
AUTOMORPHIC FORMS
AND

SHIMURA VARIETIES
OF PGSp(2)

Yuval Z. FLICKER

Department of Mathematics, The Ohio State University, 231 W. 18th Ave.,

Columbus, OH 43210-1174; flicker@math.ohio-state.edu

Keywords: Automorphic representations, liftings, packets, multiplicity one, rigidity,

functoriality, character relations, Shimura varieties, Galois representations

2000 Mathematics Subject Classification: 11F70, 22E50, 22E55, 22E45.



PREFACE

This volume concerns two main topics of interest in the theory of auto-
morphic representations, both are by now classical. The first concerns the
question of classification of the automorphic representations of a group,
connected and reductive over a number field F . We consider here the clas-
sical example of the projective symplectic group PGSp(2) of similitudes.
It is related to Siegel modular forms in the analytic language. We reduce
this question to that for the projective general linear group PGL(4) by
means of the theory of liftings with respect to the dual group homomor-
phism Sp(2,C) ↪→ SL(4,C). To describe this classification we introduce the
notion of packets and quasi-packets of representations – admissible and au-
tomorphic – of PGSp(2). The lifting implies a rigidity theorem for packets
and multiplicity one theorem for the discrete spectrum of PGSp(2). The
classification uses the theory of endoscopy, and twisted endoscopy. This
leads to a notion of stable and unstable packets of automorphic forms. The
stable ones are those which do not come from a proper endoscopic group.

This first topic was developed in part to access the second topic of these
notes, which is the decomposition of the étale cohomology with compact
supports of the Shimura variety associated with PGSp(2), over an alge-
braic closure F , with coefficients in a local system. This is a Hecke-Galois
bi-module, and its decomposition into irreducibles associates to each geo-
metric (cohomological components at infinity) automorphic representation
(we show they all appear in the cohomology) a Galois representation. They
are related at almost all places as the Hecke eigenvalues are the Frobenius
eigenvalues, up to a shift. In the stable case we obtain Galois representa-
tions of dimension 4[F :Q]. In the unstable case the dimension is half that,
since endoscopy shows up. The statement, and the definition of stability,
is based on the classification and lifting results of the first, main, part.
The description of the Zeta function of the Shimura variety, also with co-
efficients in the local system, follows formally from the decomposition of
the cohomology.

The third part – which is written for non-experts in representation the-
ory – consists of a brief introduction to the Principle of Functoriality in
the theory of automorphic forms. It puts the first two parts in perspective.
Parts 1 and 2 are examples of the general – mainly conjectural – theory
described in this last part. Part 3 can be read independently of parts 1
and 2. It can be consulted as needed. It contains many of the definitions
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vi Preface

used in parts 1 and 2, but is not a prerequisite to them. For this reason
this Background part is put at the back and not at the fore. Regrettably,
it does not discuss the trace formula. But this would require another book.
Part 3 is based on a graduate course at Ohio State in Autumn 2003.

Yuval Flicker
Jerusalem, Tevet 5765
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PART 1. LIFTING

AUTOMORPHIC FORMS

OF PGSp(2) TO PGL(4)





I. PRELIMINARIES

1. Introduction

According to the “principle of functoriality”, “Galois” representations ρ :
LF → LG of the hypothetical Langlands group LF of a global field F

into the complex dual group LG of a reductive group G over F should
parametrize “packets” of automorphic representations of the adèle group
G(A). Thus a map λ : LH → LG of complex dual groups should give rise
to lifting of automorphic representations πH of H(A) to those π of G(A).

Here we prove the existence of the expected lifting of automorphic repre-
sentations of the projective symplectic group of similitudes H = PGSp(2)
to those on G = PGL(4). The image is the set of the self-contragredient
representations of PGL(4) which are not lifts of representations of the rank
two split orthogonal group SO(4).

The global lifting is defined by means of local lifting. We define the
local lifting in terms of character relations. This permits us to introduce a
definition of packets and quasi-packets of representations of PGSp(2) as the
sets of representations that occur in these relations. Our main local result
is that packets exist and partition the set of tempered representations. We
give a detailed description of the structure of packets.

Our global results include a detailed description of the structure of the
global packets and quasi-packets (the latter are almost everywhere non-
tempered). We obtain a multiplicity one theorem for the discrete spectrum
of PGSp(2), a rigidity theorem for packets and quasi-packets, determine all
counterexamples to the naive Ramanujan conjecture, compute the multi-
plicity of each member in a packet or quasi-packet in the discrete spectrum,
conclude that in each local tempered packet there is precisely one generic
representation, and that in each global packet which lifts to a generic repre-
sentation of PGL(4) there is precisely one representation which is generic
everywhere. The latter representation is generic if it lifts to a properly
induced representation of PGL(4,A).
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4 I. Preliminaries

We also prove the lifting from SO(4) to PGL(4). This amounts to estab-
lishing a product of two representations of GL(2) with central characters
whose product is 1. Our rigidity theorem for SO(4) amounts to a strong
rigidity statement for a pair of representations of GL(2,A).

Our method is based on an interplay of global and local tools, e.g. the
trace formula and the fundamental lemma. We deal with all, not only
generic or tempered, representations.

2. Statement of Results

2a. Homomorphisms of Dual Groups

Let G be the projective general linear group PGL(4) = PSL(4) over a
number field F . Our initial purpose is to determine the automorphic repre-
sentations π (Borel-Jacquet [BJ], Langlands [L4]) of G(A), A is the ring of
adèles of F , which are self-contragredient: π ' π̌, equivalently (Bernstein-
Zelevinski [BZ1]), θ-invariant: π ' θπ. Here θ, θ(g) = J−1tg−1J , is the
involution defined by

J =
(

0 w

−w 0

)
, w =

(
0 1

1 0

)
,

where tg denotes the transpose of g ∈ G, and θπ(g) = π(θ(g)). Ac-
cording to the principle of functoriality (Borel [Bo1], Arthur [A2]) these
automorphic representations are essentially described by representations
of the Weil group WF of F into the dual group Ĝ = SL(4,C) of G which
are θ̂-invariant, namely representations of WF into centralizers Z

Ĝ
(ŝθ̂) of

Int(ŝ)θ̂ in Ĝ. Here θ̂ is the dual involution θ̂(ĝ) = J−1tĝ−1J , and ŝ is a
semisimple element in Ĝ. These centralizers are the duals of the twisted
(by ŝθ̂) endoscopic groups (Kottwitz-Shelstad [KS]). In fact these are the
connected components of the identity of the duals of the twisted endoscopic
groups Z

Ĝ
(ŝθ̂) ×WF . But in our case the endoscopic groups are split so

the product of Z
Ĝ

(ŝθ̂) with the Weil group WF is direct. Hence it suffices
for us to work here with the connected component of the identity.

A twisted endoscopic group is called elliptic if its dual is not contained
in a proper parabolic subgroup of Ĝ. Representations of nonelliptic en-
doscopic groups can be reduced by parabolic induction to known ones of
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smaller rank groups. For our Ĝ, up to conjugacy the elliptic twisted endo-
scopic groups have as duals the symplectic group Ĥ = Z

Ĝ
(θ̂) = Sp(2,C)

and the special orthogonal group Ĉ = Z
Ĝ

(ŝθ̂) = “ SO(4,C)”

= SO
((

0 ω

ω−1 0

)
,C
)

=
{
g ∈ SL(4,C); gŝJ tg = ŝJ =

(
0 ω

ω−1 0

)}
,

which consists of all A⊗B =
(
aB bB

cB dB

)
, where

(
A =

(
a b

c d

)
, B
)
∈ [GL(2,C)×GL(2,C)]/C×

satisfy detA · detB = 1. Here z ∈ C× embeds as the central element
(z, z−1), ŝ = diag(−1, 1,−1, 1) and ω =

(
0 −1

1 0

)
.

The group Ĥ is the dual group of the simple F -group H = PSp(2) =
PGSp(2), the projective group of symplectic similitudes, which can also be
denoted by the shorter symbol PGp(2). It is the quotient of

GSp(2) = {(g,λλλ) ∈ GL(4)×Gm; tgJg = λλλJ}

by its center {(λλλ,λλλ2)} ' Gm. Since λλλ is uniquely determined by g (we
write λλλ = λλλ(g)), we view GSp(2) as a subgroup of GL(4) and PGSp(2) of
PGL(4).

The group Ĉ is the dual group of the special orthogonal group (“SO(4)”)

C = {(g1, g2) ∈ GL(2)×GL(2); det g1 = det g2}/Gm.

Here z ∈ Gm embeds as the central element (z, z). Also we write

[GL(2)×GL(2)]′/GL(1)

for C, where the prime indicates that the two factors in GL(2) have equal
determinants.

The principle of functoriality suggests that automorphic discrete spec-
trum representations of H(A) and C(A) parametrize (or lift to) the θ-
invariant automorphic discrete spectrum representations of the group of
A-valued points, G(A), of G. Our main purpose is to describe this lift-
ing, or parametrization. In particular we define tensor products of two
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automorphic forms of GL(2,A) the product of whose central characters is
1. Moreover we describe the automorphic representations of the projec-
tive symplectic group of similitudes of rank two, PGSp(2,A), in terms of
θ-invariant representations of PGL(4,A).

Motivation for the theory of automorphic forms is attractively explained
in some articles by S. Gelbart, see, e.g. [G]. For a more technical intro-
duction see part 3, “Background”, of this volume. It is based on a course
I gave at the Ohio State University in 2003. It gives most definitions used
in this work, from adèles to Weil and L-groups, to twisted endoscopy, and
a proof of (Emil) Artin’s conjecture for two dimensional Galois represen-
tations with image A4, S4 in PGL(2,C).

2b. Unramified Liftings

We proceed to explain how the liftings are defined, first for unramified
representations.

An irreducible admissible representation π of an adèle group G(A) is
the restricted tensor product ⊗πv of irreducible admissible ([BZ1]) rep-
resentations πv of the groups G(Fv) of Fv-points of G, where Fv is the
completion of F at the place v of F . Almost all the local components πv
are unramified, that is contain a (necessarily unique up to a scalar multi-
ple) nonzero Kv-fixed vector. Here Kv is the standard maximal compact
subgroup of G(Fv), namely the group G(Rv) of Rv-points, Rv being the
ring of integers of the nonarchimedean local field Fv; G is defined over Rv
at almost all nonarchimedean places v. For such v, an irreducible unram-
ified G(Fv)-module πv is the unique unramified irreducible constituent in
an unramified principal series representation I(ηv), normalizedly induced
(thus induced in the normalized way of [BZ2]) from an unramified char-
acter ηv of the maximal torus T(Fv) of a Borel subgroup B(Fv) of G(Fv)
(extended trivially to the unipotent radical N(Fv) of B(Fv)). The space
of I(ηv) consists of the smooth functions φ : G(Fv)→ C with

φ(ank) = (δ1/2
v ηv)(a)φ(k), k ∈ Kv, n ∈ N(Fv), a ∈ T(Fv),

δv(a) = det[Ad(a)|Lie N(Fv)], and the G(Fv)-action is (g · φ)(h) = φ(hg),
g, h ∈ G(Fv).

The character ηv is unramified, thus it factors as ηv : T(Fv)/T(Rv) →
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C
×. As X∗(T) = Hom(Gm,T) ' T(Fv)/T(Rv), ηv lies in

Hom(X∗(T),C×) = Hom(X∗(T̂ ),C×),

where T̂ is the maximal torus in the Borel subgroup B̂ of Ĝ, both fixed in
the definition of the (complex) dual group Ĝ (Borel [Bo1], Kottwitz [Ko2]).
Now

Hom(X∗(T̂ ),C×) = X∗(T̂ )⊗ C× = T̂ ⊂ Ĝ.
Thus the unramified irreducible G(Fv)-module πv determines a conjugacy
class t(πv) = t(I(ηv)) in Ĝ represented by the image of ηv in T̂ . This class
t(πv) is called the Langlands parameter of the unramified πv.

In the case of G = GL(n), take B to be the group of upper triangular
matrices, T the diagonal subgroup, and ηv(a1, . . . , an) =

∏
ηi(ai) (1 ≤ i ≤

n). If πππv is a generator of the maximal ideal of Rv then t(I(ηv)) is the
class of diag(η1(πππv), . . . , ηn(πππv)) in Ĝ = GL(n,C). If G = PGL(n) then
η1 . . . ηn = 1 and t(I(ηv)) is a class in Ĝ = SL(n,C).

We make the following notational conventions: If the components of η
are η1v, η2v, . . . , we write I(η1v, η2v, . . . ) for I(ηv). For a representation π
and a character χ we write χπ for g 7→ χ(g)π(g), and not χ⊗ π, reserving
the notation π1⊗π2, or π1×π2, for products on different groups: (h, g) 7→
π1(h) ⊗ π2(g) (for example, if (h, g) ranges over a Levi subgroup, the
representation normalizedly induced from the representation π1 ⊗ π2 on
the Levi will be denoted by I(π1, π2) or π1×π2, depending on the context).
We prefer the notation π1 × π2 for a representation of a group which is a
product of two groups, such as our C = SO(4, F ). By a representation we
mean an irreducible one, unless otherwise is specified.

2c. The Lifting from SO(4) to PGL(4)

We next describe our results on our secondary lifting λ1, from C = SO(4)
to G = PGL(4).

We now return to G = PGL(4), θ and C = [GL(2) × GL(2)]′/GL(1).
Note that an irreducible unramified GL(2, Fv)-module π1v is parametrized
by a conjugacy class t(π1v) in GL(2,C) (the Langlands parameter of the
representation; its eigenvalues are called the Hecke eigenvalues of the rep-
resentation). An unramified irreducible representation π1v × π2v of C(Fv)
is parametrized by a class t(π1v)× t(π2v) in

[GL(2,C)×GL(2,C)]′′/C× ' SO
((

0 ω

ω−1 0

)
,C
)

= Ĉ ⊂ Ĝ.
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(Double prime means det g1 · det g2 = 1). If πiv is the unramified con-
stituent of

I(ηiv), t(πiv) = diag(ηi1, ηi2), ηij = ηijv(πππv), η11η12η21η22 = 1,

we define the “lift” π1v � π2v = λ1(π1v × π2v) of π1v × π2v with respect to
the dual group homomorphism λ1 : Ĉ = SO(4,C) ↪→ Ĝ = SL(4,C) (the
natural embedding) to be the unramified irreducible constituent πv of the
PGL(4, Fv)-module I(ηv) parametrized by the class

t(πv) = diag(η11η21, η11η22, η12η21, η12η22)

in Ĝ = SL(4,C). In different notations,

λ1(I(a1, a2)× I(b1, b2)) = I(a1b1, a1b2, a2b1, a2b2) (ai, bi ∈ C×),

provided that a1a2b1b2 = 1. Note that the inverse image under λ1 of
I(a1b1, a1b2, b1a2, a2b2) consists only of

χI(a1, a2)× χ−1I(b1, b2) and χI(b1, b2)× χ−1I(a1, a2)

where χ is any character of F×v . Thus, λ1 is two-to-one unless π1v = π̌2v

(the contragredient of π2v), where λ1 is injective on the set of orbits of
multiplication by χ in Hom(F×v ,C

×).
The rigidity theorem for the discrete spectrum automorphic represen-

tations of GL(n,A) asserts that discrete spectrum automorphic represen-
tations π1 = ⊗π1v and π2 = ⊗π2v which have π1v ' π2v for almost all
places v of F are equivalent (Jacquet-Shalika [JS], Moeglin-Waldspurger
[MW1]). Moreover they are even equal, by the multiplicity one theorem
for GL(n) (Shalika [Shal]). Representations of PGL(n,A) (or PGL(n, Fv))
are simply representations of GL(n,A) (or GL(n, Fv)) with trivial central
character (since H1(F,Gm) = {0}), and the rigidity theorem applies then
to PGL(n). Both multiplicity one theorem, and the rigidity theorem for
packets (the latter asserts that π = ⊗πv and π′ = ⊗π′v must lie in the
same packet if πv ' π′v for almost all v) hold for SL(2) ([F3]) and fail for
SL(n), n ≥ 3 (Blasius [Bla]).

The rigidity theorem holds for C = SO(4); this is the content of the as-
sertion that the lifting λ1 is injective, made in the second paragraph of the
following theorem. The first paragraph asserts that the lifting exists. By
an elliptic representation we mean one whose character (Harish-Chandra
[H]) is not identically zero on the set of elliptic elements.
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2.1 Theorem (SO(4) to PGL(4)). Let π1 = ⊗π1v, π2 = ⊗π2v be
discrete spectrum automorphic representations of GL(2,A) whose central
characters ω1, ω2 are equal, and whose components at two places v1, v2 are
elliptic. Then there exists an automorphic representation π = λ1(π1× π̌2)
of PGL(4,A) with πv = λ1(π1v × π̌2v) for almost all v.

We have λ1(χ1π1 × χ2π2) = χ1χ2λ1(π1 × π2) for χi : A×/F× → C
×

with (χ1χ2)2 = 1.
If π1 = πE(µ1), π2 = πE(µ2) are cuspidal monomial representations

of GL(2,A) associated with characters µ1, µ2 of A×E/E
× where E is a

quadratic extension of F such that the restriction of µ1µ2 to A× is 1, then
λ1(πE(µ1)× πE(µ2)) = I(2,2)(πE(µ1µ2), πE(µ1µ2)).

If {π1, π2} are cuspidal but not of the form {πE(µ1), πE(µ2)}, and π1 6=
χπ2 for any quadratic character χ of A×/F×, then π1 � π2 is cuspidal.

If π1 is the trivial representation 12 and π2 is a cuspidal representa-
tion of PGL(2,A), then λ1(12 × π2) is the discrete spectrum noncuspidal
PGL(4,A)-module J(ν1/2π2, ν

−1/2π2). Here ν(x) = |x|, and J is the quo-
tient of the representation I(ν1/2π2, ν

−1/2π2) normalizedly induced from
the parabolic subgroup of type (2, 2) of PGL(4).

The global map λ1 is injective on the set of pairs π1× π̌2 with ω1 = ω2

up to the equivalence π1 × π̌2 ' χπ1 × χ−1π̌2, χ a character of A×/F×,
and π1 × π̌2 ' π̌2 × π1.

The injectivity means that if π1, π2, π
0
1 , π

0
2 are discrete spectrum auto-

morphic representations of GL(2,A) with central characters ω1, ω2, ω
0
1 , ω

0
2

satisfying ω1ω2 = 1 = ω0
1ω

0
2 , each of which has elliptic components at least

at the three places v1, v2, v3, and if for each v outside a fixed finite set of
places of F there is a character χv of F×v such that the set {π1vχv, π2vχ

−1
v }

is equal to the set {π0
1v, π

0
2v} (up to equivalence of representations), then

there is a character χ of A×/F× such that the set {π1χ, π2χ
−1} is equal to

the set {π0
1 , π

0
2}. In particular, starting with a pair π1, π2 of automorphic

discrete spectrum representations of GL(2,A) with ω1ω2 = 1, we cannot
get another such pair by interchanging a set of their components π1v, π2v

and multiplying π1v by a local character and π2v by its inverse, unless
we interchange π1, π2 and multiply π1 by a global character and π2 by its
inverse.

A considerably weaker result, where the notion of equivalence is gener-
ated only by π1v× π̌2v ' π̌2v×π1v but not by π1v× π̌2v ' χvπ1v×χ−1

v π̌2v,
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follows also on using the Jacquet-Shalika [JS] theory of L-functions, com-
paring the poles at s = 1 of the partial, product L-functions

LV (s, π0
1 × π̌1)LV (s, π0

2 × π̌1) = LV (s, π1 × π̌1)LV (s, π2 × π̌1).

Our global results are complemented and strengthened by very precise
local results. If π ' θπ there is an intertwining operator A with Aπ(g) =
π(θ(g))A for all g. By Schur’s lemma we may assume that A2 = 1. Then
A is unique up to a sign. We put π(θ) = A and π(f × θ) = π(f)A. We
define λ1-lifting locally by means of character relations:

λ1(π1 × π̌2) = π if trπ(f × θ) = tr(π1 × π̌2)(fC)

for all matching functions f , fC (and a suitable choice of A). This defini-
tion is compatible with the one given above for purely induced π1 and π2

and unramified representations. We have λ1(I2(µ, µ′)×π̌2) = I4(µπ̌2, µ
′π̌2)

(the central character of the GL(2, F )-module π2 is µµ′). The local and
global results are closely analogous.

2d. Special Cases of the Lifting from SO(4)

Let us describe some special cases of the lifting λ1. When π2 = π̌1 is the
contragredient of π1, λ1(π1 × π̌1) is the PGL(4,A)-module normalizedly
induced from the maximal parabolic of type (3,1) and the PGL(3,A)-
module Sym2(π1) on the GL(3)-factor of the Levi subgroup (extended triv-
ially to the GL(1)-factor of the Levi, and to the unipotent radical). Here
Sym2(π1) is the symmetric square lifting from GL(2) to PGL(3) ([F3]).
Indeed, if the local component π1v of π1 at v is unramified then t(π1v) =
diag(a, b) (thus π1v is a constituent of I2(a, b)), πv = λ1(π1v × π̌1v) has
t(πv) = diag(a/b, 1, 1, b/a) (thus πv is a constituent of I4(I3(a/b, 1, b/a), 1),
and I3(a/b, 1, b/a) is the symmetric square lifting of I2(a, b)). We write
In to emphasize that the representation is of the group GL(n), and e.g.
I(3,1)(π3, π1) to indicate the representation of GL(4) induced from its max-
imal parabolic subgroup of type (3,1). However, the results of [F3] are
stronger, in lifting representations of SL(2,A) to PGL(3,A) and conse-
quently providing new results such as multiplicity one for SL(2).

Although we do not obtain here a new proof of the existence of the
symmetric square lift of discrete spectrum representations of PGL(2,A),
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we do obtain new character identities, relating the θ-twisted character of
I(3,1)(Sym2 π2, 1) with that of π2 × π̌2. Clearly in this case the lift λ1 is
injective: if

λ1(π1 × π̌2) = λ1(π0 × π̌0) (= I(3,1)(Sym2(π0), 1))

then π1 = π2 = π0χ for some character χ of A×/F×.
In particular, if π1 is a one dimensional representation g 7→ χ(det g) of

GL(2,A), then λ1(π1×π̌1) = I(3,1)(13, 1) is the representation of PGL(4,A)
normalizedly induced from the trivial representation of the maximal par-
abolic subgroup of type (3,1). An alternative purely local computation of
this twisted character is developed in [FZ].

Let π1 = π(µ) be a cuspidal monomial representation of GL(2,A) asso-
ciated with a character µ of A×E/E

× where E is a quadratic extension of
F (denote by σ the nontrivial element of Gal(E/F )). Then

Sym2 π1 = I(2,1)(π(µ/σµ), χE/F ),

where χE/F is the quadratic character of A×/F×NE/FA×E (NE/F is the
norm map from E to F ). Moreover,

λ1(π(µ)× π̌(µ)) = I(2,1,1)(π(µ/σµ), χE/F , 1)

is an induced representation from the parabolic subgroup of type (2,1,1) of
PGL(4). Note that the central character of the GL(2,A)-module π(µ) is
χE/F ·µ|A×, for any character µ of A×E/E

×. If π(µ) is a PGL(2,A)-module
we have that the restriction of µ to A×F /F

× is χE/F , nontrivial but trivial
on F×NE/FA

×
E .

If π1 = πE(µ1), π2 = πE(µ2), cuspidal monomial representations of
GL(2,A) associated with characters µ1, µ2 of A×E/E

× where E is a qua-
dratic extension of F such that the restriction of µ1µ2 to A× is 1, then

λ1(πE(µ1)× πE(µ2)) = I(2,2)(πE(µ1µ2), πE(µ1µ2)).

Indeed

WE/F = 〈z, σ; z ∈ CE , σzσ−1 = z, σ2 ∈ CF −NE/FCE〉
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where CE = A
×
E/E

× (globally, and E× locally), and the representation
corresponds to

z 7→
(
µ1(z) 0

0 µ1(z)

)
×
(
µ2(z) 0

0 µ2(z)

)
λ17→

(
µ1µ2 0

µ1µ2
µ2µ1

0 µ1µ2

)
(13)7→

(
µ2µ1 0

µ1µ2
µ1µ2

0 µ1µ2

)
,

σ 7→
(

0 1
µ1(σ2) 0

)
×
(

0 1
µ2(σ2) 0

)
λ17→

(
0 1

µ2(σ2)

µ1(σ2)
1 0

)
(13)7→

(
0 µ1(σ2)

µ2(σ2) 0
0 1

1 0

)
,

where µ1µ2(σ2) = 1 and µi(z) = µi(z), µ1µ1µ2µ2 = 1 and µi(z) are abbre-
viated to µi in the line of z. When µ1 = µ−1

2 we have π(µ1µ2) = π(µ1/µ1)
and π(µ1µ2) = I(χE/F , 1). Thus

λ1(π(µ1)× π̌(µ1)) = I(2,1,1)(π(µ1/µ1), χE/F , 1) = I(3,1)(Sym2(π(µ1)), 1).

Note that if µ : A×E → C
× has (µ/µ)2 = 1 6= µ/µ then there are

quadratic extensions E2, E3 and characters µi : A×Ei/E
×
i → C

× with
πEi(µi) = πE(µ).

Another interesting special case is when π1 is taken to be the triv-
ial representation 12 of PGL(2,A) while π2 is a cuspidal representation
of PGL(2,A). Then λ1(12 × π2) is the discrete spectrum noncuspidal
representation J(ν1/2π2, ν

−1/2π2) of PGL(4,A), the quotient of the nor-
malizedly induced I(ν1/2π2, ν

−1/2π2) from the parabolic of type (2,2) of
PGL(4). Here ν(x) = |x|. Indeed, 12 is the quotient of the induced
I(ν1/2, ν−1/2). Hence

t(λ1(12v × π2v)) is (t(ν1/2
v π2v), t(ν−1/2

v π2v)). Then λ1(12v × π2v)

is the quotient J(ν1/2
v π2v, ν

−1/2
v π2v) of the induced I(ν1/2

v π2v, ν
−1/2
v π2v)

for all v where π2v is unramified. Hence it is J(ν1/2π2, ν
−1/2π2) globally

by the rigidity theorem for this noncuspidal discrete spectrum ([MW1]).
On the set of pairs π1 × π2 such that at least one of π1 or π2 is one

dimensional, the lifting λ1 is injective. Indeed, a discrete spectrum rep-
resentation of GL(2,A) with a one-dimensional component is necessarily
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one-dimensional. If π2 is not cuspidal but rather trivial, then the quotient
J(ν1/212, ν

−1/212) of I4(ν1/212, ν
−1/212) is not discrete spectrum, but the

induced I4(13) from the trivial representation of the (3,1)-parabolic; this
is λ1(12 × 12).

2e. The Lifting from PGSp(2) to PGL(4)

We now turn to the study of our main lifting λ, and of the automorphic
representations of the F -group H = (PSp(2) =) PGSp(2) = GSp(2)/Gm,
where the center Gm of

GSp(2) = {g ∈ GL(4); tgJg = λλλJ, ∃λλλ = λλλ(g) ∈ Gm}

consists of the scalar matrices. Its dual group is Ĥ = Sp(2,C) = Z
Ĝ

(θ̂) ⊂
Ĝ = SL(4,C), where θ̂(g) = J−1tg−1J . It has a single elliptic endoscopic
group C0 different than H itself. Thus

Ĉ0 = Z
Ĥ

(ŝ0) =

{(
a 0 0 b

0 α β 0

0 γ δ 0

c 0 0 d

)
∈ Ĥ

}
' SL(2,C)× SL(2,C),

where ŝ0 = diag(−1, 1, 1,−1), and C0 = PGL(2) × PGL(2). Write λ0 for
the embedding Ĉ0 ↪→ Ĥ, and λ for the embedding Ĥ ↪→ Ĝ.

The embedding λ0 : Ĉ0 = SL(2,C) × SL(2,C) ↪→ Ĥ = Sp(2,C) defines
the “endoscopic” lifting

λ0 : π2(µ1, µ
−1
1 )× π2(µ2, µ

−1
2 ) 7→ πPGSp(2)(µ1, µ2).

Here π2(µi, µ−1
i ) is the unramified irreducible constituent of the normal-

izedly induced representation I(µi, µ−1
i ) of PGL(2, Fv) (µi are unramified

characters of F×v , i = 1, 2); πPGSp(2)(µ1, µ2) is the unramified irreducible
constituent of the PGSp(2, Fv)-module IPGSp(2)(µ1, µ2) normalizedly in-
duced from the character n · diag(α, β, γ, δ) 7→ µ1(α/γ)µ2(α/β) of the
upper triangular subgroup of PGSp(2, Fv) (n is in the unipotent radical,
αδ = βγ).

The embedding λ : Ĥ = Sp(2,C) ↪→ SL(4,C) = Ĝ defines the lifting λ
which maps the unramified irreducible representation πPGSp(2)(µ1, µ2) of
PGSp(2, Fv) to π4(µ1, µ2, µ

−1
2 , µ−1

1 ), an unramified irreducible representa-
tion of PGL(4, Fv).
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The composition λ ◦ λ0 : Ĉ0 = SL(2,C) × SL(2,C) → Ĝ = SL(4,C)
takes π2(µ1, µ

−1
1 )× π2(µ2, µ

−1
2 ) to

π4(µ1, µ2, µ
−1
2 , µ−1

1 ) = π4(µ1, µ
−1
1 , µ2, µ

−1
2 ),

namely the unramified irreducible PGL(2, Fv)×PGL(2, Fv)-module π2×π′2
to the unramified irreducible constituent π4(π2, π

′
2) of the PGL(4, Fv)-

module I4(π2, π
′
2) normalizedly induced from the representation π2⊗π′2 of

the parabolic of type (2,2) of PGL(4, Fv) (extended trivially on the unipo-
tent radical). For example λ◦λ0 takes the trivial PGL(2, Fv)×PGL(2, Fv)-
module 12 × 12 to the unramified irreducible constituent π4(12,12) of
I4(12,12), and 12×π2 to π4(12, π2) = π4(ν1/2π2, ν

−1/2π2). Note that this
last π4 is traditionally denoted by J .

The definition of lifting is extended from the case of unramified rep-
resentations to that of any admissible representations. For this purpose
we define below norm maps from the set of θ-stable θ-regular conjugacy
classes in G = G(F ) to the set of stable conjugacy classes in H = H(F ),
and from this to the set of conjugacy classes in C0(F ), extending the norm
maps on the split tori in these groups which are dual to the dual groups
homomorphisms λ and λ0. This is used to define a relation of match-
ing functions f , fH and fC0 (they have suitably defined matching orbital
integrals) and a dual relation of liftings of representations.

To express the lifting results we use the following notations for induced
representations of H = PGSp(2, F ). For characters µ1, µ2, σ of F× with
µ1µ2σ

2 = 1 we write µ1 × µ2 o σ for the H-module normalizedly induced
from the character

p = mu 7→ µ1(a)µ2(b)σ(λλλ), m = diag(a, b,λλλ/b,λλλ/a), u ∈ U,

a, b,λλλ ∈ F×, of the upper triangular minimal parabolic of H.
For a GL(2, F )-module π2 and character µ we write π2 o µ for the

PGSp(2, F )-module normalizedly induced from the representation

p = mu 7→ π2(g)µ(λλλ), m = diag(g,λλλwtg−1w), u ∈ U(2), λλλ ∈ F×

(here the product of the central character ω of π2 with µ2 is 1) of the Siegel
parabolic subgroup (whose unipotent radical U(2) is abelian).
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We write µ o π2, if ωµ = 1, for the representation of PGSp(2, F ) nor-
malizedly induced from the representation

p = mu 7→ µ(a)π2(g), m = diag(a, g,λλλ(g)/a), u ∈ U(1),

λλλ(g) = det g, of the Heisenberg parabolic subgroup (whose unipotent rad-
ical U(1) is a Heisenberg group).

These inductions are normalized by multiplying the inducing represen-
tation by the character p 7→ |det(Ad(p))|LieU |1/2, as usual. For example,

IH(µ1, µ2) = µ1µ2 × µ1/µ2 o µ
−1
1 .

Note that π o σ ' π̌ o ωσ and µ(π o σ) = π o µσ.
Complete results describing reducibility of these induced representa-

tions, stated in Sally-Tadic [ST] following earlier work of Rodier [Ro2],
Shahidi [Sh2,3], Waldspurger [W1], are recorded in chapter V, section 1,
Propositions 2.1-2.3, below. For notations see chapter II, section 4.

For properly induced representations, defining λ- and λ0-liftings by char-
acter relations (λ(πH) = π4 if trπ4(f × θ) = trπH(fH) for all matching f ,
fH , and λ0(π1×π2) = πH if trπH(fH) = tr(π1×π2)(fC0) for all matching
fH , fC0), our preliminary results (obtained by local character evaluations),
are that ω−1

o π2 λ-lifts to π4 = IG(π2, π̌2), that µπ2 o µ
−1 (here ω = 1)

λ-lifts to π4 = IG(µ, π2, µ
−1), and that I2(µ, µ−1)× π2 λ0-lifts from C0 to

µπ2 o µ
−1 on H = PGSp(2, F ).

Let χ be a character of F×/F×2. It defines a one-dimensional rep-
resentation χH(h) = χ(λλλ(h)) of H, which λ-lifts to the one-dimensional
representation χ(g) = χ(det g) of G (if h = Ng then λλλ(h) = det g; on
diagonal matrices N(diag(a, b, c, d)) = diag(ab, ac, db, dc)). The Steinberg
representation of H λ-lifts to the Steinberg representation of G, and for
any character χ of F× with χ2 = 1 we have λ(χH StH) = χStG.

2f. Elliptic Representations

Our finer local lifting results concern elliptic representations (whose char-
acters are nonzero on the elliptic set). They follow on using global tech-
niques. Elliptic representations include the cuspidal ones (terminology of
[BZ]. These are called “supercuspidal” by Harish-Chandra, who used the
word “cuspidal” for what is currently named “discrete series” or “square
integrable” representations).
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2.2 Local Theorem (PGSp(2) to PGL(4)). (1) For any unordered
pair π1, π2 of square integrable irreducible representations of PGL(2, F )
there exists a unique pair π+

H , π−H of tempered (square integrable if π1 6= π2,
cuspidal if π1 6= π2 are cuspidal) representations of H with

tr(π1 × π2)(fC0) = trπ+
H(fH)− trπ−H(fH),

tr IG(π1, π2; f × θ) = trπ+
H(fH) + trπ−H(fH)

for all matching functions f , fH , fC0 .
If π1 = π2 is cuspidal, π+

H and π−H are the two inequivalent constituents
of 1o π1.

If π1 = π2 = σ sp2 where σ is a character of F× with σ2 = 1, then π+
H

and π−H are the two tempered inequivalent constituents τ(ν1/2 sp2, σν
−1/2),

τ(ν1/212, σν
−1/2) of 1o σ sp2.

If π1 = σ sp2, σ2 = 1, and π2 is cuspidal, then π+
H is the square inte-

grable constituent δ(σν1/2π2, σν
−1/2) of the induced σν1/2π2oσν

−1/2; π−H
is cuspidal, denoted here by

δ−(σν1/2π2, σν
−1/2).

If π1 = σ sp2 and π2 = ξσ sp2, ξ (6= 1 = ξ2) and σ (σ2 = 1) are
characters of F×, then π+

H is the square integrable constituent

δ(ξν1/2 sp2, σν
−1/2)

of the induced ξν1/2 sp2oσν
−1/2; π−H is cuspidal, denoted here by

δ−(ξν1/2 sp2, σν
−1/2).

(2) For every character σ of F×/F×2 and square integrable π2 there
exists a nontempered representation π×H of H such that

tr(σ12 × π2)(fC0) = trπ×H(fH) + trπ−H(fH),

tr IG(σ12, π2; f × θ) = trπ×H(fH)− trπ−H(fH),

for all matching f , fH , fC0 . Here

π−H = π−H(σ sp2×π2), π×H = L(σν1/2π2, σν
−1/2).
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(3) For any characters ξ, σ of F×/F×2 and matching f , fH , fC0 we
have that tr(σξ12 × σ12)(fC0) is

= trL(νξ, ξ o σν−1/2)(fH)− trX(ξν1/2 sp2, ξσν
−1/2)(fH),

and tr IG(σξ12, σ12; f × θ) is

= trL(νξ, ξ o σν−1/2)(fH) + trX(ξν1/2 sp2, ξσν
−1/2)(fH).

