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REGULAR TRACE FORMULA AND BASE CHANGE LIFTING 

By YUVAL Z. FLICKER* 

Introduction. The Selberg trace formula has become a major tool in 
the study of automorphic forms on reductive groups. Although its underly- 
ing principle, of computing traces of representations by means of orbital 
integrals, is very simple, the standard expressions for this important for- 
mula are rather complicated; this makes applications hard to accomplish. 
The complexity of the expression for the formula may be due to the choice 
of truncation made in its proof. It would be advantageous to have a simple 
expression for the formula, at least for a set of test functions which is suffi- 
ciently large for applications. The possibility of its existence was suggested 
to us by some of Kazhdan's striking work on the trace formula (see, e.g., 
the density theorem of [Kl; Appendix], or the study of lifting in [K2]). 
Here we derive an asymptotic expression of this nature, in the simplest case 
of GL(2). For test functions with a component which is sufficiently regular 
with respect to all other components we obtain a simple, practical form of 
the trace formula. 

More precisely, if FU is a nonarchimedean local field and m 2 1 is an 
integer, we say that a locally constant function f, on Gu = GL(2, FU), 
which is supported on a compact-mod-center, is m-regular if it vanishes 
outside the open closed subset Sm = {zg-( ?)g; g in Gu; a, z in F,x 
with I a = 1 } (r denotes a uniformizer in F, x) of Gu, and its normalized 
orbital integral F(g ,fu) = A(g)4(g ,fu) is the characteristic function of Sm 
in G14. If F is a global field, u is a nonarchimedean place of F, and 

fu = ?," f, is a product over all places v ? u of F of smooth compactly 
supported mod-center functionsfv on Gv, such thatfv is the unit elementf v? 
of the Hecke algebra for almost all v, then we show that there exists mr0 = 
mo(fu) such that for any m 2r mo and m-regular functionfu = f (m), the 
"regular" test functionf = f (m) ? fu vanishes on the conjugacy classes in 
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the adele group G(A) of all elements -y in G(F) whose eigenvalues lie in 
FX. The trace formula for such regular test functionsf = f (m) (8f u, where 
the componentf (m) is sufficiently regular with respect to the other compo- 
nentsfv, v * u, is called the "regular traceformula. " The advantage of 
this regular trace formula is that the only orbital integrals which appear in 
it are those of regular elliptic conjugacy classes. For our regular test func- 
tions the weighted orbital integrals and those of the singular conjugacy 
classes are equal to zero. 

To test the usefulness of the regular trace formula to lifting problems 
we use it here to prove the well-known cyclic base-change lifting theory for 
GL(2); the statement of the main theorem of this theory is given in Section 
II. We compute in Section III a twisted trace formula, as introduced by 
H. Saito [Sa], for our regular functions, and state the lifting theorem by 
means of twisted character relations due to T. Shintani [Sh]. However the 
usage of the regular trace formula-in which we optimize the choice of a 
test function-permits an easy comparison of the trace formulae, bypass- 
ing the "analytic difficulties" which could be created on working with the 
usual form of these formulae. Moreover, we show that the usage of regular 
functions, whose support and orbital integrals are easy to control by defini- 
tion, eliminates the need to compare orbital integrals of spherical func- 
tions (this is done in [Sph] for a general group) other than the unit element 
of the Hecke algebra (this case is due to Kottwitz [Ko]), at least in our case. 
A special feature of the theory of base change for GL(n) is that the two 
groups under comparison admit a-priori rigidity and multiplicity one 
theorems (see Corollary 6' here which follows at once from Jacquet- 
Shalika [JS], Proposition 3.6); consequently here it suffices to use only the 
most elementary properties of characters and orbital integrals, namely 
their smooth behaviour on the regular set. In all other cases this is not a- 
priori available, and additional arguments have to be supplied (see [FK] or 
[Rig]). 

At any rate it is clear that our comparison technique applies in any 
base-change comparison for groups of rank (and twisted rank) one, since 
there exists a place which splits in the cyclic extension E/F under consider- 
ation, including the comparisons needed to establish the liftings from 
U(2, E/F) to GL(2, E) (see [U(2)]) and from U(3, E/F) to GL(3, E) (see 
[U(3)]). In fact our technique applies in the "analytically" more difficult 
comparisons of the metaplectic correspondence (see [M] and [FK]) and of 
the symmetric square (see [Sym], where the technique of the present paper 
is applied). This technique can also be used to simplify the study of the 
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Drinfeld and the Shimura moduli schemes (see [FK1]), as well as the study 
of the relative trace formula (see [RTF]). Our approach is likely to general- 
ize to deal with reductive groups of arbitrary rank, but this we do not treat 
here. For an alternative approach see Langlands [L], who computed the 
asymptotic behaviour of weighted orbital integral, [GL(3)] and [U(2)] who 
introduced a correction argument to regularize these integrals, and 
Arthur-Clozel [AC] in the generality of GL(n). 

In addition to being inspired by Kazhdan's intrinsic approach, this 
paper greatly benefitted from his comments. 

1. Regular trace formula. Let F be a local field, G the group 
GL(2, F), Z the center of G, Z0 a closed subgroup of finite index in Z, w a 
unitary character of Z0. Letf be a complex-valued, compactly-supported 
modulo Z0, smooth (that is, locally constant if F is nonarchimedean) func- 
tion on G withf(zg) -w(z) - If(g) (z in Z0, g in G). Put G' = G/Zo, and 
fix a Haar measure dg on G'. An element -y of G is called regular if its 
eigenvalues are distinct. Denote by Z(Qy) the centralizer of zy in G; Z(Qy) is a 
torus if -y is regular. Fix a Haar measure d Y on Z('y)/Zo such that if Z('y) is 
isomorphic toZ('y ' ) then d,, = d) . Write 4 (y, fdg), or (-y,f ) when dg is 
fixed, for the orbital integral ? G/Z(7)f(g'yg -1 )dg/d. of f at 'y. Put AQ(y) 
(a - b)2/ab if -y is regular with eigenvalues a and b. Put F(-y, f ) 

A((y)'(-y,f ) if -y is regular. Let wr be an admissible G-module in a complex 
space with ir(zg) = w(z)wr(g) (z in Z0). The convolution operator -r(fdg) 
= IG'7r(g)f(g)dg has finite rank; denote its trace by tr -r(fdg), or by 
tr wr(f ) if dg is fixed. The distributionf -- tr -r(f ) is locally constant on the 
regular set of G, namely there is a complex-valued smooth function 
X (-= X, or X(-r)) on the regular set of G, called the character of Wr, which 
satisfies x(zg) = w(z)x(g) and tr ir(fdg) = SG'X(g)f(g)dg for everyf 
which is supported on the regular set. This x extends to a locally integrable 
function on G, but we do not use this fact in the present work. The charac- 
ter X of an irreducible ir determines its equivalence class; X(T) depends 
only on the conjugacy class of 'y; X is independent of the choice of Haar 
measures used in its definition. A distribution D on the space of the func- 
tionsf is called invariant if it attains the same value atf and atf x (where 

f X(g) =f (x-'gx)) for everyx in G, equivalently if D(f * f' -f' *f ) = 0 
for every functionf. The distributionsf -+ 4(y,f ),f -+ tr 7r(f ), are invari- 
ant. 

Let F be a local nonarchimedean field, R its ring of integers, w a local 
uniformizer in R, q = wr-, q the cardinality of the residue field R/(7r), 
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and the valuation on F normalized to have 1Ir I = (I q I q - 1. R x 
denotes the group of units in R. Let m be a positive integer. Suppose that 
ZO = Z, and that w is unramified, namely trivial on Z(R). 

Definition. A functionf is called m-regular if it is supported on the 
open closed set 

SM = (zg1(ul ?)g;z inZ,g inG, u inRX} 

in G, and the normalized orbital integral F((ur ?), f0) attains the value 
one for any u in R x. A regular function is a finite linear combination of 
m-regular functions (m 2 1). To emphasize that a functionf is m-regular 
we denote it byf(m). Thusf(m) is not uniquely determined, but its orbital 
integrals are, and it vanishes outside Sm. 

