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1. Introduction

In his well-known paper of 1929, Siegel [18] introduced a class of analytic
functions, which he called £-functions, and he proceeded to establish some
fundamental theorems about their transcendental properties. The ^-functions
include, for instance, the exponential function, the Bessel functions and the general
hypergeometric series. Siegel's work established the algebraic independence of the
values at algebraic points of jE-functions satisfying linear differential equations of the
second order. In a major development of 1959, Shidlovsky [16] succeeded in
generalising the method so that it applied to differential equations of arbitrary
order. Many valuable results have followed as a consequence of these studies (see for
instance Shidlovsky's survey [17] and Chapter 11 of Baker's book [6]).

Siegel also defined in his original paper another class of functions which he called
C-functions, and which include, for example, the logarithm function log (I +z),
the binomial function (1 +z)a, where a is a rational number, and sums and
integrals of the form

In contrast to ^-functions, which are global, the G-functions are defined only locally,
and, as soon becomes clear, Siegel's techniques cannot be applied to demonstrate the
algebraic independence of their values at algebraic points. Nevertheless, as Siegel
remarks, his method does in fact suffice to establish that certain numbers of the kind
in question cannot satisfy an algebraic equation of low degree. This work was
recently followed up by Nurmagomedov [13, 14]; he obtained, in particular, precise
lower bounds, indeed almost best possible, for polynomials of low degree in C-functions
at certain algebraic points near to 1. The work was motivated by papers of Baker
[2, 3, 4, 5], and later Feldman [9], in which similar lower bounds had been obtained
for linear forms in the values of the binomial and logarithmic functions. More recently,
Galochkin [10] has improved upon Nurmagomedov's results, dealing now with
C-functions defined over an arbitrary number field, rather than the rational or
quadratic fields.

Although, in the complex case, ^-functions are more amenable to analysis of the
above kind than G-functions, the situation is completely reversed in the p-adic
domain. Indeed, as yet, no natural p-adic generalisation of the Siegel-Shidlovsky
theorems has been established, though we recall that the ^-functions can certainly
be locally defined in a p-adic sense. In the special case of the jo-adic exponential
function, Mahler [12] was able to prove the transcendence at algebraic points, but
the method he used does not seem to generalise in the direction of the Siegel-
Shidlovsky theory. The purpose of this note is to show that the techniques
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employed by Siegel and Shidlovsky can, however, be successfully applied to study
p-adic G-functions. We shall in fact obtain a p-adic analogue of the main
Nurmagomedov-Galochkin theorem.

2. Definitions and Results

In what follows, K will denote a fixed algebraic number field, and we shall use
||a|| to denote the size of a, which is the maximum of the absolute values of the
conjugates of the element a of K. We shall use p to denote a fixed prime number
and we signify by | |p any valuation on K extending the normalised p-adic
valuation on the rationals.

A G-function is defined as an analytic function of the form

g(z) = £ anz\
(1 = 0

where a0, au ... are elements of K, and there exists c> 1 and a sequence
bOi bu ... of natural numbers such that bn a0, ..., bn a,, are all algebraic integers and we
have bn < c" and | | a j ^ c". Plainly g(z) converges p-adically in a disc of sufficiently
small radius about the origin, for we have \b,,an\p ^ 1, whence

We shall consider G-functions satisfying a system of linear difTerential equations

}'/ =/,-o(z)+ Z ftJ{z)yj (i = 1, ..., m) (1)
j = i

where/,7(z) is a rational function over K. On differentiating (1) we obtain

J'iw =/«»(*)+ 'ifuk&yj (A: = 1 , 2 , . . . )

where fijk is a rational function over K, and yw denotes the kth derivative of y.
(It would be enough if the rational functions were defined over the p-adic completion
of the algebraic closure of the rationals: cf. Lemma 2 of Shidlovsky [16]). We shall
assume that there exists a non-zero polynomial/(z) with algebraic integer coefficients
in K, and a sequence of natural numbers dA, d2, ... such that

(^ ' ! ) ( / (z))%f c(z) (k = 1 , ...,/)

are polynomials with algebraic integer coefficients, and that dn < d" for some d > 1.
Now let gi(z), ...,gm(z) be G-functions satisfying a system of linear differential

equations as above, but which do not satisfy any algebraic equation with degree at
most r, the coefficients being rational functions over the algebraic numbers. Let
PC*!, ..., A*,,,) be any polynomial with degree s ^ r, and with integer coefficients in
K with sizes not exceeding H. Further let

( r + m\ /r — s + m\

m J \ m I
and suppose that t(\ —vju) < 1, where t denotes the degree of K over Q. We prove
the following
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THEOREM. For any e > 0 there exists <5 > 0 such that, for any natural numbers
q, q' with q' < q, (q, q') = 1 and \q\p < 8q~1+s, we have

\ ...,gMq'))\P>H->-*
where

X = tv/{\-t(l-v/u)}

and the implied constant depends on glt ..., gm, p, q, r, s, t, e, but not on H.