Here X = δ− if ξ 6= 1 and X = L if ξ = 1.
(4) Any θ-invariant irreducible square integrable representation π of

G which is not a λ1-lift is a λ-lift of an irreducible square integrable
representation πH of H, thus trπ(f × θ) = trπH(fH) for all matching
f , fH . In particular, the square integrable (resp. nontempered) con-
stituent δ(ξν, ν−1/2π2) (resp. L(ξν, ν−1/2π2)) of the induced representa-
tion ξνoν−1/2π2 of H, where π2 is a cuspidal (irreducible) representation
of GL(2, F ) with central character ξ 6= 1 = ξ2 and ξπ2 = π2, λ-lifts to the
square integrable (resp. nontempered) constituent

S(ν1/2π2, ν
−1/2π2) (resp. J(ν1/2π2, ν

−1/2π2))

of the induced representation IG(ν1/2π2, ν
−1/2π2) of G = PGL(4, F ).

These character relations permit us to introduce the notion of a packet of
an irreducible representation, and of a quasi-packet, over a local field. Thus
we say that the packet of a representation πH of H consists of πH alone un-
less it is tempered of the form π+

H or π−H for some pair π1, π2 of (irreducible)
square integrable representations of PGL(2, F ), in which case the packet
{πH} is defined to be {π+

H , π−H}, and we write λ0(π1×π2) = {π+
H , π

−
H} and

λ({π+
H , π

−
H}) = IG(π1, π2). Further, we define a quasi-packet only for the

nontempered (irreducible) representations π×H and L = L(νξ, ξ o σν−1/2),
to consist of {π×H , π

−
H} and {L,X}, X = X(ξν1/2 sp2, ξσν

−1/2). We say
that σ12 × π2 λ0-lifts to the quasi-packet λ0(σ12 × π2) = {π×H , π−H},
which in turn λ-lifts to IG(σ12, π2), and similarly, σξ12 × σ12 λ0-lifts
to λ0(σξ12 × σ12) = {L,X} which λ-lifts to IG(σξ12, σ12).

Conjecturally our packets and quasi-packets coincide with the L-packets
and A-packets conjectured to exist by Langlands and Arthur [A2-3].

Using the notations of section V.11 below, we state the analogue of
these results in the real case: F = R. For clarity, denote π1 and π2
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above by π1 and π2. In (1), π1 = πk1 and π2 = πk2 , k1 ≥ k2 > 0
and k1, k2 are odd, are discrete series representations of PGL(2,R), and
π+
H is the generic πWh

k1,k2
, π−H is the holomorphic πhol

k1,k2
, which are discrete

series representations of PGSp(2,R) when k1 > k2. When k1 = k2, π+
H

is the generic and π−H is the nongeneric (tempered) constituents of the
induced 1 o π2k1+1. There is no special or Steinberg representation of
GL(2,R); the analogue is the lowest discrete series π1. The πk are self
invariant under twist with sgn. In (2) with π2 = π2k+3 (k ≥ 0), π×H is
L(σν1/2π2k+3, σν

−1/2), π−H is πhol
2k+3,1, π+

H is πWh
2k+3,1. In (3), if ξ = sgn

then X is the tempered π−H ⊂ 1oπ1, if ξ = 1 then X is L(ν1/2π1, σν
−1/2).

Both of these X, as well as L(νξ, ξ o σν−1/2), are not cohomological. In
(4), π2 is π2k+2, L(ξν, ν−1/2π2) is L(sgnν, ν−1/2π2k+2), δ(ξν, ν−1/2π2) is
πhol

2k+3,2k+1 ⊕ πWh
2k+3,2k+1.

2g. Automorphic Representations

With these local definitions we can state our global results. These global
results are partial, since we work with test functions whose components
are elliptic at least at three places, and consequently we cannot detect
automorphic representations which do not have at least three components
whose (θ-) characters are nonzero on the (θ-) elliptic set. Thus we fix
three places {v1, v2, v3} and discuss only π1 × π2, πH and π = πG whose
components there are (θ-) elliptic.

Let us explain the reason for this restriction. The (noninvariant) trace
formula, as developed by Arthur, involves weighted orbital integrals and
logarithmic derivatives of induced representations. Arthur’s splitting for-
mula shows that these can be expressed as products of local distributions,
which are all invariant (orbital integrals or traces of induced representa-
tions) except at most at rank(H) places. Working with test functions
fH = ⊗fHv with rank(H)+1 components fHv with trπHv(fHv) = 0 for
every tempered properly induced representation πHv of Hv (equivalently:
fHv whose orbital integrals vanish on the regular nonelliptic set of Hv), all
non elliptic terms vanish. We call such fHv elliptic. At an additional place
we use a regular Iwahori biinvariant component (see [FK1], [FK2], [F2] or
[F3;VI]) to annihilate the singular orbital integrals. For the twisted trace
formula we use the twisted rank, which is equal to rank(H), to obtain the
same vanishing. This removes all complicated terms in the trace formulae
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comparison. Here rank means the F -dimension of a maximal split torus in
the derived group, or in the derived group of the group of fixed points of
the involution in the twisted case.

For very little effort we can reduce the number of restrictions to two,
rather than three. Using elliptic components fHv1 , fHv2 , implies that the
local factors at each v 6= v1, v2, in the terms in the trace formula, are
invariant. We then use at a third, nonarchimedean, place v3 a regular-
Iwahori function (as in [FK1], [FK2], [F2], [F3;VI]). Similar choice is made
for the twisted formula. The geometric sides of the trace formulae consist
now of elliptic terms only. As the distributions at v3 which occur in the
trace formula are invariant, such fHv3 can also be taken to be a spherical
function with the same orbital integrals as the Iwahori-regular component.
The resulting equality of discrete and continuous measures (the continuous
measure comes from the spectral sides), which are invariant distributions
in fHv3 , implies their vanishing by the (standard) argument of “generalized
linear independence of characters” (using the Stone-Weierstrass theorem)
employed in this context in [FK1], [FK2], [F2], [F3]. To simplify our
exposition we do not record this argument here, but our global results
can safely be used with two restriction, at v1, v2, rather than three.

One can do better, and require that only one component, fHv, be ellip-
tic, at a single real place v. This argument, explained in Laumon [Lau],
requires very extensive referencing to much of Arthur’s deep analysis of the
distributions appearing in the trace formula. Inclusion of these arguments
here would have made this work more complicated than the relatively el-
ementary exposition I wish to present. However, our results are provable
for global representations with a single elliptic component at a real place.
This suffices for all purposes of studying the decomposition of the `-adic
cohomology with compact supports of the Shimura variety associated with
our group, and any coefficients, as a Galois-Hecke module ([F7]).

These constraints will be removed once the trace formulae identity is
established for general test functions. This is being developed by Arthur.
A simpler method, based on regular functions, has been introduced when
the rank is one (see [F2;I], [F3;VI], [F4;III]) to establish unconditional
comparison of trace formulae. But it has not yet been extended to the
higher rank cases.

With this reservation, emphasized by a ∗-superscript in the following
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Global Theorem, the discrete spectrum representations of PGSp(2,A), i.e.
H(A), can now be described by means of the liftings. They consist of
two types, stable and unstable. Global packets and quasi-packets define
a partition of the spectrum. To define a (global) [quasi-] packet {πH},
fix a local [quasi-] packet {πHv} at each place v of F , such that {πHv}
contains an unramified member π0

Hv (and then {πHv} consists only of π0
Hv

in case it is a packet) for almost all v. The [quasi-] packet {πH} is then
defined to consist of all products ⊗vπ′Hv with π′Hv in {πHv} for all v, and
π′Hv = π0

Hv for almost all v. The [quasi-] packet {πH} of an automorphic
representation πH is defined by the local [quasi-] packets {πHv} of the
components πHv of πH at almost all places.

The discrete spectrum of PGSp(2,A) will be described by means of
the λ0- and λ-liftings. We say that the discrete spectrum π1 × π2 λ0-lifts
to a packet {πH} (or to a member thereof) if {πHv} = λ0(π1v × π2v)
for almost all v, and that a packet {πH} (or a member of it) λ-lifts to an
irreducible self-contragredient automorphic representation π if λ({πHv}) =
πv for almost all v. The unstable spectrum of PGSp(2,A) is the set of
discrete spectrum representations which are λ0-lifts; its complement is the
stable spectrum. A [quasi-] packet whose automorphic members lie in the
(un)stable spectrum is called a(n un)stable [quasi-] packet.

2.3 Global Theorem
∗

(PGSp(2) to PGL(4)). The packets and
quasi-packets partition the discrete spectrum of the group PGSp(2,A), thus
they satisfy the rigidity theorem: if πH and π′H are discrete spectrum rep-
resentations locally equivalent at almost all places then their packets or
quasi-packets are equal.

The λ-lifting is a bijection between the set of packets (resp. quasi-
packets) of discrete spectrum representations in the stable spectrum (of
PGSp(2,A)) and the set of self contragredient discrete spectrum representa-
tions of PGL(4,A) which are one dimensional, or cuspidal and not a λ1-lift
from C(A) (or residual J(ν1/2π2, ν

−1/2π2) where π2 is a cuspidal repre-
sentation of GL(2,A) with central character ξ 6= 1 = ξ2 and ξπ2 = π2).

The λ0-lifting is a bijection between the set of pairs of discrete spectrum
representations

{π1 × π2, π2 × π1;π1 6= π2} of PGL(2,A)× PGL(2,A),

and the set of packets and quasi-packets in the unstable spectrum of the
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group PGSp(2,A). The λ-lifting is a bijection from this last set to the
set of automorphic representations IG(π1, π2) of PGL(4,A), normalizedly
induced from discrete spectrum π1×π2 (π1 6= π2) on the parabolic subgroup
with Levi factor of type (2, 2). If π1×π2 is cuspidal, its λ0-lift is a packet,
otherwise: quasi-packet.

Each member of a stable packet occurs in the discrete spectrum of the
group PGSp(2,A) with multiplicity one. The multiplicity m(πH) of a mem-
ber πH = ⊗πHv of an unstable [quasi-]packet λ0(π1 × π2) (π1 6= π2) is not
(“stable”, or) constant over the [quasi-]packet. If π1 × π2 is cuspidal, it is

m(πH) =
1
2

(1 + (−1)n(πH)) (∈ {0, 1}).

Here n(πH) is the number of components π−Hv of πH (it is bounded by the
number of places v where both π1v and π2v are square integrable). Each
πH with m(πH) = 1 is cuspidal.

The multiplicity m(πH) (in the discrete spectrum of PGSp(2,A)) of
πH = ⊗πHv from a quasi-packet λ0(σ12 × π2), where π2 is a cuspidal
representation of PGL(2,A) and σ is a character of A×/F×A×2, is

1
2

(1 + ε(σπ2,
1
2

)(−1)n(πH)) (= 0 or 1),

where n(πH) is the number of components π−Hv of πH , and ε(π2, s) is the
usual ε-factor which appears in the functional equation of the L-function
L(π2, s). In particular π×H = ⊗π×Hv (n(πH) = 0) is in the discrete spectrum
if and only if ε(σπ2,

1
2 ) = 1.

Finally we have m(πH) = 1
2 (1+(−1)n(πH)) for πH = ⊗πHv in λ0(σξ12×

σ12) with n(πH) components πHv = Xv. Here πH = ⊗Lv (n(πH) = 0) is
residual.
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2h. Unstable Spectrum

Note that the quasi-packet λ0(σξ12 × σ12) is defined by the local quasi-
packets

{Lv = L(νvξv, ξv o σvν−1/2
v ), Xv = X(ξvν1/2

v sp2v, ξvσvν
−1/2
v )}

for every v, where ξ (6= 1), σ are characters of A×/F× with ξ2 = 1 = σ2

and ξv, σv are their components. When ξv, σv are unramified, this quasi-
packet contains the unramified representation π0

Hv = Lv. Members of
this quasi-packet have been studied by means of the theta correspondence
by Howe and Piatetski-Shapiro, see, e.g., [PS1], Theorem 2.5. They at-
tracted interest since they violate the naive generalization of the Ramanu-
jan conjecture, which expects the components of a cuspidal representation
to be tempered. (The form of the Ramanujan conjecture which is ex-
pected to be true asserts that the components of a cuspidal representation
of PGSp(2,A) which λ-lifts to a representation of PGL(4,A) induced from
a cuspidal representation of a Levi subgroup, are tempered.) Members of
this quasi-packet are equivalent at almost all places to the quotient of the
properly induced representation νξ × ξ o σν−1/2.

Let π2 be a cuspidal representation of PGL(2,A), σ a character of
A
×/F×A×2. The packet λ0(σ12 × π2) contains the constituent π×H =
⊗vπ×Hv of the representation σν1/2π2 o σν

−1/2 ' σν−1/2π2 o σν
1/2 prop-

erly induced from an automorphic representation, hence it is automorphic
by [L4]. It is known that π×H is residual precisely when L(σπ2,

1
2 ) 6= 0;

hence ε(σπ2,
1
2 ) = 1 in this case.

Let n(π2) denote the number of square integrable components of π2.
The quasi-packet λ0(σ12 × π2) thus consists of 2n(π2) (irreducible) repre-
sentations. If n(π2) ≥ 1, half of them in the discrete spectrum, all cuspidal
if L(σπ2,

1
2 ) = 0, all but one: π×H = ⊗vπ×Hv, are cuspidal if L(σπ2,

1
2 ) 6= 0.

If n(π2) ≥ 1 and L(σπ2,
1
2 ) = 0, the automorphic nonresidual π×H is cuspi-

dal when ε(σπ2,
1
2 ) = 1.

If π2 has no square integrable components (n(π2) = 0), the packet
λ0(σ12 × π2) consists only of π×H . This π×H is residual if L(σπ2,

1
2 ) 6= 0;

cuspidal (by [PS1], Theorem 2.6 and [PS2], Theorem A.2) if L(σπ2,
1
2 ) = 0

and ε(σπ2,
1
2 ) = 1; or (automorphic but) not in the discrete spectrum

otherwise: L(σπ2,
1
2 ) = 0 and ε(σπ2,

1
2 ) = −1. In this last case the λ0-
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lift of σ12 × π2 is not in the discrete spectrum, and there is no discrete
specrtum representation λ-lifting to IG(σ12, π2).

At a place v where π2v is induced I(µv, µ−1
v ), the packet

πHv = λ0(σv12 × π2v)

is the irreducible induced µvσv12 o µ−1
v , which λ-lifts to the induced

IG(µv, σv12, µ
−1
v ), and not the irreducible induced

σvµvν
1/2
v × σvµ−1

v ν1/2
v o σvν

−1/2
v = σvµvν

1/2
v o I(µ−1

v , σvν
−1/2
v ),

which λ-lifts to the reducible induced IG(µv, σvI(ν1/2
v , ν

−1/2
v ), µ−1

v ), which
has the constituent IG(µv, σv12, µ

−1
v ).

Members of the quasi-packet λ0(σ12 × π2) were studied numerically
by H. Saito and N. Kurokawa, and using the theta correspondence by
Piatetski-Shapiro and others, see [PS1], Theorem 2.6. They attracted in-
terest since they violate the naive generalization of the Ramanujan con-
jecture. They are equivalent at almost all places to the quotient of the
properly induced representation σν1/2π2 o σν

−1/2.
A discrete specrtum representation πH with a local component

L(νvξv, ν−1/2
v π2v)

(whose packet consists of itself), where π2v is a cuspidal representation
with central character ξv 6= 1 = ξ2

v and ξvπ2v = π2v, is in the packet of
L(νξ, ν−1/2π2). Here π2 is cuspidal with central character ξ 6= 1 = ξ2,
hence ξπ2 = π2, whose components at v are π2v and ξv. It λ-lifts to
JG(ν1/2π2, ν

−1/2π2). At v with ξv = 1 the component π2v is induced. If
π2v = I(µv, µvξv), ξ2

v = 1 and µ2
v = 1 (in particular whenever ξv 6= 1

and π2v is not cuspidal), then L(νvξv, ν
−1/2
v π2v) is Lv = L(νvξv, ξv o

µvν
−1/2
v ), which λ-lifts to IG(µv12, µvξv12), and its packet contains also

Xv = X(ν1/2
v ξv sp2v, ξvµvν

−1/2
v ). Thus the packet of πH is determined

by {Lv, Xv} at all v where π2v = I(µv, µvξv), µ2
v = 1 = ξ2

v , and by the
singleton {Lv = L(νvξv, ν

−1/2
v π2v)} at all other v, where π2v is cuspidal,

or ξv = 1 and π2v = I(µv, µ−1
v ), µ2

v 6= 1. Each member of this infinite
packet occurs in the discrete specrtum with multiplicity one, and is cuspi-
dal, with the exception of L(νξ, ν−1/2π2) = ⊗vL(νvξv, ν

−1/2
v π2v), which is
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residual ([Kim], Theorem 7.2). Members of the packet L(νξ, ν−1/2π2) are
considered in the Appendix of [PS1] and its corrigendum.

If π1 and π2 are cuspidal but there is no place v where both are square
integrable, λ0(π1 × π2) consists of a single irreducible cuspidal representa-
tion. This instance of the lifting λ0 – where πi are cuspidal – can also be
studied ([Rb]) using the theta correspondence for suitable dual reductive
pairs (SO(4), PGSp(2)) for the isotropic and anisotropic forms of the or-
thogonal group, to describe further properties of the packets, such as their
periods.

2i. Generic Representations

Our proof of the existence of the lifting λ uses only the trace formula,
orbital integrals and character relations. However, for cuspidal represen-
tations π1, π2 of PGL(2, F ), F local, we get only the character relation

tr IG(π1, π2; f × θ) = (2m+ 1)[trπ+
H(fH) + trπ−H(fH)].

Here f on G = PGL(4, F ) and fH on H = PGSp(2, F ) are any matching
functions, and m = m(π1, π2) is a nonnegative integer. To prove multi-
plicity one theorem for PGSp(2,A) we need the fact that m = 0.

Our proof is global. It uses the following results from the theory of
the theta correspondence, Whittaker models and Eisenstein series. (1)
Ginzburg-Rallis-Soudry [GRS], Theorem A: Each representation I(π1, π2)
of PGL(4,A) normalizedly induced from a cuspidal representation π1 ×
π2 of its (2, 2)-parabolic, where π1 6= π2 are cuspidal representations of
PGL(2,A), is a λ-lift of a unique generic cuspidal representation πH of
SO(5,A) = PGSp(2,A). (2) Kudla-Rallis-Soudry [KRS], Theorem 8.1: If
π0 is a locally generic cuspidal representation of Sp(2,A) and the partial
degree 5 L-function L(S, π0, id5, s) is 6= 0 at s = 1 then π0 is (globally)
generic. (3) Shahidi [Sh1], Theorem 5.1: If π0 is a generic cuspidal rep-
resentation of Sp(2,A), then L(S, π0, id5, s) is 6= 0 at s = 1. See chapter
V, section 7, and the final remark in section 6, for further comments. We
do not use the assertion (attributed to “a yet to be published result of
Jacquet and Shalika”) in the Remark following the statement of Theorem
8.1 in [KRS], p. 535 (that a cuspidal representation of GSp(2) is generic iff
it lifts to GL(4)), which contradicts – at least as stated – our result that all
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representations but one in a packet of PGSp(2) are nongeneric, yet they
all lift to PGL(4).

Our global proof resembles (but is strictly different from) the second
proof of [F4;II], Proposition 3.5, p. 48, which is also based on the theory
of generic representations. This Proposition claims the multiplicity one
theorem for the discrete spectrum of U(3, E/F ). However, the proof of
[F4;II], p. 48, is not complete. Indeed, the claim in Proposition 2.4(i) in
reference [GP] to [F4;II], that “L2

0,1 has multiplicity 1”, is interpreted in
[F4;II] as asserting that generic representations of U(3) occur in the discrete
spectrum with multiplicity one. But it should be interpreted as asserting
that irreducible π in L2

0,1 have multiplicity one only in the subspace L2
0,1

of the discrete spectrum. This claim does not exclude the possibility of
having a cuspidal π′ perpendicular and equivalent to π ⊂ L2

0,1.

Multiplicity one for the generic spectrum would follow via this global
argument from the statement that a locally generic cuspidal representation
is globally generic (multiplicity one implies this statement too). In our
case of PGSp(2) we deduce from [KRS], [GRS], [Sh1] that a locally generic
cuspidal representation which is equivalent at almost all places to a generic
cuspidal representation is globally generic. A proof for U(3) still needs to
be written down.

The usage of the theory of generic representations in the proof described
above is not natural. A purely local proof of multiplicity one theorem for
the discrete spectrum of U(3) based only on character relations is proposed
in [F4;II], Proof of Proposition 3.5, p. 47. It is based on Rodier’s result
[Ro1] that the number of Whittaker models is encoded in the character
of the representation near the origin. Details of this proof are given in
[F4;IV] in odd residual characteristic in the case of basechange for U(3).
It implies that in a tempered packet of representations of U(3, E/F ) there
is precisely one generic representation, and that each generic packet of
discrete spectrum representations of U(3,AE/AF ) – where a generic packet
means one which lifts to a generic representation of GL(3,AE) – would
contain precisely one generic member. Moreover, a locally generic cuspidal
representation of U(3,AE/AF ) is generic.

This type of a local argument was introduced in [FK1] in the proof
of the metaplectic correspondence and the multiplicity one theorem for
the discrete spectrum of the metaplectic group of GL(n,A). We have not
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carried out this local proof in the case of PGSp(2) as yet.

In the case of PGSp(2) our global proof implies that a local tempered
packet contains precisely one generic representation, and that a global
packet which lifts to a generic representation of PGL(4,A) contains pre-
cisely one everywhere generic representation. The latter is generic if the
packet is unstable (in the image of the lifting λ0). We do not show that
a locally generic cuspidal representation of PGSp(2,A) which is stable (λ-
lifts to a cuspidal representation of PGL(4,A)) is generic.

There is some overlap between our results on the existence of the λ-
lifting and the work of [GRS] which asserts that the weak (i.e., in terms of
almost all places) lifting establishes a bijection from the set of equivalence
classes of (irreducible automorphic) cuspidal generic representations of the
split group SO(2n+1,A), to the set of representations of PGL(2n,A) of the
form π = I(π1, . . . , πr), normalized induction from the standard parabolic
subgroup of type (2n1, . . . , 2nr), n = n1 + · · ·+ nr, where πi are cuspidal
representations of GL(2ni,A) such that L(S, πi,Λ2, s) has a pole at s = 1
and πi 6= πj for all i 6= j, and the partial L-function is defined as a
product outside a finite set S where all πi are unramified. Of course we
are concerned only with the case n = 2, where PGSp(2) ' SO(5).

Our characterization of the lifting λ is (as in [GRS]) that I(π1, π2),
cuspidal representations π1 6= π2 of PGL(2,A), are in the image; and that
self contragredient cuspidal representations π of PGL(4,A) are in the image
of the lifting λ from PGSp(2,A) (= SO(5,A)) precisely if they are not in
the image of the lifting λ1 from SO(4,A). The cuspidal π = λ(πH), generic
πH , are characterized in [GRS] as the π ' π̌ such that L(S, π,Λ2, s)−1 is
0 at s = 1. Thus the characterization of the cuspidal image of λ here is
complementary to but different than that of [GRS].

However, the methods of [GRS] apply only to generic representations,
while our methods apply to all representations of PGSp(2). In particular,
we can define packets, describe their structure, establish multiplicity one
theorem and rigidity theorem for packets of PGSp(2), specify which mem-
ber in a packet or a quasi-packet is in the discrete spectrum, and we can
also λ-lift the nongeneric nontempered (at almost all places) packets to
residual self-contragredient representations of PGL(4,A). Our liftings are
proven in terms of all places, not only almost all places. In addition we
establish the lifting λ1 from SO(4) to PGL(4), determine its fibers (that
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is, prove multiplicity one theorem for SO(4) and rigidity in the sense ex-
plained above), and show that any self-contragredient discrete spectrum
representation of PGL(4,A) which is not a λ-lift from PGSp(2,A) is a
λ1-lift from SO(4,A).

2j. Orientation

This work is an analogue for (SO(4),PGSp(2),PGL(4)) of [F3], which
dealt with (PGL(2),SL(2),PGL(3)), thus with the symmetric square lift-
ing, and of [F4], which dealt with quadratic basechange for the unitary
group U(3, E/F ), thus with (U(2, E/F ), U(3, E/F ), GL(3, E)). These
works use the twisted – by transpose-inverse (and the Galois action in the
unitary groups case) – trace formulae on PGL(4), PGL(3), GL(3, E). They
are based on the fundamental lemma: [F5] in our case, [F3;V] and [F4;I] in
the other cases. The technique employed in these last works benefited from
work of Weissauer [W] and Kazhdan [K1]. The present work, which deals
with the applications of the fundamental lemma and the trace formula to
character relations, liftings and the definition of packets, is analogous to
[F3;IV] and [F4;II].

The trace formula identity is proven in [F3;VI] and [F4;III] for all test
functions. Here we deal only with test functions which have at least three
elliptic components. The trace formulae identity for a general test function
has not yet been proven in our case. Perhaps the method of [AC] could be
used for that, as it has been applied in a general rank case. It would be
interesting to pursue the elementary techniques of [F3;VI] and [F4;III], and
[F2;I], which establish the trace formulae identity for basechange for GL(2)
by elementary means, based on the usage of regular, Iwahori test functions.
In particular the present work does not develop the trace formula. It only
uses a form of it.

Our approach uses the trace formula, developed by Arthur (see [A1]),
as envisaged by Langlands e.g. in his work on basechange for GL(2).

Of course Siegel modular forms have been extensively studied by many
authors (e.g., Siegel, Maass, Shimura, Andrianov, Freitag, Klingen...) over
a long period of time, and several textbooks are available.

As noted above, an important representation theoretic approach alter-
native to the trace formula, based on the theta correspondence, Weil rep-
resentation, Howe’s dual reductive pairs, L-functions and converse theo-
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rems, has been fruitfully developed in our context of the symplectic group
by Piatetski-Shapiro, Howe, Kudla, Rallis, Ginzburg, Roberts, Schmidt,
Soudry, and others, see, e.g., [PS], [KRS], [GRS], [Rb], [Sch].

A purely local approach to character computations is developed in [FZ].
Our results are used by P.-S. Chan [Ch] to determine the representations

of GSp(2) which are invariant under twisting by a quadratic character.
The classification of the automorphic representations of PGSp(2) has

applications to the decomposition of the étale cohomology with compact
supports and twisted coefficients of the Shimura varieties associated with
GSp(2), see [F7]. Our techniques extend to deal with admissible and au-
tomorphic representations of GSp(2), but this we do not do here.

The present part is divided into five chapters: I. Introduction, II. Basic
Facts, III. Trace Formulae, IV. The Lifting λ1, V. The Lifting λ. Each is
divided into sections. Definitions or propositions are numbered together
in each section.

3. Conjectural Compatibility

Our local results are analogous to those of Arthur [A2], who verified them
in the real case, and are consistent with his conjectures. We shall assume
in this section, not to be used anywhere else in this work, familiarity with
[A2], [A3], and briefly highlight some of the definitions and conjectures of
[A2] in our context, in our notations (H,C0 in place of Arthur’s G,H).
For brevity we write WF for the Weil group of the local field, but as in
[A2], 2.1, this group has to be the motivic Galois group of the conjecturally
Tannakian category of tempered representations of all GL(n)’s in the global
case, a complex pro-reductive group, or an extension of WF by a connected
compact group (WF × SU(2,R) in the p-adic case).

Thus Φ(H/F ) denotes the set of Ĥ-conjugacy classes of admissible (in
particular, pr2 ◦φ = idWF

) maps

φ : WF → LH = Ĥ ×WF (Ĥ = LH0).

It contains the subset Φtemp(H/F ) defined using the φ with bounded
Im(pr1 ◦φ). Note that for a split adjoint group H over F , Ĥ is simply
connected, and for any semisimple s in Ĥ, the centralizer Ĉ0 = Z

Ĥ
(s) of
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s in Ĥ specifies the endoscopic group H uniquely (up to isomorphism).
Write Sφ = SHφ = Z

Ĥ
(φ(WF )) (centralizer in the connected group Ĥ of

the image of φ), Ẑ = Z
Ĥ

(LH) ⊂ Ĥ, and note that Sφ = Sφ/S
0
φẐ is a

finite abelian group, conjecturally in duality with the packet Πφ to be as-
sociated with φ ∈ Πtemp(H/F ) (this is the case when F = R, see [A2]).
Arthur [A2] defines a further set Ψ(H/F ) of Ĥ-conjugacy classes of maps
ψ : WF × SL(2,C)→ LH such that ψ|WF ∈ Φtemp(H/F ), and a map

ψ 7→ φψ, φψ(w) = ψ(w,
(
|w|1/2 0

0 |w|−1/2

)
),

which embeds Ψ(H/F ) in Φ(H/F ). Each ψ can be viewed as a pair

(φ, ρ) ∈ (Φtemp(H/F )×Hom(SL(2,C), Sφ))/ Int(Sφ)

(quotient by Sφ-conjugacy). Then Φtemp(H/F ) embeds in Ψ(H/F ) as the
(φ, 1). Put

Sψ = SHψ = Z
Ĥ

(ψ(WF × SL(2,C))).

It is equal to
ZSφψ (ρ(SL(2,C))),

a subgroup of Sφψ , and there is a surjection Sψ = Sψ/S
0
ψẐ � Sφψ . The

group Sψ is in duality with the quasi-packet Πψ conjecturally associated
with ψ. Globally, the quasi-packet Πψ contains no discrete spectrum rep-
resentations of H unless Sψ is finite.

Let us review the examples of [A2], where Ĥ = Sp(2,C) ⊃ Ĉ0 =

SL(2,C) × SL(2,C) =

{(
a 0 0 b

0 α β 0

0 γ δ 0

c 0 0 d

)}
. The parameter ψ can be described

by the maps

(φ = φ1 × φ2, ρ = ρ1 × ρ2) : WF × SL(2,C)→ SL(2,C)× SL(2,C).

If φi : WF → SL(2,C) are irreducible and inequivalent, ρ = 1,

ZSL(2,C)(Imφi) = {±I}, Sφψ = Z/2× Z/2, Sφψ = Z/2,

Sψ = Z/2× Z/2, Sψ = Z/2. This is a “classical” tempered case, as Imφi
are bounded.
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If φ1 = φ2 is irreducible, ρ = 1, Sφψ = O(2,C) = Sψ (this group consists

of the diag(g, g∗), g∗ = wtg−1w, w =
(

0 1

1 0

)
, which commute with

(
0 w

w 0

)
,

thus gtg = I), S0
ψ = SO(2,C) and Sφψ = Sψ = Z/2 (= 〈diag(w,w)〉).

These cases correspond to λ0(π1 × π2), where π1, π2 are in the discrete
spectrum; a local packet consists of 2 = [Z/2] elements. A global packet
in the second case consists of no discrete spectrum representations since
Sψ = O(2,C) is not finite. In the first case, where π2 6= π1, the packet
consists of 2n irreducibles, where n is the number of places where both π1

and π2 are square integrable; half of the members in the packet are in the
discrete spectrum (one, if n = 0).

If φ1 is irreducible and Im(φ2) ⊂ {±I}, and ρ = 1× id, we have Sφψ =
Z/2 × C× (= {diag(ι, z, z−1, ι); z ∈ C×, ι ∈ {±1}}), Sφψ = {1}, Sψ =
Z/2 × Z/2, Sψ = Z/2. This is the case of λ0(π1 × φ212), where φ2 is a
character.

If Imφi ⊂ {±I} but φ1 6= φ2, and ρi = id, Sφψ = C
× × C× (=

{diag(z, t, t−1, z−1); z, t ∈ C×}), Sφψ = {1}, Sψ = Z/2 × Z/2, Sψ = Z/2.
This is the case of λ0(φ112 × φ212), where φ1 6= φ2 are characters of
F×/F×2 or A×/F×A×2.

If φ1 = φ2 with image in {±I}, and ρi = id, Sφψ = GL(2,C) (=
{diag(g, g∗); g ∈ GL(2,C)}), Sφψ = {1}, Sψ = O(2,C), Sψ = Z/2. This is
the case of λ0(φ112 × φ112), whose packet contains no discrete spectrum
representations, and indeed Sψ = O(2,C) is not finite.

In addition we determine that the multiplicity dψ of [A2], p. 28, is one.

4. Conjectural Rigidity

This section explains the rigidity theorem for SO(4) via the principle of
functoriality. It is based on conversations with J.-P. Serre at Singapore.

4.1 Proposition. Let η1, η2, η′1, η′2: WF → GL(2,C) be (irreducible
continuous) representations of the Weil group WF of F which are un-
ramified at almost all places v (so they depend there only on the Frobe-
nius element) with η1 ⊗ η2|WFv ' η′1 ⊗ η′2|WFv for almost all v and
with det η1 · det η2 = det η′1 · det η′2. Then there exists a homomorphism
χ : WF → C

× such that η′1 = χη1 and η′2 = χ−1η2, or η′2 = χη2 and
η′2 = χ−1η1.
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Since the subgroup of WF generated by the Frobenii is dense, we may
consider instead a group Γ (instead of WF ), and two representations ρi
(instead of η1 ⊗ η2) which are locally conjugate, which means that ρ1(γ)
is conjugate to ρ2(γ) for each γ in Γ, or alternatively that the restrictions
of ρ1, ρ2 to any cyclic subgroup are conjugate. We wish to know whether
they are conjugate as representations.

We say that a groupG over C has the rigidity-property if for any group Γ,
any two locally conjugate representations ρ1, ρ2 : Γ→ G(C) are conjugate.
Variants are naturally defined (for special Γ and ρ). For example, if Γ
is finite and G = GL(n), character theory asserts that locally conjugate
ρ1, ρ2 : Γ → GL(n,C) are conjugate. The group G = GL(n) has the
rigidity-property for any semisimple continuous representations ρ1, ρ2 of
the Weil group. On the other hand, the group PGL(n,C) does not have
the rigidity-property since it is the dual group of SL(n), for which rigidity
does not hold.

In our case we wish to know whether locally conjugate ρ1, ρ2 into
SO(4,C) are conjugate. They are not, but almost are: they are conjugate
in O(4,C), which is the semidirect product of SO(4,C) with an element
which maps η1 ⊗ η2 to η2 ⊗ η1. We proceed to explain this via the group
theoretical notion of fusion control.

4.2 Definition. Given groups G ⊃ H ′ ⊃ H we say that H ′ controls
the fusion of H in G if for any sets A, B in H and g in G with gAg−1 = B

there is h in H ′ with hah−1 = gag−1 for every a in A, namely h−1g lies in
the centralizer CG(A) of A in G.

4.3 Example. Let S be an abelian p-Sylow subgroup in a finite group
G, and N = NG(S) the normalizer of S in G. Then S ⊂ N ⊂ G and N

controls the fusion of S in G.

Proof. Since S is abelian and A is a subset of S we have that S
is contained in the centralizer CG(A) of A in G. Hence S is a p-Sylow
subgroup of CG(A). Now the abelian S commutes with any subset B of
S, hence g−1Sg commutes with g−1Bg = A, and so g−1Sg is a p-Sylow
subgroup of CG(A) for any g in G. Since p-Sylow subgroups are conjugate,
there is u in CG(A) with g−1Sg = uSu−1; take h = gu ∈ NG(S). Then
hah−1 = guau−1g−1 = gag−1 for any a in A. �
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3.4 Example. Let G be an algebraic reductive group, T a maximal
torus and N = NG(T ) the normalizer of T in G. Then T ⊂ N ⊂ G and N
controls the fusion of T in G.

Proof. If A is any subset of the abelian T , we have that T lies in
the centralizer CG(A) of A in G. Hence T is a maximal torus in CG(A).
Now T commutes with any of its subsets B, hence g−1Tg commutes with
g−1Bg = A, and so g−1Tg is a maximal torus in CG(A). Since maximal
tori of a reductive group are conjugate, there exists u in CG(A) such that
g−1Tg = uTu−1. Hence h = gu lies in NG(T ) and satisfies hah−1 =
guau−1 = gag−1 for any a in A. �

4.5 Proposition. Let S = tS be a symmetric matrix in GL(n,C). Put
g∗ = Stg−1S−1. Then the orthogonal group O(S,C) = {g ∈ GL(n,C); g =
g∗} controls its own fusion in GL(n,C).

