is elliptic of type (2), trivial otherwise)
which parametrizes the σ-conjugacy classes within the stable σ-conjugacy
class of a σ-regular element x and the conjugacy classes within the stable
conjugacy class of Nx. Thus [Ko4] implies that

Φ′κ(xσ, φ0dg′) = Φκ(Nx, f0dg)

for all σ-regular x. Note that ′f0 is ′φ0.
By Proposition 1, the right side multiplied by κκκ(Nx)∆(Nx) is

∆′(Nx)Φst(Nx, ′f0dh). This implies Proposition 5 (1).
On the other hand, Proposition 5 (1) asserts that the left side multiplied

by the same factor is ∆′(Nx)Φst(Nx, ′φ0dh). Proposition 1 follows. �
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I.3 Fundamental lemma

A. Introduction

Let E/F be an unramified quadratic extension of p-adic fields, p > 2, G =
U(2, 1;E/F ) a quasi-split unitary group in 3 variables associated with E/F ,
and H = U(1, 1) ×U(1) a subgroup of G, where U(1, 1) = U(1, 1;E/F )
is a quasi-split unitary group in 2 variables and U(1) = U(1;E/F ) is an
anisotropic torus. Let T be an anisotropic F -torus in H (and G) which
splits over E. Then T = U(1)×U(1)×U(1). Put T = T(F ), H = H(F ),
G = G(F ) for the group of F -points of the F -groups T, H, G. Denote the
group of F -points of U(1) by E1 = {x ∈ E×;Nx = 1}, N = NE/F signifies
the norm map from E to F . Let K be the hyperspecial maximal compact
subgroup G(R) of G, where R is the ring of integers in F , and 1K the
unit element in the Hecke convolution algebra of K-biinvariant compactly
supported functions on G, divided by the volume of K. A choice of a Haar
measure on G is implicit.

Let κ 6= 1 be a suitable character on the group Z/2× Z/2 of conjugacy
classes within the stable conjugacy class of a regular (a 6= b 6= c 6= a)
element t = (a, b, c) in T = (E1)3. Then the κ-orbital integral Φκ1K

(t) is
defined to be the sum — weighted by the values of κ — of the orbital
integrals of 1K over the conjugacy classes within the stable conjugacy class
of t.

Analogously one has the standard maximal compact subgroup KH in H,
the measure 1KH

, and the stable orbital integral Φst
1KH

(t) on H, where “st”
(for “stable”) indicates κ = 1.

The “endoscopic fundamental lemma” asserts that ∆G/H(t)Φκ1K
(t) =

Φst
1KH

(t). In our case the transfer factor ∆G/H(t) (defined by Langlands

[L6], p. 51, and in general by Langlands and Shelstad [LS]) is (−q)−N1−N2 .
Here q = #(R/πππR) is the residual cardinality of F (R : ring of integers in F ,
πππ: generator of the maximal ideal in R), and a−b ∈ πππN1R×E , c−b ∈ πππN2R×E ,
define the nonnegative integers N1, N2 (RE : ring of integers in E).

The other “endoscopic fundamental lemma” concerns the anisotropic F -
torus TL in H and G whose splitting field is a biquadratic extension EL of
F . Thus L is a ramified quadratic extension of F . Then TL ' (EL/K)1 ×
E1 consists of scalar multiples (in E1) of t = (t1, 1), and t is regular if
t1 (∈ (EL/K)1 = {x ∈ (EL)×;NEL/Kx = 1}, where NEL/K signifies the
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norm from EL to the quadratic extension K other than E and L of F ) does
not lie in E1. Define n by t1 − 1 ∈ πππnELR

×
EL. The transfer factor ∆G/H(t)

is (−q)−n. Once again the “lemma” asserts ∆G/H(t)Φκ1K
(t) = Φst

1KH
(t) for

a regular t. In this section H ′ and G′ do not indicate RE/F H and RE/F G.

B. Explicit realization

To compute the integrals which occur in the fundamental lemma, we need
explicit realizations of the tori T = (E1)3 and T = (EL/K)1 × E1. We
repeat Proposition I.1.3 here, when E/F is unramified. Then E = F (

√
D),

D ∈ R−R2, A of I.1.3 is πππ, L = F (
√
πππ), K = F (

√
Dπππ).

1. Proposition. Put r = diag(ρ−1, ρ, 1) with ρ ∈ F −NE,

T0 = {t0 = diag(a, b, c); a, b, c ∈ E1}, h =
(

1 1

1

−1 1

)
,

T1 = h−1T0h and T2 = (hr)−1T0hr. Then T1 and T2 are tori in G. A
complete set of representatives for the conjugacy classes within the stable
conjugacy class of a regular t1 = h−1 diag(a, b, c)h in T1 (thus a 6= b 6= c 6=
a), is given by t1, t2 = r−1h−1 diag(a, b, c)hr,

t3 = r−1h−1 diag(a, c, b)hr, t4 = r−1h−1 diag(b, a, c)hr.

A set of representatives for the conjugacy classes of tori ' (LE/K)1×E1

is given by

TH =
{
d

(
α πππβ/

√
D

b

β
√
D α

)
; b, d ∈ E1, α, β ∈ F ; α2 − β2πππ = 1

}

⊂ H = ZG(diag(1,−1, 1)) = U
(

0 1

1 0

)
× E1 ⊂ G = U(J),

and

TH′ =
{
d

(
α πππβ

β α

b

)
; b, d ∈ E1, α, β ∈ F ; α2 − β2πππ = 1

}
⊂ H ′ = ZG′(diag(1, 1,−1)) = U

(
πππ 0

0 −1

)
× E1 ⊂ G′ = U(J ′).

Here J ′ =
(
πππ

−1

−πππ−1

)
has J = gJ ′tg with g =

(
1/2πππ 0 −1/2

0 1 0

1 0 πππ

)
,

so that G′ = g−1Gg.
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C. Decompositions

Let K be the maximal compact subgroup G(R) of G (its entries are in
the ring RE of integers of E). Denote by 1K the characteristic function of
K in G. Fix the Haar measure on G which assigns K the volume 1. Our
aim is to compute the orbital integrals

∫
Tρ\G

1K(x−1tρx)dx , tρ =

 a+c
2

a−c
2 ρ

b
a−c
2ρ

a+c
2

 ,

where ρ is 1 or πππ. Here Tρ = T1 if ρ = 1 and Tρ = T2 if ρ = πππ. We shall
also compute the integrals

∫
TH\G 1K(x−1t1x)dx and

∫
TH′\G

1K(x−1t2x)dx.
The measure on each compact torus is chosen to assign it the volume 1. We
define ρ by ρ = πππρ (ρ = 0 or 1). Put H for the centralizer of diag(1,−1, 1)
in G. It contains Tρ and TH . Let N denote the unipotent upper triangular
subgroup of G. It contains

u′0 =
(

1 1 1
2

0 1 1

0 0 1

)
and u0 =

(
1 x 1

0 1 x

0 0 1

)
=
(
x 0

1

0 x−1

)
u′0

(
x 0

1

0 x−1

)−1

(xx = 2). As in I.1.3, put H ′′ = gH ′g−1 = ZG

(
0 1

2πππ

0 1 0

2πππ 0

)
. Our computa-

tion of the orbital integral is based on the following decomposition.

2. Proposition. We have G =
⋃
m≥0

HumK, where um = u0dm, dm =

diag(t, 1, t−1), t = πππm. Further, HK
m = H ∩ umKu−1

m consists of

(
a1−b+ta2 0 b−ta2+tb3+2a3t

2

0 a1 0

b 0 a1−b−tb3

)
∈ H

with a1, a2, a3, b, b3 in RE.
Also G = ∪m≥0H

′′dmK, and H ′m = H ′ ∩ g−1dmKd
−1
m g consists of

diag(u−1
( a cπππ
c a

)
, e), e ∈ E1, u ∈ E×, a, c ∈ E with aa − πππcc = uu

and |a/u − e| ≤ |πππ|1+2m, |c/u| ≤ |πππ|m, or equivalently of scalar multi-
ples by E1 of diag(e

( a ucπππ
c ua

)
, 1), e, u ∈ E1, a, c ∈ RE with 1 = aa − πππcc,

|a− 1| ≤ |πππ|1+2m, |c| ≤ |πππ|m. Both decompositions are disjoint.
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Proof. For the decomposition:

G = T ∗NK = HNK =
⋃
m≥0

⋃
ε∈R×

E

H

(
1 εt−1 1

2 εεt
−2

0 1 εt−1

0 0 1

)
K

=
⋃
m,ε

H

(
εt−1 0

1

0 ε−1t

)
u′0

(
ε−1t 0

1

0 εt−1

)
K =

⋃
m≥0

Hu′mK,

u′m = u′0dm. It is disjoint since (by matrix multiplication) u′m
−1
hu′m lies in

K for some h in H only if n = m.
The intersection H ′K

m = H ∩ u′mKu
′−1
m consists of (ai, bi, ci in RE):(

1 1 1
2

0 1 1

0 0 1

)(
t 0

1

0 t−1

)(
a1 a2 a3

b1 b2 b3
c1 c2 c3

)(
t−1 0

1

0 t

)(
1 −1 1

2
0 1 −1

0 0 1

)

=
(

1 1 1
2

0 1 1

0 0 1

)(
a1 ta2 t2a3

t−1b1 b2 tb3
t−2c1 t

−1c2 c3

)(
1 −1 1

2
0 1 −1

0 0 1

)
in H, thus c1 = −tb1 and c1 = tc2, and we define b ∈ E by b1 = −2bt.
Thus c1 = 2bt2, c2 = 2bt, and we continue with

=
(

1 1 1
2

0 1 1

0 0 1

)(
a1 ta2 t

2a3

−2b b2 tb3
2b 2b c3

)(
1 −1 1

2
0 1 −1

0 0 1

)

=
(

1 1 1
2

0 1 1

0 0 1

)(
a1 ta2−a1

1
2a1−ta2+t

2a3

−2b b2+2b −b−b2+tb3
2b 0 c3−b

)

=
(
a1−b X 1

2 b−
1
2 ta2+

1
2 tb3+t

2a3

0 a1−ta2 Y

2b 0 a1−b−ta2−tb3

)

=
(
x 0

1

0 x−1

)−1( a1−b 0 b−ta2+tb3+2a3t
2

0 a1−ta2 0

b 0 a1−b−ta2−tb3

)(
x 0

1

0 x−1

)
.

Since this has to be in H, we obtained the relation X = 0, thus a1 −
ta2 = b2 + 2b, which implies that b ∈ RE , and Y = 0, thus c3 − b =
b+ b2 − tb3 = a1 − b− ta2 − tb3. Replacing a1 by a1 + ta2, and noting that
HK
m = diag(x, 1, x−1)H ′K

m diag(x, 1, x−1)−1, the first part of the proposition
follows.

Recall that G′ = g−1Gg, and note that if v′0 = (0, 0, 1) then

StabG′(v′0) = {x′ ∈ G′; v′0x′ = λv′0, λ ∈ E1}
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is H ′ = ZG′(diag(1, 1,−1)). Put v0 = v′0g
−1 = (−1, 0, 1/2πππ). Then

StabG(v0) = {x ∈ G; v0x = λv0, λ ∈ E1}

is

H ′′ = gH ′g−1 = ZG

(
0 1/2πππ

1

2πππ 0

)
.

Embed
H ′′\G ↪→ S = {v ∈ E3; vJ tv = v0J

tv0 = −πππ−1}

by x 7→ v = v0x. We have a disjoint decomposition S = ∪m≥0v0dmK, as
v0dm = (−πππm, 0, 1/2πππm+1), and v0dmK = {v ∈ S; |v| = |πππ|−m−1}. Here

|(x, y, z)| = max{|x|, |y|, |z|},

and the union ranges only over m ≥ 0 since {m,−m− 1} = {n,−n− 1} if
n+m = −1. The decomposition G = ∪m≥0H

′′dmK follows.
To describe H ′m, consider the elements of d−1

m gH ′g−1dm in K. Thus(
1/t 0

1

0 t

)(
1/2πππ −1/2

1

1 πππ

)(
a/u cπππ/u 0

c/u a/u 0

0 0 e

)(
πππ 1/2

1

−1 1/2πππ

)(
t 0

1

0 1/t

)

=
(

(a/u+e)/2 c/2ut (a/u−e)/4πππt2

πππtc/u a/u c/2ut

(a/u−e)πππt2 πππtc/u (a/u+e)/2

)
lies in K precisely when |c/u| ≤ |πππ|m, |a/u− e| ≤ |πππ|1+2m. �

Note that the integrals
∫
G/K

dx and
∫
H/KH dg are independent of the

choice of the Haar measures dx on G and dh on H. Also,
∫
H/KH

1
dh equals

[KH : KH
1 ]
∫
H/KH dh for a compact open subgroup KH

1 of KH . It is conve-

nient to normalize the measures dx and dh to assign K and KH the volume
one. Then [KH : KH

1 ] = |KH
1 |−1.

3. Proposition. The orbital integral of 1K at a regular t ∈ T ⊂ H

(T = Tρ or TH) can be expressed as∫
G/K

1K(x−1tx)dx =
∑
m≥0

∫
H/HK

m

1K(u−1
m h−1thum)dh

=
∑
m≥0

∫
H/HK

m

1HK
m

(h−1th)dh .
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At a regular t = gt′g−1 ∈ G, where t′ ∈ TH′ ⊂ H ′ ⊂ G′ = g−1Gg, we
have ∫

G/K

1K(x−1tx)dx =
∑
m≥0

∫
H′/H′m

1H′m(h−1t′h)dh.

Proof. For the last equality of the first assertion, note that
u−1
m h−1thum ∈ K implies that h−1th ∈ H ∩ umKu−1

m = HK
m .

For the last claim, the left side equals

∑
m≥0

∫
H′′/H′′∩dmKd

−1
m

1K(d−1
m h−1thdm)dh

=
∑
m≥0

∫
H′/H′∩g−1dmKd

−1
m g

1K(d−1
m gh′−1t′h′g−1dm)dh;

the displayed equality follows on writing h = gh′g−1 and t′ = g−1tg. The
right side is equal to the right side of the equality of the proposition. �

We then need a decomposition for Tρ\H/K ∩ H and TH\H/K ∩ H.

Note that H = U
(

0 1

1 0

)
× E1. The first factor is the unitary group in

two variables which consists of the g in GL(2, E) with g
(

0 1

1 0

)
tg =

(
0 1

1 0

)
.

Correspondingly we write Tρ = THρ × E1 and K ∩ H = KH × E1. Put
rρj = diag(πππ−(j−ρ)/2,πππ(j−ρ)/2) for j ≥ 0, j ≡ ρ (mod 2). In the following
statement the factors E1 and R× — whose volume is 1 — can be ignored
for our purposes. Write [x] for the largest integer ≤ x.

4. Proposition. We have H =
⋃
j≥0

THρ ·rρj ·KH×E1 (j ≡ ρ(2), j ≥ 0),

and
(rρj )

−1THρr
ρ
j ∩KH = (R+ πππjRE)×/R× × E1.

Further we have H =
⋃
j≥0

TH · rj ·KH , and r−1
j THrj ∩KH is

RL(j)1 = E1 ∩RL(j), RL(j) = R+
√
ππππππjR,

where

rj =
(

0 πππ

1 0

)j−2[ j
2 ]

πππ−[ j+1
2 ]
(

1 0

0 −πππ

)j
.
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Proof. Note that E = F (
√
D), D ∈ R − R2. Put D1 = diag(

√
D, 1).

Then U
(

0 1

1 0

)
= D−1

1 U2D1, where U2 is the unitary group U
(

0 1

−1 0

)
. Since

diag(a, a−1) = adiag(1, 1/aa), we have E×U2 = E×GL(2, E/F ), where

GL(2, E/F ) = {g ∈ GL(2, F ); det g ∈ NE×}.

Note that NE× = πππ2ZR×. Note that T1ρ =
{(

u vDρ

v/ρ u

)
∈ GL(2, F )

}
lies

in GL(2, E/F ), as u2 − v2D = αα ∈ NE× (for α = u+ v
√
D in E×). The

corresponding torus in U2 is T2ρ =
{
β
α

(
u vρD

v/ρ u

)
; β ∈ E1

}
, and THρ =

D−1
1 T2ρD1 is the torus

{
β
α

(
u vρ

√
D

v
√
D/ρ u

)}
in D−1

1 U2D1 = U
(

0 1

1 0

)
. Thus

the map T1ρ → THρ takes an element with eigenvalues {α, α} to one with
eigenvalues {β, βα/α}. From the well-known (see Remark following the
present proof) decomposition GL(2, F ) =

⋃
j≥0

T1ρ diag(1,πππj) GL(2, R) we

obtain

GL(2, E/F ) =
⋃
j

T1ρr
ρ
j GL(2, R) (j ≥ 0, j ≡ ρ(2)).

Hence U2 = ∪T2ρr
ρ
jK2, where K2 = U2 ∩GL(2, RE). Conjugating by D1

we get the decomposition of the proposition. Finally,

(rρj )
−1 ·THρ ·rρj ∩KH =

{
β

α

(
u vπππj

√
D

vπππ−j
√
D u

)
∈ KH ; α = u+ v

√
D

}
.

The last matrix has eigenvalues β ∈ E1 and βα/α. Since E/F is unramified,
E×/F× = R×E/R

×, we may assume that α ∈ R×E and conclude that u ∈
R , v ∈ πππjR. Thus our intersection is isomorphic to (R+πππjRE)×/R××E1,
as asserted.

For the last claim, in the notations of Proposition 3 in the ramified case
(T = (LE/K)1 × E1), we have that

GL(2, F ) = ∪j≥0T1 diag(1, (−πππ)j)K = ∪j≥0T1rjK,

rj = tj diag(1, (−πππ)j), where tj is πππ−j/2 if j is even, and πππ−(j+1)/2
(

0 πππ

1 0

)
if

j is odd. Then GL(2, E/F ) = ∪j≥0ZT0rjK, and

U = U
(

0 1

−1 0

)
= ∪j≥0E

1T0rjKU,
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and H = U
(

0 1

1 0

)
= D−1

1 UD1 with D1 = diag(
√
D, 1) has

H = ∪j≥0THrjKH , where TH is as described in Proposition 3.
Now r−1

j THrj ∩KH consists of

δ−1
(

α βπππ(−πππ)j/
√
D

β
√
D/(−πππ)j α

)
∈ KH

in the case where j is even (replace D by 1/D when j is odd), namely
|β| ≤ |πππ|j . Thus r−1

j THrj ∪KH is

RL(j)1 = E1 ∩RL(j), RL(j) = R+
√
ππππππjR,

up to factors of the form E1, whose volume is 1 and is ignored here. �

Remark. A proof of the well-known decomposition

GL(2, F ) =
⋃
j≥0

T diag(1,πππj) GL(2, R)

— extracted from a letter of J.G.M. Mars — is as follows. For another
proof see [F4;I], Lemma I.I.1. Let E/F be a separable quadratic extension
of nonarchimedean local fields. Let V be E considered as a two-dimensional
vector space over F . Multiplication in E gives an embedding E ⊂ EndF (V )
and E× ⊂ GL(V ). The ring of integers RE is a lattice in V and K =
Stab(RE) is a maximal compact subgroup of GL(V ).

Let Λ be a lattice in V . Then R(Λ) = {x ∈ E; xΛ ⊂ Λ} is an order.
The orders in E are RE(j) = R + πππjRE , j ≥ 0 (πππ = πππF ). Note that
RE(j)/RE(j + 1) is a one-dimensional vector space over R/πππ. If R(Λ) =
RE(j), then Λ = zRE(j) for some z ∈ E×. Choose a basis 1, w of E such
that RE = R+Rw. Define dj in GL(V ) by dj(1) = 1, dj(w) = πππjw. Then
RE(j) = djRE . It follows immediately that GL(V ) = ∪j≥0E

×djK, or, in
coordinates with respect to 1, w:

GL(2, F ) =
⋃
j≥0

T
(

1 0

0 πππj

)
GL(2, R),

with T =
{(

a αb

b a+βb

)
; a, b ∈ F , not both 0

}
, where w2 = α + βw, α,

β ∈ R.
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5. Proposition. If RE(j) = R + πππjRE, j ≥ 0, then [R×E :RE(j)×] is
1 if j = 0, and (1 + q−1)qj if j ≥ 1. Further, we have that [(R +

√
πππR)1 :

(R +
√
ππππππjR)1] = qj.

Proof. The first index is the quotient of [R×E : 1 + πππjRE ] =
(q2 − 1)q2(j−1) by [R×: 1 + πππjR] = (q − 1)qj−1 when j ≥ 1. When j = 0,
RE(j) = RE . The last claim follows from the fact that u2−πππv2 = 1 implies
u = 1 + πππv2/2 + · · · , up to a sign. �

6. Proposition. We have KH × E1 = PHH
K
m , where

PH =
{( u 0

w

0 u−1

)(
1 v

√
D

1

0 1

)
; u ∈ R×E , w ∈ E

1, v ∈ R
}
,

and [PH :PH ∩HK
m ] is 1 if m = 0 and (1− q−2)q4m if m ≥ 1.

Proof. Define u ∈ R×, v ∈ R, by the equation
(
a b

c d

)
=
( u v

0 1

) (
d cD

c d

)
in GL(2, R). Hence KH consists of(

u 0

0 u−1

)(
1 v
√
D

0 1

) 1
α

(
d c

√
D

c
√
D d

)
(u ∈ R×E , v ∈ R; α = d+ c

√
D ∈ R×E),

and KH × E1 = PHH
K
m . The intersection PH ∩ HK

m is PH when m = 0,
but when m ≥ 1 and t = πππm, it consists of a1 + ta2 −ta2 + tb3 + 2a3t

2

a1

0 a1 − tb3



= a1

 1 + ta′2 −ta′2 + tb′3 + 2a′3t
2

1
0 1− tb′3

 ,

where a′2 = a2/a1, b′3 = b3/a1, a′3 = a3/a1, a1a1 = 1. These satisfy
1 = (1 + ta′2)(1− tb′3), namely b′3 = a′2/(1 + ta′2). Thus

t(b′3 − a′3) = t(a′2/(1 + ta′2)− a′2) = t(a′2 − a′2 − ta′2a′2)/(1 + ta′2).

Erasing the prime from a2, and the middle entry 1, PH ∩ HK
m consists of

the product of E1 = {a1} and the matrices(
1+ta2 t(a2−a2−ta2a2)(1+ta2)

−1+t22a′3

0 1−ta2(1+ta2)
−1

)
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=
(

1+ta2 t(a2−a2)/(1+ta2)

0 1−ta2/(1+ta2)

)(
1 t2a′′3

√
D

0 1

)
.

Then [PH :PH ∩HK
m ] is the product of [R×E : 1 + πππmRE ] = (q2 − 1)q2(m−1)

(for a2) and [R:πππ2mR] = q2m (for a3). �

Definition. Put δ(X) = 1 if “X” holds, and δ(X) = 0 if “X” does not
hold.

Note that
∫
PH/PH∩KK

m
f(p)dp = [PH :PH ∩HK

m ]
∫
PH

f(p)dp, if the mea-
sure dp assigns the compact PH the volume one.

7. Corollary. The orbital integral
∫
Tρ\G 1K(x−1tρx)dx is equal to∑

j≥0 , j≡ρ(2)

[δ(j = 0) + (1 + q−1)qjδ(j ≥ 1)]

∑
m≥0

∫
PH/PH∩HK

m

1HK
m

(p−1(rρj )
−1tρr

ρ
j p)dp .

For a regular t ∈ TH , the orbital integral
∫
TH\G 1K(x−1tx)dx is equal to∑

m≥0

|HK
m |−1

∑
j≥0

∫
KH∩r−1

j
THrj\KH

1HK
m

(k−1r−1
j trjk)dk

=
∑
j≥0

qj
∑
m≥0

∫
PH/HK

m∩PH

1HK
m

(p−1r−1
j trjp)dp.

D. Computations: j ≥ 1j ≥ 1j ≥ 1

In computing the integrals∫
PH

1HK
m

(p−1(rρj )
−1tρr

ρ
j p)dp

at tρ = r−1
ρ h−1 diag(a, b, c)hrρ, we put a′ = a

b − 1, c′ = c
b − 1, define N1

by a′ ∈ πππN1R×E , N2 by c′ ∈ πππN2R×E , N by a′ − c′ ∈ πππNR×E and N+ by
a′ + c′ ∈ πππN+

R×E . Since γρ is regular, N , N1 and N2 are finite nonnegative
integers. Put M = max(N1, N2). We shall distinguish between two cases.
If |a′ − c′| < |a′|, then |a′| = |c′| = |a′ + c′|, thus N+ = N1 = N2 < N .
If |a′| ≤ |a′ − c′|, then either |a′| < |a′ − c′| (= |c′| = |a′ + c′|, thus
N+ = N2 = N < N1), or |a′| = |a′ − c′| (≥ |a′ + c′|, |c′|, thus N+,
N2 ≥ N1 = N), namely N ≤ N+. Put ν = N − j, and denote — as usual
— by [x] the maximal integer ≤ x.



254 I. Local theory

8. Proposition. If j ≥ 1, then∫
PH/PH∩HK

m

1HK
m

(p−1(rρj )
−1tρr

ρ
j p)dp

is 1 if m = 0, (1− q−2)q4m if 1 ≤ m ≤ min
([

ν
2

]
,
[
N+

2

])
, and

(1−q−2)q4m·(q−1)−1qν+1−2m = (1 + q−1)qν+2m if ν = N+ < 2m ≤ 2ν.

For all other m ≥ 0 the integral is zero.

For a regular t = diag
(
δ−1

(
α βπππ/

√
D

β
√
D α

)
, v

)
in TH ⊂ H, the integral

∫
PH/PH∩HK

m

1HK
m

(p−1r−1
j trjp)dp

is 1 if m = 0, (1 − q−2)q4m if 1 ≤ m ≤ min([ν/2], [(1 + N2)/2]), and
(1 + q−1)qν+2m if ν = 1 +N2 < 2m ≤ 2 + 2N2, and N2 < N . For all other
m ≥ 0 the integral is zero. Here β = BπππN (B ∈ R×), and δ = δ1+iδ2 ∈ E1

with δ2 = D2πππ
N2 , δ1, D2 ∈ R×.

Proof. As PH ⊂ HK
m when m = 0, we assume m ≥ 1. We need to

compute the volume of solutions in u ∈ R×E/(1 + tRE) and v ∈ R/t2R

(t = πππm), of the equation(
1 −v

√
D

1

0 1

)(
u−1 (u−u)/u

1

0 u

)( 1
2 (a+c) 1

2 (a−c)πππj

b
1
2 (a−c)πππ−j 1

2 (a+c)

)

·
(
u (u−u)/u

1

0 u−1

)(
1 v

√
D

1

0 1

)
=
(
a1−b1+ta2 b1−ta2+tb3+2a3t

2

a1

b1 a1−b1−tb3

)
,

for a1 ∈ E1; b1, a2, a3, b3 ∈ RE . To have a solution, a1 must be equal
to b. We then replace a by a/b, c by c/b on the left, and b1, a2, b3, a3

by their quotients by a1 on the right, to assume that a1 = b = 1. Put
w = v

√
D + (u − u)/uu, erase 2nd row and column of our matrices, write

b for b1, define B ∈ R×E by

1
2
(a− c)πππ−j = Bπππν (ν = N − j ≤ N),
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to express our identity as the equality of(
1 −w
0 1

)(
1
2 (a+c) 1

2 (a−c)πππj/uu
1
2 (a−c)uuπππ−j 1

2 (a+c)

)(
1 w

0 1

)

=

(
1
2 (a+c)−wuuBπππν Bπππνuu(πππ2j/(uu)2−w2)

Bπππνuu 1
2 (a+c)+wBπππνuu

)
and (

1− b+ ta2 b− ta2 + tb3 + 2a3t
2

b 1− b− tb3

)
.

Since b ∈ RE , to have solutions we must have that ν ≥ 0 (consider the entry

(row, column) = (2, 1) in our identity). This is congruent to
(

1−b b

b 1−b

)
modulo πππm. Considering the entries (1, 1) and (2, 2), we deduce that wπππν ≡
0 (mod πππm). If m > ν, considering the entries (1, 2) and (2, 1) we conclude
that j = 0.

Since j ≥ 1, we may now assume that 1 ≤ m ≤ ν. Then b ≡ πππν ≡
0 (modπππm), and from the equality of the entries (1, 1) or (2, 2), we obtain
1
2 (a + c) ≡ 1 (modπππm). Put a′ = a − 1, c′ = c − 1. Then a′ + c′ ≡
0 (modπππm). Since also a′ − c′ ≡ 0 (modπππm), we have a′, c′ ≡ 0 (modπππm),
and we have a′′ = a′πππ−m, c′′ = c′πππ−m, b′ = bπππ−m in RE . Put ν′ = ν−m ≥
0. The matrix identity translates to 4 equations, the first 3 define b, a2, b3
and hence are always solvable:

Bπππν
′
uu = b′,

1
2
(a′′ + c′′) + (1− w)uuBπππν

′
= a2,

1
2
(a′′ + c′′) + (1 + w)uuBπππν

′
= −b3 ,

B′′πππν
′′

+Bπππν
′
uu(1−Dv2

1 + πππ2j/(uu)2) = 2a3πππ
m,

where
B′′πππν

′′
= a′′ + c′′, v1 = w/

√
D ∈ R.

If m ≤ ν′, ν′′, namely 2m ≤ ν, N+, any u ∈ R×E , v1 ∈ R, make a solution
(a3 is defined by the 4th equation). This proves the proposition for m

(1 ≤ m ≤ min
([

ν
2

]
,
[
N+

2

])
).

If ν′′ < ν′, m, there are no solutions in u, v1.
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If ν′ < ν′′, m, since j ≥ 1 and 1 − Dv2
1 ∈ R×, there are no solutions

either.
It remains to consider the case where ν′ = ν′′ < m (≤ ν). Write

ε−1 = −uu(1−Dv2
1)B/B′′.

Then our equation can be written in the form

1− 2a3πππ
m−ν′/B′′ = −uuB/B′′(1−Dv2

1 + πππ2j(uu)−2) = ε−1(1 + ζπππ2jε2) ,

where ζ = (B/B′′)2(1−Dv2
1), namely

ε ≡ 1 + ζπππ2jε2 ≡ 1 + ζπππ2j(1 + 2ζπππ2jε2 + ρ2πππ4jε4)

= 1 + ζπππ2j + 2ζ2πππ4jε2 + ζ3πππ6jε4 (mod πππm−ν
′
) ,

so that ε is uniquely determined modulo πππm−ν
′
. Thus a choice of v1 in R

determines ζ, and ε in R×/1 +πππm−ν
′
R, hence uu ∈ R×/1 +πππm−ν

′
R. The

volume of one coset modπππm−ν
′
in R× is

[R×: 1 + πππm−ν
′
R]−1 = 1/[(q − 1)q2m−ν−1].

Multiplying by [PH :PH ∩HK
m ] = (1− q−2)q4m we get (1 + q−1)q2m+ν .

In the ramified case, the case m = 0 is again trivial, so we assume m ≥ 1.
Putting B1 = Bδ

√
D(−1)j ∈ R×E , in analogy with the previous case we are

led to solve in u and v1 = w/
√
D the equation(

αδ−wuuB1πππ
ν uuB1πππ

ν(πππ2j+1/D(uu)2−Dv21)

uuB1πππ
ν αδ+uuB1πππ

ν

)

=
(

1−b+ta2 b−ta2+tb3+2a3t
2

b 1−b−tb3

)
≡
(

1−b b

b 1−b

)
(modπππm).

As b ∈ RE , using (2, 1) we have 0 ≤ ν ≤ N . From (1, 1) and (2, 2),
wπππν ≡ 0 (modπππm). If ν < m then |w| < 1, but this contradicts (1, 2) and
(2, 1). Hence 1 ≤ m ≤ ν ≤ N . Put b′ = bπππ−m, ν′ = ν −m. Then

B1uuπππ
ν′ = b′, α′′+ (1−w)uuB1πππ

ν′ = a2, α′′+ (1 +w)uuB1πππ
ν′ = −b3,

define b, a2, b3. Here α′ = αδ − 1 ≡ 0 (modπππm) is used to define α′′ =
α′πππ−m. The remaining equation (add all four entries in the matrix equality)
is

B′′πππν
′′

+ uuB1πππ
ν′(1−Dv2

1 + πππ1+2j/D(uu)2) = 2a3πππ
m,
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where 2α′′ = B′′πππν
′′
, B′′ ∈ R×E . If 2α′′ = B′′πππN

+
, N+ = ν′′ +m, then

N+ = min(1 +N2, 1 + 2N),

since α′ = αδ − 1 is equal to

(1 +B2πππ1+2N/2 + · · · )(1 +DD2
2πππ

2+2N2/2 + · · · −
√
DD2πππ

1+N2)− 1

= −
√
DD2πππ

1+N2 +B2πππ1+2N/2 + · · · ≡ 0(modπππm).

Of course α ≡ δ(modπππm) implies δ2 ≡ 0(modπππm), and m ≤ 1 +N2.
Returning to the remaining equation, if 1 ≤ m ≤ ν′, ν′′, thus 2m ≤

ν,N+, and ν ≤ N implies 1 ≤ m ≤ min([ν/2], [(1 + N2)/2]), any u ∈ R×E
and v1 ∈ R make a solution, a3 is defined by the equation, and the number
of solutions is as stated in the proposition.

If ν′′ < ν′,m, or ν′ < ν′′,m, there are no solutions, as 1−Dv2
1 ∈ R×.

If ν′ = ν′′ < m ≤ ν, namely ν = min(1 + N2, 1 + 2N) < 2m ≤ 2ν, but
ν ≤ N implies ν = 1 + N2, so N2 < N , and the number of solutions is
computed as in the unramified case to be as asserted in the proposition. �

9. Proposition. When ρ = 1 the orbital integral
∫
Tρ\G 1K(x−1tρx)dx

is equal to
q + 1
q4 − 1

(
q4[

N+1
2 ] − 1

)
if N ≤ N1, and to

− q + 1
q4 − 1

(1 + q2+4[N1/2]) +
(−q)N+N1

q − 1
+ δ · q + 1

q − 1
qN+2N1

if N > N1. Here δ = δ(2 | N − 1 − N1) (is 1 if N − N1 − 1 is even, 0 if
N −N1 is even).

The orbital integral
∫
TH\G 1K(x−1tx)dx is equal to:

(1) If N ≤ N2, it is

(q2N+2 − 1)/((q2 + 1)(q − 1))

if N is odd, and if N is even,

(q2N+4 − 1)/((q2 + 1)(q − 1))− q1+2N .
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(2) If N2 < N , it is

qN+2N2+3/(q − 1)− (q2N2+2 + 1)/((q2 + 1)(q − 1))

if N2 is even, and if N2 is odd,

−(q2N2+4 + 1)/((q2 + 1)(q − 1)) + qN+2N2+3/(q − 1).

Proof. It suffices to prove the first statement with N1 replaced by N+,
since N > N1 if and only if N > N+, in which case N1 = N+. The
contribution from the terms j ≥ 1 is∑

1≤j≤N

j≡ρ(2)

(1 + q−1)qj ·

1 +
∑

1≤m≤min
(
[ ν
2 ],
[

N+
2

])(1− q−2)q4m +
∑

ν
2 = N+

2 <m≤ν

(1 + q−1)qν+2m

 .

If ρ = 1, this is the entire orbital integral. In this case we replace j by
2j+1, and let j range over 0 ≤ j ≤ (N − 1)/2. If N ≤ N+, ν = N − 1− 2j
is smaller than N+, and we get

(q + 1)
∑

0≤j≤[(N−1)/2]

q2j

1 +
∑

1≤m≤[(N−1)/2]−j

(1− q−2)q4m


=(q + 1)

∑
j

q2j(1 + (1− q−2)q4(q4[(N−1)/2]−4j − 1)/(q4 − 1))

=
q + 1
q2 + 1

∑
j

q2j(1 + q2+4[(N−1)/2]−4j)

=
q + 1
q2 + 1

(
q2[(N+1)/2] − 1

q2 − 1
+ q2+4[(N−1)/2] · 1− q

−2[(N+1)/2]

1− q−2

)
,

which is equal to the asserted expression.
If (ρ ≡ 1 and) N > N+, then ν = N − 1− 2j, and ν

2 = N−1
2 − j > N+

2

precisely when 1
2 (N − 1 − N+) > j (same with < or =). Note that



I.3 Fundamental lemma 259

δ(N+ = ν) is δ. Put min = min
([

ν
2

]
,
[
N+

2

])
. Our integral is then

(q + 1)
∑

0≤j≤[(N−1)/2]

q2j
(

1
q2 + 1

+
q2+4 min

q2 + 1

)

+ δ
qN

++1

q − 1
(q2N

+
− q2[N

+/2])

= δ ∗+
q + 1
q2 + 1

q2[(N+1)/2] − 1
q2 − 1

+
q2(q + 1)
q2 + 1

·
(∑

q4[N
+/2]q2j +

∑
q4[(N−1)/2]q−2j

)
,

0 ≤ j ≤ [(N−1−N+)/2] in the first sum, [(N−1−N+)/2] < j ≤ [(N−1)/2]
in the second,

= δ ∗+
q + 1
q4 − 1

(q2[(N+1)/2] − 1)

+
q2(q + 1)
q2 + 1

·
(
q4[N

+/2] q
2[(N+1−N+)/2] − 1

q2 − 1

+ q4[(N−1)/2] q
−2([(N−1−N+)/2]+1) − q−2([(N−1)/2]+1)

1− q−2

)

=
q + 1
q4 − 1

(
− 1− q2+4[N+/2] + q2+4[N+/2]+2[(N+1−N+)/2]

+ q4[(N+1)/2]−2[(N+1−N+)/2]

)
+ δ

q + 1
q − 1

(qN+2N+
− qN+2[N+/2]) .

If δ = 0, then N is even iff N+ is even, and[
1
2
(N + 1−N+)

]
=

1
2
(N −N+) = [N/2]− [N+/2].

Hence we obtain

− q + 1
q4 − 1

(1 + q2+4[N+/2])

+
q + 1
q4 − 1

q2[N
+/2]+2[N/2](q2 + q4[(N+1)/2]−4[N/2])

= − q + 1
q4 − 1

(1 + q2+4[N+/2]) +
qN

++N

q − 1
.
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If δ = 1, then N is even iff N+ is odd, and[
1
2
(N − 1−N+)

]
=

1
2
(N − 1)− 1

2
N+ =

[
1
2
(N − 1)

]
−
[
1
2
N+

]
.

We get

− q + 1
q4 − 1

(1 + q2+4[N+/2])− q + 1
q − 1

qN+2[N+/2] +
q + 1
q − 1

qN+2N+

+
q + 1
q4 − 1

(q2+2[N+/2]+2[(N+1)/2] + q2[(N+1)/2]+2[N+/2])

= − q + 1
q4 − 1

(1 + q2+4[N+/2]) +
q + 1
q − 1

qN+2N+

+
q2[N

+/2]

q − 1
(q2[(N+1)/2] − (q + 1)qN ) .

The middle term is −qN+N+
/(q − 1) since N + 1 is even iff N+ is even.

In the ramified case we compute as follows. Suppose that N ≤ N2. Then
the integral is

∑
0≤ν≤N

qN−ν

1 +
∑

1≤m≤[ν/2]

(q4 − q2)q4(m−1)


=

∑
0≤ν≤N

qν/(q2 + 1) + q2+N
∑

0≤ν≤N

q4[ν/2]−ν/(q2 + 1)

=
qN+1 − 1

(q2 + 1)(q − 1)
+

qN+2

q2 + 1
· ∑

0≤ν1≤[N/2],ν=2ν1

q2ν1 +
∑

0≤ν1≤[(N−1)/2],ν=2ν1+1

q2ν1−1


=
qN+2[N/2]+4 + qN+2[(N−1)/2]+3 − q − 1

q4 − 1
,

as asserted.
Suppose that N2 < N . Then the integral is

∑
0≤ν≤1+N2

qN−ν

1 +
∑

1≤m≤[ν/2]

(1− q−2)q4m
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+ qN−N2−1
∑

[(1+N2)/2]<m≤1+N2

(1 + q−1)q2m+1+N2

+
∑

1+N2<ν≤N

qN−ν

1 +
∑

1≤m≤[(1+N2)/2]

(1− q−2)q4m

 .

This is the sum of

qN+2

q2 + 1

∑
0≤ν1≤[(N2+1)/2],ν=2ν1

q2ν1 ,

qN+1

q2 + 1

∑
0≤ν1≤[N2/2],ν=2ν1+1

q2ν1 +
qN

q2 + 1
· q
−N2−2 − 1
q−1 − 1

and

(1 + q−1)qN
q2(N2+2) − q2[(1+N2)/2]+2

q2 − 1
+
q4[(1+N2)/2]+2 + 1

q2 + 1
· q

N−N2−1 − 1
q − 1

.

Adding, we get the expression of the proposition. �

10. Proposition. When ρ = 0, the contribution to the orbital integral
of 1K at tρ from the terms indexed by j > 0 is

(q + 1)q
q4 − 1

(q4[N/2] − 1)

if N ≤ N+; when N > N+, if N −N+ is odd (δ = δ(n | N −N+ > 0) is
0) we obtain

− (q + 1)q
q4 − 1

(1 + q2+4[N+/2]) +
qN+N+

q − 1
,

while if δ = 1 (N −N+ > 0 is even) we obtain

− (q + 1)q
q4 − 1

(1 + q2+4[N+/2]) +
q1+2[N+/2]+2[N/2]

q − 1

+
q + 1
q − 1

qN+2N+
− q + 1
q − 1

qN+2[N+/2] .
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Proof. Put ν = N − 2j, 1 ≤ j ≤ [N/2]. The sum over j is

(1 + q−1)
∑

1≤j≤[N/2]

q2j ·

 1
q2 + 1

+
q2+4 min

q2 + 1
+ δ

∑
ν
2 = N+

2 <m≤ν

(1 + q−1)qν+2m

 .

If N ≤ N+, then min = [ν/2] = [N/2]− j and δ = 0, so we get
q + 1

q(q2 + 1)

∑
1≤j≤[N/2]

(q2j + q2+4[N/2]−2j)

=
(q + 1)q
q2 + 1

(
q2[N/2] − 1
q2 − 1

+ q4[N/2]
q−2 − q−2([N/2]+1)

1− q−2

)
,

which is the asserted expression.
If N > N+, then ν/2 = N/2 − j > N+/2 iff 1

2 (N −N+) > j, in which
case min([ν/2], [N+/2]) is [N+/2] (it is [N/2] − j when > is replaced by
<). Thus we obtain the sum of

(q + 1)q
q2 + 1

q2[N/2] − 1
q2 − 1

+
(q + 1)q2

q(q2 + 1)
·q4[N+/2]

∑
1≤j≤[(N−N+)/2]

q2j + q4[N/2]
∑

(N−N+)/2<j≤[N/2]

q−2j


=

(q + 1)q
q2 + 1

q2[N/2] − 1
q2 − 1

+
(q + 1)q2

q(q2 + 1)
·(

q4[N
+/2] q

u+2 − q2

q2 − 1
+ q4[N/2]

q−u−2 + q−2[N/2]−2

1− q−2

)
=

(q + 1)q
q4 − 1

(−1 + q2+4[N+/2]+u − q2+4[N+/2] + q4[N/2]−u)

and

δ(q + 1)2qN−2
∑

N+/2<m≤N+

q2m = δ
q + 1
q − 1

qN (q2N
+
− q2[N

+/2]) ,

where u = 2[(N −N+)/2]. When δ = 0, u = 2[(N −N+)/2] = N −N+−1,
and noting that N is even iff N+ is odd, the asserted expression is obtained.
When δ = 1, N is even iff so is N+, hence u = 2[(N −N+)/2] = N −N+ =
2[N/2]− 2[N+/2], and again we obtain the asserted expression. �
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E. Computations: j = 1j = 1j = 1

To complete the computation of the orbital integral of 1K at tρ, it remains
to compute the contribution from the term indexed by j = 0, which exists
only when ρ = 0.

11. Proposition. When ρ = 0 = j, the nonzero values of the integral∫
PH/PH∩HK

m

1KK
m

(p−1tρp)dp

are: 1 if m = 0,
(a) (1− q−2)q4m if 1 ≤ m ≤ min([N/2], [N+/2]),
(b) (1 + q−1)q2m+2[N/2] if [N/2] + 1 ≤ m ≤ min(N, [M/2]) (thus N ≤

N+; recall: M = max(N1, N2)),
(c) (1 + q−1)2q2m+N if [M/2] + 1 ≤ m ≤ N (thus N ≤ N+) and M −N

is even,
(d) (1 + q−1)q2m+2[N/2] if N + 1 ≤ m ≤ [M/2], and
(e) (1 + q−1)2q2m+N if max(N + 1, [M/2] + 1) ≤ m ≤ [(M +N)/2] and

M −N is even.

Proof. As in Proposition 10, we may assume that m ≥ 1, and compute
the volume of solutions in u ∈ R×E/1+πππmRE and v ∈ R/πππ2mR, w = v

√
D,

of the equation (for some a2, a3, b ∈ RE):(
1
2 (a+ c)− wuuBπππN uuBπππN ((uu)−2 −Dv2)

uuBπππN 1
2 (a+ c) + wuuBπππN

)

=
(

1− b+ ta2 b− ta2 + tb3 + 2a3t
2

b 1− b− tb3

)
.

Consider first the case where m > N . Since the matrix on the right is
congruent mod πππm to

(
1−b b

b 1−b

)
, considering the entries (1, 1) and (2, 2) of

the equality, we get that w = v
√
D, v = v1πππ

m−N , v1 ∈ R. The identities of
the entries (1, 2) and (2, 1) imply that uu ≡ ±1(πππm−N ). If uu ≡ 1(πππm−N ),
put uu = 1 + ε′πππm−N . The matrix identity becomes four equations:
b = (a′ − c′)/2 + ε′Bπππm (always solvable, defines b),
a2 = a′′+ε′B−B

√
Dv1uu (is solvable precisely when a′′ = a′πππ−m ∈ RE ,

namely m ≤ N1),
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−b3 = a′′ + ε′B +B
√
Dv1uu (solvable when m ≤ N1), and

2a′ +BπππNuu(1 + (uu)−2 − 2(uu)−1 −Dv2
1πππ

2m−2N ) = 2a3πππ
2m.

Thus the 2nd and 3rd equations are solvable when N < m ≤ N1 if
uu ≡ 1, and when N < m ≤ N2 if uu ≡ −1. Hence we are led to consider
m in the range N = N+ = min(N1, N2) < m ≤ M = max(N1, N2).
Defining ε1 ∈ R by (uu)−1 = 1 + ε1πππ

m−N , the remaining, 4th equation,
takes the form

2a′′/B + (2a′′/B)ε1πππm−N + πππm−N (ε21 −Dv2
1) ∈ πππmRE ,

or
2a′′/B + πππm−N ((ε1 + a′′/B)2 − (a′′/B)2 −Dv2

1) ∈ πππmRE ,

and finally

(2a′′/B)(1− (a′′/2B)πππm−N ) + πππm−N (ε2 −Dv2
1) ∈ πππmRE ,

where ε = ε1 + a′′/B. Note that when uu ≡ −1, a has to be replaced by c
in these equations.

We claim that to have a solution, we must have 2m ≤ N +M . Indeed,
ε2 − Dv2

1 ∈ R. Put Imx = x − x for x ∈ RE . Recall that aa = 1 = cc.
Then Im(a− 1)/(a− c) = −a′c′/(a′ − c′) ∈ πππMR×E , hence

Im(a′′/B) = πππN−m Im(a′/(a′ − c′)) ∈ πππM+N−mR×E ,

and our equation will have no solution unless M +N −m ≥ m. For such m
we may regard a′′/B as lying in R, rather then RE . There are two subcases.

If N < m ≤M/2, thus m ≤M −m, our equation reduces to ε2−Dv2
1 ∈

πππNR. Then ε, v1 ∈ πππ[(N+1)/2]R, thus

(uu)−1 = 1 + (ε− a′′/B)πππm−N ∈ 1 + απππM−N + πππm−N+[(N+1)/2]R.

Let us compute the number of solutions u, v. First, note that for 0 < k ≤ m
we have

#{u ∈ R×E/1 + πππmRE ; uu ∈ 1 + πππkR}

=
[R×E : 1 + πππmRE ]
[R×: 1 + πππmR]

[πππkR:πππmR] = (1 + q−1)qm · qm−k .
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Hence

#{u ∈ R×E/1 + πππmRE ; (uu)−1 ∈ 1 + απππM−N + πππm−N+[(N+1)/2]R}

= (1 + q−1)qm+N−[(N+1)/2] .

Further, the cardinality of the set of v ∈ R/π2mR such that v = v1πππ
m−N ,

v1 ∈ π[(N+1)/2]R, thus v ∈ πππm−N+[(N+1)/2]R, is qm+N−[(N+1)/2]. Hence the
number of solutions is (1 + q−1)q2m+2N−2[(N+1)/2], as asserted in case (d)
of the proposition.

If M − m < m, thus 2N , M < 2m ≤ M + N , we need to solve the
equation

ε2 −Dv2
1 ∈ απππM+N−2m + πππNR = απππM+N−2m(1 + πππ2m−MR).

Since F (
√
D)/F is unramified, there is a solution precisely when M +N is

even. Put
ε = πππ

1
2 (M+N)−mε2, v1 = πππ

1
2 (M+N)−mv2.

So we need to solve ε22 −Dv2
2 ∈ 1 + πππ2m−MR. Namely we count the pairs

{(u ∈ R×E/1 + πππmRE ; v = v1πππ
m−N = πππ(M−N)/2v2 ∈ R/πππ2mR)}

such that

(uu)−1 = 1 + ε1πππ
m−N = 1 + (ε− a′′/B)πππm−N + π(M−N)/2ε2

and ε22 −Dv2
2 ∈ 1 + πππ2m−MR. The relation ε22 −Dv2

2 ∈ 1 + πππ2m−MR can
be replaced by ε22 −Dv2

2 ∈ R× if we multiply the cardinality by the factor
[R×: 1 + πππ2m−MR]−1, and it can be replaced by ε2 ∈ R and v2 ∈ R if we
further multiply by the quotient [RE :R×E ] of the volume of RE by that of
R×E . Then the number of u is

([R×E : 1 + πππmRE ]/[R×: 1 + πππmR])[πππ(M−N)/2R:πππmR],

and the number of v is [πππ(M−N)/2R:πππ2mR]. The product is

=([R×E : 1 + πππmRE ]/[R×: 1 + πππmR])[πππ(M−N)/2R:πππmR]

·[πππ(M−N)/2R:πππ2mR][RE :R×E ][R×: 1 + πππ2m−MR]−1

=(1 + q−1)qm · qm−(M−N)/2 · q2m−(M−N)/2

· (1− q−2) · ((1− q−1)q2m−M )−1

=(1 + q−1)2q2m+N .
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This completes case (e) of the proposition.
It remains to consider 1 ≤ m ≤ N . Then πππN ≡ 0 (modπππm), thus

a′−c′ ≡ 0 (modπππm). Considering the entries (1, 1) and (2, 2) of our matrix
identity, we get (a + c)/2 ≡ 1(modπππm) (since b ≡ 0 (modπππm)). Then
a′ + c′ ≡ 0 (modπππm), and a′′ = a′πππ−m, c′′ = c′πππ−m ∈ RE . Denoting
b′ = bπππ−m, N ′ = N −m, we see that the first three equations are always
solvable:
b′ = uuBπππN

′
,

a2 = (a′′ + c′′)/2 + uuBπππN
′
(1− w),

−b3 = (a′′ + c′′)/2 + uuBπππN
′
(1 + w)

(these equations simply define b, a2, b3). The remaining equation is

a′ + c′ +
1
2
(a′ − c′)uu(1 + (uu)−2 −Dv2) = 2a3πππ

2m.

When 2m ≤ N,N+ every u, v makes a solution. This completes case (a)
of the proposition. If N+ < N , 2m, then there are no solutions.

It remains to deal with the case where N ≤ N+ and N < 2m. Put
ε = (uu)−1 ∈ R×, x = (a′ + c′)/(a′ − c′). We have to solve the equation
ε2 + 1−Dv2 + 2εx ∈ πππ2m−NRE . Note that Im(x) ∈ πππN1+N2−NR×E . Since
N ≤ N+, we have N = min(N1, N2), and 2m ≤ 2N ≤ N1 +N2 = N +M .
Hence Im(x) ∈ πππ2m−NRE , and we may assume that x ∈ R. Thus we need
to solve

(ε+ x)2 −Dv2 ∈ x2 − 1 + πππ2m−NR,

for a fixed x ∈ πππN+−NR× ⊂ R. Once we find a solution, in ε ∈ R, then
ε ∈ R×; otherwise ε ∈ πππR, hence Dv2 ∈ 1 + πππR, but D 6∈ R×2. Note that
x± 1 is 2a′/(a′ − c′) or 2c′/(a′ − c′), so

x2 − 1 = 4a′c′/(a′ − c′)2 ∈ πππN1+N2−2NR×E = πππM−NR×E .

We distinguish between two cases.
If N/2 < m ≤ min(N, [M/2]) and N ≤ N+, then M −N ≥ 2m−N > 0,

and we must have N = N+ (thus |x| = 1). Thus we need to count the
ε = (uu)−1 ∈ −x+ πππm−[N/2]R and v ∈ πππm−[N/2]R/πππ2mR. Then

#{u ∈ R×E/1 + πππmRE ; uu ∈ 1 + πππm−[N/2]R}

is (1+q−1)qm+[N/2], while the number of the v is qm+[N/2]. This completes
case (b) of the proposition.
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If M/2 < m ≤ N(≤ N+), thus M − N < 2m − N , we need to solve
(ε + x)2 −Dv2 ∈ απππM−N + πππ2m−NR = απππM−N (1 + πππ2m−MR) (for some
α ∈ R×). There is a solution precisely whenM−N is even (asNR×E = R×).
As noted above, given a solution, ε must be in R×. To compute the volume
of solutions, fix measures with∫

R×
E

d×u =
∫
R×

d×ε

and d×ε = (1− q−1)−1dε (thus
∫
R×

d×ε =
∫
R
dε). Put

A = δ({(uu+ x)2 −Dv2 ∈ απππM−N (1 + πππ2m−MR)}),

B = δ({ε2 −Dv2 ∈ πππM−Nα(1 + πππ2m−MR)}).

Then the volume is

(1− q−2)q4m
∫
u∈R×

E

∫
v∈R

Ad×udv

= (1− q−2)q4m(1− q−1)−1

∫
ε∈R

∫
v∈R

Bdεdv

= (1− q−2)(1− q−1)−1q4mq−(M−N)

∫
z∈RE

δ({Nz ∈ 1 + πππ2m−MR})dz .

The last integral ranges only over R×E , and there dz/|z| = (1 − q−2)d×z.
Now ∫

R×
δ({z ∈ 1 + πππ2m−MR})d×z

is the inverse of

[R×: 1 + πππ2m−MR] = (1− q−1)q2m−M .

Altogether we get

(1− q−2)2(1− q−1)−2q4m+N−M−2m+M = (1 + q−1)2q2m+N ,

completing case (c), and the proposition.
An alternative volume computation is as follows. The cardinality of

{(u ∈ R×E/1 + πππmRE , v ∈ R/πππ2mR) ;
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(uu+ x)2 −Dv2 ∈ απππM−N (1 + πππ2m−MR)}

is (1 + q−1)qm times

#{(ε ∈ R×/1 + πππmR , v ∈ . . . ) ; (ε+ x)2 −Dv2 ∈ . . . },

and since ε must be in R× to have a solution, this # is equal to

#{(ε ∈ R/πππmR , v ∈ R/πππ2mR) ; ε2 −Dv2 ∈ απππM−N (1 + · · · )}.

As ε = ε1πππ
(M−N)/2, v = v1πππ

(M−N)/2, this product is

(1 + q−1)qm · qm−(M−N)/2 · q2m−(M−N)/2

· vol{z ∈ RE ; Nz ∈ 1 + πππ2m−MR},

which equals (1 + q−1)2q2m+N , as required. �

12. Proposition. When ρ = 0 the orbital integral
∫
Tρ\G 1K(g−1tρg)dg

is equal, if N1 < N , in which case N+ = N1 = N2, to

− q + 1
q4 − 1

(1 + q2+4[N1/2])− (−q)N+N1

q − 1
+ δ(2 | N +N+)

q + 1
q − 1

q2N1+N ,

and if N ≤ N1 to

− q + 1
q4 − 1

(1 + q2+4[N/2])− (−q)M+N

q − 1
+ δ(2 |M −N)

q + 1
q − 1

q2N+M .

Proof. It suffices to prove this with N1 replaced by N+, as N1 < N

precisely when N+ < N , in which case N+ = N1. If N+ < N , j = 0
contributes

1 +
∑

1≤m≤min([N/2],[N+/2])

(1− q−2)q4m =
q2 − 1
q4 − 1

(1 + q2+4[N+/2]) .

The j > 0 contributes, when δ = 0, thus N +N+ is odd, the expression:

−q
2 + q

q4 − 1
(1 + q2+4[N+/2]) +

qN+N+

q − 1
,
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while when δ = 1, thus N +N+ is even, the j > 0 contribute to the orbital
integral:

−q
2 + q

q4 − 1
(1 + q2+4[N+/2]) +

1
q − 1

(
q1+2[N+/2]+2[N/2]

+(q + 1)qN+2N+
− (q + 1)qN+2[N+/2]

)
.

The sum is as stated in the proposition.
If N ≤ N+, the sum is (when M/2 < N and also when M/2 ≥ N)

q2 + q

q4 − 1
(q4[N/2] − 1) + 1 + q2(q2 − 1)

∑
0≤m<[N/2]

q4m

+ (1 + q−1)q2[N/2]
∑

[N/2]+1≤m≤[M/2]

q2m

+ δ(2 |M −N)(1 + q−1)2qN
∑

[M/2]+1≤m≤[(M+N)/2]

q2m

= − q + 1
q4 − 1

+
q4 + q

q4 − 1
q4[N/2] + q2[N/2]+1 · q

2[M/2] − q2[N/2]

q − 1

+ δ
q + 1
q − 1

qN (qM+N − q2[M/2]) ,

which is easily seen to be the expression of the proposition (consider sepa-
rately the cases of even (δ = 1) and odd (δ = 0) values of M −N). �

F. Conclusion

Put Φ(t) =
∫
Z(t)\G 1K(g−1tg)dg. In the notations of Proposition 1 for

anisotropic tori which split over E, the κ-orbital integral is

Φκ1K
(t0) = Φ(t1) + Φ(t2)− Φ(t3)− Φ(t4).

The tori T1 = Z(t1) and T2 = Z(t2) (Z(t) is the centralizer of t in G) embed
as tori inH. Denote byKH the maximal compact subgroupH ∩K ofH, by
1KH

its characteristic function in H, choose on H the Haar measure which
assigns KH the volume 1, introduce the stable orbital integral Φst

1KH
(t0) =
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ΦH(t1) + ΦH(t2), where ΦH(t) =
∫
ZH(t)\H 1KH

(h−1th)dh and ZH(t) is the
centralizer in H of a regular t in H. It is well known (see, e.g., [F2;I],
Proposition II.5) that Φst

1KH
(t0) = (qN (q + 1) − 2)/(q − 1) (where E/F is

unramified).

Remark. A proof of the last equality — extracted from Mars’ letter
mentioned in the Remark following the proof of Proposition 4 — is as
follows. Thus G = GL(V ) and K = Stab(RE), dg on G assigns K the
volume 1, dt on E× assigns R×E the volumes 1, and γ ∈ E× − F×. Then∫

E×\G
1K(g−1γg)dg/dt is

∑
E×\G/K

|K|/|E× ∩ gKg−1|1K(g−1γg).

But E×\G/K is the set of E×-orbits on the set of all lattices in E. Rep-
resentatives are the lattices RE(j), j ≥ 0. So our sum is the sum of
|R×E |/|RE(j)×| = [R×E : RE(j)×] over the j ≥ 0 such that γ ∈ RE(j)×.
As [R×E : RE(j)×] is 1 if j = 0 and qj+1−f (qf − 1)/(q − 1) if j > 0,
putting N for the maximum of the j with γ ∈ RE(j)×, the integral equals
(qN (q + 1)− 2)/(q − 1) if e = 1, and (qN+1 − 1)/(q − 1) if e = 2 (ef = 2).
Of course, the integral vanishes for γ not in R×E . If γ = a+ bw ∈ R×E , then
N is the order of b. Note that the stable orbital integral on the unitary
group H in two variables is just the orbital integral on GL(2).

Put ∆G/H(t0) = (−q)−N1−N2 . The fundamental lemma is the following.

13. Theorem. For a regular t0 we have ∆G/H(t0)Φκ1K
(t0) = Φst

1KH
(t0).

Proof. Note that Φ(t2) depends only onN1, N2, N , so we write Φ(t2) =
ϕ(N1, N2, N), and so Φ(t3) = ϕ(N,N2, N1) and Φ(t4) = ϕ(N1, N,N2). If
N = N2 < N1, Φ(t2) = Φ(t4), hence ΦK(t0) = Φ(t1) − Φ(t3), and this
difference is

− 2
q − 1

(−q)N2+N1 + (δ(2 | N1 −N2)− δ(2 | N1 − 1−N2))
q + 1
q − 1

qN1+2N2 ,

as required.
If N = N1 ≤ N2, Φ(t2) = Φ(t3), hence Φκ(t0) = Φ(t1)− Φ(t4), and this

difference is

− 2
q − 1

(−q)N1+N2 + (δ(2 | N2 −N1)− δ(2 | N2 − 1−N1))
q + 1
q − 1

qN2+2N1 ,
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as required.
If N1 = N2 < N , Φκ(t0) is the sum of

Φ(t1) = − q + 1
q4 − 1

(1 + q2+4[N1/2])

− (−q)N+N1

q − 1
+ δ(2 | N +N1)

q + 1
q − 1

qN+2N1 ,

Φ(t2) = − q + 1
q4 − 1

(1 + q2+4[N1/2])

+
(−q)N+N1

q − 1
+ δ(2 | N − 1−N1)

q + 1
q − 1

qN+2N1 ,

and
−Φ(t3)− Φ(t4) = −2

q + 1
q4 − 1

(q4[N1+2)/2] − 1) .

This sum is − 2q2N1

q−1 + q+1
q−1q

N+2N1 , as required.
Since the two minimal numbers among N1, N2, N are equal, we are

done. �

We now turn to the ramified case. It remains to deal with regular t′ in
the torus TH′ ⊂ H ′ ⊂ G′ of Proposition 1.

14. Proposition. The integral
∫
H′/H′m

1H′m(h−1t′h)dh of Proposition 3
is equal to

(q + 1)q4m if 0 ≤ m ≤ min([N/2], [N2/2]),

and to

(q + 1)qN+2m if N ≤ N2 and [N/2] < m ≤ N.

Here

t′ = diag(δ−1
(
α βπππ

β α

)
, 1), δδ = α2 − πππβ2 = 1, β = BπππN

and δ = δ1 + δ2
√
D, δ2 = D2πππ

1+N2 , and B, D2, δ1, α ∈ R×.

Proof. We need to compute the number of c ∈ RE/πππ
mRE , and a ∈

R×E/1 + πππ1+2mRE , for which(
a −cπππ
−cu au

)
δ
(
α βπππ

β α

) ( a ucπππ
c ua

)
= δ

(
α+πππβ(ac−ac) βπππu(a2−πππc2)

a2βu−πππβc2u α+πππβ(ac−ac)

)
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lies in H ′m. Using the description of H ′m in Proposition 4, this is equivalent
to solving two equations: |β(a2 − πππc2)| ≤ |πππ|m, which means 0 ≤ m ≤ N

since a ∈ R×E , c ∈ RE , β ∈ πππNR× (note that there is no constraint on
u ∈ E1, and the volume of E1 is 1), and |α + πππβ(ac − ac) − δ| ≤ |πππ|1+2m.
Replacing c by c/a, the equations simplify to aa − πππcc/aa = 1, and |α +
πππβ(c−c)−δ| ≤ |πππ|1+2m. The last equation implies α−δ1 ∈ πππ1+2mR. Since
α2 = 1+B2πππ1+2N , and 1 = δδ = δ21−Dδ22 , we conclude that δ22 ∈ πππ1+2mR,
hence δ2 = D2πππ

1+N2 ∈ πππ1+mR, and m ≤ N2. Put

c = c1 + c2i, i =
√
D, c− c = −2ic2, c2 = C2πππ

n2 (C2 ∈ R×).

Then our equation becomes −2BC2πππ
N+n2 −D2πππ

N2 ∈ πππ2mR.
We shall now determine the number of c. If 0 ≤ m ≤ [N/2], then 2m ≤

N , hence 2m ≤ N2 (if there are solutions to our equation), namely m ≤
[N2/2], and any (C2 and) c is a solution. The number of c is #RE/πππmRE =
q2m. If [N/2] < m ≤ N , thus m ≤ N < 2m, we consider two subcases.
If m ≤ [N2/2], or 2m ≤ N2, then N < N2, and there are solutions C2

precisely when n2 ≥ 2m−N , and any C2 is a solution. Then

c2 = C2πππ
n2 ∈ πππ2m−NR/πππmR ' R/πππN−mR

has qN−m possibilities, c1 ∈ R/πππmR has qm, and #c = qN . If m > [N2/2],
or N2 < 2m, there are solutions only when n2 = N2 − N (n2 ≥ 0 implies
N ≤ N2), and the solutions are given by C2 ∈ −D2/2B + πππ2m−N2R, and
again c2 is determined modulo

πππn2πππ2m−N2R/πππmR = R/πππN−mR.

Given c ∈ RE/πππ
mRE , we need to solve in a ∈ R×E/1 + πππ1+2mRE the

equation

(aa)2 − aa+ 1/4 = 1/4− πππcc, namely (aa− 1/2)2 = (1− 2πππcc+ · · · )2/4,

or aa = 1/2 ± (1 − 2πππcc + · · · )/2. There are no solutions for the negative
sign, and there exists a solution for the positive sign. The number of

a ∈ R×E/1 + πππ1+2mRE with aa ∈ v + πππ1+2mR (v ∈ R×)

is #(R×E/1 + πππ1+2mRE)/#(R×/1 + πππ1+2mR)

= ((q2 − 1)q2·2m/(q − 1)q2m) = (q + 1)q2m,

as asserted. �
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15. Proposition. The last orbital integral of Proposition 3, of 1K at a
regular t = gt′g−1 ∈ G, where t′ ∈ TH′ ⊂ H ′ ⊂ G′, is

(q4+4 min− 1)/((q2 + 1)(q− 1)) + δ(N ≤ N2)qN (q2N+2− q2[N/2]+2)/(q− 1).

