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REGULAR TRACE FORMULA AND BASE CHANGE LIFTING

By YuvAL Z. FLICKER*

Introduction. The Selberg trace formula has become a major tool in
the study of automorphic forms on reductive groups. Although its underly-
ing principle, of computing traces of representations by means of orbital
integrals, is very simple, the standard expressions for this important for-
mula are rather complicated; this makes applications hard to accomplish.
The complexity of the expression for the formula may be due to the choice
of truncation made in its proof. It would be advantageous to have a simple
expression for the formula, at least for a set of test functions which is suffi-
ciently large for applications. The possibility of its existence was suggested
to us by some of Kazhdan’s striking work on the trace formula (see, e.g.,
the density theorem of [K1; Appendix], or the study of lifting in [K2]).
Here we derive an asymptotic expression of this nature, in the simplest case
of GL(2). For test functions with a component which is sufficiently regular
with respect to all other components we obtain a simple, practical form of
the trace formula.

More precisely, if F, is a nonarchimedean local field and m = 1 is an
integer, we say that a locally constant function f, on G, = GL(2, F,),
which is supported on a compact-mod-center, is m-regular if it vanishes

outside the open closed subset S,, = {zg“(“’(')_m ?)g; ginG,;a zinF}
with |a| = 1} (w denotes a uniformizer in ) of G,, and its normalized

orbital integral F(g,f,) = A(g)®(g, f,) is the characteristic function of S,
in G,. If F is a global field, # is a nonarchimedean place of F, and
f* = Q,+4 [, 1s a product over all places v # u of F of smooth compactly
supported mod-center functionsf, on G,, such that £, is the unit element f°
of the Hecke algebra for almost all v, then we show that there exists my =
mo(f*) such that for any m = m, and m-regular function f, = £\, the
“regular” test function f = £ @ f* vanishes on the conjugacy classes in
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740 YUVAL Z. FLICKER

the adele group G(A) of all elements v in G(F) whose eigenvalues lie in
F*. The trace formula for such regular test functions f = ") ®f*, where
the component f ) is sufficiently regular with respect to the other compo-
nents f,, v # u, is called the ‘“regular trace formula.’’ The advantage of
this regular trace formula is that the only orbital integrals which appear in
it are those of regular elliptic conjugacy classes. For our regular test func-
tions the weighted orbital integrals and those of the singular conjugacy
classes are equal to zero.

To test the usefulness of the regular trace formula to lifting problems
we use it here to prove the well-known cyclic base-change lifting theory for
GL(2); the statement of the main theorem of this theory is given in Section
II. We compute in Section III a twisted trace formula, as introduced by
H. Saito [Sa], for our regular functions, and state the lifting theorem by
means of twisted character relations due to T. Shintani [Sh]. However the
usage of the regular trace formula—in which we optimize the choice of a
test function—permits an easy comparison of the trace formulae, bypass-
ing the “analytic difficulties”” which could be created on working with the
usual form of these formulae. Moreover, we show that the usage of regular
functions, whose support and orbital integrals are easy to control by defini-
tion, eliminates the need to compare orbital integrals of spherical func-
tions (this is done in [Sph] for a general group) other than the unit element
of the Hecke algebra (this case is due to Kottwitz [Ko]), at least in our case.
A special feature of the theory of base change for GL(r) is that the two
groups under comparison admit a-priori rigidity and multiplicity one
theorems (see Corollary 6’ here which follows at once from Jacquet-
Shalika [JS], Proposition 3.6); consequently here it suffices to use only the
most elementary properties of characters and orbital integrals, namely
their smooth behaviour on the regular set. In all other cases this is not a-
priori available, and additional arguments have to be supplied (see [FK] or
[Rig)).

At any rate it is clear that our comparison technique applies in any
base-change comparison for groups of rank (and twisted rank) one, since
there exists a place which splits in the cyclic extension E/F under consider-
ation, including the comparisons needed to establish the liftings from
UQ2, E/F) to GL(2, E) (see [U(2)]) and from U(3, E/F) to GL(3, E) (see
[U@3)D). In fact our technique applies in the ‘“‘analytically’”’ more difficult
comparisons of the metaplectic correspondence (see [M] and [FK]) and of
the symmetric square (see [Sym], where the technique of the present paper
is applied). This technique can also be used to simplify the study of the
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Drinfeld and the Shimura moduli schemes (see [FK1]), as well as the study
of the relative trace formula (see [RTF]). Our approach is likely to general-
ize to deal with reductive groups of arbitrary rank, but this we do not treat
here. For an alternative approach see Langlands [L], who computed the
asymptotic behaviour of weighted orbital integral, [GL(3)] and [U(2)] who
introduced a correction argument to regularize these integrals, and
Arthur-Clozel [AC] in the generality of GL(n).

In addition to being inspired by Kazhdan’s intrinsic approach, this
paper greatly benefitted from his comments.

1. Regular trace formula. Let F be a local field, G the group
GL(2, F), Z the center of G, Z, a closed subgroup of finite indexinZ, w a
unitary character of Z,. Let f be a complex-valued, compactly-supported
modulo Z,, smooth (that is, locally constant if F is nonarchimedean) func-
tion on G with f(zg) = w(z) "' f(g) (zinZy, g in G). Put G’ = G/Z,, and
fix a Haar measure dg on G’. An element v of G is called regular if its
eigenvalues are distinct. Denote by Z(y) the centralizer of v in G; Z(y) is a
torus if v is regular. Fix a Haar measure d., on Z(y)/Z, such that if Z(y) is
isomorphictoZ(y ') thend, = d, .. Write ®(v, fdg), or ®(v, f) when dg is
fixed, for the orbital integral {7, f(gvg ~')dg/d, of f at v. Put A(y) =
|(@ — b)*ab| if v is regular with eigenvalues a and b. Put F(y, f) =
A(y)®(y, f) if v is regular. Let w be an admissible G-module in a complex
space with 7(zg) = w(z)7(g) (z in Z,). The convolution operator 7 ( fdg)
= [g-m(g)f(g)dg has finite rank; denote its trace by tr w(fdg), or by
tr w(f) if dg is fixed. The distribution f — tr w(f) is locally constant on the
regular set of G, namely there is a complex-valued smooth function
x (= x. or x(w)) on the regular set of G, called the character of 7, which
satisfies x(zg) = w(z)x(g) and tr w(fdg) = {s x(g)f(g)dg for every f
which is supported on the regular set. This x extends to a locally integrable
function on G, but we do not use this fact in the present work. The charac-
ter x of an irreducible 7 determines its equivalence class; x(y) depends
only on the conjugacy class of v; x is independent of the choice of Haar
measures used in its definition. A distribution D on the space of the func-
tions f is called invariant if it attains the same value at f and at f* (where

f*(g) =f(x"1gx)) foreveryx in G, equivalently if D(f = f' —f'*f) =0
for every function f. The distributions f = ®(vy, f),f — tr #(f), are invari-
ant.

Let F be a local nonarchimedean field, R its ring of integers, 7 a local
uniformizer in R, q = 7!, g the cardinality of the residue field R/(w),
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and | - | the valuation on F normalized to have |7| = (|q| ™! =) ¢~!. R X
denotes the group of units in R. Let m be a positive integer. Suppose that
Zy = Z, and that w is unramified , namely trivial on Z(R).