Proof. Suppose that A, B are subsets of O(S,C) and g ∈ GL(n,C)
satisfies gAg−1 = B. For each a in A we have a∗ = a, hence g∗ag∗−1 =
(gag−1)∗ = gag−1 (as b = b∗ for b = gag−1). Then c = g−1g∗ commutes
with each a in A, and c∗−1 = StcS−1 = Stg∗tg−1S−1 = g−1Stg−1S−1 =
g−1g∗ = c. Let d be a square root of c, thus c = d2. Using the bino-
mial expansion u1/2 =

∑∞
n=0

( 1
2
n

)
(u − 1)n for a unipotent matrix u and

(reiθ)1/2 = r1/2eiθ/2 (0 6 θ < 2π, r > 0), the Jordan decomposition
c = su = us and diagonalization, we express d as a function f(c) in c,
where f satisfies f(xyx−1) = xf(y)x−1 and f(tx) = tf(x). Then

d∗−1 = S tdS−1 = Sf(tc)S−1 = f(StcS−1) = f(c∗−1) = f(c) = d

and h = (gd)∗ = g∗d∗ = gcd−1 = gd satisfies (gd)a(gd)−1 = gag−1, for all
a in A. �

4.6 Corollary. If ρ1, ρ2 : Γ → O(S,C) are representations of a
group Γ into the orthogonal group O(S,C), and there is g in GL(n,C) with
ρ2 = gρ1g

−1, then there is h in O(S,C) with ρ2 = hρ1h
−1. �

Remark. The last Proposition and its Corollary hold (with the same
proof) for the symplectic group Sp(S,C), defined using S = − tS.

4.7 Proposition. Let η1, η2, η′1, η′2: Γ→ GL(2,C) be representations
of a group Γ with η1 ⊗ η2 ' η′1 ⊗ η′2 in GL(4,C) and det η1 · det η2 =
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det η′1 · det η′2. Then there exists a homomorphism χ : Γ → C
× such that

η′1 = χη1 and η′2 = χ−1η2 or η′1 = χη2 and η′2 = χ−1η1.

Proof. The tensor products ρ = η1 ⊗ η2 and ρ′ = η′1 ⊗ η′2 have images
in SO(S,C) ⊂ O(S,C) where S = ŝJ = antidiag(−1, 1, 1,−1),

ŝ = diag(−1, 1,−1, 1), J =
(

0 w

−w 0

)
, w =

(
0 1

1 0

)
.

Hence ρ and ρ′ are equivalent in O(S,C) = SO(S,C) × 〈ι〉, where ι =
diag(1, w, 1) acts on a ⊗ b in SO(S,C) (a, b in GL(2,C), det ab = 1) by
ι : a⊗b 7→ b⊗a. So ρ is equivalent under SO(S,C) to ρ′ or to ιρ′ = η′2⊗η′1,
and (η1, η2) is equivalent to (χη′1, χ

−1η′2) or to (χη′2, χ
−1η′1). The map

χ : Γ→ C
× is a homomorphism since so are the ηi, η′i, i = 1, 2. �

We also note the following analogue for the group of similitudes.

4.8 Proposition. If the representations ρ, ρ′ : Γ → GO(S,C) (of a
group Γ into the group of orthogonal similitudes) are conjugate in GL(n,C)
(3 S = tS) and have the same factor λλλ of similitudes, then they are con-
jugate in O(S,C).

Proof. Replacing Γ by the 2-fold cover Γ̃ = Γλλλ×C×,�C× (fiber product
of λλλ : Γ→ C

× with C× → C
×, � : z 7→ z2), there is a character µ : Γ̃→ C

×

with λλλ = µ2:
Γ̃

µ−→ C
×

↓ ↓ �
Γ λλλ−→ C

×

Then µ−1ρ, µ−1ρ′ : Γ̃ → O(S,C) are conjugate in GL(n,C) hence also in
O(S,C), and so ρ, ρ′ : Γ̃ → O(S,C) are conjugate in O(S,C) and they
factorize via pr:Γ̃→ Γ. �

We can now return to our initial Proposition 4.1. If the irreducible
continuous representations η1, η2, η′1, η′2 : WF → GL(2,C) are unramified
and satisfy η1 ⊗ η2(Frv) ' η′1 ⊗ η′2(Frv) for almost all places v, then ρ =
η1 ⊗ η2 and

ρ′ = η′1 ⊗ η′2 : WF → SO(S,C) ⊂ O(S,C) ⊂ GL(4,C)

are conjugate in GL(4,C) (since the Frobenii are dense in WF and ρ,
ρ′ are semisimple). Hence they are conjugate in O(S,C) and there is a
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homomorphism χ : WF → C
× with η′1 = χη1, η

′
2 = χ−1η2, or η′1 = χη2,

η′2 = χ−1η1.
Had we known the Principle of Functoriality, namely that discrete spec-

trum representations πi of GL(2,A) are parametrized by two dimensional
representations ηi : Γ → GL(2,C) of a suitable Weil group Γ(= WF ), we
could conclude the rigidity theorem part of our global theorem about the
lifting λ1 from C = SO(4) to PGL(4). However, this Principle is known
only for monomial representations ηi = Ind(µi;WEi/Ei ,WEi/F ), induced
from characters µi of WEi/Ei = A

×
Ei
/E×i , where Ei is a quadratic extension

of F . Thus we get an alternative proof – based only on class field theory
and the basic group theoretic consideration above – of the special case for
monomial representations πi = π(µi) stated after that theorem.

Note that the rigidity property, that any locally conjugate ρ, ρ′ : Γ →
G(C) are conjugate, holds for G = GL(n), O(n), Sp(n) and G2, and for
any connected, simply connected, complex Lie group precisely if it has no
direct factors of type Bn(n ≥ 4), Dn(n ≥ 4), En or F4. For this and
related results see Larsen ([Lar]).



II. BASIC FACTS

1. Norm Maps

The norm maps are formally defined by the dual group maps, as we proceed
to explain. Denote by T̂0 the diagonal torus in Ĉ0, and by T̂H the diagonal
torus in Ĥ, T∗0 in C0 and T∗H in H. Then

X∗(T̂0) = X∗(T̂H) = {(a, b,−b,−a); a, b ∈ Z}

is the lattice of 1-parameter subgroups, while the lattices of characters are

X∗(T̂0) = X∗(T̂H) = {(x, y, z, t) mod(n,m,m, n);x, y, z, t ∈ Z};

here (x, y, z, t) takes diag(a, b, b−1, a−1) in T̂H or diag(a, a−1)×diag(b, b−1)
in T̂0 to ax−tby−z. Further we have X∗(T̂0) = X∗(T∗0), while the isomor-
phism X∗(T̂H) ∼→X∗(T∗H)

= {(α, β, γ, δ) mod(ε, ε, ε, ε);α, β, γ, δ, ε ∈ Z, α+ δ = β + γ}

is given by
(x, y, z, t) 7→ (x+ y, x+ z, y + t, z + t),

with inverse
(α, β, γ, δ) 7→ (α− γ, α− β, 0, 0).

In particular the map

X∗(T∗H) ∼→X∗(T∗0) is (α, β, γ, δ) 7→ (α− γ, α− β, 0, 0),

and we make

1.1 Definition. The norm map N : T∗H
∼→T∗0 is defined by

diag(α, β, γ, δ) 7→
(
α/γ 0

0 1

)
×
(
α/β 0

0 1

)
.

35
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The elements (a, b,−b,−a) of X∗(T̂0) = X∗(T∗0) can be viewed as char-
acters of T∗0:

(a, b,−b,−a) :
((

α1 0

0 α2

)
,
(
β1 0

0 β2

))
7→ (α1/α2)a(β1/β2)b.

Under the isomorphism N : T∗H
∼→T∗0,

diag(α, β, γ, δ) mod zI4 7→
((

α/γ 0

0 1

)
,
(
α/β 0

0 1

))
, αδ = βγ,

the elements (a, b,−b,−a) of X∗(T̂H) ' X∗(T∗H) can be viewed as charac-
ters of T ∗H :

(a, b,−b,−a) : diag(α, β, γ, δ) 7→ (α/γ)a(α/β)b.

Hence corresponding to λ0 : T̂0
∼→ T̂H induced by λ0 : Ĉ0 ↪→ Ĥ we have

the “endoscopic” lifting

λ0 : π2(µ1, µ
−1
1 )× π2(µ2, µ

−1
2 ) 7→ πPGSp(2)(µ1, µ2).

Here π2(µi, µ−1
i ) is the unramified irreducible constituent of the normal-

izedly induced representation I(µi, µ−1
i ) of PGL(2, Fv) (µi are unramified

characters of F×v , i = 1, 2); πPGSp(2)(µ1, µ2) is the unramified irreducible
constituent of the PGSp(2, Fv)-module IPGSp(2)(µ1, µ2) normalizedly in-
duced from the character n · diag(α, β, γ, δ) 7→ µ1(α/γ)µ2(α/β) of the
upper triangular subgroup of PGSp(2, Fv) (n is in the unipotent radical,
αδ = βγ).

Corresponding to the embedding λ : Ĥ = Sp(2,C) ↪→ SL(4,C) = Ĝ we
have the natural embedding

X∗(T∗H) = X∗(T̂H) = {(x, y,−y,−x);x, y ∈ Z}
↪→ X∗(T̂ ) = {(x, y, z, t) ∈ Z4;x+ y + z + t = 0} = X∗(T∗).

The torus T∗H consists of diag(α, β, γ, δ) mod(zI4), αδ = βγ, and the char-
acter (x, y,−y,−x) maps this element to (α/γ)x(α/β)y (•). The torus T∗

consists of diag(α, β, γ, δ) in PGL(4).
Dual to the embedding

λ : T̂H = {diag(a, b, b−1, a−1)} ↪→ T̂ = {diag(a, b, c, d); abcd = 1}
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there is the map of the character lattices

(X∗(T∗) =)X∗(T̂ ) = {(x, y, z, t) mod(z, z, z, z) ∈ Z4/Z}
→ X∗(T̂H) = {(x, y, z, t)/(α, β, β, α);x, y, z, t, α, β ∈ Z}.

The isomorphism

X∗(T̂H) ∼→X∗(T∗H), (x, y, z, t) 7→ (x+ y, x+ z, y + t, z + t),

leads us to make the

1.2 Definition. The norm map N : T∗ → T∗H is given by

N(diag(a, b, c, d)) = diag(ab, ac, bd, cd).

The dual map of characters

X∗(T∗H) (= X∗(T̂H)) λ→ (X∗(T̂ ) =) X∗(T∗), χ 7→ λ(χ),

is given by

λ(χ)(diag(a, b, c, d)) = χ(N(diag(a, b, c, d)) = χ(diag(ab, ac, bd, cd)).

If χ = (x, y,−y,−x) then

λ(χ)(diag(a, b, c, d)) = (ab/bd)x(ab/ac)y = axbyc−yd−x

(by (•) 18 lines above) as expected. In other words the lifting λ maps the
unramified irreducible PGSp(2, Fv)-module πPGSp(2)(µ1, µ2) to the unram-
ified irreducible PGL(4, Fv)-module π4(µ1, µ2, µ

−1
2 , µ−1

1 ).
Note that the norm map extends to the Levi M(2,2) of PGL(4) of type

(2,2) by N
(
A 0

0 B

)
=
(

detA 0

εBεA

0 detB

)
, where ε =

(
−1 0

0 1

)
. It takes θ-

conjugacy classes in M(2,2) to conjugacy classes in the Levi of type (1,2,1)
in PGSp(2). Indeed,

θ
(
C 0

0 D

)−1 (
A 0

0 B

)(
C 0

0 D

)
=
(
wtDwAC 0

0 wtCwBD

)
N7→
(
cd detA 0

X

0 cd detB

)
= cd

(
detA 0

C−1εBεAC

0 detB

)
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where c = detC, d = detD, and

X = εwtCwBDεwtDwAC = cdC−1εBεAC

is conjugate to εBεA times cd.
Moreover, it extends to the Levi of PGL(4) of type (1,2,1) by

N

(
a 0

A

0 d

)
=
(
aA 0

0 dεAε

)
.

It takes

θ

(
u 0

B

0 v

)−1( a 0

A

0 d

)(
u 0

B

0 v

)
to

uv detB
(
aB−1AB 0

0 dεB−1ABε

)
.

The composition

λ ◦ λ0 : Ĉ0 = SL(2,C)× SL(2,C)→ Ĝ = SL(4,C)

takes π2(µ1, µ
−1
1 )× π2(µ2, µ

−1
2 ) to

π4(µ1, µ2, µ
−1
2 , µ−1

1 ) = π4(µ1, µ
−1
1 , µ2, µ

−1
2 ),

namely the unramified irreducible PGL(2, Fv)×PGL(2, Fv)-module π2×π′2
to the unramified irreducible constituent π4(π2, π

′
2) of the PGL(4, Fv)-

module I4(π2, π
′
2) normalizedly induced from the representation π2⊗π′2 of

the parabolic of type (2,2) of PGL(4, Fv) (extended trivially on the unipo-
tent radical). For example λ◦λ0 takes the trivial PGL(2, Fv)×PGL(2, Fv)-
module 12 × 12 to the unramified irreducible constituent π4(12,12) of
I4(12,12), and 12×π2 to π4(12, π2) = π4(ν1/2π2, ν

−1/2π2). Note that this
last π4 is traditionally denoted by J .

The embedding

λ1 : Ĉ = [GL(2,C)×GL(2,C)]′/C× ∼→SO
((

0 ω

ω−1 0

))
↪→ Ĝ = SL(4,C)

defines an embedding of diagonal subgroups

T̂C = {
((

a1 0

0 a2

)
,
(
b1 0

0 b2

))
≡ diag(a1b1, a1b2, b1a2, a2b2); a1a2b1b2 = 1},

↪→ T̂ = {diag(a, b, c, d); abcd = 1},
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and lattices

(X∗(T∗C) =) X∗(T̂C) ↪→ X∗(T̂ ) (= X∗(T∗)),

(x1, x2; y1, y2) 7→ (x1+y1, x1+y2; y1+x2, x2+y2), x1+x2+y1+y2 = 0. Here
T∗C and T∗ are the diagonal subgroups of C = [GL(2)×GL(2)]′/GL(1) and
G = PGL(4). The dual map N : X∗(T∗) = X∗(T̂ )→ X∗(T̂C) = X∗(T∗C),
or

N : T∗ → T∗C , N(diag(α, β, γ, δ)) =
((

a1 0

0 a2

)
,
(
b1 0

0 b2

))
,

satisfies

ax1
1 ax2

2 by1
1 b

y2
2 = (x1, x2; y1, y2)

((
a1 0

0 a2

)
,
(
b1 0

0 b2

))
= χ(N(α, β, γ, δ))

= (x1 + y1, x1 + y2; y1 + x2, x2 + y2)(diag(α, β, γ, δ))

= αx1+y1βx1+y2γy1+x2δx2+y2

= (αβ)x1(γδ)x2(αγ)y1(βδ)y2

for all χ = (x1, x2; y1, y2) in X∗(T∗C), hence we are led to make the

1.3 Definition. The norm map N : T∗ → T∗C is defined to be

N(diag(α, β, γ, δ)) =
((

αβ 0

0 γδ

)
,
(
αγ 0

0 βδ

))
.

2. Induced Representations

Let us recall the computation of the character of a representation π = I(η)
of G = G(Fv) normalizedly induced from the character η of the Borel
subgroup B = AN , N the unipotent radical and A the maximal torus in
B. If K is the maximal compact subgroup with G = BK = NAK, the
space of π consists of the smooth φ : G→ C with φ(nak) = (δ1/2η)(a)φ(k),
where

δ(a) = |det(Ad a|LieN)|

and π acts by right translation; of course a ∈ A, k ∈ K, n ∈ N . In Lemma
2.1 G can be any quasi-split connected reductive group.

Recall that the character ([H]) of an admissible representation π is a
conjugacy invariant locally integrable function χπ satisfying trπ(fdg) =∫
G
χπ(g)f(g)dg for any test function f ∈ C∞c (G). It characterizes the

representation up to isomorphism.
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2.1 Lemma. The character χπ of the induced representation π = I(η)
is supported on the split set and we have for regular a ∈ A

(∆χπ)(t) =
∑
w∈W

η(w(a)).

Proof. There is a measure decomposition dg = δ−1(a)dndadk corre-
sponding to g = nak, G = NAK. For a test function f ∈ C∞c (G) the
convolution operator π(fdg) =

∫
G
π(g)f(g)dg maps φ ∈ π to

(π(fdg)φ)(h) =
∫
G

f(g)φ(hg)dg =
∫
G

f(h−1g)φ(g)dg

=
∫
N

∫
A

∫
K

f(h−1n1ak)(δ1/2η)(a)φ(k)δ−1(a)dn1dadk.

The change of variables n1 7→ n, where n is defined by n−1ana−1 = n1,
has the Jacobian

|det(1−Ad a)|LieN |.

The trace of π(fdg) is obtained on integrating the kernel of the convolution
operator – viewed as a trivial vector bundle over K – on the diagonal
h = k ∈ K. Hence, writing

∆(a) = δ−1/2(a)|det(1−Ad a)|LieN |,

we have

trπ(fdg) =
∫
K

∫
N

∫
A

∆η(a)f(k−1n−1ank)dndadk

= w(A)−1

∫
A

[
∑
w∈W

η(w(a))](∆(a)
∫
G/A

f(gag−1)dġ)da,

where w(A) is the cardinality of the Weyl group W . Here W is the quotient
of the normalizer of A by the centralizer of A in G.

To conclude the proof of the lemma we now use the Weyl integration
formula∫

G

χ(g)f(g)dg =
∑
T

w(T )−1

∫
T

∆(t)χ(t)[∆(t)
∫
T\G

f(g−1tg)dġ]dt.



2. Induced Representations 41

Here T ranges over the conjugacy classes of tori, χ(g) is a conjugacy class
function, ∆(t)2 is the Jacobian

|det(1−Ad(t))|(LieN ⊕ LieN−)|

(over an algebraic closure F of F the torus T splits). N is the unipotent
radical of a Borel subgroup containing T and N− is the opposite unipotent
group:

Lie(G/T ) = LieN ⊕ LieN−

and
|det(1−Ad(t))|LieN−| = δ−1(t)|det(1−Ad(t))|LieN |.

�

Similar analysis applies in the twisted case, where ∆(tθ) is defined in
the course of the following proof.

2.2 Lemma. The twisted character χπ(tθ) of the induced θ-invariant
representation π = I(η) with η = η ◦ θ vanishes outside the θ-split set (the
set of θ-conjugacy classes of A), and is given by

∆(tθ)χπ(tθ) =
∑
w∈W θ

η(w(a))

on the θ-regular a ∈ A.

Proof. Let θ be an involution of G preserving B and K, for example
θ(g) = J−1tg−1J where G = GL(n, F ) (or PGL(n, F ), etc.) and J an
anti-diagonal matrix. Then tr(π(fθ)) is zero unless π is equivalent to
θπ(: g 7→ π(θ(g))), in which case, for π = I(η), we have

(π(θfdg)φ)(h) =
∫
G

f(g)φ(θ(h)g)dg =
∫
G

f(θ(h)−1g)φ(g)dg

=
∫∫∫

f(θ(h−1)nak)(δ1/2η)(a)φ(k)δ−1(a)dndadk,

hence

trπ(θfdg) =
∫∫∫

f(θ(k)−1n1ak)(δ−1/2η)(a)dn1dadk.
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We change variables n1 7→ n, where θ(n)−1ana−1 = n1, which has the
same Jacobian as if naθ(n)−1a−1 = n1, which is

|det(1−Ad(aθ))|LieN |,

to get

trπ(θfdg) =
∫
A/A1−θ

η(a)∆(aθ)
∫
Aθ\G

f(θ(g)−1ag)dġ da.

Here we put

∆(aθ) = δ−1/2(a)|det(1−Ad(aθ))|LieN |,

Aθ = {a ∈ A; a = θ(a)}, A1−θ = {aθ(a)−1; a ∈ A}.

We may choose a set of representatives T for the θ-conjugacy classes of
tori in G with T = θ(T ) ([KS]), such that on the regular set

G = ∪
T

∪
t∈T/T 1−θ

∪
g∈T θ\G

θ(g−1)tg.

The corresponding Weyl integration formula is
∫
G
χ(g)f(g)dg

=
∑
T

wθ(T )−1

∫
T/T 1−θ

∆(tθ)χ(t) ·∆(tθ)
∫
T θ\G

f(θ(g−1)tg)dġ dt,

where
∆(tθ)2 = |det(1−Ad(tθ))|Lie(G/T )|

and wθ(T ) is the cardinality of the group W θ(T ) of θ-fixed elements in the
Weyl group W (T ) of T . The lemma follows. �

2.3 Lemma. For t = diag(a, b, c, d) we have

∆(tθ) =
∣∣∣∣ (ac− bd)2(ab− cd)2(a− d)2(b− c)2

(abcd)3

∣∣∣∣1/2.
Proof. Note that Lie(G/T ) = LieN ⊕ LieN−, and N , N are θ-

invariant. We have,

|det(1−Ad(tθ))|LieN | = |
∏
Θ

(1−
∑
α∈Θ

α(t))|
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where the product ranges over the θ-orbits Θ of the positive roots α > 0,
and the sum over the roots in the θ-orbit. Thus for t = diag(a, b, c, d) we
obtain

|
(

1− a

b

c

d

)(
1− a

c

b

d

)(
1− a

d

)(
1− b

c

)
|.

Further,

|det(1−Ad(tθ))|LieN−| = δ(tθ)−1|det(1−Ad(tθ))|LieN |

where δ(tθ) is

=
∣∣∏

Θ

((∑
α∈Θ

α
)
(t)
)∣∣ =

∣∣ (a
b

c

d

)(a
c

b

d

)(
b

c

)(a
d

) ∣∣ =
∣∣ ∏
α>0

α(t)
∣∣ = δ(t).

The lemma follows. �

Recall now that the map

λ∗1 : G = PGL(4)→ C = [GL(2)×GL(2)]′/GL(1)

dual to

λ1 : Ĉ = [GL(2,C)×GL(2,C)]′/C× ↪→ Ĝ = SL(4,C)

maps diag(a, b, c, d) to
((

ab 0

0 cd

)
,
(
ac 0

0 bd

))
.

2.4 Definition. Let F be a local field. We say that f ∈ C∞c (G(F ))
weakly matches fC ∈ C∞c (C(F )) if

Ff (tθ) = ∆(tθ)
∫
T θ\G

f(θ(g)−1tg)dġ (t ∈ T (F ))

and

FfC (t) = ∆C(t)
∫
T\C

fC(g−1tg)dġ (t ∈ T (F ))

are related by Ff (tθ) = FfC (λ∗1(t)) for t ∈ A(F )reg.

This is a temporary definition, sufficient for the study of induced rep-
resentations; it will be completed below.
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2.5 Definition. We say that the induced C(F )-module π1 × π2 lifts
to the induced G(F )-module π if tr(π1×π2)(fC) = trπ(θf) for all weakly
matching f and fC .

Note that the characters of the induced C(F )-modules and the twisted
characters of the induced G(F )-modules are supported on the split set,
hence our temporary definition of weakly matching is sufficient. We con-
clude

2.6 Proposition. The induced representation

πC = I2(µ1, µ
′
1)× I2(µ2, µ

′
2)

of C(F ) λ1-lifts to the induced representation

π = I4(µ1µ2, µ1µ
′
2, µ2µ

′
1, µ
′
1µ
′
2)

of G(F ). Here µi, µ′i : F× → C
× are any characters with µ1µ

′
1µ2µ

′
2 = 1.

Proof. It suffices to observe that

(µ1µ2, µ1µ
′
2, µ2µ

′
1, µ
′
1µ
′
2)(diag(a, b, c, d))

= (µ1µ2)(a)(µ′1µ
′
2)(d)(µ1µ

′
2)(b)(µ2µ

′
1)(c)

on the G-side is equal to µ1(ab)µ′1(cd)µ2(ac)µ′2(bd) on the C-side, and use
the computation of the character of the induced and θ-induced represen-
tations. �

Similarly the map λ∗ : G = PGL(4)→ H = PGSp(2) dual to

λ : Ĥ = Sp(2,C) ↪→ Ĝ = SL(4,C)

maps diag(a, b, c, d) to diag(ab, ac, bd, cd).

2.7 Definition. Let F be a local field. We say that f ∈ C∞c (G(F ))
weakly matches fH ∈ C∞c (H(F )) if Ff (tθ) and

FfH (t) = ∆H(t)
∫
T\H

fH(g−1tg)dġ

are related by Ff (tθ) = FfH (λ∗(t)) for t ∈ A(F )reg.
We say that the induced H(F )-module πH lifts to the induced G(F )-

module π if for all weakly matching f and fH we have trπH(fH) = trπ(θf).
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2.8 Proposition. The induced H(F )-module IH(µ1, µ2) lifts – via λ

– to the induced G(F )-module π = I4(µ1, µ2, µ
−1
2 , µ−1

1 ).

Proof. It suffices to observe that

(µ1, µ2, µ
−1
2 , µ−1

1 )(diag(a, b, c, d)) = µ1(a/d)µ2(b/c);

and that πH(µ1, µ2) is induced from the character

diag(α, β, γ, δ) 7→ µ1(α/γ)µ2(α/β)

of the diagonal subgroup of PGSp(2, F ), and that the value of this last
character at

λ∗(diag(a, b, c, d)) = diag(ab, ac, bd, cd) is µ1(ab/bd)µ2(ab/ac).

�

Finally note that the map

λ∗0 : H = PGSp(2)→ C0 = PGL(2)× PGL(2)

dual to λ0 : Ĉ0 ↪→ Ĥ takes

diag(α, β, γ, δ) to
((

α 0

0 γ

)
,
(
α 0

0 β

))
.

We define

2.9 Definition. The functions fH ∈ C∞c (H(F )) and f0 ∈ C∞c (C0(F ))
are weakly matching if FfH (t) = Ff0(t) on t ∈ A(F )reg. The induced
C0(F )-module π0 = π1 × π2 lifts to the induced H(F )-module πH if
trπH(fH) = trπ0(f0) for all weakly matching fH and f0.

2.10 Proposition. The induced representation

I2(µ1, µ
−1
1 )× I2(µ2, µ

−1
2 )

of C0(F ) λ0-lifts to the induced representation IH(µ1, µ2) of H(F ).

Proof. On the H-side, we induce from

diag(α, β, γ, δ) 7→ µ1(α/γ)µ2(α/β).

This matrix is mapped by λ∗0 to((
α 0

0 γ

)
,
(
α 0

0 β

))
,

and the C0-module is induced from the character whose value at this last
pair of matrices is µ1(α/γ)µ2(α/β). �
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3. Satake Isomorphism

Our liftings are summarized in the following diagram (X = GL(2,C))

Ĉ0 = SL(2,C)× SL(2,C) Ĉ = SO(4,C) ' [X ×X]′/C×

λ0 ↘ ↙ λ1

Ĥ = Sp(2,C)
λ
↪→ Ĝ = SL(4,C)

The dual group homomorphisms define liftings of unramified (local) repre-
sentation. These representations are uniquely determined by the semisim-
ple conjugacy classes that they define in the dual group. Thus the λ0, λ,
λ1 define liftings as follows.

λ0 : π2(µ1, µ
−1
1 )× π2(µ2, µ

−1
2 ) 7→ πPGSp(2)(µ1, µ2)

∈ JH(µ1µ2 × µ1/µ2 o µ
−1
1 ),

λ : πPGSp(2)(µ1, µ2) 7→ π4(µ1, µ2, µ
−1
2 , µ−1

1 ) ∈ JH(I4(µ1, µ2, µ
−1
2 , µ−1

1 )),

λ1 : π2(µ1, µ
′
1)× π2(µ2, µ

′
2) 7→ π4(µ1µ2, µ1µ

′
2, µ2µ

′
1, µ
′
1µ
′
2), µ1µ

′
1µ2µ

′
2 = 1.

We write JH(π) for the set of irreducible constituents of a representation
π, for example π = π1 × · · · × πr o σ on GSp(n, F ) or π = π1 × · · · ×
πr = I(π1, . . . , πr) on GL(|n|, F ). The subscript indicates that π2 is a
representation of GL(2, Fv) and π4 of PGL(4, Fv).

The µ1, µ2 are unramified characters of the local nonarchimedean field
F×v ; write µ•i for their values µi(πππ) at a uniformizer. Then the class
t(π2(µ1, µ

′
1)) associated to the unramified irreducible π2(µ1, µ

′
1) is that

of diag(µ•1, µ
′
1
•) in GL(2,C), t(πPGSp(2)(µ1, µ2)) is the class of

diag(µ•1, µ
•
2, µ
•−1
2 , µ•−1

1 )

in Sp(2,C),
t(π4(µ1µ2, µ1µ

′
2, µ2µ

′
1, µ
′
1µ
′
2))

is that of
diag(µ•1µ

•
2, µ
•
1µ
′
2
•, µ•2µ

′
1
•, µ′1

•µ′2
•)

in SL(4,C). Note that the homomorphisms λ, λ0, λ1 define dual homo-
morphisms of Hecke algebras, e.g., with G = G(Fv), K = G(Rv), . . . ,

λ∗ : HG = C∞c (K\G/K)→ HH = C∞c (KH\H/KH),
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by λ∗ : f 7→ fH , f∨H(t(πH)) = f∨(t(π)× θ), where the Satake isomorphism
f 7→ f∨, from HG to C[(A0(C)×θ)W ] is given by f∨(t×θ) = trπ(t)(f×θ),
and f∨H(tH) = trπH(tH)(fH). In particular, by definition of corresponding
functions f 7→ λ∗(f) = fH , we have that

tr IPGSp(2)(µ1, µ2)(λ∗(f)) = trπPGSp(2)(µ1, µ2)(λ∗(f)) = trπ4(f × θ)

= tr I4(f × θ), where the traces of the full induced representation

I4 = I4(µ1µ2, µ1µ
′
2, µ2µ

′
1, µ
′
1µ
′
2)

at a spherical function f is equal to that at its unramified constituent.

4. Induced Representations of PGSp(2,F)

We use results recorded in Sally-Tadic [ST] − using those of Rodier [Ro2],
Shahidi [Sh2,3] and Waldspurger [W1] − on reducibility of induced rep-
resentations of H(F ) = PGSp(2, F ), and unitarizability. Let us recall
some notations. Denote by GSp(n) (or GSp(n)) the group of symplectic
similitudes {

g ∈ GL(2n); tg
(

0 w

−w 0

)
g = λλλ(g)

(
0 w

−w 0

)}
.

Here w = wn = (δi,n−j+1) in GL(n). Its standard parabolic subgroups are
the upper triangular subgroups Pn = Pn

n with Levi subgroups

Mn = Mn
n = {m = diag(g1, . . . , gr, h,λλλ(h)τg−1

r , . . . ,λλλ(h)τg−1
1 )};

gi ∈ GL(ni), h ∈ GSp(n− |n|). Here n = (n1, . . . , nr), ni > 1, r > 0,

|n| = n1 + · · ·+ nr ≤ n, τgi = wtigiwi, wi = wni .

Put GSp(0) = Gm = {λλλ(h)}. These groups are in bijection with the set of
subsets of the set of simple roots of GSp(n); to a subset we associate the
Levi subgroup generated by the root subgroups of the simple roots in the
subset and their negatives. For GSp(2) the standard parabolic subgroups
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are P(0) = P{α,β} = GSp(2), the Siegel parabolic P(2) = P{α} which has
Levi

M(2) = M{α} = {diag(g,λλλτg−1); g ∈ GL(2), λλλ ∈ Gm},

the Heisenberg parabolic P(1) = P{β} which has Levi M(1) = M{β}

= {diag(a, h,λλλ(h)/a); a ∈ Gm, h ∈ GSp(1) = GL(2), λλλ(h) = deth},

and P(1,1) = P∅ is the minimal standard parabolic subgroup with Levi
subgroup M(1,1) = M∅ that we usually denote by A0, consisting of

{diag(a, b,λλλ/b,λλλ/a); a, b,λλλ ∈ Gm}.

If π1, . . . , πr are representations of GL(ni, F ), and σ of GSp(n−|n|, F ),
F a local field, as in [ST] denote by π1 × · · · × πr o σ the representation
I(π1, . . . , πr, σ) of GSp(n, F ) normalizedly induced from the representation

p = mu 7→ π1(g1)⊗ · · · ⊗ πr(gr)⊗ σ(h) of Pn = MnUn.

Here Un denotes the unipotent radical of Pn. Note that σ is a character
if |n| = n (thus h ∈ GSp(0, F ) = F×). The induction is normalized by
multiplying the inducing representation by the character δ1/2

n (p), where
δn(p) = |det(Ad(p)|Lie(Un))|. Normalized induction takes unitarizable
representations to unitarizable representations.

Notation. As in [BZ2], 4.2, we write ν(x) = |x| for x ∈ F×.

Example. The simplest example is where GSp(1)=GL(2). Here M1
(1)

is the diagonal subgroup, δ(diag(a, b)) = |a/b|, and µo σ is the represen-
tation usually denoted by I(µσ, σ), normalizedly induced from the char-
acter diag(a, b) · u 7→ (µσ)(a)σ(b) (if b = λλλ/a, this is = (µσ)(a)σ(λλλ/a) =
µ(a)σ(λλλ)). The trivial representation 12 of GL(2, F ) is a subrepresentation
of I(ν−1/2, ν1/2) = ν−1

oν1/2 and a quotient of I(ν1/2, ν−1/2) = νoν−1/2.

Example. In the case of GSp(2, F ) and P(1,1), the representation de-
noted IH(µ1, µ2) normalizedly induced from the character

p = u diag(a, b,λλλ/b,λλλ/a) 7→ µ1(ab/λλλ)µ2(a/b) = µ1µ2(a)(µ1/µ2)(b)µ−1
1 (λλλ)

is the same as µ1µ2×µ1/µ2oµ
−1
1 . Its central character is trivial, namely it

is a representation of H(F ) = PGSp(2, F ). If ξ2 = 1 then IH(ξµ1, ξµ2) =
µ1µ2 × µ1/µ2 o ξ/µ1.
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4.1 Lemma. (i) The central character of π1×· · ·×πroσ is ωσωπ1 . . . ωπr
if |n| < n; here ωπi are the central characters of πi (ωσ of σ, σ being a
representation of GSp(n−|n|, F )). It is σ2ωπ1 . . . ωπr if |n| = n. (ii) For a
character µ we have µ(π1×· · ·×πroσ) = π1×· · ·×πroµσ. In particular
µ(π o σ) = π o µσ. (iii) We have π o σ = π̌ o ωπσ �

Recall that two parabolic subgroups of a reductive group G over F
are called associate if their Levi subgroups are conjugate. This is an
equivalence relation. An irreducible representation π of G = G(F ), F
a p-adic field, is supported in an associate class if there is a parabolic
subgroup P in this class such that π is a composition factor of a repre-
sentation of G induced from an irreducible cuspidal representation of the
Levi factor M of P extended trivially to the unipotent radical U of P .
In our case an irreducible representation π of H = PGSp(2, F ) is sup-
ported in P(1,1), P(1), P(2) or it is cuspidal. An unramified representation
is supported on P(1,1). It is a subquotient πH(µ1, µ2) of a fully induced
IH(µ1, µ2) = µ1µ2 × µ1/µ2 o µ

−1
1 , where the µi are unramified characters

of F×.
An irreducible representation π is called essentially tempered if νeπ is

tempered for some real number e, where (νeπ)(g) = ν(det g)eπ(g).
The following is the Langlands classification for GSp(n, F ).

4.2 Proposition. Each representation νe1π1 × · · · × νerπr o σ, where
e1 > · · · > er > 0, πi are irreducible square integrable representations of
GL(ni, F ), and σ is an irreducible essentially tempered representation of
GSp(n− |n|, F ), has a unique irreducible quotient: L(νe1π1, . . . , ν

erπr, σ).
Each irreducible representation of GSp(n, F ) is of this form. �

With these notations we shall use the results stated in [ST]. These con-
cern the reducibility of the induced representations, and description of
their properties. In particular [ST], Lemma 3.1 asserts that for characters
χ1, χ2, σ of F× the representation χ1 × χ2 o σ is irreducible if and only if
χi 6= ν±1 and χ1 6= ν±1χ±1

2 . In case of reducibility the composition series
are described in [ST], together with their properties. The list is recorded
in chapter V, section 2, 2.1-2.3 below. Moreover, we shall use [ST], The-
orem 4.4, which classifies the irreducible unitarizable representations of
GSp(2, F ) supported in minimal parabolic subgroups. It shows that
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4.3 Lemma. The representation L(ν × ν o ν−1) = πH(ν, 1) is not uni-
tarizable. �

5. Twisted Conjugacy Classes

The geometric part of the trace formula is expressed in terms of stable
conjugacy classes, whose definition we now recall. We shall need only
strongly regular semisimple (we abbreviate this to “regular”) elements t
in H = H(F ), those whose centralizer ZH(t) in H is a maximal F -torus
TH. The elements t, t′ of H are conjugate if there is g in H with t′ equal
to Int(g−1)t (= g−1tg). Such t, t′ in H are stably conjugate if there is g
in H(= H(F )) with t′ = Int(g−1)t. Then gσ = gσ(g)−1 lies in TH for
every σ in the Galois group Γ = Gal(F/F ), and g 7→ {σ 7→ gσ} defines an
isomorphism from the set of conjugacy classes within the stable conjugacy
class of t to the pointed set D(TH/F ) = ker[H1(F,TH)→ H1(F,H)].