Here min = min([N/2], [N2/2]), and N , N2 are defined in Proposition 14.

Proof. The integral is equal to∑
0≤m≤min

(q + 1)q4m + δ(N ≤ N2)
∑

[N/2]<m≤N

(q + 1)qN+2m,

which is equal to the asserted expressions. �

The κ-orbital integral Φκ1K
(t) of 1K on the stable conjugacy class of a

regular t ∈ TH ⊂ H ⊂ G is the difference of

Φ(t) =
∫
TH\G

1K(x−1tx)dx and Φ′(t) =
∫
ZG(t′′)\G

1K(x−1t′′x)dx,

where t′′ = gt′g−1 ∈ G is stably conjugate to t (and t′ ∈ TH′ ⊂ H ′ ⊂
G′ = g−1Gg). The stable conjugacy class of t in H consists of a single
conjugacy class, and it is well known (see Remark before Theorem 13) that
Φst

1KH
(t) = ΦH(t) = (qN −1)/(q−1), where N is defined in Proposition 14.

The transfer factor ∆G/H(t) is (−q)−n, where if t = (t1, 1) ∈ (EL/K)1×E1,
the n is defined by t1 − 1 ∈ πππnELR

×
EL.

16. Theorem. For a regular t we have ∆G/H(t)Φκ1K
(t) = Φst

1KH
(t).

Proof. Since t = (α+β
√
πππ)(δ1−iδ2) is (1+B2πππ1+2N/2+· · ·+B

√
ππππππN )

times
(1 +DD2

2πππ
2+2N2 + · · · −

√
DD2πππ

1+N2),

namely 1 + BπππN+1/2 −
√
DD2πππ

1+N2 + · · · , we have that n is equal to
min(1 + 2N, 2 + 2N2). If N ≤ N2, we then need to show that

Φκ1K
(t) = −q1+2N (qN+1 − 1)/(q − 1).

When N2 < N , we have to show that

Φκ1K
(t) = q2+2N2(qN+1 − 1)/(q − 1).

Proposition 9 gives an explicit expression for Φ(t). Proposition 15 gives an
explicit expression for Φ′(t). The difference, Φκ1K

(t), is easily seen to be
equal to ΦH(t). �
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G. Concluding remarks

Langlands — who stated the fundamental lemma and explained its impor-
tance to the study of automorphic forms by means of the trace formula —
suggested a proof based on counting vertices of the Bruhat-Tits building of
G. Such a proof ([LR], p. 360 [by Kottwitz, in the EL — or ramified —
case], and p. 388 [by Blasius-Rogawski, in the E — or unramified — case];
both cases are attributed by [L6], p. 52 to the last author [who claimed
them in the last page of his thesis]) presumes building expertise, which I
do not have. This technique has not yet been applied in rank > 1 unstable
cases.

Since the orbital integrals are just integrals, our idea is simply to perform
the integration in a naive fashion, using the fact that T ⊂ H, and using
a double coset decomposition H\G/K, which we easily establish here. We
then obtain a direct and elementary proof, using no extraneous notions.
The integrals which we compute are nevertheless nontrivial, and this is
reflected in our computations. We have used this direct approach to give
a simple proof of the fundamental lemma for the symmetric square lifting
[F2;VI] from SL(2) to PGL(3) (in the stable and unstable cases), and a
proof [F4;I] of this lemma for the lifting from GSp(2) to GL(4), a rank-two
case, by developing and combining twisted analogues of ideas of Kazhdan
[K1] and Weissauer [We], who had dealt with endoscopy for GSp(2) (an
alternative approach — using lattices — was later found by J. G. M. Mars;
see section I.6 below). The importance of the fundamental lemma led us
to test this technique in our case. Thus here we apply our direct approach
to give an elementary and self contained proof in the unitary case.

I.4 Admissible representations

4.1 Induced representations

The diagram of dual groups homomorphisms implies a diagram of liftings
of unramified representations, and of representations induced from charac-
ters of the diagonal (minimal Levi) subgroup. When E/F , κ and ω are
unramified, this is done via the Satake transform. Let us review these basic
facts.
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If P is a parabolic subgroup of a connected reductive groupG, and (η, V1)
is a representation of a Levi subgroup M of P , the representation π = I(η)
of G normalizedly induced from η is the G-module whose space consists of
all functions ϕ : G→ V1 with ϕ(mngu) = δ

1/2
P (m)η(m)ϕ(g) for all m ∈M ,

n ∈ N (the unipotent radical of P ), g ∈ G and u ∈ Uϕ, an open compact
subgroup of G. Here δP (m) = |det(Ad(m))|n|, n is the Lie algebra of
N . Normalized induction means the presence of δ1/2P in the transformation
formula satisfied by ϕ. It secures the unitarizability of I(η) when η is
unitarizable. The action of G is by right shifts: (π(g)ϕ)(h) = ϕ(hg). When
η is admissible, which means that that each vector in its space is fixed by
some open subgroup, and that for each open subgroup the dimension of the
space of vectors fixed by it is finite, then I(η) is admissible too ([BZ1]). If
Ind indicates unnormalized induction then I(η) = Ind(δ1/2P η).

Here are the cases of concern in this part. In the case of H = U(2, E/F ),
a character of the diagonal has the form diag(a, a−1) 7→ µ(a) (a in E×),
the corresponding (normalizedly) induced module is denoted by ρ = ′I(µ),

and δ(diag(a, a−1)) = |aa|F = |a|E , as NH =
{(

1 x

0 1

)
; x ∈ F

}
.

On G = U(3, E/F ), a character of the diagonal whose restriction to the
center is ω is given by diag(a, b, a−1) 7→ µ(a)(ω/µ)(b). The associated nor-
malizedly induced G-module is denoted by I(µ). Here δ(diag(a, b, a−1)) =
|a|2E . If i ∈ E − F has i+ i = 0, then

N =
{(

1 x iy+ 1
2xx

0 1 x

0 0 1

)
; x ∈ E, y ∈ F

}
.

Further, I(η) denotes the G′ = GL(3, E)-module normalizedly induced
from the character η of the diagonal subgroup E× × E× × E× of G′. The
restriction of η to the center Z ′ is taken to be ω′. Here δ(diag(a, b, c)) =
|a/c|2.

Let us recall what we need from the Satake transform. Fix a Haar
measure dg on G. Let π be an admissible representation of G with central
character ω. If f is a function in C∞c (G,ω−1), the convolution operator
π(fdg) =

∫
G/Z

f(g)π(g)dg has finite rank, hence has a finite trace. Such f
is called spherical if it is biinvariant under the maximal compact subgroup
K of G. Here E/F is assumed to be unramified, R denotes the ring of
integers of F and RE that of E, and K = U(3, E/F )(R) is the group of g ∈
GL(3, RE) in G. An admissible representation π is called unramified if its
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space contains a nonzero K-fixed vector. If π is irreducible and unramified,
such a vector is unique up to a scalar multiple. Thus if f is spherical,
trπ(fdg) is zero unless π is unramified.

Denote by f∨ the function f∨(t) =
∑
χ Ff (χ)χ(t) on t ∈ T̂W , where

W is the Weyl group of the torus T̂ in Ĝ (fixed in the definition of the
dual group), as well as of the maximally split torus T in G. The sum
ranges over χ ∈ X∗(T̂ )W ' X∗(T)W . For a regular u ∈ T = T(F ),
put F (u, fdg) = ∆(u)Φ(u, fdg). Here the Jacobian ∆(u) is given by
|det((1 − Ad(u))|n)|1/2. Further, Φ(u, fdg) denotes the orbital integral
of fdg at u. A simple change of variables formula shows that F (u, fdg)
is δB(u)1/2

∫
N

∫
K
f(k−1unk)dkdn, where B is a Borel (minimal parabolic)

subgroup of G (and N is its unipotent radical), hence it depends only on the
image χ of u in T(F )/T(R) → X∗(T). Hence we denote it by F (χ, fdg).
The F (χ, fdg) determine the spherical f completely, and the Satake trans-
form is an isomorphism f 7→ f∨ from the Hecke convolution algebra H of
spherical functions to the algebra C[X∗(T)]W of W -invariant polynomials
on X∗(T).

If π is unramified there is a unique conjugacy class in Ĝ, represented by
t = t(π) in T̂ /W , such that trπ(fdg) = f∨(t) (note that F (fdg) depends
too on the choice of measure dg). Note that each irreducible unramified
representation is the unique unramified irreducible constituent in the un-
ramified representation normalizedly induced from the unramified character
u 7→ χu(t(π)) of B/N .

Now our diagram and the Satake transform formally imply a lifting of
unramified representations. For example, e : LH → LG implies t 7→ e(t),
that is πH(t) 7→ π(e(t)). Moreover, a dual group map gives rise to a
dual map, e.g. e∗ : H → HH , of Hecke convolution algebras of spheri-
cal functions: e∗(f) = ′f is defined by trπH(t)(′fdh) = ′f∨(t) = f∨(e(t)) =
trπ(e(t))(fdg).

Let us make explicit the liftings of unramified representations, or rather
the unramified induced representations, implied by our diagram, and the
Satake transform. Put µ for µ(x) = µ(x).

1. Proposition. (1) Basechange, b, maps I(µ) to I(µ, ω′µ/µ, µ−1).
(2) The endo lifting map e maps ′I(µ) to I(κµ).
(3) The endo basechange map e′ maps ′I(µ) to I(µ, ω′µ/µ, µ−1).
(4) The functor i indicates induction: the H ′-module τ maps to the
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G′-module I(τ).
(5) The unstable basechange map b′ maps ′I(µ) to the H ′-module
′I(µ, µ−1)⊗ κ.
(6) The stable basechange map b′′ maps ′I(µ) to ′I(µ, µ−1).

This Proposition deals with the case where E/F , κ and ω are unramified.
But the result is valid under no restriction. To explain this, let E/F be a
quadratic extension of local fields, and denote by π, Π and ρ representations
of U(3, E/F ), PGL(3, E), U(2, E/F ), or of GL(3, F ), GL(3, F )×GL(3, F ),
GL(2, F ) if E = F ⊕ F .

Definition. Let (π,Π), (ρ, π) or (ρ,Π) be a pair of induced representa-
tions. We say that π basechange lifts to Π, ρ endo-lifts to π, or ρ e′-lifts to
Π, if for all matching pairs (fdg, φdg′), (′fdh, fdg) and (′φdh, φdg′) of mea-
sures (see I.2), we have trπ(fdg) = trΠ(φdg′ × σ), trπ(fdg) = tr ρ(′fdh),
trΠ(φdg′ × σ) = tr ρ(′φdh).

Similar statements hold with respect to the maps b′, b′′, as discussed in
[F3;II]. These relations in the induced case give a hint to be pursued in the
general case.

Using the definition of matching of functions in I.2, and the standard
computation [F2;I] or [F4], of characters of induced modules (and the
twisted character of I(η) when η is a σ-invariant character), it is easy to
check that:

2. Proposition. We have: (1) π = I(µ) basechange lifts to Π =
I(µ, ω′µ/µ, µ−1);
(2) ρ = ′I(µ) endo-lifts to π = I(κµ);
(3) ρ = ′I(µ) e′-lifts to Π = I(µ, ω′µ/µ, µ−1);
(4) ′I(µ) b′-lifts to ′I(µ, µ−1)⊗ κ and b′′-lifts to ′I(µ, µ−1).

The definition of lifting given above extends to the case of basechange of
one-dimensional and Steinberg representations, as follows. A representation
of U(3, E/F ) of dimension one has the form µG : g 7→ µ(det g), where µ is
a character of E1. A one-dimensional representation of GL(3, E) has the
form µ′G′ : g 7→ µ′(det g), where µ′ is a character of E×.

Now µG is the unique nontempered irreducible constituent (in fact a
quotient) in the composition series of the induced representation I(µν) of
U(3, E/F ). The only other constituent, in fact a subrepresentation, denoted
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StG(µ), is square integrable, named the Steinberg representation (see 4.3
below).

Similarly, µ′G′ is the unique irreducible quotient in the composition series
of the induced representation Π = I(µ′ν, µ′, µ′ν−1) of GL(3, E). This Π has
a unique irreducible subrepresentation, which is square integrable, denoted
StG′(µ′) and named the Steinberg representation. There are two other
irreducible constituents in the composition series of Π, nontempered and
non-σ-invariant, which are mapped to each other by σ. Both µ′G′ and
StG′(µ′) are σ-invariant.

Proposition 3. For each character µ of E1, the representation µG of H
basechange lifts to µ′G′ , where µ′(x) = µ(x/x), and StG(µ) lifts to StG′(µ′).

Proof. It follows from the Weyl integration formula of 4.2 below that
trµ′G′(φdg

′ × σ) = trµG(fdg) for all matching measures fdg and φdg′.
Proposition 2 implies the statement for the Steinberg representations since
tr I(µ′ν, µ′, µ′ν−1;φdg′ × σ) equals the sum of trµ′G′(φdg

′ × σ) and

tr StG′(µ′)(φdg′ × σ).

Indeed, the other two constituents in the composition series of Π are not
σ-invariant, hence have twisted-trace zero. �

Analogous definitions and results apply in the case where E = F ⊕ F .
Let us briefly recall the lifting in the case where the place v splits in E

(see [F1;III], section 1.5, for a fuller discussion in the case of basechange).
In this case Ev = Fv ⊕ Fv and H, G, G′ are GL(2, Fv), GL(3, Fv) and
GL(3, Fv) × GL(3, Fv). We now omit v for brevity. The generator σ of
Gal(E/F ) acts on G′(F ) = G(E) by mapping (x, x′) to (θx′, θx) where
θx = J tx−1J for x in G. The component at v of the global character κ is
a character of E× = F× × F× invariant under σ. It is a pair (κ, κ−1) of
characters of F×.

The notion of local lifting which we use when E = F ⊕F is again defined
via character relations, thus e.g. π basechange lifts to Π if trπ(fdg) =
trΠ(φdg′ × σ) for all matching fdg, φdg′. Recall that matching functions
is a relation defined in this case in [F1;III], section 1.5. It is then easy to
check ([F1;III], section 1.5, in the case of basechange; computation of the
character of an induced G-module in the endo-cases), that
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Proposition 4. (1) π lifts to Π = π ⊕ σπ by basechange;
(2) τ lifts to I(τ ⊗ κ) in the case of endo-lifting, where κ is the character
of F× fixed in the definition of the endo-lifting;
(3) τ lifts to I(τ)⊕ I(στ) = I(τ ⊕ στ) in the case of σ-endo-lifting.

Here (σπ)(x) = π(σx), and (στ)(x) = τ(σx), as usual.

4.2 Characters

Our study of the lifting is based on the Harish-Chandra theory [HC2]
of characters, which we briefly now record. Let π be a representation of a
connected reductive p-adic group G. Suppose it is irreducible. By Schur’s
lemma it has a central character, say ω. Suppose it is also admissible.
Then for each test function f in C∞c (G,ω−1) and Haar measure dg, the
convolution operator π(fdg) =

∫
G/Z

f(g)π(g)dg has finite rank. Hence the
trace trπ(fdg) is defined. Then [HC2] asserts the following.

Proposition 1. There exists a complex valued function χπ on G which
is locally constant on the regular set of G, conjugacy invariant, transforms
by χπ(zg) = ω(z)χπ(g) under Z, and is locally integrable, such that for all
f in C∞c (G,ω−1) we have

trπ(fdg) =
∫
G/Z

χπ(g)f(g)dg.

The method of [HC2] applies in the twisted case too. Let Π be an ir-
reducible σ-invariant G′-module. Thus σΠ ' Π, where σΠ(g) = Π(σ(g)).
Then there is a nonzero intertwining operator A : Π → σΠ with AΠ(g) =
Π(σ(g))A. In particular A2 is a scalar by Schur’s lemma, since Π is ir-

reducible. Replacing A by its product with the complex number
√
A2
−1

we see that A2 = 1 and A is unique up to sign. This sign can be fixed
by requiring, when Π is generic, that A acts on the Whittaker model by
AW (g) = W (σ(g)), and when Π is unramified, that A fixes the unique
(up to scalar) K-fixed vector. These normalizations are clearly compat-
ible. Put Π(σ) = A. Denote by Π(φdg′ × σ) the convolution operator∫
G′/Z′

φ(g′)Π(g′ × σ)dg′, dg′ is a Haar measure. Harish-Chandra’s theory
[HC2] extends to the twisted case (see [Cl2]) to assert:
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Proposition 2. Given an admissible irreducible σ-invariant G′-module
Π with central character ω′, there exists a locally-integrable function χσΠ on
G′, which transforms by ω′ on Z ′, satisfies χσΠ(g) = χσΠ(xgσ(x)−1) for all
x and g in G′, and is smooth on the σ-regular set, such that trΠ(φdg′× σ)
is equal to

∫
G′/Z′

χσΠ(g′)φ(g′)dg′ for all φ.

Also we use the Weyl integration formula. Let {T} be a set of repre-
sentatives for the conjugacy classes of tori in G. An element of G is called
regular if its centralizer in G is a torus. Write Int(g)t = gtg−1. Then the
regular set Greg of G is the disjoint union ∪{T} Int(G/T )T reg. The Weyl
integration formula asserts:

Proposition 3. For all f ∈ C∞c (G/Z) we have∫
G/Z

f(g)dg =
∑
T

[W (T )]−1

∫
T/Z

∆(t)2
∫
G/T

f(Int(g)t)
dg

dt
dt.

Here ∆(t)2 is the Jacobian |det(I − Ad(t)|g/t))|, t is the Lie algebra of
T , g of G, and [W (T )] indicates the cardinality of the Weyl group W (T )
(normalizer of T in G, quotient by the centralizer).

In the twisted case we say that g ∈ G′ is σ-regular if gσ(g) is regular.
Write G′σ−reg for the set of such elements. Let {T}s indicate the set of
representatives of stable conjugacy classes of tori T of G. For each T

in this set, write T ′ for its centralizer ZG′(T ) in G′. Then T ′ is a σ-
invariant torus in G′ and T = T ′σ = {t ∈ T ;σ(t) = t} = T ′ ∩ G′. Write
Intσ(g)t = gtσ(g)−1. Proposition I.1.5 shows that

G′σ−reg/Z ′ = ∪{T}s
Intσ(G′/T ′)(T ′σ−reg/Z ′)

= ∪{T}s
Intσ(G′/T )(T ′σ−reg/Z ′T ′1−σ).

Here T ′1−σ = {tσ(t)−1; t ∈ T ′}. Note that T ′σ−reg/Z ′T ′1−σ contains a
set of representatives for the σ-conjugacy classes within each stable σ-
conjugacy class represented in T ′. Put W σ(T ′) for the quotient of the
σ-normalizer {n ∈ G′;nT ′σ(n)−1 ⊂ T ′} of T ′ in G′, by the σ-centralizer of
T ′ in G′. Write ∆(t× σ)2 for the Jacobian |det(I −Ad(t× σ)|g′/t′))|.

The twisted Weyl integration formula asserts:

Proposition 4. For any φ ∈ C∞c (G′/Z ′) we have
∫
G′/Z′

φ(g × σ)dg′

=
∑
{T}s

[W σ(T ′)]−1

∫
T ′/T ′1−σ

∆(t× σ)2
∫
G′/TZ′

φ(Int(g)(t× σ))
dg′

dt
dt.
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4.3 Reducibility

Suppose that E/F is a quadratic extension of local fields, and ν is the
valuation character ν(x) = |x| on E×. Suppose µ′ is a unitary charac-
ter of E×, and s a real number. The induced representations I(µ′νs) and
I(µ′

−1
ν−s) have equal traces, hence equivalent composition series. In par-

ticular they are equivalent if they are irreducible. Hence we assume s ≥ 0.
There are three cases in which an induced G-module is reducible [Ke].

The composition series in these cases has length two (since [W (A)]=2,
where A denotes the diagonal torus), and µ′ is then a character of E×

which is trivial on F× (thus µ′(x) = µ(x/x) for some µ on E1). The cases
are listed in the

Proposition. (1) If µ′3 6= ω′, then I(µ′) is the direct sum of tempered
non-discrete-series G-modules denoted by π+ and π−. Namely the condi-
tion for reducibility is that the restriction to A ∩ SL(3, E), of the character
diag(a, b, a−1) 7→ µ′(a)(ω/µ′)(b) which defines I(µ′) (thus b = a/a), is non-
trivial.
(2) I(µ′κν1/2) has a nontempered component π×µ′ and a discrete-series com-
ponent π+

µ′ .
(3) If ω = θ3, and µ′ = θ/θ for a character θ of E1, then I(µ′ν) has the
nontempered one-dimensional component π(µ′ν), and the Steinberg square-
integrable component St(µ′ν).

Otherwise the induced I(µ′νs) is irreducible.

4.4 Coinvariants

Some of our proofs below are inductive on the rank, and depend on
reduction to the elliptic set of smaller Levi subgroup.

In our rank-one case there is only one induction step, and here we set up
the required notations. Let E/F be a quadratic extension of local fields.

Denote by A the diagonal subgroup, byN the unipotent upper triangular
subgroup of G, and by K the maximal compact subgroup G(R) of G, so
that G = ANK; R is the ring of integers in F . We use the analogous
notations ′A, ′N , ′K in the case of H, and A′, N ′, K ′ in the case of G′, the
even drop the primes if no confusion is likely to occur.
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Definition. (1) If g = ank, a = diag(α, β, α−1) ∈ A, n ∈ N , k ∈ K,
put δ(g) = |α|2. This is the modulus function on G.
(2) For a function f on G, and a = diag(α, β, α−1) ∈ A, put

fN (a) = δ(a)1/2
∫
K

∫
N

f(k−1ank)dndk.

(3) Let (π, V ) be a G-module. The quotient VN of V by the span of the
vectors π(n)v − v (n in N , v in V ) is an A-module π̃N . The normalized
A-module (πN , VN ) of N -coinvariants of π is the tensor product of (π̃N , VN )
with δ1/2.
(4) The central characters of the irreducible constituents in πN , N 6= {1},
are called central exponents of π.

In our case πN consists of up to two characters of A, thus π has at most
two central exponents. In general, if π is admissible, then so is πN (see
[BZ1]).

A theorem of Deligne [D6] and Casselman [C1] asserts

Lemma. At a = diag(α, β, α−1) with |α| < 1 we have χπ(a) = χπ̃N
(a).

Hence ∆χπ(a) = χπN
(a), where ∆(a) = |(α − β)(β − α−1)| (= |α|−1 if

|α| < 1).

Consequently, if f is supported on the conjugacy classes of the a with
|α| < 1, the Weyl integration formula implies that

trπ(fdg) = trπN (fNda).

Similar definitions apply in the cases of H and G′-modules.

Definition. A G-module π is called cuspidal if πN is {0}. A G-module
π is called tempered if its central exponents are bounded, and square inte-
grable if its central exponents are strictly less than 1 on the a with |α| < 1.
In particular, a square-integrable π has at most one central exponent in
πN .

An alternative definition is as follows. An admissible irreducible G-
module π is called square integrable, or discrete series, if it has a coefficient
f(g) = 〈π(g)v, v′〉 which is absolutely square integrable on G/Z, where
Z is the center of G. Such a π is called cuspidal if there is a compactly
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supported (modulo center) such a coefficient, in which case the property
holds for every coefficient.

Remark. Harish-Chandra used the terminology “cuspidal” for what is
currently called square integrable (or discrete series), and he used the termi-
nology “supercuspidal” for what we (and [BZ1]) call cuspidal. It is unnec-
essary to use the term “supercuspidal” when there is no term “cuspidal”.

I.5 Representations of U(2,1;C/RC/RC/R)

Here we record well-known results concerning the representation theories
of the groups of this part in the case of the archimedean quadratic extension
C/R. For proofs we refer to [Wh], §7, to [BW], Ch. VI for cohomology, and
to [Cl1], [Sd] for character relations. This is then used in conjunction with
Theorem III.5.2.1 and its corollaries to determine all automorphic G(A)-
modules with nontrivial cohomology outside of the middle dimension.

We first recall some notations. Denote by σ the nontrivial element of
Gal(C/R). Put z = σ(z) for z in C, and C1 = {z/|z|; z in C×}. Put
H ′ = GL(2,C), G′ = GL(3,C),

H = U(1, 1) =
{
h in H ′;hwth = w =

(
0 1

−1 0

)}
and

G = U(2, 1) =
{
g in G′; gJ tg = J =

(
0 1

−1

1 0

)}
.

The center Z of G is isomorphic to C1; so is that of H. Fix an integer
w and a character ω(z/|z|) = (z/|z|)w of C1. Put ω′(z) = ω(z/z). Any
representation of any subgroup of G which contains Z will be assumed
below to transform under Z by ω.

The diagonal subgroup AH of H will be identified with the subgroup of
the diagonal subgroup A of G consisting of diag(z, z′, z−1) with z′ = 1. For
any character χH of AH there are complex a, c with a+ c in Z such that

χH(diag(z, z−1)) = (“za(z−1)c = ”)|z|a−c(z/|z|)a+c.

The character χH extends uniquely to a character χ of A whose restric-
tion to Z is ω. In fact b = w−a− c is integral, and χ = χ(a, b, c) is defined
by

χ(diag(z, z′, z−1)) = z′b|z|a−c(z/|z|)a+c.
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A character κ of C× which is trivial on the multiplicative group R×+ of posi-
tive real numbers but is nontrivial on R× is of the form κ(z) = (z/|z|)2k+1,
where k is integral.

The H-module I(χH) = I(χH ;BH ,H) = Ind(δ1/2H χH ;BH ,H) normal-
izedly induced from the character χH of AH extended trivially to the upper
triangular subgroup BH of H, is irreducible unless a, c are equal with a+ c

an odd integer, or are distinct integers. If a = c and a+c ∈ 1+2Z then χH
is unitary and I(χH) is the direct sum of two tempered representations. If
a, c are distinct integers the sequence JH(I(χH)) of constituents, repeated
with their multiplicities, in the composition series of I(χH), consists of (1)
an irreducible finite-dimensional H-module FH = FH(χH) = FH(a, c) of
dimension |a − c| (and central character z 7→ za+c), and (2) the two irre-
ducible square-integrable constituents of the packet ρ = ρ(a, c) (of highest
weight |a− c|+ 1) on which the center of the universal enveloping algebra
of H acts by the same character as on FH .

The Langlands classification [L7] (see also [BW], Ch. IV) defines a bi-
jection between the set of packets and the set of Ĥ-conjugacy classes of
homomorphisms from the Weil group

WC/R = 〈z, σ; z in C×, σz = zσ, σ2 = −1〉

to the dual group LH = ĤoWC/R (WC/R acts on the connected component
Ĥ = GL(2,C) by σ(h) = wth−1w−1 (= 1

dethh)), whose composition with
the second projection is the identity. Note that WC/R is the subgroup
C× ∪C×j of H×, where H is the Hamiltonian quaternions, and σ is j. The
norm H → R≥0 defines a norm WC/R → R×>0. Such homomorphism is
called discrete if its image is not conjugate by Ĥ to a subgroup of B̂H =
BHoWC/R. The packet ρ(a, c) = ρ(c, a) corresponds to the homomorphism
y(χH) = y(a, c) defined by

z 7→
(

(z/|z|)a 0

0 (z/|z|)c

)
× z, σ 7→

(
0 −1

1 0

)
× σ.

It is discrete if and only if a 6= c.
The composition y(a, b, c) of y(χH⊗κ−1) = y(a−2k−1, c−2k−1) with

the endo-lift e : LH → LG is the homomorphism WC/R → LG defined by

z 7→
(

(z/|z|)a 0

(z/|z|)b

0 (z/|z|)c

)
× z, σ 7→ J × σ.
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Here b = w−a−c is determined by a, c, and the central character, thus w.
The corresponding G-packet π = π(a, b, c) depends only on the set {a, b, c}.
It consists of square integrables if and only if a, b, c are distinct.

The irreducible representations of SU(2, 1) (up to equivalence) are de-
scribed in [Wh], §7. We proceed to summarize these results, but in the
standard notations of normalized induction, which are used for example
in [Kn], and in our p-adic theory. Thus [Wh], (1) on p. 181, defines the
induced representation
πΛ on space of functions transforming by f(gma) = eΛ(a)f(g),

while [Kn] defines the induced representation
IΛ on space of functions transforming by f(gma) = e(−Λ−ρ)(a)f(g). Thus

πΛ = I−Λ−ρ, π−Λ−ρ = IΛ,

and ρ is half the sum of the positive roots. Note that the convention in
representation theory of real groups is thatG acts on the left: (IΛ(h)f)(g) =
f(h−1g), while in representation theory of p-adic groups the action is by
right shifts: (I(Λ)(h)f)(g) = f(gh), and f transforms on the left: “f(mag)
= e(Λ+ρ)(ma)f(g)”. We write I(Λ) for right shift action, which is equivalent
to the left shift action IΛ of, e.g., [Kn].

To translate the results of [Wh], §7, to the notations of [Kn], and ours,
we simply need to replace Λ of [Wh] by −Λ− ρ. Explicitly, we choose the
basis α1 = (1,−1, 0), α2 = (0, 1,−1) of simple roots in the root system
∆ of gC = sl(3,C) relative to the diagonal h (note that in the definition
of ∆+ in [Wh], p. 181, h should be H). The basic weights for this order
are Λ1 =

(
2
3 ,−

1
3 ,−

1
3

)
, Λ2 =

(
1
3 ,

1
3 ,−

2
3

)
, [Wh] considers πΛ only for “G-

integral” Λ = k1Λ1 + k2Λ2 (thus ki ∈ C, k1 − k2 ∈ Z), and ρ = (1, 0,−1) =
α1 + α2 = Λ1 + Λ2. Then [Wh], 7.1, asserts that IΛ is reducible iff Λ 6= 0
and Λ is integral (ki ∈ Z), and [Wh], 7.2, asserts that IΛ is unitarizable iff
〈Λ, ρ〉 ∈ iR. The normalized notations IΛ are convenient as the infinitesimal
character of IsΛ for any element s in the Weyl group WC = S3 is the
WC-orbit of Λ. In the unnormalized notations of [Wh], p. 183, l. 13,
one has χΛ = χs(Λ+ρ)−ρ instead. The Weyl group WC is generated by
the reflections siΛ = Λ − 〈Λ, α∨i 〉αi, where α∨i = 2αi/〈αi, αi〉 is αi. Put
w0 = s1s2s1 = s2s1s2 for the longest element.

For integral ki = 〈Λ, αi〉 < 0 (i = 1, 2), [Wh], p. 183, l. −3, shows that
IΛ contains a finite-dimensional representation FΛ. Thus FΛ is a quotient
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of Iw0Λ, and has infinitesimal character w0Λ and highest weight w0Λ − ρ.
Note that F in midpage 183 and F+ in 7.6 of [Wh] refer to integral and not
G-integral elements. For such Λ the set of discrete-series representations
sharing infinitesimal character (WC ·Λ) with FΛ consists of D+

s1s2Λ
, D−s2s1Λ,

Dw0Λ ([Wh], 7.6, where “G” should be “Ĝ”). The holomorphic discrete
series D+

s2w0Λ
is defined in [Wh], p. 183, as a subrepresentation of Is2w0Λ,

and it is a constituent also of Iw0s2w0Λ = Is1Λ ([Wh], 7.10) but of no other
IΛ′ . The antiholomorphic discrete series D−s1w0Λ

is defined as a sub of
Is1w0Λ and it is a constituent of Is2Λ = Iw0s1w0Λ, but of no other IΛ′ . The
nonholomorphic discrete series Dw0Λ is defined as a sub of Iw0Λ and it is a
constituent of IsΛ for all s ∈WC, but of no other IΛ′ .

Let us repeat this with Λ positive: ki = 〈Λ, αi〉 > 0 (i = 1, 2) (we replace
Λ by w0Λ).
FΛ is a quotient of IΛ;
D+
s2Λ

lies (only) in Is2Λ, Iw0s2Λ;
D−s1Λ lies (only) in Is1Λ, Iw0s1Λ;
DΛ lies in IsΛ for all s ∈WC.

The induced IΛ is reducible and unitarizable iff Λ 6= 0 and 〈Λ, ρ〉 = 0,
thus k1 + k2 = 0, ki 6= 0 in Z, and Λ = k1(Λ1 − Λ2) = k1s2Λ2 = −k1s1Λ1.
The composition series has length two ([Wh], (i) and (ii) on p. 184, and
7.11). We denote them by π±Λ (corresponding to π±−Λ−ρ in [Wh]). These
π±Λ do not lie in any other IΛ′ than indicated next.

If k1 < 0 then Λ = −k1s1Λ1, π−Λ lies in IΛ and π+
Λ in IsΛ for all s ∈WC.

Thus π−s1Λ lies in Is1Λ and π+
s1Λ

in IsΛ for all s ∈ WC, where Λ ≥ 0 has
k2 = 0, k1 > 0.

If k1 > 0 then Λ = k1s2Λ2, π+
Λ lies in IΛ and π−Λ in IsΛ for all s ∈WC.

Thus π+
s2Λ

lies in Is2Λ and π−s2Λ in IsΛ for all s ∈ WC, where Λ ≥ 0 has
k1 = 0, k2 > 0.

There are also nontempered unitarizable non one-dimensional represen-
tations J±k (k ≥ −1). J+

k is defined in [Wh], p. 184, as a sub of I−kΛ1−ρ,
thus a constituent of I−w0(kΛ1+ρ) = IΛ1+(k+1)Λ2 , and it is a constituent also
of I−s1(kΛ1+ρ) and I−s1s2(kΛ1+ρ) but of no other IΛ′ , unless k = −1 where
J+
−1 is a constituent of IsΛ1 for all s ∈WC.
Similarly J−k is a sub of I−kΛ2−ρ and a constituent of I−w0(kΛ2+ρ) =

I(k+1)Λ1+Λ2 , and a constituent of I−s2(kΛ2+ρ), I−s2s1(kΛ2+ρ) but of no other
IΛ′ , unless k = −1 where J−−1 is a constituent of IsΛ2 for all s ∈ WC (see
[Wh], 7.12, where in (1) Λ2 should be Λ1).
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Let us express this with Λ > 0.
If k1 = 1, k2 = k + 1 ≥ 0, J+

k = J+
s2Λ

is a constituent of IΛ, Iw0Λ, Is2Λ,
Is2s1Λ.

If k2 = 1, k1 = k + 1 ≥ 0, J−k = J−s1Λ is a constituent of IΛ, Iw0Λ, Is1Λ,
Is1s2Λ.

To compare the parameters k1, k2 of IΛ with the (a, b, c) of our induced
I(χ), which is Ind(δ1/2G χ;B,G), note that Λ(diag(x, y/x, 1/y)) = xk1yk2

and χ(diag(x, y/x, 1/y)) = xa−byb−c. Thus k1 = a− b, k2 = b− c. We then
write I(a, b, c) for IΛ with k1 = a− b, k2 = b− c, extended to U(2,1) with
central character w = a + b + c. If gJ tg = J and z = det g, then zz = 1,
thus z = eiθ, −π < θ ≤ π, then x = eiθ/3 has that h = x−1g satisfies
hJ th = J and xx = 1, and deth = 1. Note that Is1Λ gives I(b, a, c) and
Is2Λ gives I(a, c, b).

Here is a list of all irreducible unitarizable representations with infini-
tesimal character Λ = k1Λ1 + k2Λ2, integral ki ≥ 0, Λ 6= 0.
k1 = k2 = 1: FΛ, J+

0 , J−0 , D+
s2Λ

, D−s1Λ, DΛ.
k1 > 1, k2 > 1: FΛ, D+

s2Λ
, D−s1Λ, DΛ.

k1 > 1, k2 = 1: FΛ, J−k1−1, D
+
s2Λ

, D−s1Λ, DΛ.
k1 = 1, k2 > 1: FΛ, J+

k2−1, D
+
s2Λ

, D−s1Λ, DΛ.
k1 = 0, k2 > 1: π+

k2s2Λ2
, π−k2s2Λ2

.
k1 > 1, k2 = 0: π+

k1s1Λ1
, π−k1s1Λ1

.
k1 = 0, k2 = 1: J−−1, π

+
s2Λ2

, π−s2Λ2
.

k1 = 1, k2 = 0: J+
−1, π

+
s1Λ1

, π−s1Λ1
.

Here is a list of composition series. Λ ≥ 0 6= Λ.
IΛ has FΛ, J+

s2Λ
(unitarizable iff k1 = 1, k2 ≥ 0), J−s1Λ (unitarizable iff

k2 = 1, k1 ≥ 0), DΛ.
Is1Λ has J−s1Λ (unitarizable iff k2 = 1, k1 ≥ 0), D−s1Λ, DΛ.
Is2Λ has J+

s2Λ
(unitarizable iff k1 = 1, k2 ≥ 0), D+

s2Λ
, DΛ.

k1 = 0, k2 = 1: Is1Λ2 has J−s1Λ2
, π−s2Λ2

.
k1 = 1, k2 = 0: Is2Λ1 has J+

s2Λ1
, π+

s1Λ1
.

To fix notations in a manner consistent with the nonarchimedean case,
note that if µ is a one-dimensional H-module then there are unique integers
a ≥ b ≥ c with a + b + c = w and either (i) a = b + 1, µ = FH(a, b), or
(ii) b = c + 1, µ = FH(b, c). If the central character on the U(1,1)-part
is z 7→ z2k+1, case (i) occurs when w − 3k ≤ 1, while case (ii) occurs if
w − 3k ≥ 2.
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If, in addition, a > b > c, put π×µ = J+
s2Λ

, π−µ = D−s1Λ, and π+
µ =

DΛ⊕D+
s2Λ

in case (i), π×µ = J−s1Λ, π−µ = D+
s2Λ

and π+
µ = DΛ⊕D−s1Λ in case

(ii).
The motivation for this choice of notations is the following character

identities. Put

ρ = ρ(a, c)⊗ κ−1, ρ− = ρ(b, c)⊗ κ−1, ρ+ = ρ(a, b)⊗ κ−1.

Then {ρ, ρ+, ρ−} is the set of H-packets which lift to the G-packet π =
π(a, b, c) via the endo-lifting e. As noted above, ρ, ρ+ and ρ− are distinct
if and only if a > b > c, equivalently π consists of three square-integrable
G-modules. Moreover, every square-integrable H-packet is of the form ρ,
ρ+ or ρ− for unique a ≥ b ≥ c, a > c.

If a = b = c then ρ = ρ+ = ρ− is the H-packet which consists of the
constituents of I(χH(a, c)⊗ κ−1), and π = I(χ(a, b, c)) is irreducible.

If a > b = c put 〈ρ, π+〉 = 1, 〈ρ, π−〉 = −1.
If a = b > c put 〈ρ, π+〉 = −1, 〈ρ, π−〉 = 1.
If a > b > c put 〈ρ̃, DΛ〉 = 1 for ρ̃ = ρ, ρ+, ρ−, and:

〈ρ,D+
s2Λ
〉 = −1, 〈ρ,D−s1Λ〉 = −1;

〈ρ+, D+
s2Λ
〉 = 1, 〈ρ+, D−s1Λ〉 = −1;

〈ρ−, D+
s2Λ
〉 = −1, 〈ρ−, D−s1Λ〉 = 1.

5.1 Proposition ([Sd]). For all matching measures fdg on G and ′fdh
on H, we have

tr ρ̃(′fdh) =
∑
π′∈π
〈ρ̃, π′〉 trπ′(fdg) (ρ̃ = ρ, ρ+ or ρ−).

From this and the character relation for induced representations we con-
clude the following

5.2 Corollary. For every one-dimensional H-module µ and for all
matching measures fdg on G and ′fdh on H we have

trµ(′fdh) = trπ×µ (fdg) + trπ−µ (fdg).

Further, if ρ is a tempered H-module, π the endo-lift of ρ (then π is a G-
packet), ρ′ is the basechange lift of ρ (thus ρ′ is a σ-invariant H ′-module),
and π′ = I(ρ′) is the G′-module normalizedly induced from ρ′ (we regard
H ′ as a Levi subgroup of a maximal parabolic subgroup of G′), then we
have
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5.3 Proposition ([Cl1]). We have trπ(fdg) = trπ′(φdg′ × σ) for all
matching fdg on G and φdg′ on G′.

From this and the character relation for induced representations we con-
clude the following

5.4 Corollary. For all matching measures fdg on G and φdg′ on G′

and every one-dimensional H-module µ we have

tr I(µ′;φdg′ × σ) = trπ×µ (fdg)− trπ−µ (fdg).

Our next aim is to determine the (g,K)-cohomology of the G-modules
described above, where g denotes the complexified Lie algebra of G. For
that we describe the K-types of these G-modules, following [Wh], §7, and
[BW], Ch. VI. Note that G = U(2, 1) can be defined by means of the form

J ′ =
(
−1 0

−1

0 1

)
whose signature is also (2,1) and it is conjugate to

J =
(

0 1

−1

1 0

)
by B =

 2−1/2 0 2−1/2

0 1 0

2−1/2 0 −2−1/2


of [Wh], p. 181. To ease the comparison with [Wh] we now take G to be
defined using J ′. In particular we now take A to be the maximal torus of G
whose conjugate by B is the diagonal subgroup of G(J). A character χ of
A is again associated with (a, b, c) in C3 such that a+ c and b are integral,
and I(χ) denotes the G-module normalizedly induced from χ extended to
the standard Borel subgroup B. The maximal compact subgroup K of G is
isomorphic to U(2)×U(1); it consists of the matrices

(
αu 0

0 µ

)
;u in SU(2);

α, µ in U(1) = C1. Note that A ∩K consists of γ diag(α, α−2, α), and the
center of K consists of γ diag(α, α, α−2).

Let πK denote the space of K-finite vectors of the admissible G-module
π. By Frobenius reciprocity, as a K-module I(χ)K is the direct sum of the
irreducible K-modules h, each occurring with multiplicity

dim[HomA∩K(χ, h)].
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The h are parametrized by (a′, b′, c′) in Z3, such that dim h = a′ + 1, and
the central character of h is γ diag(µ, µ, µ−2) 7→ µb

′
γc
′
; hence b′ ≡ c′(mod 3)

and a′ ≡ b′(mod 2). In this case we write h = h(a′, b′, c′). For any integers
a, b, c, p, q with p, q ≥ 0 we also write

hp,q = h(p+ q, 3(p− q)− 2(a+ c− 2b), a+ b+ c).

5.5 Lemma. The K-module I(χ)K , χ = χ(a, b, c), is isomorphic to
⊕p,q≥0hp,q.

Proof. The restriction of h = h(a′, b′, c′) to the diagonal subgroup

D = {γ diag(βα, β/α, β−2)}

of K is the direct sum of the characters αnβb
′
γc
′

over the integral n with
−a′ ≤ n ≤ a′ and n ≡ a′(mod 2). Hence the restriction of h to A ∩ K

is the direct sum of the characters γ diag(α, α−2, α) 7→ α(3n−b′)/2γc
′
. On

the other hand, the restriction of χ = χ(a, b, c) to A ∩K is the character
λ diag(α, α−2, α) 7→ αa+c−2bλa+b+c. If −a ≤ n ≤ a′ and n ≡ a′ (mod 2),
there are unique p, q ≥ 0 with a′ = p+ q, and n = p− q. Then

h(a′, b′, c′)|(A ∩K)

contains χ(a, b, c)|(A ∩K) if and only if there are p, q ≥ 0 with

a′ = p+ q, b′ = 3(p− q)− 2(a+ c− 2b) c′ = a+ b+ c.

�

Definition. For integral a, b, c put χ = χ(a, b, c), χ− = χ(b, a, c),
χ+ = χ(a, c, b). Also write

h−p,q = h(p+ q, 3(p− q)− 2(b+ c− 2a), a+ b+ c),

and
h+
h,q = h(p+ q, 3(p− q)− 2(a+ b− 2c), a+ b+ c).

Lemma 5.5 implies that (the sum are over p, q ≥ 0)

I(χ)K = ⊕hp,q, I(χ+)K = ⊕h+
p,q, I(χ−)K = ⊕h−p,q.
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Definition. Write JH(π) for the unordered sequence of constituents
of the G-module π, repeated with their multiplicities.

If a > b > c then JH(I(χ)) = {F, J+, J−, D}. By [Wh], 7.9, the K-type
decomposition of the constituents is of the form ⊕hp,q. The sums range
over: (1) p < a − b, q < b − c for F ; (2) p ≥ a − b, q < b − c for J−; (3)
p < a− b, q ≥ b− c for J+; (4) p ≥ a− b, q ≥ b− c for D.

Next, JH(I(χ−)) = {J−, D−, D}. The K-types are of the form ⊕h−p,q,
with sums over: (1) p ≥ 0, a − b ≤ q < a − c for J−; (2) p ≥ 0, q < a − b
for D−; (3) p ≥ 0, q ≥ a− c for D.

Finally, JH(I(χ+)) = {J+, D+, D}. The K-types are of the form ⊕h+
p,q,

with sums over: (1) b− c ≤ p < a− c, q ≥ 0 for J+; (2) p < b− c, q ≥ 0 for
D+; (3) p ≥ a− c, q ≥ 0 for D.

Recall that J− is unitary if and only if b − c = 1, and J+ is unitary if
and only if a− b = 1.

If a > b = c (resp. a = b > c) then χ− (resp. χ+) is unitary, and I(χ−)
(resp. I(χ+)) is the direct sum of the unitary G-modules π+ and π−. The
K-type decomposition is π+

K = ⊕h+
p,q (p ≥ 0, q ≥ a−b), π−K = ⊕h+

p,q (p ≥ 0,
q < a − b) if a > b = c, and π+

K = ⊕h−p,q (p ≥ b − c, q ≥ 0), π−K = ⊕h−p,q
(p < b − c, q ≥ 0) if a = b > c. Moreover, JH(I(χ)) is {π× = J+, π+} if
a > b = c, and {π× = J−, π−} if a = b > c. The corresponding K-type
decompositions are J− = ⊕hp,q (p < a − b, q ≥ 0), J+ = ⊕hp,q (p ≥ 0,
q < b− c).

As noted above, J+ is unitary if and only if a− 1 = b ≥ c; J− is unitary
if and only if a ≥ b = c+ 1.

Next we define holomorphic and anti-holomorphic vectors, and describe
those G-modules which contain such vectors. We have the vector spaces of
matrices

P+ =
{(

0 0 0

0 0 0

x y 0

)}
, P− =

{(
0 0 x

0 0 y

0 0 0

)}
,

in the complexified Lie algebra g = M(3,C). These P+, P− are K-
modules under the adjoint action of K, clearly isomorphic to h(1, 3, 0) and
h(1,−3, 0).

Definition. A vector in the space πK of K-finite vectors in a G-module
π is called holomorphic if it is annihilated by P−, and anti-holomorphic if
it is annihilated by P+.
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5.6 Lemma. If I(χ) is irreducible then I(χ)K contains neither holomor-
phic nor anti-holomorphic vectors.

Proof. The K-modules P+ = h(1, 3, 0) and P− = h(1,−3, 0) act by

h(1, 3, 0)⊗ h(a, b, c) = h(a+ 1, b+ 3, c)⊕ h(a− 1, b+ 3, c)

and

h(1,−3, 0)⊗ h(a, b, c) = h(a+ 1, b− 3, c)⊕ h(a− 1, b− 3, c).

Hence the action of P+ on I(χ)K maps hp,q to hp+1,q ⊕ hp,q−1, and that
of P− maps hp,q to hp,q+1⊕ hp−1,q. Consequently if hp′,q′ is annihilated by
P+, then ⊕hp,q (p ≥ p′, q ≤ q′) is a (g,K)-submodule of I(χ), and if P−

annihilates hp′,q′ then ⊕hp,q (p ≤ p′, q ≥ q′) is a (g,K)-submodule of I(χ).
The lemma follows. �

Definition. Denote by πhol
K the space of holomorphic vectors in πK ,

and by πah
K the space of anti-holomorphic vectors.

The above proof implies also the following

5.7 Lemma. (i) The irreducible unitary G-modules with holomorphic
vectors are

(1) π = D+(a, b, c), where a > b > c; then
πhol
K = h(a− b− 1, a+ b− 2c+ 3, a+ b+ c);
(2) π = J−(a, b, b − 1), with a ≥ b; then

πhol
K = h(a − b, a − b + 2, a + 2b − 1);
(3) π = π+(a, b, b), a > b; then πhol

K = h(a− b− 1, a− b+ 3, a+ 2b).
(ii) The irreducible unitary G-modules with antiholomorphic vectors are

(1) π = D−(a, b, c), a > b > c; then
πah
K = h(b − c − 1, b + c − 2a − 3, a + b + c);
(2) π = J+(b+ 1, b, c), b ≥ c; then πah

K = h(b− c, c− b− 2, 2b+ c+ 1);
(3) π = π−(a, a, c), a > c; then πah

K = h(a− c− 1, c− a− 3, 2a+ c).

We could rename the J±, but decided to preserve the notations induced
from [Wh].

Let F = F (a, b, c) be the irreducible finite-dimensional G-module with
highest weight diag(x, y, z) 7→ xa−1ybzc+1. It is the unique finite dimen-
sional quotient of I(χ), χ = χ(a, b, c), a > b > c. Let F̃ denote the
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contragredient of F . Let π be an irreducible unitary G-module. Denote by
Hj(g,K;π⊗F̃ ) the (g,K)-cohomology of π⊗F̃ . This cohomology vanishes,
by [BW], Theorem 5.3, p. 29, unless π and F have equal infinitesimal char-
acters, namely π is associated with the triple (a, b, c) of F . It follows from
the K-type computations above that one has (cf. [BW], Theorem VI.4.11,
p. 201) the following

5.8 Proposition. If Hj(π ⊗ F̃ ) 6= 0 for some j then π is one of the
following.

(1) If π is D(a, b, c), D+(a, b, c) or D−(a, b, c) then Hj(π ⊗ F̃ ) is C
if j = 2 and 0 if j 6= 2. Such π have Hodge types (1, 1), (2, 0), (0, 2),
respectively.

(2) If π is J+(a, b, c) with a − b = 1 or J−(a, b, c) with b − c = 1 then
Hj(π ⊗ F̃ ) is C if j = 1, 3 and 0 if j 6= 1, 3. Such π have Hodge types
(0, 1), (0, 3) and (1, 0), (3, 0), respectively.

(3) Hj(F ⊗ F̃ ) is 0 unless j = 0, 2, 4 when it is C. The Hodge types of
F are (0, 0), (1, 1), (2, 2).

I.6 Fundamental lemma again

The following is a computation of the orbital integrals for GL(2), SL(2), and
our U(3), for the characteristic function 1K of K in G, leading to a proof
of the fundamental lemma for (U(3),U(2)), due to J.G.M. Mars (letter to
me, dated June 30, 1997).

Case of SL(2)

1. Let E/F be a (separable) quadratic extension of nonarchimedean local
fields. Denote by OE and O their rings of integers. Let πππ = πππF be a
generator of the maximal ideal in O. Then ef = 2 where e is the degree
of ramification of E over F . Let V = E, considered as a two-dimensional
vector space over F . Multiplication in E gives an embedding E ⊂ EndR(V )
and E× ⊂ GL(V ). The ring of integers OE is a lattice (free O-module of
maximal rank, namely which spans V over F ) in V and K = Stab(OE) is
a maximal compact subgroup of GL(V ).

Let Λ be a lattice in V . Then R = R(Λ) = {x ∈ E|xΛ ⊂ Λ} is an order.
The orders in E are R(m) = O + πππmOE , m ≥ 0 of F . This is well known
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and easy to check. The quotient R(m)/R(m+1) is a one-dimensional vector
space over O/πππ. If R(Λ) = R(m), then Λ = zR(m) for some z ∈ E×.

Choose a basis 1, w of E such that OE = O +Ow. Define dm ∈ GL(V )
by dm(1) = 1, dm(w) = πππmw. Then R(m) = dmOE . It follows immediately
that GL(V ) = ∪

m≥0
E×dmK, or, in coordinates with respect to 1, w:

GL(2, F ) = ∪
m≥0

T
(

1 0

0 πππm

)
GL(2,O),

with T =
{(

a αb

b a+βb

)
; a, b ∈ F , not both = 0

}
, where w2 = α + βw, α,

β ∈ O.
2. Put G = GL(V ), K = Stab(OE). Choose the Haar measure dg on G

such that
∫
K

dg = 1, and dt on E× such that
∫
OE

dt = 1. Choose γ ∈ E×,

γ /∈ F×. Let 1K be the characteristic function of K in G. Then∫
E×\G

1K(g−1γg)
dg

dt
=

∑
E×\G/K

vol(K)
vol(E× ∩ gKg−1)

1K(g−1γg).

Now E×\G/K is the set of E×-orbits on the set of all lattices in E. Rep-
resentatives are the lattices R(m), m ≥ 0. So our sum is∑

m≥0,γ∈R(m)×

vol(O×E)
vol(R(m)×)

=
∑

m≥0,γ∈R(m)×

(O×E : R(m)×).

Note that (O×E : R(m)×) = 1 if m = 0, = qm+1−f qf−1
q−1 if m > 0.

Put M = max{m|γ ∈ R(m)×}. Then the integral equals

qM
q + 1
q − 1

− 2
q − 1

if e = 1,
qM+1 − 1
q − 1

if e = 2.

(If γ /∈ O×E , then
∫

= 0). If γ = a + bw ∈ O×E , then M = vF (b), the
order-valuation at b.
3. Let G = SL(V ), K = Stab(OE) ∩ G, E1 = E× ∩ G. Choose the Haar
measure dg on G such that

∫
K

dg = 1, and dt on E1 such that
∫
E1

dt = 1.

Let γ ∈ E1, γ 6= ±1. Then∫
E1\G

1K(g−1γg)
dg

dt
=
∫
G

1K(g−1γg)dg =
∑
G/K

1K(g−1γg)
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is the number of lattices in the G-orbit of OE fixed by γ.
Let Λ be a lattice in E. If R(Λ) = OE , then Λ ∈ G ·OE ⇔ Λ = OE . And

γOE = OE if γ fixes Λ. If R(Λ) = R(m) with m > 0, then Λ = zR(m) ∈
G · OE ⇔ NE/F (z)πππm ∈ O× ⇔ fvE(z) = −m and γΛ = Λ⇔ γ ∈ R(m)×.

Suppose e = 1. Then m must be even and Λ = πππ−
m
2 uR(m), u ∈

O×E modR(m)×. This gives (O×E : R(m)×) = qm−1(q + 1) lattices, if γ ∈
R(m)×.

Suppose e = 2. Then Λ = πππ−mE uR(m), u ∈ O×E modR(m)×. This gives
(O×E : R(m)×) = qm lattices, if γ ∈ R(m)×.

Put N = max{m|γ ∈ R(m)×, m ≡ 0(f)}. Then the integral equals

qN+1 − 1
q − 1

.

For K = Stab(R(1)) ∩G one find qN′+1−1
q−1 with N ′ defined as N , but with

m ≡ 1(f).
4. Notations as in 3. Choose πππ = NE/F (πππe) if e = 2. The description of
the lattices in G ·OE above gives the following decomposition for SL(2, F ).

Choose a set Am of representations for NE/FO×E/NE/FR(m)× and for
each ε ∈ Am choose bε such that NE/F (bε) = ε. For m = 0 we may take
A0 = {1}, b1 = 1.

SL(2, F ) = ∪
m≥0,even

∪
ε∈Am

E1b−1
ε

(
1 0

0 ε

)(
πππ−

m
2 0

0 πππ
m
2

)
K if e = 1,

SL(2, F ) = ∪
m≥0

∪
ε∈Am

E1b−1
ε πππ−mE

(
1 0

0 ε

)(
1 0

0 πππm

)
K if e = 2.

Remark. If e = 1, m > 0, then

NE/FO×E/NE/FR(m)× = O×/O×2(1 + πππmO)

(two elements, when |2| = 1). If |2| = 1 and e = 2, then NE/FR(m)×

= NE/FO×E for all m.

Case of U(3)

1.1 Let E/F be a separable quadratic extension and V a three-dimensional
vector space over E. Let (x, y) be an Hermitian form on V × V with
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discriminant one. Let G be its unitary group. Then G is the set of points
over F of the algebraic group G.

The relation (ux, y) = (x,ιuy) defines an involution ι of the second kind
of A = EndE(V ) and G = {u ∈ A|ιuu = 1}.

Let γ be a regular semisimple element of G. Let Y denote the centralizer
of γ in A and T = G ∩ Y . Then T = T(F ) where T is an algebraic torus
over F . Now Y is a three-dimensional E-algebra. This Y is semisimple
and is the direct product

∏
Yi of separable extensions of E. The space V

is isomorphic to Y as a Y -module. It decomposes as V = ⊕Vi, where Vi
is a one-dimensional vector space over Yi. The algebra Y is stable under
the involution ι. If T is F -anisotropic then each Yi is stable under ι. If
ιYi = Yi, then Vi ⊥ Vj for i 6= j.

Let C denote the conjugacy class of γ in G and C = C(F ).
We have bijections

G\C ↔ G\{h ∈ A×|hγh−1 ∈ C}/Y × bij→
h7→ιhh

{u ∈ Y ×|ιu = u, det(u) ∈ NE/FE×}/{ιuu|u ∈ Y ×} .

1.2 Assume F is a nonarchimedean local field. If Λ is a lattice in V , the
dual lattice is Λ∗ = {x ∈ V |(x, y) ∈ OE for all y ∈ Λ}. There is a bijective
semilinear map Λ∗ → HomOE

(Λ,OE) (a “lattice” will always be an OE-
module).

If g ∈ GLE(V ), then (gΛ)∗ = ιg−1Λ∗, in particular (gΛ)∗ = gΛ∗ if g ∈ G
and (cΛ)∗ = c−1Λ∗ if c ∈ E×.

The lattices which coincide with their dual form one orbit of G. We
have to compute Card{Λ|Λ∗ = νΛ, γΛ = Λ} for ν ∈ Y ×, ιν = ν, det(ν) ∈
NE/FE

× (ν modulo {ιuu|u ∈ Y ×}).

2.1 Notations of 1.1 and 1.2 with Y = E × Y1, [Y1 : E] = 2. Let σ denote
the restriction of ι to Y1. Let L be the field of fixed points of σ. Then
L 6= E and Y1 ' E⊗

F
L is EL.

We assume E/F to be unramified. Then L/F is ramified. The quotient
G\C consists of two elements: Let (µ, ν) ∈ F××E×1 such that µNL/F (ν) ∈
NE/FE

×. The latter condition means that vF (µ) ≡ vL(ν) mod 2. The
pair (µ, ν) has to be taken modulo NE/FE× × NEL/LY ×1 . There are two
classes, determined by vF (µ) + 2Z = vL(ν) + 2Z. Here v denotes the order
valuation.
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From now on we assume that |2| = 1, E = F (
√
D), L = F (

√
πππ), D ∈

O×F −O
×
F

2, πππ = πππF a generator of the maximal ideal pF in the ring OF of
integers of F .

We have (x, y) = axy if x, y ∈ E, with a ∈ F×, and

(x, y) = trEL/E(bxσ(y))

if x, y ∈ EL, with b ∈ L×. The discriminant is

−4πππaNL/F (b) (modNE/FE×).

This discriminant is one if vF (a) + vL(b) is odd. We may choose arbitrary
a and b satisfying that condition. We take a = 1, b = 1√

πππ
.

We have EL = E(w), OEL = OE +OEw, where w =
√
πππ. Now (1, 1) =

(w,w) = 0 and (1, w) = (w, 1) = 2.
The orders in EL are OEL(n) = OE + OEπππnw (n ≥ 0). The lattices

in EL are of the form zOEL(n), z ∈ Y ×1 , n ≥ 0. The dual to zOEL(n) is
σ(z)−1πππ−nOEL(n).

Let Λ be a lattice in V = Y = E⊕EL. Then Λ is determined by lattices
M1 ⊂ N1 ⊂ E, M2 ⊂ N2 ⊂ EL and an isomorphism of OE-modules
ϕ : N1/M1 ' N2/M2. The dual lattice Λ∗ corresponds to N∗1 ⊂ M∗1 ,
N∗2 ⊂M∗2 and −(ϕ∗)−1 : M∗1 /N

∗
1 →M∗2 /N

∗
2 .

Fix (µ, ν) as above. We have

Λ∗ = (µ, ν)Λ⇔ N1 = µ−1M∗1 , N2 = ν−1M∗2 , ν ◦ ϕ ◦ µ−1 = −(ϕ∗)−1.

If γ = (s, t), s ∈ E×, NE/F (s) = 1, t ∈ Y ×1 , NEL/L(t) = 1, then

γΛ = Λ⇔ sM1 = M1, sN1 = N1, tM2 = M2, tN2 = N2, t ◦ ϕ ◦ s−1 = ϕ

⇔ tM2 = M2, tN2 = N2 and t is multiplication by s on N2/M2.

We may assume s = 1.
The number of lattices with the same M1, N1, M2, N2 is equal to the

number of isomorphisms ϕ : N1/M1 → N2/M2 satisfying ν ◦ ϕ ◦ µ−1 =
−(ϕ∗)−1. If N1/M1 ' N2/M2 = 0, there is only one ϕ. If N1/M1 '
N2/M2 ' OE/πππn1OE (n1 > 0), then ϕ is given by an element u of
O×E(modπππn1). The condition ν ◦ ϕ ◦ µ−1 = −(ϕ∗)−1 amounts to a con-
gruence NE/F (u) ≡ some element of O×F modπππn1 . So the number of ϕ is
qn1−1(q + 1).
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Let M1 = pmE . Then N1 = µ−1M∗1 = µ−1p−mE and 2m+ vF (µ) ≥ 0.
Let M2 = zOEL(n) with z ∈ Y ×1 , n ≥ 0. Then N2 = ν−1M∗2 =

ν−1σ(z)−1πππ−nOEL(n).
Since N2 ⊃M2, we must have πππnνNEL/L(z) ∈ OEL(n) ∩ L = OL(n).
Now N1/M1 ' OE/µπππ2mOE and N2/M2 ' OEL(n)/cOEL(n), where

c = πππnνNEL/L(z).
These two OE-modules are isomorphic if and only if c /∈ πππOL(n) and

vL(c) = 2m+ vF (µ) (this follows easily from a computation of the elemen-
tary divisors of the OE-module cOEL(n) with respect to OEL(n)).

So m,n and z must satisfy

2n+ vL(ν) + 2vEL(z) = 2m+ vF (µ) ≥ 0 and c ∈ OL(n), c /∈ πππOL(n),(1)

where c = πππnνNEL/L(z).
Moreover, γΛ = Λ gives the conditions

t ∈ OEL(n)× and t− 1 ∈ cOEL(n).(2)

2.2 We take µ = ν = 1 when vF (µ) and vL(ν) are even,
µ = πππ, ν = w when vF (µ) and vL(ν) are odd.

We compute
∑
m,n,z

Card{ϕ}, wherem,n, z satisfy (1) and (2) above. In the

summation z is taken modulo OEL(n)×. We know from 2.1 that Card{ϕ} =
1 if 2m+ vF (µ) = 0 and Card{ϕ} = q2m+vF (µ)−1(q+1) if 2m+ vF (µ) > 0.

If 2m+vF (µ) = 0, we have by assumption µ = 1 and m = 0. Conditions
(1) and (2) are now: vEL(z) = −n, πππnNEL/L(z) ∈ OL(n), t ∈ OEL(n).
Put z = w−nz1, z1 ∈ O×EL. Then NEL/L(z1) ∈ OL(n) = OF +OFπππnw has
qn solutions modOEL(n)× [write z1 = y(1 + xw) with y ∈ O×E , x ∈ OE ;
NEL/L(z1) = yy(1 + (x + x)w + xxπππ). The condition is that trE/F (x) ∈
πππnOF , i.e. x ∈ OF

√
D +OEπππn]. This gives:

In the case that µ = ν = 1, the number of lattices with m = 0 is

∑
n≥0,t∈OEL(n)

qn =
qB+1 − 1
q − 1

with B = max{n|t ∈ OEL(n)}.

Now consider the lattices with 2m + vF (µ) > 0. There are two cases:
µ = ν = 1 and m > 0 (case 1), and: µ = πππ, ν = w and m ≥ 0 (case 2).
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In case 1 we have the conditions

vEL(z) = m− n, put z = wm−nz1, z1 ∈ O×EL/OEL(n)×;(1)

NEL/L(z1) ∈ O×F +O×Fπππ
n−mw.

t ∈ OEL(n), t− 1 ∈ πππmNEL/L(z1)OEL(n).(2)

Condition (1) implies that m ≤ n.
In case 2 we have

m = n, z ∈ O×EL/OEL(n)×.(1)

t ∈ OEL(n), t− 1 ∈ πππnwNEL/L(z)OEL(n).(2)

[Condition (1) gives vEL(z) = m− n and πππnwNEL/L(z) ∈ OFπππ+O×Fπππnw.
Now vL(πππnwNEL/L(z)) = 2m+1 and any element of F has even valuation
in L, hence 2m+ 1 = vL(πππnw) = 2n+ 1. There is no other condition on z
left than z ∈ O×EL].

Let t = t1 + t2w with t1, t2 ∈ OE , t1t1 + πππt2t2 = 1, t1, t2 + t2t1 = 0.
Since t is regular, t2 6= 0.

Assuming that condition (1) is satisfied we write
in case 1: NEL/L(z1) = ξ + ηπππn−mw with ξ, η ∈ O×F (here 0 < m ≤ n),
in case 2: wNEL/L(z) = ξ + ηw with ξ ∈ pF , η ∈ O×F (here m = n ≥ 0).

In both cases condition (2) becomes: n ≤ vE(t2) and

t− 1 ∈ (ξπππm + ηπππnw)OEL(n).

The latter is equivalent to

ξη−1πππm−nt2 ≡ t1 − 1 modπππ2mOE in case 1,(∗)
modπππ2n+1OE in case 2.

Case 1. If m+ n ≤ vE(t2), (∗) reduces to 2m ≤ vE(t1 − 1). (Notice that
t1 6= 1). The number of z1 (modOEL(n)×) is then qm+n−1(q − 1) [z1 =
y(1+xw) must satisfy vF (trE/F (x)) = n−m, i.e. x ∈ O×Fπππn−m+OF

√
D].
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The contribution to our sum is∑
0<m≤n

m+n≤vE(t2)
2m≤vE(t1−1)

q3m+n−2(q2 − 1) = (q + 1)
{
qB+1 q

2C − 1
q2 − 1

− q2 q
4C − 1
q4 − 1

}

where A = vE(t1 − 1), B = vE(t2), C = min
([
A
2

]
,
[
B
2

])
.