Let It, It' be characters of Fx. Denote by I(,u, ,I' ) the G-module nor- 
malizedly induced from the character.( b) c (a )) '(c) of the upper trian- 
gular subgroup of G. It is irreducible unless It/It' or ,u'/,u is equal to v, 
where v(x) = Ixi. The composition series of I(tpvl/2, uv -1/2) (and 
I(tur-"12, tw"lX2)) has length two. It consists of the one-dimensional G-mod- 
ule 2r(,u), defined by (-xr(,))(g) = ,u(det g), and the Steinberg G-module 
st(,u). An irreducible G-module is called supercuspidal if it is inequivalent 
to any I(,u, ,u '), 2r (I), st(,u). 

PROPOSITION 1. If -r is irreducible, f (m) is an m-regular function, 
and tr 2r(f (m)) * 0, then 7r is of the form I(,u, It'), 2r((u) or st(,I) with un- 
ramified It (and ,u'). Put z = ,u(q), z' = ,u'(q), when It, ,u' are unrami- 
fied. Then 

tr(I(,u, ,u ))(f (m)) = zm + z/m, tr(r(tz))(f(m)) = (ql/2z)m, 

tr(st(tz))(f(m)) = (q- 1/2z) m. 

Proof. The character of a supercuspidal 7r is zero on the support of 
f (m), by virtue of the theorem of [D]. The characters of I( '), ir(,), 
st(,i) are easy to compute. 

Let F be a local nonarchimedean field. Put K = G(R). Suppose that 
ZO = Z and that X is unramified. Denote byf0 the unit element of the 
convolution algebra of K-biinvariant functions f on G. Thus f0 is sup- 
ported on ZK, and it is constant on K. 

The following notations will be fixed for the rest of this section. Let F 
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be a global field, A its ring of adeles, F, its completion at the place v. 
Objects defined above with respect to the local field Fv will be given a sub- 
script v; e.g., Gv = G(Fv), ZV, 0v9fv9 Rv, Kv, Tvi, qv etc. PutZo = HlvZov, 
assume that Z0Z(F) is of finite index e in Z(A), and that Zov contains Z(Rv) 
for almost all v. Fix a unitary character w of Z0Z(F) which is trivial on 
Z(F). Denote the component of w at v by wv. Fix a nonarchimedean place u 
of F such that Zou = Zu and wu is unramified. For simplicity replace w by its 
product with a global unramified character to assume that wu = 1. Fix a 
functionfv for all v * u such thatfv = f ? for almost all v. 

PROPOSITION 2. For every sequence {fv; v * u } with fv = f 2 for 
almost all v, there exists a positive integer mi0, such that iffu = f (m) is an 
m-regular function on Gu with m m i0, andf = ?) fv, then f (x) = Ofor 
any element x in G(A) with eigenvalues in FX. 

Proof. Denote the eigenvalues of x by a' and a". Iff (x) * 0 then 
fv(x) ? 0 for all v, and there are Cv > 1 with Cv = 1 for almost all v such 
that 

(*)v CC 1 sa'/a"v -< Cv 

holds for all v * u. Since a = a'/a " lies in FX we haveHa I = 1. Hence 
(*)u holds with Cu = H, u Cv. But sincefu = f (m) is mr-regular andfu(x) 
* 0, we have I a l = q,' (or q-m). The choice of mo with qmo > Cu estab- 
lishes the proposition. 

Remark. Let Au denote the ring of adeles without component at u. 
It is clear that mo({fgv; v * u = mo({fv; v * u }) for every g - (gv) in 
G(Au). 

Definition. Putf u = X,,+ fv. The functionf = f u( fu on G(A) is 
called m-regular if m 2 mo(fu) andfu is mi-regular. It is called regular if it 
lies in the span of the set of m-regular functions. 

Let L (F, w) be the span of the set of smooth complex-valued functions 
VI on G(F)\G(A) with Vb(zg) = w(x)b(g) (z in Z0Z(F)) which are eigen- 
functions of the Hecke operators for almost all v (equivalently, for a suffi- 
ciently large v; see [Av]). By [AvI, 4' is slowly increasing on ZoG(F)\G(A). 
G(A) acts on L(F, w) by (r(g)4)(h) = b(hg). The convolution operator 
r(fdg) = IG(A)/zof (g)r(g)dg on L (F, w) is an integral operator with kernel 
Szf (g-"-yh) (-y in G(F)/Z(F)); dg is a product Haar measure on G(A). An 
element zy of G(F) is called elliptic regular if Z(Qy, A)/Z(Qy, F)Zo is com- 
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pact, where Z(7y) is the centralizer of -y in G. For any regular functionf, we 
denote the integral of the kernel over the diagonal g = h in ZOG(F)\G(A) 
by tr r(fdg); it is equal to 

(1) tr r(fdg) = e ? Z(A)Z(-y, F)\Z(-y, A)4 d '(y, fdg). 

The sum ranges over all conjugacy classes {I y } of elliptic regular elements 
in G(F)/Z(F); it is finite for eachf. To see this, consider the characteristic 
polynomial of -y, and recall that a discrete subset of a compact set is finite. 
The index e of ZOZ(F) in Z(A) appears in (1) since 

e I Z(A)Z('y, F)\Z(-y, A) I = I ZoZ('y, F)\Z(-y, A). 

Our next aim is to define distributions (2), (3), (4) and (5), (for each 
place w of F) inf = f u (& fu, and prove that for every regular functionf = 
f u (fu we have (1) = (2) + (3) + (4) + ?w (5)W Moreover, (5)w is zero for 
every place w wherefw is spherical. The identity (1) = (2) + (3) + (4) + Ew 
(5)w for a regular functionf = f u Ofu will be called the regular trace for- 
mula. 

Denote by tr rd(fdg) the sum 

(2) tr rd (fdg) = tr ir(fdg) 

over all cuspidal and one-dimensional constituents of L (G, w). It is abso- 
lutely convergent. 

The Selberg trace formula is an expression for (2), recorded, e.g., on 
pp. 516/7 of [JLI, consisting of several terms denoted in [JL] by (i), . . .. 
(viii). Sincef is regular, Proposition 2 implies that the terms (i), (iv), (v) of 
[JL] are zero, and (ii) + (iii) of [JLI is our (1). In words, for a regular 
function the singular and weighted orbital integrals in the trace formula 
are zero. The term (vi) of [JL] is 

(3) - trM(-)I(1,fdg). 

The sum ranges over all characters i of Fx \A I such that p2(Z) = w(z) for 
z in Z0; 77 is the character nl((O b)) = ,u(ab) of the diagonal subgroup A (A) 
of G(A). M(-q) is an intertwining operator from I(7i) to I(-q), easily evalu- 
ated to be -1. 
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The term (vii) of [JL] is an integral over the analytic manifold of char- 
acters -1 of A (A)/A (F) with 71((z) =w(z) for z in ZO. Each connected com- 
ponent is parametrized by -1 = flopiS (s in R), where 71o is a representative 
and v(Q b)) = a/b . If { t10 } denotes a set of representatives, the term (vii) 
of [JL] is 

1 | ( tr1(Fq,f ds 
4ir {X} R m(71) 

where m(-q) = L(1, p7')/L(1, I) if li(a) = 71((o a O))0 

The term (viii) of [JL] is the sum over all places w of F of the following 
integrals over the same manifold of characters ti: 

(5)w 
1 

tr[tR - (n)R '(1)(w,f.)] * tr I(71V, f,) * I ds 1 . 4 - o I -0 R V*W 

PROPOSITION 3. Iffw is spherical then (5)w is zero. 