Definition. A function f is called m-regular if it is supported on the

open closed set

S, = {zg“(“gm ?)g; zinZ,gin G, u inRx}
in G, and the normalized orbital integral F' ((”(‘)1m (1)), f ) attains the value
one for any » in R *. A regular function is a finite linear combination of
m-regular functions (m = 1). To emphasize that a function f is m-regular
we denote it by £ ). Thus £ is not uniquely determined, but its orbital
integrals are, and it vanishes outside S,,.

Let u, p’ be characters of F*. Denote by I(n, p’ ) the G-module nor-
malizedly induced from the character'(g i’) — pla)p’ (c) of the upper trian-
gular subgroup of G. It is irreducible unless u/pu’ or p’/u is equal to v,
where »(x) = |x|. The composition series of I(u»'/?, ur—"2) (and
I(uv~12, up'/2)) has length two. It consists of the one-dimensional G-mod-
ule w(p), defined by (w(u))(g) = u(det g), and the Steinberg G-module
st(u). An irreducible G-module is called supercuspidal if it is inequivalent
toany I(u, pn '), w(u), st(w).

ProrosITiON 1. If 7 is irreducible, f is an m-regular function,
and tr ©(f™)) #0, then wis of the form I(u, p’), w(u) or st(u) with un-
ramified p (and p'). Put z = p(q), z' = p’(q), when p, p’ are unrami-
fied. Then

tr(l(p, p" D) =zm + 2", te(w(w))(f ™) = (gV%2)",
te(st(u)(f ™) = (g ~12z)™.

Proof. The character of a supercuspidal = is zero on the support of
f™), by virtue of the theorem of [D]. The characters of I(x, u’), w(p),
st(p) are easy to compute.

Let F be a local nonarchimedean field. Put K = G(R). Suppose that
Zy = Z and that w is unramified. Denote by f° the unit element of the
convolution algebra of K-biinvariant functions f on G. Thus £ is sup-
ported on ZK, and it is constant on K.

The following notations will be fixed for the rest of this section. Let F



REGULAR TRACE FORMULA 743

be a global field, A its ring of adeles, F, its completion at the place v.
Objects defined above with respect to the local field F, will be given a sub-
scriptv; e.g., G, = G(F)), Z,, »,,f,,R,, K,, 7, q,, etc. Put Zy =11, Z,,,
assume that Z,Z (F) is of finite index e in Z(A), and that Z,, contains Z(R,)
for almost all v. Fix a unitary character w of Z,Z(F) which is trivial on
Z(F). Denote the component of w at v by w,. Fix a nonarchimedean place u
of F such that Z,, = Z, and w, is unramified. For simplicity replace w by its
product with a global unramified character to assume that w, = 1. Fix a
function f, for all v # u such that f, = £ for almost all v.

ProposITION 2. For every sequence { f,; v + u} with f, = f° for
almost all v, there exists a positive integer m, such that if f, = f") is an
m-regular function on G, with m = my, and f = Q, f,, then f(x) = 0 for
any element x in G(A) with eigenvalues in F* .

Proof. Denote the eigenvalues of x bya’ and a”. If f(x) # O then
f,(x) # O for all v, and there are C, = 1 with C, = 1 for almost all v such
that

(%), C;'l=<la'/a”|, =C,

holds for all v # u. Sincea = a’/a” lies in F* we have Il,|a,| = 1. Hence
(%), holds with C, = I1,,,C,. But since f, = f) is m-regular and £, (x)
# 0, we have |a|, = ¢" (or g, ™). The choice of m with g0 > C, estab-
lishes the proposition.

Remark. Let A* denote the ring of adeles without component at «.
It is clear that mo({ f&;v #= u}) = mo({f,; v # u}) for every g = (g,) in
G(A").

Definition. Putf* = ®,., f,. The functionf = f*&® f, on G(A) is
called m-regular if m = my(f*) andf, is m-regular. It is called regular if it
lies in the span of the set of m-regular functions.

Let L(F, w) be the span of the set of smooth complex-valued functions
¥ on G(F)\G(A) with ¢¥(zg) = w(x)y¥(g) (z in ZyZ(F)) which are eigen-
functions of the Hecke operators for almost all v (equivalently, for a suffi-
ciently large v; see [Av]). By [Av], ¢ is slowly increasing on ZyG(F)\G(A).
G(A) acts on L(F, w) by (r(g)y)(h) = Y(hg). The convolution operator
r(fdg) = {cyz,f (g)r(g)dg on L(F, w) is an integral operator with kernel
L. f (g7 vh) (v in G(F)/Z(F)); dg is a product Haar measure on G(A). An
element v of G(F) is called elliptic regular if Z(y, A)/Z(vy, F)Z, is com-
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pact, where Z(y) is the centralizer of iy in G. For any regular function f, we
denote the integral of the kernel over the diagonal g = & in ZyG(F)\G(A)
by tr r(fdg); it is equal to

(1) trr(fdg) = e L |Z(A)Z(y, PN\Z(y, A)|2(y, fdg).

The sum ranges over all conjugacy classes {-y } of elliptic regular elements
in G(F)/Z(F); it is finite for each f. To see this, consider the characteristic
polynomial of v, and recall that a discrete subset of a compact set is finite.
The index e of Z,Z(F) in Z(A) appears in (1) since

e|Z(A)Z(y, FNZ(y, A)| = |ZoZ(y, F\Z(y, A)|.

Our next aim is to define distributions (2), (3), (4) and (35),, (for each
place w of F) inf = f*® f,, and prove that for every regular function f =
f*® f,wehave (1) = (2) + (3) + (4) + L, (5),. Moreover, (35), is zero for
every place w wheref,, is spherical. The identity (1) = (2) + (3) + (4) + L,
(5),, for a regular function f = f* ® f, will be called the regular trace for-
mula.

Denote by tr r,(fdg) the sum

(2) tr ry(fdg) = E tr w(fdg)

over all cuspidal and one-dimensional constituents of L(G, w). It is abso-
lutely convergent.

The Selberg trace formula is an expression for (2), recorded, e.g., on
pp. 516/7 of [IL], consisting of several terms denoted in [JL] by (i), . . . ,
(viii). Since f is regular, Proposition 2 implies that the terms (i), (iv), (v) of
[JL] are zero, and (ii) + (iii) of [JL] is our (1). In words, for a regular
function the singular and weighted orbital integrals in the trace formula
are zero. The term (vi) of [JL] is

3) - —2—2 tr M(n)I(n, fdg).
M

The sum ranges over all characters p of F*\A * such that p?(z) = w(z) for
z in Zo; n is the character n((§ $)) = u(ab) of the diagonal subgroup A(A)
of G(A). M(n) is an intertwining operator from I(n) to I(n), easily evalu-
ated to be —1.
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The term (vii) of [JL] is an integral over the analytic manifold of char-
acters n of A(A)/A(F) with n(z) = w(z) for z in Z,. Each connected com-
ponent is parametrized by n = n»* (s in R), where 7, is a representative
and V((g ‘;’)) = |a/b|. If {n,} denotes a set of representatives, the term (vii)
of [JL} is

(4) % ) g m®) 1, £lds],
T {n}Jr m(n)

where m(n) = L(1, p~')/L(1, p) if w@@) = 9((§ 21))
The term (viii) of [JL] is the sum over all places w of F of the following
integrals over the same manifold of characters 7:

1
S, — X S te[R™' ()R () (s £+ 11 te I(y,, £,) - |ds].

47 {m0} R vEW

PropositioN 3. If f, is spherical then (S), is zero.