If m + n > vE(t2), (∗) implies that n − m = vE(t2) − vE(t1 − 1) and
necessarily vE(t1 − 1) ≤ vE(t2). Moreover n ≤ vE(t2) and m ≤ vE(t1 − 1).

From now on we write v for vE .

Lemma. a) Let m ∈ Z. Then

t1 − 1
t2

∈ F +OEπππm ⇔ v

(
t1 − 1
t2

− t1 − 1
t2

)
≥ m

⇔ v((t1 − 1)t2t−1
2 − (t1 − 1)) ≥ m+ v(t2).

b) v((t1 − 1)t2t−1
2 − (t1 − 1)) = min(2v(t1 − 1), 2v(t2) + 1).

Proof. a) is trivial and b) follows from (t1 − 1)t2t−1
2 − (t1 − 1) =

(t1 − 1)2t1t−1
1 + πππt2t2. �

We continue case 1 with the extra assumption m+n > vE(t2). We have
v(t1−1) ≤ v(t2), hence v((t1−1)t2t−1

2 −(t1−1)) = 2v(t1−1) ≥ 2m by b) of
the lemma, and by a) there is δ ∈ F such that t1− 1 ∈ δt2 +OEπππ2m. Since
v(t1−1) = v(t2)+m−n < 2m, we have v(δt2) = v(t1−1) and v(δ) = m−n.
Put δ = επππm−n, ε ∈ O×F . Now z1 must satisfy ξη−1 ≡ εmodπππm+n−v(t2).
The number of z1 (modOEL(n)×) is qv(t2) [z1 = y(1 + xw) must satisfy
1 + xxπππ ≡ επππm−n(x+ x) modπππm+n−v(t2). This congruence has qm+n−v(t2)

solutions for xmodπππm+n−v(t2)OE , as one sees writing x = x1 πππn−m +
x2

√
D with x1, x2 ∈ OF , hence qv(t2) solutions modπππnOE ]. This gives the

contribution ∑
1
2 v(t1−1)<m≤v(t1−1)

q2m−1+v(t2)(q + 1) = qB+2C+1 q2A−2C − 1
q − 1

,

if v(t1 − 1) ≤ v(t2) (so C =
[
A
2

]
).

Case 2. If 2n ≤ vE(t2), (∗) reduces to 2n+1 ≤ vE(t1−1). The number
of z is (O×EL : OEL(n)×) = q2n.
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If 2n > vE(t2), it follows from (∗) that we must have vE(t1−1) > vE(t2).
Then v((t1 − 1)t2t−1

2 − (t1 − 1)) = 2v(t2) + 1 ≥ 2n+ 1 by b) of the lemma,
and by a) there is δ ∈ F such that t1 − 1 ∈ δt2 + OEπππ2n+1. Obviously
δ ∈ pF . The condition on z is: ξη−1 ≡ δmodπππ2n+1−v(t2). The number of z
is qv(t2) [z = y(1 + xw) must satisfy x+ x ≡ πππ−1δ(1 + xxπππ) modπππ2n−v(t2)].
Thus we have the contributions

∑
0≤2n≤v(t2)

2n+1≤v(t1−1)

q4n(q + 1) = (q + 1)
q4C ′ − 1
q4 − 1

with

C ′ = min
([

A+ 1
2

]
,

[
B

2

]
+ 1
)

and, if v(t1 − 1) > v(t2),

∑
1
2 v(t2)<n≤v(t2)

q2n+v(t2)(q+1) = qB+2C+2 q
2B−2C − 1
q − 1

(
here C =

[
B

2

])
.

3.1 Notations of 1.1 and 1.2 with Y = E × E × E.
We assume E/F unramified and |2| = 1.
It suffices to consider the Hermitian form (x, y) = x1y1 + x2y2 + x3y3.

Let ν = (ν1, ν2, ν3), νi ∈ F×, ν1ν2ν3 ∈ NE/FE×. There are four classes
modulo (NE/FE×)3, determined by (v(νi)+2Z) with v(ν1)+v(ν2)+v(ν3) ∈
2Z.

Let Λ be a lattice in V = V1 ⊕ V2 ⊕ V3. The lattice Λ is determined
by lattices M1 ⊂ N1 ⊂ V1, M23 ⊂ N23 ⊂ V2 ⊕ V3 and an isomorphism of
OE-modules ϕ : N1/M1 ' N23/M23.

We have Λ∗ = νΛ⇔ N1 = ν−1
1 M∗1 , N23 = ν−1

23 M
∗
23, ν23 ◦ ϕ ◦ ν−1

1 =
−(ϕ∗)−1.

We have γΛ = Λ⇔ t23M23 = M23, t23N23 = N23, t23 = multiplica-
tion by t1 on N23/M23. Here ν23, t23 denote the linear maps multiplication
by (ν2, ν3), (t2, t3).

We put γ = (t1, t2, t3) with ti ∈ E×, titi = 1. We may assume t1 = 1.
If N1/M1 ' N23/M23 = 0, there is only one ϕ. If N1/M1 ' N23/M23 '

OE/πππn1OE (n1 > 0), the number of ϕ satisfying ν23 ◦ ϕ ◦ ν−1
1 = −(ϕ∗)−1

is qn1−1(q + 1), as in 2.1.
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Let M1 = pm1
E , N1 = ν−1

1 p−m1
E with n1 = 2m1 + v(ν1) ≥ 0. Then

N1/M1 ' OE/πππn1OE . Now we have to look for lattices M23 ⊂ V2 ⊕ V3

with the properties:
a) N23 = ν−1

23 M
∗
23 ⊃M23 and N23/M23 ' OE/πππn1OE ;

b) t23M23 = M23 and t23= id on N23/M23. Note: t23M23 = M23 ⇒
t23N23 = N23.

The lattice M23 is given by lattices pm2
E ⊂ p

m′2
E ⊂ V2, pm3

E ⊂ p
m′3
E ⊂ V3

and an isomorphism p
m′2
E /pm2

E ' p
m′3
E /pm3

E . We must have m2 − m′2 =
m3 − m′3 ≥ 0. The isomorphism in question corresponds to elements of
(OE/πππm2−m′2OE)×, πππm

′
2 + pm2

E 7→ uπππm
′
3 + pm3

E .

The lattice N23 = ν−1
23 M23 is given by ν−1

2 p
−m′2
E ⊂ ν−1

2 p−m2
E , ν−1

3 p
−m′3
E ⊂

ν−1
3 p−m3

E and the isomorphism ν−1
2 πππ−m2 + ν−1

2 p
−m′2
E 7→ −ν−1

3 u−1πππ−m3 +

ν−1
3 p

−m′3
E from ν−1

2 p−m2
E /ν−1

2 p
−m′2
E onto ν−1

3 p−m3
E /ν−1

3 p
−m′3
E .

Property a) means that M23 should have the elementary divisors πππn1

and 1 with respect to N23. The exponents of the elementary divisors are
m2 +m′2 +m3 +m′3 + v(ν2) + v(ν3) and

min[m2 +m′2 + v(ν2), m3 +m′3 + v(ν3),

v(ν3πππ2m′3NE/F (u) + ν2πππ
m2+m

′
2+m

′
3−m3)]

[use, e.g., the basis (πππm
′
2 ,πππm

′
3u), (0, um3) of M23 and the basis

(ν−1
2 πππ−m, −ν−1

3 πππ−m3u−1), (0, ν−1
3 πππ−m

′
3)

of N23]. Thus a) means

m2 +m′2 +m3 +m′3 = 2m1 + v(ν1)− v(ν2)− v(ν3),

min[m2 +m′2 + v(ν2), m3 +m′3 + v(ν3),

v(ν3πππ2m′3NE/F (u) + ν2πππ
2m′2)] = 0.

Consider property b). We have t23M23 = M23 ⇔ t23M23 ⊂M23

⇔ (t2πππm
′
2 , t3πππ

m′3u) ∈M23 ⇔ v(t2 − t3) ≥ m3 −m′3.

Moreover (t23 − 1)N23 ⊂M23 ⇔ v(t2 − 1) ≥ m2 +m′2 + v(ν2),

v(t3 − 1) ≥ m3 +m′3 + v(ν3),
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(t2 − 1)ν−1
2 πππ−2m2NE/F (n) + (t3 − 1)ν−1

3 πππ−2m3 ∈ OE .

Put ni = 2mi + v(νi). It follows from m2 −m′2 = m3 −m′3 and a) that

m′2 =
1
2
(n1 − n3 − v(ν2)), m′3 =

1
2
(n1 − n2 − v(ν3))

and properties a) and b), together with m2 −m′2 ≥ 0, are:

n2 + n3 ≥ n1, n1 + n3 ≥ n2, n1 + n2 ≥ n3,
1
2 (n2 + n3 − n1) ≤ v(t2 − t3), 1

2 (n1 + n3 − n2) ≤ v(t3 − 1),
1
2 (n1 + n2 − n3) ≤ v(t2 − 1),

NE/F (u′) ∈ −ν2ν−1
3 πππn2−n3−v(ν2)+v(ν3) + πππn2−n1OE ,

(+πππn2−n1O×E if n1 + n2 > n3 and n1 + n3 > n2),

(t2 − 1)NE/F (u) + (t3 − 1)ν2ν−1
3 πππn2−n3−v(ν2)+v(ν3) ∈ πππn2OE .

We have ni ≡ v(νi) mod 2. The νi satisfy v(ν1) + v(ν2) + v(ν3) ∈ 2Z. Here
u is to be considered as an element of (OE/πππ

1
2 (n2+n3−n1)OE)×.

We compute
∑

n1,n2,n3

Card{ϕ} · Card{u}. (For Card{ϕ}: see 3.1 above).

3.2 (Computation of Card{u}).
We may take νi = 1 or πππ, so that ν2ν−1

3 πππ−v(ν2)+v(ν3) = 1. If n2 + n3 =
n1, the conditions are: 0 ≤ n2 ≤ v(t2 − 1), 0 ≤ n3 ≤ v(t3 − 1) and n2 = 0
or n3 = 0. There is one u.

Assume n2 + n3 > n1.
The congruence NE/F (u) ∈ −πππn2−n3 + πππn2−n1O×E (resp. πππn2−n1O×E).

If n1 + n2 = n3 or n1 + n3 = n2, then n1 = 0, n2 = n3 > 0. The
congruence NE/F (u) ≡ −1 modπππn2 has qn2−1(q+1) solutions modulo πππn2 .

If n1 + n2 > n3 and n1 + n3 > n2, we get NE/F (u) ∈ −πππn2−n3 +
πππn2−n1O×F . We have the following cases.
n1 > n3. Then n2 = n3. This gives 0 < n1 < n2 = n3, NE/F (u) ∈
−1 + πππn2−n1O×F .
n1 > n3. Then n1 = n2. This gives 0 < n3 < n1 = n2, u arbitrary.
n1 = n3. Then n1 ≥ n2. This gives 0 < n2 < n1 = n3, u arbitrary, and
n1 = n2 = n3 > 0, NE/F (u) 6≡ −1 mod pF .

The congruence (t2 − 1)NE/F (u) + (t3 − 1)πππn2−n3 ∈ πππn2OE .
If v(t2 − 1) ≥ n2 and v(t3 − 1) ≥ n3, u is arbitrary.
If v(t2−1) ≥ n2 and v(t3−1) < n3, or v(t2−1) < n2 and v(t3−1) ≥ n3,

there is no solution.
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If v(t2−1) < n2 and v(t3−1) < n3, we must have v(t2−1)−v(t3−1) =
n2 − n3. Then

NE/F (u) ≡ − t3 − 1
t2 − 1

πππn2−n3 mod
πππn2

t2 − 1
OE

is equivalent to{
v(t3 − 1) + v(t2 − t3) ≥ n3,

NE/F (u) ≡ −πππn2−n3 t3−1
t2−1

t2+t3
2t3

modπππn2−v(t2−1).

[
t3−1
t2−1

t2+t3
t3

= t3−1
t2−1 + t3−1

t2−1
. We have v(t2 − t3) ≥ 1

2 (n2 + n3 − n1) > 0, so
v(t2 + t3) = 0. The right hand side is the congruence for NE/F (u) is an
element of O×F

]
.

The inequality v(t3−1)+v(t2− t3) ≥ n3 is a consequence of the inequal-
ities for v(t2 − t3) and v(t3 − 1) (see 3.1).

If b(t2 − 1) < n2 and v(t3 − 1) < n3, the two congruences together give
the following.

I) n1 = 0, n2 = n3 > 0. Then v(t2 − 1) = v(t3 − 1) < n2 ≤ v(t2 − t3).
Further,

N(u) ≡ −1 modπππn2 , and N(u) ≡ − t3 − 1
t2 − 1

t2 + t3
2t3

modπππn2−v(t2−1).

The element u is to be taken modπππn2 .
From t3−1

t2−1
t2+t3
2t3
− 1 = (t3+1)(t3−t2)

2t3(t2−1) and v(t2 − t3) ≥ n2 we see that the
second congruence for N(u) is a consequence of the first one.

So there are qn2−1(q + 1) solutions for u.

II) 0 < n1 < n2 = n3. Then

1
2
n1 ≤ v(t2 − 1) = v(t3 − 1) < n2, v(t2 − t3) ≥ n2 −

1
2
n1.

Further N(u) ≡ −1 modπππn2−n1 , 6≡ −1 modπππn2−n1+1,

N(u) ≡ − t3 − 1
t2 − 1

t2 + t3
2t3

modπππn2−v(t2−1).

The element u is to be taken modulo πππn2− 1
2n1 .
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a) If v(t2−1) ≥ n1, there is no solution unless v(t2−t3) ≥ n2 and in that case
the conditions for u are N(u) ≡ −1 modπππn2−n1 , 6≡ −1 modπππn2−n1+1.
There are qn2−2(q2 − 1) solutions.

b) If v(t2− 1) < n1, necessary for solvability is that v(t2− t3)− v(t2− 1) =
n2 − n1 and then only the last congruence for N(u) is left. There are
qv(t2−t3)−1(q + 1) solutions.

III) 0 < n3 < n2 = n1. Then 1
2n3 ≤ v(t3− 1) < n3, n2− 1

2n3 ≤ v(t2− 1) <
n2, v(t2 − 1)− v(t3 − 1) = n2 − n3. We have only the second congruence.

There are qv(t3−1)−1(q + 1) solutions for umodπππ
1
2n3 .

IV) 0 < n2 < n3 = n1. Then 1
2n2 ≤ v(t2−1) < n2, n3− 1

2n2 ≤ v(t3−1) <
n3, v(t2−1)−v(t3−1) = n2−n3. Again only the second congruence counts.

There are qv(t2−1)−1(q + 1) solutions for umodπππ
1
2n2 .

V) n1 = n2 = n3 > 0. Then 1
2n1 ≤ v(t2 − 1) = v(t3 − 1) < n1. Further,

N(u) ≡ − t3 − 1
t2 − 1

t2 + t3
2t3

modπππn1−v(t2−1),

and N(u) 6≡ −1 modπππ. The element u is to be taken modulo πππ
1
2n1 .

Necessary for solvability is that t3−1
t2−1

t2+t3
2t3
6≡ 1 modπππ, i.e. v(t2 − t3) =

v(t2 − 1). Then qv(t2−1)−1(q + 1) solutions.
If v(t2−1) ≥ n2, v(t3−1) ≥ n3, the number of u is in the different cases:

n1 = 0, n2 = n3 > 0 : qn2−1(q + 1)

0 < n1 < n2 = n3 : qn2−2(q2 − 1)

0 < n3 < n1 = n2 : qn3−2(q2 − 1)

0 < n2 < n1 = n3 : qn2−2(q2 − 1)

n1 = n2 = n3 > 0 : qn1−2(q + 1)(q − 2)

3.3 Notations: A = v(t2 − t3), B = v(t1 − t3), C = v(t1 − t2), M =
min(A,B,C), N = max(A,B,C). If A > B, then B = C, etc. F (ν, t) =∑
n1,n2,n3

Card{ϕ} · Card{ν} is the sum of the following sums (where always

ni ≡ v(νi) mod 2).
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∑
n1=n2=n3=0

1 = 1 if all v(νi) ≡ 0, otherwise 0.1)

∑
n2=0,0<n1=n3≤B

qn1−1(q + 1) =
q(q2

[
B
2

]
− 1)

q − 1
if all v(νi) ≡ 0,2)

=
q2
[

B+1
2

]
− 1

q − 1
if v(ν2) ≡ 0, v(ν1) ≡ v(ν3) ≡ 1.

∑
n3=0,0<n1=n2≤C

qn1−1(q + 1) =
q(q2

[
C
2

]
− 1)

q − 1
if all v(νi) ≡ 0,3)

=
q2
[

C+1
2

]
− 1

q − 1
if v(ν3) ≡ 0, v(ν1) ≡ v(ν2) ≡ 1.

∑
0=n1<n2=n3≤M

qn2−1(q + 1) =
q(q2

[
M
2

]
− 1)

q − 1
if all v(νi) ≡ 0,4)

=
q2
[

M+1
2

]
− 1

q − 1
if v(ν1) ≡ 0, v(ν2) ≡ v(ν3) ≡ 1.

∑
0<n1<n2=n3≤M

qn1+n2−3(q + 1)(q2 − 1)5)

=
q(q + 1)(q4

[
M
2

]
− 1)

q4 − 1
− q(q2

[
M
2

]
− 1)

q − 1
if all v(νi) ≡ 0,

=
q4(q + 1)(q4

[
M−1

2

]
− 1)

q4 − 1
− q2(q2

[
M−1

2

]
− 1)

q − 1
if v(ν1) ≡ 0, v(ν2) ≡ v(ν3) ≡ 1.
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∑
0<n3<n2=n1≤C

n3≤B

qn1+n3−3(q + 1)(q2 − 1)6)

=
q2
[

C
2

]
+1(q2

[
M
2

]
− 1)

q − 1
− q3(q + 1)(q4

[
M
2

]
− 1)

q4 − 1
if all v(νi) ≡ 0,

=
q2
[

C+1
2

]
(q2
[

M
2

]
− 1)

q − 1
− q2(q + 1)(q4

[
M
2

]
− 1)

q4 − 1
if v(ν3) ≡ 0, v(ν1) ≡ v(ν2) ≡ 1.

∑
0<n2<n3=n1≤B

n2≤C

qn1+n2−3(q + 1)(q2 − 1)7)

=
q2
[

B
2

]
+1(q2

[
M
2

]
− 1)

q − 1
− q3(q + 1)(q4

[
M
2

]
− 1)

q4 − 1
if all v(νi) ≡ 0,

=
q2
[

B+1
2

]
(q2
[

M
2

]
− 1)

q − 1
− q2(q + 1)(q4

[
M
2

]
− 1)

q4 − 1
if v(ν2) ≡ 0, v(ν1) ≡ v(ν3) ≡ 1.

∑
0<n1=n2=n3≤M

q2n1−3(q − 2)(q + 1)28)

=
q(q − 2)(q + 1)2(q4

[
M
2

]
− 1)

q4 − 1
if all v(νi) ≡ 0.

∑
n1=0,B<n2=n3≤A

qn2−1(q + 1) =
q2
[

M
2

]
+1(q2

[
N
2

]
−2
[

M
2

]
− 1)

q − 1
9)

if all v(νi) ≡ 0, A > B,

=
q2
[

M+1
2

]
(q2
[

N+1
2

]
−2
[

M+1
2

]
− 1)

q − 1
if v(ν1) ≡ 0, v(ν2) ≡ v(ν3) ≡ 1, A > B.
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∑
0<n1≤B<n2=n3≤A

qn1+n2−3(q2 − 1)(q + 1)10)

=
q2
[

M
2

]
+1(q2

[
M
2

]
− 1)(q2

[
N
2

]
−2
[

M
2 ] − 1)

q − 1
if all v(νi) ≡ 0, A > B,

=
q2
[

M+1
2

]
(q2
[

M
2

]
− 1)(q2

[
N+1

2

]
−2
[

M+1
2 ] − 1)

q − 1
if v(ν1) ≡ 0, v(ν2) ≡ v(ν3) ≡ 1, A > B.

∑
B<n1≤2B

n3=n2=n1+A−B>n1

qn1+A−2(q + 1)2 =
qN+2

[
M
2

]
(q + 1)(q2

[
M+1

2

]
− 1)

q − 1
11)

if v(ν1) ≡ 0, v(ν2) ≡ v(ν3) ≡ A−B, A > B.

∑
B<n3≤2B

n1=n2=n3+C−B>n3

qn1+B−2(q + 1)2 =
qN+2

[
M
2

]
(q + 1)(q2

[
M+1

2

]
− 1)

q − 1
12)

if v(ν3) ≡ 0, v(ν1) ≡ v(ν2) ≡ C −B, B < C.

∑
C<n2≤2C

n1=n3=n2+B−C>n2

qn1+C−2(q + 1)213)

=
qN+2

[
M
2

]
(q + 1)(q2

[
M+1

2

]
− 1)

q − 1
if v(ν2) ≡ 0, v(ν1) ≡ v(ν3) ≡ B − C, B > C.

∑
A<n1=n2=n3≤2A

A=B=C

qn1+A−2(q + 1)2 =
qM+2

[
M
2

]
(q + 1)(q2

[
M+1

2

]
− 1)

q − 1
14)

if all v(νi) ≡ 0, A = B = C.
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If v(ν1) ≡ 0, v(ν2) ≡ v(ν3) ≡ 1, F (ν, t) is the sum of (4) + (5), (9) +
(10) (if A > B) and (11) (if A 6≡ B and A > B).

If v(ν2) ≡ 0, v(ν1) ≡ v(ν3) ≡ 1, F (ν, t) is the sum of (2) + (7) and (13)
(if B 6≡ C and B > C).

If v(ν3) ≡ 0, v(ν1) ≡ v(ν2) ≡ 1, F (ν, t) is the sum of (3) and (6) and
(12) (if B 6≡ C and C > B).

We can make the symmetry in the answer explicit by some computations.

(4) + (5) =
q(q + 1)(q4

[
M
2

]
− 1)

q4 − 1
if all v(νi) ≡ 0,

=
(q + 1)(q4

[
M+1

2

]
− 1)

q4 − 1
if v(ν1) ≡ 0, v(ν2) ≡ v(ν3) ≡ 1.

(9) + (10) =
q4
[

M
2

]
+1(q2

[
N
2

]
−2
[

M
2

]
− 1

q − 1
if all v(νi) ≡ 0 and M 6= A,

=
q2m(q2

[
N+1

2

]
−2
[

M+1
2

]
− 1)

q − 1
if v(ν1) ≡ 0, v(ν2) ≡ v(ν3) ≡ 1 and M 6= A.

(2) + (7) =
q(q + 1)(q4

[
M
2

]
− 1)

q4 − 1
if M = B,

= idem +
q4
[

M
2

]
+1(q2

[
N
2

]
−2
[

M
2

]
− 1)

q − 1
if M 6= B,

if all v(νi) ≡ 0;

(2) + (7) =
(q + 1)(q4

[
M+1

2

]
− 1)

q4 − 1
if M = B,

= idem +
q2M (q2

[
N+1

2

]
−2
[

M+1
2

]
− 1)

q − 1
if M 6= B,

if v(ν2) ≡ 0, v(ν1) ≡ 1, v(ν3) ≡ 1.
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(3) + (6) = same formulas, but the different cases are M = C

(resp. M 6= C) and all v(νi) ≡ 0 (resp. v(ν3) ≡ 0, v(ν1) ≡ v(ν2) ≡ 1).

The final result is:
If v(ν1) ≡ 0, v(ν2) ≡ v(ν3) ≡ 1, then F (ν, t) is equal to

(q + 1)
q4
[

M+1
2

]
− 1

q4 − 1
if M = A,

idem + q2M
q2
[

N+1
2

]
−2
[

M+1
2

]
− 1

q − 1
if M 6= A and M ≡ N mod2,

idem + idem + qN+2
[

M
2

]
(q + 1)

q2
[

M+1
2

]
− 1

q − 1
if M 6= A, M 6≡ N(2).

If v(ν2) ≡ 0, v(ν1) ≡ v(ν3) ≡ 1: the same formulas, read B instead of A.
If v(ν3) ≡ 0, v(ν1) ≡ v(ν2) ≡ 1: the same formulas, read C instead of A.
If all v(νi) ≡ 0, then F (ν, t) =

1 + q(q3 + 1)
q4
[

M
2

]
− 1

q4 − 1
+ q4

[
M
2

]
+1 q

2
[

N
2

]
−2
[

M
2

]
− 1

q − 1

+ qN+2
[

M
2

]
(q + 1)

q2
[

M+1
2

]
− 1

q − 1
(M ≡ N mod2).

The last term occurs when M ≡ N mod2 only.



II. TRACE FORMULA

II.1 Stable trace formula

1.1 Let F be a global field with a ring A = AF of adèles. Denote by E a
quadratic field extension, and by A1 the group of idèles of E whose norm
from E to F is 1. The center Z(A) of G(A) = U(3, E/F )(A) is isomorphic
to A1. Fix a character ω of Z(A)/Z (Z is Z(F )). Denote the action of
(σ 6= 1 ∈) Gal(E/F ) on the idèle x in A×E by x. Then ω′(x) = ω(x/x)
defines a character of the center Z′(A) = A×E of G′(A) = G(AE), which is
trivial on E×A×.

For each place v of F , let fv be a smooth (this means locally constant in
the nonarchimedean case) complex-valued function on Gv = G(Fv), which
satisfies fv(zx) = ωv(z)−1fv(x) for all z in Zv, x in Gv, where ωv is the
component of ω at v. Further, the support of fv is compact modulo Zv.
At v which splits in E we have Gv = GL(3, Fv). If v is nonarchimedean
let Rv be the ring of integers in Fv and REv that of Ev = Fv ⊗F E. Let
Kv be the hyperspecial maximal compact subgroup G(Rv) of Gv. That is,
it is the group of Gal(E/F )-fixed points on G(REv). At almost all v the
character ωv is unramified, and we take fv to be the function f0

v , which
attains the value ωv(z)−1/|Kv/Kv ∩ Zv| at zk in ZvKv and 0 elsewhere.
Here |Kv| denotes the volume of Kv with respect to a Haar measure fixed
below. Put f = ⊗fv.

Let L = L2 be the space of complex valued functions ψ on G\G(A)
with ψ(zg) = ω(z)ψ(g) (z ∈ Z\Z(A)) which are square integrable on
GZ(A)\G(A). The group G(A) acts on L by right translation, thus
(r(g)ψ)(h) = ψ(hg). Each irreducible constituent of the G(A)-module L is
called an automorphic G(A)-module (or representation). Fix a Haar mea-
sure dg = ⊗dgv on G(A)/Z(A) such that

∏
v |Kv/Kv ∩ Zv| converges. Let

f be any smooth complex valued function on G(A) which transforms by
ω−1 under Z(A) and is compactly supported on G(A)/Z(A). Let r(fdg)
be the (convolution) operator on L which maps ψ to

(r(fdg)ψ)(h) =
∫
f(g)ψ(hg)dg (g ∈ G(A)/Z(A)).

311
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This is ∫
G(A)/Z(A)

f(h−1g)ψ(g)dg =
∫
GZ(A)\G(A)

K(h, g)ψ(g)dg.

Hence r(fdg) is a convolution operator with kernel

K(h, g) = Kf (h, g) =
∑

γ∈G/Z

f(h−1γg). (1.1.1)

The theory of Eisenstein series provides a direct sum decomposition of
the G(A)-module L as Ld ⊕ Lc. The “continuous spectrum”, Lc, is a
direct integral of irreducibles. The “discrete spectrum”, Ld, is the sum of
the irreducible submodules of L. It splits as the direct sum of the cuspidal
spectrum L0 and the residual spectrum Lr. It is a direct sum ⊕πm(π)Lπ of
irreducible G(A)-modules (π, Lπ) occurring with finite multiplicities m(π).
If {φπi } is an orthonormal basis of Lπ then the kernel of r(fdg) on Ld is

Kd(k, g) =
∑
π

m(π)
∑

φπ
i
∈Lπ

∫
h

f(h−1k)φπi (h)dh · φ
π
i (g),

h in GZ(A)\G(A). Indeed,

(r(fdg)φ)(g) =
∑
π,φπ

i

m(π)〈r(fdg)φ, φπi 〉 · φπi (g)

=
∑

m(π)
∫
h

(r(fdg)φ)(h)φπi (h)dh · φ
π
i (g)

=
∑

m(π)
∫
h

∫
k∈G(A)/Z(A)

f(k)φ(hk)dk · φπi (h)dh · φ
π
i (g)

=
∫
k

[∑
m(π)

∫
h

f(h−1k)φπi (h)dh · φ
π
i (g)

]
φ(k)dk.

The trace of r(fdg) over the discrete spectrum is the integral of Kd over
the diagonal k = g in Z(A)\G(A):∑

π

∑
φπi

m(π)
∫
g

∫
h

φπi (h)f(h−1g)φπi (g)dhdg

=
∑∑

m(π)
∫
h

∫
g

φπi (h)f(g)φπi (hg)dgdh

=
∑∑

m(π)
∫
h

[r(fdg)φπi ](h)φπi (h)dh

=
∑
π

m(π)
∑
φπ

i

〈π(fdg)φπi , φ
π
i 〉 =

∑
π

m(π) trπ(fdg),
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where π(fdg) denotes the restriction of r(fdg) to π.
The contribution to the trace formula from the complement of Ld in L2

is described using Eisenstein series; we describe this spectral side below.
This side will be used to study the representations π whose traces occur in
the sum.

The Selberg trace formula is an identity obtained on (essentially) in-
tegrating the spectral and geometric expressions for the kernel over the
diagonal g = h. To get a useful formula one needs to change the order of
summation and integration. This is possible if G is anisotropic over F or
if f has a cuspidal component and a component supported on the regular
elliptic set, or is regular in the sense of [FK2]. In general one needs to
truncate the two expressions for the kernel in order to be able to change
the order of summation and integration.

We now turn to the geometric side of the trace formula.
The geometric side of the trace formula is obtained on integrating over

the diagonal g = h ∈ Z(A)G\G(A) the kernel of the convolution operator
r(fdg) on L2:

(r(fdg)φ)(h) =
∫
G(A)/Z(A)

f(h−1g)φ(g)dg

=
∫
Z(A)G\G(A)

[ ∑
γ∈G/Z

f(h−1γg)
]
φ(g)dg.

We consider only the subsum

Ke(h, g) =
∑

x∈Ge/Z

f(h−1xg)

over the set Ge of semisimple, regular and elliptic elements x in G.
A semisimple element x of G is called regular if its centralizer ZG(x)

in G is a torus, and x is called elliptic if it lies in an anisotropic torus.
In our global case anisotropic means that T(A)/TZ(A) is compact, and
in the local case it means that Tv/Zv is compact, where T = T(F ) and
Tv = T(Fv). If x is elliptic regular, T is an elliptic torus.

The integral over h = g in Z(A)G\G(A) of Ke(g, g)dg is the sum over a



314 II. Trace formula

set of representatives x for the conjugacy classes inGe/Z of orbital integrals:∑
x

∫
ZG(x)Z(A)\G(A)

f(g−1xg)dg

=
∑
x

voldt[ZG(x)Z(A)\ZG(x)(A)]
∫
ZG(x)(A)\G(A)

f(g−1xg)
dg

dt
.

1.2 The conjugacy-class analysis of I.1 is motivated by the appearance in
the trace formula of the absolutely convergent sum that we just obtained:∑

x

δ(x)−1|T(A)/Z(A)T |Φ(x, fdg) (1.2.1)

over all conjugacy classes x of regular elliptic elements in G modulo Z. Here
δ(x) is the index [ZG/Z(x) : T/Z] of T/Z in the centralizer ZG/Z(x) of x in
G/Z, and T is the centralizer ZG(x) of x in G. The volume |T(A)/Z(A)T |
of the quotient (with respect to a Tamagawa measure) is finite since x

is an elliptic regular element. We fix differential forms of highest degree
defined over F on G/Z and T/Z, and define Haar measures dg and dt on
Gv/Zv and Tv/Zv at all v. The factor Φ(x, fvdgv) is the orbital integral∫
fv(gxg−1)dg/dt (over Gv/Tv) if x is regular with centralizer Tv. We put

Φ(x, fdg) =
∏

Φ(x, fvdgv) for regular x in G (with centralizer T ).

1.3 The sum (1.2.1) can be written as a sum over the conjugacy classes in
G of elliptic tori T , and a sum over the regular x in T/Z. But we have to
note that δ(x) equals the number of w in the Weyl group W (T ) of T in G
with wxw−1 = zx for some z in Z, and the conjugacy class of x in G/Z

intersects T/Z precisely [W (T )]/δ(x) times. So we have

∑
T

|T(A)/Z(A)T |
[W (T )]

∑
x

′ Φ(x, fdg) (x in T/Z)

where
∑′
x indicates sum over regular elements. This is equal to

∑
T

′ |T(A)/Z(A)T |
[W ′(T )]

∑
x

′
∑

b in B(T/F )

Φ(xb, fdg). (1.3.1)

Here
∑′
T indicates sum over (a set of representatives for the) stable con-

jugacy classes of elliptic T . The group W ′(T ) is the Weyl group of T in
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A(T/F ). The element xb is b−1xb, where b is a representative of b in G(F ).
Note that Φ(xb, fdg), as a function of b, depends only on the projection of
b in B(T/F ).

1.4 For a fixed regular x the sum over b is finite. The pointed set B(T/F )
is a subset of the group C(T/F ). We extend the sum to C(T/F ), setting
Φ(xb, fdg) = 0 if b lies in C(T/F ) − B(T/F ). Note that if the image in
C(T/A), of b in C(T/F ), lies in B(T/A), then b lies in B(T/F ). Since
Φ(xb, fdg) =

∏
v Φ(xb, fvdgv), it depends only on the image of b in C(T/A).

It remains to note that in our case the map C(T/F )→ C(T/A) is injective
(in general the kernel is finite).

Definition. (1) If κv is the restriction of κ to C(T/Fv) we put

Φκv (x, fvdgv) =
∑

κv(b)Φ(xb, fvdgv) (b in C(T/Fv)),

where we set Φ(xb, fvdgv) = 0 if b lies in C(T/Fv) − B(T/Fv). Let
Φκ(x, fdg) be the product over all places v of the local sums (which are
almost all trivial).

(2) When κ is trivial, put Φst(x, fdg) for Φ1(x, fdg), and Φst(x, fvdgv)
for Φ1v (x, fvdgv). These are called stable orbital integrals.

(3) Let k(T ) be the finite group of characters of C(T/A)/C(T/F ).

We obtain a sum
[k(T )]−1

∑
κ

Φκ(x, fdg).

Here κ ranges over the finite group k(T ), which is described in I.1.

1.5 The group k(T ) is trivial unless T is quadratic, when [k(T )] = 2, or T
splits over E, when [k(T )] = 4. We obtain the sum of∑

T

′ |T(A)/Z(A)T |
[W ′(T )][k(T )]

∑
x

′ Φst(x, fdg) (1∗)

and

1
2

∑
T

′′ |T(A)/Z(A)T |
[W ′(T )][k′(T )]

∑
κ6=1

∑
′
x Φκ(x, fdg). (1∗∗)′′

∑′′
T ranges over the T with even [k(T )], where we put [k′(T )] = [k(T )]/2.
Consider the stable conjugacy class of the elliptic T which splits over E.

Fix κ 6= 1.
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Lemma. We have
∑′
x Φκ

′
(x, fdg) =

∑′
x Φκ(x, fdg) for any κ′ 6= 1.

Proof. The group W ′(T ) acts (transitively) on the group

Im[H−1(F,X∗(Tsc))→ H−1(F,X∗(T))],

hence on its dual group k(T ). For b in B(T/A) and w in W ′(T ), we have

(bw)τ = (bw)−1τ(bw) = w−1bτw · wτ (wτ = w−1τ(w)).

If κw({bτ}) = κ({w−1bτw}), then

Φ(xw, fdg, κw) =
∑
b

κ({w−1bτw})Φ(xbw, fdg)

= κ({wτ})−1
∑
b

κ({bτ})Φ(xb, fdg) = Φκ(x, fdg).

The last equality follows from the triviality of κ on C(T/F ). �

1.6 Note that there is a bijection between the stable conjugacy classes of
T in (1∗∗)′′, and the stable conjugacy classes of elliptic tori in H = U(2) '
U(2)×U(1)/Z (where U(1) ' Z ' E1). If T is quadratic (its splitting field
is a biquadratic extension of F ), then [k′(TH)] = 1, and [W ′(TH)] = 2 is the
cardinality of the Weyl group of TH in A(TH/F ) with respect to H. If T
splits over E, there are three κ 6= 1 in (1∗∗)′′, [k′(T )] = 2 and [W ′(T )] = 6.
With respect to H, [k(TH)] = 2 and [W ′(TH)] = 2. Hence we can write
(1∗∗)′′ in the form

1
2

∑
TH

′′ |TH(A)/TH |
[W ′(TH)][k(TH)]

∑
x

′ Φκ(x, fdg). (1∗∗)′

∑′′
TH

now indicates the sum over the stable conjugacy classes of elliptic TH
in H. The groups W ′(TH) and k(TH) are defined with respect to H, and∑′
x is the sum over all regular x in T with eigenvalues not equal to 1. The

character κ is nontrivial.

The Fundamental Lemma and the Matching Orbital Integrals Lemma of
I.2 imply that we can put (1∗∗)′ in the form

1
2

∑
TH

′′ |TH(A)/TH |
[W ′(TH)][k(TH)]

∑
x

′′ Φst(x,′fdh). (1∗∗)
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Indeed, we choose a global character κ of A×E/E×NA×E whose restriction to
A× is nontrivial. At v which splits in E we take

′f(x) = fM (x)/κ(−(ε− 1)(ε′ − 1)).

As usual, fM is defined by fM (m) = δP (m)1/2
∫
N
f(mn)dn where P =

MN is the standard parabolic subgroup with Levi factor M and unipotent
radical N , m ∈M has eigenvalues 1, ε, ε′, and δP (m) = |det(Ad(m)|n)|.

The sum of (1∗∗) is the stabilized elliptic regular part of the trace formula
of H(A).

II.2 Twisted trace formula

2.1 Analogous discussion has to be given in the twisted case. Again F

is a global field, and E is a quadratic field extension. We fix a character
ω′(x) = ω(x/x) on Z′(A)/Z ′, namely on A×E/E×, which is trivial on A×.
We use a test function φ = ⊗φv on G′(A) = G(AE) = GL(3,AE), where
G′ = RE/F G. The component φv is smooth, transforms under Z ′v =
Z′(Fv) = Z(Ev) by ω′v

−1, and is compactly supported modulo the center.
For almost all v the component φv is φ0

v, the function supported on Z ′vK
′
v,

whose value on K ′v = G′(Rv) is the volume |K ′v/K ′v ∩Z ′v|−1. When v splits
we take φv = (fv, f0

v ) if fv is spherical; otherwise f0
v is a measure of volume

one with fv = fv ∗ f0
v . So for almost all split v, we have φ0

v = (f0
v , f

0
v ).

The trace formula, twisted by σ, is developed in close analogy with the
nontwisted case. Let L′ be the space of complex valued functions ψ′ on
G′\G′(A) which transform under Z′(A) via ω′, and are square integrable
on G′Z′(A)\G′(A). The group G′(A) acts on L′ by right translation, thus
(r(g)ψ′)(h) = ψ′(hg). Each irreducible constituent of the G′(A)-module
L′ is called an automorphic G′(A)-module (or representation). Let σ be
the involution of G(AE) given by σ(g) = J tg−1J . This is the group of
points avatar of the algebraic involution ι(x, y) = (y, x) of the F -group
G′ = RE/F G. Put G′′(A) = G′(A) o 〈σ〉 for the semidirect product of
GL(3,AE) and the group Gal(E/F ) = 〈σ〉. Thus G′′ = G′ o 〈ι〉. Extend
r to a representation of G′′(A) on L′ by putting (r(σ)ψ′)(h) = ψ′(σ(h)).
Fix a Haar measure dg′ = ⊗dg′v on G′(A). Let φ be any smooth complex
valued compactly supported modulo Z′(A) function on G′(A) which trans-
forms under the center according to ω′−1. Let r(φdg′) be the (convolution)
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operator on L′ which maps ψ′ to

(r(φdg′)ψ′)(h) =
∫
φ(g)ψ′(hg)dg′ (g ∈ G′(A)).

Then r(φdg′)r(σ), which we also denote by r(φdg′ × σ), is the operator on
L′ which maps ψ′ to (r(φdg′)r(σ)ψ′)(h)

=
∫
G′(A)/Z′(A)

φ(g)(r(σ)ψ′)(hg)dg′ =
∫
φ(g)ψ′(σ(hg))dg′

=
∫
φ(h−1g)ψ′(σ(g))dg′ =

∫
G′(A)/Z′(A)

φ(h−1σ(g))ψ′(g)dg′

=
∫
G′Z′(A)\G′(A)

Kφ(h, g)ψ′(g)dg′,

where

Kφ(h, g) =
∑

x∈G′/Z′
φ(h−1xσ(g)). (2.1.1)

The σ-twisted trace formula is obtained on integrating over the diagonal
g = h in G′(A) the geometric and spectral expressions for the kernel of our
convolution operator r(φdg′×σ), and changing the order of the summation
and integration. For this change we need to truncate both expressions for
the kernel. However, the truncation does not affect the σ-regular elliptic
part of the geometric side (nor does it affect the discrete part of the spectral
spectrum). Thus as in the nontwisted case, we begin by analyzing the σ-
elliptic regular part of the geometric expression for the kernel, namely its
integral over the diagonal.

Thus we begin with a sum∑
x

δ′(x)−1|T(A)/TZ(A)|Φ(xσ, φdg′),

over the σ-conjugacy classes x of σ-regular σ-elliptic elements in G′/Z ′. The
group T is the σ-centralizer of x in G′; δ′(x) is the index of TZ ′ in the σ-
centralizer of x in G′/Z ′. Here Φ(xσ, φdg′) is the integral

∫
φ(yxσ(y−1))dy

over G′(A)/T(A)Z′(A). As φ transforms by ω′−1, we have φ(zzx) = φ(x)
for z in Z′(A) ' A×E . The orbital integral Φ(xσ, φdg′) is a product of local
orbital integrals Φ(xσ, φvdg′v).
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Lemma. Let
∑′
T indicate the sum over the stable conjugacy classes of

elliptic T in G, and
∑′
x the sum over the regular x′ in T/Z. Then our sum

is ∑
T

′ |T(A)/TZ(A)|
[W ′(T )]

∑
x′

′
∑

b in B′(T/F )

Φ((xσ)b, φdg′).

Proof. The sum over b is defined to be 0 unless there is x in G′ with
Nx = x′. If Nx = x′, we let W ′(x′) be the set of g in G/ZG(x′) with

gx′g−1 = zx′ for some z in Z; and W ′(x) the set of g in G
′
/F×Z

G
′(xι)

with gxι(g−1) = zx′ for some z in Z ′. Here ZG′(xι) is the ι-centralizer of
x in G′, and F× is the group of (z, z−1), z in F×. It is clear that the map
W ′(x) → W ′(x′), by g = (g′, g′′) 7→ g′, is an isomorphism. Also we put
W (x) for the g in G′/Z ′ZG′(xι). It is clear that δ′(x) = [W (x)], and that
W (x)→W ′(x) is injective. Further we note that the stable conjugacy class
of x′ intersects T/Z in [W ′(T )]/[W ′(x)] points. If δ′′((xι)b) is the number
of b′ in B′(T/F ) with (xι)b

′
conjugate to z(xι)b for some z in Z ′, it remains

to show that [W ′(x)] is δ′((xι)b)δ′′((xι)b), or δ′′(xι) = [W ′(x) : W (x)], as
we can take b = 1. But this is clear. Note that it suffices to deal only with
x so that W ′(x′), W ′(x) are trivial, by virtue of our assumptions below
about the support of φ. �

2.2 The sum over b can be replaced by the quotient by [k′′(T )] of the sum
over κ in k′′(T ) of Φκ(x, φdg′). The group k′′(T ) is the dual group of the
quotient of B′(T/A) by (the image of) B′(T/F ), computed above. Note
that [k′′(T )] = [k(T )]. Hence we obtain the twisted analogue of (1∗) and
(1∗∗)′, namely

∑
T

′ |T(A)/Z(A)T |
[W ′(T )][k(T )]

∑
x

′ Φst(xσ, φdg′), (2∗)

and

1
2

∑
TH

′′ |TH(A)/TH |
[W ′(TH)][k(TH)]

∑
x

′ Φκ(xσ, φdg′). (2∗∗)′

The notations in (2∗∗)′ are taken with respect to H.

2.3 The twisted and nontwisted stable terms (1∗), (2∗) are related by the
basechange map. The twisted unstable sum (2∗∗)′ can be related to the
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stable sum of the elliptic terms in the trace formula of H, as in the case of
the nontwisted unstable sum (1∗∗)′. For that we need both the matching
and the fundamental Lemmas of I.2.

Assuming that φ and ′φ are global matching functions, (2∗∗)′ can be put
in the form

1
2

∑
TH

′′ |TH(A)/T |
[W ′(TH)][k(TH)]

∑
x

′ Φst(x,′φdh). (2∗∗)

This is the stabilized elliptic part of the trace formula for H(A) and ′φdh.

II.3 Restricted comparison

3.1 The theory of Eisenstein series decomposes the module L′ = L(G′) of
automorphic forms into a direct sum of two submodules, L′d and L′c. The
G′(A)-module L′d is the submodule of L′ consisting of all G′(A)-submodules
Π of L′. Each such Π appears with finite multiplicity in L′d ⊂ L′, and is
called discrete-series representation. The G′(A)-module L′c decomposes as
a direct integral. The G′(A)-module L′d further decomposes as the direct
sum of the space L′0 of cusp forms, and the space L′r of residual forms.

The theory of Eisenstein series provides an alternative, spectral expres-
sion for the kernel of the convolution operator r(φdg′)r(σ) of section II.2.
The Selberg trace formula is an identity obtained on (essentially) integrat-
ing the two expressions for the kernel over the diagonal g = h. To get a
useful formula one needs to change the order of summation and integration.
This is possible if G is anisotropic over F or if f has some special proper-
ties (see, e.g., [FK2]). In general one needs to truncate the two expressions
for the kernel in order to be able to change the order of summation and
integration.

The discussion above holds for any automorphism σ of finite order of a
reductive connected F -group G. When σ is trivial, the truncation intro-
duced by Arthur involves a term for each standard parabolic subgroup P
of G. For σ 6= 1 it was suggested in our 1981 IHES preprint “The adjoint
lifting from SL(2) to PGL(3)” (in the context of the symmetric square lift-
ing) to truncate only with the terms associated with σ-invariant P, and
to use a certain normalization of a vector which is used in the definition
of truncation. The consequent (nontrivial) computation of the resulting
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twisted (by σ) trace formula is carried out in [CLL] for general G and σ.
We proceed to record the expression of [CLL] for the analytic side of the
trace formula, which involves Eisenstein series.

Let P0 be a minimal σ-invariant F -parabolic subgroup of G, with Levi
subgroup M0. Let P be any standard (containing P0) F -parabolic sub-
group of G. Denote by M the Levi subgroup which contains M0 and by
A the split component of the center of M. Then A ⊂ A0 = A(M0). Let
X∗(A) be the lattice of rational characters of A, AM = AP the vector
space X∗(A) ⊗ R = Hom(X∗(A),R), and A∗ the space dual to A. Let
W0 = W (A0, G) be the Weyl group of A0 in G. Both σ and every s in
W0 act on A0. The truncation and the general expression to be recorded
depend on a vector T in A0 = AM0 . In the case considered in this part
this T becomes a real number, the expression is linear in T , and we record
further below only the value at T = 0.

Proposition [CLL]. The analytic side of the trace formula is equal to
a sum over
(1) The set of Levi subgroups M which contain M0 of F -parabolic subgroups
of G′.
(2) The set of subspaces A of A0 such that for some s in W0 we have
A = As×σM , where As×σM is the space of s × σ-invariant elements in the
space AM associated with a σ-invariant F -parabolic subgroup P of G′.
(3) The set WA(AM ) of distinct maps on AM obtained as restrictions of
the maps s×σ (s in W0) on A0 whose space of fixed vectors is precisely A.
(4) The set of discrete-spectrum representations τ of M(A) with (s×σ)τ '
τ .

The terms in the sum are equal to the product of
[WM

0 ]
[W0]

(det(1− s× σ)|AM/A)−1 and

∫
iA∗

tr[MT
A(P, λ)MP |σ(P )(s, 0)IP,τ (λ;φdg′ × σ)]|dλ|.

Here [WM
0 ] is the cardinality of the Weyl group WM

0 = W (A0,M) of A0

inM ; P is an F -parabolic subgroup of G′ with Levi component M; MP |σ(P )

is an intertwining operator; MT
A(P, λ) is a logarithmic derivative of inter-

twining operators, and IP,τ (λ) is the G′(A)-module normalizedly induced
from the M(A)-module m 7→ τ(m)e〈λ,H(m)〉 (in standard notations).
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Remark. The sum of the terms corresponding to M = G′ in (1) is equal
to the sum I =

∑
trΠ(φdg′×σ) over all discrete-spectrum representations

Π of G′(A) which are σ-invariant.
We write trΠ(φdg′) for the trace of the trace class convolution operator

Π(φdg′) =
∫
φ(g′)Π(g′)dg′ (g′ in G′(A)/Z′(A); dg′ is a Tamagawa measure,

often omitted from the notations), for an admissible Π.
The spectral side of the nontwisted trace formula for G(A) is described

by the Proposition above, where σ is replaced by the identity and G′ by
G.

The trace formula for G(A) and the trace formula for G′(A) twisted
with respect to σ, are compared in II.4 below for measures fdg and φdg′

sufficiently general to derive our lifting results. Here we consider an easy
special case. Fix two places u, u′ of F . We shall work here with global
functions f , φ, ′f , ′φ whose components at u, u′ have (twisted in the case
of φ) orbital integrals which vanish on the (resp. σ-) regular split set. An
element is called split if its conjugacy class intersects the diagonal torus
nontrivially. Further, we fix a nonarchimedean place u′′, and require that
the (resp. σ-) orbital integral of the component at u′′ be zero on the (resp.
σ-) semisimple singular set. These conditions imply that the geometric ex-
pression for the kernel contains only terms indexed by (resp. σ-) conjugacy
classes of rational (resp. σ-) elliptic elements in G (resp. G′).

Under the above restrictions at u, u′, u′′ on the test function f on G(A)
(and the matching φ on G′(A)), the trace formula for f on G(A) asserts

Lemma. The sum
∑

trπ(fdg) over all discrete-spectrum representa-
tions π of U(3, E/F )(A) = G(A) is equal to the sum of (1∗), (1∗∗) (where
′fdh is a test measure on H(A) matching fdg on G(A)), and

−1
4

∑
µ

trM(µ)I(µ, fdg).

All sums here are absolutely convergent.

The new sum extends over all characters µ of A×E/E×NA×E . The diag-
onal subgroup A(A) of G(A) consists of diag(a, b, a−1), a in A×E , b in A1.
Any character of A(A)/A whose restriction to Z(A) is ω, is of the form
diag(a, b, a−1) 7→ µ(a)(ω/µ)(b), where µ is a character of A×E/E×. We de-
note the G(A)-module normalizedly induced from the character of A(A)
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by I(µ). We shall also use the analogous notations in the local case. The
intertwining operator M(µ) is defined in the theory of Eisenstein series.

3.2 The twisted trace formula of our group G′(A) is to be discussed next.
The center Z′(A) of G′(A) = GL(3,AE) is isomorphic to A×E . The norm
map N takes z in Z′(A) to z/z in Z(A). The restriction to A× of the
character ω′ = ω ◦N of Z′(A) is trivial. Let L(G′) once again be the space
of complex valued functions ψ on G′\G′(A), which transform under Z′(A)
by ω′, and are absolutely square integrable on G′Z′(A)\G′(A). The group
G′(A) acts on L(G′) by right translation. The irreducible constituents Π
are called automorphic. The discrete and continuous spectra are invariant
under the action of σ, which maps ψ to σψ, where (σψ)(x) = ψ(σx). We
say that the G′(A)-module Π is σ-invariant if Π is equivalent to σΠ, where
(σΠ)(x) = Π(σx). In this case there is an intertwining operator Π(σ) of Π
with σΠ, whose square is the identity. We write tr Π(φd′x×σ) for the trace
of the operator Π(φd′x× σ) =

∫
φ(x)Π(x)Π(σ)d′x (x in G′(A)/Z′(A); d′x

is a Tamagawa measure, often omitted from the notations).
As usual normalizedly induced G′(A)-modules are denoted by I(η). Here

η = (µ, µ′, µ′′) is a character of the diagonal subgroup A′(A) of G′(A). The
µ, µ′, µ′′ are characters of A×E/E×. For each element w of the Weyl group
W of A in G, there is an intertwining operator M(w, η) from I(η) to I(wη),
where (wη)(a) = η(waw−1). The I(η) which appear in the trace formula
are those whose central character µµ′µ′′ is equal to ω′.

Suppose τ is an irreducible H′(A) = H(AE)-module, where H′ is
RE/F U(2, E/F ), thus H ′ = GL(2, E). Denote by I(τ) the G′(A)-module
normalizedly induced from the H′(A) × Gm(AE) module τ ⊗ ωτ , where
ω′/ωτ is the central character of τ . The central character of I(τ) is then
ω′. The representation I(τ) is σ-invariant if and only if τ ' wτ , where

w =
(

0 1

−1 0

)
and (wτ)(x) = τ(wtx−1w−1), and ωτ (aa) = 1 for all a in A×E .

Recall that the twisted orbital integrals of the components of φ at u, u′

are assumed to be zero on the σ-regular split set. The integral of φu′′ at
the σ-semisimple-singular elements, is assumed to be 0. Then the twisted
trace formula for G′(A) and φ asserts the following. (For a similar case see
[F2;I].)

Lemma. The sum
∑

trΠ(φdg′×σ) over the σ-invariant representations
Π of G′(A) in the discrete spectrum is equal to the sum of (2∗), (2∗∗), and
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− 1
4

∑
tr I(η, φdg′ × σ) +

1
8

∑
tr I(η, φdg′ × σ)

+
3
8

∑
tr I(η, φdg′ × σ)− 1

2

∑
tr I(τ, φdg′ × σ).

All G′(A)-modules I(η), I(τ) here are σ-invariant. The characters µ, µ′,
µ′′ in η are trivial on E×NA×E. The first sum is over all unordered triples
of pairwise distinct µ, µ′, µ′′. The second is over all (µ, µ′, µ), µ′ 6= µ. In
the third µ = µ′ = µ′′. The I(η), I(τ) here are all irreducible.

In fact the way in which the I(η) appear in the trace formula is as

1
24

∑
trM((13), η)I(ηdg′, φ×σ)+

1
6

∑
w=(12),(23)

∑
η

trM(w, η)I(η, φdg′×σ).

The nonzero contributions are given by the η for which η, acted upon by
σ and then the reflection w is equal to η. Thus the first sum is over the η
with µ, µ′, µ′′ trivial on NA×E ; the others are over the η with µ = µ′ = µ′′,
µ trivial on NA×E .

The intertwining operators M(w, η) can be written as local products
m(w, η)⊗v R(w, ηv) (see [Sh]). Here R(w, ηv) are the local normalized in-
tertwining operators. They are trivial in our case. The normalizing factors
m(w, η) are given by m((12), η) = L(1, µ′/µ)/L(1, µ/µ′),

m((23), η) = L(1, µ′′/µ′)/L(1, µ′/µ′′),

and m((13), η) is

[L(1, µ′′/µ′)/L(1, µ′/µ′′)][L(1, µ′′/µ)/L(1, µ/µ′′)][L(1, µ′/µ)/L(1, µ/µ′)].

If at least two of the µ’s are equal, m(w, η) has to be evaluated as a
limit; the value is −1. If the µ are all distinct, then m((13), η) is 1. Indeed,
L(1, µ) = L(1, µ), and here µ = µ−1. Up to equivalence each I(η) appears
in the first sum 6 times if the µ are distinct, 3 times if exactly two of the µ
are equal, and once if µ = µ′ = µ′′. Whence the expression of the lemma.

3.3 The character µ of A×E/E× defines a character of the diagonal subgroup
′A(A) of H(A), by diag(a, a−1) 7→ µ(a), and an induced representation I(µ).
Under the usual restriction on ′f at u, u′ and u′′, the trace formula for H(A)
and ′f asserts the following (see [F3;II]).
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Lemma. The sum
∑
n(ρ) tr{ρ}(′fdh) over all automorphic packets {ρ}

of H(A), is equal to the sum of (1∗∗) (times 2), and 1
4

∑
µ tr I(µ,′fdh). The

sum over µ is taken over all characters of A×E/E×A×.

The automorphic, and local, packets of H(A)-modules, and the global
multiplicities n(ρ) (= 1 or 1/2), are defined in [F3;II].

3.4 We now obtain an identity of trace formulae. Let E/F be a global
quadratic extension, and ′φdh, φdg′, fdg, ′fdh matching measures on H(A),
G′(A), G(A), H(A). We assume that the (twisted) orbital integrals of
the components at u, u′ are 0 on the (σ-) regular split set, and that the
corresponding integral of the component at the nonarchimedean place u′′

vanishes on the (σ-)semisimple singular set. Combining the Lemmas 3.1,
3.2 and 3.3, we deduce

Proposition. In the above notations, we have

∑∏
trΠv(φvdg′v × σ) +

1
2

∑∏
tr I(τv;φvdg′v × σ)

+
1
4

∑∏
tr I(ηv;φvdg′v × σ)− 1

8

∑∏
tr I((µv, µ′v, µv);φvdg

′
v × σ)

− 3
8

∑∏
tr I(µv, µv, µv);φvdg′v × σ)

=
∑∏

trπv(fvdgv)−
1
2

∑
n(ρ)

∏
tr{ρv}(′fvdhv)

+
1
2

∑
n(ρ)

∏
tr{ρv}(′φvdhv)

1
4

∑
m(η)

∏
trR(µv)I(µv, fvdgv)

+
1
8

∑∏
tr I(µv, ′fvdhv)−

1
8

∑∏
tr I(µv, ′φvdhv).

The products
∏

are taken over all places v of F . It is useful to fix a finite
set V of places, which includes u, u′, u′′, the archimedean places and those
places which ramify in E/F , such that ′φv, φv, fv, ′fv are spherical outside
V . Then the components Πv, πv and ρv are unramified, and correspond to
the conjugacy classes t′v×σ, tv×σ, ′tv×σ in the dual groups LG′, LG, LH,
by the definition of the Satake transform. For each v outside V we fix tv×σ,
and let t′v×σ be its image under the basechange map LG→ LG′, ′tv×σ the
pullback via the endo-map LH → LG, and ′t′v×σ the pullback of t′v×σ via
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the σ-endo-map LH → LG′. A standard approximation argument, based on
(1) the fact that the sums in the Proposition are absolutely convergent, and
(2) the matching result of I.2 and I.3, for corresponding spherical functions,
implies the following

Corollary. Fix {tv×σ; v outside V }. Then all products in the Propo-
sition extend over V . The sums range over Π, π, ρ whose component at v
outside V is parametrized by tv × σ.

The rigidity theorem for G′ = GL(3) of [JS] implies that at most one of
the first five sums involving G′-modules is nonempty, and this sum consists
of a single G′-module by multiplicity one theorem.

II.4 Trace identity

Summary. The identity of trace formulae is proven for arbitrary matching
functions, under no restriction on any component. The method requires
no detailed analysis of weighted orbital integrals, or of orbital integrals of
singular classes.

4.1 Introduction

Let E/F be a quadratic extension of global fields. Put G′ for G(E) =
GL(3, E). Denote by G = G(F ) the quasi-split unitary group in three
variables. It consists of all g inG′ with σg = g, where we write σx = J tx−1J

for x in G′ : x is (xij) if x = (xij), the bar indicating the action of the
nontrivial element of the Galois groups Gal(E/F ), and

J =
(

0 1

−1

1 0

)
, w =

(
0 1

−1 0

)
.

Similarly we put σx = wtx−1w−1 for x in H ′, and introduce H ′ = H(E) =
GL(2, E) and H = H(F ) = {g ∈ H ′;σg = g}. Then G = U(3, E/F ),
H = U(2, E/F ). We use the following smooth complex-valued functions.

(1) ′f = ⊗′fv and ′φ = ⊗ ′φv are compactly supported on H(A) (A = AF
indicates the ring of adèles of F ).

(2) f = ⊗fv on G(A) transforms under the center Z(A) (' A1
E : E-idèles

of norm 1 in A×F ) of G(A) by a fixed character ω−1, where ω is a character
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of A1
E/E

1 (E1 = {x ∈ E;NE/Fx = 1}); f is compactly supported modulo
Z(A).

(3) φ = ⊗φv is a function on G′(A) = G(AE) which transforms under
the center Z′(A) = Z(AE) (' A×E) of G′(A) by ω′−1, where ω′(x) = ω(x/x),
x in the group A×E of idèles.

The local components of ′fdh, fdg, φdg′, ′φdh are taken to be matching,
namely their orbital integrals are related in a certain way, specified in II.2.

Our purpose here is to prove the following:

Theorem. Let ′fdh, fdg, φdg′, ′φdh be matching measures. Then the
identity displayed in Proposition II .3.3 holds.

We abbreviate this identity to:

∑
Π

m(Π) tr Π(φdg′ × σ)− 1
2

∑
{ρ}

n(ρ) tr {ρ}(′φdh)

=
∑
π

m(π) trπ(fdg)− 1
2

∑
{ρ}

n(ρ) tr{ρ}(′fdh).

Here the sum over Π ranges over various automorphic σ-invariant G′(A)-
modules and m(Π) is 1 if Π is discrete spectrum, 1

2 if Π = I(τ) and 1
4 , − 1

8

or − 3
8 if Π = I(η). The π are automorphic G(A)-modules which may be

discrete spectrum or induced and the m(π) are integers, 1
2 or 1

4 . The {ρ}
are automorphic H(A)-packets, and the n({ρ}) = n(ρ) are again rational
numbers. Proposition II.3.3 asserts the theorem under the additional as-
sumption that two local components of (each of) ′f , f , φ, ′φ are elliptic (=
discrete). Our purpose here is to prove the theorem unconditionally, and
by a simple technique.

To simplify the notations we fix the Haar measures dg′, dg, dh, and refer
to the functions φ, f , etc., rather than the measures φdg′, fdg, etc.

Trace identity as in the Theorem, for general test functions f , φ, . . . on
two (or more) groups G, G′, . . . , appears already in (Chapter 16 of) [JL].
But attention to the problem was drawn by Langlands’ study [L5] of the
first nontrivial case, namely the comparison needed for the completion of
the cyclic basechange theory for GL(2), initiated by Saito and Shintani.

Langlands proved the required identity for GL(2) on (1) computing the
weighted orbital integrals and orbital integrals of singular classes which
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appear in the trace formulae, (2) analyzing the asymptotic behavior of the
weighted integrals, (3) applying the Poisson summation formula, and so on.

The method presented here is entirely different. The principle is that
it suffices to check the identity of the Theorem only for a small class of
convenient test functions, and then use the fact that we deal with characters
of representations to conclude that the identity holds in general. It is not
necessary to deal with arbitrary f , φ, . . . at the initial stage. In fact, it is
shown below that for a suitable choice of test functions (whose definitions
we leave to the text itself), the weighted orbital integrals and the orbital
integrals at the singular classes are equal to zero. In particular they need
not be further computed and transformed. The proof turns out to be rather
simple, once the right track is found.

The present method applies also in the case considered in [L5] to yield
a simple and short proof of the trace identity needed for the comparison of
basechange for GL(2). It makes a crucial use of the existence of a place u
of F which splits in E.

The observation underlying our approach is that the subgroup F× of
rationals is discrete in the group A×F of idèles. That this simple fact can
actually be used to annihilate the undesirable terms in the trace formula was
suggested by Drinfeld’s use of spherical functions related to powers of the
Frobenius, in the course of the work, [FK2], [FK3] with D. Kazhdan, on the
Ramanujan conjecture for automorphic forms with a cuspidal component
of GL(n) over a function field.

In the present section admissible spherical functions are used to estab-
lish the theorem by our simple approach. This technique is developed in
[FK1] to establish the metaplectic and simple algebra correspondences in
the context of arbitrary rank and cusp forms with a single cuspidal com-
ponent. A different variant of the approach, based on the use of regular
Iwahori biinvariant functions, is applied in [F1;IV] to give a simple proof
of cyclic basechange for GL(2) with no restriction on any component, in
[F2;VI] to prove the absolute form of the symmetric square lifting from
SL(2) to PGL(3), and in [F1;V] to establish by simple means cyclic base
change for cusp forms with at least one cuspidal component on GL(n).

To complete this introduction we now sketch the proof which is given
below. We deal with four trace formulae for test functions f , φ, ′f , ′φ,
on the groups G(A) = U(3, E/F )(A), G′(A) = GL(3,AE), and (twice)
H(A) = U(2, E/F )(A). Put q for the quadruple (f , φ, ′f , ′φ). Each
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trace formula is an equality of distributions in the test function. These
distributions are as follows. OI involves “good” orbital integrals, on the set
of rational regular elliptic elements. WI involves “bad” orbital integrals,
on the set of rational elements which are not regular elliptic; these “bad”
integrals are mostly weighted and noninvariant as distributions in the test
function. RD is a (discrete) sum of traces of automorphic representations;
these occur with coefficients which may be negative when the representation
is not cuspidal. RC is an integral (continuous sum) of traces of induced
representations; these traces are often weighted, and the distributions which
make up RC are mostly noninvariant. The trace formula takes the form I
= R, where R = RD + RC is the representation theoretic side, and I = OI
+ WI is the geometric side (orbital integrals) of the formula.

We shall be interested in a linear combination of the four formulae. Put

RD(q) =
[

RD(φ)− 1
2

RD(′φ)
]
−
[

RD(f)− 1
2

RD(′f)
]
,

and introduce OI(q), RC(q) analogously. From now on we always choose
the four components of q to have matching orbital integrals. This choice
implies the vanishing of OI(q). Hence

RD(q) = WI(q)− RC(q).

In these notations, the Theorem can be restated as follows.

Theorem. For any quadruple q of matching functions we have
RD(q) = 0.