Proof. Let IO(71W) be the space of smooth complex-valued functions 
t on Kw with VI(ank) = lw (a)VI(k) (a inAw nKw, n in Nw nKw, k in Kw). 
Restriction is an isomorphism from I(71 w) to I?(7 w). Iffw is spherical and 7rw 
is a Gw-module, then the image of the operator iiw(fw) consists of Kw-fixed 
vectors in the space of rw. The space of Kw-fixed vectors in I(71w) is zero 
unless -1w is unramified, in which case it is one-dimensional and spanned 
by the function whose image in IO(6jw) is the characteristic function ib of 
Kw. Putr = (- Il) rqw forthecharactera 7w(rar1)ofAW. ThenR(- w) 
is an operator from IO(71W) to IO(r-qw) normalized to act as the identity on 
the space of Kw-fixed vectors in IO(71W) when -1w is unramified. In particu- 
lar, the derivative R ' (-w) is zero on the image of I(71W, fw), when fw is 
spherical, and the proposition follows. 

In conclusion, we proved the following 

THEOREM. For every regular function f = f u (?fu we have (1) 
(2) + (3) + (4) + Ew (5)w, and (5)w is zero for every place w wherefw is 
spherical. 

Definition. The identity (1) = (2) + (3) + (4) + Ew (5)w for a regu- 
lar functionf = fu (fu is called the regular trace formula. 

Let { (z , z7 1); i 2 0 } denote the countable set of unordered pairs of 
complex numbers such that there is wr in (2) or wr = I(-q) in (3) whose com- 
ponent 7ru satisfies tr vu (f (m)dgu) = z T + z7m for all m 2 m 0. Write 
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ai = bi + ci, where bi (resp. ci) is the sum of tr wru(fudgu) (resp. 4 tr 
jru(f udgu)) over all lr = iu (0 iru in (2) (resp. w = I(O) in (3)) whose compo- 
nent lru satisfies tr u (f (m)dgu) = z ' + z7mm 

Let a' (resp. aj') be the sum of tr -ru(fudgu) over the i- in (2) with 
tr 7-u(f (m)dgu) equals qu m2 (resp. qu m/2); thus lru is trivial (resp. special). 
Since -ru is unitary we have that Izi= 1 or that zi is real with q- 1/2 < 

Zil < q 1j2. We have 

LEMMA. Iff = f u (f (m) is m-regular then (2) + (3) is equal to 

(2') S ai(zT + z,7m) + a'qP"2 + aO'qum/, 
i20 

where the sum is absolutely convergent. Moreover, there exists an integra- 
blefunction d(z) on the unit circle I z I = tin C X such that (4) + Lw, (5)w 
is equal to 

(6) i d(z)(zm + z-"')IdzI. 

Proof. Putz = qis. Then trI(-lu,f(m)) takes the formzm + z-m. Put 
d(z) = d4(z) + d5(z), where d4(z) is the sum over all i0 in (4) and all n in 
Z, of tr I(nu, f udgu)m '(-q)m(i7), where -q = -Ovis+21rin/1og qu; d5(z) is the 
analogous contribution from EwWu (5)w. Since (2), (3), (4) and E (5)w are 
absolutely convergent, the latter as double sum-integral, Li laill z7' + 
z7' is finite for every m and d(z) is integrable on Iz I = 1. 

II. Base-change lifting. Put G = GL(2). Let Fv be a local field. Let 
AiFv (i = 1, 2) be continuous homomorphisms from FV< to C x. Put Fv 

a b) 

= la/cIFv. Let I((AiFv)) = Ind(6F"12(4,uFv); P(Fv), G(Fv)) be the 
G(Fv)-module unitarily induced from the character (a b) -- A1Fv(a )2 FV(C) 
of the upper triangular subgroup P(Fv) of G(Fv). Let J(Fv) be the free abe- 
lian group generated by the set of equivalence classes of the irreducible 
G(Fv)-modules. Let [1rFv] denote the image inJ(Fv) of a G(Fv)-module rFv - 
Let Ev/Fv be a cyclic extension of Fv of prime degree e. Fix a generator or of 
the galois group Gal(Ev/Fv). Put ag = (g0j) if g = (gy), and '?r1E (g) = 

rEj(ug). Write i-v for -FV and liE,v for WxEv. An irreducible G(Ev)-module 
iE,v is called Fv-invariant if it is equivalent to UWrE,V. Denote by J(Ev)Fv the 

subgroup of J(Ev) which is generated by the irreducible Fr-invariant 
G(Ev)-modules. Denote by N = NEV/Fv the norm map from Ev to Fv. A 
character yv of F2< defines a one-dimensional representation ir(ltv) of 
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G(F,) by (-r (A,))(g) = A,u(detg). Denote by J(Fv)/Ev the quotient of J(F,) 
by the equivalence relations ['7r- 0 e] [7r,] and [I(A ,, cE,20)1 I(Al, 
L2vI for every character e of F'</NE'<. The base-change lifting is a map 
from J(Fv)/Ev to J(Ev)Fv, described below. 

If 7r(tLEV) is an Fv-invariant G(Ev)-module then there exists a charac- 
ter Av of F2< with ,AEv(X) = Aj(Nx); although Av is not unique, the image of 
7r(Av) in J(Fv)/Ev is uniquely determined. If I((AiEv)) is Fv-invariant then 
A2EV(x) = A1EJ(Ox) and e = 2, or there exist characters Aiv of F2< with 
ILiEv(x) = ,iv(Nx); in the latter case I((Aiv)) is uniquely determined in 
J(Fv)/Ev. Put v (x) = I xv. If Fv is nonarchimedean then the G(Fv)-mod- 
ule I((uiv)) is irreducible unless A1J(x)/A2J(x) is vv(x) or Pv(x)-1. For any 
local Fv, the composition series of A.v ? J(p I2, p- 1/2) is of length two. It 
consists of ir(A v) and of a square-integrable (Steinberg) subquotient st(Av). 
A supercuspidal G(Fv)-module is an irreducible G(Fv)-module inequiva- 
lent to any I((uiv)), ir(Av), st(Av). Denote by JI(Fv) the subgroup of J(F,) 
generated by the I((uiv)), ir(Av) and st(A,). J(Fv) is the direct sum of JI(F,) 
and the subgroup generated by the supercuspidal G(Fv)-modules. 
J1(Fv)/Ev is the image of J1(Fv) in J(Fv)/Ev. Denote by JI(Ev)Fv the direct 
summand of J(Ev)Fv generated by the I((A iv o N)), ir(Av o N) and st(A v o N). 
The map LI,v from J1(Fv)/Ev to JI(Ev)Fv defined by L1,(I((Ajv))) = I((Aiv o 
N)), Li (ir(1Av)) = r((Qpv) o N)) and L, (st(Av)) = st(Av o N), is an isomor- 
phism, called lifting. Thus -rE,V = Li,v(-r) is the lift of 7r,v 7r- lifts to 7rE,v 
-E,v descends to 7rv, 7rv is the descent of -xE,. 

We shall now extend the definition of local lifting from J1(Fv)/E, to 
J(Fv)/Ev. Let NZ(EV) be the image by N of the center Z(Ev) of G(Ev); 
NZ(EV) is isomorphic to NE', since Z(Ev) = E2 . Fix a unitary character 
WV of NZ(Ev). Byfv we always denote a complex-valued smooth (that is, 
locally constant if Fv is nonarchimedean) function on G(Fv) withfv(zg) = 
Wv(z)Y'fv(g) (z in NZ(EV), g in G(Fv)), which is compactly-supported 
modulo NZ(Ev). Put G'(Fv) = G(Fv)/NZ(Ev). Fix a Haar measure dg on 
G'(FV). For any irreducible G(Fv)-module 7rv with 7rv(zg) = wv(z)7rv(g) put 
irv(fv) = IG'(Fv) 7rv(g)fv(g)dg. It is an operator of finite rank. Denote its 
trace by tr -rv(fv). For every -y in G(Fv) fix a Haar measure d , on the quo- 
tient by NZ(EV) of the centralizer Gy(Fv), such that if G^y (Fv) is isomor- 
phic to Gy(Fv), then they are assigned the same measure. Write 4((y,fv) for 
the orbital integral 1G(Fv)1Gy(FvJjgyg-1)dg1de of fv at -y. An element ey is 
called regular if its eigenvalues a, b are distinct; in this case put A&Y) = 
(a - b)2/abl'2, andF(-y,fv) = A(-y)(bY,fyv). 