Proof. Let I°(y,,) be the space of smooth complex-valued functions
Y on K, with ¥ (ank) = 5, (a)y(k) (@inA,NK,,rninN,NK,, kin K,).
Restriction is an isomorphism from I(5,,) to I°(y,,). If £, is spherical and =,
is a G,,-module, then the image of the operator =,,( f,, ) consists of K, -fixed
vectors in the space of w,. The space of K,-fixed vectors in I(»,,) is zero
unless 7,, is unramified, in which case it is one-dimensional and spanned
by the function whose image in I°(y,,) is the characteristic function ¥° of
K,.Putr = (‘l’ 51), ry,, for the charactera — 9,,(rar ') of A,,. ThenR(n,,)
is an operator from I°(y,,) to I°(rn,,) normalized to act as the identity on
the space of K,,-fixed vectors in I°(y,,) when 7,, is unramified. In particu-
lar, the derivative R’ (»,,) is zero on the image of I(»,,, f,), when f, is
spherical, and the proposition follows.

In conclusion, we proved the following

THEOREM. For every regular function f = f* Q f, we have (1) =
2)+ @3+ @+ x, (5., and (S), is zero for every place w where f,, is
spherical.

Definition. The identity (1) = (2) + (3) + (4) + X, (5),, for a regu-
lar function f = f* Qf, is called the regular trace formula.

Let {(z;, z;!); i = 0} denote the countable set of unordered pairs of
complex numbers such that there is 7 in (2) or # = I(n) in (3) whose com-
ponent m, satisfies tr m,(fdg,) = z" + z;™ for all m = m,. Write
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a; = b; + c;, where b; (resp. c;) is the sum of tr 7*(f*dg") (resp. ; tr
w*(f*dg"))overallm = 7* Q@ m, in (2) (resp. # = I(n) in (3)) whose compo-
nent , satisfies tr =, (f"dg,) = z* + z;7™.

Let aq (resp. ag ) be the sum of tr 7*(f*dg*) over the « in (2) with
tr =, (f")dg,) equals g2 (resp. g, ™?); thus =, is trivial (resp. special).
Since , is unitary we have that |z;| = 1 or that z; is real with ¢ 12 <
|z;] < ql/2. We have

LemMa. Iff = f*Qf™ is m-regular then (2) + (3) is equal to

2" L a)zr + z;7™) + agqm’? + ag'q ™2,

i=0

where the sum is absolutely convergent. Moreover, there exists an integra-
ble function d(z) on the unit circle |z| = 1in C* such that (4) + £, ., (5),,
is equal to

(6) X d(z)z™ + z7™)|dz].
lz =1

Proof. Putz = ¢%. Then tr I(y,,f™) takes the form z” + z ™. Put
d(z) = d4(z) + ds(z), where d4(z) is the sum over all o in (4) and all n in
Z, of tr I(n*, fudg")m’(n)/m(y), where n = novs+2min/loe au; d(z) is the
analogous contribution from X, ., (5),,. Since (2), (3), (4) and X (5),, are
absolutely convergent, the latter as double sum-integral, X; |a;|| z* +
z; ™| is finite for every m and d(z) is integrable on |z| = 1.

II. Base-change lifting. Put G = GL(2). Let F, be a local field. Let
pir, (i = 1, 2) be continuous homomorphisms from F, to C*. Put & pv((g i’))
= la/c|f,. Let I((uir,)) = Ind(S;*(pir,); P(F,), G(F,)) be the
G (F,)-module unitarily induced from the character (g 5’) = pir,(@)p2 r(c)
of the upper triangular subgroup P(F,) of G(F,). Let J(F,) be the free abe-
lian group generated by the set of equivalence classes of the irreducible
G(F,)-modules. Let [7f, ] denote the image inJ(F,) of a G(F,)-module 7, .
Let E,/F, be a cyclic extension of F, of prime degree e. Fix a generator o of
the galois group Gal(E,/F,). Put og = (og;) if g = (g;), and °7mg (g) =
ng,(0g). Write w, for mp and mg, for mz,. An irreducible G(E,)-module
7, is called F,-invariant if it is equivalent to ‘rx,. Denote by J(E,)?r the
subgroup of J(E,) which is generated by the irreducible F,-invariant
G(E,)-modules. Denote by N = Ng r, the norm map from E, to F,. A
character p, of F* defines a one-dimensional representation w(u,) of
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G(F,) by (w(u,)(g) = u,(det g). Denote by J(F,)/E, the quotient of J(F,)
by the equivalence relations [, ® €] = [x,] and [I(uy,, eps)] = I(uy,
p2,] for every character e of F*/NE . The base-change lifting is a map
from J(F,)/E, to J(E,)Fv, described below.

If w(ug,) is an F-invariant G(E,)-module then there exists a charac-
ter p, of F* with pg (x) = p,(Nx); although p, is not unique, the image of
w(ny) in J(F,)/E, is uniquely determined. If J ((ig,)) is F,-invariant then
mae,(x) = pigp,(ox) and e = 2, or there exist characters p;, of F X with
pie,(x) = p;(Nx); in the latter case I((u;,)) is uniquely determined in
J(F,)/E,. Put »,(x) = |x|,. If F, is nonarchimedean then the G(F,)-mod-
ule I((u;)) is irreducible unless p;,(x)/u,,(x) is v,(x) or »,(x)"!. For any
local F,, the composition series of u, ® I(»!/2, v;1/2) is of length two. It
consists of w(u,) and of a square-integrable (Steinberg) subquotient sz(u, ).
A supercuspidal G(F,)-module is an irreducible G(F,)-module inequiva-
lent to any I((u;,)), 7(u,), st(u,). Denote by J;(F,) the subgroup of J(F,)
generated by the I((u;,)), w(p,) and st(u,). J(F,) is the direct sum of J;(F,)
and the subgroup generated by the supercuspidal G(F,)-modules.
Ji(F,)/E, is the image of J;(F,) in J(F,)/E,. Denote by J,(E,)"v the direct
summand of J(E, )*» generated by the I((u;, © N)), 7(u, © N) and st(u, © N).
The map L;, from J;(F,)/E, to J/(E,)*v defined by L, ,(I((x;,))) = I((n;, ©
N)), L;,(7(n,)) = 7((n,) ° N)) and L; ,(st(n,)) = st(u, © N), is an isomor-
phism, called lifting. Thus ng, = L;,(w,) is the lift of =,, =, lifts to TE.v
ng,, descends to w,, , is the descent of = ,.

We shall now extend the definition of local lifting from J,(F,)/E, to
J(F,)/E,. Let NZ(E,) be the image by N of the center Z(E,) of G(E,);
NZ(E,) is isomorphic to NE ¥, since Z(E,) = E*. Fix a unitary character
w, of NZ(E,). By f, we always denote a complex-valued smooth (that is,
locally constant if F, is nonarchimedean) function on G(F,) with f(zg) =
w,(z)7f,(g) (z in NZ(E,), g in G(F,)), which is compactly-supported
modulo NZ(E,). Put G'(F,) = G(F,)/NZ(E,). Fix a Haar measure dg on
G’(F,). For any irreducible G(F,)-module =, with 7,(zg) = w,(z)7,(g) put
T,(f,) = l¢ &, 7 (g)f,(g)dg. It is an operator of finite rank. Denote its
trace by tr m,(f,). For every v in G(F,) fix a Haar measure d,, on the quo-
tient by NZ(E,) of the centralizer G,(F,), such that if G, .(F,) is isomor-
phic to G, (F,), then they are assigned the same measure. Write ®(v, f,) for
the orbital integral jG(Fv)/Gv(pv) f(gvg~Ndg/d, of f, at y. An element v is
called regular if its eigenvalues a, b are distinct; in this case put A,(y) =
l(a — b)*/ab|}?, and F(y, f,) = A,(y)®(x, f,).