Using the commutative diagram with exact rows

H1(F,Tsc
H) → H1(F,Hsc)

↓ ↓
1→ D(TH/F )→ H1(F,TH) → H1(F,H),

where Hsc π→Hder ↪→ H is the simply connected covering group of the
derived (commutator [H,H]) group Hder of H, and noting that for a p-
adic field F one has H1(F,Hsc) = {1}, one concludes that D(TH/F ) =
Im[H1(F,Tsc) → H1(F,T)] for such F , in particular it is a group. Here
Tsc

H = π−1(Tder
H ), Tder

H = Hder ∩TH. Indeed, if {σ 7→ gσ} is in D(TH/F ),
thus gσ = gσ(g)−1, write g = g1z, using H = HderZH (ZH denotes the cen-
ter of H), with z in ZH and g1 in Hder. Then gσ = g1σzσ, and zσ = zσ(z)−1

is a coboundary, as ZH ⊂ TH, and H1(F,Tsc
H) surjects on D(TH/F ).

It is convenient to compute H1(F,TH) using the Tate-Nakayama iso-
morphism which identifies this group with

H−1(F,X∗(TH)) = {X ∈ X∗(TH);NX = 0}/〈X − τX; τ ∈ Gal(L/F )〉.

Here L is a sufficiently large Galois extension of the local field F which
splits TH, N denotes the norm from L to F , and X∗(TH) is the lattice
Hom(Gm,TH).
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In our case of H = PSp(2) = PGSp(2), Hsc is Sp(2), and H1(F,H) =
{0}, hence D(TH/F ) = H1(F,TH) is a group.

Denote by N the normalizer Norm(T∗H,H) of T∗H in H, and let W =
N/T∗H be the Weyl group of T∗H in H. Signify by H1(F,W ) the group of
continuous homomorphisms δ : Γ→W , where Γ acts trivially on W .

5.1 Lemma. The set of stable conjugacy classes of F -tori in H injects
naturally in the image of ker[H1(F,N)→ H1(F,H)] in H1(F,W ). When
H is quasi-split this map is an isomorphism. �

This is proven in Section I.B of [F5] where it is used to list the (sta-
ble) conjugacy classes in GSp(2). Our case of H = PSp(2) is simi-
lar but simpler. The Weyl group W is the dihedral group D4, gener-
ated by the reflections s1 = (12)(34) and s2 = (23). Its other ele-
ments are 1, (12)(34)(23) = (3421) (taking 1 to 2, 2 to 4, 4 to 3, 3 to
1), (23)(12)(34) = (2431), (23)(3421) = (42)(31), (3421)2 = (32)(41),
(23)(23)(41) = (41).

Our list of F -tori follows that of loc. cit. The list of F -tori TH is
parametrized by the subgroup of W . If TH splits over the Galois extension
E of F then H1(F,TH) = H1(Gal(E/F ), T∗H(E)) where T∗H(E) = {t =
diag(a, b,λλλ/b,λλλ/a) mod ZH; a, b,λλλ ∈ E×} and Gal(E/F ) acts via ρ : Γ →
W . If ρ(σ) = Int(gσ) then Γ acts on T∗H by σ∗(t) = gσ · σt · g−1

σ , and
σt = (σa, σb, σλλλ/σb, σλλλ/σa) mod ZH. The split torus corresponds to the
subgroup {1} of W , its stable conjugacy class consists of a single class.
There are nonelliptic tori TH , with trivial H1(F,TH), corresponding to
ρ(Γ) being 〈(23)〉, 〈(14)〉, 〈(12)(34)〉, 〈(13)(24)〉. The elliptic tori are:

(I) ρ(Γ) = 〈(14)(23)〉, TH ' {diag(a, b,λλλ/b = σb,λλλ/a = σa); a, b ∈ E×,
λλλ ∈ NE/FE

×}, [E:F]=2. To compute D(TH/F ) we take the quotient
of X∗(Tsc

H) = 〈(x, y,−y,−x);x, y ∈ Z〉 (note that the generator σ of
Gal(E/F ) maps (x, y, z − y, z − x) to (z − x, z − y, y, x) and the norm
NE/F = N is the sum of the two) by the span 〈X − σX = (x, y, z − y, z −
x) − (z − x, z − y, y, x) = (2x − z, 2y − z, z − 2y, z − 2x)〉 (X ranges over
X∗(TH)); it is Z/2.

(II) ρ(Γ) = 〈(14)(23), (12)(34), (13)(24)〉, then TH splits over an exten-
sion E = E1E2, biquadratic over F , Gal(E/F ) = Z/2 × Z/2 is generated
by σ and τ whose fixed fields are E3 = E〈σ〉, E2 = E〈στ〉, E1 = E〈τ〉,
say ρ(σ) = (14)(23), ρ(τ) = (12)(34). Then H−1 is the quotient of
〈(x, y,−y,−x)〉 by 〈(2x− z, 2y − z, z − 2y, z − 2x)〉, namely Z/2.
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(III) ρ(Γ) = 〈(14), (23)〉, again E = E1E2, Gal(E/F ) = Z/2 × Z/2 is
generated by σ and τ with E3 = E〈σ〉, E2 = E〈στ〉, E1 = E〈τ〉, and ρ(τ) =
(23), ρ(τσ) = (14), and H−1 is {0}, being the quotient of 〈(x, y,−y,−x)〉
by 〈(2x− z, 0, 0, z−2x), (0, 2y− z, z−2y, 0)〉 = 〈(x, 0, 0,−x), (0, y,−y, 0)〉.

(IV) When ρ(Γ) contains an element of order four, H−1 is {0}, as ex-
plained in [F5], I.B, (IV).

Next we describe the (stable) θ-conjugacy classes of a strongly θ-regular
element t in G. We fix a θ-invariant F -torus T∗, to wit: the diagonal
subgroup. The stable θ-conjugacy class of t in G intersects T∗ ([KS],
Lemma 3.2.A). Hence there is h ∈ G(= G = G(F )) and t∗ ∈ T∗ such that
t = h−1t∗θ(h). The centralizers are related by ZG(tθ) = h−1ZG(t∗θ)h,
and ZG(t∗θ) = T∗θ. The centralizer of ZG(tθ) in G is an F -torus Tt: it
is ZG(ZG(tθ))

= {g ∈ G; g−1t1g = t1∀t1 ∈ ZG(tθ) = h−1ZG(t∗θ)h = h−1T∗θh}

= h−1T∗h = Tt. The torus Tt is θt = Int(t) ◦ θ-invariant:

Int(t)θ(h−1t∗1h) = h−1t∗θ(h) · θ(h)−1θ(t∗1)θ(h) · θ(h)−1t∗−1h = h−1θ(t∗1)h.

We have ZG(tθ) = Tθt
t : if t1 ∈ ZG(tθ) = h−1T∗θh ⊂ h−1T∗h = Tt then

t−1
1 · tθ · t1 = tθ, thus θt(t1) = tθ(t1)t−1 = t1.

The θ-conjugacy classes within the stable θ-conjugacy class of t can be
classified as follows.

If t1 = g−1tθ(g) and t are stably θ-conjugate in G then gσ = gσ(g)−1 ∈
ZG(tθ) = Tθt

t . The set

D(F, θ, t) = ker[H1(F,Tθt
t )→ H1(F,G)]

parametrizes, via (t1, t) 7→ {σ 7→ gσ}, the θ-conjugacy classes within the
stable θ-conjugacy class of t. The Galois action on Tt:

σ(t) = σ(h−1t∗θ(h)) = h−1 · hσ(h)−1 · σ(t∗) · θ(σ(h)h−1)θ(h),

induces the Galois action σ∗ on T∗, given by σ∗(t∗) = hσ(h)−1 · σ(t∗) ·
θ(σ(h)h−1), and

H1(F,Tθt
t ) = H1(F,T∗θ).
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The norm map N : T∗ → T∗H is defined to be the composition of the
projection T∗ → T∗θ = T∗/(1 − θ)T∗ and the isomorphism T∗θ

∼→T∗H. If
the norm Nt∗ of t∗ ∈ T∗ is defined over F then for each σ ∈ Γ there is
` ∈ T∗ such that σ∗(t∗) = `t∗θ(`)−1. Then

h−1t∗θ(h) = t = σ(t) = σ(h)−1 · σt∗ · θ(σh) = σ(h)−1`t∗θ(`−1σ(h)),

hence
t∗ = hσ` · t∗ · θ(hσ`)−1, hσ = hσ(h)−1,

and hσ` ∈ ZG(t∗θ) = T∗θ, so that hσ ∈ T∗. Moreover, (1 − θ)(hσ) =
t∗σ∗(t∗)−1, hence (hσ, t∗) lies in the subset

H1(F,T∗ 1−θ−→V∗t ) of H1(F,T∗ 1−θ−→T∗),

and it parametrizes the θ-conjugacy classes of strongly θ-regular elements
which have the same norm. We put Vt = (1− θt)Tt.

While not necessary in our case, recall that the first hypercohomology

group H1(G,A
f→B) of the short complex A

f→B of G-modules placed in
degrees 0 and 1 is the group of 1-hypercocycles, quotient by the subgroup
of 1-hypercoboundaries. A 1-hypercocycle is a pair (α, β) with α being a
1-cocycle of G in A and β ∈ B such that f(α) = ∂β; ∂β is the 1-cocycle
σ 7→ β−1σ(β) of G in B. A 1-hypercoboundary is a pair (∂α, f(β)), α ∈ A.

This hypercohomology group fits in an exact sequence

H0(G,A)
f→H0(G,B)→ H1(G,A

f→B)→ H1(G,A)
f→H1(G,B).

We need only the case where A = Tt, B = Vt = (1 − θt)Tt, f = 1 − θt,
G = Gal(F/F ). The exact sequence 1 → Tθt

t → Tt
1−θt−→Vt → 1 induces

the exact sequence H0(F,Tt) = TΓ
t = Tt → H0(F,Vt) = Vt

→ H1(F,Tθt
t )→ H1(F,Tt)

1−θt−→H1(F,Vt).

Hence H1(F,Tθt
t ) = H1(F,Tt

1θt−→Vt).
If t is a strongly θ-regular element in G, then Tt = ZG(ZG(tθ)0) is a

maximal torus in G. Denote by Tsc
t the inverse image of Tt under the nat-

ural homomorphism π : Gsc → Gder ↪→ G. Note that G = π(Gsc)Z(G).
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If t1 = g−1tθ(g) ∈ G is stably θ-conjugate to t ∈ G then g = π(g1)z for
some g1 ∈ Gsc and z ∈ Z(G). Then σ(g1)g−1

1 lies in Tsc
t , and

(1−θt)π(σ(g1)g−1
1 ) = σ(b)b−1 where b = θ(z)z−1 = (1−θt)(z−1) ∈ Vt;

(σ 7→ σ(g1)g−1
1 , b) defines an element inv(t, t1) of H1(F,Tsc

t

(1−θt)π−→ Vt).
This element parametrizes the θ-conjugacy classes under Gsc within the

stable θ-conjugacy class of t. The image in H1(F,Tt
1−θt−→Vt) under the

map [Tsc
t → Vt] → [Tt → Vt] induced by π : Tsc

t → Tt is denoted by
inv′(t, t1). The set of θ-conjugacy classes within the stable θ-conjugacy
class of t, D(F, θ, t)

= ker [H1(F,Tθt
t )→ H1(F,G)] = ker [H1(F,Tt

1−θt−→Vt)→ H1(F,G)],

is the image under

H1(F,Tsc
t

(1−θt)π−→ Vt)→ H1(F,Tt
1−θt−→Vt)

of
ker[H1(F,Tsc

t

(1−θt)π−→ Vt)→ H1(F,Gsc)],

hence a subset of the abelian group

Im[H1(F,Tsc
t

(1−θt)π−→ Vt)→ H1(F,Tt
1−θt−→Vt)].

In our case of G = PGL(4), the pointed set H1(F,G) is trivial, hence

D(F, θ, t) = H1(F,Tθt
t ) = H1(F,Tt

1−θt−→Vt). Since H1(F,T) is trivial for

every maximal torus T, we have that H1(F,Tt
1−θ−→Vt) is Vt/(1− θt)Tt.

We list the stable θ-conjugacy classes of strongly θ-regular elements t in
G = PGL(4) as in [F5]. Thus we describe the F-tori T, as ZG(tθ) = Tθt

t

and T = Tt = ZG(ZG(tθ)). The conjugacy classes of F -tori T are deter-
mined by the homomorphisms ρ : Γ → W = W (T∗θ,Gθ) = W (T∗,G)θ.
We list only the θ-elliptic, or θ-anisotropic (T θ does not contain a split
torus) as the other tori can be dealt with using parabolic induction.

(I) ρ(Γ) = 〈(14)(23)〉, [E : F ] = 2,

T ∗ = {(a, b, σb, σa); a, b ∈ E×}/Z; V = {(a, b, b, a)}/Z.
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Hence V = {(a, b, b, a) = (zσa, zσb, zσb, zσa); z, a, b ∈ E×}. Then a/σa =
b/σb, or a/b = σ(a/b), and (a, b, b, a) ≡ (1, b/a, b/a, 1) with b/a in F×.
Finally (1− θ)T ∗ = {(aσa, bσb, bσb, aσa); a, b ∈ E×}/Z,

V/(1− θ)T ∗ = F×/NE× = Z/2.

(II) ρ(Γ) = 〈ρ(στ) = (14), ρ(τ) = (23)〉. The splitting field of T is
E = E1E2, where E1 = E(

√
D) = E〈τ〉,

E2 = E(
√
AD) = E〈στ〉, E3 = E(

√
A) = E〈σ〉

are the quadratic extensions of F in E. Then

T ∗ = {(a, b, τb, σa); a ∈ E×1 , b ∈ E
×
2 }/Z, V = {(a, b, b, a); a, b ∈ F×}/Z

(since (a, b, b, a) ≡ (τa, τb, τb, τa) ≡ (σa, σb, σb, σa) modZ implies a/b ∈
F×),

(1− θ)T ∗ = {(aσa, bτb, bτb, aσa); a ∈ E×1 , b ∈ E
×
2 }/Z,

hence

V/(1− θ)T ∗ = F×/NE1/FE
×
1 = F×/NE2/FE

×
2 = Z/2.

(III) ρ(Γ) = 〈ρ(τ) = (12)(34), ρ(σ) = (14)(23)〉, the splitting field of
T is E = E1E2, a biquadratic extension of F , Gal(E/F ) = 〈1, σ, τ, στ〉,
E1 = E〈τ〉 = F (

√
D), E3 = E〈σ〉 = F (

√
A), E2 = E〈στ〉 = F (

√
AD) are

the quadratic subextensions, and so T ∗ = {(a, τa, τσa, σa); a ∈ E×}/Z,
and

(1− θ)T ∗ = {(aσa, τ(aσa), τ(aσa), aσa); a ∈ E×}/Z.

Now V consists of (a, b, b, a) which equal (σa, σb, σb, σa) modZ. Thus
a/b = σ(a/b) lies in Eσ = E3, and also (a, b, b, a) = (τb, τa, τa, τb) modZ.
Hence b/a = τ(a/b), and so a

b = u/τu, u ∈ E×3 . Then

(a, b, b, a) = (bu/τu, b, b, bu/τu) = (u, τu, τu, u).

Hence V/(1− θ)T ∗ is E×3 /NE/E3E
× = Z/2.

(IV) If ρ(Γ) contains ρ(σ) = (3421), T is isomorphic to the multipli-
cation group E× of an extension E = F (

√
D) = E3(

√
D) of F of degree
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4, where E3 = F (
√
A) is a quadratic extension of F (A ∈ F − F 2, D =

α + β
√
A ∈ E3). The Galois closure Ẽ/F of F (

√
D)/F is E = F (

√
D)

when F (
√
D)/F is cyclic, and Ẽ = F (

√
D, ζ) when F (

√
D)/F is not Ga-

lois. Here ζ2 = −1 and Gal(Ẽ/F ) is the dihedral group D4. In either
case

T ∗ = {(a, σa, σ3a, σ2a); a ∈ E×}/Z,

(1− θ)T ∗ = {(aσ2a, σ(aσ2a), σ(aσ2a), aσ2a); a ∈ E×}/Z,

and V consists of (a, b, b, a) with (σb, σa, σa, σb) = (a, b, b, a)z, thus a/σb =
b/σa, or a/b = σb/σa so a/b = σ2(a/b) lies in E3, and a/b = u/σu for some
u ∈ E×3 . Thus (a, b, b, a) = (bu/σu, b, b, bu/σu) ≡ (u, σu, σu, u), u ∈ E×3 ,
and V/(1− θ)T ∗ is E×3 /NE/E3E

× = Z/2.

We recall some results of [F5] concerning representatives of (stable) θ-
twisted regular conjugacy classes. These are listed according to the four
types of θ-elliptic classes: I, II, III, IV.

A set of representatives for the θ-conjugacy classes within a stable semi
simple θ-conjugacy class of type I in GL(4, F ) which splits over a quadratic
extension E = F (

√
D) of F , D ∈ F − F 2, is parametrized by (r, s) ∈

F×/NE/FE
× × F×/NE/FE

× ([F5], p. 16). Representatives for the θ-
regular (thus tθ(t) is regular) stable θ-conjugacy classes of type (I) in
GL(4, F ) which split over E can be found in a torus T = T(F ), T =
h−1T∗h, T∗ denoting the diagonal subgroup in G, h = θ(h), and

T =

{
t =

( a1 0 0 a2D

0 b1 b2D 0

0 b2 b1 0

a2 0 0 a1

)
= h−1t∗h; t∗ = diag(a, b, σb, σa) ∈ T ∗

}
.

Here a = a1 + a2

√
D, b = b1 + b2

√
D ∈ E×, and t is regular if a/σa and

b/σb are distinct and not equal to ±1. Note that here T ∗ = T∗(F ) where
the Galois action is that obtained from the Galois action on T .

A set of representatives for the θ-conjugacy classes within a stable θ-
conjugacy class can be chosen in T . Indeed, if t = h−1t∗h and t1 =
h−1t∗1h in T are stably θ-conjugate, then there is g = h−1µh with t1 =
gtθ(g)−1, thus t∗1 = µt∗θ(µ)−1 and t∗1θ(t

∗
1) = µt∗θ(t∗)µ−1. Since t is θ-

regular, µ lies in the θ-normalizer of T∗(F ) in G(F ). Since the group
W θ(T∗,G) = Nθ(T∗,G)/T∗, quotient by T∗(F ) of the θ-normalizer of
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T∗(F ) in G(F ), is represented by the group W θ(T ∗, G) = Nθ(T ∗, G)/T ∗,
quotient by T ∗ of the θ-normalizer of T ∗ in G, we may modify µ by an
element of W θ(T ∗, G), that is replace t1 by a θ-conjugate element, and
assume that µ lies in T∗(F ). In this case µθ(µ)−1 = diag(u, u′, σu′, σu)
(since t, t1 lie in T ∗), with u = σu, u′ = σu′ in F×. Such t, t1 are
θ-conjugate if g ∈ G, thus g ∈ T , so µ = diag(v, v′, σv′, σv) ∈ T ∗ and
µθ(µ)−1 = diag(vσv, v′σv′, v′σv′, vσv). Hence a set of representatives for
the θ-conjugacy classes within the stable θ-conjugacy class of the θ-regular
t in T is given by t · diag(r, s, s, r), where r, s ∈ F×/NE/FE×. Clearly in
PGL(4, F ) the θ-classes within a stable class are parametrized only by r,
or equivalently only by s.

A set of representatives for the θ-conjugacy classes within a stable semi
simple θ-conjugacy class of type II in GL(4, F ) which splits over the bi-
quadratic extension E = E1E2 of F with Galois group 〈σ, τ〉, where
E1 = F (

√
D) = Eτ , E2 = F (

√
AD) = Eστ , E3 = F (

√
A) = Eσ

are quadratic extensions of F , thus A,D ∈ F − F 2, is parametrized by
r ∈ F×/NE1/FE

×
1 , s ∈ F×/NE2/FE

×
2 ([F5], p. 16). It is given by( a1r 0 0 a2Dr

0 b1s b2ADs 0

0 b2s b1s 0

a2r 0 0 a1r

)
= h−1t∗h · diag(r, s, s, r), t∗ = diag(a, b, τb, σa).

Here a = a1 + a2

√
D ∈ E×1 , b = b1 + b2

√
AD ∈ E×2 , θ(h) = h. In

PGL(4, F ) the θ-classes within a stable class are parametrized only by r,
or equivalently only by s.

A set of representatives for the θ-conjugacy classes within a stable semi
simple θ-conjugacy class of type III in GL(4, F ) which splits over the
biquadratic extension E = E1E2 of F with Galois group 〈σ, τ〉, where
E1 = F (

√
D) = Eτ , E2 = F (

√
AD) = Eστ , E3 = F (

√
A) = Eσ

are quadratic extensions of F , thus A,D ∈ F − F 2, is parametrized by
rrr(= rrr1 + rrr2

√
A) ∈ E×3 /NE/E3E

× ([F5], p. 16). Representatives for the
stable regular θ-conjugacy classes can be taken in the torus T = h−1T ∗h,
consisting of

t =
(
aaa bbbD

bbb aaa

)
= h−1t∗h, t∗ = diag(α, τα, στα, σα),

where h = θ(h) is described in [F5], p. 16. This t is θ-regular when α/σα,
τ(α/σα) are distinct and 6= ±1. Here

aaa =
(
a1 a2A

a2 a1

)
, bbb =

(
b1 b2A

b2 b1

)
; put also rrr =

(
r1 r2A

r2 r1

)
.
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Further α = a+ b
√
D ∈ E×, a = a1 + a2

√
A ∈ E×3 , b = b1 + b2

√
A ∈ E×3 ,

σα = a − b
√
D, τα = τa + τb

√
D. Representatives for all θ-conjugacy

classes within the stable θ-conjugacy class of t can be taken in T . In fact
if t′ = gtθ(g)−1 lies in T and g = h−1µh, µ ∈ T∗(F ), then µθ(µ)−1 =
diag(u, τu, στu, σu) has u = σu, thus u ∈ E×3 . If g ∈ T , thus µ ∈ T ∗, then

µ = diag(v, τv, στv, σv) and µθ(µ)−1 = diag(vσv, τvστv, τvστv, vσv),

with vσv ∈ NE/E3E
×. We conclude that a set of representatives for the

θ-conjugacy classes within the stable θ-conjugacy class of t is given by
t · diag(rrr,rrr), as r ranges over E×3 /NE/E3E

×.
Representatives for the stable regular θ-conjugacy classes of type (IV)

can be taken in the torus T = h−1T ∗h, consisting of

t =
(
aaa bbbDDD

bbb aaa

)
= h−1t∗h, t∗ = diag(α, σα, σ3α, σ2α),

where h = θ(h) is described in [F5], p. 18. Here α ranges over a quadratic
extension E = F (

√
D) = E3(

√
D) of a quadratic extension E3 = F (

√
A)

of F . Thus A ∈ F − F 2, D = d1 + d2

√
A lies in E3 − E2

3 where di ∈ F .
The normal closure E′ of E over F is E if E/F is cyclic with Galois group
Z/4, or a quadratic extension of E, generated by a fourth root of unity ζ,
in which case the Galois group is the dihedral group D4. In both cases
the Galois group contains an element σ with σ

√
A = −

√
A, σ
√
D =

√
σD,

σ2
√
D = −

√
D. In the D4 case Gal(E′/F ) contains also τ with τζ = −ζ,

we may choose D =
√
A, τD = D and σ

√
D = ζ

√
D.

In any case, t is θ-regular when α 6= σ2α. We write α = a+ b
√
D ∈ E×,

a = a1 + a2

√
A ∈ E×3 , b = b1 + b2

√
A ∈ E×3 , σα = σa + σb

√
σD, σ2α =

a− b
√
D. Also

aaa =
(
a1 a2A

a2 a1

)
, bbb =

(
b1 b2A

b2 b1

)
, DDD =

(
d1 d2A

d2 d1

)
.

Representatives for all θ-conjugacy classes within the stable θ-conjugacy
class of t can be taken in T . In fact if t′ = gtθ(g)−1 lies in T and g =
h−1µh, µ ∈ T∗(F ), then µθ(µ)−1 = diag(u, σu, σ3u, σ2u) has u = σ2u,
thus u ∈ E×3 . If g ∈ T , thus µ ∈ T ∗, then µ = diag(v, σv, σ3v, σ2v) and

µθ(µ)−1 = diag(vσ2v, σ(vσ2v), σ(vσ2v), vσ2v),
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with vσv ∈ NE/E3E
×. It follows that a set of representatives for the

θ-conjugacy classes within the stable θ-conjugacy class of

t = h−1t∗h =
(
aaa bbbDDD

bbb aaa

)
, where t∗ = diag(α, σα, σ3α, σ2α),

is given by multiplying α by r, that is t∗ by t∗0 = diag(r, σr, σ3r, σ2r),
where r = σ2r ranges over a set of representatives for E×3 /NE/E3E

×.

Now t0 = h−1t∗0h =
(
rrr 0

0 rrr

)
. Hence a set of representatives is given by

t · diag(rrr,rrr), rrr ∈ E×3 /NE/E3E
×.



III. TRACE FORMULAE

1. Twisted Trace Formula: Geometric Side

The comparison of representations is based on comparison of trace formu-
lae, which are equalities of geometric and spectral sides. In this section we
first state the spectral side of the θ-twisted trace formula on the discrete
spectrum, and then we record the geometric side of the θ-twisted trace
formula for G, in fact only its θ-elliptic strongly θ-regular part, stabilized
according to its θ-elliptic endoscopic groups, as in [KS]. This geometric side
is a linear form, with complex values, on the space C∞c (G(A)) of smooth
compactly supported complex valued functions on G(A). This space is
spanned by products ⊗fv, where fv ∈ C∞c (G(Fv)) for all v and fv = f0

v

is the characteristic function of Kv = G(Rv) for almost all v. In fact we
need the measure fdg where dg = ⊗dgv is a Haar measure on G(A), but
we suppress the dg from the notations. We later compare trace formulae
for test measures fdg, fHdh, fC0dc0, etc., with matching orbital integrals.
The dependence on measures is implicit.

The trace formula is obtained on integrating over the diagonal g = h in
G(F )\G(A) the kernel Kf (h, g) of the convolution operator r(f)r(θ) on
L2 = L2(G(F )\G(A)), defined by

(r(f)φ)(h) =
∫

G(A)

f(g)φ(hg)dg and (r(θ)φ)(h) = φ(θ−1(h))

for φ ∈ L2. The discrete part Ld of L2 splits as a direct sum ⊕πLπ of sub-
spaces transforming according to inequivalent irreducible representations
π of G(A). Thus Lπ = m(π)π is a multiple of an irreducible π, occurring
with finite multiplicity m(π) in L2, and the sum is over inequivalent π.

If {φπi } is an orthonormal basis of Lπ then the kernel of r(f)r(θ) on Ld
is

Kd(k, g) =
∑
π

∑
φπ
i
∈Lπ

∫
h

f(h−1θ(k))φπi (h)dh · φπi (g), h in G(F )\G(A).

60
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Indeed,

r(f)r(θ)φ(g) =
∑
π

∑
φπ
i

〈r(f)r(θ)φ, φπi 〉φπi (g)

=
∑∑∫

h∈G(F )\G(A)

r(f)r(θ)φ(h)φπi (h)dh · φπi (g)

=
∑∑∫

h

∫
k∈G(A)

f(k)(r(θ)φ)(hk)dk · φπi (h)dh · φπi (g)

=
∑∑∫

h

∫
k

f(h−1θ(k))φπi (h)dh · φπi (g)φ(k)dk.

The trace of r(f × θ) = r(f)r(θ) over the discrete spectrum is the integral
of Kd over the diagonal k = g in G(A):∑

π

∑
φπ
i

∫
g∈G(A)

∫
h∈G(F )\G(A)

φπi (h)f(h−1θ(g))φπi (g)dhdg

=
∑∑∫

h

∫
g

φπi (h)f(g)φπi (θ−1(hg))dgdh

=
∑∑∫

h

[r(f)(r(θ)φπi )](h)φπi (h)dh

=
∑
π

∑
φπ
i

〈π(f)π(θ)φπi , φ
π
i 〉 =

∑
π

m(π) trπ(f × θ),

where π(f) and π(θ) denote the restriction of r(f) and r(θ) to π, and
π(f × θ) = π(f)π(θ). One can see that the sum

∑
πm(π)| trπ(f × θ)| is

convergent.
The π in Ld which contribute a nonzero term to this sum are those which

are θ-invariant: θπ ' π. The contribution to the trace formula from the
complement of Ld in L2 is described using Eisenstein series; we describe
this spectral side below. This side will be used to study the representations
π whose traces occur in the sum.

We now turn to the geometric side of the trace formula.
The geometric side of the trace formula is obtained on integrating over

the diagonal g = h ∈ G(F )\G(A) the kernel of the convolution operator
r(f)r(θ) on L2: here (r(f)r(θ)φ)(h) is

=
∫

G(A)

f(h−1θ(g))φ(g)dg =
∫

G(F )\G(A)

∑
γ∈G(F )

f(h−1γθ(g))φ(g)dg,
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and we consider only the subsum

Ke(h, g) =
∑

δ∈G(F )e

f(h−1δθ(g))

over the set G(F )e of θ-semisimple, strongly θ-regular and θ-elliptic ele-
ments δ in G(F ).

An element δ of G(F ) is called θ-semisimple if the automorphism Int(δ)◦
θ = Int(δθ) is quasi-semisimple, by which we mean that its restriction to
the derived group is semisimple (thus there is a pair (B,T) in G fixed
by the automorphism). As for θ-regularity, denote by Iδ = ZG(δθ) the
centralizer of δθ in G (this is the group {g ∈ G; δθ(g)δ−1 = g} of fixed
points of Int(δ)·θ). A θ-semisimple δ in G is called θ-regular if ZG(δθ)0 is a
torus, and strongly θ-regular if ZG(δθ) is abelian. If δ is strongly θ-regular
then Tδ = ZG(ZG(δθ)0)) (centralizer in G of ZG(δθ)0) is a maximal torus
in G fixed under Int(δθ), and ZG(δθ) = TInt(δθ)

δ . A θ-semisimple element
δ of G(F ) is called θ-elliptic if (ZG(δθ)/Z(G)θ)0 is anisotropic over F .

The integral Te(f,G, θ) over h = g in G(F )\G(A) of Ke(g, g) is the
sum over a set of representatives δ for the θ-conjugacy classes in G(F )e of
orbital integrals:∑

δ

∫
ZG(δθ)(F )\G(A)

f(g−1δθ(g))dg

=
∑
δ

voldt(ZG(δθ)(F )\ZG(δθ)(A))
∫
ZG(δθ)(A)\G(A)

f(g−1δθ(g))dg/dt.

It is rewritten in [KS], (7.4.2) as a sum over a set of representatives
(H,H, s, ξ) for the isomorphism classes of elliptic endoscopic data for (G, θ)
([KS], (2.1)) and over a set of representatives for the H(F )-conjugacy
classes of elliptic strongly G-regular γ in H(F ) (γ ∈ H is called strongly
G-regular if the image under the norm map AH/G ([KS], (3.3)) of the
conjugacy class of γ consists of (strongly) θ-regular elements):∑

(H,H,s,ξ)

aG · |Out(H,H, s, ξ)|−1
∑
γ

Φκγ(f).

Here Out(H,H, s, ξ) is the group defined in [KS], (2.1.8); aG is the number
defined in [KS], (6.4.B); and the twisted κ-orbital integral Φκγ(f) is defined
in [KS], 3 lines above (6.4.10) and 3 lines above (6.4.16).
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If fH = ⊗fvH , fvH ∈ C∞c (H(Fv)) has matching orbital integrals with
fv for all v ([KS], (5.5)), then Φκγ(f) can be replaced by the stable orbital
integral Φst

γ (fH), and the stabilized trace formula takes the form ([KS],
(7.4.4)) ∑

(H,H,s,ξ)

ι(G, θ,H) STe(fH),

where

STe(fH) = aH
∑
γ

Φst
γ (fH), aH = |π0(Z(Ĥ)Γ)‖ ker1(F,Z(Ĥ))|−1,

and
ι(G, θ,H) = aG|Out(H,H, s, ξ)|−1a−1

H ,

aG =
|π0(Z(Ĝ)Γ)|
| ker1(F,Z(Ĝ))|

· |π0((Z(Ĝ)Γ)0 ∩ (T̂ θ̂)0)|
|π0((Z(Ĝ)/Z(Ĝ) ∩ (T̂ θ̂)0)Γ)|

.

In our case G = PGL(4), θ(g) = J−1tg−1J , there are two elliptic θ-
endoscopic groups H = PGSp(2) and C = [GL(2) × GL(2)]′/G′m, with
Ĥ = Sp(2,C) and

Ĉ = {(A,B) ∈ [GL(2,C)×GL(2,C)]/C×; detAdetB = 1},

Z(Ĝ) = µ4, Z(Ĥ) = Z(Ĉ) = µ2 = {±I}, the Galois group Γ = Gal(F/F )
acts trivially as G, H and C are split, Z1 = Z(Ĝ)∩ (T̂ θ)0 of [KS], Lemma
6.4.B, is {±I}, hence Z there (= Z(Ĝ)/Z1) is µ2, Z1 ∩ (Z(Ĝ)Γ)0 is trivial,
ker1(F,Z(Ĝ)) = 1, hence aG = 2. For H and C there is no θ, Z1 =
Z(Ĥ) and Z = 1, ker1(F, µ2) = 1, hence aH = 2 = aC. In particular
ι(G, θ,H) = |Out(H,H, s, ξ)|−1 is 1 and ι(G, θ,C) = 1

2 .

Similarly we consider the elliptic regular part of the geometric side of
the trace formula of H = PGSp(2) and stabilize it, to obtain (here θ is
trivial and is omitted from the notations)

Te(fH ,H) = STe(fH) + ι(H, 1,C0) STe(fC0)

where fC0 is a function on C0(A) matching fH . Here C0 = PGL(2) ×
PGL(2) is the only elliptic endoscopic group of H other than H, Ĉ0 =



64 III. Trace Formulae

SL(2,C) × SL(2,C) has center {±I} × {±I} of order 4, hence aC0 = 4.
Also Out(C0, . . . ) has order 2 and aH = 2, hence ι(H, 1,C0) = 1

4 .
The θ-endoscopic group C of G has a proper endoscopic subgroup CE

for each quadratic extension E of F . Its connected dual group ĈE =
Z
Ĉ

(ŝE)0, ŝE = (diag(1,−1),diag(1,−1)), is

{(diag(a1, a2),diag(b1, b2)) modC×; a1a2b1b2 = 1},

and Gal(E/F ) acts via
((

0 1

−1 0

)
,
(

0 1

−1 0

))
. Thus

CE = {(z1, z2) ∈ (RE/FGm × RE/FGm)/Gm; z1z1 = z2z2}

and CE(F ) = {(z1, z2) ∈ (E× × E×)/F×; z1z1 = z2z2}, and Ĉ
Gal(E/F )
E

is Z/2, generated by (−I,I). Since Out(CE , . . . ) has order 2, aCE
= 4 and

aC = 2, we get ι(C, 1,CE) = 1
4 and

Te(fC ,C) = STe(fC) +
1
4

∑
E

STE(fCE ).

This identity can be used to associate to any pair µ1, µ2 of characters
of A×E/E

× whose restriction to A×/F× is χE/F the pair π(µ1) × π(µ2)
of representations of C(A) = [GL(2,A) × GL(2,A)]′/A×. This lifting is
well-known. Whenever possible we shall work with fC = ⊗fC,v whose
component at a relevant place has orbital integrals which are stable, so
that there won’t be a contribution from TE(fCE ) = STE(fCE ).

In summary, the θ-elliptic θ-semisimple strongly θ-regular part of the
geometric side of the θ-twisted trace formula for G, Te(f,G, θ), takes the
form

Te(fH ,H)− 1
4

Te(fC0 ,C0) +
1
2

[Te(fC ,C)− 1
4

∑
[E:F]=2

TE(fCE )].

Here fH = ⊗fHv and fC = ⊗fCv have orbital integrals matching the
(stable and unstable) θ-twisted orbital integrals of f = ⊗fv for each place
v, those of fC0 = ⊗fC0v match those of fH and those of fCE = ⊗fCEv
match those of fC . Of course by this we mean that the measures fdg,
fHdh, fCdc, are matching, and fC0dc0 and fHdh are matching, and so are
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fCEdcE and fCdc. The identities of trace formulae hold for such matching
measures. We suppress the measures from the notations.