Denote by w' the character of Z(Ev) defined by w'(z) = wv(Nz). De- 
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note by Xv a smooth function on G(E,) with 4,(zg) = w'(z)-10,(g) (z in 
Z(Ev)) which is compactly supported modulo Z(Ev). Fix a Haar measure 
dg on G '(Ev) = G(Ev)/Z(Ev). For any b in G(Ev) the conjugacy class of 
N'6 = ba(6) u *e-l(6) is defined overFv (since u(N'6) = -I * N'b * 6), 
hence contains an element Nb in G(Fv). The elements 6, 6' are called 
a-conjugate if 6' = gbu(g-1) for some g in G(Ev). The map 6 -- Nb in- 
duces an injection from the set of a-conjugacy classes in G(Ev) into the set 
of conjugacy classes in G(Fv). The a-centralizer G,(Ev) of 6 in G(Ev) con- 
sists of the g with 6 = g6uf(g1). It is an inner form of GN5(FV), and we 
choose a Haar measure on G,(Ev)/Z(Fv) corresponding to the one fixed 
above on GN5(FV)/Z(Fv). Since the twisted orbital integral 

| 0v(g6u0(g 1))dg (g in G(Ev)/Z(Ev)G0(EV)) 

of Xv at 6 depends only on the a-conjugacy class of 6, it is denoted by 
4(N6, /v). We also write F(N6, Xv) for Av(N6)4(Nb, Ov). 

If 7rE,v is Fv-invariant irreducible G(Ev)-module, then there exists an 
operator A on its space with A7rE,v(g) = 7rE,J(ug)A for all g. Since 7rE,v is 
irreducible, Ae is a scalar (by Schur's lemma), which we normalize by 
Ae = 1. If -rE,v is one-dimensional take A = 1. Otherwise -rE,v can be real- 
ized in a space of Whittaker functions W on G(Ev) with respect to an addi- 
tive character i = i ' o NEv/Fv of Ev, where it' is a nontrivial character of 
Fv. Thus each W satisfies W(( I )g) = 14(x)W(g) (x in Ev), and rE,v acts 
by (rE,v(g)W)(h) = W(hg). We normalize A by the requirement that 
(AW)(g) = W(ug). Put 7rE,(ua) = A, and 

7E,v(4v Xu) = 9v(g) XE,(g) lrE,v(u) dg (g in G '(Ev)). 

Denote the trace of this operator by tr WE, v(Ov X a). 

Definition. The functions Xv,fv are called matching if 4(N6, Xv) = 
4(N6, fv) for every 6 in G(Ev) such that Nb is regular, and (e, fv) = 0 for 
every -y in G(Fv) which is regular but not a norm. 

Remark. It is easy to see that: for every Xv such that 4((v) is sup- 
ported on the regular set, there exists a matchingfv; and: for everyfv with 
4W(,fv) = 0 if y is not regular or not a norm, there exists a matching Xv. 

Definition. (1) The irreducible G(Fv)-module 7rv lifts to the irreduc- 
ible G(Ev)-module 7rE,V, and we write TE,V = L(-rv), if tr xE,v(Jv X) = 

tr -rv(fv) for all matchingfv, 4v. 
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(2) The character X(-r,) of 7r- is a complex-valued smooth function on 
the regular set of G(F,) with 

(x(lrv))(zg) = Wv(z)(x(lrv))(g) for z in NZ(E,) 

and 

tr rXv(fv) = (x(7rv))(g)fj(g) dg 
G '(Ev) 

for everyfv which is supported on the regular set. 
(3) The (twisted) character X(OE,V) of -rE,v is a smooth function on the 

regular set of G(Fv) with 

(X(OE,v))(Zg) = Wv(Z)(X(lrE,v))(g) 

and 

tr 7rE,V(Ov Xo) (X(rE,v))(Ng) Xv(g) dg 
G '(Ev) 

for every Xv which is supported on the set of g such that Ng is regular in 
G(Fv). 

Remark. (1) It is clear that if 7rE,v = Lv(7rv) then [-rE,v] lies in J(Ev)Fv 
and it depends only on the image of [7rv] in J(Fv)/Ev. (2) The characters 
X(rv) and X(OE,V) always exist; they depend only on the conjugacy class of 
g, and they determine the equivalence class of 7rv and rE,. They are inde- 
pendent of the choice of Haar measures used in their definition. It is 
known that X (rv) and XO(E,V) o N extend to locally integrable functions on 
G(Fv), but we do not need this deeper fact in the present work. The distri- 
butions tr 7rv and tr 7rv,E determine the equivalence class of 7rv and rE,. 
(3) The characters of the elements of J1(Fv) and J(E) are easy to compute, 
hence it follows from the Weyl integration formula that if rsv lies in JI(Fv) 
and L1,j(-rv) = 7-E,v, then Lj-rv) = 7iEEv, namely that LV extends the lifting 

If FV is nonarchimedean, denote by Rv its ring of integers. A character 
,v of F2x is called unramified if it is trivial on R x. Put K(Fv) = G(Rv). A 
G(Fv)-module -rv is called unramified if it has a non-zero K(Fv)-fixed vec- 
tor. If LE,v iS unramified, then AE,v = A o Nfor some unramified Av. If 7r v 
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is irreducible, unramified but not one-dimensional, then there are unrami- 
fied characters A,u such that [-rx] = [I((,ui))]. Consequently an irreducible 
unramified G(E,)-module is necessarily invariant; it is the lift of an un- 
ramified G(F,)-module. 

Let F be a global field and A its ring of adeles. Denote the completion 
of F at its place v by Fv. An irreducible G(A)-module i- is the restricted 
direct product (?v rv over all places v of F of irreducible Gv = 
G(Fv)-modules 7rv; for almost all v the component 7rv is unramified, hence 
lies in J1(Fv). Similarly, an irreducible G(AE)-module i-E is the product 
(Dv-xE,v over all places v of F of irreducible G(Ev)-modules 7-E,V If v splits in 
E then Ev = E (?FFV is the direct sum of e copies of Fv and G(Ev) = Gv X 
* XGv; -xE,v iS &=1 Wiv, where -riv are Gv-modules. Gal(E/F) acts by 
permutation, and 7rE,V is Fv-invariant if and only if -riv = irlv for all i. Since 
NEV = Fv we have F2x /NE2x = 1 andJ(Fv)/Ev = J(Fv). Lifting, defined by 
Lv(7rv) = xrv 0 *( 7rv0 identifies J(Fv)/Ev with J(Ev)Fv. 

Definition. An irreducible G(A)-module i- = (grrv (quasi)-lifts to an 
irreducible G(AE)-module 7-E = ? -E,v if rsv lifts to 1-E,v for (almost) all v. 
Write LqOr) = 1-E if 7r quasi-lifts to 1-E, and L(X) = 1-E if 7- lifts to 1-E. 