Denote by w the character of Z(E,) defined by w/(z) = w,(Nz). De-
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note by ¢, a smooth function on G(E,) with ¢,(zg) = w/(z) '¢,(g) (z in
Z(E,)) which is compactly supported modulo Z(F,). Fix a Haar measure
dg on G'(E,) = G(E,)/Z(E,). For any é in G(E,) the conjugacy class of
N'6 = 60(8) - -+ 6¢71(8) is defined over F, (since c(N'8) =6 1-N'6-6),
hence contains an element N6 in G(F,). The elements 8, 6’ are called
o-conjugate if 6’ = gédo(g™!) for some g in G(E,). The map 6 — N& in-
duces an injection from the set of o-conjugacy classes in G(E,) into the set
of conjugacy classes in G(F,). The o-centralizer GJ(E,) of 6 in G(E,) con-
sists of the g with 6 = géo(g~!). It is an inner form of Gy;(F,), and we
choose a Haar measure on G§(E,)/Z(F,) corresponding to the one fixed
above on Gy;(F,)/Z(F,). Since the twisted orbital integral

j ¢,(gdo(g™))dg (g in G(E,)/Z(E,)G}(E,))

of ¢, at 6 depends only on the o-conjugacy class of 8, it is denoted by
®(No, ¢,). We also write F(NS, ¢,) for A,(N6)P(NS, ¢,).

If mg, is F,-invariant irreducible G(£,)-module, then there exists an
operator A on its space with Ang,(g) = =nz,(0g)A for all g. Since =g, is
irreducible, A¢ is a scalar (by Schur’s lemma), which we normalize by
A¢ = 1. If 7g, is one-dimensional take A = 1. Otherwise n, can be real-
ized in a space of Whittaker functions W on G(E,) with respect to an addi-
tive character ¢ = ¢’ © Ng 5, of E,, where ' is a nontrivial character of
F,. Thus each W satisfies W(((‘) f)g) = y(x)W(g) (x in E,), and ng, acts
by (7g,,(g)W)h) = Wi(hg). We normalize A by the requirement that
(AW)(g) = W(og). Put ng,(0c) = A, and

g, (@, Xo) = gcbv(g) 7e,,(g) g, (0) dg (g in G'(E))).

Denote the trace of this operator by tr 7z, (¢, X0).

Definition. The functions ¢,, f, are called matching if ®(N6, ¢,) =
®(Né, f,) for every 6 in G(E,) such that N§ is regular, and ®(v, f,) = 0 for
every vy in G(F,) which is regular but not a norm.

Remark. It is easy to see that: for every ¢, such that ®(¢,) is sup-
ported on the regular set, there exists a matching £, ; and: for every f, with
®(v, f,) = 0if v is not regular or not a norm, there exists a matching ¢, .

Definition. (1) The irreducible G(F,)-module m, lifts to the irreduc-
ible G(E,)-module ng,, and we write nz, = L,(w,), if tr 7z,(¢, Xo) =
tr m,(f,) for all matching f,, ¢,.
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(2) The character x(w,) of 7, is a complex-valued smooth function on
the regular set of G(F,) with

x(m))(zg) = w,(z)(x(7,))(g) for z in NZ(E,)
and

tr 7,(f,) = X (x(m,)(g) f,(g) dg

G'(E,)

for every f, which is supported on the regular set.
(3) The (¢twisted) character x(wg,) of 7g, is a smooth function on the
regular set of G(F,) with

x(me )(zg) = o,z)(x(7e,))(g)

and

tr 7z, (¢, X0) = S (x(mg,))(Ng) &,(g) dg

G'(Ey)

for every ¢, which is supported on the set of g such that Ng is regular in
G(F,).

Remark. (1) It is clear that if 7z, = L,(w,) then [ng,] lies in J(E,)Fv
and it depends only on the image of [«x,] in J(F,)/E,. (2) The characters
x(m,) and x(=g,) always exist; they depend only on the conjugacy class of
g, and they determine the equivalence class of 7, and n¢,. They are inde-
pendent of the choice of Haar measures used in their definition. It is
known that x(w,) and x(7g,) © N extend to locally integrable functions on
G(F,), but we do not need this deeper fact in the present work. The distri-
butions tr m, and tr 7, z determine the equivalence class of 7, and =g, .
(3) The characters of the elements of J;(F,) and J;(E,) are easy to compute,
hence it follows from the Weyl integration formula that if =, lies in J;(F,)
andL,,(w,) = mg,, then L (w,) = mg,, namely that L, extends the lifting
L;,.

If F, is nonarchimedean, denote by R, its ring of integers. A character
p, of F X is called unramified if it is trivial on R *. Put K(F,) = G(R,). A
G(F,)-module =, is called unramified if it has a non-zero K (F,)-fixed vec-
tor. If pg, is unramified, then ug, = pu, © N for some unramified u,. If 7,
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is irreducible, unramified but not one-dimensional, then there are unrami-
fied characters p,, such that [7,] = [I((u;,))]. Consequently an irreducible
unramified G(E,)-module is necessarily invariant; it is the lift of an un-
ramified G(F,)-module.

Let F be a global field and A its ring of adeles. Denote the completion
of F at its place v by F,. An irreducible G(A)-module = is the restricted
direct product @, w, over all places v of F of irreducible G, =
G(F,)-modules ,; for almost all v the component =, is unramified, hence
lies in J;(F,). Similarly, an irreducible G(Ag)-module 7 is the product
&, 7, over all places v of F of irreducible G(E,)-modules 7z ,. If v splits in
E then E, = E R F, is the direct sum of e copies of F, and G(E,) = G, X

© XG,; mg, is ¢, 7, where 7, are G,-modules. Gal(E/F) acts by
permutation, and ng , is F,-invariant if and only if 7;, = =, for all i. Since
NE, = F,wehave F/NE* = 1 andJ(F,)/E, = J(F,). Lifting, defined by
L(m,)=mQ& - ® =,, identifies J(F,)/E, with J(E, ).

Definition. An irreducible G(A)-module # = @, (quasi)-lifts to an
irreducible G(Ag)-module 7z = Q, n¢, if «, lifts to 7, for (almost) all v.
Write L,(w) = g if w quasi-lifts to g, and L(w) = x¢ if = lifts to ng.

Remark. (1) If pr, is a character of AX/F*, then w(uf) lifts to
w(ur © N). (2) Denote by € a nontrivial character of A* which is trivial on
FXNAZ. Then 7 ® e (quasi)-lifts to 7 if and only if = does.

Let L(F) be the span of the set of the smooth complex-valued func-
tions Y on G(F)\G(A) which are eigenfunctions of the Hecke operators for
almost all v (see [Av]). Denote by U the group of unipotent upper triangu-
lar matrices in G. Let Ly(F) be the space of y in L(F) with {yrpua)
VY(ug)du = 0 for all g in G(A). Then G(A) acts on L(F), and on Ly(F), by
right translation. An irreducible constituent of L (F) (resp. Ly(F)) is called
an automorphic (resp. cuspidal) G(A)-module. An automorphic
G(A)-module which is not cuspidal is a constituent of an induced G(A)-
module of the form I((u;)), where p; are characters of A*/F*; it lifts to the
corresponding constituent of I((u; © N)). The main theorem of the theory
of base-change is the following

BAse CHANGE THEOREM. (1) Lifting defines a bijection from the set
of orbits under multiplication by € of automorphic G(A)-modules, onto the
set of F-invariant automorphic G(Ag)-modules, i.e., L: J(A)/E = J(Ag)F.
L(7) is cuspidal if and only if 7 is cuspidal and inequivalent to © & e.