Fix a nonarchimedean place u of F which splits in E. Then

G(Fu) = GL(3, Fu), G′(Fu) = GL(3, Fu)×GL(3, Fu),

H(Fu) = GL(2, Fu). Fix a quadruple qu = (fu, φu, ′fu, ′φu) of the compo-
nents outside u of q. Put RC(qu) for RC(qu ⊗ qu), where

qu = (fu, φu, ′fu, ′φu).

As the first step in the proof we explicitly construct for any fu a quadruple
qu = q(fu) which has the property that RC(q(fu)) depends only on the
orbital integrals of fu.
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For the second step of the proof, we say that a function f ′u on G(Fu) is
n0-admissible (for some n0 > 0) if it is spherical and its orbital integrals
on the split regular set vanish at a distance ≤ n0 from the walls [namely,
on the orbits with eigenvalues of valuations n1, n2, n3 such that |ni − nj |
is at most n0 for some i 6= j (i, j = 1, 2, 3)] We prove: For any quadruple
qu of matching fu, φu, ′fu, ′φu, which vanish on the adèles-outside-u orbits
of the singular-rational elements, there exists an integer n0 = n0(qu) such
that WI(q(f ′u)) = 0 for every n0-admissible f ′u. Note that in this case all
of four components of q(f ′u) are spherical.

To prove this we show in the Proposition that, given fu which vanishes on
the G(Au)-orbits of the singular set in G(F ), there exists n0 = n0(fu) > 0,
such that for every n0-admissible f ′u there exists a function fu with the same
orbital integrals as f ′u with the property that fu ⊗ fu is zero on the G(A)-
orbits of all “bad” rational elements. In particular WI(fu ⊗ fu) = 0. The
function fu is obtained by replacing f ′u by zero on a small neighborhood of
finitely many split orbits where the orbital integral of f ′u is zero. Choosing
n0 sufficiently large, depending on qu, and noting that the construction of
q(fu) is such that its components are zero on the image of the split regular
orbits where fu is zero, we conclude that for every n0-admissible f ′u there
is fu with orbital integrals equal to those of f ′u such that WI(q(fu)) = 0.
Consequently WI(q(f ′u)) = 0 for every n0-admissible f ′u, since

WI(q(fu)) = RD(q(fu)) + RC(q(fu))

and RC(q(fu)) depends (by Step 1) only on the orbital integrals of fu
(which are equal to those of f ′u).

The third step asserts that since RD(q(f ′u)) = −RC(q(f ′u)) for every
n0-admissible f ′u we have RD(q(f ′u)) = RC(q(f ′u)) = 0 for every spherical
f ′u. This follows from the final Proposition in [FK2], where this claim is
stated and proven in the context of an arbitrary reductive p-adic group.

Fix a nonarchimedean place u′ of F which splits in E. It follows from
Step 3 that for any qu′ whose 4 components vanish on the singular sets, we
have RD(qu

′ ⊗ qu′) = 0 for all qu
′
. The fourth step is to show that this

holds for any spherical qu′ . The proof is the same as in III.1.2. We will
recall the argument here.

Write RD(q) as a sum
∑
χ RD(q, χ) over all infinitesimal characters χ,

of the partial sums RD(q, χ) of RD(q) taken only over those automorphic
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representations whose infinitesimal character is χ. Since the archimedean
components of q are arbitrary, a standard argument of “linear indepen-
dence of characters” implies that since RD(q) = 0, for every χ we have
RD(q, χ) = 0 if qu′ = 0 on the singular set. Fix qu

′
, and consider RD(q, χ)

as a functional on the space of Iwahori quadruples qu′ (i.e., quadruples
whose components are biinvariant under the standard Iwahori subgroups).
There are only finitely many automorphic representations with a fixed in-
finitesimal character, fixed ramification at each finite place 6= u′, whose
component at u′ has a nonzero vector fixed under the action of an Iwahori
subgroup. Hence as a functional in the Iwahori quadruple qu′ , RD(q, χ)
is a finite sum of characters. As it is zero on all qu′ which vanish on the
singular set, and our groups are GL(2) and GL(3), it is identically zero. In
particular RD(q, χ) vanishes on the spherical quadruples qu′ , from which
the Theorem easily follows. This completes our outline of the proof of the
Theorem.

4.2 Conjugacy classes

Let v be a place of F . Denote by Fv the completion of F at v, and
put Ev = E ⊗F Fv. If v stays prime in E, then Ev/Fv is a quadratic
field extension. If v splits into v′, v′′ in E, then Ev = Ev′ × Ev′′ , where
Ev′ ' Ev′′ ' Fv. In this case

G′v = G(Ev) = GL(3, Fv)×GL(3, Fv),

and
Gv = G(Fv) = {(g, σg); g ∈ GL(3, Fv)} ' GL(3, Fv).

Here σg = J tg−1J , as Gal(E/F ) maps g = (g′, g′′) in G′v to g = (g′′, g′).
Let u be a fixed nonarchimedean place of F which splits in E. Put fu =
⊗v 6=ufv, where at each place v 6= u of F we take the function fv to be
fixed. The component fu is a locally constant function on Gu = G(Fu) =
GL(3, Fu). We choose u such that the central character ω has an unramified
component ωu at u. Replacing ω by its product with an unramified (global)
character we may assume that ωu = 1. Then fu(zg) = fu(g) for g in Gu,
z in the center Zu of Gu, and fu is compactly supported on Zu\Gu. Let
F (g, fu) = ∆(g)Φ(g, fu) be the normalized orbital integral of fu. Let Ru
be the ring of integers in Fu. Put Ku = G(Ru); it is a maximal compact
subgroup of Gu. A spherical function is a Ku-biinvariant function. The
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theory of the Satake transform implies that a spherical fu on Gu is deter-
mined by its orbital integral on the split set. Let | · | be the (normalized)
valuation on Fu, put q = qu for the cardinality of the residue field of Fu,
and val for the additive valuation, defined by |a| = qval(a) for a in F×u . Let
n = (n1, n2, n3) be a triple of integers. Let f ′u be the spherical function
on Gu for which F (g, f ′u) is zero at the regular diagonal element g = (a, b,
c), unless up to conjugation and modulo the center we have (val a, val b,
val c) = n, in which case we require F (g, f ′u) to be equal to one. Embed
Z in Z3 diagonally. The symmetric group S3 on three letters acts on Z3.
Denote by Z3/S3Z the quotient space. Then f ′u depends only on the image
of n in Z3/S3Z. We write f ′u = f ′u(n) to indicate the dependence of f ′u on
n.

Definitions. (1) The function fu on Gu is called pseudo-spherical if
there exists a spherical function f ′u with F (g, fu) = F (g, f ′u) for all g in Gu.
We write fu(n) for fu if f ′u = f ′u(n).

(2) Let n0 be a nonnegative integer. An element n = (n1, n2, n3) of
Z3/S3Z is called n0-admissible if |ni − nj | ≥ n0 for all i 6= j; i, j = 1, 2, 3.

We also fix a place u′ of F which stays prime in E such that Eu′/Fu′
is unramified, and a positive integer n′. Let S = S(u′, n′) be the set of
g in Gu′ which are conjugate to some diagonal matrix diag(a, b, a−1) with
|a|u′ = qn

′

u′ (and |b|u′ = 1); a ∈ E×u′ and b ∈ E1
u′ . We shall assume from

now on that the component fu′ is a (compactly supported, locally constant)
function on Gu′ such that F (g, fu′) is the characteristic function of S. Since
S is open and closed we may and do take fu′ to be supported on S.

Proposition. There exists an integer n0 ≥ 0 depending on fu, such
that for any n0-admissible n there is a pseudo-spherical fu = fu(n) with
the property that f = fu ⊗ fu satisfies the following. If γ lies in G(F ), x
in G(A), and f(x−1γx) 6= 0, then γ is elliptic regular.

Proof. If fu′(x−1γx) 6= 0 then γ lies in S, hence it is regular in Gu′ and
also in G. If γ is not elliptic, then we may assume that it is the diagonal
element diag(a, b, a−1) with a in E× and b in E1 = {b in E×; bb = 1}.
Modulo the center we may assume that b = 1. Also we have aa 6= 1.
At the split place u we have a = (α, β), with α, β in F×u . Hence γ is
diag(α, 1, β−1) in Gu. Since fu is fixed, there are Cv ≥ 1 for all v 6= u,
with Cv = 1 for almost all v, such that C−1

v ≤ |a|v ≤ Cv for all v 6= u
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if fu(x−1γx) 6= 0 for some x in G(A). Here |a|v = |NE/Fa|v. Since a
lies in E×, and NE/Fa in F×, the product formula on F× implies that
|αβ|u = |NE/Fa|u = |a|u lies between Cu =

∏
v 6=u Cv and C−1

u . We take n0

with qn0
u > Cu. Consider an n0-admissible n and the spherical f ′u = f ′u(n).

If f ′u(x
−1γx) 6= 0 for some x in Gu, then there is some C ′u > 1 such that

|α|u and |β|u are bounded between C ′u and C ′u
−1, so that a lies in the

discrete set E× and in a compact of A×E , hence in a finite set. Hence γ
lies in finitely many conjugacy classes modulo the center; let γ1, . . . , γt be
a set of representatives. Put γi = diag(αi, 1, β−1

i ). By definition of f ′u, if
F (γi, f ′u) 6= 0 then we have that |αiβi| or |αiβi|−1 is bigger than qn0

u , hence
f(x−1γix) = 0 for all x and i. We conclude that F (γi, f ′u) = 0 for all i. Let
Si be the characteristic function of the complement of a small open closed
neighborhood of the orbit of γi in Gu. Then the function fu = f ′u

∏
i Si on

Gu has the required properties. �

Let L(G) denote the space of automorphic functions on G(A); these are
the square-integrable functions on Z(A)G\G(A) which transform on Z(A)
by ω and are right invariant by some compact open subgroups; see [BJ]
and [Av]. The group G(A) acts on L(G) by right translation: (r(g)Ψ)(h) =
Ψ(hg). Then r is an integral operator with kernel Kf (x, y) =

∑
γ f(x−1γy),

where γ ranges over Z\G. In view of the Proposition, the integral of
Kf (x, y) on the diagonal x = y in G(A)/Z(A) is precisely the sum (1.2.1),
which is stabilized and analyzed in II.1. The remarkable phenomenon to
be noted is that for f with a component fu as in the Proposition, the only
conjugacy classes which contribute to the trace formula are elliptic regu-
lar. The weighted orbital integrals and the orbital integrals of the singular
classes are zero, for our function f . Moreover, the truncation which is
usually used to obtain the trace formula is trivial, for our f .

Each component φvdg′v of the measure φdg′ = ⊗φvdg′v on G′(A) =
G(AE) is taken to be matching fvdgv in the terminology of I.2. In particular
we take φudg′u to be (fudgu, f0

udgu), where f0
udgu is a unit element of the

Hecke algebra. Namely the pseudo-spherical fudgu is biinvariant under
some σ-invariant compact open subgroup Iu of Gu, where σ(g) = J tg−1J ,
and f0

u is taken to be the characteristic function of ZuIu, divided by the
volume of IuZu/Zu. Then fudgu = f0

udgu ∗ fudgu = fudgu ∗ f0
udgu. An

immediate twisted analogue of the proof of the Proposition establishes the
following.
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Proposition. If n is n0-admissible, δ lies in G′, x in G(AE) and
φ(x−1δσ(x)) 6= 0, then Nδ is elliptic regular in G.

Here N denotes the norm map from the set of stable σ-conjugacy classes
in G′ (and G(AE)) onto the set of stable conjugacy classes in G (and G(A))
(see I.1.5 and [Ko1]). Again we can introduce the space L(G′) of automor-
phic functions on G′\G′(A) which transform on Z′(A) by ω′ and the right
action r′ of G(AE) on L(G′). The Galois group Gal(E/F ) acts on L(G′)
by (r′(σ)Ψ)(g) = Ψ(σg). The operator r′(φ × σ) is an integral operator
with kernel Kφ(x, y) =

∑
δ φ(x−1δσ(y)) (δ in Z ′\G′). The Proposition

shows that the integral of Kφ along the diagonal x = y in Z(AE)\G(AE)
is precisely the sum which is stabilized and discussed in II.2.

The functions ′f and ′φ on H(A) are taken to be matching with f and
φ, as defined in I.2. Their components at u can be taken to be pseudo-
spherical, and the Proposition and its applications hold for ′f and ′φ as
well. It remains to consider the contribution to the trace formulae from the
representation theoretic side.

4.3 Intertwining operators

For brevity we denote by J the difference of the two sides in the equality
of our theorem. Then J is the difference of the two sides in the equality
of II.3. These are the invariant representation theoretic terms in our trace
formulae. The work of II.1 and II.2 concerns the stabilization of the orbital
integrals on the elliptic regular conjugacy classes which appear in the trace
formulae. It implies that for arbitrary matching functions ′f , f , φ, ′φ the
difference J can be expressed as a sum of integrals of logarithmic deriva-
tives of certain intertwining operators, which we momentarily describe, and
weighted and singular orbital integrals which vanish for functions as con-
sidered in 4.2. In II.3 we concluded from this that J = 0 if the functions
f , φ, . . . have two elliptic (= discrete) components. To deal with the case
of arbitrary f , φ, . . . we now record an expression for J , excluding the
weighted and singular orbital integrals, as follows. The expression consists
of four terms, one for each of φ, f , ′f , ′φ. These are the terms involving
integrals (over iR) in the trace formulae. They are analogous to the terms
(vi), (vii), (viii) of [JL], p. 517. We use the notations of II.3.1, which are
standard notations.

The term J(φdg′), from the twisted formula for G′(A), is the sum of
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three expressions, equal to each other. The coefficient [WM
0 ]/[W0](det(1−

s× σ|AM |A) of II.3.1 (and [A2], Thm 8.2, p. 1324) is 1
12 (here M = M0 is

the diagonal subgroup A; the Lie algebra A is one-dimensional). Hence we
obtain

J(φdg′) =
1
4

∑
τ

∫
iR

tr[M(λ, 0,−λ)IP0τ ((λ, 0,−λ);φdg′ × σ)]dλ.

The sum is over all connected components (with representatives τ =
(µ1, µ2, µ3)) of characters of A(AE)/A(E), with στ = τ . More precisely,
let ν be the character ν(x) = |x| of A×E . Note that A ' G3

m. The connected
component of τ consists of τλ = (µ1ν

λ, µ2, µ3ν
−λ), λ in iR. The µj are

unitary characters of A×E/E×, and µ1µ2µ3 = ω′. We put IP0,τ ((λ, 0,−λ))
for the G(AE)-module normalizedly induced from τλ; τλ is regarded as a
character of the upper triangular subgroup P0(A) which is trivial on the
unipotent radical of P0(A). The action of σ takes τ to (µ−1

3 , µ−1
2 , µ−1

1 ),
where µ(x) = µ(x). Hence στ = τ implies τ = (µ, ω′µ/µ, µ−1), where
µ = µ1.

The operatorM is a logarithmic derivative of an operator M = m⊗vRv,
where Rv denotes a local normalized intertwining operator. The normal-
izing factor m = m(λ) = m(λ, τ) is an easily specified (see [F2;I], C2.2)
quotient of L-functions, which has neither zeroes nor poles on the domain
iR of integration. Then the logarithmic derivative M is

m′(λ)/m(λ) + (⊗R−1
v )

d

dλ
(⊗Rv),

and we obtain J(φdg′) = J ′(φdg′) +
∑
v Jv(φdg

′), where

J ′(φdg′) =
1
4

∑
τ

∫
iR

m′(λ)
m(λ)

[∏
v

tr Iτv (λ;φvdg′v × σ)
]
dλ

and Jv(φdg′) is

1
4

∑
τ

∫
iR

[trRτv
(λ)−1Rτv (λ)′Iτv (λ;φvdg′v × σ)] ·

∏
w 6=v

tr Iτw(λ;φwdg′w × σ)dλ.

The abbreviated notations are standard. The sum over v is finite. It extends
over the places v where φv is not spherical, since when φv is spherical
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the operator Iτv (λ;φvdg′v × σ) factors through the projection on the one-
dimensional subspace (if τv is unramified) of Kv = GL(3, Rv)-fixed vectors,
on which Rτv (λ) acts as the scalar one, so that Rτv (λ)′ = 0.

Next we have to record the analogous term J(fdg) of the trace formula
for G(A). Again we use the notations of 3.1, with σ = 1. This rank-one
nontwisted case is well known (see [JL], pp. 516-517). We take M = M0,
and A = AM is one dimensional. The element s of the Weyl group is
s = id; it lies in WA(AM ). The Weyl group W0 has cardinality two, and
[WM

0 ] = 1, and AM/A = {0}. Hence the coefficient of J(fdg) is 1
2 , and

J(fdg) =
1
2

∑
µ

∫
iR

trM(λ)I(µ⊗ λ; fdg)dλ.

The sum ranges over all connected components with representatives µ,
where µ(a, b, a−1) = µ(a/b)ω(b). Here a lies in A×E , b in A1

E , µ is a character
of A×E/E×, and the connected component of µ consists of µ ⊗ λ, where
µ is replaced by µνλ, for λ in iR. The induced G(A)-module I(µ ⊗ λ)
lifts (see Proposition I.4.1) to the induced G(AE)-module Iτ (λ), where
τ = (µ, ω′µ/µ, µ−1). This relation defines a bijection µ ↔ τ between the
sets over which the sums of J(φdg′) and J(fdg) are taken. Here M(λ) is
again a logarithmic derivative of an operator M = m⊗v Rv, and J(fdg) is
the sum of J ′(fdg) and

∑
v Jv(fdg), where

J ′(fdg) =
1
2

∑
µ

∫
iR

m′(λ)
m(λ)

[∏
v

tr I(µv ⊗ λ; fvdgv)
]
dλ

and Jv(fdg) is

1
2

∑
µ

∫
iR

tr[Rµv
(λ)−1Rµv (λ)′I(µv ⊗ λ; fvdgv)] ·

∏
w 6=v

tr I(µv ⊗ λ; fvdgv)dλ.

Note that here the normalizing factors m(λ) depend on µ, while those of
J ′(φdg′) depend on τ . It is clear (see Proposition I.4.1) that for matching
measures fvdgv and φvdg′v we have

tr I(µv ⊗ λ; fvdgv) = tr Iτv
(λ;φvdg′v × σ), if τv = (µv, ω′µµv/µv, µ

−1
v ).

It can be shown directly that 2m′(λ, µ)/m(λ, µ) = m′(λ, τ)/m(λ, τ), and
hence that J ′(fdg) = J ′(φdg′), but we do not need this observation. The
fundamental observation which we do require is the following.
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Lemma. For our choice of fudgu, φudg′u = (fudgu, f0
udgu) we have

Ju(φdg′) = Ju(fdg).

Proof. This is precisely Lemma 16, p. 47, of [F1;III], in the case l = 2.
Note that the proof of this Lemma 16 is elementary and self-contained. To
see that this Lemma 16 applies in our case, recall that we choose f0

u to be
the characteristic function (up to a scalar multiple) of ZuIu, where Iu is a
σ-invariant open compact subgroup of Gu. Then

f0
u(σg) = f0

u(g), σπu(f0
u) = πu(f0

u) and fu = fu ∗σf0
u = fu ∗ f0

u

in the notations of [F1;III], (1.5.2), p. 42, l. 7. In fact this Lemma 16 of
[F1;III] asserts that

trRτu(γ)−1Rτu(τ)′Iτu(γ;φudg′u × σ) = ` trRµu(γ)′I(µu ⊗ γ; fudgu)

in our notations, where l = 2. This is precisely the factor needed to match
the 1

4 of Ju(φdg′) with the 1
2 of Ju(fdg). Our lemma follows. �

It remains to deal with the terms of J(′fdh) and J(′φdh). Since this case
of U(2) is well known (see [F3;II]) we do not write out the expressions here,
but simply note the following.

(1) We may assume that the place u is such that the component κu of
the character κ on A×E/E×NA×E is unramified.

(2) We may and do multiply κ by an unramified (global) character to
assume that κu = 1.

(3) If ′fvdhv and ′φvdhv are matching measures on Hv in the notations
of I.2, and

ρv = ′I(µv), ρ′v = ′I(µvκv)

in the same notations, then tr ρv(′fvdhv) = tr ρ′v(
′φvdhv) by Proposition

I.4.1.
(4) At the split place u we take the components ′fu and ′φu to be defined

directly by the same formula (of I.4.4) in terms of fu; they are equal to
each other. We conclude:

Lemma. In the above notations, we have Ju(′fdh) = Ju(′φdh).

Proof. This follows from (3) and (4). Indeed, the sets of µ parametriz-
ing the sums which appear in J(′fdh) and J(′φdh) are isomorphic. The
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isomorphism (′I(µ)→′ I(µκ)) is defined by the dual group diagram and by
Proposition I.4.1. �

Remark. J ′(′fdh) and J ′(′φdh) are given by precisely the same formu-
lae, hence they are equal to each other by (3). We do not use this remark
below.

4.4 Approximation

We conclude that for f = fu ⊗ fu with fixed fu and fu = fu(n) where
n is n0-admissible for some n0 = n0(fu), we have the identity

J = J ′(φdg′)− J ′(fdg) + J ′(′fdh)− J ′(′φdh)

+
∑
v

[Jv(φdg′)− Jv(fdg) + Jv(′fdh)− Jv(′φdh)]. (1)

The sum over v is finite and ranges over v 6= u. On the left J represents a
sum with complex coefficients (depending on fu but not on fu) of traces of
the form trπu(fudgu), tr Πu(φudg′u× σ), tr{ρu}(′fudhu) or tr{ρu}(′φudhu).
This is an invariant distribution in fudgu; it depends only on the orbital
integrals of fudgu. On the right we have a sum over the connected compo-
nents (represented by µu) of the manifold of characters mentioned in§2, of
integrals over iR. The integrands are of the form c(λ) tr I(µu ⊗ λ; fudgu).
The right side of (1) is therefore also an invariant distribution in fudgu,
depending only on the orbital integrals of fudgu. We conclude

Lemma. The identity (1) holds with the pseudo-spherical function fu =
fu(n) replaced by the spherical function f ′u = f ′u(n).

Proof. By definition fu(n) and f ′u(n) have equal orbital integrals. �

From now on we denote by fu a spherical function of the form f ′u(n) with
n0-admissible n. The identity (1) holds for our f = fu ⊗ fu. Since fu is
spherical, trπu(fudgu) 6= 0 only when πu is unramified. The theory of the
Satake transform establishes an isomorphism from the set of unramified
irreducible Gu-modules πu, to the variety C×3/S3: the unordered triple
z = (z1, z2, z3) of nonzero complex numbers corresponds to the unramified
subquotient πu(z) of the Gu-module Iu(z) normalizedly induced from the
unramified character (aij) 7→

∏
i z

val(aii)
i of the upper triangular subgroup.
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The central character of πu(z) is trivial if and only if z1z2z3 = 1. For z
in C× and z in C×3 we write zz for (z1z, z2, z3z−1). We conclude that
there are (a) ti in C×3/S3 (i ≥ 0) and zi in C×3 (i ≥ 0) with ti1ti2ti3 = 1,
zi1zi2zi3 = 1 and |zij | = 1, and (b) complex numbers ci, and integrable
functions ci(z) on |z| = 1, such that (1) takes the form

∑
i

ci tr(πu(ti))(fudgu) =
∑
j

∫
|z|=1

cj(z) tr(πu(zjz))(fudgu)d×z. (2)

The Satake transform fu 7→ f∨u , defined by f∨u (z) = tr(πu(z))(fudgu),
in an isomorphism from the convolution algebra of spherical functions fu
on Gu to the algebra of Laurent series f∨u of z in C×3/S3 with z1z2z3 = 1.
Then (2) can be put in the form

∑
i

cif
∨
u (ti) =

∑
j

∫
|z|=1

cj(z)f∨u (zjz)d×z. (3)

Our aim is to show that ci = 0 for all i ≥ 0. For that we note that all
sums and products in the trace formula are absolutely convergent for any
fu, in particular for the function with f∨u = 1. Hence

∑
i |ci| is finite, and∑

i ∫ |ci(z)||dz| is finite. Moreover, let X be the set of z in C×3/S3 with
z1z2z3 = 1, z−1 = z, and q−1 ≤ |zi| ≤ q for each entry zi of z. Since all
representations which contribute to the trace formula are unitary, the ti
and ziz lie in X. But then the case where n = 3 of the final Proposition in
[FK2], where the analogous problem is rephrased and solved for an arbitrary
reductive group, implies that all ci in (3) are zero. The theorem follows.�

II.5 The σσσ-endo-lifting e′e′e′

Summary. Let G = U(3, E/F ) be the quasi-split unitary group in three
variables defined using a quadratic extension E/F of number fields. Com-
plete local and global results are obtained for the σ-endo-(unstable) lifting
from the group of F -rational and A-points of U(2, E/F ) to the correspond-
ing group GL(3, E) or GL(3,AE). This is used to establish quasi-(endo-)
lifting for automorphic forms from U(2) to U(3) by means of basechange
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from U(3) to GL(3, E). Basechange quasi-lifting is also proven. Our dia-
gram is:

LG
b−→ LG′

e ↑ i ↑ ↖ e′
LH −→

b′
LH ′ ←

b′′
LH

5.1 Quasi-lifting

The notion of local lifting in the unramified case is defined in I.4. A
preliminary, weak, definition of global lifting, is given next in terms of
almost all places.

Definition. Let J , J ′ be a pair of groups as above (H, G, etc.) for
which the local notion of lifting is defined in the unramified case. If π = ⊗πv
and π′ = ⊗π′v are automorphic J(A)- and J′(A)-modules, and πv lifts to
π′v for almost all v, then we say that π quasi-lifts to π′.

We shall later define the strong notion of global lifting, in terms of all
places. This has been done in [F3;II] in the case of the basechange liftings
b′ and b′′. The map i is simply induction. Our aim in this section is to
study the local and global lifting in the case of the σ-endo-lift e′. This,
or the alternative approach of 5.3, will be used in II.6 for the study of the
quasi-endo-lift e, and the basechange lift b.

Our first aim is to study the local lifting e′. Let Ew/Fw be a quadratic
extension of p-adic fields.

5.1.1 Proposition. Suppose that τw is the stable basechange b′′ lift of
an irreducible Hw-module ρw. Then for any matching measures φwdg′w and
′φwdhw, we have

tr I(τw;φwdg′w × σ) = tr{ρw}(′φwdhw).

Proof. This is shown in I.4.1 for induced representations. The case
of the one-dimensional Hw-module follows from the case of the Steinberg
representation, as its character is the difference of the characters of an
induced and the Steinberg representation.

Suppose then that ρw is a discrete-series Hw-packet (consisting of dis-
crete series Hw-modules). Fix a global totally imaginary extension E/F
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whose completion at w is the chosen local quadratic extension. At two
finite places v = u, u′, say u splits and u′ does not split in E/F , we choose
cuspidal representations ρu and ρu′ . Let V be a finite set containing w, u,
u′, and the places which ramify in E/F , but no infinite places.

It is easy to see (using the trace formula) that there is a cuspidal H(A)-
module ρ whose components at w, u, u′ are the given ones, which is un-
ramified at all finite v outside V , and its components at the v in V are all
discrete series. We choose a sequence {tv; v outside V } so that ρ makes a
contribution to the sum in the trace formula for H(A), which is associated
with ′φ. Then the trace formula identity of II.3 asserts∏

tr I(τv;φvdg′v × σ) =
∏

tr{ρv}(′φvdhv) + 2
∑∏

trπv(fvdgv)

−
∑

n(′ρ)
∏

tr{′ρv}(′fvdhv).

The products extend over the finite places in V . The {ρv} are the packets
of the components of our ρ. But by [F3;II], ρ lifts via the stable basechange
map b′′ to an automorphic H′(A)-module τ . Rigidity theorem for G′(A) =
GL(3,A) (see [JS]) implies that I(τ) is the only contribution to the terms
involving φ in Proposition II.3.3. The terms I(µ) do not appear due to the
condition at the split place u. Further, {ρ} is the only packet which lifts to
I(τ).

Moreover, since u′ is a nonsplit place, and the character of {ρu′} (namely
sum of characters of the members in the packet) is nonzero on the ellip-
tic set, we may choose ′φu′ supported on the regular Hu′ -elliptic set with
tr{ρu′}(′φu′dhu′) 6= 0. Then the matching φu′ can be chosen so that its
stable σ-orbital integrals are 0. Namely we can take fu′ = 0, and ′fu′ = 0.
Consequently ∏

tr I(τv;φvdg′v × σ) =
∏

tr{ρv}(′φvdhv). (5.1.1)

We can repeat the same discussion with an automorphic H(A)-module ρ′

which is unramified outside V , its components at all finite v 6= w in V are in
the packets {ρv}, and at w the component is induced. In this case we obtain
the identity (5.1.1), in which the product extends over all finite v 6= w in V .
Since there are ′φv supported on the regular set, with tr{ρv}(′φvdhv) 6= 0,
for discrete-spectrum representations ρw and nonarchimedean Ew/Fw, the
proposition follows.
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Moreover, the proposition holds also when Ew/Fw is C/R, and {ρw}
is unitary. It suffices to consider discrete-series ρw, and take F = Q and
an imaginary quadratic E. Repeating the proof of (5.1.1), the proposition
follows in this case too. �

Note that in the proof of the Proposition above, besides the identity of
trace formulae we have used only the (generalized) fundamental lemma, but
we do not need to transfer general test functions. It suffices to work with
test functions supported on the regular set. These are easily transfered.

5.1.2 Corollary. The twisted character of the representation I(τw)
induced from the stable basechange lift τw of an irreducible Hw-module ρw
is unstable.

Here unstable means that if δ and δ′ are distinct σ-regular (σ-elliptic)
σ-conjugacy classes in G′w which are stably σ-conjugate, then χσI(τw)(δ

′) =
−χσI(τw)(δ).

5.1.3 Proposition. Let E/F be a quadratic extension of local fields.
Let Π be a square-integrable σ-invariant representation of GL(3, E). Then
its σ-character is not identically zero on the σ-elliptic regular set, and it is
a σ-stable function on the σ-elliptic regular set.

Proof. The σ-character is not identically zero on the σ-elliptic regular
set by the twisted orthonormality relations.

We need to show that the σ-character is a σ-stable function on the σ-
elliptic regular set. This is clear for the one-dimensional representations of
GL(3, E), hence for the Steinberg representations. We then assume that Π
is cuspidal and E/F is nonarchimedean. Suppose the σ-character of Π is
not a σ-stable function on the σ-elliptic regular set. Let φ be a σ-pseudo-
coefficient. Then its unstable σ-orbital integral is nonzero at some σ-elliptic
regular element.

At this stage we choose a quadratic extension E/F of totally imaginary
number fields, whose completion at a place v0 is our local situation. At two
further finite places v1, v2 of F which remain prime in E, and in the places
which ramify in E/F , we choose Πv which are λ1-lifts of square-integrable
ρv on U(2, Ev/Fv). The σ-orbital integral of a σ-pseudo-coefficient φvdg′v
of such a Πv is a σ-unstable function. Hence for a test measure φdg′ =
⊗vφvdg′v with such components at the specified v, spherical components
at all other finite places, and f∞ vanishing on the σ-singular set, only
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σ-unstable orbital integrals occur in the geometric side of the σ-twisted
trace formula for GL(3,AE). As usual, the choice of the spherical and
the archimedean components can be used to reduce the geometric sum
to a single stable σ-elliptic regular conjugacy class. In the trace formulae
identity we may choose f = 0 on U(3, E/F )(A), that is, fv = 0 at the places
v where φv is a twisted coefficient of λ1(ρv). The only remaining terms
on the nontwisted side of the trace formulae identity are those involving
discrete-spectrum ρ on U(2, E/F )(A). The corresponding terms on the
twisted side are the induced I(τ). We obtain the identity (5.1.1), which
implies that the local Π of the proposition is induced I(τ) and not square-
integrable (in fact cuspidal) as assumed. This is a contradiction to the
assumption that the σ-character of Π is not a σ-stable function on the
σ-elliptic regular set. �

5.1.4 Proposition. Let E/F be a quadratic extension of local fields.
Let Π be a square-integrable σ-invariant representation of GL(3, E). Then
it is the endoscopic lift of a square-integrable representation π of U(3, E/F ).
Thus trΠ(φdg′×σ) = trπ(fdg) for all matching measures φdg′ on GL(3, E)
and fdg on U(3, E/F ).

Proof. If Π is Steinberg, so is π, so we may assume that Π is cuspidal
and E/F is nonarchimedean. The σ-character of Π is a σ-stable function on
the σ-elliptic regular set. We can view our local extension as the completion
of a global totally imaginary one, and use a global cuspidal σ-invariant
representation of GL(3,AE) whose component at this place is our Π, at
a few additional places, including those which ramify, the component be
Steinberg, and all other components at finite places be unramified. The
trace formula identity for such a global representation (having fixed almost
all components by “generalized linear independence of characters”) will
contain only π on U(3, E/F )(A) on the twisted side. Using the (known)
lifting for Steinberg representations and at the archimedean places, we get
an identity

trΠ(φdg′ × σ) =
∑
π

m(π) trπ(fdg)

for all matching φdg′ and fdg. Using the orthonormality relations for
twisted characters of square-integrable representations we see that the sum
reduces to a single term, with m(π) = 1. �
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5.2 Alternative approach

In the proof of Proposition 5.1 we used only the σ-endo-transfer e′ of the
unit element φ0 in the Hecke algebra of G′ to the unit element ′φ0 in the
Hecke algebra of H; and the transfer of spherical functions with respect to
e′ : LH → LG′, which follows from the statement for (φ0, ′φ0) by a global
method. This is needed only at places where E/F , κ, ω are unramified. At
the other places it suffices to transfer functions supported on the regular
set, and this is easily done

We shall now give an alternative approach, whose purpose is to show that
the character of I(τw) is an unstable function, namely that tr I(τw;φwdg′w×
σ) depends only on ′φwdhw. We shall not use the fundamental lemma for
e′, and conclude that complete local, and some global, results about the
endo-lifting e can be obtained without using any knowledge of the σ-endo-
transfer e′. We use the results of Keys [Ke] concerning the reducibility of
induced G-modules recorded in I.4.4.

We shall also make use of the following result of [F3;II]. A local module
is called elliptic if its character is nonzero on the elliptic regular set. Put
CF = F× if F is a local field, and CF = AF /F× if F is a global field.

5.2.1 Proposition. (1) If τ is an elliptic (resp. discrete-spectrum) σ-
invariant local (resp. global) H ′- (resp. H′(A))-module, then its central
character is trivial on CF . (2) Such τ is the basechange lift of a unique
elliptic or discrete-spectrum H- or H′(A)-module ρ, either through b′ or
through b′′, but not both.

A proof of (1) in a more general context is given in [F1;VI].
The second statement here implies, in the global case, that if I(τ) is the

only term on the left side of the trace formula identity II.3.3, then precisely
one of the sums involving ′f and ′φ on the right is nonzero, and it consists
of a single term.

Note that the elliptic (local) ρ are the one-dimensional, Steinberg and
cuspidal, and also the components of a reducible tempered induced H-
module, which make a packet.

We shall now prove a special case of Proposition 5.1, but without using
the fundamental lemma for e′ stated in I.2.

5.2.2 Proposition. Let τw be the stable basechange lift of the elliptic



II.5 The σ-endo-lifting e′ 345

Hw-module ρw. Then tr I(τw;φwdg′w × σ) = 0 if φwdg′w matches ′φwdhw
and ′φwdhw is 0.

Proof. We deal with the one-dimensional case first. Let ρ be a one-
dimensional H-module, and τ its basechange lift. Then ρ is a constituent
of an induced ′I(µν1/2), and τ of I(µν1/2, µν−1/2). We choose ′φw = 0,
so that ′φ = 0, and no term involving ′φ appears in the trace formula
identity II.3.3. We choose a sequence {tv} so that our I(τ) is the only
contribution associated with φ. The only other possible terms in II.3.3
are of the form trπ(fdg) since we can choose ′fw = 0, thus ′f = 0. The
local components of any such π are almost all of the form I(µν1/2). In
any case, we conclude that for any v 6= w, if tr I(τw;φwdg′w × σ) 6= 0
then tr I(τv;φvdg′v × σ) depends only on fvdgv. More precisely, there are
Gv-modules πv and complex constants c(πv) with

tr I(τv;φvdg′v × σ) =
∑

c(πv) trπv(fvdgv)

for all matching φvdg
′
v, fvdgv. Taking matching functions whose orbital

integrals are supported on the conjugacy classes of the diag(a, b, a−1), |a| 6=
1, the Deligne-Casselman [C1] theorem implies that

tr I(τv)A(φvAda′v × σ) =
∑

c(πv) trπvA(fvAdav).

Here ΠA, πA denote the modules of coinvariants of Π, π (see I.4.4) with
respect to the upper triangular parabolic subgroup with Levi subgroup A,
tensored by δ−1/2, where δ(diag(a, b, a−1)) = |a|2 (resp. δ(diag(a, b, c)) =
|a/c|2) is the modulus function on Gv (resp. G′v = GL(3, Fv)), and φvA,
fvA are the functions on A, A′ defined by

fvA(diag(a, b, a−1)) = |a|
∫
K

∫
N

fv(k−1ank) dndk,

φvA(diag(a, b, c)) = |a/c|
∫
K

∫
N

φv(σ(k)−1ank) dndk.

Since the functions fvA, φvA are arbitrary, and the module I(τv)A of coin-
variants consists of a single (increasing) σ-invariant exponent, we conclude
from the Harish-Chandra finiteness theorem [BJ], and linear independence
of characters on A, that on the right there should be a single πv with
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nonvanishing nonunitary πvA, and then πvA should consist of a single ex-
ponent which lifts to I(τv)A. Here we used the fact (see I.4.3) that if the
irreducible πv and π′v have nonunitary characters in πvA and π′vA which
are equal, then πv and π′v are equivalent. Hence our πv is a subquotient
of I = I(µν1/2). But I is irreducible (see I.4.3), hence πv = I, and πvA
has two exponents, one increasing and one decaying. This contradiction
establishes the proposition when ρw is one dimensional, hence also when it
is special.

To deal with the cuspidal ρw, it suffices to construct a cuspidal ρ with this
component, and a component ρv which is special. If ′φw = 0 we conclude as
above that tr I(τv;φvdg′v×σ) depends only on fv, where τv is the stable base
change lift of ρv. This contradicts the previous conclusion in the special
case, as required.

It is clear that taking F = Q we obtain the above conclusion also in the
archimedean case. �

II.6 The quasi-endo-lifting eee

6.1 Cancellation

The results of II.5 concerning the σ-endo-lifting e′ can be used to simplify
the identity I.3.3 of trace formulas. First the terms tr I(τ ;φdg′×σ), where
τ is a stable basechange lift of an H(A)-module ρ, are canceled with the
terms tr{ρ}(′φdh). Indeed, if a discrete-spectrum {ρ} basechanges to a
discrete-spectrum τ , then n(ρ) = 1 according to [F3;II]. When n(ρ) 6= 1,
it is equal to 1/2, and ρ is of the form ρ(θ) in the notations of [F3;II], p.
721, (where it is denoted by π(θ)). According to Proposition 1 there, ρ(θ)
lifts to an induced H′(A)-module τ = I(θ′κ, θ′′κ), where θ′, θ′′ are distinct
characters of CE/CF related to the character θ (of C1

E × C1
E). There is

no need to elaborate on this result. We simply note that the tr{ρ}(′φdh)
with n(ρ) = 1/2 cancel the tr I(η;φdg′ × σ) with η = (κθ′, κθ′′, µ) (where
µκ2θ′θ′′ = ω′), as these appear with coefficient 1/4.

There remains tr I(µ,′φdh), which depends on ′φ. The induced repre-
sentation I(µ) lifts via e′ to the G′(A)-module I(µ, µ, ω′/µ2). If ω′ 6= µ3

then we obtain a cancellation with the term tr I((µ, µ′, µ);φdg′×σ), which
also appears with coefficient −1/8. If ω′ = µ3 then we obtain a partial



II.6 The quasi-endo-lifting e 347

cancellation, which replaces the coefficient −3/8 by −1/4, in the twisted
side of the formula.

6.2 Identity

So far we eliminated all terms which depend on ′φ. Let us record those
terms which are left. We denote by µ any character of CE trivial on CF .
Put

Φ1 =
∑∏

trΠv(φvdg′v × σ), Φ2 =
∑∏

tr I(τv ⊗ κv;φvdg′v × σ).

In Φ1 the sum is over all (equivalence classes of) σ-invariant discrete-
spectrum G′(A)-modules. In Φ2 the sum is over the σ-invariant discrete-
spectrum H′(A)-modules τ which are obtained by the stable base change
map b′′, namely τ ⊗ κ is obtained by the unstable map b′. Further,

Φ3 =
∑∏

tr I((µ, µ′, µ′′);φvdg′v × σ) (distinct µ, µ′, µ′′),

and
Φ4 =

∑∏
tr I((κµ, µ′, κµ);φvdg′v × σ),

Φ5 =
∑∏

tr I((µ, µ, µ);φvdg′v × σ).

On the other hand, we put

F1 =
∑
π

m(π)
∏

trπv(fvdgv).

The sum is over the equivalence classes π in the discrete spectrum of G(A).
They occur with finite multiplicities m(π). Further,

F2 =
∑

ρ6=ρ(θ,′θ)

∏
tr{ρv}(′fvdhv).

The sum ranges over the automorphic discrete-spectrum packets of ρ of
H(A), which are not of the form ρ(θ, ′θ). In this case n(ρ) = 1 (see [F3;II]).
Also,

F3 =
∑

ρ=ρ(θ,′θ)

∏
tr{ρv}(′fvdhv).
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Here the sum ranges over the packets ρ = ρ(θ,′ θ), where θ, θ′ and ω/θ′θ

are distinct. In this case n(ρ) = 1/2. Finally we put

F4 =
∑
µ

m(µκ)
∏

tr I(µvκv, fvdgv) +
1
2

∑∏
tr ′I(µv,′fvdhv),

F5 =
∑
µ

m(µ)
∏

tr I(µv, fvdgv) (µ3 = ω′),

F6 =
∑
µ

m(µ)
∏

trR(µv)I(µv, fvdgv)−
∑
ρ

∏
tr{ρv}(′fvdhv).

In F6, the first sum is over all µ with µ3 6= ω′. The second is over the
packets ρ = ρ(θ, ω/θ2), where θ3 6= ω. We deduce from the identity II.3.3
of trace formulas the following

6.2.1 Proposition. The identity of trace formulas takes the form

Φ1 +
1
2
Φ2 +

1
4
Φ3 −

1
8
Φ4 −

1
4
Φ5 = F1 −

1
2
F2 −

1
4
F3 +

1
4
F4 +

1
4
F5 +

1
4
F6.

To simplify the formula we first note that the normalizing factor m which
appears in F4 and F5 can be evaluated as a limit. It is equal to −1. The
representations I(µvκv), I(µv) of Gv = G(Fv) in F4 and F5 are irreducible,
and Proposition I.1.4 asserts the following. In the notations of F4 and Φ4

we have at each v

tr I(µv,′fvdhv) = tr I(µvκv, fvdgv) = tr I((κvµv, µ′v, κvµv);φvdg
′
v × σ).

In the case of F5 and Φ5 we have

tr I(µv, fvdgv) = tr I((µv, µv, µv);φvdg′v × σ).

Hence Φ4 = −2F4 and Φ5 = −F5, and these terms are canceled in the
comparison of the Proposition.

The G(A)-modules in F4 and F5 are irreducible, and their characters are
supported on the split set. If f has a component fv such that the orbital
integral Φ(fvdgv) is supported on the elliptic set, we can conclude that F4,
F5 are equal to 0.

The normalizing factor m(µ) of F6 can be shown to be equal to 1, and
F6 can be shown to be equal to 0, but this will not be done here. However,
it is clear from Proposition I.4.1 that ρ = ρ(θ, ω/θ2) with θ3 6= ω quasi-lifts
to I(µ), where µ = θ ◦NE/F . In any case the trace identity takes the form



II.6 The quasi-endo-lifting e 349

6.2.2 Proposition. At each v, let φvdg′v, fvdgv,
′fvdhv be matching

functions. Fix unramified πv, namely the corresponding Satake parameters
tv. Then

Φ1 +
1
2
Φ2 +

1
4
Φ3 = F1 −

1
2
F2 −

1
4
F3 +

1
4
F6.

The terms consist of products over a finite set of places, and at most one
of the terms on the left is nonzero, consisting of a single nonzero represen-
tation.

We conclude

6.2.3 Theorem. Every discrete-spectrum automorphic H(A)-module ρ
with two elliptic components quasi endo lifts to an automorphic G(A)-
module.

Proof. It is clear from Proposition I.4.1 that if ρ appears in F3 then
there is a nontrivial term in Φ3, but if ρ appears in F2 then there is a
contribution in Φ2. So we apply the identity with a function φ so that the
suitable Φ is nonzero, and such that ′f is 0. Indeed, if Πu is the component
at u of the unique term Π on the left, then trΠu(φudg′u × σ) is nonzero,
and depends only on the stable orbital integral of φudg′u, namely on the
stable orbital integral of fu, which is supported on the nonsplit set. We
can take fudgu with Φ(fudgu) supported on the regular nonsplit set, with
vanishing unstable orbital integrals. Namely the orbital integrals of ′fudhu,
and consequently ′fudhu itself, can be taken to be identically 0. Hence ′fdh
is 0, so that F2 = F3 = F6 = 0, but the left side is nonzero, hence the right
side is nonzero. Hence F1 6= 0, as required. �

Note that the same proof implies that for every π which appears in
F1 there exists a σ-invariant Π (with σ-stable components), so that π

basechange quasi-lifts to Π, and for each such Π there exists a π with
this property.

One case of the theorem which is particularly interesting is that of the
one-dimensional H(A)-module, which occurs in F2 and quasi-endo-lifts to
G(A)-modules π whose components almost everywhere are nontempered.
Such π may have finitely many cuspidal components, hence be cuspidal,
and make a counterexample to the generalized Ramanujan hypothesis.

The purpose of chapter III will be to refine Theorem 3.2.3 above to
remove the assumptions on the elliptic components, and sharpen the quasi-
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lifting to complete results on the local and global endo-lifting and on the
basechange lifting.

II.7 Unitary symmetric square

Let E/F be a quadratic extension of number fields. Put H = SL(2). If
π0 is an automorphic H(A)-module, then for almost all v its component π0v

is the irreducible unramified subquotient of the Hv-module I0(µv) induced
from the character (

a 0

0 a−1

)
7→ µv(a) (a in F×v ).

For almost all v, the component Πv of an automorphic PGL(3,A)-module
Π is similarly associated with the representation I(µ1v, µ2v, µ3v) normal-
izedly induced from the unramified character (µ1v, µ2v, µ3v) of the upper
triangular subgroup. Here µ1vµ2vµ3v = 1. In [F2;I] it is shown that

7.1 Lemma. Given an irreducible automorphic representation π0 of
SL(2,A) with π0v in I0(µv) for all v, there exists an irreducible automorphic
representation Π of PGL(3,A) with Πv in I(µv, 1, µ−1

v ) for almost all v.

Note that π0v in I0(µv) is represented by the conjugacy class
(
a 0

0 b

)
, with

a/b = µv(πππ) in the dual group LH = PGL(2,C), and Πv = I(µ1v, µ2v, µ3v)
by the class of the diagonal matrix (µ1v(πππ), µ2v(πππ), µ3v(πππ)) in the dual
group M̂ = SL(3,C) of M = PGL(3). The lifting of the Lemma is compat-
ible with the three-dimensional symmetric square-representation Sym of Ĥ
on M̂ , which maps (a, b) to (a/b, 1, b/a) (see [F2;I]). Hence we denote Π of
the Lemma by Sym(π0), and name it the symmetric square lift of π0.

Recall that the connected component Ĝ of the dual group LG of the pro-
jective unitary group G = PU(3) is also SL(3,C). Given an automorphic
H(A)-module π0, we wish to find an automorphic G(A)-module π, to be
called the unitary symmetric square US(π0), whose local components are
defined by those of π0, and the map Sym: LH → LG, for almost all v.
Thus, when v splits E/F , Gv is PGL(3, Fv), and US(π0v) is I(µv, 1, µ−1

v )
if π0v is I0(µv). If v stays prime in E, the induced unramified Gv-module
I(µv) is parametrized by the conjugacy class of (µv(πππ), 1, 1) × σ in LG =
Ĝ × 〈σ〉. In this case, π0v = I0(µv) determines (µv(πππ), 1) in LH, hence
(µv(πππ), 1, µv(πππ)−1)× σ in LG, which is conjugate to ((µv ◦N)(πππ), 1, 1)× σ,
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and US(π0v) is I(µv◦N). Here N denotes the norm map from Ev to Fv. We
now assume the availability of all liftings used below under no restrictions
at any component.

7.2 Proposition. Given an automorphic H(A)-module π0, there exists
an automorphic G(A)-module π = US(π0) whose component is US(π0v) for
almost all v.

Proof. We follow the arrows in the following diagram:

I0(µ)× I0(µ) or I0(µ ◦N)
Sym−→ I(µ, 1, µ−1)× I(µ, 1, µ−1)

on SL(2, E) or I(µ ◦N, 1, µ−1 ◦N) on PGL(3, E)
BC ↑ ↑ BC

I0(µ) on SL(2, F ) US−→ I(µ, 1, µ−1) or I(µ ◦N) onPU(3).

The basechange theory for GL(2) implies the existence of an automor-
phic SL(2,AE)-packet πE0 whose local components are obtained from those
I0(µv) of π0 as indicated by the vertical arrow on the left (they are I0(µv)×
I0(µv) when v splits, and I0(µv ◦N) when v stays prime). The Lemma im-
plies the existence of an automorphic PGL(3,AE)-module Sym(πE0 ), whose
components are as indicted by the top horizontal arrow for almost all v.
If σ(g) = J tg−1J is the automorphism of GL(3, E) which defines U(3),
then it is clear that for almost all v we have that Sym(πE0 )v is σ-invariant.
Hence Sym(πE0 ) is σ-invariant by the rigidity theorem for GL(n) of [JS].
The E/F -basechange result for U(3) implies that there exists an automor-
phic G(A)-module π (G=PU(3)) which quasi-lifts to Sym(πE0 ). But π is
the required US(π0), as it has the desired local components for almost all
v. �

It will be interesting — and may have interesting applications — to
verify the existence of the local unitary symmetric square lifting by means
of character relations between representations of SL(2), and bar-invariant
PU(3)-modules. In uncirculated notes I defined a suitable norm map of
stable conjugacy classes. Further, I computed the trace formula for PU(3),
twisted by the bar-automorphism g 7→ g = σ(g) = J tg−1J ; note that the
rank is one. The required transfer of orbital integrals of spherical functions
is available, see [F2;I]), at a place v of F which splits in E. It is not yet
available at inert v. The important case is that of the unit element of the
Hecke algebra. But I have not pursued these questions.
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III.1 Local identity

1.1 Trace formulae

Our aim here is to study the local liftings. Thus we fix a quadratic
extension of local nonarchimedean fields. We start with the identity of trace
formulae of Proposition I.6.2. We denote by E/F a quadratic extension of
number fields such that F has no real places and at the place w of F we
obtain that Ew/Fw is our chosen quadratic extension. Denote by V a finite
set of places of F including the archimedean and those which ramify in E.
The products below range over V . At each v in V we choose matching
functions φvdg′v, fvdgv,

′fvdhv, as in I.2. We fix an unramified Gv-module
π0
v at each v outside V . The sums below range over the automorphic G′(A),

G(A) or H(A)-modules with component matching π0
v at all v outside V .

The main result of II.4 and II.6 asserts the following

1.1.1 Proposition. The identity of trace formulae takes the form

Φ1 +
1
2
Φ2 +

1
4
Φ3 = F1 −

1
2
F2 −

1
4
F3 +

1
4
F6.

The left side depends on a choice of a Haar measure dg′ on G′(A), and
the right side on a choice of a Haar measure dg on G(A), defined using a
nondegenerate F -rational differential form of maximal degree on G, which
yields such a form on the F -group G′ = RE/F G. These measures are
sometimes suppressed to simplify the notations.

By the rigidity theorem for G′(A) at most one of the terms Φi is nonzero,
and consists of a single contribution. Here

Φ1 =
∑
Π

∏
v∈V

trΠv(φvdg′v × σ).

The sum is over the σ-invariant discrete-spectrum (by which we mean au-
tomorphic in the discrete spectrum) G′(A)-modules Π. These are the (σ-
invariant) cuspidal or one-dimensional G′(A)-modules. Next

Φ2 =
∑
τ

∏
v∈V

tr I(τv ⊗ κv;φvdg′v × σ).

352
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The sum is over the σ-invariant discrete-spectrum (i.e. cuspidal or one-
dimensional) H′(A)-modules τ which are obtained by the stable basechange
map b′′ in [F3;II]. Further

Φ3 =
∑∏

v∈V
tr I((µ, µ′, µ′′);φvdg′v × σ).

Here the sum is over the distinct unordered triples µ, µ′, µ′′ of characters
of CE/CF .

On the right,
F1 =

∑
π

m(π)
∏
v∈V

trπv(fvdgv).

The sum is over the equivalence classes of discrete-spectrum (automorphic)
G(A)-modules π. They occur with finite multiplicities m(π). Next

F2 =
∑

ρ6=ρ(θ,′θ)

∏
v∈V

tr{ρv}(′fvdhv).

The sum ranges over the (automorphic) discrete-spectrum packets ρ of
H(A) which are not of the form ρ(θ, ′θ) (see [F3;II]). These packets ρ
are cuspidal or one dimensional (see [F3;II]). Also

F3 =
∑

ρ=ρ(θ,′θ)

∏
v∈V

tr{ρv}(′fvdhv).

The sum ranges over the packets ρ = ρ(θ, ′θ), where θ, ′θ and ω/θ · ′θ are
distinct. Further

F6 =
∑
µ

∏
v∈V

trR(µv)I(µv; fvdgv)−
∑
ρ

∏
v∈V

tr{ρv}(′fvdhv).

The first sum is over the characters µ of CE/CF with µ3 6= ω′. The second
is over the packets ρ = ρ(θ, ω/θ2), where θ3 6= ω.

1.2 Coinvariants

We shall use the result of [C1], [D6] and I.4 to study the following local
identity. Here E/F is an extension of local p-adic fields. Suppose that {ρ} is
a square-integrable H-module, and m(ρ, π), c and c′ are complex numbers,
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where π are (equivalence classes of) unitarizable G-modules, and the sum∑
πm(ρ, π) trπ(fdg) is absolutely convergent. Moreover, suppose that this

sum ranges over a countable set S which has the following property. For
every open compact subgroup K1 of G there is a finite set S(K1) such that
trπ(fdg) = 0 for every π in S−S(K1) and every K1-biinvariant f . Suppose
that for all matching (φdg′, fdg, ′fdh) we have

c tr I(τ ⊗ κ;φdg′ × σ) + c′ tr{ρ}(′fdh) =
∑
π∈S

m(ρ, π) trπ(fdg),

(1.2.1)

where τ is the stable basechange lift of {ρ}. In this case we have

1.2.1 Proposition. (i) The set S consists of (1) square-integrable but
not Steinberg G-modules, and (2) proper submodules of G-modules induced
from a unitary character of A.
(ii) If {ρ} is cuspidal then the π of (1) are cuspidal.
(iii) If {ρ} is Steinberg then precisely one π of (1) is not cuspidal. It is the
Steinberg subquotient of an induced G-module I(µκν1/2).
(iv) If the m(ρ, π) are all positive then the π are all square integrable.

Remark. (a) Then π mentioned in (2) above are not square integrable,
since their central exponents do not decay. They exist, and are described in
I.4, but we need not use this fact. (b) In (iii), ν(x) = |x| and µ is a (unitary)
character of E× trivial on F×. Our proof implies that if the identity (1.2.1)
exists, then I(µκν1/2) is reducible. In this way, we recover a result of Keys
[Ke], recorded in I.4. In I.4, we give a complete list of reducible induced
G-modules. There we quote the work of Keys [Ke]. Our work here gives an
alternative proof that the list describes all reducible induced G-modules.

Proof. Let η be a character of E×. For every n ≥ 1 let fn be a function
which is supported on the conjugacy classes of diag(α, β, α−1) with |α| = qn,
with F (a, fn) = η(α) + η(α−1) if a = diag(α, 1, α−1) with |α| = q−n. If
{ρ} is cuspidal then {ρN} is zero and so is I(τ ⊗ κ)N as an A × 〈σ〉-
module, that is, I(τ ⊗ κ)N has no σ-invariant irreducible constituents, and
so tr I(τ ⊗κ)N (fN ×σ) = 0 for all fN . We omit the Haar measure da from
the notations.

If ρ is Steinberg then I(τ ⊗κ)N has a single σ-invariant exponent, which
satisfies

tr[I(τ ⊗ κ)N ](φN × σ) = tr{ρ}N (′fN )
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for any triple (φdg′, fdg, ′fdh) of matching measures, where f is in the
span of the fn, n ≥ 1. In particular, (1.2.1) takes the form

(c′ + c) tr{ρ}N (′fN ) =
∑
π

m(ρ, π) trπN (fN ) (1.2.2)

for fdg as above. It is clear that there exists a compact open subgroup K1

of G, depending only on the restriction of η to the group R×E of units in E×,
such that f can be chosen to be K1-biinvariant. Hence the sum in (1.2.2) is
finite. Applying linear independence of finitely many characters of the form
n 7→ zn, the proposition follows once we make the following observation.
Since G is of rank one, the composition series of an induced representation
is at most of length two. Thus if π and π′ are irreducible inequivalent
G-modules which have equal central exponent, then they are the (only)
constituents of a reducible G-module I(η) induced from a character η of A
with η(a) = η(JaJ−1). Namely the composition series of I(η)N consists
of two equal characters, necessarily unitary. Then trπN (fN ) = trπ′N (fN ),
and m(ρ, π) trπN (fN ) + m(ρ, π′) trπ′N (fN ) is zero if m(ρ, π) + m(ρ, π′) is
zero. If m(ρ, π) and m(ρ, π′) are both positive then their central exponents
cannot cancel each other, and (iv) follows. �

Remark. We have m(ρ, π) = c + c′ for the noncuspidal (Steinberg) π
of (iii).

1.3 Global from local

Given a square-integrable local representation, we wish to create a global
cuspidal representation with this component, in order to use the global trace
formula in the study of the local lifting. A key tool is the existence of a
pseudo-coefficient, constructed by Kazhdan in [K2]. We recall this first.

Let G be a connected reductive p-adic group. Each irreducible represen-
tation π is the subquotient of a representation I(τνs) induced parabolically
and normalizedly from a cuspidal representation τ with unitary central
character, of a Levi subgroup M of a parabolic subgroup P , twisted by an
unramified character νs of M . The data (M, τ) is uniquely determined by
π up to conjugation in G.

Definition. Let π be a square-integrable irreducible representation of
a connected reductive p-adic group G. A pseudo-coefficient of π is a lo-
cally constant function on G which transforms under the center of G by
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the inverse of the central character of π and is compactly supported mod-
ulo center, such that trπ(fdg) = 1 and trπ′(fdg) = 0 for every properly
induced representation π′ and for every irreducible representation π′ which
is not a subquotient of any I(τνs), any s, determined by π.

In [K2], Kazhdan proves the existence of a pseudo-coefficient of any
square-integrable representation. A σ-twisted analogue of these definition
and result are as follows. A twisted pseudo-coefficient φ of a σ-invariant
σ-elliptic (its σ-character is not identically zero on the σ-elliptic regular
set) representation Π of a connected reductive p-adic group G is a locally
constant function on G which transforms under the center of G by the
inverse of the central character of Π and is compactly supported modulo
center, such that trΠ(φdg) = 1 and trΠ′(φdg) = 0 for every properly
induced representation Π′ and for every irreducible representation Π′ which
is not a subquotient of any I(τνs), any s, with constituent Π. The proof
of [K2] extends to show the existence of twisted pseudo-coefficients.

Here is a variant of standard construction.

1.3.1 Proposition. Let {ρ′} be a packet of square-integrable represen-
tations of H = U(2) associated with a local quadratic extension. Then there
exists a global quadratic extension E/F which splits at each archimedean
place and which is the chosen local quadratic extension at a place w of F ,
and a global packet {ρ} of discrete-spectrum (i.e., containing an automor-
phic in the discrete spectrum) representations of H(A) whose component at
the place w of F is the packet {ρ′}, at a place w′ the component is cuspidal,
at other finitely many finite places wi of F the component is preassigned
square integrable, and at all other finite places the component be fully in-
duced, even unramified at all split (in E) such places and those places of F
unramified in E.

Proof. Fix a quadratic extension of global fields where F has no real
places, such that for some place w of F the completion Ew/Fw is the lo-
cal quadratic extension of the proposition. Denote by Z′ the center of
RE/F GL(2). Let H1(A) be the group of g in GL(2,A) with determinant
in NE/FA×E . Using the relation Z′(A)H1(A) = Z′(A)H(A), it suffices to
show the existence of a cuspidal representation of GL(2,A) with prespec-
ified square-integrable components at the finite places w, w′, wi, which is
unramified at all other finite places. Note that the component at w′ is
cuspidal.
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This can easily be done for GL(n,A), provided the number of wi is at
least n− 1.

In this case we write the trace formula for a test measure fdg = ⊗vfvdgv
where the component fw′dgw′ is a (normalized by trπw′(fw′dgw′) = 1)
coefficient of the cuspidal πw′ , fwdgw and fwi

dgwi
are pseudo-coefficients

of discrete-series representations which we choose at these places, and the
other fvdgv for finite v are taken to be spherical.

We can take the support of some of these fvdgv to be sufficiently large
so that ⊗v<∞fvdgv has orbital integral nonzero at some rational elliptic
regular element γ. We choose the nonarchimedean components so that the
orbital integral of f is nonzero at γ, but these components vanish at all
other rational conjugacy classes, and on the singular set. Note that the set
of characteristic polynomials of rational conjugacy classes (of GL(n, F ) in
GL(n,A)) is discrete (Fn in An), and the support of f is compact (and it
is easy to adjust this “discrete and compact is finite” argument to take the
center into account).

As f has n + 1 elliptic components, the trace formula for f has no
weighted orbital integrals. It has no singular orbital integrals by the choice
of the archimedean components. The geometric side of the trace formula
then reduces to a single nonzero term: Φ(γ, fdg) 6= 0.

As the component fw′ is cuspidal, the convolution operator r(fdg) on
L2 factorizes through the cuspidal spectrum. Hence the spectral side of the
trace formula for f consists only of traces of cuspidal representations. This
sum is nonzero, since so is the other, geometric, side:

∑
π⊂L0

trπ(fdg) =
Φ(γ, fdg) 6= 0.

If π occurs in the sum, thus trπ(fdg) 6= 0, then the component at
w′ is the chosen cuspidal representation, since fw′ is a coefficient thereof:
trπw′(fw′dgw′) = 1. Hence π is cuspidal, and its components at w, wi, are
the prechosen discrete-series representations, since the fw, fwi are pseudo-
coefficients. Since fvdgv at the other finite places are spherical, the com-
ponents of π are unramified, hence fully induced, as required. �

1.4 Local identity

Let E/F be a quadratic extension of local nonarchimedean fields. Let
{ρ} be a square-integrable H(A)-packet, and τ its stable basechange lift.
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1.4.1 Proposition. For every square-integrable G(A)-module π there
exists a nonnegative integer m(ρ, π) such that for every triple (φdg′, fdg,
′fdh) of matching measures we have the identity

tr{ρ}(′fdh) + tr I(τ ⊗ κ;φdg′ × σ) = 2
∑
π

m(ρ, π) trπ(fdg). (1.4.1)

Proof. Let {ρ′} be a cuspidal packet as constructed in Proposition
1.3.1, where E/F is a totally imaginary quadratic extension which localizes
at a place w to our local quadratic extension. This {ρ′} has the cuspidal
packet {ρ} as its component at w. At sufficiently many split in E places
of F we construct {ρ′} to have cuspidal components, as well as a Steinberg
component. This last requirement will guarantee that no terms of F3 and
F6 of Proposition 1.1 will occur, when it is applied with {ρ′} making a
contribution to the term F2. There is then a corresponding contribution
at Φ2. Other possible contributions may occur only in F1. Since the local
lifting is available at the split places and where the components are properly
induced, in particular unramified, we obtain the identity of the proposition
on applying a standard argument of “generalized linear independence of
characters”.

The fact that only square-integrable π occur on the right of (1.4.1) follows
from Proposition 1.2.1. It can be used by a well-known fact about the space
of automorphic forms with fixed infinitesimal character and ramification at
all finite places, namely that this space is finite dimensional. �

Since fdg = 0 implies ′fdh = 0, the Proposition has the following

Corollary. Let ρ be a square-integrable representation of U(2, E/F ),
local quadratic field extension E/F , and τ its stable basechange lift to
GL(2, E). Then the σ-twisted character of I(τ ⊗ κ) is stable: tr I(τ ⊗
κ;φdg′ × σ) is zero for any test measure φdg′ whose σ-stable orbital in-
tegrals are zero, that is, if φdg′ matches fdg = 0.

Our next aim will be to show that the sum of (1.4.1) is finite. For that
we need a basechange result.

1.4.2 Proposition. Let E/F be a local quadratic field extension, ρ a
square-integrable representation of U(2, E/F ), and τ its stable basechange
lift to GL(2, E). Then for each square-integrable π on U(3, E/F ) there is
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a nonnegative integer m′(ρ, π) such that

tr I(τ ⊗ κ;φdg′ × σ) =
∑
π

m′(ρ, π) trπ(fdg). (1.4.2)

The sum is finite, the π are square integrable.

Proof. This is essentially the same as that of Proposition 1.2. But
instead we use the twisted trace formula. Again we work with a totally
imaginary number field F such that the completion of E/F at a place
w is our local extension, and with a test function φ as follows. At the
place w we take φwdg′w to be a twisted pseudo-coefficient of our I(τ ⊗ κ).
At sufficiently many places v ∈ {wi} of F which split in E we take the
component to be (φvdg′v, φ

0
vdg
′
v), φvdg

′
v is a coefficient of a cuspidal repre-

sentation of GL(3, Fv), φ0
vdg
′
v is an idempotent in the Hecke algebra with

φvdg
′
v ∗ φ0

vdg
′
v = φvdg

′
v. At all other finite places v we take a spherical

function. The choice of the σ-stable component at w guarantees that the
twisted trace formula for φdg′ = ⊗vφvdg′v is σ-stable. We can choose the
spherical components so that there is a rational σ-regular elliptic element
δ ∈ GL(3, E) with Φst,σ(δ, φdg′) 6= 0, and then choose the components of
φ at the archimedean places to vanish on the σ-singular set, and such that
Φst,σ vanishes on any σ-regular stable conjugacy class other than δ. Such
δ exists since φw is a σ-stable function: its σ-orbital integrals are σ-stable.
This shows that the geometric side of the twisted trace formula reduces to a
single term, Φst,σ(δ, φdg′) 6= 0. As φdg′ has cuspidal components the convo-
lution operator r(φdg′ × σ) factorizes through the cuspidal spectrum. The
spectral side is a sum of trΠ(φdg′×σ), Π cuspidal. These Π will be unram-
ified at all places but w, where the component be that of our proposition,
and wi, places which split in E, where the component be cuspidal.