In the special case of linear forms with rational coefficients, that is when r = 1,
t — 1, we have s = 1, u = m+l, v — 1 and so X — m+ 1; this is the best possible
value for X {cf. [10], where Galochkin obtains the best possible value X = m in the
complex case). For large values of r, that is when the G-functions are nearly algebrai-
cally independent, the dependence on t here is best possible; but one would expect to
be able to replace v by a smaller function of m.

The theorem is applicable, in particular, to the G-functions given by

g;(z) = log(l+a,-z) (/ =\,..., m)

defined as power series over the p-adic domain, where a,, ..., ctm are distinct non-zero
elements of K, withg = p", q' = 1, where n is a sufficiently large integer. Thus we see,
for instance, that the numbers log (1 +<Xip") cannot satisfy any algebraic equation of
degree r, provided only that n > «0(al5 ...,a,,,,r); more especially we have

log (L +a) log (1 + fi) * log (1 +y) log (1 +S)

for all numbers a, /?, y, 6 of the form a'p" with a' in K and n sufficiently large. We
recall that even in the complex case, the question of establishing the algebraic
independence of the logarithms of algebraic numbers remains unsolved (cf. the first
problem of Schneider [15; p. 138], and Chapter 12 of Baker's book [6]). Indeed, as
is well known, the algebraic independence of the p-adic logarithms would yield at
once a confirmation of the well-known conjecture on the non-vanishing of the p-adic
regulator of an arbitrary number field: cf. Leopoldt [11], Ax [1], Brumer [7].

The theorem also applies to the G-functions

defined as a power series over the p-adic domain where a{i are non-zero rational
integers and vtj are rationals between 0 (inclusive) and 1 (exclusive). The special
case, where J = 1, m = 2, gives essentially a result of Bundschuh [8], generalising
p-adically the work of Baker [2, 3]; our result now generalises [5]. Bundschuh suggests
that his work would enable one to treat effectively Diophantine equations of the form

amxn-bmy" = cPl
h ...pk

ik,

but unfortunately this is not so, since the p-adic condition \q\p <q~i+d occurring in
our theorem implies that q/q' is p-adically near to 0, and this is not compatible with
the complex condition that requires q/q' to be small in the Archimedean sense. It is
well known, however, that Diophantine equations as above can be effectively dealt
with by the method of linear forms in logarithms; see [6].
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3. Lemmas

Consider a set of G-functions Gx(z),..., Gu{z), linearly independent over K(z),
with the differential properties as specified in §2, and let c, d be constants as indicated
there. Let p be a prime and suppose e' > 0. By clt c2, ... we shall denote positive
numbers which, like the constants implied by < ,̂ will depend only on Gl5..., Gu, p and
e'. We shall signify by n a natural number sufficiently large for the validity of the
subsequent arguments.

LEMMA 1. There exist u polynomials

not all 0, with the following properties:

(i) The function

has a zero of order at least n' = un— [e'n)—\ at z = 0.

(ii) The P((z) have algebraic integer coefficients in K, and \\pn\\ <̂  c^'.

(iii) For all z in K with \z\p < \/c we have \R(z)\p < (c|z|p)"'.

Proof. The polynomials Pt{z) are the same as those defined in Lemma 3 of
Nurmagomedov [13]; they are constructed by the usual box principle (Siegel's lemma).
It is shown in [13] that (i) and (ii) hold, and using the fact that the coefficients in the
G-functions have p-adic valuations -4 ch, (iii) can easily be verified.

We shall restrict our attention in this section to homogeneous systems of
differential equations, that is systems of the form (1) with/l0(z) identically 0. We shall
later take Gt(z) = 1, which amounts to an equivalent restriction. Let R(z) be defined
as in Lemma 1, and put

W ) = (dMf(z))JR(j)(z) (j = 1, 2, ...)
where RU) denotes the jth derivative of R and dj is specified as in §2. By the above
restriction to homogeneous systems we have

Rj(z)= £ P,j(z)G,{z)
1 = 1

where -P,j(z) are polynomials with integer coefficients in K (cf. Lemma 2 of [10]).
It is clear from Lemma 5 of [10] that the Pu (z) have degrees at most n+d'j where d' is
the maximum of the degrees o f / a n d / / , 7 (see also Lemma 2 below). Put

E(z) = det (Pu(z)) (1 < / , ; < i/).