Complete analysis of the geometric sides of the trace formulae would
include terms related to singular and to nonelliptic orbital integrals. In
order to not deal with these in this work, we take a component of all
global functions at a fixed place v0 of F to vanish on the singular set, and
then the integrals over the singular classes vanish a-priori and need not be
computed. This mild restriction does not restrict the uses for lifting appli-
cations of the identity of trace formulae. For example we may take these
functions to be biinvariant under the Iwahori subgroup, and supported
on double cosets of elements in the maximal split torus (diagonal, in our
case) on which the absolute values of the roots are big (the eigenvalues
have distinct absolute values, in our case).

To avoid dealing with the non-(θ-)elliptic conjugacy classes, we observe
that using the process of truncation, integration over these orbits leads to
(θ-) orbital integrals weighted by a factor which can be expressed as a sum
of local products involving number of factors bounded by the (twisted)
rank. Thus these weighted (θ-) orbital integrals are sums of products
of local factors which are all – except for at most rank-(G, θ) factors –
orbital integrals on the non-θ-elliptic class. In our case the θ-twisted rank
of G is two, and the ranks of H, C and C0 are two too. The restrictive
assumption that we make is that we fix three places: v1, v2, v3, of F , and
work with functions f whose components fv at v = vi (i = 1, 2, 3) have
θ-orbital integrals equal to 0 on the strongly θ-regular orbits which are not
θ-elliptic. In this case the geometric side of the twisted trace formula is
equal to the θ-elliptic part Te(f,G, θ).

The matching functions on H, C and C0 can also be chosen now to
have components at v1, v2, v3 whose orbital integrals vanish on the regu-
lar nonelliptic sets of these groups, and the component at v0 vanishes on
the non regular set. The geometric sides of the trace formulae are then con-
centrated on the elliptic regular sets, and are equal for such test functions
to Te(fH ,H), Te(fC0 ,C0), Te(fC ,C).

The requirement that the orbital integrals of fvi (i = 1, 2, 3) be zero on
the strongly θ-regular non θ-elliptic set is weaker than an assumption that
the functions themselves be zero there. The requirement that we make per-
mits applying the trace formula with coefficients of elliptic representations
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at the places vi (i = 1, 2, 3).
We compare the geometric sides of the trace formulae with the spectral

sides, which include, in addition to the contribution
∑
πm(π) trπ(f × θ)

(in the case of the θ-twisted trace formula for f on G) from the discrete
spectrum Ld, also contributions from the continuous spectrum. These
contributions are described in terms of Eisenstein series, and lead to a
sum of discrete terms and integrals of continuous series of representations,
involving logarithmic derivatives. The weight factor splits as sum of local
products whose number of terms is bounded by the (θ-)rank. In our case
the rank is 2, and assuming as we do the vanishing of the orbital integrals
on the regular nonelliptic set at 3 places leads to the vanishing of all
continuous sums, or integrals, of traces of representations which contribute
to the (θ-)trace formula. We proceed to describe only the discrete sums
contributions to the spectral sides of the trace formulae.

2. Twisted Trace Formula: Analytic Side

We now record the analytic side of the twisted trace formula; it involves
twisted traces of representations. The expression is taken from [CLL], XV,
p. 15. Fix a minimal θ-invariant F -parabolic subgroup P0 of G, and its
Levi subgroup M0. Denote by P any standard (containing P0) F -parabolic
subgroup of G, by M its Levi subgroup which contains M0, and by AM

the split component of the center of M. Then AM ⊂ A0 = AM0 . Let
X∗(AM) be the lattice of rational characters of AM, AM the vector space
X∗(AM)⊗R = Hom(X∗(AM),R), and A∗M the vector space dual to AM.
Let W0 = W (A0, G) be the Weyl group of A0 in G. Both θ and every s in
W0 act on A0. The truncation and the general expression to be recorded
depend on a vector T in A0 = AM0 . In our specific case of G = PGL(4)
we shall use only the constant term, or value at T = 0, and in fact only
the discrete part, of terms where A∗ = {0}, below.

2.1 Proposition ([CLL]). The spectral, or analytic side of the trace
formula is equal to a sum over
(1) the set of all Levi subgroups M containing M0 of the F -parabolic sub-
groups of G;
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(2) the set of subspaces A of A0 such that for some s in W0 we have
A = As×θM , where As×θM is the space of s × θ-invariant elements in the
space AM associated with a θ-invariant F -parabolic subgroup P of G;
(3) the set WA(AM) of distinct maps on AM obtained as restrictions of
the maps s × θ (s in W0) on A0 whose space of fixed vectors is precisely
A; and
(4) the set of discrete spectrum representations τ of M(A) with (s×θ)τ ' τ ,
s× θ as in (3).

The terms in the sum are equal to the product of

[WM
0 ]

[W0]
(
det(1− s× θ)|AM/A

)−1

and ∫
iA∗

tr
[
MT
A(P, ζ)MP|θ(P)(s, 0)IP,τ (ζ, f × θ)

]
|dζ|.

Here [WM
0 ] is the cardinality of the Weyl group WM

0 = W (A0,M) of A0

in M . Also P is an F -parabolic subgroup of G with Levi component M;
MP|θ(P) is an intertwining operator; MT

A(P, λ) is a logarithmic derivative
of intertwining operators, and IP,τ (ζ) is the G(A)-module normalizedly
induced from the M(A)-module m 7→ τ(m)e〈ζ,H(m)〉 in standard notations.

The sum of the terms corresponding to M = G in the formula is equal
to the sum I =

∑
trπ(f × θ) over all discrete spectrum representations π

of G(A).
We proceed to describe, in our case of G = PGL(4) and the involution

θ, the terms corresponding to M 6= G and A = {0} in the formula. Let
M0 be the diagonal subgroup of G.

There are [W0]/[WM
0 ] = 4 Levi subgroups M ⊃ A0 of maximal par-

abolic subgroups P of G (of type (3,1)) isomorphic to GL(3), that is to
the image of GL(3) × GL(1) in PGL(4). The space AM = {(a, a, a, b)∗;
a, b ∈ R} (the superscript ∗ means image in R4/R, where R is embedded
diagonally), has A = As×θM = {0} for any s ∈ W (for which s × θ maps
AM back to AM), and the contribution is∑

M

3!
4!
· 1

2

∑
τ

trM(s, 0)IP,τ (0; f × θ)

=
1
2

∑
χ

∑
τ

trM(α3α2α1, 0)IP1(τ, χ; f × θ).
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Here P1 denotes the upper triangular parabolic subgroup of G of type
(3,1). We write α1 = (12), α2 = (23), α3 = (34), J = (14)(23) for
the transpositions in the Weyl group W0. In the last sum, χ ranges over
the characters of A×/F× of order at most two, while τ ranges over the
discrete spectrum representations of GL(3,A) whose central character is χ
and τθ ' τ .

There are [W0]/2[WM
0 ] = 3 Levi subgroups M ⊃ A0 of maximal para-

bolic subgroups P of G (of type (2,2)) isomorphic to the image of GL(2)×
GL(2) in PGL(4). The space

AM = {(a, a, b, b)∗; a, b ∈ R2}

has A = As×θM equal to {(0, 0, a, a)∗} for s ∈ WM
0 , and A = {0} for all

s 6= 1 in W/WM
0 . Consider only the case of A = {0}, and choose s = J to

be a representative. Then

1− J × θ : (a, a, b, b)∗ 7→ (−a,−a,−b,−b)∗

has determinant 2 on the one dimensional space AM, and the contribution
is ∑

M

2 · 2
4!
· 1

2

∑
τ

trM(J, 0)IP,τ (0; f × θ)

=
1
4

∑
χ

∑
τ1×τ2

trM(J, 0)IP2(τ1, τ2; f × θ).

Here P2 denotes the upper triangular parabolic subgroup of G of type
(2,2). The last sum ranges over the ordered pairs (τ1, τ2) of discrete spec-
trum representations τ1, τ2 of GL(2,A) with central characters ωτ1 and
ωτ2 with ωτ1ωτ2 = 1 and τθi ' τi, thus τ1 and τ2 are discrete spectrum
representations of PGL(2,A) (then we write χ = 1) or τi = π(µi), µi char-
acters of A×E/E

×
A
×, and E/F is the quadratic extension determined by

χ = ωτ1 = ωτ2 . Thus the sum over χ ranges over all characters of A×/F×

of order at most two.
There are [W0]/2[WM

0 ] = 6 Levi subgroups M ⊃ A0 of parabolic sub-
groups P of G (of type (2,1,1)) isomorphic to the image of GL(2)×GL(1)×
GL(1) in PGL(4). If s ∈ W0 is such that s × θ maps AM = {(a, a, b, c)∗}
to itself, then (up to multiplication by 〈α1 = (12)〉 = WM

0 ), s can be
(1) s = (14)(23), in which case

s× θ : (a, a, b, c)∗ 7→ (−a,−a,−b,−c)∗,
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A = {0} and det(1− s× θ)|AM = 4, or (2) s = (13)(24), then

s× θ : (a, a, b, c)∗ 7→ (−a,−a,−c,−b)∗

and A 6= {0}. The term with A = {0} is

1
3 · 4

· 1
4

∑
M,τ

trM((14)(23), 0)IP3,τ (0; f × θ).

Here P3 is the upper triangular parabolic subgroup of type (2, 1, 1), and
τ = (τ1, χ1, χ2) is equivalent to (τθ1 , χ

−1
1 , χ−1

2 ). If χ denotes the central
character of τ1 then χ = χ1χ2, and τ1 ' τθ1 = τ1χ. We can write the
induced representation as χ2I(τ1, χ1, 1). If χ = χ1 6= 1 then τ1 = π(µ1)
where µ1 is a character of A×E/E

×, where E/F is determined by χ. The
central character of π(µ1) is χ · µ1|A×; if this is equal to χ, then µ1|A× =
1, hence there is a character µ0 of A×E/E

× with µ1(z) = µ0(z/z). Put
µ0(z) = µ0(z), z ∈ A×E , then τ1 = π(µ0/µ0). If on the contrary χ = χ1 = 1
then τ1 is a discrete spectrum representation of PGL(2,A). We then obtain
from the terms with A = {0} the sum

1
8

∑
χ,τ1

trM((14)(23), 0)(χIP3(τ1, 1, 1))(f × θ)

+
1
4

∑
χ1 6=1,µ0,χ

trM((14)(23), 0)(χIP3(π(µ0/µ0), χ1, 1))(f × θ)

where χ is any quadratic character, χ1 is a quadratic character 6= 1, τ1
ranges over the discrete spectrum of PGL(2,A) and µ1 = µ0/µ0 over the
characters of A×E/A

×E×, or µ0 over the characters of A1
E/E

1, where A1
E =

{z ∈ A×E ; zz = 1}. Note that I(τ1, χ, 1) and I(τ1, 1, χ) contribute two
equivalent contributions when χ 6= 1.

Let π be an irreducible θ-invariant representation of G = PGL(4), which
is properly induced from a parabolic subgroup. We proceed to list these.

If π is induced from the (standard) parabolic of type (3,1) the π =
I(τ, χ), where τ is a representation of GL(3) and χ is a character (of
GL(1)), and ωχ = 1 where ω = ωτ is the central character of τ . From
πθ ' π we conclude that

τθ ' τ (τθ(g) = τ(J tg−1J), J = antidiagonal(1,−1, 1))
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and χ2 = 1. Then π = χI(τχ, 1), where τχ is a representation of PGL(3)
with (τχ)θ ' τχ, hence the image of the symmetric square lifting from
GL(2) (or rather SL(2), see [F3]) to PGL(3). Globally we have that the
lifting

λ1 : SO(4) = [GL(2)×GL(2)]′/GL(1)→ PGL(4)

takes τ1 × τ1χ to I(χSym2(τ1), χ).
If π is induced from the (standard) parabolic of type (2,2) then it is

π = I(τ1, τ2) ' πθ = I(τθ1 , τ
θ
2 ), τθ(g) = τ(wtg−1w−1).

If τθ1 ' τ2, then π lies in a continuous family I(τ1νs, τθ1 ν
−s), ν(g) = |det g|,

of θ-invariant representations. Otherwise τθ1 ' τ1 and τθ2 ' τ2, thus ω2
τi =

1, and ωτ1ωτ2 = 1. If ωτi = 1 then τi is a representation of PGL(2), and if
ωτi 6= 1 then τi = π(µi), where µi is a character of CE(= E× in the local
case, A×Ei/Ei in the global case) which is trivial on CF , where E/F is the
quadratic extension determined by ωτ1 = ωτ2 .

Interlude about GL(2): if E/F is the quadratic extension determined
by a quadratic character ω of F× (F local), and µ is a complex valued
character of E×, there is a two dimensional representation ρ(µ) of the
extension

WE/F = 〈z ∈ E×, σ;σ2 ∈ F −NE/FE, σz = zσ〉

of Gal(E/F ) = 〈σ〉 by WE/E = CE , given by

z 7→
(
µ(z) 0

0 µ(z)

)
, σ 7→

(
0 1

µ(σ2) 0

)
.

Then det ρ(µ)(z) = µ(zz), det ρ(µ)(σ) = −µ(σ2). The corresponding ad-
missible (globally: automorphic) representation of GL(2) is denoted by
π(µ), and its central character is ω(x) = χE/F (x)µ(x).

In the case of the parabolic of type (2,2) above, ωτi 6= 1 then implies that
µi|F× = 1, hence there is a character µ′i : E× → C

× with µi(z) = µ′i(z/z)
so that τi = π(µ′i/µ

′
i). Choose square roots of

a(z)2 = (µ′1µ
′
2)(z/z), b(z)2 = (µ′1/µ

′
2)(z/z),
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then

( a
a−1

)
×
(
b

b−1

)
7→

 ab

a/b

b/a

1/ab

 =

 µ′1/µ
′
1
µ′2/µ

′
2
µ′2/µ

′
2
µ′1/µ

′
1


and

π(a)× π(b) λ1−→ I(π(µ′1/µ
′
1), π(µ′2/µ

′
2)).

If π is induced from the standard parabolic of type (2,1,1) then

π = I(τ, χ1, χ2) ' πθ = I(τθ, χ−1
1 , χ−1

2 ), χ2
i = 1,

and π = χ2I(τχ2, χ1χ2, 1). Further τθ ' τ (it is a representation of
GL(2)), and τ0 = τχ2 ' τθ0 , and χ0 = χ1χ2 has order two. If χ0 = 1
then τ0 is a representation of PGL(2), while if χ0 6= 1 then τ0 = π(µ0/µ0),
where µ0 is a character of the quadratic extension E of F determined by
χ0. In this case

π(µ0)× χ2π(µ0)→ χ2I(π(µ0/µ0), χ0, 1).

If π is induced from the minimal parabolic, of type (1,1,1,1), and

π = I(χ1, χ2, χ3, χ4) ' πθ = I(χ−1
1 , χ−1

2 , χ−1
3 , χ−1

4 )

is not in a continuous family of θ-invariant representations, then χ2
i = 1.

If two χ′is are equal then π is χ0I(χ, χ−1, 1, 1). Otherwise π is the twist by
χ0 of I(χ1, χ2, χ1χ2, 1). Denote by E2 the extension of F determined by
χ2, put µ(z) = χ1(zz) (z is the image of z ∈ E×2 under the Galois action
over F ). Then µ = µ (µ(z) is µ(z)) and µ = µ−1 since χ2

1 = 1. Then there
is µ1 on E×2 with µ(z) = µ1(z/z)(= µ1(z/z) 6≡ 1), and

π(µ1)× χ0π(µ1)→ χ0I(π(µ1/µ1), χ2, 1) = χ0I(χ1, χ1χ2, χ2, 1).

We now take the Levi subgroup A0 and list the different types of
maps s × θ. The involution θ maps an element (a, b, c, d)∗ of A0 to
(−d,−c,−b,−a)∗, and it is convenient to write s as sJ (J = (14)(23)).
In these notations, there are 1 (resp. 8, 6, 6, 3) distinct maps sJ × θ

where s is 1 (resp. has order 3, is a transposition, has order 4, is a product
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of two transpositions of disjoint support). Representatives are given by
s = 1 (resp. (321), (12), (4321), (12)(34)). The subspace A of vectors
in A0 fixed by sJ × θ is {0} (resp. {0}, {(a,−a, 0, 0)∗}, {(a, b, a, b)∗},
{(a, b, c, a+ b− c)∗}) and det(1− sJ × θ) is 8 (resp. 2, 2, 1, 1). We record
only the discrete part, where A = {0}.

1
4!
· 1

8

∑
τ

trM(J, 0)IP0,τ (0, f × θ)

+
1
4!
· 8

2

∑
τ

trM((321)J, 0)IP0,τ (0, f × θ).

The τ in the first sum are the characters (χ1, χ2, χ3, χ4) of A0 fixed by
J × θ, that is χ2

i = 1. There are 4! such ordered 4-tuples of distinct χ′is,
3! · 2 ordered 4-tuples where {χi} has 3 distinct elements, 3 × 2 ordered
4-tuples where each χi occurs twice in (χ1, χ2, χ3, χ4), 4 ordered 4-tuples
where exactly 3 of the 4 χ′is are equal. The first sum becomes

1
8

∑
χi 6=χj ,χ2

i
=1,χ1χ2χ3χ4=1

trMI((χ1, χ2, χ3, χ4); f × θ)

+
1

4 · 8
∑

χ1 6=χ2,χ2
i
=1

trMI((χ1, χ1, χ2, χ2); f × θ)

+
1

4!8

∑
χ2=1

trMI((χ, χ, χ, χ); f × θ).

Since (321)J × θ maps τ to (χ−1
3 , χ−1

1 , χ−1
2 , χ−1

4 ), the fixed τ have χ2
4 = 1

and χ1χ3 = χ1χ2 = χ2χ3 = 1, thus χ1 = χ2 = χ3 has χ2
1 = 1. Since

χ1χ2χ3χ4 = 1, we get χ4 = χ. The contribution is then

1
6

∑
χ2=1

trM((321)J, 0)I((χ, χ, χ, χ); f × θ).
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3. Trace Formula of H: Spectral Side

The spectral side of the trace formula for H = PGSp(2) can be written
out too as the case where θ is trivial. We proceed to specify the objects
involved. As usual, a superscript ∗ indicates image in the projective group.
We choose P0 to be the upper triangular subgroup in H. Its fixed Levi
subgroup is chosen to be A0 = {t = diag(a, b,λλλ/b,λλλ/a)∗}. A basis of
the root system is ∆ = ∆(H,P0,A0) = {α, β}, α(t) = a/b, β(t) = b2/λλλ,
and the root system is R = R+ ∪ −R+, where R+ = R+(H,P0,A0) =
{α, β, α+β, 2α+β} is the set of distinct homomorphisms in the action (Int)
of A0 on Lie(P0/A0). The group X∗(A0) = Hom(Gm,A0) is a lattice in
the vector space A0 = X∗(A0)⊗R which we identify with R2 via the map
log : X∗(A0)→ A0 = R

2,

log(a, b,λλλ/b,λλλ/a)∗ = (logq |a| −
1
2

logq |λλλ|, logq |b| −
1
2

logq |λλλ|).

The roots, characters of A0(F ) = X∗(A0)⊗F×, lie in the group X∗(A0) =
Hom(A0,Gm), which is a lattice in the dual space A∗0 = X∗(A0) ⊗ R
to A0 = Hom(X∗(A0),R). Identifying A∗0 with R2 with the usual inner
product: A∗0×A0 → R, ((x, y), (u, v)) = xu+yv, the roots can be identified
with the vectors α = (1,−1), β = (0, 2), α + β = (1, 1), 2α + β = (2, 0)
in A∗0 = R

2. The coroots α∨ = 2α/(α, α), . . . are in A0 identified with
α∨ = (1,−1), β∨ = (0, 1), (α+ β)∨ = (1, 1), (2α+ β)∨ = (1, 0).

The Weyl group W0 = W (H,A0) of A0 in H, which is the quotient
by (the centralizer in H of) A0 of the normalizer of A0 in H, viewed as a
group of permutations in the symmetric group S4 on 4 letters, is generated
by the reflections sα = (12)(34), sβ = (23), sα+β = (13)(24), s2α+β = (14)
in S4. Put σ = sβsα = sαs2α+β(= (23)(12)(34) = (12)(34)(14)). Then

W0 = 〈σ, sβ ;σ4 = s2
β = 1, sβσsβ = σ−1〉 = {siβσj ; i = 0, 1; j = 0, 1, 2, 3}

is the dihedral groupD4. Note that sβσ = sα, sβσ2 = s2α+β , sβσ3 = sα+β .
Under the identification of X∗(A0) with a lattice in A0 = R

2, the Weyl
group can be identified with a group of automorphisms of A0: sα(x, y) =
(y, x),

sβ(x, y) = (x,−y), sα+β(x, y) = (−y,−x), s2α+β(x, y) = (−x, y),
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σ(x, y) = (y,−x), σ2 = −1. Note that for each root γ in {α, β, α+β, 2α+
β} and for δ ∈ A∗0 perpendicular to γ, we have sγγ = −γ and sγδ = δ.
Then the sγ are reflections, and σ is a rotation of π/2, clockwise.

The Levi (components of parabolic) subgroups of H containing A0 other
than H and A0 are M′

α = sβMαsβ , M′
β = sαMβsα,

Mα = M(2,2) = {diag(A, λλλwtA−1w)∗; A in GL(2),λλλ in Gm},

Mβ = {diag(a,A,detA/a)∗; A in GL(2), a in GL(1)}.

We determine the subspaces ofA0 associated with these. The (split compo-
nent of the) center Aα = AMα

of Mα consists of t = (a, a,λλλ/a,λλλ/a)∗, thus
X∗(Aα) = Hom(Gm,Aα) is Z(1, 1) and Aα = X∗(Aα) ⊗ R is R(α + β)∨

in A0. Since X∗(AM′α) = sβX∗(AMα
) we have AM′α = Rα∨. From

X∗(AMβ
) = Z(1, 0) we obtain AMβ

= R(2α + β)∨ in A0, and since
X∗(AM ′

β
) = sαX∗(AMβ

) we have AM′
β

= Rβ∨. Hence

Asα0 = AMα
, Asβ0 = AMβ

, Asα+β
0 = AM′α , As2α+β

0 = AM′
β
.

Here is the diagram (where α1 = ε1 − ε2):

α2 = 2ε2 α1 + α2 α2 + 2α1ffMMMMMMMMMMMM

OO 88qqqqqqqqqqqq //

''OOOOOOOOOOOOOO

oooooooooooooo α1

To list the contributions to the trace formula, note that the w in W0

with Aw0 = {0} are σ, σ2, σ3. Recall that σ(a, b,λλλ/b,λλλ/a) = (b,λλλ/a, a,λλλ/b)
and the character (µ1, µ2) from which I(µ1, µ2) = µ1µ2 × µ2/µ1 o µ−1

1 is
induced takes at t = (a, b,λλλ/b,λλλ/a) the value

µ1(a/b)µ2(ab/λλλ) = µ−1
2 (λλλ)(µ1µ2)(a)(µ2/µ1)(b).

Then σ−1
(µ1, µ2)(g) = (µ1, µ2)(σg) is the character

t 7→ (σt 7→)µ1(ab/λλλ)µ2(b/a) = µ−1
1 (λλλ)(µ1/µ2)(a)(µ1µ2)(b).
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We have σ(µ1, µ2) = (µ1, µ2) if µ1 = µ2 = µ−1
2 . Since

σ2t = (λλλ/a,λλλ/b, b, a), σ−2
(µ1, µ2)(t) = (µ1, µ2)(σ2t) = µ1(b/a)µ2(λλλ/ab)

is equal to (µ1, µ2)(t) if µ2
1 = 1 = µ2

2. Note also that 1 − σ : (x, y) 7→
(x, y)− (y,−x) = (x− y, y + x) has determinant 2, while det(1− σ2) = 4.
Since [W0] = 8 and WA0

0 = {1}, the contribution to the trace formula from
M = A0 and A = {0}, thus W {0}(A0) = {σ, σ2, σ3}, is

1
8
· 1

2

∑
µ1=µ2=µ−1

2

trM(σ, 0)IP0(µ1, µ2; fH)

+
1
8
· 1

2

∑
µ1=µ2=µ−1

2

trM(σ3, 0)IP0(µ1, µ2; fH)

+
1
8
· 1

4

∑
µ2

1=1=µ2
2

trM(σ2, 0)IP0(µ1, µ2; fH).

Note that the representations IP0(µ1, µ2) = µ1µ2 × µ1/µ2 o µ−1
1 with

µ2
1 = 1 = µ2

2 are irreducible (by [ST]), hence the operators M are scalars
which in fact are equal to 1.

Next we consider the AM for Levi subgroups other than H and A0,
and the w in the Weyl group which map AM to itself with fixed points
{0} only. These are Asα+β

Mα
= {0}, AsαM′α = {0}, As2α+β

Mβ
= {0} and AsβM′

β
=

{0}. The reflection sα+β acts on Mα by mapping diag(A,λλλA∗), A∗ =
wtA−1w, to (λλλA∗, A). The representation π2⊗µ, from which IMα(π2, µ) =
π2 o µ is induced, takes diag(A,λλλA∗) to µ(λλλ)π2(A). Since IMα

(π2, µ) is
a representation of PGSp(2), we have µ2ω = 1, where ω is the central
character of π. The representation π2⊗µ takes (λλλA∗, A) to µ(λλλ)π2(λλλA∗) =
µ(λλλ)ω(λλλ)ω−1(detA)π2(A). Then we have sα+β(π2 ⊗ µ) = π2 ⊗ µ when
ω = 1, thus π2 is a representation of PGL(2). Since [W0] = 8, [WMα

0 ] = 2,
det(1− s)|AMα

= 2 and M′
α contributes a term equal to that contributed

by Mα, the contribution to the trace formula from the WA(AM) with
A = {0} and M = Mα and M′

α is (π2 is a representation of PGL(2,A))

2 · 2
8
· 1

2

∑
{µ;µ2=1}

∑
π2

trM(sα+β , 0)IPα(π2, µ; fH).
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The representations IPα(π2, µ) = π2oµ are irreducible (by [ST]), hence
the operators M are constants, in fact equal 1.

The only element of W0 which maps AMβ
= R(2α + β)∨ to itself with

{0} as its only fixed point is s(β+2α) = (14). It takes t = diag(a,A,detA/a)
to diag(detA/a,A, a). The representation µ ⊗ π2 of GL(1,A) × GL(2,A)
from which the representation IPβ (µ, π2) = µoπ2 of PGSp(2,A) is induced
takes the value µ(a)π2(A) at t, and µ(detA/a)π2(A) at s2α+βt. Since
it is a representation of the projective group we have µω = 1, where ω
denotes the central character of π. From µ ⊗ π2 ' s2α+β(µ ⊗ π2) we
conclude that µ2 = 1 and π2 ' ωπ2, ω = µ is 1 or has order 2. We have
det(1 − s2α+β)|AMβ

= 2, [W0] = 8, [WMβ

0 ] = 2, and the contribution
from M′

β is the same as that from Mβ , hence the contribution to the trace
formula of H from Mβ and M′

β and the unique element in WA(AMβ
)

when A = {0} is

2 · 2
8
· 1

2

∑
{µ;µ2=1}

∑
{π2;π2=µπ2}

trM(s2α+β , 0)IPβ (µ, π2; fH).

The representations IPβ (µ, π2) = µ o π2 are irreducible when µ 6= 1,
in which case the operator M is a constant, equal to 1. When µ = 1,
the representation 1 o π2 is a product of local representations 1 o π2v,
which are irreducible unless π2v is square integrable or one dimensional.
The operator M can be written as a product m ⊗v Rv of a scalar valued
function m and local normalized operators Rv (they map the Kv-fixed
vector in an unramified 1 o π2v to itself). When 1 o π2v is irreducible,
Rv acts trivially. When π2v is square integrable 1 o π2v decomposes as a
direct sum of two tempered constituents, π+

Hv and π−Hv, and Rv acts on
one constituent trivially, and by multiplication by −1 on the other. When
π2v is ξ12, ξ2 = 1, 1oξ12 has two irreducible (nontempered) constituents:
L(ν, 1o ν−1/2ξ) and L(ν1/2 sp2, ν

−1/2ξ), and Rv acts on the first trivially
and by multiplication with −1 on the second. The scalar m is 1.

Similarly we describe the spectral discrete contributions to the trace
formula of the endoscopic group C0 = PGL(2)×PGL(2) of H = PGSp(2).
The terms corresponding to the parabolic group C0 itself is as usual a sum
over the discrete spectrum representations π1, π2 of PGL(2,A):∑

π1,π2

tr(π1 × π2)(fC0).
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The proper parabolic subgroups are Mβ = A0×PGL(2), Mα = PGL(2)×
A0, M0 = A0 × A0, where A0 denotes here the diagonal subgroup in
PGL(2). Thus M0 consists of t = diag(a, 1)∗ × diag(b, 1)∗. The roots are
α(t) = a, β(t) = b. They can be viewed as α = (1, 0), β = (0, 1), in the
lattice X∗(M0) = Z × Z in A∗0 = R × R. The coroots α∨ = 2α/(α, α) =
(2, 0), β∨ = (0, 2) lie in the lattice X∗(M0) = Z × Z in A0 = R × R.
Since X∗(Mβ) = X∗(A0 × {0}) = Z × {0} and X∗(Mα) = {0} × Z, we
have Aα = AMα

= Rβ∨ and Aβ = AMβ
= Rα∨. The Weyl group W0 =

W (M0) is generated by the commuting reflections sα and sβ , where sα(t) =
diag(1, a)∗ × diag(b, 1)∗ and sβ(t) = diag(a, 1)∗ × diag(1, b)∗. Identifying
X∗(M0) with a lattice in R×R these reflections become sα(x, y) = (−x, y),
sβ(x, y) = (x,−y). The other nontrivial element in W0 is sαsβ = −1. For
A = {0} we have WA(A0) = {sαsβ}. Since 1− sαsβ = 2 and dimA0 = 2,
det(1 − sαsβ)|A0 = 4. Further, W {0}(Aα) = {sβ} and W {0}(Aβ) =
{sα}, (1−sα)(0, y) = (0, 2y) hence det(1−sα)|Aβ = 2 and det(1−sβ)|Aα =
2. The representation µ1 ⊗ µ2 of M0, taking t to µ1(a)µ2(b), is equal
to sαsβ(µ1 ⊗ µ2), whose value at t is µ−1

1 (a)µ−1
2 (b), precisely when the

characters µi are of order at most 2. The representation µ1 ⊗ π2 of Mβ is
equal to sα(µ1 ⊗ π2) precisely when µ2

1 = 1. We obtain

1
4
· 1

4

∑
µ2

1=1=µ2
2

trM(sαsβ , 0)IP0(µ1, µ2; fC0)

+
2
4
· 1

2

∑
µ2

1=1,π2

trM(sα, 0)IPβ (µ1, π2; fC0)

+
2
4
· 1

2

∑
µ2

2=1,π2

trM(sβ , 0)IPα(π2, µ2, fC0).

Note that the representations which occur in these three sums are well-
known to be irreducible, from the theory of GL(2). Hence the operators
M are scalars, equal 1.

Similar analysis applies to the θ-twisted endoscopic group

C = [GL(2)×GL(2)]′/Gm,

whose group of F -points consists of (g1, g2), gi in GL(2, F ), det g1 = det g2,
with (g1, g2) ≡ (zg1, zg2), z ∈ F×. A character

(µ1, µ
′
2;µ2, µ

′
2) mod(µ, µ−1), µ1µ

′
1µ2µ

′
2 = 1,
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of the diagonal subgroup M0 of

t = diag(a1, a2)× diag(b1, b2) mod(z, z), a1a2 = b1b2,

invariant under sαsβ satisfies

µ1(a1)µ′1(a2)µ2(b1)µ′2(b2) = µ1(a2)µ′1(a1)µ2(b2)µ′2(b1)

for all a1a2 = b1b2, thus

µ2
1 = µ′1

2 = µ−2
2 = µ′2

2,

which replaces the requirement µ2
1 = µ2

2 = 1 in the case of C0.
As for a representation (µ1, µ′1) × π2 of the Levi subgroup Mβ , thus

µ1µ
′
2ωπ = 1, if it is sα-fixed then its value at diag(a, b) × g, ab = det g,

which is µ1(a)µ′1(b)π2(g), is equal to its value at diag(b, a) × g, which is
µ1(b)µ′1(a)π2(g). Here ab = det g, so we conclude that µ′1

µ1
(det g
a2 ) = 1 for all

a, g, so µ′1 = µ1.
Since all of the representations which contribute to the spectral sides of

the trace formulae of H, C, C0 associated to proper parabolic subgroups
are induced and are irreducible, except in the cases of 1oπ2, the intertwin-
ing operator M(s, 0) in each case where the representation is irreducible
is a scalar which comes outside the trace. Hence our assumption on the
components of the test function f , hence also on the matching functions
fH , fC , fC0 , implies the vanishing of the contributions from the properly
induced representations to the spectral sides of the trace formulae of H,
C, C0.

4. Trace Formula Identity

We now review the trace formula identity for a test function f = ⊗fv
on G(A) = PGL(4,A), and matching functions fH = ⊗fHv on H(A) =
PGSp(2,A), fC0 on C0(A) = PGL(2,A)× PGL(2,A), fC on

C(A) = [GL(2,A)×GL(2,A)]′/A×

where the prime indicates (g1, g2) = ((g1v), (g2v)) with det g1v = det g2v

in F×v for all v, and fCE = ⊗fCE ,v on CE(A) = A
×
E × A

×
E . The θ-elliptic
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θ-semisimple strongly θ-regular part of the geometric side of the θ-twisted
trace formula, Te(f,G, θ), is

Te(fH ,H)− 1
4

Te(fC0 ,C0) +
1
2

[Te(fC ,C)− 1
4

∑
[E:F ]=2

TE(fCE )].

The assumption that at the place v0 of F the components fv0 , fHv0 , . . .

vanish on the (θ)− singular set of G(Fv0), H(Fv0), . . . , and the assump-
tions that the components of f , fH , . . . at v = v1, v2, v3 have (θ-) orbital
integrals which vanish on the strongly-(θ-) regular non-(θ-) elliptic sets,
imply that the geometric sides of the (θ-twisted) trace formulae are equal
to the (θ-) elliptic parts. The geometric sides are equal to the spectral sides
− these are the trace formulae for each of the groups under consideration.

The spectral side Tsp(f,G, θ) of the θ-trace formula for G and f will
be equal to the (weighted) sum of the spectral sides of the trace formulae:

Tsp(fH ,H)− 1
4

Tsp(fC0 ,C0) +
1
2

[Tsp(fC ,C)− 1
4

∑
[E:F ]=2

TE(fCE )].

Here is a summarized expression of the form of the spectral side of the
θ-twisted trace formula for f on G(A) = PGL(4,A):

Tsp(f,G, θ) = I +
1
2
I(3,1) +

1
2
I(2,2) +

1
4
I(2,1,1) + I1,

where
I =

∑
π

trπ(f × θ),

π ranges over the (equivalence classes of) discrete spectrum representations
π of G(A) which are θ-invariant. Note that each of these π occurs with
multiplicity 1 in the discrete spectrum of L2(G(F )\G(A)).

Further,

I(3,1) =
∑
χ2=1

∑
τ' θτ

trM(α3α2α1, τ)(χIP(3,1)(τ, 1))(f × θ),

where τ ranges over the discrete spectrum representations of PGL(3,A)
which satisfy τ ' τθ; here θ(g) = J−1tg−1J and J is (δi,3−j), and χ is any
quadratic character of A×/F× or 1.
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Furthermore, I(2,2) is the sum of I ′(2,2),

1
2

∑
[E:F ]=2

∑
µ∈(A×

E
/A×E×)∧

trM(J, π(µ̃), π(µ̃))IP(2,2)(π(µ̃), π(µ̃); f × θ),

∑
[E:F ]=2

∑
µ̃1 6=µ̃2∈(A×

E
/A×E×)∧

trM(J, π(µ̃1), π(µ̃2))IP(2,2)(π(µ̃1), π(µ̃2); f × θ),

where

I ′(2,2) =
1
2

∑
τ

trM(J, τ, τ)IP(2,2)(τ, τ ; f × θ)

+
∑
τ1 6=τ2

trM(J, τ1, τ2)IP(2,2)(τ1, τ2; f × θ).

Here we put µ̃(z) = µ(z/z) for a character µ of A1
E/E

1; µ̃ is a character
of A×E/A

×E×; τ1 and τ2 (and τ) are discrete spectrum representations of
PGL(2,A) and the sum over τ1 6= τ2 is over the unordered pairs; the sum
over µ̃1 6= µ̃2 is over the unordered pairs too. Note that for representations
of PGL(2) we have τ̌ ' τ .