(2) If [E:F] = 2 then there is a bijection from the set of Gal(E/F)-
orbits (unordered pairs) {pg, pg © o} of characters of ALS/E* with g #+
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LE © 0, to the set of cuspidal G(A)-modules  with # Q € = w; it is defined
by L(m) = I(ug, pg © 0). If ugp = pg © o then pp = p © N for some charac-
ter u of A*/F* which is uniquely determined up to multiplication by e,
and L((p, €'p)) = I(pg, peg) @ = 0,1).

(3) For each cyclic extension E,/F, of local fields, L, defines a bijec-
tion from J(F,)/E, to J(E,)v. L(w,) is supercuspidal if and only if =, is
supercuspidal and inequivalent to w, Q e, , where €, is a nontrivial character
of FX/NE*.

(4) If[E,:F,] = 2 then there is a bijection from the set of Gal(E,/F,)-
orbits { g, pE, © 0} of characters of E with pg, # pg, © 0, to the set of
G(F,)-modules w, with w, @ ¢, = m,; it is defined by L,/(xw,) =
I(pg,, we, © 0), and w, is supercuspidal.

(5) If a cuspidal © quasi-lifts to an automorphic 7g then L(7) = =g
and L,(7,) = wg,, for all v.

The main step in the proof is an identity of trace formulae. To state it,
we first recall two local results. If F, is nonarchimedean, denote by f?
(resp. ¢9) the unit element of the convolution algebra of spherical, namely
K(F,) (resp. K(E,))-biinvariant functions, with the usual properties of f,
(resp. ¢,). The first result is that £ and ¢? are matching (see Kottwitz
[Ko], or [Sph], Section 3). Moreover, it is shown in [Sph] that: if £, and ¢,
are spherical and corresponding, by which we mean that
tr(L;,(7,))(¢p, X0) = tr =, (f,) for all 7, in J;(F,) (equivalently: for all un-
ramified =, in J(F,)), then £, and ¢, are matching; but we do not use this
fact in this paper. The second local result is that if v is a place of F which
splits in E, then ¢, = (f1,, . - . ,f.,) matchesf, = f;,* -+ =f, ; see [L],
Section 8, or [GL(3)], Section 1.5, Lemma 13. The results of Section 1.5 in
[GL(3)] are general and used in several places below. Yet their proof is
elementary and self-contained, and independent of the rest of [GL(3)].
Hence the usage of these results does not complicate the present exposi-
tion.

Let F be a global field. Fix a character w of NZ(Ag)/NZ(E) = NA;/
NE*; let o’ be the character of Z(Ag)/Z(E) = AZ/E* defined by
w’(z) = w(Nz). The local components of w, w’ are denoted by w,, w,. Fix
Haar measures on G’(A) = G(A)/NZ(Ag)and G’ (Ag) = G(Ag)/Z(Ag),
for example by means of rational differential forms of highest degree, and
in particular Haar measures on the local groups G ' (F,), G’ (E,). The main
step in the proof of the base-change theorem is the following

AUXILIARY THEOREM. Let U be a set of places of F which contains
the archimedean places and those which ramify in E. For each v outside U
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fix an unramified G(F,)-module ©°. Suppose that f, and ¢, are matching
for every vin U, and f, = f%and ¢, = ¢ for all but finitely many v in U.
Then we have the identity

(7)  eXIltrmg,(p,Xo)+ LIl tr((pg,, ue, © 0)) (¢, X0) =
TE V KE V
LI tr =, (£)).

The products range over all v in U. The first sum ranges over all cuspidal
F-invariant G(Ag)-modules wg with ng(zg) = w’(z)we(g) (z in Z(Afg))
with g, = L;,(x%) for all v outside U, and the last is over all cuspidal
G(A)-modules w with n(zg) = w(z)w(g) (z in NZ(Ag)) such that L; () =
L, ,(w%) for all v outside U. The sum in the middle is zero ife + 2;ife = 2
it ranges over all unordered pairs { pg, pr © 0} of characters pgof AZ/E>
with pg # pg © 6 and I(pg,, pe, © 0) = L; (x%) for all v outside U.

III. Twisted trace formula. To prove the auxiliary theorem we use
the regular trace formula for G(A) of Section I, and the regular twisted (by
o) trace formula for G(Ag), which is introduced in this Section. Thus we
fix a nonarchimedean place u of F, and fix (matching) functions f, and ¢,
for all v # u, such thatf, = f%and ¢, = ¢? for almost all v. At the place u
we choose matching regular functions. The notion of a regular function f,
is defined in Section I.

Recall that £, is called m-regular if it is supported on the open closed
set

Su = {227 (¥ V)e; z in NZ(E,), g in G(F,), x in R} in G(F,),

and F((xg“' 2,),f,,) = 1foranyx, x’ inR X. As usual, R, denotes the ring of
integers in F,, m, is a uniformizer, q, = =, 1. If ¢, matches f, then its
orbital integral is supported on S, as a function on G(F,).

Definition. The function ¢, is called an m-regular function and is
denoted by ¢, if it matches an m-regular function £, on G(F,) and it is
supported on the open closed set of § in G(£,) with N6 in S,,,.

We now take u to be a place of F which splits in E. Then E, =
EQpF,=F,® ®F,,andG(E,) = GF,)D - DGF,) (sumofe =
[E:F] factors). Moreover, Ng 5, : E, = F, is surjective, and NZ(E,) =
Z(F,). Let K be an open compact subgroup of G(F,) such that f, is K-
biinvariant; it can be shown, see [Sym], that K can be taken to be an
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Iwahori subgroup of G(F,). We take ¢, to be the function ¢,(g;, * -, g.)
= f.(g)f(g2) * - * fu(g.), where fy, is a function on G(F,) which is sup-
ported on Z(F,)K |, with f,, = f,*f1,. Lemma 13 of [GL(3); (1.5.2)] asserts
that ®(y, ¢,) = ®(y, f.) for every v in G(F,). Moreover, if 7, is an irre-
ducible G(E,)-module and tr 7z, (¢, Xo) # 0, then there is an irreducible
G(F,)-module w, such that 7z, = 7, ® * -+ ® m, and tr wg,(¢, X0) =
tr m,(f,) (see [GL(3); (1.5.3)]). We deduce that Proposition 1 holds for our
regular ¢,, and it is clear that the immediate twisted analogue of Proposi-
tion 2 holds as well. Namely, there exists a positive integer m,, depending
on{®,;v # u}, such that if ¢, is an m-regular function withm = m,, ¢ =
®¢, and x is an element in G(A ;) such that the eigenvalues of Nx lie in F ¢,
then ¢(x) = 0.

We are now ready to write out the twisted trace formula for G(E) and
a regular global function ¢ = ®,¢,, namely one whose component ¢, at u
is in the space of the m-regular functions with m = my = mo ({¢,; v #
u }). We shall call this the regular twisted trace formula.