Remark. (1) If AFv is a character of AX/FX, then i-(AF) lifts to 
-(F o N). (2) Denote by e a nontrivial character of Ax which is trivial on 

FXNA x. Then X- Xe (quasi)-lifts to 1-E if and only if i- does. 
Let L(F) be the span of the set of the smooth complex-valued func- 

tions V on G(F)\G(A) which are eigenfunctions of the Hecke operators for 
almost all v (see [Av]). Denote by U the group of unipotent upper triangu- 
lar matrices in G. Let Lo(F) be the space of 4 in L(F) with 5U(F)\U(A) 

6(ug)du = O for allg in G(A). Then G(A) acts onL(F), and onLO(F), by 
right translation. An irreducible constituent of L (F) (resp. Lo(F)) is called 
an automorphic (resp. cuspidal) G(A)-module. An automorphic 
G(A)-module which is not cuspidal is a constituent of an induced G(A)- 
module of the form I((wi)), where ,i are characters of AX/FX; it lifts to the 
corresponding constituent of I((wi o N)). The main theorem of the theory 
of base-change is the following 

BASE CHANGE THEOREM. (1)Lifting defines a bijectionfrom the set 
of orbits under multiplication by e of automorphic G(A)-modules, onto the 
set of F-invariant automorphic G(AE)-modules, i.e. , L: J(A)/E J(AE F 

L(iX) is cuspidal if and only if X- is cuspidal and inequivalent to i- 0 e. 
(2) If [E:F] = 2 then there is a bijection from the set of Gal (E/F)- 

orbits (unordered pairs) { E, ILE O } of characters of AEx/E x with ILE * 
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Ia- , to the set of cuspidal G(A)-modules i- with i- = e i-; it is defined 
byLOx) = I(tAE, /1E O) )If /E = otE ? a then IAE = It o Nfor some charac- 
ter It of AX/FX which is uniquely determined up to multiplication by , 
and L(I(,, Ei,ul)) = I(/UE, /AE) (i = 0,1). 

(3) For each cyclic extension EV/FV of localfields, L, defines a bijec- 
tion from J(FW)/E, to J(Ev)Fv. L(7rv) is supercuspidal if and only if irv is 
supercuspidal and inequivalent to i-v Ev i,, where Ev is a nontrivial character 
of FVx /NE2x. 

(4) If [Ev :Fv] = 2 then there is a bijectionfrom the set of Gal(Ev/Fv)- 
orbits { qE,v, PuE,v ? a} of characters of E2x with puE,v * /AE,v ? o, to the set of 
G(Fv)-modules irv with irv i, Ev = irv; it is defined by Lv(7rv)- 
I(LE,v, /LE,v ? a), and liv is supercuspidal. 

(5) If a cuspidal i- quasi-lifts to an automorphic 1-E then L(i-) = 1-E 

and LjOiv-) = i-vE,vfor all v. 
The main step in the proof is an identity of trace formulae. To state it, 

we first recall two local results. If Fv is nonarchimedean, denote by fv 
(resp. /0) the unit element of the convolution algebra of spherical, namely 
K(Fv) (resp. K(Ev))-biinvariant functions, with the usual properties of fv 
(resp. kv). The first result is that f ? and 4?0 are matching (see Kottwitz 
[Ko], or [Sph], Section 3). Moreover, it is shown in [Sph] that: iffv and Xv 
are spherical and corresponding, by which we mean that 
tr(LI,v(7rv))(kv Xa) = tr liv(fv) for all l-v in JI(Fv) (equivalently: for all un- 
ramified i-v in J(Fv)), thenfv and Xv are matching; but we do not use this 
fact in this paper. The second local result is that if v is a place of F which 
splits in E, then Xv = (fi,v, ... ,fev) matchesfv =fi,v * ... *fe,v; see [L], 
Section 8, or [GL(3)], Section 1.5, Lemma 13. The results of Section 1.5 in 
[GL(3)] are general and used in several places below. Yet their proof is 
elementary and self-contained, and independent of the rest of [GL(3)]. 
Hence the usage of these results does not complicate the present exposi- 
tion. 

Let F be a global field. Fix a character w of NZ(AE)/NZ(E) = NAEX/ 
NEx; let w' be the character of Z(AE)/Z(E) = Ax/Ex defined by 
W'(z) = w(Nz). The local components of w, w' are denoted by wv, w '. Fix 
Haar measures on G '(A) = G(A)/NZ(AE) and G '(AE) = G(AE)/Z(AE), 
for example by means of rational differential forms of highest degree, and 
in particular Haar measures on the local groups G '(Fv), G '(Ev). The main 
step in the proof of the base-change theorem is the following 

AUXILIARY THEOREM. Let U be a set of places of F which contains 
the archimedean places and those which ramify in E. For each v outside U 
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fix an unramified 
G(F,)-module 

ir2. Suppose thatfv and Xv are matching 
for every v in U, andfv = f ? and 4v = 4?? for all butfinitely many v in U. 
Then we have the identity 

(7) e L H tr -E,v(4v Xo) + S H tr(I(IAEv, PIE,v ? o)) (/v X) = 
WE V AE V 

E H tr irv(fv). 
7r v 

The products range over all v in U. The first sum ranges over all cuspidal 
F-invariant G(AE)-modules 7rE with 7rE(zg) = Xw'(z)7rE(g) (z in Z(AE)) 
with irE,V = L1,j(i) for all v outside U, and the last is over all cuspidal 
G(A)-modules Xr with 7r(zg) = c(z)ir(g) (z in NZ(AE)) such that LI, (r) = 
Li,v(xOr)for all v outside U. The sum in the middle is zero if e * 2; if e = 2 
it ranges over all unordered pairs { AE, uE o r } of characters AE of AJX/E x 
with AE * ALE o o and I(AE,v, UE,v o a) = LI,jVxO)for all v outside U. 

Ill. Twisted trace formula. To prove the auxiliary theorem we use 
the regular trace formula for G(A) of Section I, and the regular twisted (by 
a) trace formula for G(AE), which is introduced in this Section. Thus we 
fix a nonarchimedean place u of F, and fix (matching) functionsfv and Xv 
for all v * u, such thatfv =f 0 and Xv = 4? for almost all v. At the place u 
we choose matching regular functions. The notion of a regular functionfu 
is defined in Section I. 

Recall thatfu is called m-regular if it is supported on the open closed 
set 

Sm = {zg 1(xu 0)g; z in NZ(Eu)g g in G(Fu), x in R x} in G(Fu), 

andF((xou u),f") = 1 for any x, x ' in R x . As usual, Ru denotes the ring of 
integers in Fu, vru is a uniformizer, qu = v"- If ou matches fu then its 
orbital integral is supported on Sm as a function on G(Fu). 

Definition. The function Ou is called an m-regular function and is 
denoted by O(m), if it matches an m-regular functionfu on G(Fu) and it is 
supported on the open closed set of 6 in G(Eu) with N6 in Sm. 

We now take u to be a place of F which splits in E. Then Eu = 
E ?FFU = Fu (@ ... (@ Fu , and G(EU) = G(F W) ? .. * G(FU) (sum of e = 
[E:F] factors). Moreover, NEU/FU: Eu -- Fu is surjective, and NZ(Eu) = 

Z(Fu). Let K' be an open compact subgroup of G(Fu) such thatfu is K'-U 
biinvariant; it can be shown, see [Sym], that K' can be taken to be an 
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Iwahori subgroup of G(F"). We take qu to be the function 0ku(gl, * ge) 

=f.(g1)Y.(g2) **... fiu(ge), wherefl, is a function on G(F") which is sup- 
ported on Z(F")K', withf, = f *fl . Lemma 13 of [GL(3); (1.5.2)] asserts 
that 4(Dy, X") = 4(Dy, fu) for every -y in G(Fu). Moreover, if WE,u is an irre- 
ducible G(Eu)-module and tr rE,U()U X a) ? 0, then there is an irreducible 
G(Fu)-module 7ru such that -rE,u = ru (0 ... ? * u and tr -rE,u()u X(X) = 
tr iu(fu) (see [GL(3); (1.5.3)]). We deduce that Proposition 1 holds for our 
regular qu, and it is clear that the immediate twisted analogue of Proposi- 
tion 2 holds as well. Namely, there exists a positive integer mo, depending 
on I Xv; v * u }, such that if qu is an mr-regular function with m 2 m 0, 4 = 
(gXv and x is an element in G(AE) such that the eigenvalues of Nx lie in FVX, 
then +(x) = 0. 