Next I(2,1,1) is the sum of

1
2

∑
χ2=1

∑
τ1

tr[M(J, (τ1, 1, 1))(χIP(2,1,1)(τ1, 1, 1))](f × θ)

and ∑
[E:F ]=2

∑
χ2=1

∑
µ0∈(A1

E
/E1)∧

X

where

X = tr
[
M(J, (π(µ̃0), χE , 1))IP(2,1,1)(χ(π(µ̃0), χ1, 1))

]
(f × θ).

Here χ is a quadratic character of A×/F×, τ1 is a discrete spectrum rep-
resentation of PGL(2,A), and χE signifies the character 6= 1 on A×/F×

which is trivial on NE/FA
×
E .
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Finally,

I1 =
1
8

∑
x2
i=1=

∏
χi

χi 6=χj

trM(J, 0)I(χχχ; f × θ)

+
1

4 · 8
∑
χ1 6=χ2

χ2
i=1

trM(J, 0)I((χ1, χ1, χ2, χ2); f × θ)

+
1

4!8

∑
χ2=1

trM(J, 0)I((χ, χ, χ, χ); f × θ)

+
1
6

∑
χ2=1

trM((321)J, 0)I((χ, χ, χ, χ); f × θ).

The twisted trace formula for f on G(A) is equal to a sum of trace
formulae listed below. First we have Tsp(fH ,H), which is

∑
πH

trπH(fH) +
1
4

∑
π2 of PGL(2,A)

tr⊗vRv · (1o π2v)(fHv)

+
1
4

∑
µ6=1=µ2

∑
{π2;µπ2=π2}

trMIPβ (µ, π2; fH)

+
1
4

∑
µ2=1

∑
π2 of PGL(2,A)

trMIPα(π2, µ; fH) + . . . .

The fourth contribution here involves a properly induced representation
IPα(π2, µ), which is irreducible. Consequently the intertwining opera-
tor M(sα+β , 0) is a scalar which can be taken outside the trace. Then
tr IPα(π2, µ; fH) is a product of local terms, and those local terms at
v = v1, v2, v3 are zero by the assumption that we made, that the orbital
integrals of fHvi vanish at the regular nonelliptic orbits. Similar observa-
tion applies to the third term in the spectral side of the trace formula of
H and fH (IPβ (µ, π2), µ 6= 1 = µ2), as well as to the contributions from
P0 that we did not write out here: they vanish for our test function fH .
Only the first two terms remain under our local assumption.

From this we subtract 1
4 of the spectral side Tsp(fC0 ,C0) of the trace
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formula of C0 and fC0 :

− 1
4

[ ∑
π1,π2

tr(π1 × π2)(fC0) +
1
4

∑
µ2

1=1,π2

trM(sα, 0)IPβ (µ1, π2; fC0)

+
1
4

∑
µ2

1=1,π2

trM(sβ , 0)IPα(π2, µ1; fC0)

+
1
16

∑
µ2

1=1=µ2
2

trM(sαsβ , 0)IP0(µ1, µ2; fC0)
]
.

The representations IPβ (µ1, π2) = I(µ1)× π2,

IPα(π2, µ1) = π2 × I(µ1), IP0(µ1, µ2) = I(µ1)× I(µ2)

are properly induced, where I(µ) denotes the representation of PGL(2,A)

induced from the character
(
a b

0 a−1

)
7→ µ(a) of the proper parabolic sub-

group. Since the group in question is PGL(2) they are irreducible, hence
the operator M(s, 0) is a scalar, can be taken in front of the trace (in fact
it is equal to 1), and the tr IP(τ ; fC0) are products of local factors, those
indexed by v = v1, v2, v3 are zero by our assumption on the vanishing of
the orbital integrals of the components fC0,vi on the regular elliptic set,
hence the only contribution is the first:

−1
4

∑
tr(π1 × π2)(fC0).

To this we add 1
2 of the spectral side of the stabilized trace formula for

C and fC ; it is stabilized by subtracting 1
4

∑
E TE(fCE ). To explain this

trace formula, recall that a representation of C(A) is an equivalence class
of representations π1 × π2 of GL(2,A)×GL(2,A) with ωπ1ωπ2 = 1 under
the equivalence relation π1 × π2 ' χπ1 × χ−1π2 for any character χ of
A
×/F×. Thus the terms

1
4

trM(sα, 0)IPβ (µ1, µ1, π2; f),

sum over the discrete spectrum representations π2 of GL(2,A) and charac-
ters µ1 of A×/F×, which appear in the trace formula for GL(2)×GL(2),
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would contribute to the trace formula of C precisely one term: I(µ1, µ1, π2)
would make a representation of C(A) precisely when µ2

1ωπ2 = 1, and
I(µ1, µ2, π2) ' I(1, 1, µ−1

1 π2) for any µ1 as a representation of C(A). For
any representation π2 of PGL(2,A) (thus the central character ωπ2 is triv-
ial), I(1, 1, π2) is irreducible. Hence the intertwining operator M is a
scalar, which can be evaluated to be equal to one by standard arguments.

Similarly, the terms

1
4

trM(sβ , 0)IPα(π2, µ1, µ1; f) (µ2
1ωπ2 = 1)

contribute just
1
4

tr IPα(π2, 1, 1; fC),

which is in fact equal to 1
4 tr IPβ (1, 1, π2; fC). Thus we have

+
1
2

[ ∑
π1×π2

tr(π1 × π2)(fC) + 2 · 1
4

∑
π2

tr IPβ (1, 1, π2; fC)

+
1
16

∑
µ2

1=µ2
2=1

trM(sαsβ , 0)IP0(1, µ1, µ2, µ1µ2; fC)− 1
4

∑
[E:F ]=2

TE(fCE )
]
.

The first sum ranges over all discrete spectrum representations

π1 × π2 (' χπ1 × χ−1π2, ωπ1ωπ2 = 1)

of C(A). The second sum ranges over all discrete spectrum representations
π2 of PGL(2,A).

As the group C = [GL(2)×GL(2)]′/Gm is a proper subgroup of [GL(2)×
GL(2)]/Gm, the induced representations IP0 might be reducible (I have not
checked this). Recall that a representation I(µ) of SL(2, F ), induced from

a character
(
a b

0 a−1

)
7→ µ(a) is reducible precisely when µ has order 2 (or

µ(x) = |x|±1), in which case I(µ), µ2 = 1 6= µ, is the direct sum of two
tempered constituents.

To derive lifting consequences from this identity of trace formulae –
or rather their spectral sides – we use a usual argument of “generalized
linear independence of characters”, which is based on the “fundamental



84 III. Trace Formulae

lemma”. Almost all components of a representation π = ⊗πv of G(A) are
unramified and for any spherical function fv on G(Fv) we have trπv(fv ×
θ) = f∨v (t(πv) × θ) where f∨v is the Satake transform of fv and t(πv) × θ
is the semisimple conjugacy class in Ĝ × θ parametrizing the unramified
representation πv.

A standard argument (see, e.g., [FK2]) shows that the spherical func-
tions provide a sufficiently large family to separate the classes t(πv) × θ.
The trace identity takes then the form where we fix a finite set V of places
of F including the archimedean places, and an irreducible unramified rep-
resentation πv of G(Fv) at each place v outside V , and then all sums
range only over the π (or I(τ)) whose component at v is πv, while the
sums of representations of the groups H(A), C(A), C0(A), . . . range over
the representations πH = ⊗πHv, πC = ⊗πCv, πC0 = ⊗πC0v, etc., whose
components at v outside V are unramified and satisfy

λ(t(πHv)) = t(πv), λ1(t(πCv)) = t(πv), λ(λ0(t(πC0,v))) = t(πv).

Note that by multiplicity one and rigidity theorem for discrete spectrum
representations for PGL(4,A), there exists at most one nonzero term in
all the sums in Tsp(f,G, θ). However, fixing t(πv) at all v /∈ V does not
fix the t(πCv) and at this stage it is not even clear that the number of πH ,
πC , πC0 which appear in the trace formulae is finite.

The terms themselves in the sum are replaced by a finite product of
local terms over the places v at V , taking the forms∏

v∈V
trπv(fv × θ), m(s, τ)

∏
v∈V

trR(τv)I(τv; fv × θ).

The intertwining operator M(s, τ) is of the form m(s, τ)
∏
v R(s, τv), where

m(s, τ) is a normalizing global scalar valued function of the inducing rep-
resentation τ on the Levi subgroup, and the R(s, τv) are local normalized
intertwining operators, normalized by the property that they map the nor-
malized (nonzero) Kv-fixed vector in the unramified representation to such
a vector.

We shall view the identity of spectral sides of trace formulae stated
above for matching test functions as stated for a choice of a finite set
V , unramified representations πv at each v outside V , and matching test
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functions fv, fHv, . . . at the places v in V , where the terms in the sum are
such finite products over v in V .

For the statement of the fundamental lemma in our context and its
proof we refer to [F5]. The existence of matching functions follows by a
general argument of Waldspurger [W3] from the fundamental lemma. The
statement (“generalized fundamental lemma”) that corresponding (via the
dual groups homomorphisms) spherical functions have matching orbital in-
tegrals, follows from the fundamental lemma (which deals only with unit
elements in the Hecke algebras of spherical functions, namely with those
functions which are supported and are constant on the standard maximal
compact subgroups) by a well-known local-global argument, which uses
the trace formula. We do not elaborate on this here, but simply use the
(“generalized”) fundamental lemma and the existence of matching func-
tions.



IV. LIFTING FROM SO(4) TO PGL(4)

1. From SO(4) to PGL(4)

We begin with the study of the lifting λ1, and employ the trace identity

Tsp(f,G, θ) = Tsp(fH ,H)− 1
4

Tsp(fC0 ,C0)

+
1
2

[Tsp(fC ,C)− 1
4

∑
[E:F ]=2

TE(fE)]

with data of a term in Tsp(fC ,C). We choose the components at v outside
V to be those of the trivial representation 1C = 12 × 12 of C(A). The
parameters

tC(12v × 12v) = [diag(q1/2
v , q−1/2

v )× diag(q1/2
v , q−1/2

v )]/{±I}

of its local components are mapped by λ1 to t = diag(qv, 1, 1, q−1
v ), thus

to the class of I3,1(13, 1), the unramified irreducible representation of
PGL(4, Fv) normalizedly induced from the trivial representation of the
standard parabolic subgroup of type (3,1). Consequently the only nonzero
contribution to Tsp(f,G, θ) is to 1

2I(3,1). Had there been a nonzero con-
tribution to Tsp(fH ,H), almost all of its local components would have the
parameters t, associated to πPGSp(2)(ν, 1) = L(ν × ν o ν−1), which is not
unitarizable by [ST], Theorem 4.4. However, all components of an auto-
morphic representation of PGSp(2,A) are unitarizable, hence there is no
contribution to Tsp(fH ,H).

Similarly there is no contribution to Tsp(fC0 ,C0), since had there been a
contribution its local components would have to be π2(ν, ν−1)×π2(1, 1) at
almost all places, but the irreducible π2(ν, ν−1) is not unitarizable. There
is no contribution to any of the TE(fE), since a contribution from a pair
µ1, µ2 of characters of CE(A) = A

×
E×A

×
E corresponds to a (cuspidal) repre-

sentation π2(µ1)×π2(µ2) of C(A). But we fixed the parameters of the triv-
ial representation 1C = 12 × 12 of C(A) = [PGL(2,A)× PGL(2,A)]′/A×.

86
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Moreover, since a discrete spectrum representation of PGL(2,A) with a
trivial component is necessarily trivial, the only contribution to Tsp(fC ,C)
is from 1C . We conclude that the trace formula reduces in our case to

∏
v∈V

tr I4v(13, 1; fv × θ) =
∏
v∈V

tr 1C,v(fC,v).(1)

Since each of the representations 1C,v is elliptic − its character is not
zero on the regular elliptic set in Cv = C(Fv) − we can choose three of
the functions fv so that fC,v not only has orbital integrals which vanish
on the regular nonelliptic set but moreover be supported on the regular
elliptic set of Cv, and tr 1C,v(fC,v) 6= 0. The equality (1) then implies that
tr I4v(13, 1; fv × θ) is a nonzero multiple of tr 1C,v(fC,v) for all matching
fv, fC,v.

1.1 Proposition. For every place v of F , and for all matching func-
tions fv and fC,v we have

tr I(3,1),v(13, 1; fv × θ) = tr 1C,v(fC,v).

Proof. Name the place v of the proposition v0. We apply the displayed
identity with a set V containing at least 3 places, but not the place v0,
and use fv such that fCv is supported on the regular elliptic set for 3
places v in V . We then apply the displayed identity with the set V ∪{v0},
and with the same functions fv, fCv for v ∈ V . Of course we use fv, fCv
with tr 1C,v(fC,v) 6= 0 for all v in V . Taking the quotient, the proposition
follows. �

Let us derive a character relation for the θ-elliptic θ-regular elements t
from the equality of the proposition, using the Weyl integration formula.

1.2 Proposition. We have the character identity

∆(tθ)χπ(trθ) = ικ(r)∆C(Nt)χπC (Nt) (π = I(1, 1), πC = 1C),

where tr denotes the element stably θ-conjugate but not θ-conjugate to t,
and r ranges over F×/NE/FE× in case I, E×3 /NE/E3E

× in case III, and
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κ denotes the nontrivial character of this group. Here ι is 2 in case I, 1 in
case III, and 0 in cases II and IV.

Proof. In local notations,

tr I(1, 1; f × θ) =
∑
T

1
[W θ(T )]

∫
T/T 1−θ

∆(tθ)χ(tθ) · Ff (t)dt

is equal to

tr 1C(fC) =
∑
TC

1
[W (TC)]

∫
TC

∆C(Nt)χπC (Nt) · FfC (Nt)d(Nt)

for test functions f and fC with matching orbital integrals. Matching
means that for θ-elliptic θ-regular t of type I or III, the (κ, θ)-orbital inte-
gral of f on G, denoted

Fκf (t) = Ff (t)− Ff (t′)

(here t′ is an element stably θ-conjugate but not θ-conjugate to the θ-
regular t; κ indicates the nontrivial character on the group of θ-conjugacy
classes within the stable θ-conjugacy class) is equal to the stable orbital
integral of fC on C at the norm Nt of t, denoted

F st
fC (Nt) = FfC (Nt) + FfC ((Nt)′),

where (Nt)′ denotes an element stably conjugate but not conjugate to Nt.
Implicitly we use the fact that the norm map N is onto. It is defined for
elliptic elements only in types I and III, as recalled in chapter II, section
5. The notation Ff (t) and FfC (t) for the (θ-) orbital integral multiplied
by the ∆-factor was introduced in Definition II.2.4.

To determine the group of conjugacy classes within the stable class of
TC = NT in C where T is of type I or III, we compute H−1(F,X∗(TC)).
It is the quotient of the lattice {X ∈ X∗(TC);NX = 0}

= {(x1, y1;x2, y2) mod(x, x; y, y);x, xi, y, yi ∈ Z, x1 + y1 ≡ x2 + y2(mod 2)}

by
〈X − τX; τ ∈ Gal(F/F )〉 = {(x,−x; y,−y);x, y ∈ Z},
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namely Z/2. Indeed, in case I the Galois group is Gal(E/F ) = 〈σ〉, with

σ(x1, y1;x2, y2) = (y1, x1; y2, x2).

In case III the Galois group is Gal(E/F ) = 〈σ, τ〉 with

σ(x1, y1;x2, y2) = (y1, x1; y2, x2) and τ(x1, y1;x2, y2) = (x1, y1; y2, x2).

We choose the function fC to be supported only on the regular elliptic
set, and stable, namely such that FfC (Nt) and FfC ((Nt)′) be equal. We
choose the function f on G to be supported on the θ-regular θ-elliptic set
and unstable, thus Ff (t) = −Ff (t′) if t, t′ are stably θ-conjugate but not
θ-conjugate. Thus we choose f, fC related on elements of type I by

Ff

( a1r 0 0 a2Dr

0 sb1 sDb2 0

0 sb2 sb1 0

a2r 0 0 a1r

)
= κE(rs)FfC (ααα,βββ),

ααα =
(
α1 α2D

α2 α1

)
if α = α1 + α2

√
D, where

α = a1b1 +Da2b2 + (b1a2 + a1b2)
√
D(= (a1 + a2

√
D)(b1 + b2

√
D))

and

β = a1b1 −Da2b2 + (b1a2 − a1b2)
√
D(= (a1 + a2

√
D)(b1 − b2

√
D)),

and similarly in case III. Taking f , fC with Ff (t) supported on a small
neighborhood of a θ-regular t0, the proposition and the Weyl integration
formulae imply − since the characters are locally constant functions on the
θ-regular set − the character identity

∆(tθ)χπ(trθ) =
[W θ(T )]
[W (TC)]

κ(r)∆C(Nt)χπC (Nt) (π = I(1, 1), πC = 1C),

where tr denotes the element stably θ-conjugate but not θ-conjugate to t,
and r ranges over F×/NE/FE× in case I, E×3 /NE/E3E

× in case III, and
κ denotes the nontrivial character of this group.
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Since the θ-conjugacy classes of type II and IV are not related by the
norm map to conjugacy classes in C, whatever the choice of f is on these
classes, the integral ∫

T/T 1−θ
∆(tθ)χπ(tθ)Ff (t)dt

is zero, hence χπ(tθ) vanishes on the θ-regular θ-conjugacy classes of type
II or IV.

It remains to compute the numbers [W θ(T )] and [W (TC)]. The torus
TC consists of elements((

c1 c2D

c2 c1

)
,
(
d1 d2D

d2 d1

))
, c21 −Dc22 = d2

1 −Dd2
2 modF×2.

Its normalizer (modulo centralizer) in C(F ) is generated by

(diag(i,−i), I), (I,diag(i,−i)),

where i ∈ F× with i2 = −1. Hence [W (TC)] is 4.
The θ-normalizer modulo the θ-centralizer of the torus T is generated

by
(
w 0

0 w

)
, w =

(
0 1

1 0

)
, and diag(i, 1, 1,−i) in case I. Hence [W θ(T )] is

8, and [W θ(T )]/[W (TC)] = 2. In case III the θ-normalizer modulo the θ-
centralizer is Z/2× Z/2, generated by the matrices diag(−1,−1, 1, 1) and
diag(−1, 1,−1, 1), hence [W θ(T )]/[W (TC)] = 1. �

Remarks. (1) The computation of the twisted character χI(1,1)(trθ) is
reached by purely local means in the paper [FZ] with D. Zinoviev.
(2) The propositions remain true when the local field Fv1 is archimedean.
Indeed, we choose the global field F to be Q or an imaginary quadratic
extension thereof, and apply the global identity (1) once with a set V
consisting of 3 nonarchimedean places (and fv, fCv supported on the (θ-)
elliptic set for v ∈ V ), and once with V ∪ {v0}. In the real case, where
Fv0 = R, the only θ-elliptic elements are of type I, and we obtain the
character relation

∆(tθ)χI(1,1)(trθ) = 2κ(r)∆C(Nt)χ1C (Nt), κ : R×/R×+
∼→{±1}.

In the complex case there are no θ-elliptic elements, and all θ-regular
elements are θ-conjugate to elements in the diagonal torus T . For t =
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diag(a, b, c, d) and Nt = (diag(ab, cd), diag(ac, bd)), noting that W θ(T ) =
D4 has cardinality 8, and W (TC) is Z/2 × Z/2, generated by (w, I) and

(I, w), w =
(

0 −1

1 0

)
, of cardinality 4, we have

∆(tθ)χπ(tθ) = 2∆C(Nt)χπC (Nt),

when Fv0 = C, π = I(13, 1) and πC = 1C , or F is any local field, πC =
I(µ1, µ

−1
1 ) × I(µ2, µ

−1
2 ) and π = λ1(πC) = I(µ1µ2, µ1/µ2, µ2/µ1, 1/µ1µ2)

are induced.

1.3 Definition. The admissible representation πC = π1 × π2 of

C = [GL(2, F )×GL(2, F )]′/F×

lifts to the admissible representation π of G = PGL(4, F ), F local, and we
write π = λ1(πC), if for all matching functions f , fC we have

trπ(f × θ) = trπC(fC).

Equivalently we have the character relations χπ(tθ) = 0 for θ-regular
elements without norm in C (type II and IV for θ-elliptic elements, as well
as non-θ-elliptic elements of type (2), (3) of [F5], p. 15 and p. 9, where
T ∗ = {diag(a, b, σa, σb); a, b ∈ E×}), and

∆(tθ)χπ(trθ) = ([W θ(T )]/[WC(NT )])κ(r)∆C(Nt)χπC (Nt)

for θ-regular t in G with norm in C, thus of type I and III for θ-elliptic t,
for split t and for t of type (1) and (1′) of [F5], p. 15 (and p. 9).

Type (1) has T ∗ = {diag(a, σa, b, σb); a, b ∈ E×}, type (1′) has T ∗ =
{diag(a, b, σb, σa); a, b ∈ E×}, [E : F ] = 2. The norms are

(diag(aσa, bσb),diag(ab, σaσb)) and (diag(ab, σaσb),diag(aσa, bσb)),

in cases (1) and (1′), and stable θ-conjugacy coincides with θ-conjugacy
in cases (1), (1′) and the split elements. Thus κ = 1 and r = 1 in these
cases. In the case of split t, W θ(T ) = D4 has 8 elements while WC(NT ) =
Z/2×Z/2 has 4. For t of type (1), W θ(T ∗) consists of 1, (12)(34), (13)(24),
(14)(23) (W θ(T ) is generated by diag(1,−1, 1,−1) and antidiag (I,I)), and
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WC(NT ) = Z/2 × Z/2 too, generated by
( ( 0 −1

1 0

)
, I
)

and (diag(−1, 1),

diag(−1, 1)). In type (1′) W θ(T ) is generated by diag(−1,−1, 1, 1) and

diag(w,w), and WC(NT ) by (diag(−1, 1), diag(−1, 1)) and
(
I,
(

0 −1

1 0

) )
.

Then in cases (1) and (1′) we have [W θ(T )]/[WC(NT )] = 1, and = 2 for
split T or T of type I. In type III, W θ(T ) is generated by diag(1,−1, 1,−1)
and diag(−I, I) (which act on diag(α, τα, στα, σα) in T ∗ as (43)(21) and
(32)(41)), and WC(NT ) by (diag(i,−i), I) and (I,diag(i,−i)), hence the
quotient [W θ(T )]/[WC(NT )] is 1 in type III.

Given a representation πC = π1×π2 of C = [GL(2, F )×GL(2, F )]′/F×

– thus the central characters ω1, ω2 of π1, π2 satisfy ω1ω2 = 1 – and
characters χ1, χ2 of F× with χ2

1χ
2
2 = 1, F local, we write χ1π1 × χ2π2

for the representation (g1, g2) 7→ (π1(g1)⊗ π2(g2))χ1(g1)χ2(g2); note that
χ1(g1)χ2(g2) = χ1χ2(g1) = χ1χ2(g2) since det g1 = det g2. The character
relation implies

1.4 Proposition. If π1 × π2 lifts to a representation π of the group
G = PGL(4, F ), then χ1π1 × χ2π2 lifts to χ1χ2π.

Proof. The characters χ1, χ2 depend only on the determinant. As the
norm map is

N(diag(a, b, c, d)) = (diag(ab, cd),diag(ac, bd)),

we have

(χ1χ2)(abcd) = χ1(ab · cd)χ2(ac · bd). �

Denote by sp2 or St2 the special (= Steinberg) square integrable subrep-
resentation of the induced representation I(ν1/2, ν−1/2) of PGL(2, F ), and
by St3 the Steinberg square integrable subrepresentation of the induced
representation I(ν, 1, ν−1) of PGL(3, F ). Put also sp2(χ) = χ ⊗ sp2 for a
character χ of F×/F×2.

Since χI(ν1/2,ν−1/2) = χsp2
+ χ12 vanishes on the regular elliptic set of

PGL(2, F ), for a function h on the regular elliptic set of PGL(2, F ) we
have tr sp2(h) = − tr 12(h). Hence for a function fC on C, supported on
the regular elliptic set of C, we have

tr(12 × 12)(fC) = − tr(sp2×12)(fC)
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= − tr(12 × sp2)(fC) = tr(sp2× sp2)(fC).

Let π2 denote an irreducible unitarizable representation of PGL(2, F ).
Let J(ν1/2π2, ν

−1/2π2) be the unique (“Langlands”) quotient of the in-
duced representation I = I(ν1/2π2, ν

−1/2π2) of PGL(4, F ). It is unram-
ified if π2 is, in fact it is the unique unramified constituent of I if I is
unramified.

1.5 Proposition. The representations πC,v0 = πv0 × 1v0 and 1v0 ×
πv0 of Cv0 lift via λ1 to J(ν1/2

v0 πv0 , ν
−1/2
v0 πv0) for every square integrable

representation πv0 of PGL(2, Fv0).

Proof. We choose a number field F whose completion at a place
v0 is our nonarchimedean field Fv0 , and 3 other nonarchimedean places:
v1, v2, v3. Fix a cuspidal representation πv1 of PGL(2, Fv1), and let
πv2 and πv3 be the special representations sp2 at v2 and v3. Using the
trace formula for PGL(2,A) one constructs a cuspidal representation π

whose components at v1, v2, v3 are our πvi , which is unramified outside
V = {v1, v2, v3,∞}, and a cuspidal representation π′ whose components
at v in V ′ = {v0, v1, v2, v3,∞} are our πv, which is unramified outside V ′.

We use the trace identity with the sets V (resp. V ′), such that π × 12

and 12×π (resp. π′×12 and 12×π′) are the only contributions to the trace
formula of C(A). We choose test functions f (resp. f ′) such that their
components at v2, v3 are supported on the θ-regular elliptic set, and such
that the stable θ-orbital integral of fv2 and fv3 are zero. This guarantees
that in the trace identity there are no contributions from H.

Now in the trace identity, for v outside V we fix the class

tC,v(12 × π2v) = [diag(q1/2
v , q−1/2

v )× diag(µ•2v, µ
•−1
2v )]/{C×},

where π2v is the unramified component of I(µ2v, µ
−1
2v ), and µ•2v = µ2v(πππv).

This class is mapped by λ1 to

tv = diag(q1/2
v µ•2v, q

1/2
v µ•−1

2v , q−1/2
v µ•2v, q

−1/2
v µ•−1

2v ),

which is the parameter of J(ν1/2
v π2v, ν

−1/2
v π2v).

Thus the unique contribution to the trace formula of G = PGL(4, F ) is
the discrete spectrum noncuspidal representation

J(ν1/2π, ν−1/2π).
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Since the trace formula for C appears in our identity with coefficient 1
2 , and

both 1× π and π × 1 make equal contribution, we conclude the equalities

∏
v

tr J(ν1/2
v πv, ν

−1/2
v πv; fv × θ) =

∏
v

tr(1v × πv)(fC,v),

where the products range over V , and over V ′. Since we can choose fC,v
for which the terms on the right are nonzero, dividing the equality for V ′

by that for V , and noting that fv0 is arbitrary, the proposition follows. �

2. Symmetric Square

The diagonal case of the lifting λ1 : πC = π1 × π2 7→ π, that is when
π̌1 = π2, coincides with the symmetric square lifting from SL(2) to PGL(3)
established in [F3]. More precisely we shall use here the results of [F3] to
relate terms in our identity of trace formulae, and in particular obtain the
(new) character relation λ1(π1 × π̌1) = I(3,1)(Sym2 π1, 1) for admissible
representations π1. The global and local results of [F3] are considerably
stronger than what we need here. Not only that we work in [F3] with arbi-
trary cuspidal representations π1, and put no local restrictions (that 3 local
components π1v of π1v be elliptic) as here, but more significantly, [F3] lifts
representations of SL(2) – rather than of GL(2). Consequently [F3] proves
in particular multiplicity one theorem for discrete spectrum representations
of SL(2,A) as well as the rigidity theorem for packets of such representa-
tions, as well as it characterizes all representations of PGL(3,A) which are
invariant under transpose-inverse as lifts from SL(2,A) (or PGL(2,A)).

For our purposes here we simply observe that the restriction of a rep-
resentation of GL(2,A) (resp. of GL(2, F ), F local) to SL(2,A) (resp.
SL(2, F )) defines a packet of representations on SL(2,A) (resp. SL(2, F )).
At almost all places of a number field, the unramified components of
π = ⊗πv satisfy λ1(πv × π̌v) = I(3,1)(Sym2 πv, 1), where if πv = I(av, bv)
then Sym2(av, bv) = (av/bv, 1, bv/av).

Here is a summary of the symmetric square case in our context of
PGL(4).
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2.1 Proposition. (1) For each cuspidal representation π2 of GL(2,A)
there exists an automorphic representation π = Sym2(π2) of PGL(3,A)
which is invariant under the transpose-inverse involution θ3 such that
λ1(π2 × π̌2) = I(3,1)(Sym2(π2), 1).
(2) If π2 is of the form π2(µ), related to a character µ : A×E/E

× → C
×

where E/F is a quadratic extension of number fields, then Sym2(π2) is
I(2,1)(π2(µ/µ), χE), where µ(x) = µ(x), x 7→ x denotes the action of
the nontrivial automorphism of E/F and χE is the quadratic character
of A×/F× trivial on the norm subgroup NE/FA×E.
(3) If π2 is cuspidal but not of the form π2(µ), then Sym2(π2) is cuspidal.
(4) If Sym2(π2) = Sym2(π′2) then π′2 = χπ2 for some character χ of
A
×/F×.

(5) Each θ3-invariant cuspidal π3 is of the form Sym2(π2).
The analogous results hold locally. For each admissible irreducible rep-

resentation π2v of GL(2, Fv) there is an irreducible representation π3v =
Sym2(π2v) of PGL(3, Fv), invariant under the transpose-inverse involution
θ3, such that the character relation λ1(π2v × π̌2v) = I(3,1)(Sym2(π2v), 1)
holds. If Sym2(π′2v) = Sym2(π2v) then π′2v = χvπ2v for some character
χv of F×v . Each θ3-invariant cuspidal π3v is of the form Sym2(π2v). As
Sym2(sp2) = St3, we have λ1(sp2× sp2) = I(3,1)(St3, 1).

Proof. The global claims (1)-(5) are consequences of the results of
[F3]. The new claim here is the character relation. Note that the character
relation has already been proven by direct computation for π2v which is an
induced representation, as well as for the trivial representation π2v = 12v.
Thus we need to prove the character relation for square integrable π2v.

We fix a global field F which is Q if Fv = R or totally imaginary if
Fv is nonarchimedean , whose completion at a place v0 is our Fv, cuspidal
representations π2v1 , π2v2 , and the special representation π2v3 of GL(2, Fv)
at the nonarchimedean places v = v1, v2, v3 of F , and construct a cuspidal
representation π2 whose components at vi (0 ≤ i ≤ 3) are those specified,
while those outside the set V consisting of the archimedean places and vi
(0 ≤ i ≤ 3), are unramified.

We apply the trace formula identity with the set V and a contribution
πC = π2 × π̌2 to the trace formula identity. We take the test function fv3

to be supported on the θ-elliptic regular set, such that trπC,v3(fC,v3) 6= 0
and with fH,v3 = 0 (thus the stable θ-orbital integrals of fv3 are zero).
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This choice is possible by the character identity tr(12v × 12v)(fCv) =
tr I(3,1)(13v, 1v)(fv × θ). Consequently we get a trace identity with no
contributions from the trace formula of H, while the contribution to the θ-
twisted trace formula ofG is only I(3,1)(Sym2 π2, 1), by the rigidity theorem
for GL(4). Note that the coefficient of Tsp(fC ,C) is 1

2 , and so is the
coefficient of the term I(3,1) in Tsp(f,G, θ).

Denoting by Vf the set {v0, v1, v2, v3}, we conclude, for all matching
functions fv0 and fC,v0 , the identity

m(α3α2α1, τ)
∏
v∈Vf

tr I(3,1)(τv, 1)(fv × θ) =
∏
v∈Vf

trπC,v(fC,v).

Here we wrote the intertwining operator M(α3α2α1, τ), τ = Sym2(π2)
where πC = π2 × π̌2, as a product of local factors R(α3α2α1, τv) over
all places v and a global normalizing factor m(π2) = m(α3α2α1, τ), and
incorporated the local factor in the definition of the operator θ, thus
tr I(3,1)(τv, 1)(fv × θ) stands for

trR(α3α2α1, τv)I(3,1)(τv, 1)(fv × θ).

Note that R(τv) = R(α3α2α1, τv) is normalized by the property that
R(τv)πv(θ) fixes the Kv-fixed vector when πv = I(3,1)(τv, 1) is unramified.

We now repeat our argument with the set V ′f = Vf −{v0} and construct
a cuspidal π′2 unramified outside V ′f whose components at v1, v2, v3 are as
above (we are assuming that v0 is nonarchimedean). Dividing the identity
for Vf by the new identity for V ′f we get

m(α3α2α1, τ)
m(α3α2α1, τ ′)

tr I(3,1)(τv0 , 1)(fv0 × θ) = trπC,v0(fC,v0).

The constant m(α3α2α1, τ)/m(α3α2α1, τ
′) is independent of the global

representations τ, τ ′; it depends only on the local representation π2v0 , and
will be denoted m(π2v0). It is equal to 1 for π2v = 12v, the trivial rep-
resentation, by Proposition 1.1, hence also for the special representation
sp2v.

Hence m(π2) =
∏
m(π2v), product only over the cuspidal components

π2v of π2, and we replace R(τv) by m(π2v)R(τv) when π2v is cuspidal to
obtain the character relation as claimed. �



3. Induced Case 97

3. Induced Case

We then turn to the study of the λ1-lifting of π1 × π2, ω1ω2 = 1 (ωi is the
central character of πi), when π2 is not the contragredient π̌1 of π1. Note
that π̌1(A) = π1(Ǎ) where Ǎ = wtA−1w. This π̌1 is equivalent to ω−1

1 π1.

3.1 Proposition. Let π2 be an admissible representation of GL(2, F )
(F is a local field) with central character ω. Let π1 = I(µ1, µ

′
1) be an

induced representation of GL(2, F ) with µ1µ
′
1ω = 1. Then λ1(I2(µ1, µ

′
1)×

π2) = π, where π = I4(µ1π2, µ
′
1π2) is the representation of PGL(4, F )

induced from the parabolic subgroup of type (2, 2) as indicated.

Proof. Since λ1(µπ1 × µ−1π2) = λ1(π1 × π2), it suffices to show that
λ1(I2(1, ω−1)× π2) = I4(π2, π̌2), as the contragredient π̌2 of π2 is ω−1π2.
We then compute the θ-twisted character of the induced representation
π = π4 = I4(π2, π̌2). Put ρ = π2 ⊗ π̌2. Write

ρ(diag(A,C)) for ρ(A,C) = π2(A)⊗ π̌2(C).

Its space consists of φ : G→ ρ with

φ(nmk) = δ1/2(m)(π2 × π̌2)(m)φ(k),

m = diag(A,C) with A,C in GL(2, F ) and n is a unipotent matrix (upper
triangular, type (2,2)),

δ(m) = |det(Ad(m)|LieN)| = |det(AC−1)|2,

and π acts by right translation.
Note that π = π4 is θ-invariant. Namely there exists an intertwining op-

erator s′ : π → π with s′π(g) = π(θg)s′. Fix s′ to be (sφ)(g) = ρ(θ)(φ(θg)).
Here ρ(θ) intertwines π2 ⊗ π̌2 with π̌2 ⊗ π2 by ρ(θ)(ξ ⊗ ξ̌) = ξ̌ ⊗ ξ and

ρ(θ)(π2(A)⊗ π̌2(C)) = (π̌2(C)⊗ π2(A))ρ(θ).

Note that s is well defined. When π is irreducible (this is the case unless
π2 = ν1/2π′2, π′2 ' π̌′2), s′2 is a scalar by Schur’s lemma, so we can multiply
s′ by a scalar to assume s′2 = I, and so s′ is unique up to a sign. It is
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easy to see that our choice of s′ = s here is the same as our usual choice of
π(θ), preserving Whittaker models or a K-fixed vector if π2 is unramified.

Extend ρ, by ρ(θ) = s, to a representation of [GL(2, F )×GL(2, F )]o〈θ〉.
Note that tr ρ(θ)(π2(A)⊗ π̌2(C))

= tr[π2(A)⊗ 1 · ρ(θ) · (1⊗ π̌2(C))] = tr(π2(AČ)⊗ 1)ρ(θ).

To compute tr ρ(θ)(π2(A)⊗1) choose an orthogonal basis vi for π2, and
a dual basis v̌i for π̌2. (It is standard to “smooth” our argument on using
test functions). Then π2(A) ⊗ 1 takes vi ⊗ v̌j to π2(A)vi ⊗ v̌j , and ρ(θ)
takes π2(A)vi ⊗ v̌j to v̌j ⊗ π2(A)vi. The trace tr ρ(θ)(π2(A)⊗ 1) is then∑

ij

〈v̌j ⊗ π2(A)vi, vi ⊗ v̌j〉 =
∑
ij

〈v̌j , vi〉〈π2(A)vi, v̌j〉

=
∑
i

〈π2(A)vi, v̌i〉 = trπ2(A).