We can now apply the trace formulae identity of Proposition 1.1 with Π
as constructed here in the term Φ1 on the left. This will be the only term
on the left, while the terms on the right can only occur in F1. Applying
once again “generalized linear independence of characters”, noting that the
lifting is known for the places which split, the identity of the proposition
follows.

The π which occur are square integrable by the proof of Proposition
1.2. It remains to apply orthogonality relations for characters — this is
discussed in detail in the following sections. �

Putting (1.4.1) and (1.4.2) together we obtain
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Corollary. For ρ as in the Proposition, we have

tr{ρ}(′fdh) =
∑
π

m′′(ρ, π) trπ(fdg), (1.4.3)

where m′′(ρ, π) = 2m(ρ, π) − m′(ρ, π) is an integer, which need not be
positive.

Note that the right side of (1.4.3) is not yet known at this stage to be
finite, but it is independent of the orbital integrals of fdg on the cubic tori
of G.

III.2 Separation

2.1 Transfer

In this section we study a transfer ′D → ′DG of distributions which is
dual to the transfer f → ′f of orbital integrals from G = U(3, E/F ) to
H = U(2, E/F ). Here H̃ = ZG(diag(1,−1, 1)) = HZ, and H is viewed as
the subgroup of (aij) in G with aij = 0 if i + j is odd and with a22 = 1.
This study is used to conclude that the sum of (1.4.3) (and of (1.4.2), hence
of (1.4.1)) is finite.

Definition. (1) A distribution ′D on H is called stable if ′D(′f) depends
only on the stable orbital integrals of ′f .
(2) A function ′f on H extends uniquely to a function ′f̃ on H̃ with ′f̃(zh) =
ω−1(z) · ′f̃(h) (z in Z, h in H̃). A distribution ′D on H extends to ′D̃ on H̃
by ′D̃(f̃) = ′D(f).
(3) Given a stable distribution ′D on H, let ′DG be the distribution on G

with ′DG(f) = ′D(′f) (= ′D̃(′f̃)), where ′f is a function on H matching f .

Remark. (1) The set W ′(T )/W (T ) embeds as a subset of C(T/F ) via
the map

w 7→ w = {τ 7→ wτ = τ(w)w−1; τ ∈ Gal(F/F )}.

(2) The group W ′(T ) acts on C(T/F ). If w lies in W ′(T ), and δ in C(T/F )
is represented by {gτ = τ(g)g−1} with g in A(T/F ), then

w(δ) = w−1 · {(wg)τ}(= wτ(w)−1 · τ(wg)(wg)−1}
= {wτ(g)g−1w−1} = wδw−1 ∈ C(T/F ).
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(3) Let d be a locally-integrable conjugacy invariant complex-valued func-
tion on G with d(zg) = ω(z)d(g)(z in Z). Note that the regular set Greg of
G has the form Greg = ∪{T} ∪g∈G/T gT regg−1. Here {T} indicates a set of
representatives T for the conjugacy classes of tori in G. Using the Jacobian
∆2(t) = |det(1−Ad(t))|g/t)| we obtain the Weyl integration formula∫

G/Z

f(g)d(g)dg =
∑
{T}

[W (T )]−1

∫
T/Z

∆(t)2Φ(t, fdg)d(t)dt.

Suppose that t is a regular element of G which lies in T . Then the
number of δ in C(T/F ) such that tδ is conjugate to an element of T is
[W ′(T )]/[W (T )]. If the function d is invariant under stable conjugacy then
we have ∫

G/Z

f(g)d(g)dg =
∑
{T}s

[W ′(T )]−1

∫
T/Z

∆(t)2Φst(t, fdg)d(t)dt.

Here {T}s is a set of representatives for the stable conjugacy classes of tori
in G.

If ′d̃ is a locally-integrable stable function on H̃ then∫
H̃/Z

′f̃(h) · ′d̃(h)dh =
∑
{TH}s

[W ′(TH)]−1

∫
TH

∆′(t)2Φst(t, ′f̃dh) · ′d̃(t)dt.

The set {TH}s is a set of representatives for the stable conjugacy classes of
tori in H. The symbol W ′(TH) indicates the Weyl group in A(TH/F ). It
consists of two elements.

As in I.2, Φst(t, ′f̃dh) denotes the stable orbital integral of ′f̃dh, and
Φst(t, fdg) is that of fdg. In fact the orbital integral Φ is taken over H/TH
or G/T against the measure dh/dt or dg/dt, but we omit dt to simplify the
notations. Since TH and T/Z are isomorphic, we take the corresponding
measures dt to equal each other under this isomorphism.

2.2 Orthogonality

Denote by S the torus of G specified in Proposition I.1.3 as T ∗ in type (0),
T1 in type (1), TH in type (2). They all lie in HZ. Denote by SH the
corresponding torus of H.
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2.2.1 Proposition. Suppose that ′D̃ is a stable distribution on H̃ repre-
sented by the locally-integrable (stable) function ′d̃. Then the corresponding
distribution ′DG on G is given by a locally-integrable function ′dG defined
on the regular set of G by ′dG(t) = 0 if t lies in a torus of type (3), and by

∆(t) · ′dG(tδ) =
∑
w

κκκ(w(t))∆′(w(t))κ(w)κ(w(δ)) · ′d̃(w(t)) (2.2.1)

if t lies in the chosen torus S of type (0), (1) or (2), and δ lies in C(S/F )(=
B(S/F )). Here w(t) = wtw−1. The sum ranges over W ′(SH)\W ′(S).

Proof. Fix i = 0, 1 or 2, and let S be the distinguished torus of type
(i). Let δ be an element of B(S/F ), g a representative of δ in A(S/F ), and
T = Sδ = g−1Sg the associated torus. Let f be a function on the regular
set of G such that Φ(t, fdg) is zero unless a conjugate of t lies in T . Then

′DG(f) = ′D̃(f̃) = [W ′(SH)]−1

∫
S/Z

∆′(t)2Φst(t, ′f̃dh) · ′d(t)dt

= [W ′(SH)]−1

∫
S/Z

∆′(t)[κκκ(t)∆(t)
∑
δ′

κ(δ′)Φ(tδ
′
, fdg)] · ′d(t)dt.

The sum ranges over all δ′ in B(S/F ) such that Sδ
′

= T . Thus δ′ is
represented by wg (i.e. δ′ = {(wg)τ = τ(wg)(wg)−1}), where w ranges
over W ′(S)/gW (T )g−1. Since κ is trivial on the image of B(SH/F ) in
B(S/F ), we obtain [W (T )]−1 times∫

S/Z

∆(t)κκκ(t)∆′(t)
[∑

w

κ(w · w(δ))Φ((w−1tw)δ, fdg)
]
′d̃(t)dt

=
∫
S/Z

[∑
w

κκκ(w(t))∆′(w(t))κ(w)κ(w(δ)) · ′d̃(w(t))
]
∆(t)Φ(tδ, fdg)dt.

Here w ranges over W ′(SH)\W ′(S). By definition of ′dG this is equal to

= [W (T )]−1

∫
T/Z

∆(t)2Φ(t, fdg) · ′dG(t)dt =
∫
G/Z

f(g) · ′dG(g)dg;

hence the proposition follows. �
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Definition. (1) Let d, d′ be conjugacy invariant functions on the ellip-
tic set of G. Put

〈d, d′〉 =
∑
{T}e

[W (T )]−1

∫
T/Z

∆(t)2d(t)d′(t)dt

=
∑
{T}e,s

[W ′(T )]−1
∑

δ∈B(T/F )

∫
T/Z

∆(t)2d(tδ)d′(tδ)dt.

Here {T}e (resp. {T}e,s) is a set of representatives for the (resp. stable)
conjugacy classes of elliptic tori T in G.
(2) Let ′d, ′d′ be stable conjugacy invariant functions of the elliptic set of
H. Put

′〈′d, ′d′〉 =
∑
{TH}e,s

[B(TH/F )]
[W ′(TH)]

∫
TH

∆′(t)2 · ′d(t) · ′d(t)dt.

Here {TH}e,s is a set of representatives for the stable conjugacy classes of
elliptic tori in H.

2.2.2 Proposition. Let ′d, ′d′ be stable functions on (the elliptic set
of ) H̃, and ′dG, ′d′G the associated class functions on (the elliptic set of )
G. Then

〈′dG, ′d′G〉 = 2 · ′〈′d, ′d′〉.

Proof. By (2.2.1) we have

〈′dG, ′d′G〉 =
∑
{S}

∑
δ∈C(S/F )

[W ′(S)]−1

∫
S/Z

∑
w,w′∈W ′(SH)\W ′(S)

κκκ(w(t))κκκ(w′(t))

∆′(w(t))∆′(w′(t))κ(w)κ(w′)′d̃(w(t))′d̃′(w′(t))κ(w(δ))κ(w′(δ)).

Note that κ is a character of order 2. Here S ranges over the set of (con-
jugacy classes of) distinguished tori in G of type (1) and (2). The group
W ′(SH)\W ′(S) acts simply transitively on the set of nontrivial characters
of C(S/F ). Hence

∑
δ κ(w(δ))κ(w′(δ)) 6= 0 implies that κ(w(δ)) = κ(w′(δ))
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for all δ and that w = w′. Changing variables we conclude that

〈′dG,′dG〉 =
∑
{S}

[C(S/F )]
[W ′(SH)]

∫
S/Z

∆′(t)2 · ′d̃(t) · ′d̃′(t)dt

= 2
∑
{TH}e

[C(TH/F )]
[W ′(TH)]

∫
TH

∆′(t)2 · ′d(t) · ′d′(t)dt

= 2 · ′〈′d, ′d′〉.

Here we used the relation [C(T/F )] = 2[C(TH/F )] for tori T of type (1)
or (2). The proposition follows. �

Definition. (1) Let d be a conjugacy invariant function on the elliptic
set Ge of G. Define dH to be the stable function on the elliptic set H̃e of
H̃ with

∆′(t)dH(t) = ∆(t)κκκ(t)
∑

δ∈B(S/F )

κ(δ)d(tδ)

on the t in S, where S is a distinguished torus of type (1) or (2) in H̃.

2.2.3 Proposition. (1) If d is a conjugacy invariant function on Ge
and ′d is a stable function on He, both locally integrable, then 〈d, ′dG〉 =
′〈dH , ′d〉.
(2) The locally-integrable class function d on Ge is stable if and only if
dH = 0, and if and only if 〈d, χ({ρ})G〉 vanishes for every square-integrable
H-packet {ρ}. Here χ({ρ}) is the sum of the characters of the (one or two)
irreducible H-modules in {ρ}.

Proof. By (2.2.1) the inner product 〈d, ′dG〉 is equal to∑
{S}

∑
δ∈B(S/F )

[W ′(S)]−1

∫
S/Z

∆(t)d(tδ)
∑
w

κκκ(w(t))∆′(w(t))κ(w)κ(w(δ))′d(w(t))

=
∑
{S}

∑
δ

[W ′(S)]−1

∫
S/Z

∆(t)∆′(t)κκκ(t)
[∑

w

κ({(wg)τ})d((w−1tw)δ)
]
′d(t)dt

=
∑
{S}

[W ′(SH)]−1

∫
S/Z

∆(t)∆′(t)κκκ(t)
[∑

δ

κ(δ)d(tδ)
]
′d(t)dt

=
∑
{TH}e

[W ′(TH)]−1

∫
TH

∆(t)2dH(t)′d(t)dt = ′〈dH , ′d〉,
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where w ranges over W ′(SH)\W ′(S), and (1) follows. For (2), note that
dH = 0 if and only if dH(w−1tw) = 0 for every T , t in T and w in W ′(T ),
and W ′(T ) acts transitively on the set of nontrivial characters of C(T/F ).
Hence d is stable if and only if dH = 0. Now the χ({ρ}) make a basis for the
space of stable functions on the elliptic set of H, hence dH = 0 if and only
if ′〈dH , χ({ρ})〉 = 0 for all square-integrable H-packets {ρ}, as required.�

2.2.4 Proposition. The sum of (1.4.3) is finite.

Proof. Numbering the countable set of π in (1.4.3) with m′′(ρ, π) 6= 0
we rewrite (1.4.3) in the form tr{ρ}(′fdh) =

∑
1≤i≤bmi trπi(fdg), where

1 ≤ b ≤ ∞. The mi are nonzero integers, and the πi are square integrable.
For each i in the sum let fidg be the product of a pseudo-coefficient of πi
with mi/|mi|. For any finite a (1 ≤ a ≤ b) put fadg =

∑a
fidg, where

∑a

indicates the sum over i (1 ≤ i ≤ a). Then

a2 ≤
( a∑

|mi|
)2

=
( a∑

mi trπi(fadg)
)2

= (tr{ρ}(′fadg))2

=
〈
χ({ρ})G,

a∑
χimi/|mi|

〉2

≤ 〈χ({ρ})G, χ({ρ})G〉
〈 a∑

χi,
a∑
χi

〉
= 2a · ′〈χ({ρ}), χ({ρ})〉 = 2a[{ρ}],

where [{ρ}] is the number of irreducibles in the H-packet {ρ}, and χi is the
character of πi. Then a ≤ 2[{ρ}], and the proposition follows. �

In fact, we also proved the

Corollary. The sum of (1.4.3) extends over at most two π if [{ρ}] = 1
and four π if [{ρ}] = 2. The coefficient m′′(ρ, π) are bounded by two in
absolute value, and they are equal to one in absolute value if there are at
least two π in the sum.

2.3 Evaluation

Let E/F be a quadratic extension of nonarchimedean local fields.
Our next aim is to evaluate the integers m′′(ρ, π) and m′(ρ, π) which

appear in (1.4.2) and (1.4.3), and describe the π which occur in these sums.
Recall ([F3;II]) that a packet {ρ} of square-integrable H-modules consists
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of a single element, unless it is associated with two distinct characters θ, ′θ
of E1. In the last case {ρ} is denoted by ρ(θ, ′θ). It consists of two cuspidal
H-modules. In Corollary 2.2.4 it is shown that the sum of (1.4.3) consists
of at most 2[{ρ}] elements.

2.3.1 Proposition. The sum in (1.4.3) consists of 2[{ρ}] terms. The
coefficients m′′(ρ, π) are equal to 1 or −1, and both values occur for each ρ.

Proof. Put θρ = χ({ρ})G. Put θτ for the (twisted) character of I(τ ⊗
κ) (of (1.3.2)), viewed as a stable (conjugacy) function on G. Consider the
inner product

〈θρ, θτ 〉 =
〈∑

π

m′′(ρ, π)χπ,
∑
π′

m′(ρ, π′)χπ′
〉

=
∑
π

m′′(ρ, π)m′(ρ, π).

By (2.2.1), since θτ is a stable function 〈θρ, θτ 〉 is equal to∑
{S}

[W (S)]−1
∑

δ∈C(S/F )

∫
S/Z

(∆θτ )(t)
∑

w∈W ′(SH)\W ′(S)

κκκ(w(t))∆′(w(t))κ(w)κ(w(δ))χ̃({ρ})(w(t))dt.

Since κ is a nontrivial character of the group C(S/F ), we have∑
δ∈C(S/F )

κ(w(δ)) = 0.

Hence 〈θρ, θτ 〉 = 0; the point is that θτ is stable and θρ is an anti-stable
function. Since the m′(ρ, π) are nonnegative integers, we conclude that the
integers m′′(ρ, π) do not all have the same sign. In particular, there are at
least two π in (1.4.3). Corollary 2.2.4 then implies that |m′′(ρ, π)| is one (if
it is nonzero). Moreover, if {ρ′} is also a square-integrable H-packet, then

2·′〈χ({ρ}), χ({ρ′})〉 = 〈θρ, θρ′〉

=
〈∑

π

m′′(ρ, π)χπ,
∑
π′

m′′(ρ, π′)χπ′
〉

=
∑
π

m′′(ρ, π)m′′(ρ′, π)

by (2.2.2) and the orthonormality relations (of [K2], Theorem K) for char-
acters χπ of square-integrable G-modules π. Taking ρ = ρ′ we conclude
that

∑
πm
′′(ρ, π)2 = 2[{ρ}], and the proposition follows. �



III.2 Separation 367

Corollary. For each square-integrable H-packet {ρ} there exist 2[{ρ}]
inequivalent square-integrable G-modules which we gather in two nonempty
disjoint sets π+(ρ) and π−(ρ), such that

tr{ρ}(′fdh) = trπ+(ρ)(fdg)− trπ−(ρ)(fdg).

Here trπ+(ρ)(fdg) is the sum of trπ(fdg) over the π in the set π+(ρ).
In particular, if {ρ} consists of a single term, then π+(ρ) and π−(ρ) are
irreducible G-modules.

2.4 Stability

We shall now show that if m′(ρ, π) 6= 0, namely if π contributes to (1.4.2),
then it lies either in π+(ρ) or in π−(ρ). We begin with rewriting (1.4.2).
For each (irreducible) π+ in π+(ρ) there is a nonnegative integer m(π+),
and for each π− in π−(ρ) there is such m(π−), with the following property.
Put ∑

+(fdg) =
∑

(2m(π+) + 1) trπ+(fdg) (π+ in π+(ρ)),∑
−(fdg) =

∑
(2m(π−) + 1) trπ−(fdg) (π− in π−(ρ)),

and ∑
0(fdg) =

∑
2m(ρ, π) trπ(fdg) (π not in π+(ρ), π−(ρ)).

Then ∑
π

m′(ρ, π) trπ(fdg) =
∑

+(fdg) +
∑

−(fdg) +
∑

0(fdg)

(this relation defines m(π+) and m(π−)). Also we write χ+, χ−, χ0 for the
corresponding (finite) sums of characters:

χ+ =
∑

π+∈π+(ρ)

(2m(π+) + 1)χ(π+),

χ− =
∑

π−∈π−(ρ)

(2m(π−) + 1)χ(π−),

χ0 =
∑
π

m(ρ, π)χ(π) (π /∈ π+(ρ) ∪ π−(ρ)).
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2.4.1 Lemma. The class function χ+ + χ− on G is stable.

Proof. In view of Proposition 2.2.3 (2) it suffices to show that 〈χ+ +
χ−, θρ′〉 vanishes for every square-integrable H-packet {ρ′}. We distinguish
between two cases, when ρ′ 6= ρ and when ρ′ = ρ. In the first case we note
that if the irreducible π occurs in π+(ρ) or π−(ρ), then it occurs in I(τ⊗κ)
with m′(ρ, π) 6= 0. But then m′(ρ′, π) = 0 since the characters of I(τ ⊗ κ)
and I(τ ′ ⊗ κ) are orthogonal (by the twisted analogue of [K2]), and π does
not occur in π+(ρ′) or π−(ρ′). Consequently

〈χ+ + χ−, θρ′〉 = 〈χ+ + χ−, χ(π+(ρ′))− χ(π−(ρ′))〉 = 0.

If ρ′ = ρ, as in the proof of Proposition 2.3 we have that 0 = 〈θτ , θρ〉 is∑
π+∈π+(ρ)

(2m(π+) + 1)−
∑

π−∈π−(ρ)

(2m(π−) + 1) = 〈χ+ + χ−, θρ〉.

This completes the proof of the lemma. �

2.4.2 Proposition. The sum
∑0(fdg) is 0 for every f on G. Equiva-

lently, m(ρ, π) = 0 for every π not in π+(ρ) and π−(ρ).

Proof. We claim that χ0 is zero. If not, χ = 〈χ1 + χ0, χ1〉 · χ0 −
〈χ1 +χ0, χ0〉 ·χ1 is a nonzero stable function on the elliptic set of G. Note
that 〈χ0, χ1〉 = 0. Choose φ′v0dg

′
v0 on G′v0 such that Φ(t, φ′v0dg

′
v0 × σ) =

χ(Nt) on the σ-elliptic set of G′v0 and it is zero outside the σ-elliptic set.
As usual fix a totally imaginary field F and create a cuspidal σ-invariant
representation Π which is unramified outside our place v0 and two other
finite places v1, v2, and has the component Stvi at vi (i = 1, 2), and
trΠv0(φ

′
v0dg

′
v0 × σ) 6= 0. Since Π is cuspidal, by the usual argument of

generalized linear independence of characters we get the local identity

trΠv0(φv0dg
′
v0 × σ) =

∑
πv0

m1(πv0) trπ(fv0dgv0)

for all matching φv0dg
′
v0 and fv0dgv0 . The local representation Π0 = Πv0 is

perpendicular to I(τ ⊗ κ) since 〈χ, χ0 + χ1〉 = 0, and χ0 + χ1 = χσI(τ⊗κ).
Since χ1 + χ0 is perpendicular to the σ-twisted character χσΠ′ of any σ-
invariant representation Π′ inequivalent to I(τ ⊗κ), χ is also perpendicular
to all χσΠ′ , hence tr Π′(φ′v0dg

′
v0 × σ) = 0 for all σ-invariant representations

Π′, contradicting the construction of Πv0 with trΠv0(φ
′
v0dg

′
v0 × σ) 6= 0.

Hence χ = 0, which implies that χ0 = 0.
This completes the proof of the proposition. �
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Corollary. For every square-integrable H-packet {ρ} we have∑
π+∈π+(ρ)

(2m(π+) + 1) =
∑

π−∈π−(ρ)

(2m(π−) + 1).

In particular if the packet {ρ} consists of one element then m(π+) = m(π−).

In the next section we deal with each H-module ρ separately to show
that m(π+) = m(π−) = 0. Thus we obtain a precise form of (1.4.2) and
(1.4.3).

III.3 Specific lifts

3.1 Steinberg

There are several special cases which we now discuss. Let µ be a char-
acter of E1, and µ′ the character of E× given by µ′(a) = µ(a/a). Let
ρ be the Steinberg (namely square-integrable) subrepresentation St(µ) of
the H-module ′I = I(µ′ν1/2) normalizedly induced from the character
diag(a, a−1) 7→ µ′(a)|a|1/2. The image τ of ρ by the stable basechange
map of [F3;II] is the Steinberg H ′-module St(µ′), which is a subrepresenta-
tion of the induced module ′I ′ = I(µ′ν1/2, µ′ν−1/2). As the packet of this
square-integrable ρ consists of a single element, we conclude that there exist
two tempered irreducible G-modules denoted π+ = π+(µ) and π− = π−(µ),
and a nonnegative integer m, so that

tr ρ(′fdh) = trπ+(fdg)− trπ−(fdg) (3.1.1)

and

tr I(τ ⊗ κ;φdg′ × σ) = (2m+ 1)[trπ+(fdg) + trπ−(fdg)], (3.1.2)

for all matching φ, f , ′f .

3.1.1 Proposition. The integer m is 0, π− is cuspidal, and π+ is the
unique square-integrable subquotient π+

µ′ of the G-module I(µ′κν1/2).
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Proof. On the set of x = diag(a, 1, a−1) in G with |a| < 1, since
′fN (x) = κκκ(x)fN (x) and κκκ(x) = κ(a), the theorem of (Deligne [D6] and)
Casselman [C1] and the relation (3.1.1) imply that

κ(a)µ′(a)|a|1/2 = κ(a)(∆′χ({ρ}))(diag(a, a−1))

= (∆χ(π+))(diag(a, 1, a−1))− (∆χ(π−))(diag(a, 1, a−1))

= (χ(π+
N ))(diag(a, 1, a−1))− (χ(π−N ))(diag(a, 1, a−1)).

Since the composition series of an induced G-module has length at most
two, and at most one of its constituents is square integrable, and since
π+(ρ) and π−(ρ) consist of square-integrable G-modules, it follows from
linear independence of characters on A that (1) χ(π−N ) = 0, hence π− is
cuspidal, and (2) (χ(π+

N ))(diag(a, 1, a−1)) = µ′(a)κ(a)|a|1/2.
By Frobenius reciprocity π+ is a constituent of I(µ′κν1/2). Since π+ is

square integrable we conclude that I(µ′κν1/2) is reducible, and π+ = π+
µ′ .

To show that 2m+1 = 1 (and m = 0) we use again the theorem of [C1] to
conclude from (3.1.2) that since the A′-module I(τ⊗κ)N of N ′-coinvariants
has a single decreasing σ-invariant component, and so does π+, they are
equal, and the proposition follows. �

3.2 Trivial

Let 1(µ) be the one-dimensional complement of St(µ) in ′I; 1′(µ) its
basechange lift, namely the one-dimensional constituent in ′I ′; and π× = π×µ′

the nontempered subquotient of I = I(µ′κν1/2).

Corollary. For every matching φ, f , ′f , we have

tr(1(µ))(′fdh) = trπ×(fdg) + trπ−(fdg),

tr I(1′(µ)⊗ κ;φdg′ ⊗ σ) = trπ×(fdg)− trπ−(fdg).

Proof. Indeed, the composition series of I consists of π×, π+. �

3.3 Twins

The next special case to be studied is that of [{ρ}] = 2. Then in the
notations of [F3;II], {ρ} is of the form ρ(θ, ′θ), associated with an unordered
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pair θ, ′θ of characters of E1. Here {ρ} consists of two cuspidals when
θ 6= ′θ. It lifts to the induced H ′-module τ ⊗ κ−1 = I(θ′κ−1, ′θ′κ−1), where
θ′(x) = θ(x/x), ′θ′(x) = ′θ(x/x) (x in E×), via the stable basechange map
of [F3;II], and to I(θ′, ′θ′) = τ via the unstable map. The σ-invariant
G′-module I(τ) is I(θ′, ′θ′, ω′/θ′ · ′θ′). It is also obtained, by the same
process, from the H-module ρ′ = ρ(θ, ω/θ · ′θ), and also from the H-module
ρ′′ = ρ(′θ, ω/θ · ′θ). We now assume that θ, ′θ, ω/θ · ′θ are all distinct, so that
{ρ}, {ρ′} and {ρ′′} are disjoint packets consisting of two cuspidals each.

We also write ρ1 = ρ, ρ2 = ρ′, ρ3 = ρ′′. If τ = I(θ′, ′θ′), we conclude that
there are four inequivalent irreducible cuspidal G-modules πj (1 ≤ j ≤ 4),
and nonnegative integers mj , so that

tr I(τ ;φdg′ × σ) =
∑
j

(2mj + 1) trπj(fdg).

Moreover, there are numbers εij (1 ≤ i ≤ 3; 1 ≤ j ≤ 4), equal to 1 or −1,
such that for any i = 1, 2, 3, the set {εij (1 ≤ j ≤ 4)} is equal to the set
{1, −1}, and they satisfy

tr ρi(′fdh) =
4∑
j=1

εij trπj(fdg) (1 ≤ i ≤ 3).

3.4 Proposition. (1) For each i there are exactly two j with εij = 1.
(2) The integer mj is independent of j. Put m = mj.
(3) The product ε1jε2jε3j is independent of j.

Proof. Note that (1) asserts that π+ = π+(ρ) and π− consist of two
elements each. To prove (1), note that the orthogonality relations on H

imply that if there exists an i for which exactly two εij are 1, then this is
valid for all i. Thus, if (1) does not hold, then there are two i for which
the number of j with εij = 1 is (without loss of generality) one (otherwise
this number is three, and this case is dealt with in exactly the same way).
Hence we may assume that i = 1 and 2, and ε11 = 1, ε22 = 1 (we cannot
have ε21 = ε11 = 1 since ρ, ρ′ are inequivalent). Since the stable character
θτ is orthogonal to the unstable character θρi (all i), we conclude that

2m1 + 1 = 2m2 + 1 + 2m3 + 1 + 2m4 + 1

and
2m2 + 1 = 2m1 + 1 + 2m3 + 1 + 2m4 + 1.
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Hence m3 +m4 +1 = 0, contradicting the assumption that mj are nonneg-
ative. (1) follows.

To establish (2), we first claim that there exists j so that εij is indepen-
dent of i.

If this claim is false, we may assume that ε11, ε12, ε21, ε23, ε32, ε34
are equal. But then the characters of {ρ′} and {ρ′′} are not orthogonal.
This contradicts the orthogonality relations on H, hence the claim. Up to
reordering indices, the claim implies that ε11, ε12, ε21, ε23, ε31, ε34, are
equal. As 〈θτ , θρi〉 = 0, we conclude that

m1 +m2 = m3 +m4, m1 +m3 = m2 +m4, m1 +m4 = m2 +m3.

Hence mj is independent of j, and (2) follows.
Also it follows that ε1jε2jε3j is independent of j, hence (3). �

Let ρ be any square-integrable H-module, so that we have

trΠ(φdg′ × σ) = (2m+ 1)
∑

trπ(fdg),

where Π = I(τ ⊗ κ), the sum ranges over 2[{ρ}] inequivalent square-
integrable π, and m is a nonnegative integer.

3.5 Proposition. We have m = 0. There exists a unique generic π in
the sum. The other 2[{ρ}]− 1 G-modules are not generic.

Our proof is local. It is based on the following theorem of Rodier [Rd], p.
161, (for any split group H) which computes the number of ψψψH -Whittaker
models of the admissible irreducible representation πH of H in terms of
values of the character trπH or χπH

of πH at the measures ψH,ndh which
are supported near the origin. In the course of this proof and in section
II.4 (only) we denote our Π, π, φdg′, fdg, G′, G by π, πH , fdg, fHdh, G,
H. For clarity, Proposition 3.5.1 and its twisted analogue 3.5.2 are stated
in greater generality than used in this work.

3.5.1 Proposition. The multiplicity dimC HomH(IndHUH
ψψψH , πH) is

equal to

lim
n
|Hn|−1 trπH(ψH,ndh) = lim

n
|Hn|−1

∫
Hn

χπH
(h)ψH,n(h)dh.

The limit here and below stabilizes for large n. We proceed to explain
the notations. For simplicity and clarity, instead of working with a general
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connected reductive (quasi-) split p-adic group G, we take G = GL(r, E),
where E/F is a quadratic extension of p-adic fields of characteristic zero,
p 6= 2. Let x 7→ x denote the generator of Gal(E/F ). For g = (gij)
in G we put g = (gij) and tg = (gji). Then σ(g) = J−1tg−1J , J =
((−1)i−1δi,r+1−j), defines an involution σ on G. The group H = Gσ of
g ∈ G fixed by σ is a quasi-split unitary group. Let ψψψH : UH → C1(=
{z ∈ C; |z| = 1}) be a generic (nontrivial on each simple root subgroup)
character on the unipotent upper triangular subgroup UH of H. There is
only one orbit of generic ψψψH under the action of the diagonal subgroup of
H on UH by conjugation.

By ψψψH -Whittaker vectors we mean vectors in the space of the induced
representation IndHUH

(ψψψH). They are the functions ϕH : H → C with
ϕH(uhk) = ψψψH(u)ϕH(h), u ∈ UH , h ∈ H, k ∈ KϕH

, where KϕH
is a

compact open subgroup of H depending on ϕH . The group H acts by right
translation. The multiplicity dimC HomH(IndHUH

ψψψH , πH) of any irreducible
admissible representation πH of H in the space of ψψψH -Whittaker vectors is
known to be 0 or 1. In the latter case we say that πH has a ψψψH -Whittaker
model or that it is ψψψH -generic. To be definite, define ψψψH : UH → C1 by
ψψψH((uij)) = ψ(

∑
1≤j<r uj,j+1), where ψ : F → C1 is an additive character

such that the ring R of integers of F is the largest subring of F on which
ψ is 1. Note that ur−j,r−j+1 = uj,j+1.

Let g0 be the ring of r × r matrices with entries in the ring of integers
RE of E, and H0 the set of X in g0 fixed by the involution dσ, defined by
dσ(X) = −J−1tXJ . Fix a generator πππ of the maximal ideal in R. Write
Hn = exp(Hn), Hn = πππnH0. For n ≥ 1 we have Hn = tUH,nAH,nUH,n,
where UH,n = UH ∩ Hn, and AH,n is the group of diagonal matrices in
Hn. Define a character ψH,n : H → C1, supported on Hn, by ψH,n(tbu) =
ψ(
∑

1≤j<r uj,j+1πππ
−2n), at tb ∈ tUH,nAH,n, u = (uij) ∈ UH,n. Alterna-

tively, by
ψH,n(expX) = chHn

(X)ψ(tr[Xπππ−2nβH ]),

where chHn indicates the characteristic function of Hn = πππnH0 in H, and
βH is the r × r matrix whose nonzero entries are 1 at the places (j, j − 1),
1 < j ≤ r.

We need a twisted analogue of Rodier’s theorem. It can be described as
follows.

Let π be a σ-invariant admissible irreducible representation of G, thus
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π ' σπ, where σπ(σ(g)) = π(g). Then there exists an intertwining operator
A : π → σπ, with Aπ(g) = π(σ(g))A for all g ∈ G. Since π is irreducible,
by Schur’s lemma A2 is a scalar which we may normalize by A2 = 1. Thus
A is unique up to a sign. Denote by G′ the semidirect product G o 〈σ〉.
Then π extends to G′ by π(σ) = A. If π is generic, namely realizable in the
space of Whittaker functions (ϕ : G→ C with ϕ(ugk) = ψψψ(u)ϕ(g), u ∈ U ,
g ∈ G, k in a compact open Kϕ depending on ϕ), then A is normalized by
Aϕ = σϕ, σϕ(g) = ϕ(σ(g)).

The twisted character χσπ is a complex valued σ-conjugacy invariant func-
tion on G (its value on {hgσ(h)−1} is independent of h ∈ G) which is lo-
cally constant on the σ-regular set (g with regular gσ(g)), locally integrable
([Cl2], Thm 1, p. 153) and defined by trπ(f dg)A =

∫
G
χσπ(g)f(g)dg for all

test measures f dg.
Define ψE : E → C1 by ψE(x) = ψ(x + x). Define a character ψψψ :

U → C1 on the unipotent upper triangular subgroup U of G by ψψψ((uij)) =
ψE(

∑
1≤j<r uj,j+1). This one-dimensional representation has the property

that ψψψ(σ(u)) = ψψψ(u) for all u in U . Note that ψψψ(u) = ψψψH(u2) at u ∈ UH =
U ∩H. There is only one orbit of generic σ-invariant characters on U under
the adjoint action of the group of σ-invariant diagonal elements in G.

Write Gn = exp(gn), where gn = πππng0. For n ≥ 1 we have Gn =
tUnAnUn, where Un = U ∩ Gn, and An is the group of diagonal matrices
in Gn. Define a character ψn : G → C1 supported on Gn by ψn(tbu) =
ψE(

∑
1≤j<r uj,j+1πππ

−2n) where tb ∈ tUnAn, u = (uij) ∈ Un. Alternatively,
ψn : G→ C1 is defined by

ψn(expX) = chgn(X)ψE(tr[Xπππ−2nβ])

where β is the r× r matrix with entries 1 at the places (j, j−1), 1 < j ≤ r,
and 0 elsewhere.

The σ-twisted analogue of Rodier’s theorem of interest to us is as follows.
Let chGσ

n
denote the characteristic function of Gσn = {g = σg; g ∈ Gn} in

Gn.

3.5.2 Proposition. For all sufficiently large n the multiplicity

dimC HomG′(IndGU ψψψ, π) = dimC HomG(IndGU ψψψ, π)

is equal to

|Gσn|−1 trπ(ψn chGσ
n
dg × σ) = |Gσn|−1

∫
Gσ

n

χσπ(g)ψn(g)dg.
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The proof of this is delayed to the next section.

Proof of Proposition 3.5. The identity

trπ(fdg × σ) = (2m+ 1)
∑
πH

trπH(fHdh).

for all matching test measures fdg and fHdh implies an identity of charac-
ters:

χσπ(δ) = (2m+ 1)
∑
πH

χπH
(γ)

for all δ ∈ G = GL(3, E) with regular norm γ ∈ H = U(3, E/F ). Note
that δ 7→ χσπ(δ) is a stable σ-conjugacy class function on G, while γ 7→∑
πH

χπH
(γ) is a stable conjugacy class function on H. We use Proposition

3.5.2 with G = GL(3, E) and H = Gσ. Then Gσn = Hn. On δ ∈ Gσn, the
norm Nδ of the stable σ-conjugacy class of δ is just the stable conjugacy
class of δ2. Hence χσπ(δ) = (2m+ 1)

∑
πH

χπH
(δ2) at δ ∈ Gσn = Hn.

If δ = expX, X ∈ gσn = Hn, then ψE(tr[Xπππ−2nβ]) = ψ(tr[2Xπππ−2nβH ]).
Indeed β = βH and ψE(x) = ψ(x + x), thus ψψψn(tbu) = ψE((x + y)πππ−2n)

if u =
(

1 x z

0 1 y

0 0 1

)
. This is = ψ(2(x + x)πππ−2n) if y = x, while ψH,n(tbu) =

ψ((x+x)πππ−2n) at such u ∈ UH (thus with y = x). Hence ψψψn(δ) = ψψψH,n(δ2)
for δ ∈ Gσn = Hn. Also d(g2) = dg when p 6= 2. It follows that

1 = dimC HomG(IndGU ψψψ, π) = (2m+ 1)
∑
πH

dimC HomH(IndHUH
ψψψH , πH).

Hence m = 0 and there is just one generic πH in the sum (dimC 6= 0,
necessarily = 1). �

3.6 Proposition. In the notations of Proposition 3.4, ε1jε2jε3j = 1.

Proof. Again we use the trace formula, and global notations. We study
the situation at a place w. We may and do assume that E/F are totally
imaginary. At three finite places v = vm (6= w; m = 1, 2, 3) which do not
split (and do not ramify) we choose θv, ′θv so that ρv, ρ′v, ρ

′′
v are cuspidal.

Since ε1jvε2jvε3jv is independent of j, then for each v there exists j = j(v)
so that εijv is independent of i. Since εijv can attain only two values, and
we have three v at our disposal, we can assume that εi1j1v1 = εi2j2v2 , where
jm = j(vm), and both sides are independent of i1, i2.
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We now construct global characters θ, ′θ with the chosen components
at v1, v2 and our place w, which are unramified at each place which does
not split in E/F (we can take θv = ′θv at the v which ramify). It is clear
that ρ1 = ρ(θ, ′θ), ρ2 = ρ(θ, ω/θ · ′θ), ρ3 = ρ(′θ, ω/θ · ′θ) are cuspidal and
distinct. All three appear in the trace formula together with I(τ ⊗ κ) =
I(θ′, ′θ′, ω′/θ′ · ′θ′), and with coefficients n(ρ) = 1

2 (see [F3;II]). Namely, we
obtain

∏∑
j

trπjv(fvdgv)

+
∑
j

∏∑
j

εijv trπjv(fvdgv)


= 4

∑
m(π)

∏
trπv(fvdgv).

The product ranges over v = w, v1, v2. At v = vm (m = 1, 2) we take
fvdgv to be a coefficient of πjv, where j = j(v) was chosen above. Then
the product Π can be taken only over our place w. Hence, for every j, we
have

1 +
∑
i

εijw ≡ 0 (mod 4).

This holds only if εijw = 1 for an odd number of i, and the proposition
follows. �

3.7 Sum up twins

To sum up our case (3.3), fix θ, ′θ so that ρ1 = ρ(θ, ′θ), ρ2 = ρ(θ, ω/θ · ′θ)
are disjoint cuspidal H-packets. Denote by Π the induced G′-module
I(θ′, ′θ′, ω′/θ′ · ′θ′).

Corollary. There exist four cuspidal G-modules πj (1 ≤ j ≤ 4), so
that π1 has a Whittaker model but πj (j 6= 1) do not, so that

trΠ(φdg′ × σ) =
∑
j

trπj(fdg),

and

tr ρi(′fdh) = trπ1(fdg) + trπi+1(fdg)− trπi′(fdg)− trπi′′(fdg).

The indices i′, i′′ are so that {i+ 1, i′, i′′} = {2, 3, 4}.

We write π+(ρi) for {π1, πi+1}, and π−(ρi) for {πi′ , πi′′}.
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3.8 ρ(θ, ω/θ2)ρ(θ, ω/θ2)ρ(θ, ω/θ2)

The next special case of interest is that of the packet associated with
ρ = ρ(θ, ω/θ2), where θ3 6= ω, so that {ρ} consists of cuspidals; in fact
{ρ} consists of a single element, and this is clear also from the comments
below. The associated G′-module is the σ-invariant tempered induced Π =
I(θ′, ω′/θ′2, θ′). It is the basechange lift of the reducible G-module π =
I(θ′). The representation π is the direct sum of the tempered irreducibles
π+ and π−. Then we have

trΠ(φdg′ × σ) = trπ(fdg) = trπ+(fdg) + trπ−(fdg),

and also
tr ρ(′fdh) = trπ+(fdg)− trπ−(fdg),

for a suitable choice of π+. Namely π+ has a Whittaker vector, while π−

does not. In particular 2[{ρ}] = [{π+, π−}] = 2, so that {ρ} consists of a
single element, as asserted.

3.9 Packets

With this we have completed the description of all tempered packets {π}
of G. The packets are in bijection with the tempered σ-stable G′-modules
Π. If Π is a square-integrable σ-invariant G′-module, then it is σ-stable,
and the packet {π} consists of a single element (this has been shown already
in [F3;III(IV)]). If Π is induced from a square-integrable H ′-module, and it
is σ-stable, then it is of the form I(τ ⊗κ), where τ is the stable basechange
lift of a square-integrable packet {ρ} of H. The associated G-packet {π}
consists of 2 = 2[{ρ}] elements, each occurring with multiplicity one. If Π is
induced from the diagonal subgroup, and it is not simply the basechange lift
of an induced G-module I(µ) (in which case the packet {π} consists of the
irreducible constituents of I(µ)), then Π is of the form I(θ′, ′θ′, ω′/θ′ ·′θ′),
where the three characters are distinct, and trivial on F×. In this case the
packet {π} consists of 4 = 2[{ρ}] elements, where ρ = ρ(θ, ′θ).

Using this, and the related character identities between ρ and the dif-
ference of members of {π}, we can use the trace formula to describe the
discrete spectrum of G.
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III.4 Whittaker models and twisted characters

We shall reduce Proposition 3.5.2 to Proposition 3.5.1 for G (not H), so
we begin by recalling the main lines in Rodier’s proof in the context of G.
Fix

d = diag(πππ−r+1,πππ−r+3, . . . ,πππr−1)

(bar over the last [r/2] entries). Put

Vn = dnGnd
−n, ψψψn(v) = ψn(d−nvdn) (v ∈ Vn).

Note that σ(d) = d, σ(Gn) = Gn, σ(Un) = Un, σψn = ψn, and that the
entries in the jth line (j 6= 0) above or below the diagonal of v = (vij) in Vn
lie in πππ(1−2j)nRE (thus vi,i+j ∈ πππ(1−2j)nRE if j > 0, and also when j < 0).
Thus Vn ∩ U is a σ-invariant strictly increasing sequence of compact and
open subgroups of U whose union is U , while Vn ∩ (tUG) — where tUG

is the lower triangular subgroup of G — is a strictly decreasing sequence
of compact open subgroups of G whose intersection is the element I of G.
Note that ψψψn = ψψψ on Vn ∩ U .

Consider the induced representations IndGVn
ψψψn, and the intertwining op-

erators
Amn : IndGVn

ψψψn → IndGVm
ψψψm,

(Amn ϕ)(g) = ((|Vm|−11Vmψψψm) ∗ ϕ)(g) = |Vm|−1

∫
Vm

ψψψm(u)ϕ(u−1g)du

(g in G, ϕ in IndGVn
ψψψn, |Vm| denotes the volume of Vm, 1Vm denotes the

characteristic function of Vm). For m ≥ n ≥ 1 we have

(Amn ϕ)(g) = ((|Vm ∩ U |−11Vm∩Uψψψ) ∗ ϕ)(g)

= |Vm ∩ U |−1

∫
Vm∩U

ψψψ(u)ϕ(u−1g)du.

Hence A`m◦Amn = A`n for ` ≥ m ≥ n ≥ 1. So (IndGVn
ψψψn, A

m
n (m ≥ n ≥ 1)) is

an inductive system of representations of G. Denote by (I,An : IndGVn
ψψψn →

I) (n ≥ 1) its limit.
The intertwining operators φn : IndGVn

ψψψn → IndGU ψψψ,

(φn(ϕ))(g) = (ψψψ1U ∗ ϕ)(g) =
∫
U

ψψψ(u)ϕ(u−1g)du,

satisfy φn◦Amn = φn if m ≥ n ≥ 1. Hence there exists a unique intertwining
operator φ : I → IndGU ψψψ with φ ◦ An = φn for all n ≥ 1. Proposition 3 of
[Rd] asserts that
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4.1.1 Lemma. The map φ is an isomorphism of G-modules.

4.1.2 Lemma. There exists n0 ≥ 1 such that ψψψn ∗ψψψm ∗ψψψn = |Vn||Vm ∩
Vn|ψψψn for all m ≥ n ≥ n0.

Proof. This is Lemma 5 of [Rd]. We review its proof (the first displayed
formula in the proof of this Lemma 5, [Rd], p. 159, line -8, should be
erased).

There are finitely many representatives ui in U ∩ Vm for the cosets of
Vm modulo Vn ∩ Vm. Denote by ε(g) the Dirac measure in a point g of G.
Consider (ε(ui) ∗ψψψn1Vm∩Vn)(g)

=
∫
G

ε(ui)(gh−1)(ψψψn1Vm∩Vn)(h)dh = ψψψn(u−1
i g) = ψψψm(ui)−1ψψψm(g).

Note here that if the left side is nonzero, then g ∈ ui(Vm ∩ Vn) ⊂ Vm.
Conversely, if g ∈ Vm, then g ∈ ui(Vm ∩ Vn) for some i. Hence ψψψm =∑
iψψψm(ui)ε(ui) ∗ψψψn1Vm∩Vn , thus

ψψψn ∗ψψψm ∗ψψψn =
∑
i

ψψψm(ui)ψψψn ∗ ε(ui) ∗ψψψn1Vm∩Vn ∗ψψψn.

Since ψψψn1Vm∩Vn
∗ψψψn = |Vm ∩ Vn|ψψψn, this is

=
∑
i

ψψψm(ui)|Vm ∩ Vn|ψψψn ∗ ε(ui) ∗ψψψn.

But the key Lemma 4 of [Rd] asserts that ψψψn ∗ ε(u) ∗ψψψn 6= 0 implies that
u ∈ Vn. Hence the last sum reduces to a single term, with ui = 1, and we
obtain

= |Vm ∩ Vn|ψψψn ∗ψψψn = |Vm ∩ Vn||Vm|ψψψn.

This completes the proof of the lemma. �

4.1.3 Lemma. For an inductive system {In} we have HomG(lim
−→

In, π) =

lim
←−

HomG(In, π).

Proof. See, e.g., Rotman [Rt], Theorem 2.27. Let us verify this in
our context as in [Rd]. Our Lemma 2, which is Lemma 5 of [Rd], implies
Proposition 4 of [Rd], that Anm ◦ Amn = |Vm ∩ Vn||Vm|−1 · id(IndGVn

ψψψn) if
m ≥ n ≥ n0. This implies that Amn is injective, Anm is surjective, that An
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and φn = φ ◦An are injective, and by duality that for any G-module π the
maps

HomG(IndGVm
ψψψm, π)→ HomG(IndGVn

ψψψn, π), ϕ 7→ ϕ ◦Amn ,

HomG(IndGU ψψψ, π)→ HomG(IndGVn
ψψψn, π), ϕ 7→ ϕ ◦ φn,

are surjective for m ≥ n ≥ n0. In particular HomG(IndGU ψψψ, π) is equal to
lim
←−

HomG(IndGVn
ψψψn, π). �

As the dimC HomG(IndGVn
ψψψn, π) are increasing with n, if they are

bounded we get the first equality in

Corollary. We have

dimC HomG(IndGU ψψψ, π) = lim
n
|Gn|−1 trπ(ψndg).

Proof. The left side is = limn dimC HomG(IndGVn
ψψψn, π). This equals

limn dimC HomG(IndGGn
ψn, π) since ψψψn(v) = ψn(d−nvdn). This equals

limn dimC HomGn(ψn, π|Gn) by Frobenius reciprocity. This equals

lim
n
|Gn|−1 trπ(ψndg)

since |Gn|−1π(ψndg) is a projection from π to the space of x in π with
π(g)x = ψn(g)x (g ∈ Gn), whose dimension is |Gn|−1 trπ(ψndg). �

4.2 The twisted case

We now reduce Proposition 3.5.2 to Proposition 3.5.1 for G. Note that
since σψψψn = ψψψn, the representations IndGVn

ψψψn are σ-invariant, where σ acts
on ϕ ∈ IndGVn

ψψψn by ϕ 7→ σϕ, (σϕ)(g) = ϕ(σg). Similarly σψψψ = ψψψ and
IndGU ψψψ is σ-invariant. We then extend these representations Ind of G to
the semidirect product G′ = Go 〈σ〉 by putting (I(σ)ϕ)(g) = ϕ(σ(g)).

Let π be a σ-invariant irreducible admissible representation of G. Thus
there exists an intertwining operator A : π → σπ, where σπ(g) = π(σ(g)),
with Aπ(g) = π(σ(g))A. Then A2 commutes with every π(g) (g ∈ G),
hence A2 is a scalar by Schur’s lemma, and can be normalized to be 1.
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This determines A up to a sign. We extend π from G to G′ = G o 〈σ〉 by
putting π(σ) = A once A is chosen.

If HomG(IndGU ψψψ, π) 6= 0, its dimension is 1. Choose a generator ` :
IndGU ψψψ → π. Define A : π → π by A`(f) = `(I(σ)f). Then

HomG(IndGU ψψψ, π) = HomG′(IndGU ψψψ, π).

Similarly we have

HomG(IndGVn
ψψψn, π) = HomG′(IndGVn

ψψψn, π).

The right side in the last equality can be expressed as

HomG′(IndGGn
ψn, π) = HomG′n

(ψ′n, π|G′n) (G′n = Gn o 〈σ〉).

The last equality follows from Frobenius reciprocity, where we extended ψn
to ψ′n on G′n. Thus ψ′n = ψ1

n + ψσn, with ψin(g × j) = δijψn(g), i j ∈ {1, σ}.
Now HomG′n(ψ′n, π|G′n) is isomorphic to the space π1 of vectors x in π

with π(g)x = ψn(g)x for all g in G′n. In particular π(g)x = ψn(g)x for
all g in Gn, and π(σ)x = x. Clearly |G′n|−1π(ψ′ndg

′) is a projection from
the space of π to π1. It is independent of the choice of the measure dg′.
Its trace is then the dimension of the space Hom. We conclude a twisted
analogue of the theorem of [Rd]:

4.2.1 Proposition. We have

dimC HomG′(IndGU ψψψ, π) = lim
n
|G′n|−1 trπ(ψ′ndg

′),

where the limit stabilizes for a large n.

Note that G′n is the semidirect product of Gn and the two-element group
〈σ〉. With the natural measure assigning 1 to each element of the discrete
group 〈σ〉, we have |G′n| = 2|Gn|. The right side is then

1
2

lim
n
|Gn|−1 trπ(ψndg) +

1
2

lim
n
|Gn|−1 trπ(ψndg × σ)

(as ψ′n = ψ1
n + ψσn, ψ1

n = ψn and trπ(ψσndg) = trπ(ψndg × σ)). By (the
nontwisted) Rodier’s Theorem 1,

dimC HomG(IndGU ψψψ, π) = lim
n
|Gn|−1 trπ(ψndg),

we conclude
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4.2.2 Proposition. We have

dimC HomG′(IndGU ψψψ, π) = lim
n
|Gn|−1 trπ(ψndg × σ)

for all σ-invariant irreducible representations π of G.

Let chGσ
n

denote the characteristic function of Gσn in Gn.

4.2.3 Proposition. The terms in the limit on the right of the equality
of Proposition 2 are equal to

|Gσn|−1 trπ(ψn chGσ
n
dg × σ) = |Gσn|−1

∫
Gσ

n

χσπ(g)ψn(g)dg.

Proof. Consider the map Gσn × Gσn\Gn → Gn, (u, k) 7→ k−1uσ(k).
It is a closed immersion. More generally, given a semisimple element s
in a group G, we can consider the map ZG0(s) × ZG0(s)\G0 → G0 by
(u, k) 7→ k−1usks−1. Our example is: (s,G) = (σ,Gn × 〈σ〉).

Our map is in fact an analytic isomorphism since Gn is a small neighbor-
hood of the origin, where the exponential e : gn → Gn is an isomorphism.
Indeed, we can transport the situation to the Lie algebra gn. Thus we
write k = eY , u = eX , σ(k) = e(dσ)(Y ), k−1uσ(k) = eX−Y+(dσ)(Y ), up
to smaller terms. Here (dσ)(Y ) = −J−1tY J . So we just need to show
that (X,Y ) 7→ X − Y + (dσ)(Y ), Zgn(σ) + gn(modZgn(σ)) → gn, is bi-
jective. But this is obvious since the kernel of (1 − dσ) on gn is precisely
Zgn

(σ) = {X ∈ gn; (dσ)(X) = X}.
Changing variables on the terms on the right of Proposition 2 we get the

equality:

|Gn|−1

∫
Gn

χσπ(g)ψn(g)dg

= |Gn|−1

∫
Gσ

n

∫
Gσ

n\Gn

χσπ(k
−1uσ(k))ψn(k−1uσ(k))dkdu.

But σψn = ψn, ψn is a homomorphism (on Gn), Gn is compact, and χσπ is
a σ-conjugacy class function, so we end up with

= |Gσn|−1

∫
Gσ

n

χσπ(u)ψn(u)du.

The proposition, and Theorem 2, follow. �
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4.3 Germs of twisted characters

Harish-Chandra [HC2] showed that χπ is locally integrable (Thm 1, p.
1) and has a germ expansion near each semisimple element γ (Thm 5, p.
3), of the form:

χπ(γ expX) =
∑
O
cγ(O, π)µ̂O(X).

Here O ranges over the nilpotent orbits in the Lie algebra m of the central-
izer M of γ in G, µO is an invariant distribution supported on the orbit
O, µ̂O is its Fourier transform with respect to a symmetric nondegenerate
G-invariant bilinear form B on m and a self-dual measure, and cγ(O, π)
are complex numbers. Both µO and cγ(O, π) depend on a choice of a Haar
measure dO on the centralizer ZG(X0) of X0 ∈ O, but their product does
not. The X ranges over a small neighborhood of the origin in m. We shall
be interested only in the case of γ = 1, and thus omit γ from the notations.

Suppose that G is quasi split over F , and U is the unipotent radical of
a Borel subgroup B. Let ψψψ : U → C1 be the nondegenerate character of
U (its restriction to each simple root subgroup is nontrivial) specified in
Rodier [Rd], p. 153. The number dimC Hom(IndGU ψψψ, π) of ψψψ-Whittaker
functionals on π is known to be zero or one. Let g0 be a self dual lattice
in the Lie algebra g of G. Denote by ch0 the characteristic function of
g0 in g. Rodier [Rd], p. 163, showed that there is a regular nilpotent
orbit O = Oψψψ such that c(O, π) is not zero iff dimC Hom(IndGU ψψψ, π) is one,
in fact µ̂O(ch0)c(O, π) is one in this case. Alternatively put, normalizing
µO by µ̂O(ch0) = 1, we have c(O, π) = dimC Hom(IndGU ψψψ, π). This is
shown in [Rd] for all p if G = GL(n, F ), and for general quasi-split G for
all p ≥ 1 + 2

∑
α∈S nα, if the longest root is

∑
α∈S nαα in a basis S of the

root system. A generalization of Rodier’s theorem to degenerate Whittaker
models and nonregular nilpotent orbits is given in Moeglin-Waldspurger
[MW]. See [MW], I.8, for the normalization of measures. In particular they
show that c(O, π) > 0 for the nilpotent orbits O of maximal dimension with
c(O, π) 6= 0.

Harish-Chandra’s results extend to the twisted case. The twisted char-
acter is locally integrable (Clozel [Cl2], Thm 1, p. 153), and there exist
unique complex numbers cθ(O, π) ([Cl2], Thm 3, p. 154) with χθπ(expX) =∑
O c

θ(O, π)µ̂O(X). Here O ranges over the nilpotent orbits in the Lie al-
gebra gθ of the group Gθ of the g ∈ G with g = θ(g). Further, µO is an
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invariant distribution supported on the orbit O (it is unique up to a con-
stant, not unique as stated in [HC2], Thm 5, and [Cl2], Thm 3); µ̂O is its
Fourier transform, and X ranges over a small neighborhood of the origin
in gθ.

In this section we compute the expression displayed in Proposition 3
using the germ expansion χσπ(expX) =

∑
O c

σ(O, π)µ̂O(X). This expan-
sion means that for any test measure fdg supported on a small enough
neighborhood of the identity in G we have∫

gσ

f(expX)χσπ(expX)dX

=
∑
O
cσ(O, π)

∫
O

[∫
gσ

f(expX)ψ(tr(XZ))dX
]
dµO(Z).

HereO ranges over the nilpotent orbits in gσ, µO is an invariant distribution
supported on the orbit O, µ̂O is its Fourier transform. The X range over
a small neighborhood of the origin in gσ. Since we are interested only
in the case of the unitary group, and to simplify the exposition, we take
G = GL(n,E) and the involution σ whose group of fixed points is the
unitary group. In this case there is a unique regular nilpotent orbit O0.

We normalize the measure µO0 on the orbit O0 of β in gσ by the re-
quirement that µ̂O0(ch

σ
0 ) is 1, thus that

∫
β+πππngσ

0
dµO0(X) = qn dim(O0) for

large n. Equivalently a measure on an orbit O ' G/ZG(Y ) (Y ∈ O) is
defined by a measure on its tangent space m = g/Zg(Y ) ([MW], p. 430) at
Y , taken to be the self dual measure with respect to the symmetric bilinear
nondegenerate F -valued form BY (X,Z) = tr(Y [X,Z]) on m.

4.3 Proposition. If π is a σ-invariant admissible irreducible represen-
tation of G and O0 is the regular nilpotent orbit in gσ, then the coefficient
cσ(O0, π) in the germ expansion of the σ-twisted character χσπ of π is equal
to

dimC HomG′(IndGU ψψψ, π) = dimC HomG(IndGU ψψψ, π).

This number is one if π is generic, and zero otherwise.

Proof. We compute the expression displayed in Proposition 3 as in
[MW], I.12. It is a sum over the nilpotent orbits O in gσ, of cσ(O, π) times

|Gσn|−1µ̂O(ψn ◦ e) = |Gσn|−1µO(ψ̂n ◦ e)
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= |Gσn|−1

∫
O
ψ̂n ◦ e(X)dµO(X).

The Fourier transform (with respect to the character ψE) of ψn ◦ e,

ψ̂n ◦ e(Y ) =
∫

gσ

ψn(expZ)ψE(trZY )dZ

=
∫

gσ
n

ψE(trZ(πππ−2nβ − Y ))dZ,

is the characteristic function of πππ−2nβ+πππ−ngσ0 = πππ−2n(β+πππngσ0 ) multiplied
by the volume |gσn| = |Gσn| of gσn. Hence we get

=
∫
O∩(πππ−2n(β+πππngσ

0 ))

dµO(X) = qn dim(O)

∫
O∩(β+πππngσ

0 )

dµO(X).

The last equality follows from the homogeneity result of [HC2], Lemma 3.2,
p. 18. For sufficiently large n we have that β + πππngσ0 is contained only in
the orbit O0 of β. Then only the term indexed by O0 remains in the sum
over O, and ∫

O0∩(β+πππngσ
0 )

dµO0(X) =
∫
β+πππngσ

0

dµO0(X)

equals q−n dim(O0) (cf. [MW], end of proof of Lemme I.12). The proposition
follows. �

III.5 Global lifting

5.1 Terms in trace formulae

First we recall Proposition III.1.1.

Proposition. We have F1 = Φ1 + 1
2 (Φ2 + F2) + 1

4 (Φ3 + F3).

Proof. We have to show that F6 is 0, in the notation of (I.1.1). If µ and
θ are related by µ(z) = θ(z/z), and ρ = ρ(θ, ω/θ2), then the Gv-module
I(µv) is the direct sum of π+

µv
and π−µv

, and by (III.3.8) we have

tr{ρv}(′fvdhv) = trπ+
µv

(fvdgv)− trπ−µv
(fvdgv).
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Keys and Shahidi [KeS] show that

trR(µv)I(µv, fvdgv) = (−1, Ev/Fv)[trπ+
µv

(fvdgv)− trπ−µv
(fvdgv)],

where the Hilbert symbol (−1, Ev/Fv) is equal to 1 if −1 lies in NE/FE×v ,
and to −1 otherwise. It is 1 for almost all v, and the product of (−1, Ev/Fv)
over all v is 1. Hence F6 = 0, as required. �

In view of the local liftings results, this gives an explicit description of
the discrete spectrum of G(A).

To write out the three terms in the expression for the discrete spectrum
F1, we introduce some notations. If Πv is a tempered σ-stable G′v-module,
we write {πv(Πv)} for the associated packet of Gv-modules. We apply this
terminology also when Πv is one dimensional, where {πv(Πv)} consists of
a single one-dimensional Gv-module; and also when Πv is the lift of an
induced Gv-module I(µv). If {ρv} is a packet of Hv which lifts by stable
basechange to the H ′v-module τv, we put {πv(ρv)} for {πv(I(τv ⊗ κv))}.
It consists of 2[{ρv}] elements; it is the disjoint union of the set π+(ρv)
and π−(ρv), whose cardinalities are equal if Ev is a field; π−(ρv) is empty
if Ev = Fv ⊕ Fv. Given ρv, we write ε(πv) = 1 for πv in π+(ρv), and
ε(πv) = −1 for πv in π−v (ρv). In particular, if [{ρv}] = 2, we defined in
Proposition I.3.4 the sign εijv as a coefficient of πjv in {πv(ρv)}, and we
put εi(πjv) = εijv. We have {πv(ρ1v)} = {πv(ρ2v)} = {πv(ρ3v)}, and εi
depends on ρi.

Using these notations we can write

Φ1 =
∑
Π

∏
tr{πv(Πv)}(fvdgv).

The sum ranges over all discrete-spectrum automorphic σ-invariant G′(A)-
modules Π. Note that we use here the rigidity theorem, and the multiplicity
one theorem for the discrete spectrum of GL(3,AE).

The term 1
2 (Φ2 + F2) is the sum of two terms. The first is

1
2

∑
ρ6=ρ(θ,′θ)

{∏
[trπ+

v (ρv)(fvdgv) + trπ−v (ρv)(fvdgv)]

+
∏

[trπ+
v (ρv)(fvdgv)− trπ−v (ρv)(fvdgv)]

}
=
∑
π

m(ρ, π)
∏

trπv(fvdgv).
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The first sum is over the discrete-spectrum automorphic H′(A)-packets ρ
which are neither one dimensional, nor of the form ρ(θ, ′θ). The multiplicity
m(ρ, π) is [1 + ε(π)]/2, where ε(π) =

∏
ε(πv); it is 0 or 1. The sum over π

is taken over all products ⊗πv, such that there exists ρ as above, and πv is
in {πv(ρv)} for all v, and πv is unramified (so that ε(πv) = 1) for almost all
v. Thus m(ρ, π) = 1 exactly when the number of components πv in π−v (ρv)
is even. Otherwise the product ⊗πv is not automorphic.

The other term in 1
2 (Φ2 + F2) is

1
2

∑
µ

{
ε(µ′, κ)

∏
[trπ×µv

(fvdgv)− trπ−µv
(fvdgv)]

+
∏

[trπ×µv
(fvdgv) + trπ−µv

(fvdgv)]
}

=
∑
π

m(µ, π)
∏

trπv(fvdgv).

The first sum is over all characters µ of C1
E , or equivalently one-dimensional

automorphic H(A)-modules. As usual we put µ′(z) = µ(z/z), z ∈ A×E .
The sum over π ranges over the products ⊗πv, such that there exists a µ

as above, with πv = π×µv
for almost all v, and πv = π−µv

at the other places.
We putm(µ, π) = 1

2 [1+ε(µ′, κ)ε(π)], where ε(π) is
∏
ε(πv), and ε(π×µv

) =
1, ε(π−µv

) = −1.
The multiplicity m(µ, π) is 0 or 1 if there is an even or odd number of

places v where πv is π−v , depending on the value of ε(µ′, κ).
The factor ε(µ′, κ) is 1 or −1, depending on the normalization of the

intertwining operator Π(σ) given by the fact that Π is the realization of the
induced representation I(1′(µ)⊗ κ) as an automorphic representation.

Let us explain this. Recall that since σΠ ' Π (σΠ(g) = Π(σ(g))) there
is a unique-up-to-a-sign intertwining operator Π(σ) with Π(σ)2 = 1 and
Π(σ)Π(g) = Π(σ(g))Π(σ). There is a natural choice of the sign, namely
of Π(σ), when Π embeds in the space of automorphic forms, is generic or
is unramified (and these choices coincide when they apply). In our case of
the induced I = I(1′(µ′)⊗ κ) there is a natural choice of I(σ) obtained by
induction from the natural choice of σ on 1′(µ′)⊗κ. However our Π(' I) is
a subquotient of the space of automorphic forms. It is neither generic, nor
unramified, nor a subspace of the space of automorphic forms. Hence it is
not necessarily true that the choice of sign of Π(σ) obtained by restricting
the natural choice of r(σ) ((r(σ)ψ′)(h) = ψ′(σh), see II.2) should coincide
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with that of I(σ), which is compatible with the local choices of the Iv(σ).
Consequently there is a sign ε(µ′, κ), depending on µ, or µ′, and κ, such
that

trΠ(φdg′ × σ) = ε(µ′, κ)
∏

tr I(1′(µ′v)⊗ κv;φvdg′v × σ)

= ε(µ′, κ)
∏

[trπ×µv
(fvdhv)− trπ−µv

(fvdhv)].

In Φ2 we write tr I(1′(µ′) ⊗ κ)(φdg′ × σ) instead of trΠ(φdg′ × σ) which
emphasizes that in the trace formula it is the automorphic realization of Π
rather than its realization as an induced representation which occurs (the
difference is in the choice of sign of Π(σ)).