We are now ready to write out the twisted trace formula for G(E) and 
a regular global function X = (gv?v, namely one whose component qu at u 
is in the space of the mr-regular functions with m >? mio = mio ({v; v * 
u }). We shall call this the regular twisted trace formula. 

Let L(E, w') be the space of smooth complex-valued functions V on 
G(E)\G(AE) with V(zg) = W'(z) ,(g) (z inZ(AE)) such that V is an eigen- 
vector of all Hecke operators for almost all v. Then (see [Av]), i is slowly 
increasing on Z(AE)G(E)\G(AE). G(AE) acts on L (E, w') by (rE(g) ,)(h) 
= 4(hg), and Gal(E/F) acts by (rE(oj)I)(h) = V(ah). The convolution 
operator 

rE(OX a) = 04(g)rE(g)rE((a)dg (g in Z(AE)\G(AE)) 

on L (E, w') is an integral operator with kernel 

Ef(x-60(y)) (6 in G(E)/Z(E)). 

The integral of the kernel over the diagonal x = y in Z(AE)G(E)\G(AE), 
which by abuse of notations we denote by tr rE(4 X a) (although this is not 
the trace of rE(4 X a)), is easy to compute. Indeed, 4 (x 16a(x)) = 0 unless 
Nb is elliptic regular, in which case 

Z(AE)G,9(E)\Z(AE)G,9(AE) = Z(AF)Gg(E)\Gg(AE) 

is compact and isomorphic to Z(AF)GN5(F)\GN5(AF). A standard change 
of sums and integrals shows that 
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(lar) trrE(OXa) = , jZ(A)Gy(F)\Gy(A)j4('y, 4). 
{aY} 

The sum ranges over all twisted conjugacy classes {6} of elements in 
G(E)/Z(E) whose norm -y = N6 is elliptic regular, or equivalently over all 
conjugacy classes { -y } of elliptic regular elements in G(F)/Z(F) which are 
of the form N6. The sum is finite, as noted in the lines following (1). Since 
X andf are chosen so that Xv andf, are matching for all v, the sums here 
and in (1) range over equal sets, and 4(Dy, 4) = 4(Dy,f) for every -y in the 
indexing set. Hence 

(8) tr r(f) = e tr rE(O X a). 

It is clear that we take Z0 of Section I to be NZ(EV) locally and NZ(AE) 
globally, in our- case of base-change with respect to E/F. 

Write tr rE,dA(O X Or) for the sum 

(2cr) tr rE,d() X a) = S tr 7rE() X a) 
WE 

over all F-invariant cuspidal and one-dimensional constituents of L(E, 
W'). It is absolutely convergent, and by Proposition 1 it can be written in 
the form (2'), but with new values of a j, a 1, aJi. 

Following Saito (see [L], pp. 190-195), the contribution to the twisted 
trace formula of the term analogous to (vi) in [JL] is 

1 
(3cJ) - - , tr[M(OTEM)I(, O)I(E, 4)]. 4 77E 

The sum ranges over all characters r1E of A (AE)/A (E) with flE(z) = W '(Z) 
(z in Z(AE)) such that crfE = rflE (recall that (crflE)(a) = 71E(ca) and 
(rfE)(a ) = fE(rar- l), r ( ? lol?. Thus there is a character,E ofAEX/E x 
with E((aO a')) = LE(a ),E(ora '). M(rE) is an intertwining operator 
from I(crflE) to I(OUE) If /AE ? cr = ItE then there is a character A of AX/FX 
such that AE(Z) = Au(Nz). Then M(cr1E) = M(OE) is the scalar -1, as 
noted below (3), and tr I(r1E, 4Xcr) = tr I(q, f) where rlE(Z) = r1(Nz). 
When r1E * rlE O , we have e = 2, the normalizing factor 

m(crffE) = L(1, ILE/ILE o Or)/L(1, /1E o Or/IE) 

in the operator M(cr1E) = M(cfME) (Dv R('qE,v) is clearly one, and we have 
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tr[M(urflE)I(rflE, oj(rflE, /4] = tr[M(aflqE)I(flE, a) I(flE, 1)] 

Hence the difference between (3) and (3cr) is 

-1 tr[I(VE, /AE o a)]( Xo), 
e jE 

where the sum ranges over the unordered pairs (AE, IAE o a) with IAE ? Or 

,UE. This is the second sum in (7). It is empty if e * 2. 
The contribution to the twisted trace formula from the term analo- 

gous to (vii) of [JL] is analogous to (4), butf has to be replaced by 4 X a 
and -q by r1E. Namely, it is 

1 4X m(X/E) tr IOE, X X r)Ids I. 47r {E.O} R mO(NE) 

The sum-integral ranges over the analytic manifold of characters r1E of 
A (AE)/A(E) with UflE = r1E and flE(Z) = w'(z) (z in Z(AE)). Each con- 
nected component is parametrized by r1E = flE,OPE (s in R), and {flE,O } is a 
set of representatives. It is easy to see that E, m'(-q)/m0(q) = em'01/ 
m(OlE) (sum over -1 with r1E = 71 o N), hence that this term is equal (after 
being multiplied by e) to the corresponding term (4). For our purposes it 
suffices to note that both terms can be expressed in the form (6), for suit- 
able functions d(z). 

The contribution to the twisted trace formula from the term analo- 
gous to (viii) of [JL] is the sum over all places w of F of integrals over the 
manifold of characters r1E of A(AE)/A(E) with flE(Z) = w'(z) for z in 
Z(AE) and UrfE = rlE, or equivalently over the manifold of characters r1E = 

-q o N, where -q is as in (5)w, of the form 

(5CJ)W 
I 

S i tr[R -I71E,W)R '(71E,w)I(7 E,wS 9 w X o)] 

I I tr I(r1E,V,9O XV X) * dS1 
v*w 

Note that each of (5)w , (5cr)w can be expressed in the form (4'), and that 
by virtue of Proposition 3 only finitely many terms (5)w (5cr)w are nonzero. 

In summary, we proved the following 

THEOREM. For every regular function X = qu ($ /u (where qu = 

?v#u Xv), we have (lcr) = (2cr) + (3cr) + (4cr) + Ew (5cr)w, and (5cr)w is 
zero for every place w where qw is spherical and Ew /Fw is unramified. 
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The identity (lar) = (2cr) + (3cr) + (4cr) + Ew (5Sr), for a regular 
function X = 4u ( Ou is called the regular twisted trace formula. 

We use below the following 

PROPOSITION 4. For 4u = (f", flu, . .. , fil) with fu = fu * flu we 
have 

e tr [R- (nqE,U)R'(nqE,U)I (E,U ' U X c)] = tr [R (-q )R '(-q u)I(-q u 9 MI 

if "1E,u = flu oNEu/Fu 

Proof. This is Lemma 16 of [GL(3); (1.5.5)] (whose proof on p. 47 of 
[GL(3)] is self-contained and straightforward). 

IV. Proof of Auxiliary Theorem. We first prove (7) in the case 
where the complement U of the set U consists of the place u alone. For 
regular matchingf, 4 we have (1) = e(lcr), by (8). Recall that the regular 
trace formula asserts that (1) = (2) + (3) + (4) + Ew (5) , and its twisted 
version asserts that (lcr) = (2cr) + (3cr) + (4cr) + Ew (5cr),. Our aim is to 
show that (2) + (3) = e(2cr) + e(3cr) (when U is empty). Proposition 4 
implies that for our choice of eu andju we have (5)u = e(5cr)u. Hence the 
Lemma of Section I shows that (4) - e(4cr) + Ew ((5)w - e(5cr)j) takes the 
form (6), while (2) + (3) - e(2cr) - e(3cr) takes the form (2'). Let X'(qu) 
be the union of Iz I = tin C and the set of real z with q- 1/2 < jz I < q12. 
Let X(qu) be the quotient of X '(qu) by the equivalence relation z - z 
Since all representations which appear in the trace formula are unitary, (7) 
holds for the set U whose complement U consists only of u once we prove 
the following 

PROPOSITION 5. Let ai (i > 0) be complex numbers; d(z) an integra- 
ble function on j z j = 1; and zi (i > 0) distinct elements of X(qu) with zi * 
qu/2 q -1/2 and qi i ai z T + zm I < oo for all integral m. Suppose that 

(9)m iO ai(zT + Z m) + a qm'2 + a q-m/2 

= X IzI d(z)(zm + z-m)IdzI 

for all m >i mO. Then ai = Ofor all i - 0, and a' = aJ"= 0. 