As usual, (π(θf dg)φ)(h) is

=
∫
G

f(g)ρ(θ)(φ(θ(h)g))dg =
∫
G

f(θ(h)−1g)ρ(θ)(φ(g))dg

=
∫∫∫

f(θ(h)−1nmk)δ1/2(m)(π2 × π̌2)(θm)φ(k)δ−1(m)dn dm dk.

Write m = diag(A,C) as θ(m−1
1 )m0m1 with m1 = diag(I, C) and m0 =

diag(A′, I), where A′ = wtC−1wA. We have tr(π2 × π̌2)(θ diag(A,C)) =
trπ2(AwtC−1w). Put

M0 = {diag(X, I);X ∈ GL(2, F )}, M1 = {diag(I,X);X ∈ GL(2, F )}

as well as for the images of these groups in PGL(4, F ). Note that δ(m) =
δ(m0). Then, putting m = θ(m−1

1 )m0m1, m0 = diag(A, I), we have

trπ(θf dg) =
∫∫∫

f(θ(k−1)n1mk)δ−1/2(m) trπ2(A)dn1dm dk.

Change variables n1 7→ n, where n1 = nmθ(n−1)m−1. This has the
Jacobian |det(1−Ad(mθ))|LieN |. Replace n by θ(n)−1 and note that

Ad(θ(m−1
1 )m0m1 · θ) = Ad(θ(m−1

1 )) Ad(m0θ) Ad(θ(m1)).
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We obtain trπ(θf dg) =
∫
M0

∆M (m0θ) trπ2(A)Xdm0, where

X =
∫
K

∫
N

∫
M1

f(θ(k−1n−1m−1
1 )m0m1nk)dndk,

and
∆M (m0θ) = δ−1/2(m0)|det(1−Ad(m0θ))|Lie(N)|.

Note that if m0 = diag(A, I) and A has eigenvalues a, b, then δ(m0) =
|ab|2, and

∆M (m0θ) = |(1− a)(1− b)(1− ab)/ab|

has the same value at A and at wtA−1w (or A−1). Writing the trace again
as

trπ(θfdg) =
∫
M0

∆M (m0θ)χπ2(A)
∫
M0\G

f(θ(g−1)m0g)dġ dm0,

m0 = diag(A, I), we use the fact that the θ-normalizer of M in G is
generated by M and J . Since

θ(J−1)
(
A 0

0 I

)
J =

(
I 0

0 wAw

)
= θ(m−1

1 )m0m1,

m1 = diag(I, wAw), m0 = diag(tA−1, I),

and since χπ2(tA−1) = χπ2(detA−1 · A) = ω−1(detA)χπ2(A), we finally
conclude that trπ(θf dg) is

=
∫
M0

1
2

∆M (m0θ)(1 + ω−1(detA))χπ2(A)
∫
M0\G

f(θ(g−1)m0g)dġ dm0.

On the other hand, using the 2-fold submersion

Mθ- reg ×M\G→ Gθ- reg, (m, g) 7→ θ(g−1)mg,

whose Jacobian is

|det(1−Ad(mθ))|Lie(G/M)| = δ−1(m)|det(1−Ad(mθ))|LieN |2,

and noting that the θ-Weyl group Wθ(M) = {g ∈ G; θ(g)−1Mg = M}/M
is represented by I and J , if g 7→ χπ(gθ) denotes the θ-character of π then
we have

trπ(θf dg) =
∫
G

f(g)χπ(gθ)dg =
∫
M

1
2
δ−1(m)|det(1−Ad(mθ))|LieN |2
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·χπ(mθ)
∫
M\G

f(θ(g)−1mg)dġ dm.

On writing m = θ(m1)−1m0m1 this becomes

=
∫
M0

1
2

∆M (m0θ)2χπ(m0θ)
∫
M0\G

f(θ(g)−1m0g)dġ dm0.

We conclude that

∆M (m0θ)χπ(m0θ) = (1 + ω−1(detA))χπ2(A), m0 = diag(A, I),

and that χπ(gθ) is supported on the set θ(g−1)m0g,m0 ∈ M0, g ∈ G. In
particular it vanishes on the θ-elliptic stable conjugacy classes of types I,
II, III, IV.

Now

∆M (m0θ) =
∆(m0θ)

∆C(Nm0)
∆2(diag(detA, 1)),

as

∆(m0θ)/∆C(Nm0) = | (1− a)2(1− b)2

ab
|1/2

if A has eigenvalues a and b, and ∆2 is the usual Jacobian of GL(2) :

∆2(A) = | (a−b)
2

ab |
1/2. We rewrite our conclusion as

∆(m0θ)χπ(m0θ) = ∆C(Nm0)χI(1,ω−1)(diag(detA, 1))χπ2(A)

= ∆C(Nm0)χ(I(1, ω−1)× π2)(Nm0)

where N(diag(A, I)) =
((

detA 0

0 1

)
, A
)

, since

χI(µ1,µ2)(diag(a, b)) = (µ1(µ)µ2(b) + µ1(b)µ2(a))/∆2(diag(a, b))

(and it is zero on the elliptic element in GL(2)). But this is precisely the
statement that I(1, ω−1)× π2 λ1-lifts to π = I(π2, π̌2). �

Remark. The character relation implies that χπ vanishes on the θ-
elliptic conjugacy classes.
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3.2 Corollary. Let F be a local field. For every cuspidal representa-
tion π2 of PGL(2, F ) the representations πC = π2 × sp2 and sp2×π2 of C
λ1-lift to the subrepresentation

S(ν1/2π2, ν
−1/2π2)(= ker[I(ν1/2π2, ν

−1/2π2)→ J(ν1/2π2, ν
−1/2π2)])

of the fully induced I(ν1/2π2, ν
−1/2π2).

Proof. To simplify the notations we write simply 0→ S → I → J → 0
omitting the (ν1/2π2, ν

−1/2π2). Since λ1(I(ν1/2, ν−1/2) × π2) = I and
λ1(12×π2) = J , and since the composition series of I(ν1/2, ν−1/2) consists
of 12 and sp2, while the composition series of I consists of J and S, the
claim of the corollary follows from the additivity of the character of a
representation: χπ1+π2 = χπ1 + χπ2 . �

4. Cuspidal Case

It remains to λ1-lift cuspidal representations of C.

4.1 Proposition. Let F be a local field. Let π′2 and π′′2 be (irreducible)
cuspidal representations of GL(2, F ) with central characters ω′, ω′′ with
ω′ω′′ = 1 so that πC = π′2 × π′′2 is a cuspidal representation of C. Then
λ1(π′2 × π′′2 ) exists as an irreducible θ-invariant representation π of G.

This π is cuspidal unless (1) π′′2 = π̌′2χ, χ2 = 1, where

λ1(π′2 × π̌′2χ) = χI(3,1)(Sym2 π′2, 1),

or (2) there is a quadratic extension E of F and characters µ1 and µ2 of
E× with µ1µ2|F ′× = 1 such that π′2 = πE(µ1), π′′2 = πE(µ2), in which
case

λ1(πE(µ1)× πE(µ2)) = I(2,2)(πE(µ1µ2), πE(µ1µ2)).

In particular, if π′2 and π′′2 are monomial but not associated to the same
quadratic extension, then λ1(π′2 × π′′2 ) is cuspidal.

When F is a global field and π′2, π′′2 are automorphic cuspidal repre-
sentations of GL(2,A) (with ω′ω′′ = 1) the analogous global results hold.
In particular λ1(π′2 × π′′2 ) exists as an irreducible automorphic θ-invariant



102 IV. Lifting from SO(4) to PGL(4)

representation π of G(A), which is cuspidal except at the indicated cases.
In this global case we require that at least at 3 places the components of
π′2, π′′2 be square integrable.

Proof. We denote the local fields of the proposition by F ′, E′. Sup-
pose F ′ is nonarchimedean. Choose a totally imaginary global field F

whose completion at a place v0 is our F ′. Fix four nonarchimedean places
v1, v2, v3, v4 (6= v0) of F , and cuspidal representations π′vi (i = 1, 2, 3, 4)
of PGL(2, Fvi). Let V be the set of places of F consisting of vi (0 ≤ i ≤ 4)
and the archimedean places. Construct cuspidal representations π1, π2 of
GL(2,A) (with ω1ω2 = 1) which are unramified outside V whose compo-
nents at v0 are π′2, π

′′
2 of the proposition, at v1 are sp2,v1

(resp. π′v1
), and

at v2, v3, v4 are π′v2
, π′v3

, π′v4
(resp. sp2,v2

, sp2,v3
, sp2,v4

).
Set up the trace formula identity with the set V such that π1×π2 (and

π2 × π1) contribute to the side of C. Take the components fC,vi (i = 1, 2,
3) to have orbital integrals equal zero outside the elliptic set. Consequently
we may and do choose the matching fvi (i = 1, 2, 3) to have zero stable
θ-orbital integrals. Hence fH,vi (i = 1, 2, 3) are zero, and there is no
contribution to the trace formulae of H and C0.

We need to show that there is a contribution π to the θ-twisted trace
formula of G. If there is then it is unique, by rigidity theorem for automor-
phic representations on GL(n), and it is cuspidal, since λ1(sp2,v4

×π′v4
) =

S(ν1/2
v4 π′v4

, ν
−1/2
v4 π′v4

) is not induced from any proper parabolic subgroup.
We may apply “generalized linear independence” of characters at the

archimedean places of F . There the completion is the complex numbers.
Hence the local components are induced and the local lifting known. All
matching functions fv, fCv are at our disposal. There remain in our trace
identity only products over the set Vf = {vi; 0 ≤ i ≤ 4} of finite places in
V .

Note that both π1 × π2 and π2 × π1 contribute to the side of C, which
has coefficient 1

2 , while the coefficient of the cuspidal contribution to the
θ-twisted trace formula of G is 1. Choosing the fC,vi(0 ≤ i ≤ 4) to be
pseudo coefficients of the πC,vi we obtain on the side of C a sum of 1’s.
We conclude that the side of G is also nonzero, hence π exists.

Next we make this choice only at the places vi (i = 1, 2, 3, 4). Observe
that trπC,vi(fC,vi) is 1, and trπvi(fvi) = 1, since for i = 1, 2, 3, 4 the
component πvi of π is S(ν1/2

vi π
′
vi , ν

−1/2
vi π′vi), which is the λ1-lift of πC,vi =
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π′vi × sp2,vi . In fact the character relation λ1(π′vi × sp2,vi) = Svi on the
θ-elliptic set alone, and the orthogonality relations for twisted characters
(used below), would imply that the component πvi is Svi or Jvi . Had
the component πvi been Jvi for an odd number of places vi (1 ≤ i ≤ 4)
we would get a coefficient −1, and a contradiction. We obtain, for all
matching functions fv0 and fC,v0 , the identity (v = v0)

trπv(fv × θ) = nv trπCv(fCv) +
∑

n(π′
Cv

)>0

n(π′Cv) trπ′C,v(fCv).(1)

Here π′C,v are representations of Cv not equivalent to πC,v = π′2 × π′′2
of the proposition, under the equivalence relation generated by π′ × π′′ '
π′′×π′ and π′χ×π′′χ−1 ' π′×π′′. The coefficient nv counts the number of
equivalence classes of global automorphic cuspidal representations whose
components at each w are in the equivalence class of π1w×π2w (where π1,
π2 are our global representations).

We claim that all the π′Cv which appear on the right are cuspidal. For
this we use the central exponents of the representations which appear in
our identity. Since all of the n(π′Cv) are nonnegative real numbers, a famil-
iar ([FK1], [F4;II]) argument of linear independence of central exponents,
based on a suitable choice of the functions fC,v, implies that if one of
the π′C,v which appears with n(π′Cv) > 0 has nonzero central exponents –
namely it is not cuspidal – then πv must have matching θ-twisted central
exponents. This means that πv is the λ1-lift of some π′2 × π′′2 where π′2 of
π′′2 are not cuspidal, since we already know to λ1-lift π′2 × π′′2 where π′2 is
fully induced or special. Linear independence of characters (after replacing
trπv(fv × θ) on the left by tr(π′2 × π′′2 )(fCv)) gives a contradiction which
implies that all the π′Cv which appear on the right are cuspidal, as claimed.

Note that the identity exists for each local cuspidal πC,v.
We claim that πv is uniquely determined by πC,v, and that the identity

defines a partition of the cuspidal representations of Cv. For this we use the
orthogonality relations for characters of elliptic representations of Kazh-
dan [K2] in its twisted form [F1;II]. These assert the existence of pseudo
coefficients: if fv is a pseudo coefficient of a θ-elliptic π′v inequivalent to
πv then trπv(fv × θ) = 0; this is 6= 0 if π′v = πv, and = 1 if π′v = πv is
cuspidal. Now let fv be a pseudo coefficient of π′v inequivalent to πv for
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which we have the identity (sum over the π′′Cv with n(π′′Cv) > 0)

trπ′v(f
′
v) =

∑
n(π′′C,v) trπ′′C,v(f ′C,v),

where f ′Cv is the matching function on Cv. We then have that the stable
orbital integrals of f ′C,v are equal to

∑
n(π′′Cv)χπ′′C,v on the elliptic set of

Cv. Evaluating our identity (1) at f ′v and f ′C,v, we note that only finite
number of terms in (1) can be nonzero. Indeed, π′C,v of (1) is a component
of an automorphic representation of C(A) which is unramified outside V ,
its archimedean components (hence their infinitesimal characters) lie in a
finite set, and the ramification of the remaining components is bounded
(fixed at v1, v2, v3, v4; bounded by fv0 – which is biinvariant under some
small compact open subgroup – at v0). Hence 0 = trπv(fv × θ) is

= nv〈πCv,
∑

n(π′′Cv)π
′′
Cv〉+

∑
n(π′

Cv
)>0

n(π′Cv)〈π′Cv,
∑

n(π′′Cv)π
′′
Cv〉.

The inner products 〈πCv, π′′Cv〉, or 〈χπCv , χπ′′Cv 〉, are nonnegative integers,
hence no π′′Cv can equal πCv or π′Cv, as claimed.

Given a cuspidal πCv we now denote the πv specified by (1) by λ′′1(πCv).
We claim that

λ′′1(πE(µ1)× πE(µ2)) = I(2,2)(πE(µ1µ2), πE(µ1µ2)),

where µ1, µ2 are characters of the local quadratic extension E′/F ′ of the
proposition, with µ1 6= µ1, µ2 6= µ2 and µ1µ2|F ′× = 1. As in the beginning
of this proof, we choose a totally imaginary global quadratic extension E/F
such that at the place v0 of F the completion Ev0/Fv0 is our E′/F ′.

Then we choose global characters µ1, µ2 of A×E/E
× with our local com-

ponents at v0, with µ1µ2|A× = 1, which are unramified outside a set V
consisting of the archimedean places of F , v0 and three finite places v1, v2,
v3 (6= v0) which do not split in E, where the components are taken to sat-
isfy µivj 6= µivj (bar indicates the action of the nontrivial automorphism of
E/F ). The existence of µ1, µ2 is shown on using the summation formula
for A×E/E

×, which is the trace formula for GL(1). First we construct µ1,
and then µ2 – which is known to be µ−1

1 on A×/F× – has to be constructed
on A×E/E

×
A
×.
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Set up the trace formula identity with the set Vf = {vi; 0 ≤ i ≤ 3} such
that πE(µ1)×πE(µ2) contributes to the trace formula of C. We choose the
components fCvi of the test function to have stable orbital integrals which
vanish on the regular nonelliptic set. Hence we may take fvi (i = 1, 2, 3)
to have zero stable orbital integrals, so that we can choose fHvi to be zero,
hence there is no contribution to the trace formulae of H and C0.

The trace formula of G will have the (unique) contribution

I(2,2)(πE(µ1µ2), πE(µ1µ2)).

Indeed, we follow the homomorphisms of the Weil group

WE/F = 〈z, σ; z ∈ CE , σzσ−1 = z, σ2 ∈ CF −NE/FCE〉

which define πE(µ1), πE(µ2), and their composition with λ1 (put µi =
µi(z), µi = µi(z)):

z 7→
(
µ1 0
0 µ1

)
×
(
µ2 0
0 µ2

)
λ17→

(
µ1µ2

µ1µ2
µ2µ1

µ1µ2

)
(13)7−→

(
µ2µ1

µ1µ2
µ1µ2

µ1µ2

)
,

σ 7→
(

0 1
µ1(σ2) 0

)
×
(

0 1
µ2(σ2) 0

)
λ17→

(
1

µ2(σ2)

µ1(σ2)
1

)
(13)7−→

(
0 µ1(σ2)

µ2(σ2) 0
0 1

1 0

)
.

This homomorphism implies that

λ1(πE(µ1)× πE(µ2)) = I(2,2)(πE(µ1µ2), πE(µ1µ2))

at all places where (E/F and) µ1, µ2 are unramified. Following the argu-
ments leading to (1), we obtain (1) for our πC,v = πE(µ1)×πE(µ2), where
πv is I(2,2)(πE(µ1µ2), πE(µ1µ2)), as claimed.

Note that when µ1 = µ−1
2 we have πE(µ1µ2) = πE(µ1/µ1) and πE(µ1µ2)

= I(χE/F , 1), thus λ1(πE(µ1)× πE(µ1)∨) is

= I(2,1,1)(πE(µ1/µ1), χE/F , 1) = I(3,1)(Sym2(π(µ1)), 1),

as is known already.
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At this stage we note that we dealt with all square integrable repre-
sentations πCv of Cv, except pairs π1 × π2 = πE1(µ1) × πE2(µ2), where
E1, E2 are two distinct quadratic extensions of the local field F ′, and µi
are characters of E×i with µi 6= µi and µ1µ2|F ′× = 1, and πEi(µi) is not
monomial from Ej ({i, j} = {1, 2}). In fact, in residual characteristic 2
there are also “extraordinary” representations, which are not monomial;
we shall deal with these later.

We claim that πv in (1) for such a πE1(µ1)× πE2(µ2) is cuspidal.
Let us review the homomorphisms of the Weil group which define the

product πE1(µ1) × πE2(µ2). Denote by E the compositum of E1 and E2

and by 〈σ, τ〉 the Galois group of E/F , so that E1 = Eτ , E2 = Eσ are
the fixed points fields of τ , σ respectively (thus Gal(E1/F ) = 〈σ〉 and
Gal(E2/F ) = 〈τ〉). To multiply πE1(µ1) and πE2(µ2) we view their pa-
rameters as homomorphisms of WE/F , an extension of Gal(E/F ) by E×,
which factorize through WE1/F and WE2/F . For πE1(µ1) we have:

z (∈ E×)
NE/E17−→ zτz (∈ NE/E1E

×) 7→
(
µ1(z·τz) 0

0 µ1(σz·στz)

)
,

τ (∈ Gal(E/F )) 7→ τ2 (∈ E×1 −NE/E1E
×) 7→

(
µ1(τ2) 0

0 µ1(στ2)

)
,

σ (∈ Gal(E/F ), viewed in WE1/F ) 7→
(

0 1
µ1(σ2) 0

)
.

We simply pull Ind(µ1;WE1/F ,WE1/E1) from WE1/F to WE/F using the
diagram

WE/E1 = WE1/W
c
E = 〈CE , τ〉 ↪→WE/F = WF /W

c
E � Gal(E1/F ) = 〈σ〉

↓ ↓ ‖
WE1/E1 = WE1/W

c
E1

= CE1 ↪→WE1/F = WF /W
c
E1
� Gal(E1/F ).

The middle vertical (surjective) arrow is the quotient by

(WE1/W
c
E)c = {zτz−1τ−1; z ∈ CE} = C1

E/F1
.

The arrow on the left is also surjective. Its restriction to CE ⊂WE/E1 is

z 7→ NE/E1z (∈ NE/E1CE ⊂ CE1),

and τ ∈WE/E1 maps to τ2 ∈ CE1 −NE/E1CE .
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For πE2(µ2) we have:

z(∈ E×)
NE/E27−→ zσz (∈ NE/E2E

×) 7→
(
µ2(z·σz) 0

0 µ2(τz·τσz)

)
,

σ(∈ Gal(E/F )) 7→ σ2 (∈ E×2 −NE/E2E
×) 7→

(
µ2(σ2) 0

0 µ2(τσ2)

)
,

τ(∈ Gal(E/F ), viewed in WE2/F ) 7→
(

0 1
µ2(τ2) 0

)
.

Composing these two representations by λ1, we obtain the 4-dimensional
representation ρ of WE/F :

z(∈ E×) 7→ diag(µ1
τµ1µ2

σµ2, µ1
τµ1

τµ2
τσµ2,

σµ1
στµ1µ2

σµ2,
σµ1

στµ1
τµ2

τσµ2)

where αµ means µ(α(z)), or z 7→ diag(µ,τµ,σµ,στµ) where

µ = µ1(z)µ1(τz)µ2(z)µ2(σz),

τ 7→

 0 µ1(τ2) 0 0

µ1µ2(τ2) 0 0 0

0 0 0 µ1(στ2)

0 0 µ1(στ2)µ2(τ2) 0

 ,

σ 7→

 0 0 µ2(σ2) 0

0 0 0 µ2(τσ2)

µ1µ2(σ2) 0 0 0

0 µ1(σ2)µ2(τσ2) 0 0

 .

When µ1 6= σµ1 and µ2 6= τµ2 this 4-dimensional representation ρ is irre-
ducible, hence – repeating the global construction employed twice already
in this proof – we conclude that (1) is obtained with πv cuspidal, as had πv
been induced from a proper parabolic subgroup of Gv, the representation
ρ would have had to be reducible. This establishes the claim.

After completing the study of the lifting from PGSp(2) to PGL(4) we
shall conclude the same result – that λ1(π1 × π2) has to be cuspidal if π1

is not χπ̌2, χ2 = 1, and π1, π2 are cuspidal but not πE(µ1), πE(µ2), by
showing that there are no induced G-modules that such π1×π2 can λ1-lift
to.
• Since λ′′1(πE1(µ1) × πE2(µ2)) = πv is cuspidal, the orthonormality re-
lations for twisted characters of cuspidal representations on Gv, and the
orthonormality relations for characters on Cv, imply that the identity (1)
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reduces to only one contribution on the right side, namely our πCv =
πE1(µ1)× πE2(µ2), with coefficient nv = 1, thus λ1(πE1(µ1)× πE2(µ2)) =
πv, a cuspidal representation of Gv.
• The orthogonality relations now imply (in odd residual characteristic)
that for πCv = πE(µ1)× πE(µ2), the trace identity (1) has only the term
πCv on the right, and it becomes

tr I(2,2)(πE(µ1µ2), πE(µ1µ2))(fv × θ) = nv tr(πE(µ1)× πE(µ2))(fCv).

Clearly when one of πE(µi) is induced (thus µi = µi), we have this identity
with nv = 1.

We claim that nv is 1 for all πE(µ1)× πE(µ2).
But first let us explain the meaning of the nv. A global (cuspidal,

automorphic) representation πC = π1×π2 (with at least 3 square integrable
components) defines an automorphic representation π of G(A) on using the
trace formula identity, by the arguments used repeatedly above (we choose
test functions such that the function fH is zero at one of the places where
πC is square integrable, and such that trπCv(fCv) is 1 for square integrable
πCv). Note that both πC = π1 × π2 and π̃C = π2 × π1 contribute to the
trace formula of C when π1 6' χπ̌2, χ2 = 1, as we now assume. The trace
formula identity (for a suitable finite set V ) then takes the form∏

v∈V
trπv(fv × θ) =

∑
{π′
C
,π̃′
C
}

∏
v∈V

trπ′Cv(fCv).

On the other hand we have the local character relations

trπv(fv × θ) = nv trπCv(fCv)

for each πv on the left, where nv = 1 unless πCv = πE(µ1) × πE(µ2).
Replacing then the left side by

∏
v∈V nv trπCv(fCv) we conclude (applying

linear independence of characters on Cv) that there are
∏
v∈V nv pairs π′C ,

π̃′C of cuspidal representations of C(A) whose local components belong to
the pair {πCv, π̃Cv}. In other words, the representations π′C = π1 ×
π2 which contribute to the right side are obtained from each other on
interchanging the local components of π1 and π2 at a set S of places of F
which is infinite and whose complement is infinite (if π1, π′1 differ by only
finitely many components and both are cuspidal then they are equal by
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rigidity theorem for GL(2)). If all nv are 1, we would have on the right
side only the contributions

∏
trπCv(fCv) and

∏
tr π̃Cv(fCv).

Let E′/F ′ be a quadratic extension of local fields, and π′′C = πE′(µ1)×
πE′(µ2) a cuspidal representation of C(F ′), where µi 6= µi, µ1µ2|F ′ = 1,
µ1µ2 6= χ ◦NE′/F ′ for any quadratic character χ of F ′. Our claim is that
the associated nv is 1.

For this we construct first a totally imaginary number field F whose
completion at a place v0 is F ′, and a cuspidal representation πC of C(A)
which is unramified outside the set V consisting of the archimedean places
and the finite places v0, . . . , v3. The component of πC at v0 is our π′′C
and at v1, v2, v3 it is sp2vi × sp2vi . Then there are nv0 (a positive integer
depending on π′′C) pairs π′C , π̃′C of cuspidal representations of C(A) whose
components at v1, v2, v3 are sp2× sp2 and at each v the components belong
to the pair {πCv, π̃Cv}. Now we apply the theory of basechange for GL(2)
for a quadratic extension E of F whose completion E ⊗F Fv1 = Ev1 is the
local quadratic extension E′ of F ′ = Fv1 . Then πC,v1 = π′′C = πE′(µ1) ×
πE′(µ2) lifts to a fully induced representation πEC,v1

= I(µ1, µ1)×I(µ2, µ2)
of C(Ev1), and the global πC lifts to the cuspidal representation πEC whose
components at the places of E above v1, v2, v3 are sp2× sp2, at v0 it is
πEC,v0

specified above, and it is unramified at the places outside V .

Since πEC has no components of the form πM (µ′1) × πM (µ′2), where µ′1,
µ′2 are characters of M×, M a quadratic extension of E, and it has at least
three square integrable components, it and its companion π̃EC are the only
cuspidal representations (with the indicated components at the places of
E above v1, v2, v3) which λ1-lift to πE = λ1(πEC ). Consequently, each
of the nv0 pairs π′C , π̃′C of cuspidal representations of C(A) which λ1-lift
to λ1(π′C), basechange from F to E to the pair πEC , π̃EC of cuspidal rep-
resentations of C(AE), which λ1-lift to πE = λ1(πEC ). But the fiber of
the base change map BCE/F , which takes πC to πEC , consists only of πC
and χE/FπC , where χE/F is the quadratic character of A×/F×NE/FA×E .
Consequently each pair {π′C , π̃′C} is equal to the pair {πC , π̃C}, up to mul-
tiplication by χE/F . But this implies that nv1 = 1, as asserted.

In residual characteristic two there are also the “extraordinary” cuspidal
representations, which are not associated with a character of a quadratic
extension. But since the relation (1) defines a partition of the set of rep-
resentations of C, and we already handled the monomial representations,
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the orthogonality relations imply the lifting and character relation, and
the proof of the proposition is complete. �

We obtain the following rigidity theorem for representations of SO(4),
that is of C(A).

Note that λ1(χπ1 × χ−1π2) = λ1(π1 × π2) = λ1(π2 × π1).

4.2 Corollary. Let π1, π2, π′1, π′2, be cuspidal representations of
GL(2,A) with central characters ω1, ω2, ω′1, ω′2, satisfying ω1ω2 = 1,
ω′1ω

′
2 = 1. Suppose that there is a set S of places of F such that (π′1v,

π′2v) = (π1vχv, π2vχ
−1
v ) for all v in S and (π′1v, π

′
2v) = (π2vχv, π1vχ

−1
v ) for

all v outside S, for some character χv of F×v (for each v). Then the pair
(π′1, π

′
2) is (π1χ, π2χ

−1) or (π2χ, π1χ
−1) for some character χ of A×/F×.

A considerably weaker result, where the notion of equivalence is gener-
ated only by π1v× π̌2v ' π̌2v×π1v but not by π1v× π̌2v ' χvπ1v×χ−1

v π̌2v,
follows also on using the Jacquet-Shalika [JS] theory of L-functions, com-
paring the poles at s = 1 of the partial, product L-functions

LV (s, π′1 × π̌1)LV (s, π′2 × π̌1) = LV (s, π1 × π̌1)LV (s, π2 × π̌1).

Moreover, such a proof assumes the theory of L-functions.
This has a consequence purely for characters.

4.3 Corollary. Let E/F be a quadratic extension of number fields,
and µ1, µ2, µ′1, µ′2 characters of A×E/E

× such that the restriction to
A
×/F× of the products µ1µ2 and µ′1µ

′
2 is trivial. Suppose that at 3 places v

of F which do not split in E we have that µiv 6= µiv (i = 1, 2). Suppose that
there is a set S of places of F , and characters χv of F×v for each place v
of F , such that if µiv are the local components of µi on E×v = (E⊗F Fv)×,
then

(µ′1v, µ
′
2v) = (µ1v · χv ◦N,µ2v · (χv ◦N)−1)

for all v in S, and

(µ′1v, µ
′
2v) = (µ2v · χv ·N,µ1v · (χv ◦N)−1)

for all v outside S (where N is the norm map from Ev to Fv). Then there
is a character χ of A×/F× such that

(µ′1, µ
′
2) = (µ1·χ◦N,µ2·(χ◦N)−1) or (µ′1, µ

′
2) = (µ2·χ◦N,µ1·(χ·N)−1).
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Proof. Consider the cuspidal representations πE(µ1), πE(µ2). Note
that they are cuspidal at least at three places, and that χπE(µ) = πE(µ ·
χ ◦N). Apply the previous corollary. �

4.4 Proposition. Let πv0 be a square integrable θ-invariant represen-
tation of the group PGL(4, Fv0). Its θ-character is not identically zero on
the θ-elliptic regular set (by the orthonormality relations). Suppose it is
not a θ-stable function on the θ-elliptic regular set. Then it is a λ1-lift of a
square integrable representation π2v0 × π′2v0

of C(Fv0), and its θ-character
is a θ-unstable function.

Proof. Let F be a totally imaginary global field such that Fvi = Fv0

(i = 0, 1, 2, 3). We use a test function f = ⊗fv such that fvi (i = 1,
2, 3) is a pseudo-coefficient of a θ-invariant cuspidal representation πvi =
λ1(πE′1(µ1)×πE′2(µ2)), E′1, E′2 are quadratic extensions of Fvi and µ1µ2|F×v
= 1, and fv0 is a pseudo coefficient of πv0 . At all finite v 6= vi (0 ≤ i ≤ 3)
we take fv to be spherical, such that for κ 6= 1 which corresponds to
the endoscopic group C and with f∞ = ⊗fv, v finite, the κ-θ-orbital
integral Φκγ(f∞) is not zero at some θ-regular elliptic γ in G(F ); this
simply requires taking the support of the fv ≥ 0 for v 6= vi (0 ≤ i ≤ 3)
to be large enough. Since the θ-stable orbital integrals of fvi (1 ≤ i ≤ 3)
are 0, the θ-elliptic regular part of the θ-trace formula consists entirely of
κ-θ-orbital integrals, by a standard stabilization argument.

As G(F ) is discrete in G(A), for every f∞ = ⊗vfv, v archimedean,
f = f∞f

∞ is compactly supported, we can choose f∞ to have small enough
support around γ ∈ G(F ) with Φκγ(f∞) 6= 0 in the θ-regular set of G(F∞),
to guarantee that Φκγ(f) 6= 0 for a single θ-stable θ-regular conjugacy class
γ in G(F ), which is necessarily θ-elliptic. Hence the geometric part of the
θ-trace formula reduces to the single term Φκγ(f), which is nonzero, hence
the geometric part is nonzero, and so is the spectral side.

The choice of the pseudo coefficients fvi implies that in the spectral side
we have a θ-invariant cuspidal representation π of G(A) with the cuspidal
components πvi (i = 1, 2, 3) and the square integrable component πv0 of
the proposition (note that π is cuspidal since it has cuspidal components at
vi (i = 1, 2, 3), hence it is generic). The components of π at any other finite
place are spherical. Since the θ-stable orbital integrals of fvi (i = 1, 2, 3)
are zero, we may take fHvi and so fH to be zero. Hence there is no
contribution to the spectral form of the trace formula identity from the
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trace formulae of H and C0.
Using generalized linear independence of characters we get the form of

the trace formula identity with only our π as the single term on the spectral
side of G, while the only contributions to the other side – πC – depend
only on fC . Any unramified component of πC λ1-lifts to the corresponding
component of π, and similar statement holds for the archimedean places.

Using the pseudo-coefficients fvi at the places vi (i = 1, 2, 3) we see that
πC,vi = πE′1(µ1)× πE′2(µ2). We are left with an identity of trπv0(fv0 × θ)
with a sum

∑
m(πC) trπC,v0(fC,v0) for all matching fv0 , fC,v0 , from which

we conclude as usual using the character relations that the πC,v0 are square
integrable, finite in number, and in fact consist of a single square-integrable
π2v0 × π′2v0

which λ1-lifts to πv0 . This has already been treated by our
complete description of the λ1-lifting. �

Remark. The central character of a monomial πE(µ) is

χ · µ|F× (χ : F×/NE/FE×
∼→{±1}).

If πE(µ1) × πE(µ2) defines a representation of C then the product of the
central characters is 1, thus µ1µ2|F× = 1. Hence πE(µ1µ2), πE(µ1µ2)
have central characters χ · µ1µ2|F× = χ = χ · µ1µ2|F×. Thus

I(πE(µ1µ2), πE(µ1µ2))

will not be in the image of λ – see Proposition V.5 below: it is not I(π1, π2),
π1, π2 on PGL(2).
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1. Characters on the Symplectic Group

Next we proceed with preliminaries on the lifting of representations of
H = PGSp(2) to those on G = PGL(4). Recall that the norm map
N : G→ H is defined on the diagonal tori N : T∗ → T∗H by

N(diag(a, b, c, d)) = diag(ab, ac, db, dc),

and on the Levi factors on the other two proper parabolic subgroups by

N(diag(A,B)) = diag(detA, εBεA, detB) where ε =
(

1 0

0 −1

)
,

and N(diag(a,A, d)) = diag(aA, dεAε). The dual, lifting, map of repre-
sentations takes the induced-from-the-Borel representation

IH(µ1, µ2) = µ1µ2 × µ1/µ2 o µ
−1
1 to IG(µ1, µ2, µ

−1
2 , µ−1

1 ),

where H = PGSp(2, F ), G = PGL(4, F ), F a local field. Lifting is defined
by means of the character relation.

Before continuing, let us verify

1.1 Lemma. The Jacobians satisfy ∆G(tθ) = ∆H(Nt).

Proof. We take t = diag(α, β, γ, δ), αδ = βγ, and compute

∆H(t) = |det(Ad(t)|LieN)|−1/2|det(1−Ad(t))|LieN |,

where N denotes the upper triangular unipotent subgroup in H. The Lie
algebra LieN consists of X ∈ LieH = {X = −J−1XJ} of the form( 0 x y z

0 0 u y

0 0 0 −x
0 0 0 0

)
,

113
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and the effect of 1−Ad(t) is

x 7→ (1− α/β)x, y 7→ (1− α/γ)y, z 7→ (1− α/δ)z, u 7→ (1− β/γ)u.

Thus

∆H(t) =
∣∣∣∣ βγδγαααβ

∣∣∣∣1/2 ∣∣∣∣(1− α

β

)
·
(

1− α

γ

)
·
(

1− α

δ

)
·
(

1− β

γ

)∣∣∣∣
gives ∆G(hθ) when ∆H(t) is evaluated at t = Nh. �

We are now ready to extend the basic lifting result from the minimal
parabolic to the other two proper parabolic subgroups of H.

1.2 Proposition. We have that ωπ o π̌ = ω−1
π o π (λ-) lifts to π4 =

IG(π, π̌), where ωπ is the central character of the representation π = π2 of
GL(2, F ) = GSp(1, F ), and π̌ = ω−1

π π is the contragredient of π.
For the representation π2 of PGL(2, F ) we have that µ1π2oµ

−1
1 (λ-) lifts

to π4 = IG(µ1, π2, µ
−1
1 ), and I2(µ1, µ

−1
1 )×π2 λ0-lifts from C0 to µ1π2oµ

−1
1

on H.

Proof. Recall that at m0 = diag(A, I), A ∈ GL(2, F ), the value of the
character χπ4(m0θ), where π4 = I4(π, π̌), has been computed to be

(1 + ω−1
π (detA))χπ(A)/| (1− a)(1− b)(1− ab)

ab
|.