Then (cf the account of Shidlovsky's lemma given in Chapter 11 of Baker's book [6])
we have E(z) = z" D(z), where D{z) is a polynomial with integer coefficients in K,
not identically 0, and with degree at most s'n + c2. Further, as in [6], we see that for
any z in K, with z f{z) ^ 0, and \z\p < 1/c, and for any n P 1, there exist w distinct
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indices j , , ...ju, with j \ + ...+ju ^ e'n + c2 such that

det(F,.iJ.,(z))#0 (1 ^ij^u).

Note that the condition \z\p < \/c is required to ensure the convergence of the
defining series for R(z).

LEMMA 2. Let q, q' be positive integers with q > q', (q,q') = 1, and \q\p < \/c.
Then for any n > 1, and j ^ e'n + c2, we have

Proof. It is easily verified that Pjj(z) is given recursively by

(dm i (\) pp-'Kzmzy-1 i (f(z))ifikl(z)
1 = 0 \ I I k = \

and that the sum over k here is bounded above by (c5zf ' /!, for any rational z > \.
The required result now follows on noting that d} ^ dJ, that by Lemma 1

I n \
for any rational z > \, and we have the usual estimate I I < 2". The work here0
differs from [10] in that there small rationals z were considered, rather than z > 1.

Now define

and note that by virtue of Lemma 2 these are integers in K with sizes ^ {cAq)n+li J, if
j ^ e'n + c3.

LEMMA 3. For any j as in Lemma 2 and q, as there, with \q\p < 3 <^ 1, we have

Proof. Plainly
\Rj{z)\p^\j\\p~x\RU)(z)\p

for any rational z with \z\p < \/c, and furthermore it is easily checked, as in (iii) of
Lemma I, that

<! maxc'1 \h(h— 1) ... (h—j+ l)z' '"JL.

Now since h(h — \)... (h—j+l)/j\ is an integer, we obtain

\Ru\q/q% ^ max (c" \q\p"-->) < (c7 W'-'"^

as required.

4. Proof of the theorem

Using the notations of §2, we consider the set of functions
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and name them Gv{z),..., G,,{z), with the convention Gx(z) = 1. We also consider the
functions

" h ...,&„), 0 ^ hl + ...+hm ^ r-s,

and denote them by \jju ...,\j/v; so we have

Here, cik are algebraic integers in K with \\c,k\\ < H. By Lemma 7 of [10],
G,(z),..., G,,(z) are G-functions with parameters cr>, dr' in place of c, d, where
r' = l + ^ + ^ + . . . + l//-; without loss of generality we shall omit the exponent r'
and refer again only to c, cl. We are then in a position to apply Lemmas 1, 2 and 3 to
Gv,..., GI(, and we adapt here the notation of §3. Define t'j(q/q') by

rjW) = q'"+<l'J Rjialq') = ^ qu G^q/q') .

As remarked in §2, there exist distinct non-negative integers
u

J!,...,ju with £ ji

such that the linear forms

are linearly independent; since

are also linearly independent, we can select w = u — v linear forms, without loss of
generality the first w forms, such that

are u linearly independent linear forms. Signify their determinant of coefficients by
A; clearly A ^ 0, and since it is an algebraic integer in K we have |iVA| ^ 1, where N
denotes the absolute norm on K. By replacing the first column on the left by the
sum of the ith columns multiplied by G^qlq'), and noting that G^q/q') = 1, we get

A = , ; w 92, j w

'2 , 1

92,yw (2)

-1, v t ' 2 , v ••• Lu, v

We estimate now the size of A, using the determinant on the left and Lemma 2; since

for n > 1, we obtain

I I A H ^ H 1

Since X has degree / over Q and ^ x < |qr|p < (5, we find that

1 ^ | |A | | - ' ^H- 'V ( w + 3 e # d ' ) " 1 . (3)
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We shall now choose n so that

by Lemma 3, this is satisfied if

#'" < (Mp~u + 3 eV( w + 4 e 'd ' )?.
Plainly if 0 < 5 < l-wtju and \q\p < q~1+s, and e' is small enough, the number in
braces on the right is greater than 1 and so the choice of n is possible; we shall in fact
take the minimal value.

Finally we use the determinant on the right of (2); this gives:

where AJt and dt are certain minors. Since

0 , 1 , 0 , | A J P ^ 1 and
it follows that

|A|P ^ maxWttolQ% < Ufofo/*1). -^Md'))\P- (4)
By the choice of n and the supposition \q\p < q~1+d we have

q(u-tw + e")n ^ nca Ht0

for some e" which tends to 0 with e' and 5. Since, by definition,

A = tv(l + tw/(u-tw)),
we obtain

~(w + 2e'd')fn <- ^cg jjX-tv+e

provided that e' and <5 are chosen small enough. The latter estimate together with (3)
and (4) proves the theorem.

It is a pleasure to thank here Prof. Alan Baker for his kind help in preparing this
note, and Trinity College, Cambridge, for their generous financial support.
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