Proof. Put q = qu fn(z) = z + z'12 Fn(z) = ql12f +(Z)-f (z); 
note that Fm(q 1/2) = (q - 1)qm/2, and that q1/2(11)m+l - (I1)m is equal 
to 
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(10) S aiFm(zi) + (q - l)a'Fm(q1/2) = = d(z)Fm (z) j dzj 
i?-O Izi. 

Had we replaced q by 1 /q in the definition of Fn, a 'would be replaced by 
aJ" here. Express the left side of (10) in the form Ei20 biFm(Zi) (distinct zi in 
X(q)). The sum ranges over all i > 0 such that bi * 0. Our aim is to show 
that the sum is empty. Suppose that it is not empty. 

We first show that j zi i = 1 for all i. If this is false, we may assume that 
z0 > 1. Let m' > mO be an odd integer. For every m > 0 we obtain from 
(10) the identity 

i, biFn, (zi)fm(z 3m') = d(z)Fm,(z)fm(z3m' )Idz. 

Writing tj for the distinct z3m, and t for Z3m', we obtain (for all m - 0) 

(11) i>bj'fm(ti) = di(t)fm(t) Idtj. 
j>-0 i ~jItI=1 

The sum ranges over distinct points of X(q3m'/2). Since Fm (z0) * 0 and 
z30"I z Z3m for all zi, we have that b6' = boFm (z0)* 0. We may assume 
that b ' = 1. The absolute convergence of the sum and integral implies that 
there is c > 0 with i d1 (t) i c, and for eache > 0 there is N > 0 such that 
E >N Ib,'j < e. Let B = B(q 1/2) be the space spanned over C by the func- 
tionsf,, on X = X(q 1/2), where m > 0. It is closed under multiplication, 
contains the scalars, and separates points on X. Moreover, if f lies in B 
then so does its complex conjugatef. Hence the Stone-Weierstrass theorem 
implies the following 

LEMMA. B is dense in the sup norm in the space of complex-valued 
continuous functions on X. 

This lemma implies that there isf in B(q3m '/2) withf (to) = 1 which is 
bounded by 2 on X(q3m'/2), whose value at tl, . . . , tN and on It I = 1 is 
very small. Evaluating the linear functional (11) atf (f is a finite linear 
combination Of fm's), we conclude that b ' = 0 and b0 = 0. 

We now know that IziI = 1 for all i. LetX = X(1) be the quotient of 
the unit circle Iz I = 1 by the relation z - 1/z. In particular, a ' = a " = 0, 
and (9)m takes the form 

(12) S aifm(zi) = d(z)fm(z)jdzj. 

z and zi are in Iz I = 1. Arguing as above we have c > 0 with Id(z)j c c, 
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and N> 0 with Ei>N IbiI < E. Moreover there isfinB = B(1) withf(z0) 
= 1, with If I c 2 on X, such that outside a small neighborhood of zo the 
value off is small. Our problem is that (12) holds only when m 2 miO. But 
this is easy to overcome. Take k larger than the sum of m 0 and the degree 
off, such that z k is close to one. Then IZk + Z-k I c 2 on X, and we can 
apply (12) withfm replaced byg(z) = f (z)(zk + Z-k), to obtain a contra- 
diction to bo * 0. This establishes the proposition. 

We repeat the conclusion of Proposition 5 as 

LEMMA 1. The Auxiliary Theorem holds in the case where the com- 
plement U of the set U consists of u alone. 

The special case where d (z) 0 and m 0 = 0 of Proposition 5 can now 
be used to deduce by induction on the cardinality of U the validity of 

LEMMA 2. The Auxiliary Theorem holds where U is any finite set of 
nonarchimedean places of F which split in E or are unramified in E. 

Proof. If v is unramified in E, the identities (9)m hold only for the 
integers m divisible by e = [Ev:Fv]. Hence the sum on the right of (7) 
ranges over the ir with Li,v(-rv) = L,v(OrxO) for all v in U, as required. 

It remains to show the following 

LEMMA 3. The Auxiliary Theorem holds where U is any finite set. 

Proof. In this proof we say that unramified irreducible Gv-modules 
7rv and wr' are equivalent if Li,v(7rv) = Li,v(wr'). Consider the set of 
sequences {I r-(v 0 U) } of equivalence classes of irreducible unramified 
Gv-modules ir?. Define c({ Qr2(v 0 U) }) to be the result of subtracting the 
right from the left side of (7), for a fixed choice of matchingfv and &v (v in 
U). These complex numbers c are zero for all but countably many se- 
quences, which we now denote by { -r?v(v 0 U) } with i > 0. Put ci for 
c({ 7r?v(v 0 U) }). Moreover, since all sums in the trace formula are abso- 
lutely convergent and we may takefv = f 0 for all v 0 U, the sum Ei Ici i is 
finite. 

Our aim is to show that ci = 0 for all i. Suppose that c0 * 0. Then 
there is N > 0 such that Ei>N lci I u 2I c o I . There is a finite set V outside U 
such that for every i(1 c i c N) there is v = v(i) in Vsuch thatLI, O(7r?) 9 
Li,v(ro v). Lemma 2 implies that 

(13) E ci HI tr 7ir?(fv) = 0, i v0UU V ' 
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where the sum ranges over the { 
-r??,(v 

f U) } with LI,v(Wr?9v) = L, ,v(W r v) for v 
in V. In particular, the indices i (1 c i c N) do not appear in (13). Taking 
fv =f 0 for all v 0 Uu V in (13) we deduce that jco j< ?i>N Ci c . As this last 
sum is less than 2 jc0j, we obtain a contradiction to the assumption that 
co * 0. The lemma follows, and so does the Auxiliary Theorem. 

V. Proof of Base-Change Theorem. From now on we use the Auxil- 
iary Theorem in the case where U is a finite set. The rigidity theorem for 
GL(2) asserts that there exists at most one cuspidal, or automorphic of the 
form I(AE, IAE o o), representation of G(AE) whose component at each v 
outside U is the fixed Lv( r). Hence at most one of the two sums on the left 
of (7) is nonempty, and it consists of at most one entry (lE or r1E). On the 
other hand, if i- contributes to the sum on the right of (7), then i- g e does 
too, since tr(Wr ( e)(f ) = tr 7r(f ) for everyf = (?fv withfv matching some 
&v for all v. Our next aim is to show that there are no other contributions 
on the right. We shall show that this is a Corollary to Proposition 3.6 of 
Jacquet-Shalika [JS], which we now recall. 

Let F be a global field, and i- = 0 -rv an irreducible GL(n, A)-mod- 
ule. There is a finite set U of places of F such that for v outside U the 
component rsv is unramified; in fact, it is the unique unramified constitu- 
ent in the composition series of a GL(n, Fv)-module I(-qv) = Ind(6>12n1v; 
Pv, GL(n, FV)) unitarily induced from the unramified character 71v((aqj)) = 
MI;= I i(aii)of the upper triangular subgroup (i 'j)Pv of GL(n, FV). If i-' 
is a GL(n', A)-module, irreducible and unramified outside U, introduce 
the Euler product 

n n' 
L (s, U, 7r?l r') = H I (1 - q-s- j( )- j( v0u i=1 j (1 v V, 

As usual, Wv denotes a uniformizer of Fv. Proposition 3.6 of [JS] asserts the 
following 

PROPOSITION 6. Let Xr, 7n' be cuspidal GL(n, A)- and GL(n', 
A)-modules with a unitary central character. (1) The product L(s, U, 7X 0 
7r') converges absolutely for Re s > 1. Let X be the set of s with Re s = 1 
such that X ( vs -1 is equivalent to the contragredient representation Xi' of 
Xr'. Then (2) L (s, U, X( ? 7r') extends to a continuousfunction on the com- 
plement of X in Re s 2 1. (3) For so in X the limit lim(s - so)L(s, U, 7r 0 

'), as s -+ so in Re s 2 1, exists and equals to a finite nonzero number. 
This admits the following 
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COROLLARY 6'. Let -X, -r' be cuspidal GL(n, A)-modules such that 
for almost all v the unordered n-tuples {lvji(7rv)av (1 c i c n)} and 
{n'i(7rv)av (1 c i c n)} are equal; here czv = [F<x:NEvx]. Then there is 

j(O cj< e) with 7r' = 7r0Ei. 