Put π×µ = ⊗π×µv
. Then it occurs in the discrete spectrum with multiplic-

ity m(π×µ ) = 1
2 (1 + ε(µ′, κ)). It is automorphic precisely when ε(µ′, κ) = 1.

Now if the value L( 1
2 , µ
′κ) of the L-function of µ′κ at the center 1

2 of the
critical strip is nonzero, then (ε( 1

2 , µ
′κ) = 1 and) π×µ is residual, hence

m(π×µ ) = 1 and ε(µ′, κ) = 1. Here ε(s, µ′κ) denotes the ε-factor in the
functional equation of L(s, µ′κ). If L( 1

2 , µ
′κ) = 0 then ε( 1

2 , µ
′κ) may take

either value 1 or −1.
It was conjectured by Arthur [A3] and Harder [Ha], p. 173, that ε(µ′, κ)

= ε( 1
2 , µ
′κ), namely that when L( 1

2 , µ
′κ) = 0, π×µ is (equivalent to) an auto-

morphic representation, necessarily cuspidal, precisely when ε( 1
2 , µ
′κ) = 1.

A proof of this, at least for F = Q, is based on the theory of theta liftings.

There remains the sum 1
4 (Φ3 + F3). It is equal to

1
4

∑
ρ

∏ 4∑
j=1

trπjv(ρv)(fvdgv) +
3∑
i=1

∏ 4∑
j=1

εijv trπjv(ρv)(fvdgv)


=
∑
π

m(ρ, π)
∏

trπv(fvdgv).

The first sum ranges over the discrete-spectrum automorphic H(A)-packets
of the form ρ = ρ(θ, ′θ), where θ, ′θ, ω/θ · ′θ are distinct. They are taken
modulo the equivalence relation ρ(θ, ′θ) ∼ ρ(θ, ω/θ · ′θ) ∼ ρ(′θ, ω/θ · ′θ). The

multiplicity m(ρ, π) = [1 +
3∑
i=1

εi(π)]/4 is equal to 0 or 1. The sum ranges

over the products ⊗πv, such that there exists ρ as above so that πv lies in
{πv(ρv)} for all v, and it is unramified at almost all v (namely it is π1v),
so that εi(πv) is 1 at almost all v.
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5.2 Global theorems

This gives a complete description of the discrete spectrum of G(A). We
introduce some more terminology. The local packets {πv} have been defined
in all cases, except for πv = π×v . This is a nontempered Gv-module. We
define the packet of π×v to consist of π×v alone. The quasi-packet π(µv) of
π×v will be the set {π×v , π−v }, consisting of a nontempered and a cuspidal.
Thus a packet consists of tempered Gv-modules, or of a single nontempered
element; a quasi-packet is defined for global purposes. Given a local packet
Pv at all v, so that it contains an unramified member π0

v for almost all v,
we define the global packet P to be the set of products ⊗πv over all v, so
that πv = π0

v for almost all v, and {πv} = Pv for all v. Given a character
µ of C1

E , we define the quasi-packet {π(µ)} as in the case of the packets,
where Pv is replaced by the quasi-packet π(µv) at all v.

A standard argument, based on the absolute convergence of the sums,
and the unitarizability of all representations which occur in the trace for-
mula, implies:

5.2.1 Theorem. The basechange lifting is a one-to-one correspondence
from the set of packets and quasi-packets which contain a discrete-spectrum
automorphic G(A)-module, to the set of σ-invariant automorphic G′(A)-
modules which appear in Φ1, Φ2 or Φ3. Namely, a discrete-spectrum G(A)-
module π lies in one of the following. (1) A packet {π(Π)} associated with
a discrete-spectrum σ-invariant G′(A)-module Π. (2) A packet {π(ρ)} as-
sociated with a discrete-spectrum automorphic H′(A)-module ρ which is not
of the form ρ(θ, ω/θ2). (3) A quasi-packet {π(µ)}, associated with an au-
tomorphic one-dimensional H(A)-module ρ = µ(det).

The multiplicity of π from a packet {π(Π)} in the discrete spectrum
of G(A) is 1. Namely each member π of {π(Π)} is automorphic, in the
discrete spectrum. The multiplicity of a member π of a packet {π(ρ)} or a
quasi-packet {π(µ)} in the discrete spectrum of G(A) is equal to m(ρ, π)
or m(µ, π), respectively. This number is 1 or 0, but it is not constant over
{π(ρ)} or {π(µ)}. Namely, in cases (2) and (3) not each member of {π(ρ)}
or {π(µ)} is automorphic.

5.2.2 Corollary. (1) The multiplicity of an automorphic representa-
tion in the discrete spectrum of G(A) is 1.
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(2) If π and π′ are discrete-spectrum G(A)-modules whose components πv
and π′v are equivalent at almost all v, then they lie in the same packet, or
quasi-packet.

The first statement is called multiplicity one theorem for the discrete
spectrum of G(A). The second is the rigidity theorem. It can be rephrased
as asserting that the packets and quasi-packets partition the discrete spec-
trum.

The automorphic members π of the quasi-packet {π(µ)} have compo-
nents π−v at the remaining finite set of places, which do not split in E/F .
Each such π is a counter example to the naive Ramanujan Conjecture,
which suggests that all components πv of a cuspidal G(A)-module π are
tempered. However, we expect this Conjecture to be valid for the members
π of the packets {π(Π)}, {π(ρ)}.

5.2.3 Proposition. Suppose that π is a discrete-spectrum G(A)-module
which has a component of the form π×w . Then almost all components of π
are of the form π×v , and π lies in a quasi-packet {π(µ)}.

Proof. The representation π defines a member Π of Φ1, Φ2 or Φ3 whose
component at w is of the form I(τw), where τw is a one-dimensional H ′w-
module. But then Π must be of the form I(τ), where τ is a one-dimensional
H′(A)-module, and the claim follows. �

The Theorem has the following obvious

5.2.4 Corollary. There is a bijection from the set of automorphic
discrete-spectrum H(A)-packets ρ which are not of the form ρ(θ, ω/θ2), to
the set of automorphic discrete-spectrum G(A)-packets of the form {π(ρ)}.

Also we deduce

5.2.5 Corollary. Suppose that π is a discrete-spectrum G(A)-module
whose component πv at a place v which splits E/F is elliptic. Then π lies
in a packet {π(Π)}, where Π is discrete spectrum.

Let ′G′ be the multiplicative group of a division algebra of dimension 9
central over E, which is unramified outside the places u′j , u

′′
j of E above the

finite places uj of F (1 ≤ j ≤ j0) which split in E, and which is anisotropic
precisely at u′j and u′′j . Suppose σ is an involution of the second kind,
namely its restriction to the center E× is σ(z) = z. Denote by ′G the
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associated unitary group, namely the group of x in ′G′ with xσ(x) = 1. It
is not hard to compare the trace formulae in the compact case and deduce
from our local lifting that we have

5.2.6 Proposition. The basechange lifting defines a bijection between
the set of automorphic packets of ′G(A)-modules, and the set of σ-invariant
automorphic ′G′(A)-modules.

The Deligne-Kazhdan correspondence, from the set of automorphic rep-
resentations of ′G′(A), to the set of discrete-spectrum automorphic repre-
sentations of G′(A) with an elliptic component at uj and u′j , implies

5.2.7 Corollary. The relation ′πv ' πv for all v 6= u defines a bijection
between the set of automorphic packets of ′G(A)-modules ′π, and the set
of automorphic packets of ′G(A)-modules of the form π = π(Π), whose
component at u is elliptic.

Finally we use the local results results of section I.5 and the global clas-
sification results of Theorem II.2.1 and its corollaries to describe the coho-
mology of automorphic forms on G(A). Thus let F be a totally real number
field, E a totally imaginary quadratic extension of F , G′ an inner form of
G which is defined using the multiplicative group ′G′ of a division algebra
of dimension 9 central over E and an involution of the second kind.

The set S of archimedean places of F is the disjoint union of the set S′

where ′G is quasi-split (' U(2, 1)), and the set S′′ where ′G is anisotropic
(' U(3)).

Put ′G∞ = Πv∈S
′Gv, ′K∞ = Πv∈S

′Kv. Here ′Kv = ′Gv for v in S′′, ′Kv '
U(2) × U(1) for v in S′. Write ′G′∞, ′G′′∞, ′K ′∞, ′K ′′∞ for the corresponding
products over S′ and S′′.

Fix an irreducible finite-dimensional ′Gv-module Fv for all v in S. Put
F̃ = ⊗F̃v (v in S). Then Fv = Fv(av, bv, cv) for integral av > bv > cv if v
is in S′.

Let π = ⊗πv be a discrete-spectrum infinite-dimensional automorphic
′G(A)-module. Then πv is unitary for all v and πv is infinite dimensional
for all v outside S′′. Put π∞ = ⊗πv (v in S). If H∗(′g∞, ′K∞;π∞⊗ F̃ ) 6= 0,
then πv = Fv for all v in S′′, and

H∗(′g∞, ′K∞;π∞ ⊗ F̃ ) =
∏
v∈S′

H∗(′gv, ′Kv;πv ⊗ F̃v).
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5.3 Proposition. Let π be an automorphic discrete-spectrum ′G(A)-
module. Let d be dim[′g∞/′k∞]. If Hj(′g∞), ′K∞;π∞⊗F̃ ) 6= 0 for j 6= d then
either π is one dimensional or π lies in a quasi-packet {π(µ)} of Theorem
5.2.1, associated with an automorphic one-dimensional H(A)-module ρ =
µ ◦ det. In the last case we have (1) av − bv = 1 or bv − cv = 1 for all v in
S′, (2) πv is of the form π×v or π−v for all v outside S′′ (it is π×v for almost
all v), and (3) ′G is quasi-split at each finite place of the totally real field
F (thus ′G′ = GL(3, E) is split).

Proof. If π is infinite dimensional and Hj 6= 0 for j 6= d, then there is
v in S′ such that πv is of the form π×v . Theorem 5.2.1 then implies that
π is of the form {π(µ)}, and (2) follows. Since πv is unitary (for v in S′),
(1) follows from (2). Finally (3) results from Corollary 5.2.7 of Theorem
5.2.1, which asserts that if ′G(A) has automorphic representations of the
form {π(µ)} where µ is a character of H(A), then ′G′ = GL(3, E) is the
multiplicative group of the split simple algebra of dimension 9 over E. �

The last assertion of the Proposition can be rephrased as follows.

5.4 Corollary. If ′G′ is the multiplicative group of a division alge-
bra, then any discrete-spectrum automorphic ′G(A)-module with cohomol-
ogy outside the middle dimension is necessarily one dimensional.

This sharpens results of Kazhdan [K4], section 4, in the case of n = 3.

III.6 Concluding remarks

The endoscopic lifting from U(2) to U(3) was first studied simultaneously
with basechange from U(3) to GL(3, E) by means of the twisted trace for-
mula in our unpublished manuscript [F3;III]: “L-packets and liftings for
U(3)”, Princeton 1982 (reference [Flicker] in [GP], [2] of [A2], and p. -2 in
[L6]). It introduced a definition of packets, and reduced a complete descrip-
tion of these packets, including the rigidity and multiplicity one theorems
for U(3) — as well as a complete description of the lifting from U(2) to
U(3) and U(3) to GL(3, E) — to important technical assumptions, proven
later; see below.

The problem of studying the endoscopic lifting from U(2) to U(3) was
raised by R. Langlands [L6]. An attempt at this problem — based on
stabilizing the trace formula for U(3) alone — was made in reference [25]
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of [L6] (= [Rogawski] in [GP]). But as explained in [F3;V], §4.6, p. 562/3,
this attempt was conceptually insufficient for that purpose.

In [F3;V], §4.6, p. 562/3, we wrote (updating notations to refer to the
present work instead of to [F3;V]) the following four paragraphs:

Theorem II.6.2.3 here (which is Theorem 4.4 of [F3;V]) deals with the
quasi-endo-lifting e from U(2) to U(3). The proof is via the theory of
basechange, and uses in addition to the rigidity theorem for GL(3) only the
local basechange transfer of spherical functions from G to G′ (Proposition
I.2.1, I.2.2). At the remaining finite number of places we work with a fun-
ction which vanishes on the (σ-) singular set. These functions are easy to
transfer. We do not use the endo-transfer of I.2.3, although this is needed
for the local lifting.

One may like to prove Theorem II.6.2.3 (= Theorem 4.4 of [F3;V]), by
stabilizing the trace formula for U(3) alone, using only the fundamental
lemma I.2.1 and I.2.2, and setting φu = 0, namely choosing fu with van-
ishing stable orbital integrals, so that the terms Φ are 0. Then, choosing
discrete-spectrum ρ, for example in F2, one would like to assert that by
the rigidity theorem for H(A)-packets [F3;II], there will be a single contri-
bution in F2. But if F2 6= 0 then F1 6= 0, and there exists π such that ρ
quasi-endo-lifts to π.

This argument — which is the one on which the preprint [Rogawski]
of [GP] (= [25] of [L6]) is based — does not work. The reason is that
there are infinitely many places where E/F splits. There the dual-group is
a direct product of the Weil group with the connected component, so we
may work with LG = GL(3,C). Then the homomorphism e takes diag(a, b)
to diag(a, 1/ab, b) if the central character is trivial. Since only conjugacy
classes matter, and diag(a, 1/ab, b) is conjugate to diag(a, b, 1/ab), this con-
jugacy class in LG = GL(3,C) is obtained also from the conjugacy class
diag(a, 1/ab) in LH = GL(2,C).

Hence, using the spherical components of f at almost all v it is not
possible to deduce that the components of ρ at almost all v are fixed; it
is possible to say that at any split v the component ρv has only finitely
many (3, if [{a, 1/ab, b}] = 3) possibilities. This makes it a priori possible
for infinitely many ρ, and we need only two, to appear in F2. But these
may cancel each other, so that one cannot deduce F2 6= 0. What makes our
proof of Theorem II.6.2.3 work is the comparison to GL(3).

This observation was the basis for our preprint L-packets and liftings for
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U(3). Our preprint was followed by our series of papers [FUi] (discussed
below), as well as by a seminar of (Langlands and) Rogawski “to study
what was proven in” our preprint (as the latter stated), and a book by
Rogawski (Automorphic Forms on Unitary Groups in Three Variables, Ann.
of Math. Study 123, 1990). This latter book reproduced in particular our
false “proof” of multiplicity one theorem for U(3) (but not our correct
proof).

Indeed, our preprint, written before [GP] became available, reduced the
multiplicity one theorem to its case for generic representations. When [GP]
was orally announced (Maryland conference, 1982) I have not checked what
was the precise statement claimed in [GP]. It turned out to be insufficient
for a proof, as we proceed to explain. This incomplete proof found its way
to [F3;VI] as the second “proof” of Proposition 3.5.

The second proof of Proposition 3.5 of [F3;VI], on p. 48, is global, but
incomplete. The false assertion is on lines 21-22: “Proposition 8.5(iii) (p.
172) and 2.4(i) of [GP] imply that for some π with m(π) 6= 0 above, we
have m(π) = 1”. Indeed, [GP], Prop. 2.4, defines L2

0,1 to be the ortho-
complement in the space L2

0 (of cusp forms) of “all hypercusp forms”, and
claims: “(i) L2

0,1 has multiplicity 1”. ([GP], 8.5 (iii), asserts that π is in
L2

0,1). Now the sentence of [F3;VI], p. 48, l. 21-22 assumes that [GP],
2.4(i), means that any irreducible π in L2

0,1 occurs in L2
0 with multiplicity

one. But the standard techniques of [GP], 2.4, show only that any irre-
ducible π in L2

0,1 occurs in L2
0,1 with multiplicity one. A priori there can

exist π′ in L2
0, isomorphic and orthogonal to π ⊂ L2

0,1. In such a case we
would have m(π) > 1.

Such a π′ is locally generic (all of its local components are generic), and
the question boils down to whether this implies that π′ is generic (“has a
Whittaker model”). This last claim might follow on using the theory of the
theta correspondence, but this has not been done as yet. In summary, a
clear form of [GP], 2.4(i) is: “Any irreducible π in L2

0,1 occurs in L2
0,1 with

multiplicity one”. In the analogous situation of GSp(2) such a statement is
made in [So]. It is not sufficiently strong to be useful for us.

We noticed that the global argument of [F3;VI], p. 48, is incomplete
while generalizing it in [F4;II] to the context of the symplectic group, where
work of Kudla, Rallis and others on the Siegel-Weil formula is available to
show that a locally generic cuspidal representation which is equivalent at
almost all places to a generic cuspidal representation is generic.
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However, [F3;VI] provides also a correct proof (p. 47) of the multiplicity
one theorem for U(3) (Proposition 3.5 there). It is a local proof, based on
a twisted analogue of Rodier’s theorem on the coefficients associated with
the regular orbits in the germ expansion of the character of an admissible
representation. Such a proof was first used in the study [FK1] with D.
Kazhdan of the metaplectic correspondence. The details were omitted from
[F3;VI]. They are given in Proposition III.3.5 here, and in section III.4.

A local proof, based on a twisted analogue of Rodier’s result, is also used
in [F2;I].

In addition to providing a correct proof of multiplicity one theorem for
U(3), our proof shows that in each packet of representations of U(3) which
lifts to a generic representation of GL(3, E) there is precisely one generic
representation.

The main achievement of our work — present already in our original
preprint — is the introduction of a definition of packets and quasi-packets
in terms of liftings, from U(2, E/F ) and to GL(3, E), in addition to the
observation that the endoscopic lifting from U(2) to U(3) could only be
studied (by means of the trace formula) simultaneously with basechange
from U(3, E/F ) to GL(3, E). Further we obtain a complete description of
these packets, including multiplicity one and rigidity for packets of U(3).
These results appeared in [F3;IV], [F3;V], [F3;VI], stated for all local rep-
resentations and global representations with two (in fact only one, using
the technique of [FK2]) elliptic components.

In [F3;VII] we introduce a new technique of proving the equality of the
trace formulae of interest for sufficiently general matching test measures to
establish all our liftings for all global representations, without any restric-
tion. In our original preprint [F3;III] we computed all terms in all trace
formulae which occur as a preparation for such a comparison. In [F3;VII],
which is II.4 here, we use regular spherical functions, whose orbital inte-
grals vanish on split elements unless the values of the roots on these split
elements are far from 1.

In the present case of basechange there is a simplifying fact, that there
are places which split in E/F . This leads to a cancellation of weighted
orbital integrals at the place in question, and to use of the invariance of the
trace formulae at this place. An analogous argument uses regular Iwahori
biinvariant functions. Such an analogous argument was used in the study of
the metaplectic correspondence and the simple algebras correspondence in



396 III. Liftings and packets

[FK2] with Kazhdan, and for cyclic basechange for GL(n) in [F1;VI] — in
both cases for cusp forms with at least one cuspidal component. It was also
used in the case of cyclic basechange for GL(2) in [F1;IV] and in the study
of the symmetric square in [F2;VI] for all automorphic representations,
without any restrictions.

The use of regular functions in the trace formula is motivated by Deligne
conjecture on the Lefschetz fixed point formula first used in the study of
Drinfeld moduli schemes in [FK3]. The virtue of the technique is that we do
not need to carry out the elaborate computations of the nonelliptic terms
in the trace formula. The use of regular functions annihilates a priori the
weighted orbital integrals and the integrals of the singular elements in the
trace formulae. Nevertheless the generality of our results is not affected.

This explains why our work is considerably shorter than analogous works
in the area.

However, our argument applies so far only in cases of rank one (including
twisted-rank one). It will be interesting to develop it to higher-rank cases.

As emphasized by Langlands, there is no result at all without the fun-
damental lemma. In [F3;VIII] we introduce a new technique to prove the
fundamental lemma for U(3, E/F ) and its endoscopic group U(2, E/F ). It
is based on an intermediate double coset decomposition H\G/K of the
double coset T\G/K which describes the orbital integral. It is given in sec-
tion I.3 here. It is inspired by Weissauer’s work on the fundamental lemma
for Sp(2) and its endoscopic groups. A similar argument is used in [F4;I]
to prove the fundamental lemma for (GL(4),GSp(2)) and from GSp(2) to
its endoscopic groups, and in [F2;VII] to prove the fundamental lemma
for the symmetric square lifting from SL(2) to PGL(3). This technique is
elementary and explicit.

A computation of the orbital integrals in terms of lattices is offered by
Kottwitz in [LR], p. 360.

A new computation, due to J.G.M. Mars, also coached in terms of count-
ing lattices, is described in section I.6 here, based on Mars’ letter to me.
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INTRODUCTION

Eichler expressed the Hasse-Weil Zeta function of an elliptic modular curve
as a product of L-functions of modular forms in 1954, and, a few years
later, Shimura introduced the theory of canonical models and used it to
similarly compute the Zeta functions of the quaternionic Shimura curves.
Both authors based their work on congruence relations, relating a Hecke
correspondence with the Frobenius on the reduction mod p of the curve.

Ihara introduced (1967) a new technique, based on comparison of the
number of points on the Shimura variety over various finite fields with
the Selberg trace formula. He used this to study forms of higher weight.
Deligne [D1] explained Shimura’s theory of canonical models in group the-
oretical terms, and obtained Ramanujan’s conjecture for some cusp forms
on GL(2,AQ): their normalized Hecke eigenvalues are algebraic and all of
their conjugates have absolute value 1 in C×, for almost all components.

Langlands [L1-3] developed Ihara’s approach to predict the contribu-
tion of the tempered automorphic representations to the Zeta function of
arbitrary Shimura varieties, introducing in the process the theory of endo-
scopic groups. He carried out the computations in [L2] for subgroups of the
multiplicative groups of nonsplit quaternionic algebras.

Using Arthur’s conjectural description [A2-4] of the automorphic non-
tempered representations, Kottwitz [Ko5] developed Langlands’ conjectural
description of the Zeta function to include nontempered representations. In
[Ko6] he associated Galois representations to automorphic representations
which occur in the cohomology of unitary groups associated to division
algebras. In this anisotropic case the trace formula simplifies.

In the anisotropic case the unramified terms of the Zeta function are
expressed in terms of the trace of the Frobenius on the virtual cohomology∑
i(−1)iHi(S ⊗E Q,V) with coefficients in a smooth Q`-sheaf V; here E is

the reflex field and Q is an algebraic closure of Q. The functional equation
follows from Poincaré duality. But when the Shimura variety S is not
proper, the duality relates Hi with the cohomology with compact supports
H2 dim−i
c . For a Shimura curve S Deligne interpreted Shimura’s “parabolic”
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cohomology of discrete groups as “interior” cohomology Hi
! = Im[Hi

c →
Hi] (Harder’s notations). It satisfies Poincaré duality, and purity (“Weil’s
conjecture”).

For noncompact higher-dimensional S, to have a functional equation
one needs cohomology satisfying Poincaré duality, and this depends on a
choice of a compactification. The Satake Baily-Borel compactification S ′ is
algebraic, and the Q`-adic intersection cohomology (with middle perversity)
IHi(S ′⊗E Q,V) has the required properties. The Eichler-Shimura relations
were extended by Matsushima-Murakami to anisotropic symmetric spaces
and by Borel to isotropic such spaces, to express the L2-cohomology H(2)

in terms of discrete-spectrum representations of the underlying reductive
group. Zucker’s conjecture [Zu] translated the intersection cohomology —
tensored by C — to the L2-cohomology. In fact, for curves H1 coincides
with IH1 for the natural compactification, and in general there are natural
maps Hi

c → IHi → Hi. These considerations suggested that for general
Shimura varieties, the natural Zeta function is indeed that defined in terms
of IH∗(S ′ ⊗E Q,V).

The only known approach to determine the decomposition of the coho-
mology is that of comparison of the Lefschetz fixed point formula with the
Arthur-Selberg trace formula. But in the isotropic case only Grothendieck’s
fixed point formula for the powers of the Frobenius was known. The lack of
Hecke correspondences would not permit separating the Hecke algebra mod-
ules in the cohomology (IH, H or Hc). To overcome this difficulty Deligne
conjectured that the Lefschetz fixed point formula for a correspondence
on a variety over a finite field remains valid — as though the variety was
proper — on the Q`-adic cohomology H∗c with compact supports, provided
the correspondence is twisted by a sufficiently high power of the Frobenius.
It is not valid for H∗.

Deligne’s conjecture was used with Kazhdan in [FK3] to decompose the
cohomology with compact supports of the Drinfeld moduli scheme of ellip-
tic modules, and relate Galois representations and automorphic representa-
tions of GL(n) over function fields of curves over finite fields. It suggested
various forms simplifying the trace formula for automorphic representations
([FK2], [F3;VII], [F1;IV], [F1;VI]).

Deligne’s conjecture was proven in some cases by Zink [Zi], Pink [P2],
Shpiz [Sc], and in general by Fujiwara [Fu], and recently Varshavsky [Va].
We use it here to express the Zeta function of the Shimura varieties S of
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the quasi-split semisimple F -rank one unitary group of similitudes G =
GU(3, E/F ) associated with a totally imaginary quadratic extension E of
a totally real number field F and with any coefficients, in terms of au-
tomorphic representations of this group and of its unique proper elliptic
endoscopic group, H = G(U(2, E/F )×U(1, E/F )). Of course by the Zeta
function we mean the one defined by means of H∗c .

Thus our main result is the decomposition of the Q`-adic cohomology
with compact supports of the Shimura variety S (with coefficients in a
finite-dimensional representation of G) as a Hecke × Galois module. In
fact we consider only the semisimplification of this module. In conclusion
we associate a Galois representation to any “cohomological” automorphic
representation of G(A). Here A = AF denotes the ring of adèles of F , and
AQ of Q. Our results are consistent with the conjectures of Langlands and
Kottwitz [Ko5]. We make extensive use of the results of [Ko5], expressing
the Zeta function in terms of stable trace formulae of GU(3) and its en-
doscopic group G(U(2) × U(1)), also for twisted coefficients. We use the
fundamental lemma proven in this case in [F3;VIII] and assumed in [Ko5]
in general.

In the case of GSp(2), using congruence relations Taylor [Ty] associ-
ated Galois representations to automorphic representations of GSp(2,AQ)
which occur in the cohomology of the Shimura three-fold, in the case of
F = Q. Laumon [Ln] used the Arthur-Selberg trace formula and Deligne’s
conjecture to get more precise results on such representations again for the
case F = Q where the Shimura variety is a three-fold, and with trivial
coefficients. Similar results were obtained by Weissauer [We] (unpublished)
using the topological trace formula of Harder and Goresky-MacPherson. A
more precise result is obtained in [F4;VII]. It uses the classification of the
automorphic representations of PGSp(2) obtained in [F4;II-IV].

Here we use the description of the automorphic representations of the
group GU(3, E/F ) by [F3], together with the fundamental lemma [F3;VIII]
and Deligne’s conjecture [Fu], [Va], to decompose the Q`-adic cohomology
with compact supports, compare it with the intersection cohomology, and
describe all of its constituents. This permits us to compute the Zeta func-
tion, in addition to describing the Galois representation associated to each
automorphic representation occurring in the cohomology. We work with
any discrete-spectrum automorphic representation. There are no local re-
strictions.
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We work with any coefficients, and with any totally real base field F .
In the case F 6= Q the Galois representations which occur are related to
the interesting “twisted tensor” representation of the dual group. Using
Deligne’s “purity” theorem [D4] (and Gabber in the context of IH) we
conclude that for all good primes p the Hecke eigenvalues of any discrete-
spectrum representation π = ⊗πp occurring in the cohomology are alge-
braic. All conjugates of these algebraic numbers lie on the unit circle for π
which basechange lift ([F3;I, VI]) to cuspidal representations on GL(3) or
to representations induced from cuspidal representations of a Levi factor
of a parabolic subgroup. This is known as the “generalized” Ramanujan
conjecture (for GU(3)). Counter examples to the naive Ramanujan conjec-
ture are given by π which basechange lift to representations induced from
one-dimensional representations of the maximal parabolic subgroup.

The cases of surfaces (compact if F 6= Q) associated with forms of
U(3, E/F ) which are ramified at all real places but one, in particular the
quasi-split case F = Q, are discussed in [LR]. We deal with the quasi-split
U(3, E/F ), especially where F 6= Q.

1. Statement of results

To describe our results we briefly introduce the objects of study; more
detailed account is given in the body of the work. Let F be a totally
real number field, E a totally imaginary quadratic extension of F , G =
GU(3, E/F ) the quasi-split unitary group of similitudes in three variables
associated with E/F whose Borel subgroup is the group of upper triangular
matrices. In fact we define the algebraic group G by means of the Hermitian

form J =
(

0 1

−1

1 0

)
. It suffices to specify G as an F -variety by its F -points

and the Gal(F/F ) action. Thus put G(F ) = GL(3, F ) × F×, and let τ ∈
Gal(F/F ) act on (g, λ), g = (gij) ∈ G(F ), λ ∈ F×, by τ(g, λ) = (τgij , τλ)
if τ |E = 1, and τ(g, λ) = (θ(τgij)λ, τλ) if τ |E 6= 1, where θ(g) = J tg−1J

and tg indicates the transpose (gji) of g.
Denote by x 7→ x the action of the nontrivial element of Gal(E/F ) on

x ∈ E. Put g = (gij) for g in GL(3, E). Put σ(g) = θ(g). Thus the group
G(F ) of F -points on G is

{(g, λ) ∈ GL(3, E)× E×; tgJg = λJ}
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= {(g, λ) ∈ GL(3, E)× E×; λσ(g) = g}.

Applying transpose-bar to tgJg = λJ and taking determinants we see that
λ ∈ NE/FE×.

Denote by RL/M the functor of restriction of scalars from L to M , where
L/M is a finite field extension. If V is a variety over L, RL/MV is a variety
over M , and (RL/MV )(A) = V (A ⊗M L) for any M -ring A. We use this
construction to work with the group G′ = RF/QG over Q, whose group of
Q-points is G(F ).

Write AQ and AQ,f for the rings of adèles and finite adèles of Q. Let Kf

be an open compact subgroup of G′(AQf ) of the form
∏
p<∞Kp, Kp open

compact in G′(Zp) for all p with equality for almost all primes p.
Let h : RC/RGm → G′ be an R-homomorphism satisfying the axioms

of [D3]. Let SKf
be the associated Shimura variety, defined over its reflex

field E, a CM-field in E.
The finite-dimensional irreducible algebraic representations of the group

G are parametrized by their highest weights

(a, b, c) : diag(x, y, z) 7→ xaybzc,

where a, b, c ∈ Z and a ≥ b ≥ c. Those with trivial central character have
a+ b+ c = 0. We denote them by (ξa,b,c, Va,b,c).

Half the sum of the positive roots is (1, 0,−1).
For each rational prime `, the representation

(ξa,b,c = ⊗σ∈Sξaσ,bσ,cσ
, Va,b,c = ⊗σ∈SVaσ,bσ,cσ

)

of G′ over Q (S is the set of embeddings of F in R) defines a smooth Q`-
adic sheaf Va,b,c;` on SKf

. Denote by HKf ,Q`
the Hecke convolution algebra

C∞c (Kf\G(Af )/Kf ,Q`) of compactly supported Q`-valued bi-Kf -invariant
functions on G(AQf ). We are concerned with the decomposition of the Q`-
adic vector space Hi

c(SKf
⊗EQ,Va,b,c;`) as a HKf ,Q`

×Gal(Q/E)-module, or

more precisely the virtual bi-module H∗c = ⊕(−1)iHi
c, 0 ≤ i ≤ 2 dimSKf

.
We consider only the semisimplification of H∗c , as we only study traces.

Fix a fields isomorphism Q` ' C.
Write H∗c (πf ) for HomHKf

(πf ,H∗c (SKf
⊗E Q,Va,b,c)).
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Theorem 1. The irreducible HKf ,Q`
× Gal(Q/E)-modules which occur

nontrivially in H∗c (SKf
⊗E Q,Va,b,c;`) are of the form π

Kf

f ⊗H∗c (πf ), where
πf is the finite component ⊗p<∞πp of a discrete-spectrum representation
π of G′(AQ,f ), and π

Kf

f denotes its subspace of Kf -fixed vectors. The
archimedean component π∞ = ⊗σ∈Sπσ of π, where S = Emb(F,R) and
G′(R) =

∏
σ∈S G(F ⊗F,σ R), has components πσ whose infinitesimal char-

acter is (aσ, bσ, cσ) + (1, 0,−1).
Conversely, if π is any discrete-spectrum representation of G′(AQ,f )

whose archimedean component π∞ = ⊗σ∈Sπσ is such that the infinitesi-
mal character of πσ is (aσ, bσ, cσ)+ (1, 0,−1), aσ ≥ bσ ≥ cσ for each σ ∈ S
(we call such representations π cohomological), and πKf

f 6= {0}, then the
πf -isotypical part H∗c (πf ) of H∗c (SKf

⊗Q Q,Va,b,c;`) is nonzero.

The main point here is that the π which occur in H∗c are automorphic, in
fact discrete spectrum with the prescribed behavior at ∞ and ramification
controlled by Kf . Each cohomological π occurs for some Kf depending on
π. The same statement is known for H∗(2) by the “Matsushima-Murakami”
theory of Borel, hence for IH∗ by Zucker’s conjecture.

We proceed to describe the semisimplification of the Galois represen-
tation H∗c (πf ) attached to πf . For this purpose we first need to list the
cohomological π. Recall that G′(Q) = G(F ) and G′(AQ) = G(AF ).

The discrete-spectrum automorphic representations π of our unitary
group are described in [F3] in terms of packets and quasi-packets, E/F -
basechange lifting b : LG = GL(3,C) o WF → L(RE/FG) = [GL(3,C) ×
GL(3,C)] o WF (diagonal embedding), and endoscopic lifting e : LH =
[GL(2,C) × GL(1,C)] o WF → LG. Here Ĥ is viewed as the central-
izer of diag(−1, 1,−1) in Ĝ. A detailed account of the lifting theorems of
[F3;VI] is given in the text below, as are the definitions of [F3;VI] of packets
and quasi-packets; [F3;VI] can be replaced by our [F3;I] everywhere below.
Quasi-packets refer to nontempered representations. We distinguish five
types of cohomological representations π of G(AF ) = GU(3,AF ).

(1) π in a stable packet which basechange lifts to a cuspidal represen-
tation of GL(3,AE). The components πσ (σ ∈ S) are discrete series with
infinitesimal characters (aσ, bσ, cσ) +(1, 0,−1).

(2) π in an unstable packet which basechange lifts to a representation
of GL(3,AE) normalizedly induced from a cuspidal representation ρ′ ⊗ κ
of a maximal parabolic subgroup, where ρ′ ⊗ κ is obtained by the unstable
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basechange map b′ : GL(2,C)oWF → L(RE/FG) = [GL(2,C)×GL(2,C)]o
WF on the unitary group U(2, E/F )(AF ) in two variables associated with
E/F from a single cuspidal packet ρ of U(2, E/F )(AF ). This π is the
endoscopic lift of ρ.

(3) π in an unstable packet which basechange lifts to a representation
of GL(3,AE) normalizedly induced from the Borel subgroup. It is the
endoscopic lift of three inequivalent cuspidal packets ρi, i = 1, 2, 3.

(4) π is the endoscopic lift of a one-dimensional representation µ of
U(2, E/F )(AF ). It is an unstable quasi-packet (almost all of its compo-
nents are nontempered π×v ; the remaining finite number of components
are cuspidal π−v ). It lifts to a representation of GL(3,AE) induced from a
one-dimensional representation of a maximal parabolic subgroup.

(5) π is one dimensional. Here (av, bv, cv) = (0, 0, 0).
A global (quasi-)packet is the restricted product of local (quasi-)packets,

which are sets of one or two irreducibles in the nonarchimedean case,
pointed by the property of being unramified (the local (quasi-) packets
contain a single unramified representation at almost all places). The pack-
ets (1) and the quasi-packet (5) are stable: each member is automorphic
and occurs in the discrete spectrum with multiplicity one. The packets (2),
(3) and quasi-packets (4) are not stable, their members occur in the discrete
spectrum with multiplicity one or zero, according to a formula of [F3;VI]
recalled below.

We now describe the (semisimple, by our convention) representation
H∗c (πf ) of Gal(Q/E) associated to the finite component πf of the π listed
above such that π∞ = ⊗σ∈Sπσ has nonzero Lie algebra cohomology. The
Chebotarev’s density theorem asserts that the Frobenius elements Fr℘ for
almost all primes ℘ of E make a dense subgroup of Gal(Q/E). Hence it suf-
fices to specify the conjugacy class of ρ(Fr℘) for almost all ℘. This makes
sense since H∗c (πf ) is unramified at almost all ℘, trivial on the inertia sub-
group I℘ of the decomposition group D℘ = Gal(Qp/E℘) of Gal(Q/E) at
℘, and Dp/Ip is (topologically) generated by Fr℘. The conjugacy class
H∗c (πf )(Fr℘) is determined by its trace. Being semisimple, it is determined
by H∗c (πf )(Frj℘) for all sufficiently large j. Note that dimSKf

= 2[F : Q].
We consider only p which are unramified in E, thus the residual cardinality
qu of Fu at any place u of F over p is pnu , nu = [Fu : Qp]. Further we
use only p with Kf = KpK

p, where Kp = H ′(Zp) is the standard maximal
compact, thus SKf

has good reduction at p.
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Part of the data defining the Shimura variety is the R-homomorphism h :
RC/RGm → G′ = RF/QG. Over C the one-parameter subgroup µ : C× →
G′(C), µ(z) = h(z, 1) factorizes through any maximal C-torus T ′(C) ⊂
G′(C). The G′(C)-conjugacy class of µ defines then a Weyl group WC-orbit
µ =

∏
τ µτ in X∗(T ′) = X∗(T̂ ′). The dual torus T̂ ′ =

∏
σ T̂ in Ĝ′ =

∏
σ Ĝ,

σ ∈ Emb(F,R), can be taken to be the diagonal subgroup, andX∗(T̂ ) = Z3.
Further, τ ranges over a CM-type Σ. Thus Σ is a subset of Emb(E,C)
with empty Σ ∩ cΣ and Σ ∪ cΣ = Emb(E,C), where c denotes complex
conjugation. We choose µτ to be the character (1, 0, 0) : diag(a, b, c) 7→ a of
T̂ . Then µcτ = (1, 1, 0). Thus the G(C)-orbit of the coweight µτ determines
a WC-orbit of a character — which we again denote by µτ — of T̂ , which
is the highest weight of the standard representation r0τ = st of GL(3,C),
while µcτ = (1, 1, 0) is that of r0cτ = Λ2(st)(= det⊗ st∨). Put r0µ = ⊗τ∈Σr

0
τ .

It is a representation of Ĝ′.

The Galois group Gal(Q/Q) acts on Emb(E,Q). The stabilizer of µ,
Gal(Q/E), defines the reflex field E. It is a CM-field contained in E. We
work only with primes p unramified in E. Thus for each prime ℘ of E
over p, the decomposition subgroup Gal(Qp/E℘) at ℘ acts on r0µ via its
quotient 〈Fr℘〉 by the inertia subgroup. The Frobenius Fr℘ = Frn℘

p at ℘ is
the n℘ = [E℘ : Qp]-th power of Frp.

An irreducible admissible representation πp of G(F ⊗ Qp) = G′(Qp) =∏
u|pG(Fu) has the form ⊗uπu. Suppose it is unramified. If u splits in

E, thus E ⊗F Fu = Fu ⊕ Fu, then πu has the form π(µ1u, µ2u, µ3u), a
subquotient of the normalizedly induced representation I(µ1u, µ2u, µ3u) of
G(Fu) = GL(3, Fu), where µiu are unramified characters of F×u . If u stays
prime in E, thus Eu = E ⊗F Fu is a field, πu has the form π(µu) ⊂ I(µu).
Write µmu for the value µmu(πππu) at any uniformizing parameter πππu of
F×u (and E×u ). Put tu = t(πu) = diag(µ1u, µ2u, µ3u) in the split case
and t(πu) = diag(µu, 1, 1) × Fru if Eu is a field. In the latter case we
also write µ1u = µ

1/2
u , µ2u = 1, µ3u = µ

−1/2
u , and tu = (t(πu)2)1/2 =

diag(µ1/2
u , 1, µ−1/2

u ). Note that tr[tju] = µj1u + µj2u + µj3u.

The representation πp is parametrized by the conjugacy class of t(πp) =
tp × Frp in the unramified dual group LG′p = Ĝ[F :Q] o 〈Frp〉. Here tp is

the [F : Q]-tuple (tu;u|p) of diagonal matrices in Ĝ = GL(3,C), where
each tu = (tu1, . . . , tunu) is any nu = [Fu : Qp]-tuple with

∏
i tui = tu.

The Frobenius Frp acts on each tu by permutation to the left: Frp(tu) =
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(tu2, . . . , tunu , θ(tu1)). Here θ = id if Eu = Fu ⊕ Fu and θ(tu) = J−1tt−1
u J

if Eu is a field. Each πu is parametrized by the conjugacy class of t(πu) =
tu × Frp in the unramified dual group LG′u = Ĝnu × 〈Frp〉, or alternatively
by the conjugacy class of tu × Fru in LGu = Ĝ× 〈Fru〉, where Fru = Frnu

p .
Our determination of the Galois representation attached to πf is in terms

of the traces of the representation r0µ of the dual group LG′E = Ĝ′ oWE at
the positive powers of the n℘th powers of the classes t(πp) = (t(πu);u|p)
parametrizing the unramified components πp = ⊗u|pπu. The representation
H∗c (πf ) is determined by tr[Frj℘ |H∗c (πf )] for every integer j ≥ 0, prime p
unramified in E, and E-prime ℘ dividing p, as follows.

Theorem 2. Let πf be an irreducible representation of G(Af ) so that
H∗c (πf ) 6= 0. Then there are representations πσ of G(R) (σ ∈ S) with

H∗(g,Kσ;πσ ⊗ V(aσ,bσ,cσ)) 6= 0,

thus with infinitesimal characters (aσ, bσ, cσ) + (1, 0,−1), such that π =
πf ⊗ (⊗σπσ) is in the discrete spectrum.

(1) Suppose that π (is cuspidal and) basechange lifts to a cuspidal rep-
resentation of GL(3,A). Then the trace tr[Frj℘ |H∗c (πf )] is the product of

q
j
2 dimSKf
℘ and

tr r0µ[(t(πp)× Frp)jn℘ ] =
∏

tr r0u[(t(πu)× Frp)jn℘ ] =
∏(

tr[t
jn℘
ju
u ]

)ju
.

Here ju = (jn℘, nu), and all products range over the places u of F over p.
(2) Suppose that π basechange lifts to a representation normalizedly in-

duced from a cuspidal representation of the maximal parabolic subgroup.
Then π is the endoscopic lift of a cuspidal representation ρ̃ not of the form
ρ(θ, ′θ)× ′′θ of H(A) = U(2,A)×U(1,A). Its real component is ⊗σρ̃σ, where
ρ̃σ is ρ+

σ = ρ(aσ, bσ)×ρ(cσ), ρσ = ρ(aσ, cσ)×ρ(bσ) or ρ−σ = ρ(bσ, cσ)×ρ(aσ),
and ρ(a) : z 7→ za.

The finite part ρ̃f defines a sign 〈ρ̃f , πf 〉 =
∏
v<∞〈ρ̃v, πv〉 ∈ {±1} on

πf . Put ε({ρσ}) = −1, ε({ρ±σ }) = 1 (σ ∈ S). Then

tr[Frj℘ |H∗c (πf )] =
1
2
q

j
2 dimSKf
℘ (tr r0µ[(t(πp)× Frp)jn℘ ] +B)

where B is the product of 〈ρ̃f , πf 〉,
∏
σ∈S ε({ρ̃σ}), and

tr r0µ[us(t(πp)× Frp)jn℘ ] =
∏
u|p

tr r0u[usu(t(πu)× Frp)jn℘ ]
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=
∏
u|p

(
tr[s

nu
ju t

jn℘
ju
u ]

)ju
.

Here usu = (s, . . . , s) ∈ Z(Ĥ ′) = Z(Ĥ)nu and s = diag(−1, 1,−1).
(3) Suppose that π basechange lifts to a representation normalizedly in-

duced from a character of the Borel subgroup. Namely π is the endo-
scopic lift of precisely the three cuspidal representations ρ1 = ρ(θ, ′θ) × ′′θ,
ρ2 = ρ(θ, ′′θ)×′θ, ρ3 = ρ(′θ, ′′θ)×θ of H(A) = U(2,A)×U(1,A). Its real com-
ponent is ⊗σρ̃σ, where ρ̃σ is ρ+

σ = ρ(aσ, bσ)× ρ(cσ), ρσ = ρ(aσ, cσ)× ρ(bσ)
or ρ−σ = ρ(bσ, cσ)× ρ(aσ), and ρ(a) : z 7→ za.

The finite parts ρi,f define signs 〈ρi,f , πf 〉 =
∏
v<∞〈ρi,v, πv〉 ∈ {±1} on

πf . Put ε({ρσ}) = −1, ε({ρ±σ }) = 1 (σ ∈ S). Then

tr[Frj℘ |H∗c (πf )] =
1
4
q

j
2 dimSKf
℘ (tr r0µ[(t(πp)× Frp)jn℘ ] +B1 +B2 +B3)

where Bi is the product of 〈ρi,f , πf 〉,
∏
σ∈S ε({ρi,σ}) and

tr r0µ[us(e(t(ρi,p))× Frp)jn℘ ] =
∏
u|p

tr r0u[usu(e(t(ρi,u))× Frp)jn℘ ]

=
∏
u|p

[
(−1)

nu
ju µ

jn℘
ju

1(i),u + µ
jn℘
ju

2(i),u + (−1)
nu
ju µ

jn℘
ju

3(i),u

]ju
.

In cases (1), (2), (3), the Hecke eigenvalues µ1u, µ2u, µ3u are algebraic.
Each of their conjugates has complex absolute value one. Moreover, πf
contributes to the L2-cohomology only in degree [F : Q]. In case (1) we
have dimQ`

H∗c (πf ) = 3[F :Q]. In cases (2) and (3) the dimension is smaller
and computable.

(4) Suppose that π basechange lifts to a representation normalizedly in-
duced from a one-dimensional representation of the maximal parabolic sub-
group. Then π is the endoscopic lift of a character µ of H(A). The compo-
nents πv (v <∞) are nontempered π×v , or cuspidal π−v , we put 〈µv, πv〉 = 1
or −1 respectively, and 〈µ, π〉 =

∏
v<∞〈µv, πv〉. Then tr[Frj℘ |H∗c (πf )] is

the product of
(−1)[F :Q]

2
q

j
2 dimSKf
℘

and

ε(µ′, κ) tr r0µ[(t(πp)× Frp)jn℘ ] + 〈µf , πf 〉 tr r0µ[us(t(πp)× Frp)jn℘ ]
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= ε(µ′, κ)
∏
u|p

[
(µuq1/2u )

jn℘
ju + ρ

jn℘
ju
u + (µuq−1/2

u )
jn℘
ju

]ju

+ 〈µf , πf 〉
∏
u|p

[
(−1)

nu
ju (µuq1/2u )

jn℘
ju + ρ

jn℘
ju
u + (−1)

nu
ju (µuq−1/2

u )
jn℘
ju

]ju

for a suitable sign ε(µ′, κ). The numbers µu and ρu are algebraic and
all their conjugates lie on the unit circle in C, but the Hecke eigenvalues
µuq

±1/2
u are not units.

(5) Let π be a one-dimensional representation. Then tr[Frj℘ |H∗c (πf )] is

q
j
2 dimSKf
℘ times

tr r0µ[(t(πp)× Frp)jn℘ ] =
∏
u|p

tr r0u[(t(πu)× Frp)jn℘ ]

=
∏
u|p

[
(ξuqu)

jn℘
ju + (ξu)

jn℘
ju + (ξuq−1

u )
jn℘
ju

]ju
.

In stating Theorem 2 we implicitly made a choice of a square root of p.
For unitary groups defined using division algebras endoscopy does not

show and Kottwitz [Ko6] used the trace formula in this anisotropic case
to associate Galois representations H∗(π) to some automorphic π and ob-
tain some of their properties. However, in this case the classification of
automorphic representations and their packets is not yet known.

2. The Zeta function

The Zeta function Z of the Shimura variety is a product over the rational
primes p of local factors Zp each of which is a product of local factors Z℘
over the primes ℘ of the reflex field E which divide p. Write q = q℘ for the
cardinality of the residue field F = R℘/℘R℘ (R℘ denotes the ring of integers
of E℘). We work only with “good” p, thus Kf = KpK

p
f , Kp = G′(Zp), SKf

is defined over R℘ and has good reduction mod ℘.
A general form of the Zeta function is for a correspondence, namely

for a Kf -biinvariant Q`-valued function fp on G(Apf ), (A is AF and we
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fix a field isomorphism Q`
∼→C), and with coefficients in the smooth Q`-

sheaf Va,b,c;` constructed from an absolutely irreducible algebraic finite-
dimensional representation Va,b,c = ⊗σ∈SVaσ,bσ,cσ

of G′ over a number
field L, each Vaσ,bσ,cσ with highest weight (aσ, bσ, cσ), aσ ≥ bσ ≥ cσ.

The standard form of the Zeta function is stated for fp = 1G(Ap
f
), and

for the trivial coefficient system ((aσ, bσ, cσ) = (0, 0, 0) for all σ). In this
case the coefficients of the Zeta function store the number of points of the
Shimura variety over finite residue fields. In this case the correspondence
and the coefficients are usually omitted from the notations. Thus the Zeta
function Zp, or rather its natural logarithm lnZp, is the sum over ℘|p of

lnZ℘(s,SKf
, fp,Va,b,c;`)c

=
∞∑
j=1

1
jqjs℘

2 dimSKf∑
i=0

(−1)i tr[Frj℘ ◦fp;Hi
c(SKf

⊗E Q,Va,b,c;`)].

The subscript c on the left emphasizes that we work with Hc rather than
H or IH; we drop it from now on. One can add a superscript i on the left
to isolate the contribution from Hi

c.
Our results decompose the alternating sum of the traces on the cohomol-

ogy for a correspondence fp. Then we obtain an expression for lnZp which
is the sum of 4 terms (we combine the two stable terms, of cuspidal and
one-dimensional representations), depending on the type of representation.

Recall that rµ is the representation of LG′Qp
= Ĝ′oWQp

induced from the

representation r0µ the subgroup LG′E℘
= Ĝ′ oWE℘

of index n℘ = [E℘ : Qp].
The class t(πp) = tp × Frp is such that tr rµ[(tp × Frp)j ] is zero unless j is
a multiple of n℘, and tr rµ[(tp × Frp)jn℘ ] = n℘ tr r0µ[(tp × Frp)jn℘ ].

Theorem 3. The logarithm of the function Zp(s,SKf
, fp,Va,b,c;`) is the

sum of the following terms. All components at infinity πσ (σ ∈ S) of all π
below have infinitesimal character (aσ, bσ, cσ) + (1, 0,−1).

The first term is the sum over all irreducibles π in the stable packets
{π} (those which basechange lift to discrete-spectrum representations) of
the product of tr{πpf}(fp) and the value at s′ = s− 1

2 dimSKf
of

lnLp(s′, r, π) =
∑
j≥1

1
jpjs′

tr[rµ(t(πp)j)] =
∑
j≥1

1

jqjs
′

℘

tr[r0µ(t(πp)
jn℘)].
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The second term is the sum over the irreducibles π in the unstable packets
{π} which basechange lift to representations induced from cuspidal repre-
sentations of the maximal compact subgroup, of

1
2

tr{πpf}(f
p)

[
lnLp(s′, r, π) + 〈ρ̃f , πf 〉

∏
σ∈S

ε({ρ̃σ}) · lnLp(s′, r ◦ us, π)

]
.

Here
lnLp(s′, r ◦ us, π) =

∑
j≥1

1

jqjs
′

℘

tr r0µ[us(t(πp))jn℘ ]

=
∑
j≥1

1

jqjs
′

℘

∏
u|p

tr r0u[usu(t(πu))jn℘ ] =
∑
j≥1

1

jqjs
′

℘

∏
u|p

(tr[s
nu
ju t

jn℘
ju
u ])ju .

The third term is the sum over the irreducibles π in the unstable packets
{π} which basechange lift to representations induced from the Borel sub-
group, namely is a lift of the ρi specified in Theorem 2(3), of 1

4 tr{πpf}(fp)
times

lnLp(s′, r, π) +
∑

{1≤i≤3}

〈ρi,f , πf 〉
∏
σ∈S

ε({ρi,σ}) · lnL(s′, r ◦ us, ρi).

Here
lnLp(s′, r ◦ us, ρi) =

∑
j≥1

1

jqjs
′

℘

tr r0µ[us(e(t(ρi,p)))jn℘ ]

=
∑
j≥1

1

jqjs
′

℘

∏
u|p

tr r0u[usu(e(t(ρi,u)))jn℘ ].

The fourth term is the sum over the irreducibles π in the unstable packets
{π} which basechange lift to representations induced from one-dimensional
representations µ of the maximal compact subgroup, of

(−1)[F :Q]

2
tr{πpf}(f

p)
[
ε(µ′, κ) lnLp(s′, r, π) + 〈µ̃f , πf 〉 lnLp(s′, r ◦ us, π)

]
.

In the case of Shimura varieties associated with subgroups of GL(2), a
similar statement is obtained in Langlands [L2]. In general, our result is
predicted by Langlands [L1-3] and more precisely by Kottwitz [Ko5].



I. PRELIMINARIES

I.1 The Shimura variety

Let G be a connected reductive group over the field Q of rational numbers.
Suppose that there exists a homomorphism h : RC/RGm → G of alge-
braic groups over the field R of real numbers which satisfies the conditions
(2.1.1.1-3) of Deligne [D3]. The G(R)-conjugacy class X∞ = Int(G(R))(h)
of h is isomorphic to G(R)/K∞, where K∞ is the fixer of h in G(R). Then
X∞ carries a natural structure of an Hermitian symmetric domain. Let Kf

be an open compact subgroup of G(AQf ), where AQf is the ring of adèles
of Q without the real component, sufficiently small so that the set

SKf
(C) = G(Q)\[X∞ × (G(AQf )/Kf )] = G(Q)\G(AQ)/K∞Kf

has a structure of a smooth complex variety (manifold).
The group RC/RGm obtained from the multiplicative group Gm on re-

stricting scalars from the field C of complex numbers to R is defined over R.
Its group (RC/RGm)(R) of real points can be realized as {(z, z); z ∈ C×} in
(RC/RGm)(C) = C× × C×. The G(C)-conjugacy class Int(G(C))µh of the
C-homomorphism µh : Gm → G, z 7→ h(z, 1), is acted upon by the Galois
group Gal(C/Q).

In fact, let Ck denote the set of conjugacy classes of homomorphisms
µ : Gm → G over a field k. The embedding Q→ C induces an Aut(C/Q)-
equivariant map CQ → CC. This map is bijective. Indeed, choose a maximal
torus T of G defined over Q. Then HomQ(Gm, T )/W → CQ is a bijection,
where W is the Weyl group of T in G(Q). Similarly, HomC(Gm, T )/W →
CC is a bijection. Since HomQ(Gm, T ) → HomC(Gm, T ) is an Aut(C/Q)-
equivariant bijection, so is CQ → CC. The conjugacy class of µh over C is
then a point in HomQ(Gm, T )/W . The subgroup of Gal(Q/Q) which fixes
it has the form Gal(Q/E), where E is a number field, named the reflex field.
It is contained in any field E1 over which G splits, since T can be chosen
to split over E1.

There is a smooth variety over E determined by the structure of its
special points (see [D3]), named the canonical model SKf

of the Shimura

412
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variety associated with (G,X∞,Kf ), whose set of complex points is SKf
(C)

displayed above.
Let L be a number field, and let ξ be an absolutely irreducible finite

dimensional representation of G on an L-vector space Vξ. Denote by p

the natural projection G(AQ)/K∞Kf → SKf
(C). The sheaf V : U 7→

Vξ(L) ×
ξ,G(Q)

p−1U of L-vector spaces over SKf
(C) is locally free of rank

dimL Vξ. For any finite place λ of L the local system V ⊗L Lλ : U →
Vξ(Lλ) ×

ξ,G(Q)
p−1U defines a smooth Lλ-sheaf Vλ on SKf

over E.

The Satake Baily-Borel compactification S ′Kf
of SKf

has a canonical
model over E as does SKf

. The Hecke convolution algebra HKf ,L of com-
pactly supportedKf -biinvariant L-valued functions on G(AQf ) is generated
by the characteristic functions of the double cosets Kf ·g ·Kf in G(AQf ). It
acts on the cohomology spaces Hi(SKf

(C),V), the cohomology with com-
pact supports Hi

c(SKf
(C),V), and on the intersection cohomology L-spaces

IHi(S ′Kf
(C),V). These modules are related by maps: Hi

c → IHi → Hi.
The action is compatible with the isomorphism Hi

c(SKf
(C),V) ⊗L Lλ '

Hi
c(SKf

⊗E Q,Vλ), (same for Hi and for IHi(S ′)), but the last étale co-
homology spaces have in addition an action of the absolute Galois group
Gal(Q/E), which commutes with the action of the Hecke algebra (X ⊗E Q
abbreviates X ×Spec E Spec Q).

I.2 Decomposition of cohomology

Of interest is the decomposition of the finite-dimensional Lλ-vector spaces
IHi, Hi and Hi

c as HKf ,Lλ
×Gal(Q/E)-modules. They vanish unless 0 ≤

i ≤ 2 dimSKf
. Thus

Hi
c(SKf

⊗E Q,Vλ) = ⊕ π
Kf

f,Lλ
⊗Hi

c(π
Kf

f,Lλ
).(1;Hc)

The (finite) sum ranges over inequivalent irreducible HKf ,Lλ
-modules πKf

f,Lλ
,

and Hi
c(π

Kf

f,Lλ
) are finite-dimensional representations of Gal(Q/E) over Lλ.

Similar decomposition holds for (Hi and) IHi(S ′); we denote it by (1;IH).
In the case of IH, the Zucker conjecture [Zu], proved by Looijenga and

Saper-Stern, asserts that the intersection cohomology of S ′Kf
is isomorphic
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to the L2-cohomology of SKf
with coefficients in the sheaf VC : U 7→

Vξ(C) ×
ξ,G(Q)

p−1(U) of C-vector spaces: for a fixed embedding of Lλ in C,

we have an isomorphism of HKf ,Lλ
⊗Lλ

C = HKf
-modules

IHi(S ′Kf
⊗E Q,Vλ)⊗Lλ

C ∼→ Hi
(2)(SKf

(C),VC).

The L2-cohomologyHi
(2)(SKf

(C),VC), has a (“Matsushima-Murakami”)
decomposition (see Borel-Casselman [BC]) in terms of discrete-spectrum
automorphic representations. Thus

Hi
(2)(SKf

(C),VC) = ⊕
π
m(π)πKf

f ⊗Hi(g,K∞;π∞ ⊗ Vξ(C)).

Here π ranges over the equivalence classes of the (irreducible) automorphic
representations of G(AQ) in the discrete spectrum

L2
d = L2

d(G(Q)\G(AQ),C).

The integer m(π) denotes the multiplicity of π in L2
d.

Write π = πf ⊗ π∞ as a product of irreducible representations πf of
G(AQf ) and π∞ of G(R), according to AQ = AQfR, and πKf

f for the space

of Kf -fixed vectors in πf . Then πKf

f is a finite-dimensional complex space
on which HKf

= HKf ,L ⊗L C acts irreducibly. The representation π∞ is
viewed as a (g,K∞)-module, where g denotes the Lie algebra of G(R), and

Hi(g,K∞;π∞ ⊗ ξC) = Hi(g,K∞;π∞ ⊗ Vξ(C)), ξC = ξ ⊗L C,

denotes the Lie-algebra cohomology of π∞ twisted by the finite-dimensional
representation ξC of G(R). Then the finite-dimensional complex space
Hi(g,K∞;π∞ ⊗ ξC) vanishes unless the central character ωπ∞ and the in-
finitesimal character inf(π∞) are equal to those ωξ̌C

, inf(ξ̌C) of the contra-
gredient ξ̌C of ξC; see Borel-Wallach [BW].

There are only finitely many equivalence classes of π in L2
d with central

and infinitesimal character equal to given ones, and a nonzero Kf -fixed vec-
tor (πKf

f 6= 0). The multiplicities m(π) are finite. Hence Hi
(2)(SKf

(C),VC)
is finite dimensional. The Zucker isomorphism then implies that the de-
composition (1;IH) ranges over the finite set of equivalence classes of ir-
reducible π in L2

d with π
Kf

f 6= 0 and π∞ with central and infinitesimal
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characters equal to those of ξ̌C. Further, πKf

f,Lλ
of (1;IH) is an irreducible

HKf ,Lλ
-module with π

Kf

f,Lλ
⊗Lλ

C = π
Kf

f for such a π = πf ⊗ π∞ in the
discrete spectrum, and

dimC IH
i(πKf

f ) =
∑
π∞

m(πf ⊗ π∞) dimC H
i(g,K∞;π∞ ⊗ ξ̌C).

Each π = πf ⊗ π∞ in the discrete spectrum such that the central and
infinitesimal characters of π∞ coincide with those of ξ̌C (where ξ is an
absolutely irreducible representation of G on a finite-dimensional vector
space over L) has the property that for some open compact subgroup Kf ⊂
G(AQf ) for which πKf

f 6= {0}, there is an L-model πKf

f,L of πKf

f .
It is also known that the cuspidal cohomology in Hi

c, that is, its part
which is indexed by the cuspidal π, makes an orthogonal direct summand
in Hi

c ⊗Lλ
C, and also in IHi ⊗Lλ

C (and Hi ⊗Lλ
C). When we study the

πf -isotypic component of Hi
c⊗Lλ

C for the finite component πf of a cuspidal
representation π, we shall then be able to view it as such a component of
IHi.

Our aim is then to recall the classification of automorphic representations
of U(3, E/F ) given in [F3;VI], in particular list the possible π = πf ⊗ π∞
in the cuspidal and discrete spectrum. This means listing the possible πf ,
then the π∞ which make πf⊗π∞ occur in the cuspidal or discrete spectrum.
Further we list the cohomological π∞, those for which Hi(g,K;π∞ ⊗ ξC)
is nonzero, and describe these spaces. In particular we can then com-
pute the dimension of the contribution of πf to IH∗. Then we describe
the trace of Fr℘ acting on the Galois representation H∗c (πf ) attached to
πf in terms of the Satake parameters of πp, in fact any sufficiently large
power of Fr℘. This determines uniquely the Galois representation H∗c (πf ),
of Gal(Q/E), and in particular its dimension. The displayed formula of
“Matsushima-Murakami” type will be used to estimate the absolute values
of the eigenvalues of the action of the Frobenius on H∗c (πf ).

I.3 Galois representations

The decomposition (1;IH) then defines a map πf 7→ IHi(πf ) from the
set of irreducible representations πf of G(AQf ) for which there exists an
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irreducible representation π∞ of G(AQ) with central and infinitesimal char-
acters equal to those of ξ̌C such that π∞⊗πf is in the discrete spectrum, to
the set of finite-dimensional representations of Gal(Q/E). We wish to deter-
mine the representation IHi(πf ) associated with πf , namely its restriction
to the decomposition groups at almost all primes. As we use Deligne’s
conjecture, we shall determine H∗c (πf ) instead.

Let p be a rational prime. Assume that G is unramified at p, thus it is
quasi-split over Qp and splits over an unramified extension of Qp. Assume
that Kf is unramified at p, thus it is of the form Kp

fKp where Kp
f is a

compact open subgroup of G(ApQf ) and Kp = G(Zp). Then E is unramified
at p. Let ℘ be a place of E lying over p and λ a place of L such that p is a
unit in Lλ. Let f = fpfKp

be a function in the Hecke algebra HKf ,L, where
fp is a function on G(ApQf ) and fKp is the quotient of the characteristic
function of Kp in G(Qp) by the volume of Kp. Denote by Fr℘ a geometric
Frobenius element of the decomposition group Gal(Qp/E℘).

Choose models of SKf
and of S ′Kf

over the ring of integers of E. For
almost all primes p of Q, for each prime ℘ of E over p, the representa-
tion Hi

c(SKf
⊗E Q,Vλ) of Gal(Q/E) is unramified at ℘, thus its restriction

to Gal(Qp/E℘) factorizes through the quotient Gal(Qur
p /E℘) ' Gal(F/F)

which is (topologically) generated by Fr℘; here Qur
p is the maximal unram-

ified extension of Qp in the algebraic closure Qp, F is the residue field of
E℘ and F an algebraic closure of F. Denote the cardinality of F by q℘; it
is a power of p. As a Gal(F/F)-module Hi

c(SKf
⊗E Q,Vλ) is isomorphic to

Hi
c(SKf

⊗F F,Vλ).
Deligne’s conjecture proven by Zink [Zi] for surfaces, by Pink [P2] and

Shpiz [Sc] for varieties X (such as SKf
) which have a smooth compacti-

fication X which differs from X by a divisor with normal crossings, and
unconditionally by Fujiwara [Fu], implies that for each correspondence fp

there exists an integer j0 ≥ 0 such that for any j ≥ j0 the trace of fp · Frj℘
on

2 dimSKf

⊕
i=0

(−1)i Hi
c(SKf

⊗F F,Vλ)

has contributions only from the variety SKf
and not from any boundary

component of S ′Kf
. The trace is the same in this case as if the scheme

SKf
⊗F F were proper over F, and it is given by the usual expression of the

Lefschetz fixed point formula. This is the reason why we work with Hi
c in

this paper, and not with IHi(S ′).



II. AUTOMORPHIC REPRESENTATIONS

II.1 Stabilization and the test function

Kottwitz computed the trace of fp ·Frj℘ on this alternating sum (see [Ko7],
and [Ko5], chapter III, for ξ = 1) at least in the case considered here. The
result, stated in [Ko5], (3.1) as a conjecture, is a certain sum∑

γ0

∑
(γ,δ)

c(γ0; γ, δ) ·O(γ, fp) · TO(δ, φj) · tr ξ(γ0),

rewritten in [Ko5], (4.2) in the form

τ(G)
∑
γ0

∑
κ

∑
(γ,δ)

〈α(γ0; γ, δ), κ〉 · e(γ, δ)

· O(γ, fpC) · TO(δ, φj) ·
tr ξC(γ0)

|I(∞)(R)/AG(R)0|
,

where O and TO are orbital and twisted orbital integrals and φj is a spher-
ical (Kp = G(Zp)-biinvariant) function on G(Qp). Theorem 7.2 of [Ko5]
expresses this as a sum ∑

ι(G,H) STFreg
e (f j,s,ξH,℘ )

over a set of representatives for the isomorphism classes of the elliptic en-
doscopic triples (H, s, η0 : Ĥ → Ĝ) for G. The STFreg

e (f j,s,ξH,℘ ) indicates
the (G,H)-regular Q-elliptic part of the stable trace formula for a func-
tion f j,s,ξH,℘ on H(AQ). The function f j,s,ξH,℘ , denoted simply by h in [Ko5],
is constructed in [Ko5], section 7 assuming the “fundamental lemma” and
“matching orbital integrals”, both known in the case considered here by
[F3;VIII].