Let L(E, »’) be the space of smooth complex-valued functions ¥ on
G(E)N\G(Ag) with Y(zg) = w’(z)y¥(g) (z in Z(Ag)) such that  is an eigen-
vector of all Hecke operators for almost all v. Then (see [Av]), ¢ is slowly
increasing on Z(Ag)G(E)\G(Ag). G(Ag) actson L(E, w’) by (rg(g)¥)(h)
= y(hg), and Gal(E/F) acts by (rg(0)y)(h) = Y (oh). The convolution
operator

re(9p Xo) = S¢(g ye(g)re(o)dg (g in Z(AE)\G(AE))

on L(E, w’) is an integral operator with kernel

>§f(x—laa(y» (6 in G(E)/Z(E)).

The integral of the kernel over the diagonal x =y in Z(Ag) G(E)\G(Ag),
which by abuse of notations we denote by tr rz(¢ X o) (although this is not
the trace of rg(¢ X 0)), is easy to compute. Indeed, ¢(x~160(x)) = 0 unless
Né is elliptic regular, in which case

Z(Ap)GYUENZ(Ap)G(Ap) = Z(Ap)GIENG(AE)

is compact and isomorphic to Z(A )G ys(F)\G y5(AFr). A standard change
of sums and integrals shows that
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(10) trre(9X0) = L |Z(A)G,(FNG,(A)| 2y, ).
%

The sum ranges over all twisted conjugacy classes {6} of elements in
G(E)/Z(E) whose norm y = N3 is elliptic regular, or equivalently over all
conjugacy classes {v} of elliptic regular elements in G(F)/Z(F) which are
of the form N§. The sum is finite, as noted in the lines following (1). Since
¢ and f are chosen so that ¢, and f, are matching for all v, the sums here
and in (1) range over equal sets, and ®(vy, ¢) = ®(y, f) for every v in the
indexing set. Hence

(8) trr(f) = e tr rg(¢ Xo).

It is clear that we take Z, of Section I to be NZ(E,) locally and NZ(Af)
globally, in our case of base-change with respect to E/F.
Write tr r ¢ 4(¢ X g) for the sum

(20) trrp (@ Xo) = X tr mg(d Xo)

over all F-invariant cuspidal and one-dimensional constituents of L(E,
w’). It is absolutely convergent, and by Proposition 1 it can be written in
the form (2'), but with new values of a;, a, a,.

Following Saito (see [L], pp. 190-195), the contribution to the twisted
trace formula of the term analogous to (vi) in [JL] is

1
(30) — 7 X tr[M(one)(ng, o) (ng, ¢)].
NE

The sum ranges over all characters nz of A(Ag)/A(E) with ng(z) = w’(z)
(z in Z(Ag)) such that ong = ryg (recall that (ong)(@) = ng(oa) and
(rng)a) = nOE(rar“), r= ( ‘1) -1 )). Thus there is acharacte.r pgof AF/EX
with nz((% ,+)) = re(@)pue(oa”). M(ong) is an intertwining operator
from I(ong) to I(yg). If ug o 0 = pg then there is a character u of A*/F*
such that ug(z) = u(Nz). Then M(ong) = M(ng) is the scalar —1, as
noted below (3), and tr I(ng, ¢ Xo) = tr I(y, f) where ng(z) = n(Nz).
When nz # ng © o, we have e = 2, the normalizing factor

m(ong) = L1, ug/pg © 0)/L(1, pg © 0/pg)

in the operator M(ong) = m(ong) ®, R(ng,) is clearly one, and we have
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tr[M(ornp)l(rmg, o)(ryg, ¢)] = tr[M(one)(ng, 0) I(ng, ).
Hence the difference between (3) and (30) is

Iy te[l(pg, pe © 0)l(¢ Xo),
€ e
where the sum ranges over the unordered pairs (ug, pg © o) with ug © o #
pe. This is the second sum in (7). It is empty if e # 2.
The contribution to the twisted trace formula from the term analo-
gous to (vii) of [JL] is analogous to (4), but f has to be replaced by ¢ Xo
and 5 by ng. Namely, it is

(40)

1 ) S L("“itrl('r),g,<15><0)|ds|.

z1—7—1' {neo} JR m(nE)

The sum-integral ranges over the analytic manifold of characters 7z of
A(Ap)/A(F) with ong = g and 7g(z) = w’'(z) (z in Z(Ag)). Each con-
nected component is parametrized by ng = ngovs(sinR), and {ngo}isa
set of representatives. It is easy to see that £, m'(n)/m(n) = em’'(ng)/
m(ng) (sum over n with nz = n © N), hence that this term is equal (after
being multiplied by e) to the corresponding term (4). For our purposes it
suffices to note that both terms can be expressed in the form (6), for suit-
able functions d(z).

The contribution to the twisted trace formula from the term analo-
gous to (viii) of [JL] is the sum over all places w of F of integrals over the
manifold of characters ng of A(Ag)/A(E) with ng(z) = w’(z) for z in
Z(Ar) and ong = ng, or equivalently over the manifold of characters ny =
n © N, where 7 is as in (5),,, of the form

(S0),,

1
E S tr[R_l(nE,w)R,(nE,w)I(nE,w’ ¢w XO)]
T m JR
~II tr I(ng,, ¢, Xo) - |ds|.

VEW

Note that each of (5),,, (So),,, can be expressed in the form (4”), and that
by virtue of Proposition 3 only finitely many terms (5),,, (S¢),, are nonzero.
In summary, we proved the following

THEOREM. For every regular function ¢ = ¢, Q ¢* (where ¢p* =
Ryxu ), we have (16) = (20) + (30) + (40) + £, (S0),,, and (S0),, is
zero for every place w where ¢,, is spherical and E,,/F,, is unramified.
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The identity (16) = (2¢) + (30) + (40) + L, (So), for a regular
function ¢ = ¢* Q ¢, is called the regular twisted trace formula.
We use below the following

ProrositioN 4. For ¢, = (fu, fius - - + » f1u) With f, = f, * f1, we
have

etr [R™ (g, )R (e ) (g, ¢, X0)] = tr[R™Y(n, )R’ (0, ) (14, f.)]

ian,u =My ° NEu/Fu°

Proof. Thisis Lemma 16 of [GL(3); (1.5.5)] (whose proof on p. 47 of
[GL(3)] is self-contained and straightforward).

IV. Proof of Auxiliary Theorem. We first prove (7) in the case
where the complement U of the set U consists of the place u alone. For
regular matching f, ¢ we have (1) = e(10), by (8). Recall that the regular
trace formula asserts that (1) = 2) + (3) + 4) + L, (5),,, and its twisted
version asserts that (1¢) = (20) + (30) + (40) + L, (S0),,. Our aim is to
show that (2) + (3) = e(20) + e(3¢) (when U is empty). Proposition 4
implies that for our choice of ¢, and £, we have (5), = e(S0),. Hence the
Lemma of Section I shows that (4) — e(40) + X, ((5),, — e(50),,) takes the
form (6), while (2) + (3) — e(20) — e(30) takes the form (2’). Let X "(q.,)
be the union of |z| = 1 in C and the set of real z with g 1/? < |z| < ¢gl/2
Let X(g,) be the quotient of X '(g,) by the equivalence relation z ~ z~1.
Since all representations which appear in the trace formula are unitary, (7)
holds for the set U whose complement U consists only of z once we prove

the following

ProposiTiON S. Let a; (i = 0) be complex numbers; d(z) an integra-
ble function on |z| = 1; and z; (i = 0) distinct elements of X(q,,) with z; #
ql2,q 12, and L, |a;||z" + z7™| < oo for all integral m. Suppose that

9),. 'Zoa,-(z;" +z7m)+ ajqm?r + afq;m?
= S d(z)(z" + z7™)|dz]|
|z]=1

forallm = my. Then a; = O for alli = 0, and aj = aJ = 0.