Proof. We may assume that -x, -r' have unitary central characters. 
Let U be a finite set of places of F such that 7rv, xv' are unramified for each 
v outside U. It is clear that 

e-1 e-1 

(14) H L(s, U, 7r0i' f0 ) = IH L(s, U, if 0(D c-), 
i=O i=O 

since the local factor at v of each of these products is equal to 
n 

II (1 - q SvfVnv,i (Xv )0VnVVi(7XV ) 00)eluv . 
i,i' =1 

Proposition 6 asserts that the product on the right of (14) has a pole at s = 
1. Hence the product on the left has a pole, and -r' r X X c' for somej, as 
required. 

In particular, if the right side of (7) is nonzero then it is equal to 
IH vtr 7rv(fv) if 7rX e = , and to eH v tr 7rv(fv) if X c * -x, namely the sum 
on the right of (7) ranges over one or e cuspidal vr. 

To complete the proof of the Base Change Theorem we prove the fol- 
lowing 

PROPOSITION 7. Given a localfield Fu and a supercuspidal G(Fu)- 
module 7ru, there exists a global field F without real completions whose 
completion at a place u is our F, and for each place u ' * u there is a 
cuspidal G(A)-module Xr whose component at u is our v"u, its component at 
some other finite place w * u, u ' is st(Aw) where ,Aw is an unramified 
character of F>x, and its component at each finite place v * u, u ', w is 
unramified. 

Proof. It is clear that there is F as required, and that the central 
character wu of vru can be extended to a unitary character w of AX/Fx 
whose component at each finite place v ? u, u ' is unramified. Recall [KI] 
that for every irreducible square-integrable Gw-module 7r' there exists a 
pseudo-coefficient, namely a functionfw with tr 7xw(fw) = 0 for every irre- 
ducible tempered 7xw inequivalent to -x, and tr -xr(fw) = 1. Let Aw be an 
unramified character with A2 = ww. Letf = ofv be the function whose 
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component f is a matrix coefficient of the supercuspidal v", its compo- 
nentfW is a pseudo-coefficient of the Steinberg st(Ajj),f =f v at each finite 
v * u, u', w, and each of its components at u' and the archimedean 
places is supported on a small neighborhood of the identity modulo the 
center. The trace formula then asserts that 

E tr 7r(f) = IG(A)/G(F)Z(A) If (1) ? 0, 
7r 

hence there is -X as required. 

Remark. When F is a number field the place u ' can be chosen to be 
archimedean. 

To prove the local assertion of the Base Change Theorem, choose a 
place w of F such that Ew is a field. Then -X of Proposition 7 satisfies X 0 ce 
* 7x, since st(j )? (v * st(At ). Choose a place u ' of F which splits in E. 
Applying the identity (7) in which -X occurs on the right we conclude that -X 
quasi-lifts to some cuspidal 7rE and (7) asserts 

H tr 7rF,J(&v X O) = H tr 7rv(fv) 

for all matching 0 v andfv. The product ranges over the set of u, w and the 
archimedean places. SinceLj(xv) = 7E,v where v is equal to w or the archi- 
medean places, we conclude that each supercuspidal 7rv lifts to a unique 
7E,V The same type of argument shows that each Fv-invariant supercuspi- 
dal rE,v is a lift of some supercuspidal -xv. It is clear that I(,UE,v, I-E,v ? ) is 
a lift of a supercuspidal 7xv if PuE,v * IuE,v ? , that -X = X c) if and only if it 
lifts to I(,UE, IAE ? ), and finally that 7rv 7rv cv if and only if it lifts to 
I(7rEV, 7rE,v a). The proof of the Base Change Theorem is complete. 

Remark. It is easy to deduce from [K] that the local statements (3), 
(4) of the Base Change Theorem for a local field of positive characteristic 
follow from the analogous statements in characteristic zero. We do not use 
this comment in this work as our proofs above hold for a field of any char- 
acteristic. 

Concluding Remarks. The initial ideas in the theory of base-change 
are due to H. Saito [Sa], who introduced the twisted trace formula and 
proved the Main Theorem in the context of modular forms, and 
T. Shintani [Sh], who introduced the notion of local lifting by means of 
twisted character relations. Numerous expositions, generalizations, ana- 
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logues and applications (see, notably, Langlands [L]) followed. The proof 
of the Auxiliary Theorem was rather lengthy, and centered on computing 
all terms in the trace formula and the twisted formula, then struggling with 
the behaviour of the various terms (especially weighted orbital integrals) to 
force an equality of the two formulae. Matching orbital integrals of spheri- 
cal functions also played a key role. 

In [GL(3)] I presented (in the context of GL(2) and GL(3)) an argu- 
ment of correcting the weighted orbital integrals (see (2.3.1) and (2.3.2) 
there), and showed that their limits at the singular set are equal to the 
singular terms in the trace formula, which are explicitly computed in (2.4) 
and (2.5). By virtue of the computations of (2.7.1), this gave in the context 
of GL(2) a proof simpler than that of [L], in addition to a new insight into 
the trace formula. Also we note that the results of (1.5) in [GL(3)] which 
are used here are simple, useful and complete. However, the computations 
of (2.7.2) are wrong (the same applies in the twisted case (3.4.2)). Conse- 
quently most of Section 5 there should be discarded. Thus although the 
final local Theorem 7 is proven on p. 198, there is enough (in (2.7.3), which 
deals with the comparison with division algebras) to prove the final global 
Theorem 8 on p. 199 only for -X with two elliptic components, and not un- 
conditionally as asserted there wrongly. The unconditional global theorem 
is due to Arthur-Clozel [AC], who (in particular) developed the correction 
argument (in ref. [le] of [AC]). In this context we note that in a forthcom- 
ing paper (see [Reg]) we give a simple proof of the base change theorem for 
cuspidal representations of GL(n) which have a supercuspidal component. 
This new proof does not use the correction argument but ideas such as 
those of this paper instead: we work with test functions for which the 
weighted and singular orbital integrals vanish a-priori. 

Our paper here presents a new approach-but only in the context of 
GL(2)-to deal with all -X without computing the weighted integrals. The 
focus is on applications to lifting problems, and not on the trace formula 
itself. Our approach, which is based on the usage of regular functions, is 
likely to extend and establish unconditional equalities of trace formulae of 
reductive groups of arbitrary rank, but we have not checked this as yet. For 
the moment our method is shown in [Sym] to establish the Symmetric 
Square trace identity, hence also the trace identity used for Base Change 
from the unitary group U(3, E/F) to GL(3, E) of [U(3)]. It can be seen that 
the computations of this paper apply also in the cases of the Metaplectic 
Correspondence [M] and Base Change from U(2, E/F) to GL(2, E) of 
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[U(2)] to establish the trace formulae comparisons, decimating the length 
and effort invested there. Regular functions are used in [FK] in the context 
of GL(n) and its metaplectic group, and in [Sph] for arbitrary reductive 
group, which is the natural setting for our theory, to show that correspond- 
ing spherical functions have stable matching orbital integrals. 
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