Thus f j,s,ξH,℘ is the product of the functions: fpH on H(ApQf ) which is ob-

tained from fpC by matching of orbital integrals, f j,sH,℘ on H(Qp) which is

417
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a spherical function obtained by the fundamental lemma from the spher-
ical function φj , and fs,ξH,∞ on H(R) which is constructed from pseudo-
coefficients of discrete-series representations of H(R) which lift to discrete-
series representations of G(R) whose central and infinitesimal characters
coincide with those of ξ̌C. We denote by f j,s,ξH,℘ = fpHf

j,s
H,℘f

s,ξ
H∞ Kottwitz’s

function h = hphph∞, so that functions on the adèle groups are denoted
by f , and the notation does not conflict with that of h : RC/RGm → G.

Note also that the factor 〈αp(γ0; γ), s〉 is missing on the right side of
[Ko5], (7.1). Here

αp =
∏

v 6=p,∞

αv, where αv(γ0; γv) ∈ X∗(Z(Î0)Γ(v)/Z(Î0)Γ(v),0Z(ĜΓ(v)))

is defined in [Ko5], p. 166, bottom paragraph.
We need to compare the elliptic regular part STFreg

e (f j,s,ξH,℘ ) of the stable
trace formula with the spectral side. To simplify matters we shall work
only with a special class of test functions fp = ⊗v 6=p,∞fv for which the
complicated parts of the trace formulae vanish. Thus we choose a place
v0 where G is quasi-split, and a maximal split torus A of G over Qv0 , and
require that the component fv0 of fp be in the span of the functions on
G(Qv0) which are biinvariant under an Iwahori subgroup Iv0 and supported
on a double coset Iv0aIv0 , where a ∈ A(Qv0) has |α(a)| 6= 1 for all roots
α of A. The orbital integrals of such a function fv0 vanish on the singular
set, and the matching functions fHv0 on H(Qv0) have the same property.
This would permit us to deal only with regular conjugacy classes in the
elliptic part of the stable trace formulae STFreg

e (f j,s,ξH,℘ ), and would restrict
no applicability.

We need a description of the automorphic representations of G(AF ). It
is given next.

II.2 Functorial overview
of basechange for U(3)

Let E/F be a quadratic extension of local or global fields. Let G denote
the quasi-split unitary group U(3, E/F ) in three variables over F which
splits over E. It is an outer form of GL(3). In [F3;VI] we determine the
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admissible and automorphic representations of this group by means of the
trace formula and the theory of liftings. We now state the results of [F3;VI].

To be definite, we define the algebraic group G by means of the form

J =
(

0 1

−1

1 0

)
, as a (representable) functor. For any F -algebra A put

AE = A ⊗F E and G(A) = {g ∈ GL(3, AE); tgJg = J}. Here tg is the
transpose (gji) of g = (gij) and x 7→ x denotes the nontrivial automorphism
of AE over A.

Put σ(g) = θ(g). Thus the group G = G(F ) of F -points on G is

{g ∈ G(E); tgJg = J} = {g ∈ GL(3, E); σ(g) = g}.

Similarly we write U(n,E/F ) for the group U(n,E/F )(F ) of F -points on
U(n,E/F ).

When F is the field R of real numbers, the group G(R) of R-points on G
is usually denoted by U(2, 1; C/R), and the notation U(3; C/R) is reserved
for its anisotropic inner form. We too shall use the R-notations in the
R-case (but only in this case).

If v is a place of the global field F which splits in E, thus Ev = Fv⊗FE =
Fv ⊕ Fv is not a field, G(Fv) = GL(3, Fv).

The work of [F3;VI] is based on basechange lifting to U(3, E/F )(E) =
GL(3, E). This last group is defined as an algebraic group over F by ap-
plying the functor of restriction of scalars G′ = RE/FG to the algebraic
group G. Then for each F -algebra A,

G′(A) = {(g, g′) ∈ GL(3, AE)×GL(3, AE); (g, g′) = (θ(g′), θ(g))}.

Thus G′(F ) = GL(3, F ) × GL(3, F ), and τ ∈ Gal(F/F ) acts as τ(x, y) =
(τx, τy) if τ |E = 1, and τ(x, y) = ιθ(τx, τy) if τ |E 6= 1. Here θ(x, y) =
(θ(x), θ(y)) and ι(x, y) = (y, x). In particular G′(E) = GL(3, E)×GL(3, E)
while G′ = G′(F ) = {(x, σx);x ∈ GL(3, E)}.

A main aim of [F3;VI] is to determine the admissible representations Π
of GL(3, E) and the automorphic representations Π of GL(3,AE) which are
σ-invariant: σΠ ' Π, where σπ(g) = π(σ(g)), and again σ(g) = θ(g) and
θ(g) = J tg−1J . In other words, we are interested in the representations
Π′(x, σx) = Π(x) of G′(F ) or G′(A) — admissible or automorphic — which
are ι-invariant: ιΠ′ ' Π′, where ιΠ′(x, σx) = Π′(σx, x).

The lifting, part of Langlands’ principle of functoriality, is defined by
means of an L-group homomorphism b : LG → LG′. One is interested in
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this and related L-group homomorphisms not in the abstract but since via
the Satake transform they specify an explicit lifting relation of unramified
representations, crucial for stating the global lifting, from which the local
lifting is deduced. To state the results of [F3;VI] it suffices to specify
the lifting of unramified representations. For this reason we reduce the
discussion of functoriality here to a minimum. Thus the L-group LG (see
[Bo2]) is the semidirect product of the connected component, Ĝ = GL(3,C),
with a group which we take here to be the relative Weil group WE/F .
We could have equally worked with the absolute Weil group WF and its
subgroup WE . Note that WF /WE ' WE/F /WE/E ' Gal(E/F ), WE/F =
WF /W

c
E , and WE/E = WE/W

c
E = W ab

E is the abelianized WE . Here W c
E

is the closure of the commutator subgroup of WE (see [D1], [Tt]). Now the
relative Weil group is an extension of Gal(E/F ) by WE/E = CE , = E×

(locally) or A×E/E× (globally). Thus

WE/F = 〈z ∈ CE , σ;σ2 ∈ CF −NE/FCE , σz = zσ〉

and we have an exact sequence

1→WE/E = CE →WE/F → Gal(E/F )→ 1.

Here WE/F acts on Ĝ via its quotient Gal(E/F ) = 〈σ〉, σ : g 7→ θ(g) =
J tg−1J . Further, LG′ is Ĝ′ o WE/F , Ĝ′ = GL(3,C) × GL(3,C), where
WE/F acts via its quotient Gal(E/F ) by σ = ιθ, θ(x, y) = (θ(x), θ(y)),
ι(x, y) = (y, x).

The basechange map b : LG→ LG′ is x×w 7→ (x, x)×w. In fact G is an
ι-twisted endoscopic group of G′ (see Kottwitz-Shelstad [KS]) with respect
to the twisting ι. Namely Ĝ is the centralizer Z

Ĝ′
(ι) = {g ∈ Ĝ′; ι(g) = g}

of the involution ι in Ĝ′. Note that G is an elliptic ι-endoscopic group,
which means that Ĝ is not contained in any parabolic subgroup of Ĝ′.

The F -group G′ has another elliptic ι-endoscopic group H, whose dual
group LH has connected component Ĥ = Z

Ĝ′
((s, 1)ι), where

s = diag(−1, 1,−1). Then Ĥ consists of the (x, y) with

(x, y) = (s, 1)ι · (x, y) · [(s, 1)ι]−1 = (s, 1)(y, x)(s, 1) = (sys, x),

thus y = x and x = sys = sxs. In other words Ĥ is GL(2,C) × GL(1,C),
embedded in Ĝ = GL(3,C) as (aij), aij = 0 if i + j is odd, a22 is the
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GL(1,C)-factor, while [a11, a13; a31, a33] is the GL(2,C)-factor. Now LH

is isomorphic to a subgroup LH1 of LG′, and the factor WE/F , acting on Ĝ′

by σ = ιθ, induces on Ĥ1 the action σ(x, x) = (θx, θx), namely WE/F acts
on Ĥ1 via its quotient Gal(E/F ) and σ(x) is θ(x). If we write x = (a, b) with

a in GL(2,C) and b in GL(1,C), σ(a, b) is (wta−1w, b−1), where w =
(

0 1

1 0

)
.

We prefer to work with H = U(2, E/F )×U(1, E/F ), whose dual group
LH is the semidirect product of Ĥ = GL(2,C) × GL(1,C) (⊂ Ĝ) and
WE/F which acts via its quotient Gal(E/F ) by σ : x 7→ εθ(x)ε, ε =
diag(1,−1,−1). We denote by e′ : LH → LG′ the map Ĥ ↪→ Ĝ′ by
x 7→ (x, x), and σ 7→ (θ(ε), ε)σ, z 7→ z (∈ WE/F ). Here U(1, E/F )
is the unitary group in a single variable: its group of F -points is E1 =
{x ∈ E×;xx = 1} = {z/z; z ∈ E×}. The quasi-split unitary group
U(2, E/F ) in two variables has F -points consisting of the a in GL(2, E)
with a = εwta−1wε.

The homomorphism e′ : LH → LG′ factorizes through the embedding
i : LH ′ → LG′, where H′ is the endoscopic group (not elliptic and not
ι-endoscopic) of G′ with Ĥ ′ = Z

Ĝ′
((s, s)). Thus Ĥ ′ = Ĥ × Ĥ ⊂ Ĝ′,

Gal(E/F ) permutes the two factors, and

H′ = RE/FU(2, E/F )× RE/FU(1, E/F ),

so that H ′ = H′(F ) = GL(2, E) × GL(1, E). The map b′′ : LH → LH ′

is the basechange homomorphism, b′′ : x 7→ (x, x) for x ∈ Ĥ, z 7→ z,
σ 7→ (θ(ε), ε)σ on WE/F . Thus e′ = i ◦ b′′.

The lifting of representations implied by b is the basechange lifting, de-
scribed below. On the U(1, E/F ) factor it is µ 7→ µ′, where µ′(x) = µ(x/x),
x ∈ E×, is a character of GL(1, E) which is σ-invariant. Thus µ′ = σµ′

where σµ′(x) = µ′(x−1).
The lifting implied by the embedding i : LH ′ → LG′ is simply normalized

induction, taking a representation (ρ′, µ′) of GL(2, E) × GL(1, E) to the
normalizedly induced representation I(ρ′, µ′) from the parabolic subgroup
of type (2, 1). In particular, if ρ′ is irreducible with central character ωρ′ and
Π = I(ρ′, µ′) has central character ω′, then ω′ = ωρ′ ·µ′, and so µ′ = ω′/ωρ′

is uniquely determined by ω′ and ωρ′ . The relation µ′ = ω′/ωρ′ implies
that µ′ is 1 on F×, as this is true for ω′, ωρ′ . Since we fix the central
character ω′ (= σω′), we shall talk about the lifting i : ρ′ → Π, meaning
that Π = I(ρ′, ω′/ωρ′).
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Similarly if e′ maps a representation (ρ, µ) ofH = U(2, E/F )×U(1, E/F )
to Π = I(ρ′, µ′) where (ρ′, µ′) = b((ρ, µ)), then ωΠ(x) = ωρ(x/x)µ(x/x),
and so µ is uniquely determined by the central character ω′ = ωΠ of Π
and ωρ of ρ. Hence we talk about the lifting e′ : ρ 7→ Π, meaning that
Π = I(b(ρ), ω′/ω′ρ), where ω′ρ(x) = ωρ(x/x) and b(ρ) is the basechange of
ρ.

The (elliptic ι-endoscopic) F -group G (of G′) has a single proper elliptic
endoscopic group H. Here Ĥ = Z

Ĝ
(s) and WE/F acts via its quotient

Gal(E/F ) by σ(x) = εθ(x)ε−1, x ∈ Ĥ. Thus to define LH → LG to
extend Ĥ ↪→ Ĝ and σ 7→ ε × σ to include the factor WE/F , we need to
map z ∈ CE = WE/E = ker(WE/F → Gal(E/F )) = E× or A×E/E×, to
diag(κ(z), 1, κ(z)) × z, where κ : CE/NE/FCE → C× is a homomorphism
whose restriction to CF is nontrivial (namely of order two). Indeed, σ2 ∈
CF−NE/FCE , and σ2 7→ εθ(ε)×σ2, where εθ(ε) = diag(−1, 1,−1) = s. We
denote this homomorphism by e : LH → LG and name it the “endoscopic
map”. The group H is U(2, E/F ) ×U(1, E/F ). If a representation ρ × µ
of H = H(F ) or H(A) e-lifts to a representation π of G = G(F ) or G(A),
then ωπ = κωρµ, where the central characters ωπ, ωρ, µ are all characters of
E1 (or A1

E/E
1 globally). Note that κ(z/z) = κ2(z). We fix ω = ωπ, hence

µ = ωπ/ωρκ is determined by κ and by the central character ωρ of ρ, and so
it suffices to talk on the endoscopic lifting ρ 7→ π, meaning (ρ, ω/ωρκ) 7→ π.

The homomorphism e factorizes via i : LH ′ → LG′ and the unstable
basechange map b′ : LH → LH ′, x 7→ (x, x) for x ∈ Ĥ, σ 7→ (εθ(ε), 1)σ,
z 7→ (κ(z)1, κ(z)1)z for z ∈ CE . Here κ(z)1 indicates diag(κ(z), 1, κ(z)).
The basechange map on the factor U(1, E/F ) is µ 7→ µ′, µ′(z) = µ(z/z),
and b : LU(1)→ LU(1)′ is x 7→ (x, x), b|WE/F is the identity.

Let us summarize our L-group homomorphisms in a diagram:

LG = GL(3,C) oWE/F
b→ LG′

e ↑ i ↑ ↖e′

LH = GL(2,C) oWE/F →
b′

LH ′ ←
b′′

LH = GL(2,C) oWE/F .

Here

LG′ = [GL(3,C)×GL(3,C)]oWE/F
LH ′ = [GL(2,C)×GL(2,C)]oWE/F .

Implicit is a choice of a character ω′ on CE and ω on C1
E related by

ω′(z) = ω(z/z).
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The definition of the endoscopic map e and the unstable basechange
map b′ depend on a choice of a character κ : CE/NE/FCE → C1 whose
restriction to CF is nontrivial.

An L-groups homomorphism λ : LG → LG′ defines — via the Satake
transform — a lifting of unramified representations. It leads to a definition
of a norm map N relating stable (σ-) conjugacy classes in G′ to stable con-
jugacy classes in G based on the map δ 7→ δσ(δ), G′ → G′. In the local
case it also leads to a suitable definition of matching of compactly supported
smooth (locally constant in the p-adic case) complex valued functions on G
and G′. Functions f on G and φ on G′ are matching if a suitable (deter-
mined by λ) linear combination of their (σ-) orbital integrals over a stable
conjugacy class, is related to the analogous object for the other group, via
the norm map. Symbolically: “Φκφ(δσ) = Φst

f (Nδ)”. The precise definition
is given in [F3;VI] (in brief, the stable orbital integrals of f match the σ-
twisted stable orbital integrals of φ, the orbital integrals of ′φ match the
σ-twisted unstable orbital integrals of φ, and the unstable orbital integrals
of f match the stable orbital integrals of fH). We state the names of the
related functions according to the diagram of the L-groups above:

f
b←− φ

e ↓ ↘e′

fH
′φ

In fact we fix characters ω′, ω on the centers Z ′ = E× of G′ = GL(3, E),
Z = E1 of G = U(3, E/F ), related by ω′(z) = ω(z/z), z ∈ Z ′ = E×,
and consider φ on G′ with φ(zg) = ω′(z)−1φ(g), z ∈ Z ′ = E×, smooth
and compactly supported modZ ′, f on G with f(zg) = ω(z)−1f(g), z ∈
Z = E1, smooth and compactly supported modZ, but according to our
conventions fH ∈ C∞c (H) and ′φ ∈ C∞c (H) are compactly supported, where
now H = U(2, E/F ).

The representation theoretic results of [F3;VI] can be schematically put
in a diagram:

π
b↔ Π I(ρ′ ⊗ κ)

e ↑ ↑ i
ρ

b′−→ ρ′ ⊗ κ

I(ρ′)
i ↑ ↖e′

ρ′ ←
b′′

ρ

Here we make use of our results ([F3;VI]) in the case of basechange from
U(2, E/F ) to GL(2, E), namely that b′′(ρ) = ρ′ iff b′(ρ) = ρ′⊗κ, in the bot-
tom row of the diagram. We describe these liftings in the next section, and
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in particular the structure of packets of representations on G = U(3, E/F ).
Both are defined in terms of character relations.

Nothing will be gained from working with the group of unitary simili-
tudes

GU(3, E/F ) = {(g,λλλ) ∈ GL(3, E)× E×; gJ tg = λλλJ},

as it is the product E× ·U(3, E/F ), where E× indicates the diagonal scalar
matrices, and E×∩U(3, E/F ) is E1, the group of x = z/z, z ∈ E×. Indeed,
the transpose of gJ tg = λλλJ is gJ tg = λλλJ , hence λλλ = λλλ(g) ∈ F×, and taking
determinants we get xx = λλλ3 where x = det g. Hence λλλ ∈ NE/FE× ⊂ F×,
say λλλ = (uu)−1, u ∈ E×, then ug ∈ U(3, E/F ).

Since an irreducible representation has a central character, working with
admissible or automorphic representations of U(3, E/F ) is the same as
working with such a representation of GU(3, E/F ): just extend the cen-
tral character from the center Z = Z(F ) = E1 (locally, or Z(A) = A1

globally) of G = G(F ) (or G(A)), to the center E× (or A×E) of the group
of similitudes. Consequently we shall talk on representations of U(3) as
representations of GU(3) and vice versa, using the fixed central charac-
ter. In our case the central character of the archimedean component π∞
of the discrete-spectrum representations π occurring in the cohomology is
determined by the sheaf of coefficients in the cohomology.

II.3 Local results on basechange for U(3)

We begin with the local results of [F3;VI]. Let E/F be a quadratic extension
of nonarchimedean local fields of characteristic 0, put G′ = GL(3, E), and
denote by G or U(3, E/F ) the group of F -points on the quasi-split unitary
group in three variables over F which splits over E. We realize G as the
group of g in G′ with σ(g) = g, where σ(g) = θ(g), θ(g) = J tg−1J , g = (gij)
and tg = (gji) if g = (gij), and

J =
(

0 1

−1

1 0

)
.

Similarly, we realize the group of F -points on the quasi-split unitary group
H, or U(2, E/F ), in two variables over E/F as the group of h in H ′ =
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GL(2, E) with σ(h) = εθ(h)ε, θ(h) = wth−1w, ε = diag(1,−1) and

w =
(

0 1

1 0

)
.

Let N denote the norm map from E to F , and E1 the unitary group
U(1, E/F ), consisting of x ∈ E× with Nx = 1.

Let φ, f , fH denote complex valued locally constant functions on G′,
G, H. The function fH is compactly supported. The functions φ, f trans-
form under the centers Z ′ ' E×, Z ' E1 of G′, G by characters ω′−1,
ω−1 which are matching (ω′(z) = ω(z/z), z ∈ E×), and are compactly
supported modulo the center. The spaces of such functions are denoted by
C∞c (G′, ω′−1), C∞c (G,ω−1), C∞c (H). Assume they are matching. Thus the
“stable” orbital integrals “Φst(Nδ, fdg)” of fdg match the twisted “stable”
orbital integrals “Φσ,st(δ, φdg′)” of φdg′, and the unstable orbital integrals
of fdg match the stable orbital integrals of fHdh. These notions are defined
in [F3;VI]; dg is a Haar measure on G, dg′ on G′, dh on H.

By a G-module π, or a representation π of G, we mean an admissible
representation of G. If such a π is irreducible it has a central character by
Schur’s lemma. We work only with π which has the central character ω, thus
π(zg) = ω(z)π(g) for all g ∈ G, z ∈ Z. By a representation we usually mean
an irreducible one. For fdg as above the operator π(fdg) has finite rank,
hence it has trace trπ(fdg) ∈ C. We denote by χπ the Harish-Chandra
character of π. It is a complex valued function on G which is conjugacy
invariant and locally constant on the regular set, with central character ω.
Moreover it is locally integrable with trπ(fdg) = ∫ χπ(g)f(g)dg (g in G)
for all measures dg on G and f in C∞c (G,ω−1).

Definition. A G′-module Π is called σ-invariant if σΠ ' Π, where
σΠ(g) = Π(σ(g)).

For such Π there is an intertwining operator A : Π→ σΠ, thus AΠ(g) =
Π(σg)A for all g ∈ G. Assume that Π is irreducible. Then Schur’s lemma
implies that A2 is a (complex) scalar. We normalize it to be 1. This
determines A up to a sign. Extend Π to G′ o 〈σ〉 by Π(σ) = A.

The twisted character g 7→ χσΠ(g) = χΠ(g×σ) of such Π is a function on
G′ which depends on the σ-conjugacy classes and is locally constant on the
σ-regular set. Further it is locally integrable and satisfies, for all measures
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φdg,

trΠ(φdg × σ) =
∫
χσΠ(g)φ(g)dg (g in G′).

Definition. A σ-invariant G′-module Π is called σ-stable if its twisted
character χσΠ depends only on the stable σ-conjugacy classes in G, namely
trΠ(φdg′ × σ) depends only on fdg. It is called σ-unstable if χσΠ(δ) =
−χσΠ(δ′) whenever δ, δ′ are σ-regular σ-stably conjugate elements which
are not σ-conjugate, equivalently, trΠ(φdg′ × σ) depends only on ′φdh.

An element of G′ is called σ-elliptic if its norm in G is elliptic, namely
lies in an anisotropic torus. It is called σ-regular if its norm is regular,
namely its centralizer is a torus.

A σ-invariant G′-module Π is called σ-elliptic if its σ-character χσΠ is not
identically zero on the σ-elliptic σ-regular set.

We first deal with the σ-unstable σ-invariant representations.

Unstable Representations. Every σ-invariant irreducible represen-
tation Π is σ-stable or σ-unstable. All σ-unstable σ-elliptic Π are of the
form I(ρ′), normalizedly induced from the maximal parabolic subgroup; on
the 2× 2 factor the H ′-module ρ′ is obtained by the stable basechange map
b′′ from an elliptic representation ρ of H. We have

tr I(ρ′;φdg′ × σ) = tr ρ(′φdh)

for all matching measures ′φdh and φdg′.

Our preliminary basechange result is

Local Basechange. Let Π be a σ-stable irreducible tempered repre-
sentation of G′. For every tempered G-module π there exist nonnegative
integers m′(π) = m′(π,Π) which are zero except for finitely many π, so
that for all matching φdg′, fdg we have

trΠ(φdg′ × σ) =
∑
π

m′(π) trπ(fdg). (∗)

This relation defines a partition of the set of (equivalence classes of ) tem-
pered irreducible G-modules into disjoint finite sets: for each π there is a
unique Π for which m′(π) 6= 0.
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Definition. (1) We call the finite set of π which appear in the sum
on the right of (∗) a packet. Denote it by {π}, or {π(Π)}. It consists of
tempered G-modules.
(2) Π is called the basechange lift of (each element π in) the packet {π(Π)}.

To refine the identity (∗) we prove that the multiplicities m′(π) are equal
to 1, and count the π which appear in the sum. The result depends on the
σ-stable Π. First we note that:

List of the σ-stable Π. The irreducible σ-stable Π are the σ-invariant
Π which are square-integrable, one-dimensional, or induced I(ρ′⊗κ) from a
maximal parabolic subgroup, where on the 2×2 factor the H ′-module ρ′⊗κ
is the tensor product of an H ′-module ρ′ obtained by the stable basechange
map b′′ in our diagram, and the fixed character κ of CE/NCE which is
nontrivial on CF .

In the local case CE = E× and N is the norm from E to F . Namely
ρ′⊗κ is obtained by the unstable map b′ in our diagram, from a packet {ρ}
of H-modules (defined in [F3;VI]). The main local results of [F3;VI] are as
follows:

Local Results. (1) If Π is square integrable then it is σ-stable and the
packet {π(Π)} consists of a single square-integrable G-module π. If Π is of
the form I(ρ′⊗κ), and ρ′ is the stable basechange lift of a square-integrable
H-packet {ρ}, then Π is σ-stable and the cardinality of {π(Π)} is twice that
of {ρ}.

Remark. In the last case we denote {π(Π)} also by {π(ρ)}, and say
that {ρ} endo-lifts to {π(ρ)} = {π(I(ρ⊗ κ))}.

Let {ρ} be a square-integrable H-packet. It consists of one or two ele-
ments.

Local Results. (2) If {ρ} consists of a single element then {π} con-
sists of two elements, π+ and π−, and we have the character relation

tr ρ(fHdh) = trπ+(fdg)− trπ−(fdg)

for all matching measures fHdh, fdg.
If {ρ} consists of two elements, then there are four members in {π(ρ)},

and three distinct square-integrable H-packets {ρi} (i = 1, 2, 3) with {π(ρi)}
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= {π(ρ)}. With this indexing, the four members of {πi} can be indexed so
that we have the relations

tr{ρi}(fHdh) = trπ1(fdg) + trπi+1(fdg)− trπi′(fdg)− trπi′′(fdg) (∗∗)

for all matching fdg, fHdh. Here i′, i′′ are so that {i+1, i′, i′′} = {2, 3, 4}.
A single element in the packet has a Whittaker model. It is π+ if [{ρ}] = 1,
and π1 if [{ρ}] = 2.

Remark. The proof that a packet contains no more than one generic
member is given only in the case of odd residual characteristic. It depends
on a twisted analogue of Rodier [F3;IX].

In the case of the Steinberg (or “special”) H-module s(µ), which is the
complement of the one-dimensional representation 1(µ) : g 7→ µ(det g) in
the suitable induced representation of H, we denote their stable basechange
lifts by s′(µ′) and 1′(µ′). Here µ is a character of C1

E = E1 (norm-one
subgroup in E×), and µ′(a) = µ(a/a) is a character of CE = E×.

Local Results. (3) The packet {π(s(µ))} consists of a cuspidal π− =
π−µ , and the square-integrable subrepresentation π+ = π+

µ of the induced
G-module I = I(µ′κν1/2). Here I is reducible of length two, and its non-
tempered quotient is denoted by π× = π×µ . The character relations are

tr(s(µ))(fHdh) = trπ+(fdg)− trπ−(fdg),

tr(1(µ))(fHdh) = trπ×(fdg) + trπ−(fdg),

tr I(s′(µ′)⊗ κ;φdg′ × σ) = trπ+(fdg) + trπ−(fdg),

tr I(1′(µ′)⊗ κ;φdg′ × σ) = trπ×(fdg)− trπ−(fdg).

As the basechange character relations for induced modules are easy, we
obtained the character relations for all (not necessarily tempered) σ-stable
G′-modules.

If π is a nontempered irreducible G-module then its packet {π} is defined
to consist of π alone. For example, the packet of π× consists only of π×.
Also we make the following:

Definition. Let µ be a character of C1
E = E1. The quasi-packet {π(µ)}

of the nontempered subquotient π× = π×µ of I(µ′κν1/2) consists of π× and
the cuspidal π− = π−µ .
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Note that π× is unramified when E/F and µ are unramified.
Thus a packet consists of tempered G-modules, or of a single nontem-

pered element. A quasi-packet consists of a nontempered π× and a cuspidal
π−. The packet of π− consists of π− and π+, where π+ is the square-
integrable constituent of I(µ′κν1/2). These local definitions are made for
global purposes.

II.4 Global results on basechange for U(3)

We shall now state the global results of [F3;VI].
Let E/F be a quadratic extension of number fields, AE and A = AF

their rings of adèles, A×E and A× their groups of idèles, N the norm map
from E to F , A1

E the group of E-idèles with norm 1, CE = A×E/E× the idèle
class group of E, ω a character of C1

E = A1
E/E

1, ω′ a character of CE with
ω′(z) = ω(z/z). Denote by H, or U(2, E/F ), and by G, or U(3, E/F ),
the quasi-split unitary groups associated to E/F and the forms εw and J

as defined in the local case. These are reductive F -groups. We often write
G for G(F ), H for H(F ), and G′ = GL(3, E) for G′(F ) = G(E), where
G′ = RE/FG is the F -group obtained from G by restriction of scalars from
E to F . Note that the group of E-points G′(E) is GL(3, E)×GL(3, E).

Denote the places of F by v, and the completion of F at v by Fv. Put
Gv = G(Fv), G′v = G′(Fv) = GL(3, Ev), Hv = H(Fv). Note that at
a place v which splits in E we have that U(n,E/F )(Fv) is GL(n, Fv).
When v is nonarchimedean denote by Rv the ring of integers of Fv. When
v is also unramified in E put Kv = G(Rv). Also put KHv = H(Rv)
and K ′v = G′(Rv) = GL(3, RE,v), where RE,v is the ring of integers of
Ev = E ⊗F Fv. When v splits we have Ev = Fv ⊕Fv and RE,v = Rv ⊕Rv.

Write L2(G,ω) for the space of right-smooth complex-valued functions
φ on G\G(A) with φ(zg) = ω(z)φ(g) (g ∈ G(A), z ∈ Z(A), Z being the
center of G). The group G(A) acts by right translation: (r(g)φ)(h) =
φ(hg). The G(A)-module L2(G,ω) decomposes as a direct sum of (1) the
discrete spectrum L2

d(G,ω), defined to be the direct sum of all irreducible
subrepresentations, and (2) the continuous spectrum L2

c(G,ω), which is
described by Langlands’ theory of Eisenstein series as a continuous sum.

The G(A)-module L2
d(G,ω) further decomposes as a direct sum of the

cuspidal spectrum L2
0(G,ω), consisting of cusp forms φ, and the residual
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spectrum L2
r(G,ω), which is generated by residues of Eisenstein series.

Each irreducible constituent of L2(G,ω) is called an automorphic repre-
sentation, and we have discrete-spectrum representations, cuspidal, residual
and continuous-spectrum representations. Each such has central character
ω. The discrete-spectrum representations occur in L2

d with finite multiplic-
ities. Of course, similar definitions apply to the groups H, G′ and H′.

By a G(A)-module we mean an admissible representation of G(A). Any
irreducible G(A)-module π is a restricted tensor product ⊗vπv of admissible
irreducible representations πv of Gv = G(Fv), which are almost all (at most
finitely many exceptions) unramified. A Gv-module πv is called unramified
if it has a nonzero Kv-fixed vector. It is a rare property for a G(A)-module
to be automorphic.

An L-groups homomorphism LH → LG defines via the Satake transform
a lifting ρv 7→ πv of unramified representations. Given an automorphic
representation ρ of H(A), the L-groups homomorphism LH → LG defines
then unramified πv at almost all places. We say that ρ quasi-e-lifts to π

if ρv e-lifts to πv for almost all places v. Here “e” is for “endoscopic” and
“b” is for “basechange”.

A preliminary result is an existence result, of π in the following state-
ment.

Quasi-Lifting. Every automorphic ρ quasi-e-lifts to an automorphic
π.

Every automorphic π quasi-b-lifts to an automorphic σ-invariant Π on
GL(3,AE).

The same result holds for each of the homomorphisms in our diagram.
To be pedantic, under the identification GL(3, E) = G′, g 7→ (g, σg), we

can introduce Π′(g, σg) = Π(g). Then σΠ = ιΠ′, where ι(x, y) = (y, x).
Thus Π is σ-invariant as a GL(3, E)-module iff Π′ is ι-invariant as a G′-
module (and similarly globally).

The main global results of [F3;VI] consist of a refinement of the quasi-
lifting to lifting in terms of all places. To state the result we need to define
and describe packets of discrete-spectrum G(A)-modules. To introduce the
definition, recall that we defined above packets of tempered Gv-modules at
each v, as well as quasi-packets, which contain a nontempered representa-
tion. If v splits then Gv = GL(3, Fv) and a (quasi-) packet consists of a
single irreducible.
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Definition. (1) Given a local packet Pv for all v such that Pv contains
an unramified member π0

v for almost all v, we define the global packet P
to be the set of products ⊗πv over all v, where πv lies in Pv for all v, and
πv = π0

v for almost all v.
(2) Given a character µ of C1

E = A1
E/E

1, the quasi-packet {π(µ)} is defined
as in the case of packets, where Pv is replaced by the quasi-packet {π(µv)}
for all v, and π0

v is the unramified π×v at the v where E/F and µ are
unramified.
(3) The H(A)-module ρ = ⊗ρv endo-lifts to the G(A)-module π = ⊗πv if
ρv endo-lifts to πv (i.e. {ρv} endo-lifts to {πv}) for all v. Similarly, π = ⊗πv
basechange lifts to the GL(3,AE)-module Π = ⊗Πv if πv basechange lifts
to Πv for all v.

A complete description of the packets is as follows.

Global Lifting. The basechange lifting is a one-to-one correspon-
dence from the set of packets and quasi-packets which contain an auto-
morphic G(A)-module, to the set of σ-invariant automorphic GL(3,AE)-
modules Π which are not of the form I(ρ′). Here ρ′ is the GL(2,AE)-module
obtained by stable basechange from a discrete-spectrum H(A)-packet {ρ}.

As usual, we write {π(ρ)} for a packet which basechanges to Π =
I(ρ′ ⊗ κ), where the H′(A)-module ρ′ is the stable basechange lift of the
GL(2,AE)-packet {ρ}. We conclude:

Description of packets. Each irreducible G(A)-module π in the dis-
crete spectrum lies in one of the following.
(1) A packet {π(Π)} associated with a discrete-spectrum σ-invariant repre-
sentation Π of GL(3,AE).
(2) A packet {π(ρ)} associated with a cuspidal H(A)-module ρ.
(3) A quasi-packet {π(µ)} associated with an automorphic one-dimensional
H(A)-module ρ = µ ◦ det.

Packets of type (1) will be called stable, those of type (2) unstable, and
quasi-packets are unstable too. The terminology is justified by the following
result.

Multiplicities. (1) The multiplicity of a G(A)-module π = ⊗πv from
a packet {π(Π)} of type (1) in the discrete spectrum of G(A) is one. Namely
each element π of {π(Π)} is automorphic, in the discrete spectrum, in fact
in the cuspidal spectrum unless dimπ = 1.
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(2) The multiplicity of π from a packet {π(ρ)} or a quasi-packet {π(µ)} in
the discrete spectrum of G(A) is equal to 1 or 0. It is not constant over
{π(ρ)} and {π(µ)}.

If π lies in {π(ρ)}, and there is a single ρ which endo-lifts to π, then the
multiplicity is

m(ρ, π) =
1
2

(
1 +

∏
v

〈ρv, πv〉

)
,

where 〈ρv, πv〉 = 1 if πv lies in π(ρv)+, and 〈ρv, πv〉 = −1 if πv lies in
π(ρv)−.

Let π lie in {π(ρ1)} = {π(ρ2)} = {π(ρ3)} where {ρ1}, {ρ2}, {ρ3} are
distinct H(A)-packets. Then the multiplicity of π is 1

4 (1 +
∑3
i=1〈ρi, π〉).

The signs 〈ρi, π〉 =
∏
v〈ρiv, πv〉 are defined by (∗∗). The π of this and the

previous paragraph are in fact cuspidal.
If π lies in {π(µ)} the multiplicity is given by

m(µ, π) =
1
2

[
1 + ε(µ′, κ)

∏
v

〈µv, πv〉

]
.

Here ε(µ′, κ) is a sign (1 or −1) depending on µ (that is on µ′(x) = µ(x/x))
and κ, and 〈µv, πv〉 = 1 if πv = π×µv

and 〈µv, πv〉 = −1 if πv = π−µv
.

The sign ε(µ′, κ) is likely to be the value at 1/2 of the ε-factor ε(s, µ′κ) of
the functional equation of the L-function L(s, µ′κ) of µ′κ. This is the case
when L( 1

2 , µ
′κ) 6= 0, in which case π×µ =

∏
v π
×
µv

is residual and ε( 1
2 , µ
′κ) =

1. When L( 1
2 , µ
′κ) = 0 the automorphic representation π×µ is in the discrete

spectrum (necessarily cuspidal) iff ε(µ′, κ) = 1. An irreducible π in the
quasi-packet of π×µ which is in the discrete spectrum (thus m(µ, π) = 1)
with at least one component π−v is cuspidal, since π−v is cuspidal. Thus with
the exception of the residual π×µ (when L( 1

2 , µ
′κ) 6= 0) and one-dimensional

representations, the multiplicity of π in the discrete spectrum is the same
as its multiplicity in the cuspidal spectrum. Discrete-spectrum π lie either
in the cuspidal or the residual spectrum.

In particular we have the following

Multiplicity One Theorem. Distinct irreducible constituents in the
discrete spectrum of L2(G(A), ω) are inequivalent.



II.4 Global results on basechange for U(3) 433

Rigidity Theorem. If π and π′ are discrete-spectrum G(A)-modules
whose components πv and π′v are equivalent for almost all v, then they lie
in the same packet, or quasi-packet.

Genericity. Each Gv- and G(A)-packet contains precisely one generic
representation. Quasi-packets do not contain generic representations.

Corollary. (1) Suppose that π is a discrete-spectrum G(A)-module
which has a component of the form π×w . Then π lies in a quasi-packet
{π(µ)}, of type (3). In particular its components are of the form π×v for
almost all v, and of the form π−v for the remaining finite set (of even car-
dinality iff ε(µ′, κ) is 1) of places of F which stay prime in E.
(2) If π is a discrete-spectrum G(A)-module with an elliptic component at a
place of F which splits in E, or a one-dimensional or Steinberg component
at a place of F which stay prime in E, then π lies in a packet {π(Π)},
where Π is a discrete-spectrum GL(3,AE)-module.

A cuspidal representation in a quasi-packet {π(µ)} of type (3) (for ex-
ample, one which has a component π−v ) makes a counter example to the
naive Ramanujan conjecture: almost all of its components are nontem-
pered, namely π×v . The Ramanujan conjecture for GL(n) asserts that all
local components of a cuspidal representation of GL(n,A) are tempered.
The Ramanujan conjecture for U(3) should say that all local components
of a discrete-spectrum representation π of U(3, E/F )(A) which basechange
lifts to a cuspidal representation of GL(3,A) are tempered. This is shown
below for π with “cohomological” components at the archimedean places
by using the theory of Shimura varieties associated with U(3).

The discrete-spectrum G(A)-modules π with an elliptic component at a
nonarchimedean place v of F which splits in E (such π are stable of type
(1)) can easily be transferred to discrete-spectrum ′G(A)-modules, where
′G is the inner form of G which is ramified at v. Thus ′G is the unitary
F -group associated with the central division algebra of rank three over E
which is ramified at the places of E over v of F .
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II.5 Spectral side of the stable trace formula

We are now in a position to describe the spectral side of the stable trace
formula for a test function f = ⊗fv on G(A). Thus STFG(f) is the sum of
four parts: I(G, 1), . . . , I(G, 4). The first is

I(G, 1) =
∑
{π}

∏
v

tr{πv}(fv).

The sum ranges over the packets {π} which basechange lift to cuspidal σ-
invariant representations Π of GL(3,AE) as well as over the one-dimensional
representations π of G(A).

The second part, I(G, 2), of STFG(f), is the sum of

1
2

∏
v

[trπ+
v (fv) + trπ−v (fv)]

over all cuspidal representations ρ 6= ρ(θ, ′θ) of

U(2, E/F )(A)×U(1, E/F )(A).

Here {π} is the e-lift of ρ, thus e(ρv) = {π+
v , π

−
v } for all v; π−v is zero if ρv

is not discrete series or if v splits in E.
The third part, I(G, 3), is the sum of

1
4

∏
v

tr{πv}(fv)

over all unordered triples (µ, µ′, µ′′) of distinct characters of A1
E/E

1 with
µµ′µ′′ = ω, where {π} is the lift of ρ(µ, µ′) on U(2).

The fourth part, I(G, 4), is the sum of

ε(µ′, κ)
2

∏
v

[trπ×v (fv)− trπ−v (fv)]

over all one-dimensional representations µ of U(2) × U(1). For each v the
pair {π×v , π−v } is the quasi-packet e(µv). It consists only of π×v (and π−v is
zero) when v splits.
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II.6 Proper endoscopic group

The spectral side of the other trace formula which we need is for a function
fH = ⊗fHv on H(A) = U(2, E/F )(A)×U(1, E/F )(A). It comes multiplied
by the coefficient 1

2 , and has the form I(H, 1) + I(H, 2) + I(H, 3), where
the three summands are defined by

∑
ρ6=ρ(θ,′θ)

∏
v

tr{ρv}(fHv) +
1
2

∑
ρ=ρ(θ,′θ)

∏
v

tr{ρv}(fHv) +
∑
µ

∏
v

trµv(fHv).

The first sum, in I(H, 1), ranges over the packets of the cuspidal repre-
sentations of U(2, E/F )(AF )×U(1, E/F )(AF ) not of the form ρ(θ, ′θ)× ′′θ.
The θ are characters on A1

E/E
1.

The second sum, in I(H, 2), is over the cuspidal packets ρ of the form
ρ(θ, ′θ)× ′′θ, where {θ, ′θ, ′′θ} are distinct characters. The lifting from U(2)×
U(1) to U(3) on this set of packets is 3-to-1. Only ρ1 = ρ(θ, ′θ) × ′′θ,
ρ2 = ρ(θ, ′′θ)× ′θ and ρ3 = ρ(′θ, ′′θ)× θ lift to the same packet of U(3).

The sum of I(H, 3) ranges over the one-dimensional representations µ of
U(2, E/F )(AF ).

At all places v not dividing p or ∞ the component fHv is matching fv,
so the local factor indexed by v in each of the 3 sums can be replaced by

trπ+
v (fv)− trπ−v (fv),

trπ×v (fv) + trπ−v (fv),

tr{ρiv}(fHv) =
∑

1≤j≤4

〈ρiv, πjv〉 trπjv(ρv)(fv).
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III.1 The reflex field

Our group is G′ = RF/QG, where G is GU(3, E/F ), F is a totally real field
and E is a totally imaginary quadratic extension of F . Thus G′ is split
over Q, G′(Q) = G(F ) and G′(R) = G(R)×· · ·×G(R) ([F :Q] times). The
dimension of the corresponding Shimura variety is 2[F : Q]. Half the real
dimension of the symmetric space G(R)/KG(R) is 2. We proceed to show
that the reflex field E is a CM-field contained in the Galois closure of E/Q.

Since all quasi-split unitary groups of rank one defined using E/F are
isomorphic, we choose now the Hermitian form J (= tJ in GL(3, E)) to
be diag(1,−1,−1). It defines the group G = GU(1, 2;E/F ) of unitary
similitudes which is the linear reductive quasi-split algebraic group over F
whose value at any F -algebra A is

G(A) = {(g, λ) ∈ GL(3, AE)×A×E ; tgJg = λJ}

where AE = A⊗F E and x 7→ x is the nontrivial automorphism of AE over
A. Applying transpose-bar to tgJg = λJ we see that λ ∈ A×. Since λ is
determined by g, G(A) ⊂ GL(3, AE) and G(AE) = GL(3, AE)×A×E .

A key part of the data which defines the Shimura variety is a G′(R)-
conjugacy class X∞ of homomorphisms h : RC/RGm → G′ over R. Over R
the group G′ is isomorphic to

∏
σ Gσ, where σ ranges over Emb(F,R), and

Gσ = G⊗F,σ R (= G×SpecF,σ Spec R) = GU(1, 2;E ⊗F,σ R/R)

is an R-group. Put h = (hσ). Note that E⊗F,σR is a quadratic extension of
R, but there are two possible isomorphisms to C over R, determined by the
choice of an extension τ : E ↪→ C of σ : F ↪→ R. Thus if E = F (ξ), ξ = −ξ
(here bar denotes the automorphism of E/F ), ξ2 ∈ F×, σ(ξ2) < 0 in R,
and E⊗F,σ R = R(

√
σ(ξ2)). Given τ : E ↪→ C, τ |F = σ, we have τ(ξ) ∈ C,

namely a choice of
√
σ(ξ2) 7→ τ(ξ) ∈ C, that is τ∗ : E ⊗F,σ R ∼→C and

τ∗ : Gσ
∼→GU(1, 2; C/R). The embedding cτ : E ↪→ C, where c denotes

436
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complex conjugation in C, defines another isomorphism cτ∗ of Gσ with
GU(1, 2; C/R).

Let Σ be a CM -type of E/F . It is a set which consists of one extension
τ : E ↪→ C of each σ : F ↪→ R. Then Σ ∩ cΣ is empty and Σ ∪ cΣ is
Emb(E,C) (if Σ = {τ} then cΣ = {cτ}). For each τ ∈ Σ, hτ = τ∗ ◦ hσ
is an algebraic homomorphism RC/RGm → GU(1, 2; C/R) which can be
diagonalized over C, namely we may assume that hτ has its image in the
diagonal torus T of GU(1, 2; C/R). We choose hτ (z, z) = (diag(z, z, z), zz).
Then hcτ (z, z) = (diag(z, z, z), zz), where c(z) = z for z ∈ C×. Over C,
hτ : RC/RGm → GU(1, 2; C/R) has the form

hτ,C : C× × C× → GL(3,C)× C×, hτ,C(z, w) = (diag(z, w,w), zw).

Up to conjugacy by the Weyl group WC of GL(3,C) we have hcτ,C(z, w) =
(diag(z, z, w), zw). The restriction µτ (z) = hτ,C(z, 1) to the first variable is
z 7→ (diag(z, 1, 1), z), and µcτ (z) = (diag(z, z, 1), z). We regard µτ and µcτ
as representatives of their conjugacy classes.

The Galois group Gal(Q/Q) acts on µ = (µτ ; τ ∈ Σ) since µ is defined
over Q. Thus ϕ ∈ Gal(Q/Q) maps µ to ϕµ = (µϕ◦τ ), where we fix Q ↪→ C
and view τ as E ↪→ Q. The subgroup Gal(Q/E) which fixes µ defines a
number field E, called the reflex field of µ. This is the same as the reflex
field of the CM -type Σ, as the action of Gal(Q/Q) on µ is determined by
its action on Σ.

Let us emphasize that Gal(Q/Q) acts on the G′(C)-conjugacy class of
µ = (µτ ; τ ∈ Σ), or its

∏
ΣWC-conjugacy class if µ is viewed in

∏
Σ T (C). In

fact the conjugacy classes of µτ and µcτ can be distinguished by the deter-
minants of their first components: detµτ (z) = z, detµcτ (z) = z2. Then E
is determined equally by the action of Gal(Q/Q) on detµ = (detµτ ; τ ∈ Σ).

Lemma. The reflex field E is a totally imaginary quadratic extension of
a totally real field Ec contained in E.

Proof. Clearly complex conjugation c does not fix µ, detµ or Σ, hence
c /∈ Gal(Q/E). The Galois closure F ′ = ∪σσF of F is totally real, and
the Galois closure E′ = ∪ττE (it suffices to take τ ∈ Σ as cτE = τE for
every τ ∈ Σ) of E is totally imaginary quadratic extension of a totally real
Galois extension F ′′ of Q. Indeed F ′′ = F ′((

√
σ(ξ2)σ′(ξ2); σ 6= σ′)) and

E′ = F ′′(
√
σ(ξ2), any σ). Now E ⊂ E′ since Gal(Q/E′) fixes Σ and µ.
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Complex conjugation, c, restricts to the nontrivial element of Gal(E′/F ′′)
(and of each Gal(τE/σF )). The group 〈c〉 is normal in Gal(E′/Q) since F ′′

is Galois over Q. Hence c is a central element. Since c /∈ Gal(Q/E), c acts
on E nontrivially, and on each conjugate of E (in E′). Finally, as noted in
section III.1, E is contained in E. �

III.2 The representation of the dual group

The representation (r0µ, Vµ) of LG′E = Ĝ′ o WE associated in [L2] to the
conjugacy class Int(G′(C))µ of the weight µ = µh (see section III.1) is
specified by two properties.

(1) The restriction of r0µ to Ĝ′ is irreducible with extreme weight −µ.

Here µ = µh ∈ X∗(T̂ ) = X∗(T ) is a character of a maximal torus T̂ of Ĝ′,
uniquely determined up to the action of the Weyl group.

(2) Let y be a splitting ([Ko3], section 1) of Ĝ′. Assume that y is fixed
by the Weil group WE of E. Then WE ⊂ LG′E acts trivially on the highest
weight space of Vµ attached to y.

If T denotes the diagonal torus in G, T ′ in G′, T̂ in Ĝ = GL(3,C) and
T̂ ′ =

∏
σ T̂ in Ĝ′ =

∏
σ Ĝ, then µτ ∈ X∗(T ) = X∗(T̂ ) can be viewed as

the character µτ = (1, 0, 0) of T̂ , mapping diag(a, b, c) to a. Then µcτ =
(1, 1, 0), and µ =

∏
µτ (τ ∈ Σ) is (1, 0, 0) × (1, 0, 0) × · · · × (1, 0, 0). Note

that the G(C)-orbit of µτ determines a WC-orbit of µτ in X∗(T̂ ). The
character µτ = (1, 0, 0) is the highest weight of the standard representation
st of GL(3,C), which we now denote by r0τ , while µcτ = (1, 1, 0) is that of
r0cτ = ∧2(st) (= det⊗ st∨).

A basis for the 3n-dimensional representation r0µ = ⊗τ∈Σr
0
τ is of the form

⊗τ∈Σe
τ
`(τ) (1 ≤ `(τ) ≤ 3). The Galois group Gal(Q/Q) acts via its action

on Σ; the stabilizer is Gal(Q/E). Thus we may let the Weil group WE act
on the highest weight vector of µ, via its quotient in Gal(Q/Q), Gal(Q/E)
permuting the factors of r0µ, and define rµ = IndWQ

WE
(r0µ).

An irreducible admissible representation πp of G(F ⊗ Qp) = G′(Qp) =∏
u|pG(Fu) has the form ⊗uπu. Suppose it is unramified. If u splits in E,

thus E ⊗F Fu = Fu⊕Fu, then πu has the form π(µ1u, µ2u, µ3u), a subquo-
tient of the induced representation I(µ1u, µ2u, µ3u) of G(Fu) = GL(3, Fu),
where µiu are unramified characters of F×u . If u stays prime in E, thus
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Eu = E ⊗F Fu is a field, πu has the form π(µu) ⊂ I(µu). Write µmu for
the value µmu(πππu) at any uniformizing parameter πππu of F×u (and E×u ). Put
tu = t(πu) = diag(µ1u, µ2u, µ3u) if u splits, and t(πu) = diag(µu, 1, 1)×Fru
if Eu is a field. In the latter case we also write µ1u = µ

1/2
u , µ2u = 1,

µ3u = µ
−1/2
u , and tu = (t(πu)2)1/2 = diag(µ1/2

u , 1, µ−1/2
u ).

The representation πp is parametrized by the conjugacy class of tp×Frp
in the unramified dual group

LG′p = Ĝ[F :Q] o 〈Frp〉.

Here tp is the [F :Q]-tuple (tu;u|p) of diagonal matrices in Ĝ = GL(3,C),
where each tu = (tu1, . . . , tunu) is any nu = [Fu :Qp]-tuple with

∏
i tui = tu.

The Frobenius Frp acts on each tu by permutation to the left: Frp(tu) =
(tu2, . . . , tunu , θ(tu1)). Here θ = id if Eu = Fu ⊕ Fu and θ(tu) = J−1tt−1

u J

if Eu is a field. Each πu is parametrized by the conjugacy class of tu ×Frp
in the unramified dual group LG′u = Ĝ[Fu:Qp] × 〈Frp〉, or alternatively by
the conjugacy class of tu × Fru in LGu = Ĝ× 〈Fru〉, where Fru = Frnu

p .
Let us compute the trace

tr r0µ[(tp × Frp)n℘ ] =
∏
u|p

tr r0u[(tu × Frp)n℘ ]

where ℘ is a place of E over p and n℘ = [E℘ : Qp]. By definition of E,
Fr℘ = Frn℘

p acts on r0u = ⊗{τ∈Σ;τ |F∈u}r
0
τ . We proceed to describe the

action of Frp on Emb(E,C) and Emb(F,R).
Fixing a σ0 : F ↪→ Q ∩ R (⊂ R) and an extension τ0 : E ↪→ Q ⊂ C, we

identify

Gal(Q/Q)/Gal(Q/E) with Emb(E,Q) = {τ1, . . . , τn, cτ1, . . . , cτn}

by ϕ 7→ ϕ ◦ τ0, and

Gal(Q/Q)/Gal(Q/F ) with Emb(F,Q ∩ R) = {σ1, . . . , σn}.

The decomposition group of Q at p, Gal(Qp/Qp), acts by left multiplica-
tion. Suppose p is unramified in E. Then Frp acts, and the Frp-orbits
in Emb(F,R) are in bijection with the places u1, . . . , ur of F over p. If
Eu = E ⊗F Fu is a field, {τ ; τ |F ∈ u} makes a single Frp-orbit, uE .
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If Eu = Fu ⊕ Fu, it is the disjoint union of two orbits, which we de-
note by u′E and u′′E = cu′E . Thus u′E = {τu1, . . . , τunu}, τui|F× = σui
if u = {σu1, . . . , σunu}.

The Frobenius Frp acts transitively on its orbit u = Emb(Fu,Qp) and
on u′E and on u′′E = cu′E if u splits in E, or on uE if Eu is a field. The
smallest positive power of Frp which fixes each σ ∈ u, and each τ in u′E and
u′′E when u splits in E, is nu. When Eu is a field, Fr2nu

p fixes each τ in uE
but Frjp, j < 2nu, does not. If Eu is a field then Frnu

p fixes each σ in u, and
it interchanges τ and cτ . The positive integer n℘ is the smallest such that
Fr℘ = Frn℘

p stabilizes Σ. Since Fr2np fixes each τ , n℘ divides 2n.

Now the action of Frp on Ĝ′u = Ĝnu is by

Frp(tu) = (tu2, . . . , tunu
, θ(tu1)),

where tu = (tu1, . . . , tunu), and θ = id if u splits in E or θ(g) = J−1tg−1J

if Eu is a field. Then Frnu
p (tu) is θ(tu) (which is (θ(tu1), . . . , θ(tunu))).

We conclude that when Eu = Fu ⊕ Fu, we have

(tu × Frp)nu =

 ∏
1≤i≤nu

tui, . . . ,
∏

1≤i≤nu

tui

× Frnu
p ,

and

(tu × Frp)j = (. . . , tu,itu,i+1 . . . tu,i+j−1, . . . ; 1 ≤ i ≤ nu)× Frjp .

A basis for the 3nu -dimensional representation r0u = ⊗τr0τ , τ ∈ Σ and
τ |F ∈ u, is given by ⊗σ∈ueσ`(σ), where e`(σ) lies in the standard basis

{e1, e2, e3} of C3 for each σ. To compute the action of Frjp on these vectors
it is convenient to enumerate the σ so that the vectors become

⊗1≤i≤nu
ei`(i) = e1`(1) ⊗ e

2
`(2) ⊗ · · · ⊗ e

nu

`(nu),

and Frp acts by sending this vector to

⊗iei−1
`(i) = ⊗iei`(i+1) = e1`(2) ⊗ e

2
`(3) ⊗ · · · ⊗ e

nu

`(1).

Then Frnu
p fixes each vector, and a vector is fixed by Frjp iff it is fixed by

Frj0p , 0 ≤ j0 < nu, j ≡ j0(modnu). A vector ⊗iei`(i) is fixed by Frjp iff
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it is equal to ⊗iei−j`(i) ≡ ⊗ie
i−j0
`(i) , thus `(i) depends only on imod j (and

imodnu), namely only on imod ju, where ju = (j, nu). Then

(tu × Frp)ju =

. . . , ∏
0≤k<ju

tu,i+k, . . .

× Frjup .

This is

(tu1tu2 · · · tu,ju , tu2tu3 · · · tu,ju+1, . . . , tu,jutu,ju+1 · · · tu,2ju−1;

tu,ju+1 · · · tu,2ju , . . . )× Frjup .

It acts on vectors of the form

(e1u,`(1) ⊗ e
2
u,`(2) ⊗ · · · ⊗ e

ju
u,`(ju))⊗ (e1u,`(1) ⊗ e

2
u,`(2) ⊗ · · · ⊗ e

ju
u,`(ju))⊗ · · · .

The product of the first ju vectors is repeated nu/ju times.
On the vectors with superscript 1 the class (tu × Frp)ju acts as

tu,1tu,2 · · · tu,ju · tu,ju+1 · · · tu,2ju · · · tu,( nu
ju
−1)ju+1 . . . tu,nu

ju
ju

=
∏

1≤i≤nu

tu,i = tu = diag(µ1u, µ2u, µ3u),

and so (tu×Frp)j acts as tj/juu . The trace is then µj/ju1u +µj/ju2u +µj/ju3u . The
same holds for each superscript, so we get the product of ju such factors.
Put ju = (jn℘, nu). We then have

tr r0u[(tu × Frp)jn℘ ] =
(
µ

jn℘
ju

1u + µ
jn℘
ju

2u + µ
jn℘
ju

3u

)ju
.

When Eu is a field we describe the orbit uE as τi = Fri−1
p τ1, 1 ≤ i ≤ 2nu.

The representation ru of Ĝnu is ⊗τ∈uE∩Σrτ . Here rτi
(1 ≤ i ≤ nu) is the

standard representation of Ĝ = GL(3,C) on C3, and rτi(g) = rτi−nu
(θ(g))

if nu < i ≤ 2nu. The representation ru extends to Ĝnu o 〈Frmu
p 〉 provided

Frmu
p stabilizes uΣ

E = uE ∩Σ. Since Fr2nu
p fixes each element of uE , we may

assume 1 ≤ mu|2nu. But Frnu
p maps each τ ∈ Σ ∩ uE to cτ 6∈ Σ ∩ uE .

Hence any multiple of mu divisible by nu must also be divisible by 2nu.
This implies that ord2mu ≥ ord2 2nu. Indeed, if `unu = muku, and 2|`u,
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we may assume 2nu = muku since mu divides 2nu, and if ku is even mu

divides nu. Thus 2nu = muku for an odd positive ku.
In each Frmu

p -orbit (mu modnu) there are ku = 2nu

mu
elements. Indeed,

1 +mua ≡ 1 +mub(modnu) with 0 ≤ a, b < ku, iff nu divides (a− b)mu,
thus ku|2(a− b) and so ku|(a− b) (as ku is odd). So the distinct elements
in such an orbit are 1 + mua, 0 ≤ a < ku. It follows that the number of
Frmu
p -orbits in {1, . . . , nu} is mu/2.
To compute the trace we consider the Frmu

p -fixed vectors in

r0u = ⊗τ∈uE∩Σr
0
τ .

As is the case when u splits E/F , each Frmu
p -orbit contributes a factor

tr[tuθ(tu)] to the trace. Then tr r0u[(tu × Frp)jn℘ ] exists if mu = (jn℘, 2nu)
is divisible by the same power of 2 as 2nu, thus ord2 jn℘ > ord2 nu. Put
ju = (jn℘, nu). Then the trace is equal to

tr r0u[(tu×Frp)jn℘ ] = (tr([tuθ(tu)]jn℘/2ju))ju = (µjn℘/2ju
u +1+µ−jn℘/2ju

u )ju .

Put µ1u = µ
1/2
u , µ2u = 1, µ3u = µ

−1/2
u , to conform with the notations in

the split case.

III.3 Local terms at ppp

The spherical function fs,jH℘ is defined by means of L-group homomorphisms
LH ′ → LG′ → LG′j′ , where G′j′ = RQj′/Qp

G′ and Qj′ denotes the un-

ramified extension of Qp in Qp of degree j′ = jn℘. Since the groups H ′

and G′ are products of groups H ′u = RFu/Qp
H and G′u = RFu/Qp

G, it
suffices to work with these latter groups. Thus G′j′ =

∏
u|pG

′
uj′ , where

G′uj′ = RQj′/Qp
G′u. The function fs,j℘ will be ⊗fs,ju , for analogously defined

fs,ju .
Now

LG′j′ = (Ĝ′)j
′
o 〈Frp〉 =

∏
u|p

(Ĝ′u)
j′ o 〈Frp〉, Ĝ′ = Ĝ, Ĝ′u = Ĝnu ,

and Frp acts on

x = (xu), xu = (xu1, . . . ,xuj′), xui ∈ Ĝ′u = Ĝnu ,
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by

Frp(x) = (Frp(xu)), Frp(xu) = (Frp(xu2), . . . ,Frp(xuj′),Frp(xu1)).

It suffices to work with LG′uj′ = (Ĝ′u)
j′ o 〈Frp〉.

Let us1, . . . ,usj′ be Frp-fixed elements in Z(Ĥ ′u) = Z(Ĥ)nu , thus usi =
(si, . . . , si) with si ∈ Z(Ĥ) = C× × C× × C× and us1 · · ·usj′ = us =
(s, . . . , s), s = diag(−1, 1,−1). Define

η̃j′ : LH ′u = Ĥnu × 〈Frp〉 → LG′uj′ = (Ĝ′u)
j′ o 〈Frp〉

by
t 7→ (t, . . . , t), Frp 7→ (us1,us2, . . . ,usj′)× Frp,

thus

Frip 7→ (us1 us2 · · ·usi,us2 · · ·usi+1, . . . ,usj′ us1 . . .usi−1)× Frip .

The diagonal map G′u → G′uj′ defines

LG′uj′ → LG′u, (t1, . . . , tj′)× Frip 7→ t1 · · · tj′ × Frip .

The composition ηj′ : LH ′u → LG′u gives

t× Frip 7→ tj
′
usi×Frip .

The homomorphism η̃j′ defines a dual homomorphism

H(Kuj′\Guj′/Kuj′)→ H(KHu\Hu/KHu)

of Hecke algebras. The function fs,jHu is defined to be the image by the
relation

trπu(η̃j′(t))(φuj′) = trπHu(t)(f
s,j
Hu)

of the function φj′ of [Ko5], p. 173, or rather the u-component φuj′ of
φj′ , which is the characteristic function of Kuj′ · µFj′ (p

−1) · Kuj′ . Put
ju = (jn℘, nu). Theorem 2.1.3 of [Ko3] (see also [Ko5], p. 193) asserts that

the product over u|p in F of these traces is the product of q
j
2 dimSKf
℘ , where

q℘ = p[E℘:Qp], with the product over u|p of

tr r0u(us[t(πu)× Frp]jn℘) =
(

tr
[
s

nu
ju t

jn℘
ju
u

])ju



444 III. Local terms

=
[
(−1)

nu
ju µ

jn℘
ju

1u + µ
jn℘
ju

2u + (−1)
nu
ju µ

jn℘
ju

3u

]ju
.

Similarly for s = I we have that the analogous factor (with H replaced
by G) is the product with factors

tr r0u[(t(πu)× Frp)jn℘ ] =
[

tr
(
t

jn℘
ju
u

)]ju
=
[
µ

jn℘
ju

1u + µ
jn℘
ju

2u + µ
jn℘
ju

3u

]ju
.

III.4 The eigenvalues at ppp

We proceed to describe the eigenvalues µiu (i = 1 if Eu is a field, 1 ≤
i ≤ 3 if Eu = Fu ⊕ Fu) for the various terms in the formula, beginning
with STFG(f), according to the parts which make it. If Eu is a field,
bc(π(µ1u)) = πG′(µ1u, 1, µ−1

1u ) where G′ = GL(3, Eu). If Eu = Fu⊕Fu then
bc(π) = π × π̌, and π = π(µ1u, µ2u, µ3u) if π is unramified. We choose the
complex numbers µ1u to have |µ1u| ≥ 1. Write tu for diag(µ1u, 1, 1) × Fru
or for diag(µ1u, µ2u, µ3u).

The first part of STFG(f) describes the stable spectrum. It has two
types of terms.

(1) For the packets {π} which basechange-lift to cuspidal Π ' Π̌ on
G′(AF ) = GL(3,AE), if Eu = Fu ⊕Fu then the µiu satisfy q−1/2

u < |µiu| <
q
1/2
u , where qu is the cardinality of the residual field of Fu, since Π is

unitary and so its component Πu is unitarizable. Note that the unramified
component Πu is generic (since Π is), hence fully induced. If Eu is a field
then q−1/2

Eu
< |µ1u| < q

1/2
Eu

, where qEu is the cardinality of the residual field
of Eu.

(2) For a one-dimensional representation π, bc(π) = Π is a one-dimen-
sional representation g 7→ χ(det g), where χ is a character of A1

E/E
1. If u

splits in E,

t(πu) = diag(µ1u, µ2u, µ3u) is diag(χuqu, χu, χuq−1
u ),

where χu = χ(πππu) has absolute value 1. If Eu is a field,

t(πu) = diag(µ1u, 1, 1)× Fru
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with µ1u = qEu .
The second part of STFG(f) is a sum of terms indexed by {π} = e(ρ×µ).

Then bc({π}) = I(ρ′ ⊗ κ × µ′) where ρ′ is the stable basechange lift of ρ.
Here ρ is a cuspidal representation of U(2, E/F )(A), and trπ−u (fu) = 0 as
fu is spherical. The component of ρ at u is unramified and fully induced.
If u splits, ρu is I2(µ1u, µ2u). If Eu is a field, ρu is I(µ1u). The component
πu = e(ρu×µu) lifts to I(µ′1uκu, µ

′
2uκu, µ

′
u), where µ′iu(z) = µiu(z/z), if Eu

is a field, and to I(µ1uκu, µ2uκu, µu) if u splits in E. Then the components
µiu of tu satisfy q−1/2

u < |µiu| < q
1/2
u (replace qu by qEu if Eu is a field, and

µiu by µ1u).
The terms in the third part correspond to unordered triples (µ, µ′, µ′′)

of characters of A1
E/E

1, and the entries of tu are units in C×.
The terms in the fourth part of STFG(f) are indexed by the quasi-

packets {π} = e(µ × µ1), that is by the one-dimensional representations
µ×µ1 of U(2, E/F )(AF )×U(1, E/F )(AF ). The unramified member of the
quasi-packet e(µu × µ1u) = {π×u , π−u } is π×u , and t(π×u ) is

diag(µuq1/2u , µ1u, µuq
−1/2
u )

if u splits and diag(µuq
1/2
Eu
, 1, 1)× Fru if Eu is a field, and |µu| = 1 in C×.