Proof. Putq = q,, fu(z) = z" + z7", F,(z) = qV?f,41(z)—fu(2);
note that F,,(q'?) = (g — 1)gq™’?, and that ¢!?(11),,+, — (11),, is equal
to



REGULAR TRACE FORMULA 757

(10) 'Eo a;F,(z;) + (@ — DaF,(q"?) = §| | d(z)F,(z)|dz|.
i= z|=1

Had we replaced g by 1/g in the definition of F,, a; would be replaced by
a here. Express the left side of (10) in the form L;. ¢ b;F,,(z;) (distinct z; in
X(q)). The sum ranges over all i = 0 such that b; # 0. Our aim is to show
that the sum is empty. Suppose that it is not empty.

We first show that |z;| = 1 for alli. If this is false, we may assume that
zo > 1. Let m’ > mg be an odd integer. For every m = 0 we obtain from
(10) the identity

.Eobi Fm'(zi)fm(z;"jm,) = S d(Z) Fm'(z) fm(z3m’) |dZ|
Writing ¢; for the distinct z}”', and ¢ for z3"', we obtain (for all m = 0)

(11) Eobj’fm(tj) = X| - di(t) f,) |dt]|.
J= t|=

The sum ranges over distinct points of X(g*"'/2). Since F,,’(zo) # 0 and
zgm # z3™ for all z;, we have that bj = boF,,'(z¢) # 0. We may assume
that b = 1. The absolute convergence of the sum and integral implies that
there isc > 0 with |d(¢)| < ¢, and for each e > 0 there is N > 0 such that
Lisn |b/| < e. Let B = B(q'”?) be the space spanned over C by the func-
tions f,, on X = X(q'/?), where m = 0. It is closed under multiplication,
contains the scalars, and separates points on X. Moreover, if f lies in B
then so does its complex conjugate f. Hence the Stone-Weierstrass theorem
implies the following

LEMMA. B is dense in the sup norm in the space of complex-valued
continuous functions on X.

This lemma implies that there is f in B(g*"'/?) with f (¢,2) = 1 which is
bounded by 2 on X(g>"'/?), whose value at#;, . . . ,tyand on |[¢t| = 1 is
very small. Evaluating the linear functional (11) at f (f is a finite linear
combination of f,,’s), we conclude that b; = 0 and b, = 0.

We now know that |z;| = 1 for all i. Let X = X(1) be the quotient of
the unit circle |z| = 1 by the relation z ~ 1/z. In particular, a; = ay = 0,
and (9),, takes the form

(12) ‘§0a,-fm(z,~) = S d(z)fm(z)|dz].

z and z; are in |z| = 1. Arguing as above we have ¢ > 0 with |d(z)| < ¢,
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and N > 0 with L;. 5 | b;| < €. Moreover there is f in B = B(1) with f (z()
= 1, with |f| = 2 on X, such that outside a small neighborhood of z, the
value of f is small. Our problem is that (12) holds only when m = m,. But
this is easy to overcome. Take k larger than the sum of m and the degree
of f, such that z§ is close to one. Then |z*¥ + z7%| < 2 on X, and we can
apply (12) with £,, replaced by g(z) = f(z)(z*¥ + z7%), to obtain a contra-
diction to by # 0. This establishes the proposition.
We repeat the conclusion of Proposition S as

LEMMA 1. The Auxiliary Theorem holds in the case where the com-
plement U of the set U consists of u alone.

The special case where d(z) = 0 and m( = 0 of Proposition 5 can now
be used to deduce by induction on the cardinality of U the validity of

LEMMA 2. The Auxiliary Theorem holds where U is any finite set of
nonarchimedean places of F which split in E or are unramified in E.

Proof. If v is unramified in E, the identities (9),, hold only for the
integers m divisible by e = [E,:F,]. Hence the sum on the right of (7)
ranges over the = with L; (w,) = L; ,(x%) for all v in U, as required.

It remains to show the following

LEMMA 3. The Auxiliary Theorem holds where U is any finite set.

Proof. In this proof we say that unramified irreducible G,-modules
m, and w, are equivalent if L; (x,) = L;,(x)). Consider the set of
sequences { 7%(v ¢ U)} of equivalence classes of irreducible unramified
G,-modules 70. Define c({w%v ¢ U)}) to be the result of subtracting the
right from the left side of (7), for a fixed choice of matching £, and ¢, (v in
U). These complex numbers ¢ are zero for all but countably many se-
quences, which we now denote by {#) (v ¢ U)} with i = 0. Put ¢, for
c({x?,(v ¢ U)}). Moreover, since all sums in the trace formula are abso-
lutely convergent and we may take f, = £ for all v ¢ U, the sum L; |c;]| is
finite.

Our aim is to show that ¢; = 0 for all i. Suppose that ¢y # 0. Then
there is N > 0 such that ;5 v |c;| U 3 |co|. There is a finite set V outside U
such that for everyi(1 < i < N) thereisv = v(i) in V' such thatL,vv(r?'v) +
L,,(w{,). Lemma 2 implies that

(13) E C; H tr 7l.?,v(fv) = 09

i veUUV
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where the sum ranges over the {#?,(v € U)} with L, ,(x?)) = L; (x§,) forv
in V. In particular, the indicesi (1 < i < N) do not appear in (13). Taking
fo =f%orally ¢ UY Vin (13) we deduce that |co| < L;.n|c;|. As this last
sum is less than j |co|, we obtain a contradiction to the assumption that
co # 0. The lemma follows, and so does the Auxiliary Theorem.

V. Proof of Base-Change Theorem. From now on we use the Auxil-
iary Theorem in the case where U is a finite set. The rigidity theorem for
GL(2) asserts that there exists at most one cuspidal, or automorphic of the
form I(pg, pg © o), representation of G(Az) whose component at each v
outside U is the fixed L, (7?). Hence at most one of the two sums on the left
of (7) is nonempty, and it consists of at most one entry (7 ¢ or ). On the
other hand, if 7 contributes to the sum on the right of (7), then = ® e does
too, since tr(r ® €)(f) = tr w(f) for every f = Qf, with f, matching some
¢, for all v. Our next aim is to show that there are no other contributions
on the right. We shall show that this is a Corollary to Proposition 3.6 of
Jacquet-Shalika [JS], which we now recall.

Let F be a global field, and 7 = @ =, an irreducible GL(n, A)-mod-
ule. There is a finite set U of places of F such that for v outside U the
component m, is unramified; in fact, it is the unique unramified constitu-
ent in the composition series of a GL(n, F,)-module I(y,) = Ind(8!2y,;
P,, GL(n, F,)) unitarily induced from the unramified character ,((a i) =
II7_, 1,.(a;) of the upper triangular subgroup (i <j)P,of GL(n, F,). If =’
isa GL(n’, A)-module, irreducible and unramified outside U, introduce
the Euler product

I]l: (1 - qv_s nv,i("rv)nv,,j(wv))_l-
j=

L, U, *®«')= 11

veU i

=B

As usual, 7, denotes a uniformizer of F,. Proposition 3.6 of [JS] asserts the
following

ProrosiTION 6. Let w, ©’ be cuspidal GL(n, A)- and GL(n',
A)-modules with a unitary central character. (1) The product L(s, U, 7 ®
n’) converges absolutely for Re s > 1. Let X be the set of s with Res = 1
such that T @ v* " is equivalent to the contragredient representation %' of
7’. Then (2) L(s, U, 7 @ ') extends to a continuous function on the com-
plement of X in Res = 1. (3) For sgin X the limit lim(s — so)L(s, U, 7 ®
'), ass = soin Res = 1, exists and equals to a finite nonzero number.