In summary, as noted in the last section, the factor at p of each of the
summands in STFG(f) has the form

q
j
2 dimSKf
℘ tr r0µ[(t(πp)× Frp)jn℘ ] = q

j
2 dimSKf
℘

∏
u|p

(tr[tu × Frp]jn℘)

= q
j
2 dimSKf
℘

∏
u|p

(
µ

jn℘
ju

1u + µ
jn℘
ju

2u + µ
jn℘
ju

3u

)ju
.

Here ju = (nu, jn℘) and n℘ = [E℘ : Qp], and |n℘|2 < |nu|2 for each u where
Eu is a field.

Remark. As p splits in F into a product of primes u with Fu/Qp un-
ramified with [F :Q] =

∑
u|p[Fu : Qp], and the dimension of the symmetric

space G(R)/KG(R) is 2, we note that

dimSKf
= 2[F :Q] =

∑
u|p

2[Fu : Qp].
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III.5 Terms at ppp for the endoscopic group

The other trace formula which contributes is that of the endoscopic group
U(2, E/F )(AF ) ×U(1, E/F )(AF ) of G(AF ). The factors at p of the various
summands have the form

q
j
2 dimSKf
℘

∏
u|p

tr(s[tu × Frp]jn℘)

= q
j
2 dimSKf
℘ ·

∏
u|p

[
(−1)

nu
ju µ

jn℘
ju

1u + µ
jn℘
ju

2u + (−1)
nu
ju µ

jn℘
ju

3u

]ju
,

where s = diag(1,−1, 1) is the element in Ĝ = GL(3,C) whose centralizer
is Ĥ = GL(2,C) × GL(1,C). We need to specify the 3-tuples tu again,
according to the three parts of STFH(fH). They correspond to the last
three terms of the STFG(f) that we listed above.

For the first part, where the summands are indexed by (stable) packets
of cuspidal representations ρ 6= ρ(θ, ′θ)× ′′θ of

U(2, E/F )(AF )×U(1, E/F )(AF ),

the tu is the same as in the second part of STFG(f). If ρ = ρ(θ, ′θ)× ′′θ, they
are the same as in the third part. For the one-dimensional representations
of STFH(fH), the tu are as in the 4th part of STFG(f).



IV. REAL REPRESENTATIONS

IV.1 Representation of the real GL(2)

Packets of representations of a real group G are parametrized by maps of
the Weil group WR to the L-group LG. Recall that WR = 〈z, σ; z ∈ C×,
σ2 ∈ R× −NC/RC×, σz = zσ〉 is

1→WC →WR → Gal(C/R)→ 1

an extension of Gal(C/R) by WC = C×. It can also be viewed as the
normalizer C×∪C×j of C× in H×, where H = R〈1, i, j, k〉 is the Hamilton
quaternions. The norm on H defines a norm on WR by restriction ([D2],
[Tt]). The discrete-series (packets of) representations of G are parametrized
by the homomorphisms φ : WR → Ĝ ×WR whose projection to WR is the
identity and to the connected component Ĝ is bounded, and such that
CφZ(Ĝ)/Z(Ĝ) is finite. Here Cφ is the centralizer Z

Ĝ
(φ(WR)) in Ĝ of the

image of φ.
When G = GL(2,R) we have Ĝ = GL(2,R), and these maps are φk

(k ≥ 1), defined by

WC = C× 3 z 7→
(

(z/|z|)k 0

0 (|z|/z)k

)
× z, σ 7→

(
0 1

ι 0

)
× σ.

Since σ2 = −1 7→
(

(−1)k 0

0 (−1)k

)
× σ2, ι must be (−1)k. Then detφk(σ) =

(−1)k+1, and so k must be an odd integer (= 1, 3, 5, . . . ) to get a discrete-
series (packet of) representation of PGL(2,R). In fact π1 is the lowest
discrete-series representation, and φ0 parametrizes the so called limit of
discrete-series representations; it is tempered. Even k ≥ 2 and σ 7→(

0 1

1 0

)
× σ define discrete-series representations of GL(2,R) with the qua-

dratic nontrivial central character sgn. Packets for GL(2,R) and PGL(2,R)
consist of a single discrete-series irreducible representation πk. Note that
πk ⊗ sgn ' πk. Here sgn : GL(2,R)→ {±1}, sgn(g) = 1 if det g > 0, = −1
if det g < 0.

447
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The πk (k > 0) have the same central and infinitesimal character as the
kth-dimensional nonunitarizable representation

Symk−1
0 C2 = |det g|−(k−1)/2 Symk−1 C2

into
SL(k,C)± = {g ∈ GL(2,C); det g ∈ {±1}}.

Note that
det Symk−1(g) = det gk(k−1)/2.

The normalizing factor is |det Symk−1 |−1/k. Then

Symk−1
0

(
a 0

0 b

)
= diag

(
sgn(a)k−i sgn(b)i−1|a|k−i−(k−1)/2|b|i−1−(k−1)/2

)
(1 ≤ i ≤ k). In fact both πk and Symk−1

0 C2 are constituents of the nor-
malizedly induced representation I(νk/2, sgnk−1 ν−k/2) whose infinitesimal
character is (k2 ,−

k
2 ), where a basis for the lattice of characters of the diag-

onal torus in SL(2) is taken to be (1,−1).

IV.2 Representations of U(2,1)

Here we record well-known results concerning the representation theories of
the groups of this work in the case of the archimedean quadratic extension
C/R. For proofs we refer to [Wh], §7, to [BW], Ch. VI for cohomology, and
to [Cl1], [Sd] for character relations. This is used in [F3;VI] to determine
all automorphic G(A)-modules with nontrivial cohomology outside of the
middle dimension.

We first recall some notations. Denote by σ the nontrivial element of
Gal(C/R). Put z = σ(z) for z in C, and C1 = {z/|z|; z in C×}. Put
H ′ = GL(2,C), G′ = GL(3,C),

H = U(1, 1) =
{
h in H ′; thwh = w =

(
0 1

−1 0

)}
and

G = U(2, 1) =
{
g in G′; tgJg = J =

(
0 1

−1

1 0

)}
.
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The center Z of G is isomorphic to C1; so is that of H. Fix an integer
w and a character ω(z/|z|) = (z/|z|)w of C1. Put ω′(z) = ω(z/z). Any
representation of any subgroup of G which contains Z will be assumed
below to transform under Z by ω.

The diagonal subgroup AH of H will be identified with the subgroup of
the diagonal subgroup A of G consisting of diag(z, z′, z−1) with z′ = 1. For
any character χH of AH there are complex a, c with a+ c in Z such that

χH(diag(z, z−1)) = (“za(z−1)c = ”)|z|a−c(z/|z|)a+c.

The character χH extends uniquely to a character χ of A whose restric-
tion to Z is ω. In fact b = w−a− c is integral, and χ = χ(a, b, c) is defined
by

χ(diag(z, z′, z−1)) = z′b|z|a−c(z/|z|)a+c.

A character κ of C× which is trivial on the multiplicative group R×+ of posi-
tive real numbers but is nontrivial on R× is of the form κ(z) = (z/|z|)2k+1,
where k is integral.

The H-module I(χH) = I(χH ;BH ,H) = Ind(δ1/2H χH ;BH ,H) normal-
izedly induced from the character χH of AH extended trivially to the upper
triangular subgroup BH of H, is irreducible unless a, c are equal with a+ c

an odd integer, or are distinct integers. If a = c and a+ c ∈ 1 + 2Z then χH
is unitary and I(χH) is the direct sum of two tempered representations. If
a, c are distinct integers the sequence JH(I(χH)) of constituents, repeated
with their multiplicities, in the composition series of I(χH), consists of (1)
an irreducible finite-dimensional H-module ξH = ξH(χH) = ξH(a, c) of
dimension |a − c| (and central character z 7→ za+c), and (2) the two irre-
ducible square-integrable constituents of the packet ρ = ρ(a, c) (of highest
weight |a− c|+ 1) on which the center of the universal enveloping algebra
of H acts by the same character as on ξH .

The Langlands classification (see [BW], Ch. IV) defines a bijection be-
tween the set of packets and the set of Ĥ-conjugacy classes of homomor-
phisms from the Weil group WR to the dual group LH = Ĥ o WR (WR
acts on the connected component Ĥ = GL(2,C) by σ(h) = wth−1w−1

(= 1
dethh)), whose composition with the second projection is the identity.

Such homomorphism is called discrete if its image is not conjugate by Ĥ to
a subgroup of B̂H = BH oWR. The packet ρ(a, c) = ρ(c, a) corresponds to
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the homomorphism y(χH) = y(a, c) defined by

z 7→
(

(z/|z|)a 0

0 (z/|z|)c

)
× z, σ 7→

(
0 −1

1 0

)
× σ.

It is discrete if and only if a 6= c. Note that σ2 7→ −I × σ2, thus here a, c
are odd.

The composition y(a, b, c) of y(χH⊗κ−1) = y(a−2k−1, c−2k−1) with
the endo-lift map e : LH → LG is the homomorphism WR → LG defined
by

z 7→
(

(z/|z|)a 0

(z/|z|)b

0 (z/|z|)c

)
× z, σ 7→ J × σ.

Since σ2 7→ I×σ2, the a, b, c are even. Here b = w−a−c is determined by
a, c, and the central character, thus w. The corresponding G-packet π =
π(a, b, c) depends only on the set {a, b, c}. It consists of square integrables
if and only if a, b, c are distinct.

The irreducible representations of SU(2, 1) (up to equivalence) are de-
scribed in [Wh], §7. We proceed to summarize these results, but in the stan-
dard notations of normalized induction, which are used for example in [Kn],
and in our p-adic theory. Thus [Wh], (1) on p. 181, defines the induced rep-
resentation πΛ on space of functions transforming by f(gma) = eΛ(a)f(g),
while [Kn] defines the induced representation IΛ on space of functions trans-
forming by f(gma) = e(−Λ−ρ)(a)f(g). Thus

πΛ = I−Λ−ρ, π−Λ−ρ = IΛ,

and ρ is half the sum of the positive roots. Note that the convention in
representation theory of real groups is thatG acts on the left: (IΛ(h)f)(g) =
f(h−1g), while in representation theory of p-adic groups the action is by
right shifts: (I(Λ)(h)f)(g) = f(gh), and f transforms on the left: “f(mag)
= e(Λ+ρ)(ma)f(g)”. We write I(Λ) for right shift action, which is equivalent
to the left shift action IΛ of e.g. [Kn].

To translate the results of [Wh], §7, to the notations of [Kn], and ours,
we simply need to replace Λ of [Wh] by −Λ− ρ. Explicitly, we choose the
basis α1 = (1,−1, 0), α2 = (0, 1,−1) of simple roots in the root system
∆ of gC = sl(3,C) relative to the diagonal h (note that in the definition
of ∆+ in [Wh], p. 181, h should be H). The basic weights for this order
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are Λ1 =
(

2
3 ,−

1
3 ,−

1
3

)
, Λ2 =

(
1
3 ,

1
3 ,−

2
3

)
. [Wh] considers πΛ only for “G-

integral ” Λ = k1Λ1 + k2Λ2 (thus ki ∈ C, k1− k2 ∈ Z), and ρ = (1, 0,−1) =
α1 + α2 = Λ1 + Λ2. Then [Wh], 7.1, asserts that IΛ is reducible iff Λ 6= 0
and Λ is integral (ki ∈ Z), and [Wh], 7.2, asserts that IΛ is unitarizable iff
〈Λ, ρ〉 ∈ iR. The normalized notations IΛ are convenient as the infinitesimal
character of IsΛ for any element s in the Weyl group WC = S3 is the
WC-orbit of Λ. In the unnormalized notations of [Wh], p. 183, l. 13,
one has χΛ = χs(Λ+ρ)−ρ instead. The Weyl group WC is generated by
the reflections siΛ = Λ − 〈Λ, α∨i 〉αi, where α∨i = 2αi/〈αi, αi〉 is αi. Put
w0 = s1s2s1 = s2s1s2 for the longest element.

For integral ki = 〈Λ, αi〉 < 0 (i = 1, 2), [Wh], p. 183, l. −3, shows that
IΛ contains a finite-dimensional representation ξΛ. Thus ξΛ is a quotient
of Iw0Λ, and has infinitesimal character w0Λ and highest weight w0Λ − ρ.
Note that F in midpage 183 and F+ in 7.6 of [Wh] refer to integral and not
G-integral elements. For such Λ the set of discrete-series representations
sharing infinitesimal character (WC ·Λ) with ξΛ consists of D+

s1s2Λ
, D−s2s1Λ,

Dw0Λ ([Wh], 7.6, where “G” should be “Ĝ”). The holomorphic discrete-
series D+

s2w0Λ
is defined in [Wh], p. 183, as a subrepresentation of Is2w0Λ,

and it is a constituent also of Iw0s2w0Λ = Is1Λ ([Wh], 7.10) but of no
other IΛ′ . The antiholomorphic discrete-series D−s1w0Λ

is defined as a sub
of Is1w0Λ and it is a constituent of Is2Λ = Iw0s1w0Λ, but of no other IΛ′ .
The nonholomorphic discrete-series Dw0Λ is defined as a sub of Iw0Λ and
it is a constituent of IsΛ for all s ∈ WC, but of no other IΛ′ . It is generic.
dim ξΛ = 1 iff k1 = k2 = 1.

Let us repeat this with Λ positive: ki = 〈Λ, αi〉 > 0 (i = 1, 2) (we replace
Λ by w0Λ).
ξΛ is a quotient of IΛ;
D+
s2Λ

lies (only) in Is2Λ, Iw0s2Λ;
D−s1Λ lies (only) in Is1Λ, Iw0s1Λ;
DΛ lies in IsΛ for all s ∈WC. It is generic.

The induced IΛ is reducible and unitarizable iff Λ 6= 0 and 〈Λ, ρ〉 = 0,
thus k1 + k2 = 0, ki 6= 0 in Z, and Λ = k1(Λ1 − Λ2) = k1s2Λ2 = −k1s1Λ1.
The composition series has length two ([Wh], (i) and (ii) on p. 184, and
7.11). We denote them by π±Λ (corresponding to π±−Λ−ρ in [Wh]). These
π±Λ do not lie in any other IΛ′ than indicated next.

If k1 < 0 then Λ = −k1s1Λ1, π−Λ lies in IΛ and π+
Λ in IsΛ for all s ∈WC.
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Thus π−s1Λ lies in Is1Λ and π+
s1Λ

in IsΛ for all s ∈ WC, where Λ ≥ 0 has
k2 = 0, k1 > 0.

If k1 > 0 then Λ = k1s2Λ2, π+
Λ lies in IΛ and π−Λ in IsΛ for all s ∈WC.

Thus π+
s2Λ

lies in Is2Λ and π−s2Λ in IsΛ for all s ∈ WC, where Λ ≥ 0 has
k1 = 0, k2 > 0.

There are also nontempered unitarizable non one-dimensional represen-
tations J±k (k ≥ −1). J+

k is defined in [Wh], p. 184, as a sub of I−kΛ1−ρ,
thus a constituent of I−w0(kΛ1+ρ) = IΛ1+(k+1)Λ2 , and it is a constituent also
of I−s1(kΛ1+ρ) and I−s1s2(kΛ1+ρ) but of no other IΛ′ , unless k = −1 where
J+
−1 is a constituent of IsΛ1 for all s ∈WC.
Similarly J−k is a sub of I−kΛ2−ρ and a constituent of I−w0(kΛ2+ρ) =

I(k+1)Λ1+Λ2 , and a constituent of I−s2(kΛ2+ρ), I−s2s1(kΛ2+ρ) but of no other
IΛ′ , unless k = −1 where J−−1 is a constituent of IsΛ2 for all s ∈ WC (see
[Wh], 7.12, where in (1) Λ2 should be Λ1).

Let us express this with Λ > 0.
If k1 = 1, k2 = k + 1 ≥ 0, J+

k = J+
s2Λ

is a constituent of IΛ, Iw0Λ, Is2Λ,
Is2s1Λ.

If k2 = 1, k1 = k + 1 ≥ 0, J−k = J−s1Λ is a constituent of IΛ, Iw0Λ, Is1Λ,
Is1s2Λ.

To compare the parameters k1, k2 of IΛ with the (a, b, c) of our induced
I(χ), which is Ind(δ1/2G χ;B,G), note that Λ(diag(x, y/x, 1/y)) = xk1yk2

and χ(diag(x, y/x, 1/y)) = xa−byb−c. Thus k1 = a− b, k2 = b− c. We then
write I(a, b, c) for IΛ with k1 = a− b, k2 = b− c, extended to U(2,1) with
central character w = a + b + c. If tgJg = J and z = det g, then zz = 1,
thus z = eiθ, −π < θ ≤ π, then x = eiθ/3 has that h = x−1g satisfies
thJh = J and xx = 1, and deth = 1. Note that Is1Λ gives I(b, a, c) and
Is2Λ gives I(a, c, b).

Here is a list of all irreducible unitarizable representations with infini-
tesimal character Λ = k1Λ1 + k2Λ2, integral ki ≥ 0, Λ 6= 0.
k1 = k2 = 1: ξΛ, J+

0 , J−0 , D+
s2Λ

, D−s1Λ, DΛ.
k1 > 1, k2 > 1: ξΛ, D+

s2Λ
, D−s1Λ, DΛ.

k1 > 1, k2 = 1: ξΛ, J−k1−1, D
+
s2Λ

, D−s1Λ, DΛ.
k1 = 1, k2 > 1: ξΛ, J+

k2−1, D
+
s2Λ

, D−s1Λ, DΛ.
k1 = 0, k2 > 1: π+

k2s2Λ2
, π−k2s2Λ2

.
k1 > 1, k2 = 0: π+

k1s1Λ1
, π−k1s1Λ1

.
k1 = 0, k2 = 1: J−−1, π

+
s2Λ2

, π−s2Λ2
.
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k1 = 1, k2 = 0: J+
−1, π

+
s1Λ1

, π−s1Λ1
.

Here is a list of composition series. Λ ≥ 0 6= Λ.
IΛ has ξΛ, J+

s2Λ
(unitarizable iff k1 = 1, k2 ≥ 0), J−s1Λ (unitarizable iff

k2 = 1, k1 ≥ 0), DΛ.
Is1Λ has J−s1Λ (unitarizable iff k2 = 1, k1 ≥ 0), D−s1Λ, DΛ.
Is2Λ has J+

s2Λ
(unitarizable iff k1 = 1, k2 ≥ 0), D+

s2Λ
, DΛ.

k1 = 0, k2 = 1: Is1Λ2 has J−s1Λ2
, π−s2Λ2

.
k1 = 1, k2 = 0: Is2Λ1 has J+

s2Λ1
, π+

s1Λ1
.

To fix notations in a manner consistent with the nonarchimedean case,
note that if µ is a one-dimensional H-module then there are unique integers
a ≥ b ≥ c with a + b + c = w and either (i) a = b + 1, µ = ξH(a, b), or
(ii) b = c + 1, µ = ξH(b, c). If the central character on the U(1,1)-part
is z 7→ z2k+1, case (i) occurs when w − 3k ≤ 1, while case (ii) occurs if
w − 3k ≥ 2.

If, in addition, a > b > c, put π×µ = J+
s2Λ

, π−µ = D−s1Λ, and π+
µ =

DΛ ⊕ D+
s2Λ

in case (i), π×µ = J−s1Λ, π−µ = D+
s2Λ

and π+
µ = DΛ ⊕ D−s1Λ

in case (ii). DΛ, hence π+
µ , is generic in both cases. {π×µ , π+

µ } make the
composition series of an induced representation.

The motivation for this choice of notations is the following character
identities. Put

ρ = ρ(a, c)⊗ κ−1, ρ− = ρ(b, c)⊗ κ−1, ρ+ = ρ(a, b)⊗ κ−1.

Then {ρ, ρ+, ρ−} is the set of H-packets which lift to the G-packet π =
π(a, b, c) via the endo-lifting e. As noted above, ρ, ρ+ and ρ− are distinct
if and only if a > b > c, equivalently π consists of three square-integrable
G-modules. Moreover, every square-integrable H-packet is of the form ρ,
ρ+ or ρ− for unique a ≥ b ≥ c, a > c.

If a = b = c then ρ = ρ+ = ρ− is the H-packet which consists of the
constituents of I(χH(a, c)⊗ κ−1), and π = I(χ(a, b, c)) is irreducible.

If a > b = c put 〈ρ, π+〉 = 1, 〈ρ, π−〉 = −1.
If a = b > c put 〈ρ, π+〉 = −1, 〈ρ, π−〉 = 1.
If a > b > c put 〈ρ̃, DΛ〉 = 1 for ρ̃ = ρ, ρ+, ρ−, and:

〈ρ, D+
s2Λ
〉 = −1, 〈ρ, D−s1Λ〉 = −1;

〈ρ+, D+
s2Λ
〉 = 1, 〈ρ+, D−s1Λ〉 = −1;

〈ρ−, D+
s2Λ
〉 = −1, 〈ρ−, D−s1Λ〉 = 1.
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16.1 Proposition ([Sd]). For all matching measures fdg on G and
fHdh on H, we have

tr ρ̃(fHdh) =
∑
π′∈π
〈ρ̃, π′〉 trπ′(fdg) (ρ̃ = ρ, ρ+ or ρ−).

From this and the character relation for induced representations we con-
clude the following

16.2 Corollary. For every one-dimensional H-module µ and for all
matching measures fdg on G and fHdh on H we have

trµ(fHdh) = trπ×µ (fdg) + trπ−µ (fdg).

Let ρ be a tempered H-module, π the endo-lift of ρ (then π is a G-
packet), ρ′ be the basechange lift of ρ (thus ρ′ is a σ-invariant H ′-module),
and π′ = I(ρ′) be the G′-module normalizedly induced from ρ′ (we regard
H ′ as a Levi subgroup of a maximal parabolic subgroup of G′). Then

16.3 Proposition ([Cl1]). We have trπ(fdg) = trπ′(φdg′×σ) for all
matching fdg on G and φdg′ on G′.

From this and the character relation for induced representations we con-
clude the following

16.4 Corollary. For all matching measures fdg on G and φdg′ on G′

and every one-dimensional H-module µ we have

tr I(µ′;φdg′ × σ) = trπ×µ (fdg)− trπ−µ (fdg).

Our next aim is to determine the (g,K)-cohomology of the G-modules
described above, where g denotes the complexified Lie algebra of G. For
that we describe the K-types of these G-modules, following [Wh], §7, and
[BW], Ch. VI. Note that G = U(2, 1) can be defined by means of the form

J ′ =
(
−1 0

−1

0 1

)
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whose signature is also (2,1) and it is conjugate to

J =
(

0 1

−1

1 0

)
by B =


1/
√

2 0 1/
√

2

0 1 0

1/
√

2 0 −1/
√

2

 = B−1

of [Wh], p. 181. To ease the comparison with [Wh] we now take G to be
defined using J ′. In particular we now take A to be the maximal torus of G
whose conjugate by B is the diagonal subgroup of G(J). A character χ of
A is again associated with (a, b, c) in C3 such that a+ c and b are integral,
and I(χ) denotes the G-module normalizedly induced from χ extended to
the standard Borel subgroup B.

The maximal compact subgroup K of G is isomorphic to U(2)×U(1). It

consists of the matrices
(
αu 0

0 µ

)
; u in SU(2); α, µ in U(1) = C1. Note that

A ∩K consists of γ diag(α, α−2, α). The center of K consists of γ diag(α,
α, α−2).

Let πK denote the space of K-finite vectors of the admissible G-module
π. By Frobenius reciprocity, as a K-module I(χ)K is the direct sum of the
irreducible K-modules h, each occurring with multiplicity

dim[HomA∩K(χ, h)].

The h are parametrized by (a′, b′, c′) in Z3, such that dim h = a′ + 1, and
the central character of h is

γ diag(µ, µ, µ−2) 7→ µb
′
γc
′
;

hence b′ ≡ c′(mod 3) and a′ ≡ b′(mod 2). In this case we write h =
h(a′, b′, c′). For any integers a, b, c, p, q with p, q ≥ 0 we also write

hp,q = h(p+ q, 3(p− q)− 2(a+ c− 2b), a+ b+ c).

16.5 Lemma. The K-module I(χ)K , χ = χ(a, b, c), is isomorphic to
⊕p,q≥0hp,q.

Proof. The restriction of h = h(a′, b′, c′) to the diagonal subgroup

D = {γ diag(βα, β/α, β−2)}
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of K is the direct sum of the characters αnβb
′
γc
′

over the integral n with
−a′ ≤ n ≤ a′ and n ≡ a′(mod 2). Hence the restriction of h to A ∩ K is
the direct sum of the characters γ diag(α, α−2, α) 7→ α(3n−b′)/2γc

′
. On the

other hand, the restriction of χ = χ(a, b, c) to A ∩K is the character

λ diag(α, α−2, α) 7→ αa+c−2bλa+b+c.

If −a ≤ n ≤ a′ and n ≡ a′ (mod 2), there are unique p, q ≥ 0 with a′ = p+q,
and n = p− q. Then h(a′, b′, c′)|(A ∩K) contains χ(a, b, c)|(A ∩K) if and
only if there are p, q ≥ 0 with

a′ = p+ q, b′ = 3(p− q)− 2(a+ c− 2b) c′ = a+ b+ c,

as required. �

Definition. For integral a, b, c put χ = χ(a, b, c), χ− = χ(b, a, c),
χ+ = χ(a, c, b). Also write

h−p,q = h(p+ q, 3(p− q)− 2(b+ c− 2a), a+ b+ c),

and
h+
h,q = h(p+ q, 3(p− q)− 2(a+ b− 2c), a+ b+ c).

Lemma 16.5 implies that (the sums are over p, q ≥ 0)

I(χ)K = ⊕hp,q, I(χ+)K = ⊕h+
p,q, I(χ−)K = ⊕h−p,q.

Definition. Write JH(π) for the unordered sequence of constituents
of the G-module π, repeated with their multiplicities.

If a > b > c then JH(I(χ)) = {ξ, J+, J−, D}. By [Wh], 7.9, the K-type
decomposition of the constituents is of the form ⊕hp,q. The sums range
over:
(1) p < a− b, q < b− c for ξ; (2) p ≥ a− b, q < b− c for J−; (3) p < a− b,
q ≥ b− c for J+;
(4) p ≥ a− b, q ≥ b− c for D. D is the unique generic constituent here and
in the next two cases.

Next, JH(I(χ−)) = {J−, D−, D}. The K-types are of the form ⊕h−p,q,
with sums over: (1) p ≥ 0, a − b ≤ q < a − c for J−; (2) p ≥ 0, q < a − b
for D−; (3) p ≥ 0, q ≥ a− c for D.
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Finally, JH(I(χ+)) = {J+, D+, D}. The K-types are of the form ⊕h+
p,q,

with sums over: (1) b− c ≤ p < a− c, q ≥ 0 for J+; (2) p < b− c, q ≥ 0 for
D+; (3) p ≥ a− c, q ≥ 0 for D.

Recall that J− is unitary if and only if b − c = 1, and J+ is unitary if
and only if a− b = 1.

If a > b = c (resp. a = b > c) then χ− (resp. χ+) is unitary, and I(χ−)
(resp. I(χ+)) is the direct sum of the unitary G-modules π+ and π−. The
K-type decomposition is as follows. If a > b = c:

π+
K = ⊕h+

p,q (p ≥ 0, q ≥ a− b), π−K = ⊕h+
p,q (p ≥ 0, q < a− b).

If a = b > c:

π+
K = ⊕h−p,q (p ≥ b− c, q ≥ 0), π−K = ⊕h−p,q (p < b− c, q ≥ 0).

Moreover, JH(I(χ)) is {π× = J+, π+} if a > b = c (π+ is generic, π−, J+

are not), and {π× = J−, π−} if a = b > c (π− is generic, π+, J− are not).
The corresponding K-type decompositions are

J− = ⊕hp,q (p < a− b, q ≥ 0), J+ = ⊕hp,q (p ≥ 0, q < b− c).

As noted above, J+ is unitary if and only if a− 1 = b ≥ c;
J− is unitary if and only if a ≥ b = c+ 1.

Next we define holomorphic and anti-holomorphic vectors, and describe
those G-modules which contain such vectors. We have the vector spaces of
matrices

P+ =
{(

0 0 0

0 0 0

x y 0

)}
, P− =

{(
0 0 x

0 0 y

0 0 0

)}
,

in the complexified Lie algebra g = M(3,C). These P+, P− are K-
modules under the adjoint action of K, clearly isomorphic to h(1, 3, 0) and
h(1,−3, 0).

Definition. A vector in the space πK of K-finite vectors in a G-module
π is called holomorphic if it is annihilated by P−, and anti-holomorphic if
it is annihilated by P+.
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16.6 Lemma. If I(χ) is irreducible then I(χ)K contains neither holo-
morphic nor anti-holomorphic vectors.

Proof. The K-modules P+ = h(1, 3, 0) and P− = h(1,−3, 0) act by

h(1, 3, 0)⊗ h(a, b, c) = h(a+ 1, b+ 3, c)⊕ h(a− 1, b+ 3, c)

and

h(1,−3, 0)⊗ h(a, b, c) = h(a+ 1, b− 3, c)⊕ h(a− 1, b− 3, c).

Hence the action of P+ on I(χ)K maps hp,q to hp+1,q ⊕ hp,q−1, and that
of P− maps hp,q to hp,q+1⊕ hp−1,q. Consequently if hp′,q′ is annihilated by
P+, then ⊕hp,q (p ≥ p′, q ≤ q′) is a (g,K)-submodule of I(χ), and if P−

annihilates hp′,q′ then ⊕hp,q (p ≤ p′, q ≥ q′) is a (g,K)-submodule of I(χ).
The lemma follows. �

Definition. Denote by πhol
K the space of holomorphic vectors in πK ,

and by πah
K the space of anti-holomorphic vectors.

The proof above implies also the following

16.7 Lemma. (i) The irreducible unitary G-modules with holomorphic
vectors are

(1) π = D+(a, b, c), where a > b > c; then

πhol
K = h(a− b− 1, a+ b− 2c+ 3, a+ b+ c);

(2) π = J−(a, b, b− 1), with a ≥ b; then

πhol
K = h(a − b, a − b + 2, a + 2b − 1);

(3) π = π+(a, b, b), with a > b; then

πhol
K = h(a− b− 1, a− b+ 3, a+ 2b).

(ii) The irreducible unitary G-modules with antiholomorphic vectors are
(1) π = D−(a, b, c), where a > b > c; then

πah
K = h(b − c − 1, b + c − 2a − 3, a + b + c);
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(2) π = J+(b+ 1, b, c), with b ≥ c; then

πah
K = h(b− c, c− b− 2, 2b+ c+ 1);

(3) π = π−(a, a, c), with a > c; then

πah
K = h(a− c− 1, c− a− 3, 2a+ c).

We could rename the J±, but decided to preserve the notations induced
from [Wh].

Let ξ = ξa,b,c be the irreducible finite-dimensionalG-module with highest
weight

diag(x, y, z) 7→ xa−1ybzc+1.

It is the unique finite-dimensional quotient of I(χ), χ = χ(a, b, c), a > b > c.
Let ξ̃ denote the contragredient of ξ. Let π be an irreducible unitary G-
module. Denote by Hj(g,K;π ⊗ ξ̃) the (g,K)-cohomology of π ⊗ ξ̃. This
cohomology vanishes, by [BW], Theorem 5.3, p. 29, unless π and ξ have
equal infinitesimal characters, namely π is associated with the triple (a, b, c)
of ξ. It follows from theK-type computations above that one has (cf. [BW],
Theorem VI.4.11, p. 201) the following

16.8 Proposition. If Hj(π ⊗ ξ̃) 6= 0 for some j then π is one of the
following.

(1) If π is D(a, b, c), D+(a, b, c) or D−(a, b, c) (and a > b > c) then
Hj(π ⊗ ξ̃) is C if j = 2 and 0 if j 6= 2. Such π have Hodge types (1, 1),
(2, 0), (0, 2), respectively. Only D is generic.

(2) If π is J+(a, b, c) with a − b = 1 or J−(a, b, c) with b − c = 1 then
Hj(π⊗ ξ̃) is C if j = 1, 3 and 0 if j 6= 1, 3. Such π have Hodge types (0, 1),
(0, 3) and (1, 0), (3, 0), respectively.

(3) Hj(ξ ⊗ ξ̃) is 0 unless j = 0, 2, 4 when it is C. The Hodge types of ξ
are (0, 0), (1, 1), (2, 2).

IV.3 Finite-dimensional representations

The group G′ = RF/QG, G = GU(1, 2;E/F ), is isomorphic over Q, in fact
over the Galois closure F ′ of F , to

∏
σ Gσ, Gσ = GU(1, 2;σE/σF ), σE =
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E ⊗F,σ σF . Here σ ranges over S = Gal(Q/Q)/Gal(Q/F ), = Emb(F,Q)
and so G′ = {(gσ); gσ ∈ Gσ}.

An irreducible representation (ξξξ,V) of G′ over Q has the form (gσ) 7→
⊗ξσ(gσ), where ξσ is a representation (irreducible and finite dimensional)
of Gσ. In fact in our case it has the form (ξa,b,c = ⊗σ∈Sξaσ,bσ,cσ , Va,b,c =
⊗σ∈SVaσ,bσ,cσ ), where aσ > bσ > cσ for all σ ∈ S, and ξaσ,bσ,cσ is as in
16.8.

The Galois group Gal(Q/Q) acts by ϕ((gσ)) = ((ϕgσ)ϕσ) = ((ϕgϕ−1σ)σ).
The fixed points are the (gσ) with gσ = σg1, where g1 ranges over G(F )
(the “1” indicates the fixed embedding F ↪→ Q). Thus G′(Q) = G(F ) and
G′(R) =

∏
S G(R) with |S| = [F : Q] since F is totally real; S is also the

set of embeddings F ↪→ R.
Now if the representation ξξξ is defined over Q, it is fixed under the

action of Gal(Q/Q). Thus ⊗σξσ(gσ) = ⊗σξϕσ(ϕgσ). The element g =
(g1, 1, . . . , 1) (thus gσ = 1 for all σ 6= 1) is mapped by ϕ to

(1, . . . , 1, ϕg1, 1, . . . , 1)

(the entry ϕg1 is at the place parametrized by ϕ). Hence ξ1(g1) equals
ξϕ(ϕg1) (both are equal to ξ(g)(= ξ(ϕg))). Hence ξϕ = ϕξ1(: g1 7→
ξ1(ϕ−1g1)), and the components ξϕ of ξ are all translates of the same rep-
resentation ξ1. For (gσ) = (σg1) in G′(Q) = G(F ),

ξξξ((gσ)) = ⊗σξσ(σg1) = ⊗σξ1(g1) = ξ1(g1)⊗ · · · ⊗ ξ1(g1) ([F :Q] times).

Next we wish to compute the factors at ∞ of each of the terms in
STFG(f) and TFH(fH). The functions f∞ (= h∞ of [Ko5], p. 186) and
fH,∞ are products ⊗fσ and ⊗fHσ over σ in S. We fixed a Q-rational
finite-dimensional representation

(ξξξ, Vξξξ) = (ξa,b,c = ⊗σ∈Sξaσ,bσ,cσ , Va,b,c = ⊗σ∈SVaσ,bσ,cσ ), aσ > bσ > cσ

for all σ ∈ S, of the Q-group G′. The triple (aσ, bσ, cσ) is independent of σ
only if ξξξ is defined over Q. Denote by {ξπσ} the packet of discrete-series rep-
resentations of G(R) which share infinitesimal character (i.e. (aσ, bσ, cσ))
with ξξξ.

For any (ξ, V ), the packet {ξπσ} consists of three irreducible represen-
tations D, D+ and D−. It is the e-lift of the following representations of
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H(R) = U(1, 1; R)×U(1; R):
ρ+ × ρ(cσ), where ρ+ = ρ(aσ, bσ)⊗ κ−1,
ρ× ρ(bσ), where ρ = ρ(aσ, cσ)⊗ κ−1, and
ρ− × ρ(aσ), where ρ− = ρ(bσ, cσ)⊗ κ−1.

Denote by h(D′) a pseudo-coefficient of the representation D′. Then
h(ρ⊗ ρ(bσ)) matches h(D)− h(D+)− h(D−),
h(ρ+ ⊗ ρ(cσ)) matches h(D) + h(D+)− h(D−), and
h(ρ− ⊗ ρ(aσ)) matches h(D)− h(D+) + h(D−).

Following [Ko5], p. 186, we put

fH,σ = −h(ρ⊗ ρ(bσ)) + h(ρ+ ⊗ ρ(cσ)) + h(ρ− ⊗ ρ(aσ))

and fG,σ = 1
3 [h(D) + h(D+) + h(D−)]. Put H ′ = RF/QH,

fG′,∞ = ξfG′,∞ =
∏
σ∈S

fG,σ, fH′,∞ = ξfH′,∞ =
∏
σ∈S

fH,σ.

Note that q(G′) = [F :Q]q(G) is half the real dimension of the symmetric
space attached to G′(R), and q(G) is that of G(R). Thus q(G) = 2 in our
case.

Then trDΛ(fG,σ) = 1
3 , trD±Λ (fG,σ) = 1

3 , tr{DΛ}(fG,σ) = 1.
When a− b = 1, we have in addition tr J+

s2Λ
(fG,σ) = − 2

3 .
When b− c = 1, we have tr J−s1Λ(fG,σ) = − 2

3 .
When a− b = 1 = b− c, we have in addition tr ξ(fG,σ) = 1.
Note that if π contributes to I(G, 4) then its archimedean components

πσ have infinitesimal characters with aσ − bσ = 1 or bσ − cσ = 1 for all
σ ∈ S.

There are contributions to I(G, 2), I(G, 3), I(G, 4) precisely when there
are corresponding contributions to the corresponding terms in the trace
formula of H, as is listed in section II.6.
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V.1 Stable case

We shall study the decomposition of the semisimplification of the the étale
cohomology

H∗c = H∗c (SKf
⊗F F,Va,b,c;λ)

with compact supports and coefficients in the representation (ξa,b,c, Va,b,c),
aσ > bσ > cσ for each σ ∈ S, as a Cc[Kf\G′(Af )/Kf ] × Gal(Qp/E℘)-
module, by means of Deligne’s conjecture on the Lefschetz fixed point for-
mula. Its expression as a sum of trace formulae for G′ and H at the test
functions specified above shows that this module decomposes as a virtual
sum of πKf

f ⊗H∗c (πf ), where the πf range over the finite parts of discrete-
spectrum representations π = πf ⊗ π∞ of G′(AQ) = G(A) and π∞ are
irreducible (g,K)-modules with central and infinitesimal characters deter-
mined by those of Va,b,c. Thus we fix such a representation π of G(A) and
examine the πf -isotypic contribution.

We start with a π which occurs in the stable spectrum, namely in I(G, 1).
In general, we have trace formulae evaluated at certain test functions.

Since π is stable, only the trace formula for G′ occurs. The choice of the
function ξfG′,∞ guarantees that the components πσ of the π which occur
in the trace formula for G′ lie in the packet {D, D+, D−}, aσ > bσ > cσ
determined by ξ, at each archimedean place σ ∈ S. Indeed, as π occurs in
I(G, 1), its components are never the nontempered π×v , thus not J±.

Let us compute trH∗c (πf )(Frj℘) = tr[Frj℘ | trH∗c (πf )] for a place ℘ of E
over an unramified place p of Q.

Suppose that πKf

f 6= 0. In particular the component at p of π is unram-
ified. It has the form ⊗u|pπu, πu = π(µ1u, µ2u, µ3u) if Eu = Fu ⊕ Fu and
πu = π(µ1u) if Eu is a field.

We use a correspondence fp, which is a Kp
f -biinvariant compactly sup-

ported function on G(Apf ). Since there are only finitely many discrete-
spectrum representations of G(A) with a given infinitesimal character (de-
termined by ξ) and a nonzero Kf -fixed vector, we can choose fp to be

462
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a projection onto {πKf

f }. Recall that ju = (jn℘, nu) and write µmu for

µmu(πππu), m = 1, 2, 3. Then the trace of the action of Frj℘ on the {πKf

f }-
isotypic component of H∗c (SKf

⊗F F,Vξ) is

q
j
2 dimSKf
℘ ·

∏
u|p

(
µ

jn℘
ju

1u + µ
jn℘
ju

2u + µ
jn℘
ju

3u

)ju
.

Thus the {πKf

f }-isotypic part of H2[F :Q]
c (namely the πKf

f -isotypic part

for each member of the packet) is of the form {πKf

f } ⊗ H∗c ({πf}), where
H∗c ({πf}) is a 3[F :Q]-dimensional representation of Gal(Q/E). The 3#{u|p}

nonzero eigenvalues t of the action of Fr℘ include q
1
2 dimSKf
℘

∏
u|p
µ
n℘

m(u),u,

where m(u) ∈ {1, 2, 3}. This we see first for sufficiently large j by Deligne’s
conjecture, but then for all j ≥ 0, including j = 1, by multiplicativity.

Standard unitarity estimates on GL(3,AE) and the basechange lifting
from U(3, E/F ) to GL(3, E) imply that |µiu|±1 < q

1/2
u at each place u of

F which splits in E, and that |µ1u|±1 < q
1/2
u = qEu if u is a place of F

which stays prime and is unramified in E. Hence the Hecke eigenvalues are

bounded by
∏
u|p q

n℘/2
u = p

n℘
2

∑
u|p

[Fu:Qp] = q
1
2 [F :Q]
℘ = (√q℘)

1
2 dimS .

Deligne’s “Weil conjecture” purity theorem asserts that the Frobenius
eigenvalues are algebraic numbers and all their conjugates have equal com-
plex absolute values of the form q

i/2
℘ (0 ≤ i ≤ 2 dimS). This is also referred

to as “mixed purity”. The eigenvalues of Fr℘ on IHi have complex absolute
values equal qi/2℘ , by a variant of the purity theorem due to Gabber. We
shall use this to show that the absolute values in our case are all equal to

q
1
2 dimS
℘ .

The cuspidal π define part not only of the cohomology Hi
c(SKf

⊗E Q,V)
but also part of the intersection cohomology IHi(S ′Kf

⊗E Q,V). By the
Zucker isomorphism it defines a contribution to the L2-cohomology, which
is of the form π

Kf

f ⊗Hi(g,K∞;π∞⊗Vξ(C)). We shall compute this (g,K∞)-
cohomology space to know for which i there is nonzero contribution corre-
sponding to our πf . We shall then be able to evaluate the absolute values
of the conjugates of the Frobenius eigenvalues using Deligne’s “Weil con-
jecture” theorem.

By Proposition 16.8 the space Hi,j(g,K;π ⊗ ξ̃a,b,c) is 0 for π = D,
D+, D− (indexed by a > b > c) except when (i, j) = (1, 1), (2, 0), (0, 2)
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(respectively), when this space is C. From the “Matsushima-Murakami”
decomposition of section I.2, first for the L2-cohomology H(2) but then
by Zucker’s conjecture also for IH∗, and using the Künneth formula, we
conclude that IHi(πf ) is zero unless i is equal to dimSKf

= 2[F : Q],
and there dim IH2[F :Q](πf ) is 3[F :Q] (as there are [F : Q] real places of
F ). Since πf is the finite component of cuspidal representations only, πf
contributes also to the cohomologyHi

c(SKf
⊗EQ,Va,b,c;λ) only in dimension

i = 2[F :Q], and dimH
2[F :Q]
c (πf ) = 3[F :Q]. This space depends only on the

packet of πf and not on πf itself.

Deligne’s theorem [D4] (in fact its IH-version due to Gabber) asserts
that the eigenvalues t of the Frobenius Fr℘ acting on the `-adic intersection
cohomology IHi of a variety over a finite field of q℘ elements are algebraic
and “pure”, namely all conjugates have the same complex absolute value, of
the form q

i/2
℘ . In our case i = dimSKf

= 2[F : Q], hence the eigenvalues of

the Frobenius are algebraic and each of their conjugates is q[F :Q]
℘ in absolute

value. Consequently the eigenvalues µ1u, µ2u, µ3u are algebraic, and all of
their conjugates have complex absolute value 1.

Note that we could not use only “mixed-purity” (that the eigenvalues are
powers of q1/2℘ in absolute value) and the unitarity estimates |µmu|±1 < q

1/2
u

on the Hecke eigenvalues, since the estimate (less than (√q℘)
1
2 dimS away

from (√q℘)dimS) does not define the absolute value ((√q℘)dimS) uniquely.
This estimate does suffice to show unitarity when dimS = 1.

In summary, the representation H∗c (πf ) of Gal(Q/E) attached to the
finite part πf of a cuspidal π in the stable discrete spectrum, depends
only on the packet of πf , its dimension is 3[F :Q], and it makes the same
contribution toH∗c and to IH∗. Its restriction to Gal(Qp/E℘) is unramified,

and the trace of H∗c (Fr℘) on the {πKf

f }-isotypic part of H2[F :Q]
c is equal

to the trace of ⊗ν−1/2
u ru(t(πu) × Fr℘). Here (ru, (C3)[Fu:Qp]) denotes the

twisted tensor representation of LRFu/Qp
G = Ĝ[Fu:Qp] o Gal(Fu/Qp), Fr℘

is Fr[E℘:Qp]
p , and νu is the character of LRFu/Qp

G which is trivial on the
connected component of the identity and whose value at Frp is p−1. The
eigenvalues of t(πu) and all of their conjugates lie on the complex unit
circle.
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V.2 Unstable case

We continue by fixing a cuspidal representation π with πσ in {D, D+, D−},
determined by ξσ = ξ(aσ, bσ, cσ), for all σ in S, and with πKf 6= 0. But
now we assume π occurs in the unstable spectrum, say in I(G, 2). We fix
a correspondence fp which projects to the packet {πpf}. Since the function
fpH is chosen to be matching fp, by [F3;VIII] the contribution to the first
part I(H, 1) of the stable trace formula of H is precisely that parametrized
by a cuspidal representation ρ̃ 6= ρ(θ, ′θ)× ′′θ of U(2,A)× U(1,A). Its real
component is ⊗σρ̃σ, where ρ̃σ is ρ+

σ = ρ(aσ, bσ) × ρ(cσ), ρσ = ρ(aσ, cσ) ×
ρ(bσ) or ρ−σ = ρ(bσ, cσ)× ρ(aσ), and ρ(a) : z 7→ za.

Each component πv of an irreducible π = ⊗πv in the packet {π = π(ρ̃)}
has a sign 〈ρ̃v, πv〉 ∈ {±1}. Thus the sign 〈ρ̃f , πf 〉 =

∏
v<∞〈ρ̃v, πv〉 of πf

is +1 if the number of its components π−v is even, in which case we denote
πf by π+

f , otherwise the sign 〈ρ̃f , πf 〉 is −1 and we denote πf by π−f . Write
{πf}+ for the set of π+

f , and {πf}− for the set of π−f .
At the archimedean places σ : F ↪→ R the sign of πσ in {D, D+, D−}

depends on ρ̃σ: 〈ρ,D〉 = 1 and 〈ρ,D±〉 = −1; 〈ρ+, D〉 = 1 = 〈ρ+, D+〉
and 〈ρ+, D−〉 = −1; and 〈ρ−, D〉 = 1 = 〈ρ−, D−〉, 〈ρ−, D+〉 = −1. Then
〈ρ̃, π〉 = 〈ρ̃f , πf 〉

∏
σ〈ρ̃σ, πσ〉. An irreducible π in {π(ρ̃)} is automorphic,

necessarily cuspidal, when π has sign 〈ρ̃, π〉 equal 1.
The contribution of {π} to I(G, 2), for our test function f = fpf j℘fG,∞,

is
1
2

∏
σ∈S

tr{πσ}(fG,σ) · [tr{πf}+(fp) + tr{πf}−(fp)] · q
j
2 dimSKf
℘

·
∏
u|p

(
µ

jn℘
ju

1u + µ
jn℘
ju

2u + µ
jn℘
ju

3u

)ju
.

Here and below fp indicates — as suitable — its product with the unit
element of the G′(Zp)-Hecke algebra of G′(Qp).

The contribution to I(H, 1) corresponding to ρ̃ is

1
2

∏
σ∈S

tr{ρ̃σ}(fH,σ) · tr{ρ̃f}(fpH) · q
j
2 dimSKf
℘

·
∏
u|p

[
(−1)

nu
ju µ

jn℘
ju

1u + µ
jn℘
ju

2u + (−1)
nu
ju µ

jn℘
ju

3u

]ju
.
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By choice of fpH we have that tr{ρ̃f}(fpH) = tr{πf}+(fp)− tr{πf}−(fp).
The choice of fG,σ is such that tr{πσ}(fG,σ) = 1, tr{ρσ}(fH,σ) = −1,

tr{ρ±σ }(fH,σ) = 1.
We conclude that for each irreducible πf under discussion, the π

Kf

f -

isotypic part πKf

f ⊗H∗c (πf ) of H∗c depends only on {πf}〈ρ̃f ,πf 〉. Moreover

Frj℘ acts on H∗c ({πf}〈ρ̃f ,πf 〉) with trace 1
2q

j
2 dimSKf
℘ times

∏
u|p

(
µ

jn℘
ju

1u + µ
jn℘
ju

2u + µ
jn℘
ju

3u

)ju
+ 〈ρ̃f , πf 〉 ·

∏
σ∈S

tr{ρ̃σ}(fH,σ)

·
∏
u|p

[
(−1)

nu
ju µ

jn℘
ju

1u + µ
jn℘
ju

2u + (−1)
nu
ju µ

jn℘
ju

3u

]ju
.

For example, when F = Q and ρ̃σ is ρ, the trace of Frj℘ of H∗c (πf ) is

qj℘µ
jn℘

2u (and q℘ = p2 as E = E), but if ρ̃σ is ρ±, the trace is qj℘(µjn℘

1u +µjn℘

3u ).
We know that the space contributed by πf to H∗c is equal to the space

contributed by πf to IH∗, since π is cuspidal. This is compatible with the
computation of the dimensions of the contributions to these two cohomolo-
gies, using the L2-decomposition and using the computation of the trace
of the Frobenius. Indeed, given πf , it contributes (by Künneth formula
and the computation of the Lie algebra cohomology of D, D+, D−) only
to IHi with i = 2[F : Q]. The dimension of its contribution to IH2[F :Q] is
the number of ⊗σπσ such that

∏
σ〈ρ̃σ, πσ〉 is 〈ρ̃f , πf 〉, by the “Matsushima-

Murakami” formula of section I.2.
For example, if F = Q, dim IH2[F :Q](π+

f ) is 1 if ρ̃σ is ρ and 2 if ρ̃σ is ρ+ or
ρ−, and dimφ(π−f ) is 2 or 1, respectively. If [F : Q] = 2, dim IH2[F :Q](π+

f )
is 1 · 1 + 2 · 2 = 5 if ⊗σρ̃σ is ρ ⊗ ρ, 1 · 2 + 2 · 1 = 4 if ⊗σρ̃σ is ρ ⊗ ρ±,
and 2 · 2 + 1 · 1 = 5 if ⊗σρ̃σ is ρ± ⊗ ρ±, while dim IH2[F :Q](π−f ) is 4, 5, 4,
respectively.

As in the stable case we conclude from Gabber’s purity theorem for
IH2[F :Q] and the fact that cuspidal representations make the same contri-
bution to H∗c and to IH∗, that the Hecke eigenvalues µmu are algebraic and
their conjugates all lie in the unit circle in C. But this follows already from
the theory for the group U(2, E/F ), as the π which contribute to I(G, 2)
are lifts of πH on H.
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We continue by fixing a cuspidal representation π with πσ in {D, D+,

D−}, determined by ξσ = ξ(aσ, bσ, cσ), for all σ in S and with πKf 6= 0.
But now we assume π occurs in the unstable spectrum which contributes
to I(H, 3). We fix a correspondence fp which projects to the packet
{πpf}. Since the function fpH is chosen to be matching fp, by [F3;VIII]
the contribution to the part I(H, 2) of the stable trace formula of H is pre-
cisely that parametrized by the cuspidal representations ρ1 = ρ(θ, ′θ)× ′′θ,
ρ2 = ρ(θ, ′′θ)× ′θ, ρ3 = ρ(′θ, ′′θ)× θ, of U(2,A)× U(1,A). The components
ρiv (v <∞) of ρi define signs 〈ρiv, πv〉 in {±1} on the irreducible πv in the
packet {πv}, hence signs 〈ρi, πf 〉 =

∏
v<∞〈ρiv, πv〉 on the irreducibles πf

in the packet {πf}. The product is well defined as 〈ρiv, πv〉 are 1 when πv
is unramified or v splits. Write {πf}a,b for the πf = ⊗v<∞πv in {πf} with
〈ρ1, πf 〉 = a, 〈ρ2, πf 〉 = b. Then 〈ρ3, πf 〉 = ab.

The contribution of {π} to I(G, 3) for our test function f = fpf j℘fG,∞
is

1
4

∏
σ∈S

tr{πσ}(fG,σ) ·

 ∑
a,b∈{±1}

tr{πf}a,b(fp)

 · q j
2 dimSKf
℘

·
∏
u|p

(
µ

jn℘
ju

1u + µ
jn℘
ju

2u + µ
jn℘
ju

3u

)ju
.

Here and below fp indicates — as suitable — its product with the unit
element of the G′(Zp)-Hecke algebra of G′(Qp).

The corresponding contribution to I(H, 2), attached to ρi (1 ≤ i ≤ 3), is

1
4

∑
1≤i≤3

∏
σ∈S

tr{ρi,σ}(fH,σ) · tr{ρi,f}(fpH) · q
j
2 dimSKf
℘

·
∏
u|p

[
(−1)

nu
ju µ

jn℘
ju

1(i),u + µ
jn℘
ju

2(i),u + (−1)
nu
ju µ

jn℘
ju

3(i),u

]ju
.

By choice of fpH we have that tr{ρi,f}(fpH) is∑
a,b

〈ρi,f , {πf}a,b〉 tr{πf}a,b(fp),

where

〈ρ1,f , {πf}a,b〉 = a, 〈ρ2,f , {πf}a,b〉 = b, 〈ρ3,f , {πf}a,b〉 = ab.
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The choice of fG,σ is such that tr{πσ}(fG,σ) = 1, tr{ρσ}(fH,σ) = −1,
tr{ρ±σ }(fH,σ) = 1.

We conclude that for each irreducible πf under consideration, H∗c (πf ) =
H∗c (π

′
f ) if 〈ρi,f , πf 〉 = 〈ρi,f , π′f 〉 for all i. Then Frj℘ acts on H∗c (πf ) with

trace 1
4q

j
2 dimSKf
℘ times

∏
u|p

(
µ

jn℘
ju

1u + µ
jn℘
ju

2u + µ
jn℘
ju

3u

)ju
+
∑

i=1,2,3

〈ρi,f , πf 〉
∏
σ∈S

tr{ρi,σ}(fH,σ)

·
∏
u|p

[
(−1)

nu
ju µ

jn℘
ju

1(i),u + µ
jn℘
ju

2(i),u + (−1)
nu
ju µ

jn℘
ju

3(i),u

]ju
.

As for the contribution of πf to IH∗, each π = ⊗σπσ such that

m(π) =
1
4

1 +
∑

1≤i≤3

〈ρi,f , πf 〉
∏
σ

〈ρi,σ, πσ〉


is 1 contributes 1 to the dimension of the πf -isotypic part IH∗(πf ) of IH∗,
in fact IHi with i = 2[F : Q]. Thus this dimension is the number of ⊗σπσ
such that πf ⊗ (⊗σπσ) is cuspidal.

For example, suppose that F = Q and ρ1σ = ρ(aσ, cσ) × ρ(bσ), ρ2σ =
ρ(aσ, bσ) × ρ(cσ), ρ3σ = ρ(bσ, cσ) × ρ(aσ), aσ > bσ > cσ. If 〈ρ1f , πf 〉 =
1 = 〈ρ2f , πf 〉, πf ⊗D is cuspidal, but πf ⊗D± are not, and dim IH∗(πf )
is 1. If 〈ρ1f , πf 〉 = 1 and 〈ρ2f , πf 〉 = −1, then πf cannot be completed
to a cuspidal representation. If 〈ρ1f , πf 〉 = −1 and 〈ρ2f , πf 〉 = 1, then
πf ⊗D+ is cuspidal, but πf ⊗D and πf ⊗D− are not. If 〈ρ1f , πf 〉 = −1
and 〈ρ2f , πf 〉 = −1, then πf ⊗ D− is cuspidal, but πf ⊗ D and πf ⊗ D+

are not.
It follows that IHi(πf ) is 0 unless i = 2[F : Q] = dimSKf

. As in
the stable case we conclude from Gabber’s purity for IH that the Hecke
eigenvalues µmu are algebraic and their conjugates all lie in the unit circle
in C. But this follows already from the theory for the group U(2, E/F ).
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V.3 Nontempered case

We now fix a π with π
Kf

f 6= 0 in a cuspidal packet which is the lift of
a character µ of the endoscopic group U(2) × U(1). The choice of fG,σ,
depending on ξσ, implies that πσ lies in {D, D+, D−, J+, J−}, determined
by ξσ = ξ(Λσ), Λσ = (aσ, bσ, cσ), for all σ.

If µσ = ξH(aσ, aσ − 1) × ρ(cσ) put π×µσ
= J+

s2Λσ
, π−µσ

= D−s1Λσ
, π+

µσ
=

DΛσ ⊕ D+
s2Λσ

. Note that the nonzero Lie algebra cohomology of J+ is
H0,1 and H0,3, while the nonzero cohomology of π−µσ

is H0,2. If µσ =
ρ(aσ)× ξH(bσ, bσ − 1) put π×µσ

= J−s1Λσ
, π−µσ

= D+
s2Λσ

, π+
µσ

= DΛσ ⊕D−s1Λσ
.

Note that the nonzero cohomology of J− isH1,0 andH3,0, while the nonzero
cohomology of π−µσ

is H2,0.
For π = πf ⊗ (⊗σπσ) in the packet {π(µ)} we write 〈µv, πv〉 = 1 if πv

is the nontempered π×v and = −1 if πv is the cuspidal π−v , and we put
〈µf , πf 〉 =

∏
v<∞〈µv, πv〉. We give πf the superscript × if 〈µf , πf 〉 is 1,

and the superscript − if 〈µf , πf 〉 is −1. We write {πf}× for the set of π×f
and {πf}− for the set of π−f , coming from the packet {π(µ)}.

Then πf can be completed to an irreducible π in the packet {π(µ)} on
choosing components πσ for the σ : F ↪→ R. Put 〈µσ, πσ〉 = 1 if πσ = π×µσ

and = −1 if πσ = π−µσ
. Then π is in the discrete spectrum precisely when

m(µ, π) =
1
2

[
1 + ε(µ′, κ)〈µf , πf 〉

∏
σ

〈µσ, πσ〉

]
is 1. It is cuspidal with the possible exception of ⊗vπ×v , which is sometimes
residual.

Our π occurs in I(G, 4). We fix a correspondence fp which projects to
the packet {πpf}. Since the function fpH is chosen to be matching fp, by
[F3;VIII] the contribution to the part I(H, 3) of the stable trace formula of
H is precisely that parametrized by the one-dimensional representation µ

of U(2,A)×U(1,A).
The contribution of {π} to I(G, 4) is

ε(µ′, κ)
2

∏
σ∈S

[trπ×σ (fG,σ)− trπ−σ (fG,σ)] · [tr{πf}×(fp)− tr{πf}−(fp)]

·q
j
2 dimSKf
℘ ·

∏
u|p

[
(µuq1/2u )

jn℘
ju + ρ

jn℘
ju
u + (µuq−1/2

u )
jn℘
ju

]ju
.
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Here and below fp indicates — as suitable — its product with the unit
element of the G′(Zp)-Hecke algebra of G′(Qp). Here we used the fact that
the eigenvalues of µu×ρu are (µuq

1/2
u , µuq

−1/2
u , ρu) at u|p which splits in E.

The Langlands class at u|p where Eu is a field is diag(µuq
1/2
Eu
, ρu, 1)× Fru.

The µu = µu(πππu) and ρu = ρu(πππu) are algebraic whose conjugates have
complex absolute value 1.

The corresponding contribution to I(H, 3) is

1
2

∏
σ∈S

trµσ(fH,σ) · trµf (fpH) · q
j
2 dimSKf
℘

·
∏
u|p

[
(−1)

nu
ju (µuq1/2u )

jn℘
ju + ρ

jn℘
ju
u + (−1)

nu
ju (µuq−1/2

u )
jn℘
ju

]ju
.

By choice of fpH we have that trµf (f
p
H) = tr{πf}×(fp) + tr{πf}−(fp).

The choice of fG,σ is such that trπ×σ (fG,σ) = − 2
3 , trπ−σ (fG,σ) = 1

3 ;
trµσ(fH,σ) = −1.

We conclude that for each irreducible πf under consideration, if the πKf

f -

isotypic part of H∗c is πKf

f ⊗H∗c (πf ), then Frj℘ acts on H∗c (πf ) with trace

(−1)[F :Q]

2
q

j
2 dimSKf
℘

(
ε(µ′, κ)

∏
u|p

[
(µuq1/2u )

jn℘
ju + ρ

jn℘
ju
u + (µuq−1/2

u )
jn℘
ju

]ju

+ 〈µf , πf 〉
∏
u|p

[
(−1)

nu
ju (µuq1/2u )

jn℘
ju + ρ

jn℘
ju
u + (−1)

nu
ju (µuq−1/2

u )
jn℘
ju

]ju)
.

Let us describe also the contribution of πf to IH∗. By the “Matsushima-
Murakami” formula of section I.2 each cuspidal π with m(µ, π) = 1 con-
tributes a subspace to IH∗(πf ) of dimension 2 to the power #{σ;πσ = π×σ }
(note that {σ : F ↪→ R} is regarded here as an ordered set). Note that if
π× = ⊗vπ×v is residual (in particular it has no cuspidal component π−v ), it
should contribute to IH∗(S ′Kf

⊗E Q,V). It contributes to H∗c a space of
the same dimension by our computation of the eigenvalues.

For example, when F = Q and ε(µ′, κ) = 1, π = π×f ⊗ π×σ is in the
discrete spectrum and dim IH∗(πf ) = 2. In fact IH∗(π×f ) = H0,1 ⊕ H0,3

(= C2) if µσ has π×µσ
= J+

s2Λσ
, and IH∗(π×f ) = H1,0 ⊕H3,0 if π×µσ

= J−s1Λσ
.
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Further, IH∗(π−f ) = H0,2 (= C) if π−µσ
= D−s1Λσ

and IH∗(π−f ) = H2,0 (=
C) if π−µσ

= D+
s2Λσ

(the roles of π−f and π×f interchange if ε(µ′, κ) = −1).
However, in this nontempered case the Hecke eigenvalues µu, ρu are

algebraic and their conjugates all lie in the unit circle in C, simply by the
theory for the group U(1, E/F ).

Finally we deal with the case of a one-dimensional representation π = ξG,
which occurs in I(G, 1). We can choose fp to factorize through a projection
onto this one-dimensional representation π = ξG such that πKf

f 6= 0. Note
that the functions fG′,∞ = ⊗σ∈SfG,σ satisfy tr ξG,σ(fG,σ) = 1.

The component at p of such π is unramified, and the trace of the action
of Frj℘ on the πf -isotypic component of H∗c (SKf

⊗F F,Vξ) is

q
j
2 dimSKf
℘

∏
u|p

[
(ξuqu)

jn℘
ju + (ξu)

jn℘
ju + (ξuq−1

u )
jn℘
ju

]ju
.

We conclude that the representation H∗c (πf ) of Gal(Q/E) on H∗c at-
tached to πf is 3[F :Q]-dimensional. Its restriction to Gal(Qp/E℘) is unram-

ified. Its trace is equal to the trace of ⊗u|pν
−1/2
u ru(Frn℘

u ). Here ru(Frn℘
u )

acts on the twisted tensor representation (ru, (C3)[Fu:Qp]) as (t(ξu)×Fru)n℘ ,
t(ξu) = (t1, . . . , tnu), tm diagonal with

t(ξu) =
∏

1≤m≤nu

tm = diag(ξuqu, ξu, ξuq−1
u ).

The contribution to IH∗ is as follows. The infinitesimal character of πσ is
(0, 0, 0) for all σ ∈ S. The space Hij(u(3,C/R),SU(3); C) is C for (i, j) =
(0, 0), (1, 1), (2, 2) and {0} otherwise. By the “Matsushima-Murakami”
formula of section I.2 we have that dim IH∗(πf ) = 3[F :Q], in fact IH∗(πf ) =
⊗σ(H0,0 ⊕H1,1 ⊕H2,2). Moreover, π = ξH contributes only to the (even)
part

⊕
0≤m≤dimSKf

IH2m(SKf
⊗F F,1).
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AUTOMORPHIC REPRESENTATIONS
OF LOW RANK GROUPS

by Yuval Z. Flicker (The Ohio State University, USA)

The area of automorphic representations is a natural continuation of the
19th and 20th centuries studies in number theory and modular forms. A
guiding principle is a reciprocity law relating the infinite-dimensional au-
tomorphic representations, with finite-dimensional Galois representations.
Simple relations on the Galois side reflect deep relations on the automor-
phic side, called “liftings”. This monograph concentrates on two initial
examples: the symmetric square lifting from SL(2) to PGL(3), reflecting
the three-dimensional representation of PGL(2) in SL(3); basechange from
the unitary group U(3, E/F ) to GL(3, E), [E : F ] = 2.
• It develops the technique of comparison of twisted and stabilized trace
formulae. All aspects of the technique are discussed in an elementary way.
• The “Fundamental Lemma”, on orbital integrals of spherical functions.
• Comparison of trace formulae is simplified by usage of “regular” functions.
• The “lifting” is stated and proved by means of character relations.

This permits an intrinsic definition of partition of the automorphic rep-
resentations of SL(2) into packets, and a definition of packets for U(3), a
proof of multiplicity one theorem and rigidity theorem for SL(2) and for
U(3), a determination of the self-contragredient representations of PGL(3)
and those on GL(3, E) fixed by transpose-inverse-bar. In particular, mul-
tiplicity one theorem is new and recent.
• Applications to construction of Galois representations by explicit decom-
position of the cohomology of Shimura varieties of U(3) using Deligne’s
(proven) conjecture on the fixed point formula.

This research monograph will benefit an audience of graduate students
and researchers in number theory, algebra and representation theory.