This admits the following
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COROLLARY 6’. Let w, ©’ be cuspidal GL(n, A)-modules such that
for almost all v the unordered n-tuples {n,;(x,)*» (1 < i < n)} and
{n.(x,)» (1 < i< n)}are equal; here o, = [F):NE)]. Then there is
jO=j<e)witht = ntQe¢€.

Proof. We may assume that w, 7’ have unitary central characters.
Let U be a finite set of places of F such that r,, 7, are unramified for each
v outside U. It is clear that

e—1 e—1
(14) .1_10 L, U 7RX7 Q€)= 'I:IO L, U, 7R7R€),

since the local factor at v of each of these products is equal to

n
I (= gy () yi(T,) o) Tele,
I, =

Proposition 6 asserts that the product on the right of (14) has a pole ats =
1. Hence the product on the left has a pole, and 7’ = 7 & e/ for somej, as
required.

In particular, if the right side of (7) is nonzero then it is equal to
I, tr o ,(f,) if rT®e = w, and toell, tr 7, (f,) if T@e # w, namely the sum
on the right of (7) ranges over one or e cuspidal =.

To complete the proof of the Base Change Theorem we prove the fol-
lowing

ProrosiTioN 7. Given a local field F, and a supercuspidal G(F,)-
module ©,, there exists a global field F without real completions whose
completion at a place u is our F,, and for each place u’ # u there is a
cuspidal G(A)-module m whose component at u is our «,, its component at
some other finite place w #+ u, u’ is st(u,) where p,, is an unramified
character of F', and its component at each finite place v + u, u’, w is
unramified.

Proof. 1t is clear that there is F' as required, and that the central
character w, of 7, can be extended to a unitary character w of AX/F*
whose component at each finite place v # u, u ' is unramified. Recall [K1]
that for every irreducible square-integrable G,-module «,, there exists a
pseudo-coefficient, namely a function f,, with tr 7,,(f,,) = 0 for every irre-
ducible tempered w,, inequivalent to «,,, and tr «,(f,,) = 1. Let u,, be an
unramified character with u2 = w,. Let f = & f, be the function whose
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component f, is a matrix coefficient of the supercuspidal w,, its compo-
nent f,, is a pseudo-coefficient of the Steinberg st(u,,), f, = f? at each finite
v # u, u’, w, and each of its components at #’ and the archimedean
places is supported on a small neighborhood of the identity modulo the
center. The trace formula then asserts that

Ltr o(f) = |GA)Y/GF)Z(A)|f (1) # 0,

hence there is 7 as required.

Remark. When F is a number field the place # ’ can be chosen to be
archimedean.

To prove the local assertion of the Base Change Theorem, choose a
place w of F such that E, is a field. Then 7 of Proposition 7 satisfies # @ ¢
# 7, since st(pu,,) e, # st(p,). Choose a place u ’ of F which splits in E.
Applying the identity (7) in which 7 occurs on the right we conclude that 7
quasi-lifts to some cuspidal 7z and (7) asserts

Il tr 7 (¢, X0) = I tr 7, (f,)

for all matching ¢, and f,. The product ranges over the set of u, w and the
archimedean places. Since L (7,) = 7g, where v is equal to w or the archi-
medean places, we conclude that each supercuspidal =, lifts to a unique
mTE,. The same type of argument shows that each F,-invariant supercuspi-
dal 7, is a lift of some supercuspidal «,. It is clear that I(ug,, pug, © 0)is
a lift of a supercuspidal 7, if ug, # pg, © 0, that 7 = 7 Qe if and only if it
lifts to I(ug, pg © 0), and finally that 7, = 7, Q ¢, if and only if it lifts to
I(7g,, 7, © o). The proof of the Base Change Theorem is complete.

Remark. It is easy to deduce from [K] that the local statements (3),
(4) of the Base Change Theorem for a local field of positive characteristic
follow from the analogous statements in characteristic zero. We do not use
this comment in this work as our proofs above hold for a field of any char-
acteristic.

Concluding Remarks. The initial ideas in the theory of base-change
are due to H. Saito [Sa], who introduced the twisted trace formula and
proved the Main Theorem in the context of modular forms, and
T. Shintani [Sh], who introduced the notion of local lifting by means of
twisted character relations. Numerous expositions, generalizations, ana-



762 YUVAL Z. FLICKER

logues and applications (see, notably, Langlands [L]) followed. The proof
of the Auxiliary Theorem was rather lengthy, and centered on computing
all terms in the trace formula and the twisted formula, then struggling with
the behaviour of the various terms (especially weighted orbital integrals) to
force an equality of the two formulae. Matching orbital integrals of spheri-
cal functions also played a key role.

In [GL(3)] I presented (in the context of GL(2) and GL(3)) an argu-
ment of correcting the weighted orbital integrals (see (2.3.1) and (2.3.2)
there), and showed that their limits at the singular set are equal to the
singular terms in the trace formula, which are explicitly computed in (2.4)
and (2.5). By virtue of the computations of (2.7.1), this gave in the context
of GL(2) a proof simpler than that of [L], in addition to a new insight into
the trace formula. Also we note that the results of (1.5) in [GL(3)] which
are used here are simple, useful and complete. However, the computations
of (2.7.2) are wrong (the same applies in the twisted case (3.4.2)). Conse-
quently most of Section S there should be discarded. Thus although the
final local Theorem 7 is proven on p. 198, there is enough (in (2.7.3), which
deals with the comparison with division algebras) to prove the final global
Theorem 8 on p. 199 only for = with two elliptic components, and not un-
conditionally as asserted there wrongly. The unconditional global theorem
is due to Arthur-Clozel [AC], who (in particular) developed the correction
argument (in ref. [1e] of [AC]). In this context we note that in a forthcom-
ing paper (see [Reg]) we give a simple proof of the base change theorem for
cuspidal representations of GL(n) which have a supercuspidal component.
This new proof does not use the correction argument but ideas such as
those of this paper instead: we work with test functions for which the
weighted and singular orbital integrals vanish a-priori.

Our paper here presents a new approach—but only in the context of
GL(2)—to deal with all = without computing the weighted integrals. The
focus is on applications to lifting problems, and not on the trace formula
itself. Our approach, which is based on the usage of regular functions, is
likely to extend and establish unconditional equalities of trace formulae of
reductive groups of arbitrary rank, but we have not checked this as yet. For
the moment our method is shown in [Sym] to establish the Symmetric
Square trace identity, hence also the trace identity used for Base Change
from the unitary group U(3, E/F) to GL(3, E) of [U(3)]. It can be seen that
the computations of this paper apply also in the cases of the Metaplectic
Correspondence [M] and Base Change from U(2, E/F) to GL(2, E) of
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[U(2)] to establish the trace formulae comparisons, decimating the length
and effort invested there. Regular functions are used in [FK] in the context
of GL(n) and its metaplectic group, and in [Sph] for arbitrary reductive
group, which is the natural setting for our theory, to show that correspond-
ing spherical functions have stable matching orbital integrals.

HARVARD UNIVERSITY AND THE OHIO STATE UNIVERSITY
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