Since N(diag(A, I)) is diag(λλλ,A, 1), λλλ = detA, we have to compute the
character χω−1oπ at diag(λλλ,A, 1). A general element m of the Levi MH of
type (1,2,1) in H has the form m = diag(a,A,λλλ/a), a ∈ F×. If N = NH
is the corresponding upper triangular unipotent subgroup then

δN (m) = |det(Ad(m)|LieN)| = |a2/detA|2

(using the X of the proof of Lemma 1.1 with u = 0). The usual argu-
ment, using the measure decomposition dg = δ−1

N (m)dndmdk, shows that
(πH(fdg)φ)(h) is

=
∫
N

∫
M

∫
K

f(h−1n1mk)δ1/2
N (m)(ω−1

π o π)(m)φ(k)δ−1
N (m)dndmdk.
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Hence

trπH(fdg) =
∫∫∫

f(k−1n1mk)δ−1/2
N (m)χπ(a−1A)dn1dmdk.

The change n1 = nmn−1m−1 of variables has |det(1 − Ad(m))|LieN | as
Jacobian. Hence with

∆MH
(m) = δ

−1/2
N (m)|det(1−Ad(m))|LieN | =

∣∣∣∣ bca2

∣∣∣∣ · ∣∣∣∣a− bb a− c
c

a− d
d

∣∣∣∣
(we denoted the eigenvalues of A by b and c), the trace is

=
∫
MH

∆MH
(m)χπ(a−1A)

∫
K

∫
N

f(k−1n−1mnk)dndkdm

=
∫
MH

∆M (m)χπ(a−1A)
∫
MH\H

f(g−1mg)dġdm.

Now the Weyl group of MH in H (normalizer/MH) is represented by
1 and J . Changing variables g 7→ Jg has the effect of mapping m =
diag(a,A,λλλ/a) to m′ = diag(λλλ/a,A, a). We have χω−1

π oπ(m) = χπ(a−1A)
and

χω−1
π oπ(m′) = χπ(

a

λλλ
A) = ωπ(det(a−1A))−1χπ(a−1A).

The trace becomes∫
MH

1
2

∆MH
(m)(1 + ωπ(det(a−1A))−1)χπ(a−1A)

∫
MH\H

f(g−1mg)dġdm.

Hence

χω−1
π oπ(diag(λλλ,A, 1)) = (1 + ω−1

π (detA))χπ(A)/∆M (diag(λλλ,A, 1)),

where

∆MH
(diag(ab,A, 1)) = |a− 1

a
· b− 1

b
· (ab− 1)|

(where a, b are the eigenvalues of A), and we recover χπ4(m0θ). We are
done by Lemma 1.1: ∆G(tθ) = ∆H(Nt).

To show that λ(µ1π2 o µ−1
1 ) = IG(µ1, π2, µ

−1
1 ), we first compute the

θ-character of π4 = IG(µ1, π2, µ
−1
1 ). Note that φ ∈ π4 takes nmk to
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δ
1/2
M (m)µ1(a/d)π2(A)φ(k), where m = diag(a,A, d) is in the standard Levi
M of G of type (1,2,1). The measure decomposition contributes a factor
δM (m)−1, so we have

trπ(θf dg) =
∫∫∫

f(θ(k)−1n1mk)δ−1/2
M (m)µ1(a/d)χπ2(A)dn1dmdk.

The Jacobian of n1 7→ n, n1 = nmθ(n−1)m−1 is |det(1−Ad(mθ))|LieN |.
Putting

∆M (mθ) = δ
−1/2
M (m)|det(1−Ad(mθ))|LieN |

we get

=
∫
M

∆M (mθ)µ1(a/d)χπ2(A)
∫
M\G

f(θ(g)−1mg)dġ dm.

The θ-Weyl group W θ(M) of M in G (θ-normalizer/M) is represented by
{I, J}. Hence the trace is

=
∫
M

1
2

∆M (mθ)[µ1(a/d) + µ1(d/a)]χπ2(A)
∫
M\G

f(θ(g)−1mg)dġ dm,

and the character is 1
2 [µ1(a/d) + µ1(d/a)]χπ2(A)/∆M (mθ).

This we compare with the character of πH = µ1π2 o µ
−1
1 , the represen-

tation of H normalizedly induced from the representation(
A ∗
0 λλλ

detA εAε

)
=
(
A ∗
0 λλλwtA−1w

)
7→ µ1(λλλ−1 detA)π2(A)

of the standard parabolic subgroup of H whose Levi MH is of type (2,2).
As usual we have that trπH(f dg)

=
∫
MH

∆MH
(m)µ1(λλλ−1 detA)χπ2(A)

∫
MH\H

f(h−1mh)dḣ dm.

The Weyl group of MH in H (normalizer /MH) is represented by {I, J}.
Writing |A| for detA, and X for

∫
MH\H f(h−1mh)dh,

(
0 w

−w 0

)(
A 0

0 λλλ
detA εAε

)(
0 −w
w 0

)
=
(
λλλ|A|−1ωAω 0

0 wAw

)
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7→ µ1(λλλ/|A|)π2(λλλ|A|−1ωAω),

and we obtain

=
∫
MH

1
2

∆MH
(m)[µ1(λλλ−1 detA) + µ1(λλλ/ detA)]χπ2(A)Xdm.

The character of πH = µ1π2 o µ
−1
1 is then

1
2

[µ1(λλλ−1 detA) + µ1(λλλ/ detA)]χπ2(A)/∆MH
(m).

We need to compare the characters at an element g = diag(a,A, d)
whose norm is h = Ng = diag(aA, dεAε). Note that on this h, the char-
acter from which πH is induced takes the value(

aA ∗
0 d

aaεAε

)
7→ µ1(a/d)π2(aA) = µ1(a/d)π2(A),

the last equality since π2 has trivial central character. As ∆G(gθ) =
∆H(Ng) our character identity be complete once we show

1.3 Lemma. We have ∆M (gθ) = ∆MH
(Ng).

Proof. As these factors depend only on the eigenvalues of A, we may
take t = diag(a, b, c, d), and Nt = diag(α, β, γ, δ) = diag(ab, ac, db, dc).
Then ∆(1,2,1)(tθ) is the product of δM (tθ)−1, where

δM (tθ) =
∣∣∣∣ab c

d
· a
c

b

d
· a
d

∣∣∣∣ ,
with∣∣∣∣ det(1−Ad(tθ))

∣∣∣∣LieN(1,2,1)

∣∣∣∣ =
∣∣∣∣(1− a

b

c

d

)(
1− a

c

b

d

)(
1− a

d

)∣∣∣∣ ,
namely

∆(1,2,1)(tθ) =
∣∣∣∣ (ab− cd)2(ac− bd)2(a− d)2

a3b2c2d3

∣∣∣∣1/2 .
Similarly

∆H
(2,2)(Nt) =

∣∣∣∣ γ2δ

α2β

∣∣∣∣1/2 ∣∣∣∣(1− α

γ

)
·
(

1− α

δ

)
·
(

1− β

γ

)∣∣∣∣
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=
∣∣∣∣ (α− γ)2(α− δ)2(β − γ)2

α2βγ2δ

∣∣∣∣1/2 =
∣∣∣∣ (ab− db)2(ab− cd)2(ac− bd)2

a2b2acd2b2cd

∣∣∣∣1/2
as (α, β, γ, δ) = (ab, ac, db, dc). We conclude that ∆(1,2,1)(tθ) = ∆H

(2,2)(Nt).
This completes the proof of the lemma, hence also of the proposition. �

Let χ denote a character (multiplicative function) of F×/F×2. It defines
one dimensional representation χH of H by h 7→ χ(λλλ(h)). If h = Ng (on
diagonal matrices, if g = diag(a, b, c, d) then h = diag(ab, ac, db, dc)) then
λλλ(h) = det g. Hence

1.4 Lemma. The one dimensional representation χH , or χ · 1H , of H,
λ-lifts to the one dimensional representation χ : g 7→ χ(det g) of G. The
trivial representation of H lifts to the trivial representation of G. �

We conclude

1.5 Corollary. The Steinberg representation of H λ-lifts to the Stein-
berg representation of G.

Proof. We use Lemma 3.5 of [ST], which asserts the following decom-
position result: ν2 × ν o ν−3/2σ is equal to

= ν3/2 sp2oν
−3/2σ + ν3/212 o ν

−3/2σ = ν2
o ν−1σ sp2 +ν2

o ν−1σ12

in the Grothendieck group (Z-module generated by the irreducible repre-
sentations) of H. Here σ2 = 1 to have trivial central character, and as
usual ν(x) = |x|. The terms on the right decompose into irreducibles (on
the right of the following four equations, which in fact define the square
integrable Steinberg representation of H = PGSp(2, F )):

a) ν3/212 o ν
−3/2σ = σ · 1GSp(2) + L(ν2, ν−1σ · sp2),

b) ν2
o ν−1σ · sp2 = σ · StGSp(2) +L(ν2, ν−1σ · sp2),

c) ν2
o ν−1σ · 12 = σ · 1GSp(2) + L(ν3/2 sp2, ν

−3/2σ),
d) ν3/2 sp2oν

−3/2σ = σ · StGSp(2) +L(ν3/2 sp2, ν
−3/2σ).

We can apply the λ-lifting to a), as the lifts of two of its term is known:

σI(ν−3/2,12, ν
3/2) = σ · 14 + λ(L(ν2, ν−1σ · sp2)).
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Next we apply the λ-lifting to b) and note that σI(ν−1 sp2×ν sp2),
the left side, is known to be of length two, consisting of the Steinberg
representation σ·St4, and an irreducible which lies in the composition series
of σI(ν−3/2,12, ν

3/2) (which is also of length two, the other irreducible
being σ · 14). Hence the common irreducible is λ(L(ν2, ν−1σ · sp2)), and
the λ-lift of σ StGSp(2) is σ St4.

An alternative proof is obtained on λ-lifting c) to get

σI(ν−112 × ν12) = σ14 + λ(L(ν3/2 sp2, ν
−3/2σ)),

the last irreducible is the one common with σI(ν−3/2, sp2, ν
3/2), which is

the λ-lift of the left side of d); the latter has σ St4 as the other irreducible
in its composition series, hence the λ-lift of the σ StGSp(2) on the right of
d) has to be σ St4. �

2. Reducibility

It will be useful to record the results of [ST], Lemmas 3.3, 3.7, 3.4, 3.9,
3.6, 3.8, on reducibility of induced representations of H. This we do next.
Note that the case of ν2×νoν−3/2σ is discussed in the proof of Corollary
1.5 above.

2.1 Proposition. (a) The representation χ1 × χ2 o σ of H, where
χ1, χ2, σ are characters of F×, is reducible precisely when χ1, χ2, χ1χ2 or
χ1/χ2 equals ν or ν−1 (its central character is χ1χ2σ

2).
(b) If χ /∈ {ξν±1/2, ν±3/2} for any character ξ with ξ2 = 1, then χ · sp2oσ

and χ · 12 o σ are irreducible and

ν1/2χ× ν−1/2χo σ = χ · 12 o σ + χ · sp2oσ.

If χ 6= 1, ν±1, ν±2 then χo σ · sp2 and χo σ · 12 are irreducible and

χ× ν o ν−1/2σ = χo σ · sp2 +χo σ · 12.

For any character σ we have that ν o ν−1/2σ · sp2 and ν o ν−1/2σ · 12 are
irreducible and

ν × ν o ν−1σ = ν o ν−1/2σ · sp2 +ν o ν−1/2σ · 12.
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(c) If ξ 6= 1 = ξ2, νξ × ξ o ν−1/2σ contains a unique essentially square
integrable subrepresentation denoted δ(ξν1/2 sp2, ν

−1/2σ). Since

ξ o ν−1/2σ = I(ξσν−1/2, σν−1/2) = ξ o ν−1/2σξ,

we have

νξ × ξ o ν−1/2σ = ν1/2ξ sp2oν
−1/2σ + ν1/2ξ12 o ν

−1/2σ

=νξ × ξ o ν−1/2σξ = ν1/2ξ sp2oν
−1/2σξ + ν1/2ξ12 o ν

−1/2σξ,

δ(ξν1/2 sp2, ν
−1/2σ) = δ(ξν1/2 sp2, ν

−1/2σξ),

as well as

ν1/2ξ sp2oν
−1/2σ = δ(ξν1/2 sp2, ν

−1/2σ) + L(ν1/2ξ sp2, ν
−1/2σ),

ν1/2ξ12 o ν
−1/2σ = L(ν1/2ξ sp2, ν

−1/2σξ) + L(νξ, ξ o ν−1/2σ);

the 4 representations on the right of the last two lines are irreducible.
(d) The representations 1 o σ · sp2 and ν1/2 sp2oν

−1/2σ (resp. ν1/212 o

ν−1/2σ) have a unique irreducible subquotient in common; it is essentially
tempered, denoted by
τ(ν1/2 sp2, ν

−1/2σ) (resp. τ(ν1/212, ν
−1/2σ)). These two τ ’s are inequiva-

lent, and we have

ν × 1o ν−1/2σ = ν1/2 sp2oν
−1/2σ + ν1/212 o ν

−1/2σ

= 1× ν o ν−1/2σ = 1o σ · sp2 +1o σ · 12,

as well as the following decomposition into irreducibles:

ν1/2 sp2oν
−1/2σ = τ(ν1/2 sp2, ν

−1/2σ) + L(ν1/2 sp2, ν
−1/2σ),

ν1/212 o ν
−1/2σ = τ(ν1/212, ν

−1/2σ) + L(ν, 1o ν−1/2σ),

1o σ sp2 = τ(ν1/2 sp2, ν
−1/2σ) + τ(ν1/212, ν

−1/2σ),

1o σ12 = L(ν1/2 sp2, ν
−1/2σ) + L(ν, 1o ν−1/2σ). �

Note that the 4 × 4 matrix representing the last four equations is not
invertible, hence the irreducibles on the right cannot be expressed as linear
combinations of the representations on the left.
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Note that the λ-lift of νξ × ξ o ν−1/2σ is σI(ν1/2, ν1/2ξ, ν−1/2ξ, ν−1/2)

= σI(ν1/2, ξ sp2, ν
−1/2) + σI(ν1/2, ξ12, ν

−1/2)

= σI(sp2×ξ sp2) + σI(12 × ξ sp2) + σI(sp2×ξ12) + σI(12 × ξ12).

It is invariant under multiplication by ξ (ξ2 = 1). To determine the liftings
of the constituents of νξ×ξoν−1/2σ we shall use the trace formula identity.

We shall also state the results of [Sh2], Proposition 8.4, [Sh3], Theorem
6.1, as recorded in [ST], Propositions 4.6-4.9, on reducibility of representa-
tions of H supported on the proper maximal parabolics P(2) of type (2,2)
and P(1) of type (1,2,1).

2.2 Proposition. (a) Let π2 be a cuspidal representation of PGL(2, F )
and σ a character of F×. Then ν1/2π2 o ν−1/2σ has a unique irreducible
subrepresentation, which is square integrable. Inequivalent (π2, σ) define
inequivalent square integrables, and each square integrable representation
of H supported in P(2) is so obtained (with ωπ2σ

2 = 1).
(b) All irreducible tempered non square integrable representations of H
supported in P(2) are of the form π2 o σ where π2 is cuspidal unitarizable
and σ is a unitary character (with ωπ2σ

2 = 1). The only relation is π2oσ =
π̌2 o ωπ2σ.
(c) The unitarizable nontempered irreducible representations of H sup-
ported in P(2) are L(νβπ2, σ), 0 < β ≤ 1

2 , σ a unitary character of F×, π2

a cuspidal representation of PGL(2, F ). �

2.3 Proposition. (a) Let π2 be a cuspidal unitarizable representation
of GL(2, F ) such that π2ξ = π2 for a character ξ 6= 1 = ξ2 of F×. Then
νξ o ν−1/2π2 has a unique subrepresentation, which is square integrable.
Inequivalent (π2, ξ) define inequivalent square integrables. All irreducible
square integrable representations of H supported in P(1) are so obtained,
with ξωπ2 = 1.
(b) All tempered irreducible non square integrable representations of H
supported in P(1) are either of the form χ o π2, π2 cuspidal unitarizable
representation of GL(2, F ) and χ 6= 1, as well as χωπ2 = 1 (the only
equivalence relation on this set is χo π2 ' χ−1

o χπ2), or one of the two
inequivalent constituents of 1o π2.
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(c) The irreducible unitarizable representations of H supported on P(1)

which are not tempered are L(νβξ, ν−β/2π2), 0 < β ≤ 1, ξ 6= 1 = ξ2, and
π2 a cuspidal unitarizable representation of GL(2, F ) with π2ξ ' π2 and
ξωπ2 = 1. �

3. Transfer of Distributions

In relating characters on the group C0 = PGL(2, F ) × PGL(2, F ) with
those on H = PGSp(2, F ), F local, we need a transfer D0 → DH of
distributions which is dual to the transfer of orbital integrals fH → f0 for
functions on H and on C0. This transfer is crucial to the orthogonality
relations of characters, a main tool in our work.

Let us recall (from chapter II, section 5) some basic definitions. Two
regular elements h, h′ of H, and two tori TH , T ′H of H, are called stably
conjugate if they are conjugate in H(F ); F is a separable algebraic closure
of F .

Let A(TH/F ) be the set of x in H(F ) such that T ′H = T xH = x−1THx

is defined over F . The set B(TH/F ) = TH(F )\A(TH/F )/H parametrizes
the morphisms of TH into H over F , up to inner automorphisms by ele-
ments of H. If TH is the centralizer of h in H then B(TH/F ) parametrizes
the set of conjugacy classes within the stable conjugacy class of h in H.
The map

x 7→ {τ 7→ xτ = τ(x)x−1; τ in Gal(F/F )}

defines a bijection

B(TH/F ) ' ker[H1(F, TH)→ H1(F,H)].

Since F is nonarchimedean, H1(F,Hsc) = {0}. Hence

ker[H1(F, TH)→ H1(F,H)] = Im[H1(F, TH,sc)→ H1(F,H)].

Consequently it is a group, which is isomorphic – by the Tate-Nakayama
theory – to

C(TH/F ) = Im[H−1(X∗(TH,sc))→ H−1(X∗(TH))].
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Stable conjugacy for regular elliptic elements of H = PGSp(2, F ) differs
from conjugacy only for elements in tori of types I and II, where the stable
conjugacy class consists of two conjugacy classes.

Denote by W (TH) the Weyl group of TH in H, and by W ′(TH) the Weyl
group of TH in A(TH/F ).

Let dH be a locally integrable conjugacy invariant complex valued func-
tion on H. The Weyl integration formula asserts that∫

H

f(h)dH(h)dh =
∑
{TH}

1
[W (TH)]

∫
TH

∆H(t)2Φ(t, fH)dH(t)dt.

The sum ranges over a set of representatives TH for the conjugacy classes
of tori in H; [X] denotes the cardinality of a set X.

Suppose t is a regular element of H which lies in TH . Then the num-
ber of δ in B(TH/F ) such that tδ is conjugate to an element of TH is
[W ′(TH)]/[W (TH)]. Hence when the function dH is invariant under stable
conjugacy, we have∫

H

f(h)dH(h)dh =
∑
{TH}s

1
[W ′(TH)]

∫
TH

∆H(t)2Φst(t, fH)dH(t)dt.

Here {TH}s is a set of representatives for the stable conjugacy classes of
tori in H.

3.1 Definition. Given a distribution D0 on C0, let DH = DH(D0)
be the distribution on H defined by DH(fH) = D0(f0), where f0 is the
function on C0 matching fH on H.

Our next aim is to compute DH if D0 is represented by a locally inte-
grable function. We first state the result, and explain the notations at the
beginning of the proof.

3.2 Proposition. Suppose that D0 is a distribution on C0 represented
by the locally integrable function d0. Then the corresponding distribution
DH = DH(D0) on H is given by a locally integrable function dH defined
on the regular elliptic set of H by dH(t) = 0 if t lies in a torus of type III
or IV, and by

∆H(t)dH(tr) = χ(r)κ(t)∆0(t0)[d0(t0) + d0(tw0 )]
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if t is of type I or II, where r ranges over F×/NE/FE× or E×3 /NE/E3E
×,

and χ is the nontrivial character of this group; if r 6= 1 then tr indicates
the element stably conjugate but not conjugate to t. If t0 = t′0 × t′′0 ∈ C0 =
PGL(2, F )× PGL(2, F ), then tw0 indicates t′′0 × t′0.

Remark. If D0 is represented by d0 and DH by dH , we shall also write
dH = dH(d0) for DH = DH(D0).

Proof. We need to recall the description of elements of types I (and
later II) and their properties. A torus TH of type I splits over a quadratic
extension E = F (

√
D) of F , and we choose explicit representatives for the

two tori in the stable conjugacy class:

T rH = {tr =

( α1 0 0 β1D

0 α2 β2Dr 0

0 r−1β2 α2 0

β1 0 0 α1

)
= h−1

r t∗hr; t = diag(x1, x2, αx2, αx1)}.

Here r ranges over a set of representatives for F×/NE/FE×, σ is the non-
trivial automorphism of E over F , xi = αi + βi

√
D ∈ E× are the eigen-

values of tr, and hr are suitable matrices in Sp(2, F ), described in [F5], p.
11. The norm map relates the elliptic torus T0 of C0 which splits over E
to T rH , on the level of eigenvalues it is given by

t∗0 = (diag(t1, σt1),diag(t2, σt2)) N7→

t∗ = diag(x1 = t1t2, x2 = t1σt2, σx2 = σt1 · t2, σx1 = σt1 · σt2).

Now the Weyl group of an elliptic torus in PGL(2, F ) is Z/2, hence the
Weyl group W (T0) of T0 in C0 is Z/2×Z/2. The Weyl group W (TH) of TH
in H (of type I) contains Z/2× Z/2: it contains s1 = (12)(34) (acting on

the diagonal matrix t∗), which is represented by diag
((

0 1

1 0

)
,
(

0 1

1 0

))
in H

(acting on t ∈ TH), and (14)(23), which is represented by diag(1,−1, 1,−1)
(and hence W (TH) contains also (13)(24)).

To use the Weyl integration formula we need to computeW ′(TH). There
are two cases for TH of type I. In case I1, −1 /∈ NE/FE× (this happens
when E/F is ramified and −1 /∈ F×2). Then we can take r 6= 1 to be
−1. Choose i ∈ F with i2 = −1, and put w = diag(1, i,−i, 1). It lies in
Sp(2, F ), and w−1tw = tr. Then w represents δ 6= 1 in B(TH/F ), and
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W ′(TH) = D4 (w acts as (23) on t∗, and s2 = (23), s1 = (12)(34) generate
D4) contains W (TH) = Z/2× Z/2 = W (T0) as a subgroup of index 2.

In case I2 we have −1 ∈ NE/FE×, hence we can write diag(−1, 1) as
cs, s ∈ SL(2, F ), c ∈ CGL(2,F )(TE) (= centralizer in GL(2, F ) of an elliptic
torus TE which splits over E), and w = diag(1,−1, 1, 1) as ch with h in
Sp(2, F ) and c in CGL(4,F )(TH). Then (ch)−1tch = tr, t′ = h−1t′∗h, h′∗ =
diag(x1, σx2, x2, σx1). Hence in case I2 we have W ′(TH) = W (TH) = D4,
as w ∈W ′(TH) is represented by h ∈ Sp(2, F ), and it acts as (23) on t∗.

Note that the action of w in both cases I1 and I2 is to interchange x2 and
σx2, namely t0 = (diag(t1, σt1), diag(t2, σt2)) with (tw)0 = (diag(t2, σt2),
diag(t1, σt1)). Then

κ(t) = χE/F ((x1 − σx1)(x2 − σx2)/D)

and

κ(tw) = χE/F ((x1 − σx1)(σx2 − x2)/D) = χE/F (−1)κ(t).

Let now fH be a function on H such that the orbital integral Φ(t, fH)
is supported on the conjugacy class of a single torus of type I. Then

DH(fH) = D0(f0) =
1

[W (T0)]

∫
T0

∆0(t0)2Φ(t0, f0)d0(t0)dt0

=
1

[W (T0)]

∫
TH

∆0(t0)κ(t)∆H(t)[Φ(t, fH)− Φ(tδ, fH)]d0(t0)dt.

Note that the norm map N : T0 → TH is an isomorphism. Now in
case I1, w represents δ 6= 1, and κ(tw) = χE/F (−1)κ(t) = −κ(t), and
W (TH) = W (T0), so we get

1
[W (TH)]

∫
TH

∆0(t0)∆H(t)[κ(t)Φ(t, fH) + κ(tw)Φ(tw, fH)]d0(t0)dt

=
1

[W (TH)]

∫
TH

∆0(t0)∆H(t)κ(t)Φ(t, fH)[d0(t0) + d0((tw)0)]dt,

and since Φ(t, fH) is any function (locally constant) on the regular set of
TH , we conclude – by the Weyl integration formula – that

∆H(t)dH(tr) = χE/F (r)∆0(t0)κ(t)[d0(t0) + d0((tw)0)].
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Again, tr is tw when r 6= 1 in F×/NE/FE×, and dH(tw) = −dH(t), t ∈ TH .
In case I2 we have that tw is conjugate to t in H, and [W (TH)] =

2[W (T0)], and Φ(t, fH) is supported on T rH for a single r. Hence DH(fH)
is

1
[W (TH)]

∫
TH

2∆0(t0)∆H(t)κ(t)χE/F (r)Φ(tr, fH)d0(t0)dt.

Since Φ(tr, fH) is any locally constant function on the regular set of TH ,
we obtain ∆H(t)dH(tr) = χE/F (r)∆0(t0)κ(t)2d0(t0)

= χE/F (r)κ(t)∆0(t0)[d0(t0) + d0((tw)0)].

Tori of type II split over a biquadratic extension E = E1E2E3 of F ,
where E1 = Eτ = F (

√
D), E2 = Eστ = F (

√
AD), E3 = Eσ = F (

√
A); A,

D, AD are in F − F 2, and we write t1 = α1 + β1

√
D for elements of E1,

t2 = α2 + β2

√
AD for elements of E2. The norm map takes

t∗0 = (diag(t1, σt1),diag(t2, τ t2))

to

t∗ = diag(x1 = t1t2, τx1 = t1τt2, στx1 = σt1 · t2, σx1 = σt1 · τt2).

Thus T0 ' E×1 /F
× × E×2 /F× (in contrast to case I where E1 = E2 = E

is quadratic over F ) has Weyl group W (T0) = Z/2 × Z/2. The tori T rH
consist of

T rH =
{
tr = h−1

r t∗hr =
(

a bDr

r−1b a

)
; a =

(
a1 a2A

a2 a1

)
,b =

(
b1 b2A

b2 b1

)}
,

where x1 = a+b
√
D; a = a1+a2

√
A, b = b1+b2

√
A ∈ E×3 ; σx1 = a−b

√
D,

τx1 = τa+ τb ·
√
D, thus

x1 = a1 + a2

√
A+ b1

√
D + b2

√
AD,

τx1 = a1 − a2

√
A+ b1

√
D − b2

√
AD,

στx1 = a1 − a2

√
A− b1

√
D + b2

√
AD,

σx1 = a1 + a2

√
A− b1

√
D − b2

√
AD.
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Further, r ranges over E×3 /NE/E3E
×, and if r = r1 + r2

√
A we put r =(

r1 r2A

r2 r1

)
. Then hr = h

(
I 0

0 r

)
, and h = hD =

(
hA 0

0 εhAε

)(
I
√
D

I −
√
D

)
, hA =(

1
√
A

1 −
√
A

)
, ε =

(
1 0

0 −1

)
, see [F5], p. 12.

The Weyl group W ′(T rH) of T rH in A(T rH/F ) is Z/2 × Z/2, generated
by σ̃ = (14)(23), which maps the eigenvalue x1 of t∗ to σx1, and τ̃ =
(12)(34), which maps x1 to τx1. It is equal to the Weyl group W (T rH) of
T rH in H, since (14)(23) is represented in H by diag(I,−I), and (12)(34)
is represented by diag(1,−1, 1,−1).

We shall compare the norm map T0
∼−→TH with that for T̃0

∼−→ T̃H ,
where the tilde indicates that the roles of E1 and E2 are interchanged.
Thus

t̃∗0 = ((diag(t2, τ t2),diag(t1, σt1))

7→ t̃∗ = diag(x1 = t2t1, στx1 = t2 · σt1, τx1 = τt2 · t1, σx1 = τt2 · σt1)

and with b′ =
(

b2 b1
b1/A b2

)
,

t̃r =
(
I 0

0 r

)−1

h−1
AD t̃

∗hAD · t̃∗ · hAD
(
I 0

0 r

)
=
(

a b′ADr

r−1b′ a

)
.

Note that t̃∗ is obtained from t∗ by the transposition (23).
We claim that t and t̃ are stably conjugate. For this choose α in F with

α4 = −A/4, thus 2α2 +A/2α2 = 0. Put

Y =
(

1
det y εyε 0

0 y

)
, y =

(
α A/2α

1/2α α

)
, ε =

(
1 0

0 −1

)
.

Then Y ∈ Sp(2, F ) satisfies

Y −1
(

a bD

b a

)
Y =

(
a b′AD

b′ a

)
.

These t and t̃ are conjugate if −1 /∈ F×2 and |A| = 1 (we normalize A
and D to lie in R× or πππR×). Indeed in this case we may choose A = −1.
Then either 2 ∈ F×2 or −2 ∈ F×2, and there is α ∈ F× with α2 = 1/2 or
= −1/2 (respectively), hence α4 = 1/4 = −A/4, and t, t̃ are conjugate in
GSp(2, F ).

If −1 ∈ F×2, say −1 = i2, i ∈ F×, then (2iα2)2 = A has no solution
with α in F×. If |A| = q−1 then (2α2)2 = −A has no solutions with α in
F×, so t̃ is conjugate to tr, r 6= 1.
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The transfer factor κ(t) is

κ(t) = χE1/F ((x1−σx1)(τx1−τσx1)/D) = χE1/F (bτb) = χE1/F (b21−b22A).

The transfer factor κ(t̃) is

χE2/F ((x1 − σx1)(στx1 − τx1)/AD) = χE2/F (b′τb′) = χE2/F (b22 − b21/A)

= χE2/F (−A)χE2/F (b21 − b22A) = χE2/F (−A)χE1/F (b21 − b22A).

For the last equality note that b21 − b22A ∈ NE3/FE
×
3 lies in NE2/FE

×
2 iff

it lies in NE1/FE
×
1 iff it lies in F×2.

Note that χE2/F (−A) = 1 if A = −1 /∈ F×2. If −1 ∈ F×2 and |A| = 1
then χE2/F (−A) = −1, since then E2/F is ramified, R×∩NE2/FE

×
2 = R×2

and A /∈ R×2 so −A /∈ NE2/FE
×
2 . Moreover χE2/F (−A) = −1 if |A| = q−1:

if E2/F is unramified then −A /∈ NE2/FE
×
2 ; and if E2/F is ramified we

may assume that D = u ∈ R× −R×2, and then NE2/FE
×
2 = {x2 − y2uπππ}

where we write πππ for A. But if −A = −πππ = x2 − y2uπππ is solvable then
x ∈ πππR and y2u ≡ 1 modπππ and u be a square in R×.

We conclude that κ(t̃) = κ(t) if t, t̃ are conjugate, and κ(t̃) = −κ(t) if
t, t̃ are not conjugate. Consequently

∆0(t0)Φ(t0, f0) = ∆H(t)κ(t)
∑

r∈E×3 /NE/E3E
×

χE/E3(r)Φ(tr, fH)

is equal to the expression obtained on replacing t by t̃, which we denote
by tw from now on to be consistent with the case of type I. It follows that
each stable conjugacy class of t ∈ TH of type II is obtained twice, from t0
and t̃0 (or tw0 ). As W (TH) = W (T0), we conclude that DH(fH) is equal to

1
[W (TH)]

∫
TH

2∆0(t0)κ(t)χE/E3(r)d0(t0) ·∆H(t)Φ(tr, fH)dt

if Φ(t, fH) is supported on the conjugacy class of T rH , and hence

∆H(t)dH(tr) = χE/E3(r)κ(t)∆0(t0)[d0(t0) + d0((tw)0)].

It is clear that tori of types III and IV do not contribute to DH(fH), which
is equal to D0(f0). �
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4. Orthogonality Relations

We are interested in relating the distributions DH and D0 since we need
to relate orthogonality relations on H and on C0.

4.1 Definition. (1) Let dH , d′H be conjugacy invariant functions on
the elliptic set of H. Put

〈dH , d′H〉H =
∑
{TH}e

1
[W (TH)]

∫
TH

∆H(t)2dH(t)d
′
H(t)dt

=
∑
{TH}e,s

1
[W ′(TH)]

∑
δ∈B(TH/F )

∫
TH

∆H(t)2dH(tδ)d
′
H(tδ)dt.

Here {TH}e (resp. {TH}e,s) is a set of representatives for the (resp. stable)
conjugacy classes of elliptic tori TH in H.
(2) Let d0, d′0 be conjugacy invariant functions on the elliptic set of C0.
Put

〈d0, d
′
0〉0 =

∑
{T0}e

1
[W (T0)]

∫
T0

∆0(t)2d0(t)d
′
0(t)dt,

where {T0}e is a set of representatives for the conjugacy classes of elliptic
tori in C0.
(3) Write dw0 (t) for d0(tw), where if t = t′ × t′′ ∈ C0 then tw or t̃ is t′′ × t′.

4.2 Proposition. Let d0, d′0 be locally integrable class functions on
the elliptic set of C0, and dH = dH(d0), d′H = dH(d′0) the associated class
function on the elliptic regular set of H. Then

〈dH , d′H〉H = 2〈d0, d
′
0〉0 + 2〈d0, d

′w
0〉0.

Proof. By definition 〈dH , d′H〉H is a sum over {TH}e,s. For tori of
type I we have [W ′(TH)] = 2[W (T0)], so the contribution is

∑
{T0}e,I

[F× : NE/FE×]
2[W (T0)]

∫
T0

χE/F (r)2κ(t)2∆0(t0)2

·[d0(t0) + d0(tw0 )][d
′
0(t0) + d

′
0(tw0 )]dt0
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where χ2
E/F = 1 and the set of r, F×/NE/FE×, has cardinality two. For

tori of type II we have W ′(TH) = W (T0), but each t in TH is obtained –
up to stable conjugacy – twice: once from T0 and once from Tw0 . Hence
the integral over TH has to be expressed as the sum of integrals over T0

and Tw0 , divided by 2. Then the contribution to 〈dH , d′H〉H will be the sum
over {T0}e,II of

[E×3 : NE/E3E
×]

2[W (T0)]

∫
T0

χE/E3(r)2κ(t)2∆0(t0)2

·[d0(t0) + d0(t20)][d
′
0(t0) + d

′
(tw0 )]dt0,

where χ2
E/E3

= 1 and κ2 = 1. The cardinality of the r is |E×3 /NE/E3E
×| =

2. We then obtain a sum over all T0, of types I (splitting over a quadratic
extension E of F ) and II (splitting over a biquadratic extension):

=
∑
{T0}e

1
[W (T0)]

∫
T0

∆0(t0)2(d0 + dw0 )(t0)(d
′
0 + d

′
0
w)(t0)dt0

= 〈d0 + dw0 , d
′
0 + d′0

w〉0 = 2〈d0, d
′
0〉0 + 2〈dw0 , d′0〉0,

since 〈dw0 , d′0w〉0 = 〈d0, d
′
0〉0. �

4.3 Corollary. Let πi, π′i (i = 1, 2) denote square integrable repre-
sentations of PGL(2, F ). Put

d0(t1, t2) = χπ1(t1)χπ2(t2), d′0(t1, t2) = χπ′1(t1)χπ′2(t2),

where χπ denotes the character of π. Then

dw0 (t1, t2) = d0(t2, t1), 〈d0, d
′
0〉0 = δ(π1, π

′
1)δ(π2, π

′
2)

and
〈dw0 , d′0〉0 = δ(π2, π

′
1)δ(π1, π

′
2),

where δ(π, π′) is 1 if π and π′ are equivalent and 0 otherwise, so that

〈dH , d′H〉H =


0, πi 6' π′i and πi 6' π′j ;
2, πi ' π′i and πi 6' π′j , or πi 6' π′i and πi ' π′j ;
4, πi ' π′i ' πj

where {i, j} = {1, 2}. �
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4.4 Proposition. Let dH be a locally integrable class function on the
elliptic set of H. Then dH is stable if and only if 〈dH , dH(d0)〉H is 0 for
every class function d0 = χπ0 , where π0 ranges over the square integrable
irreducible representations of C0.

Proof. We have that 〈dH , dH(d0)〉H is equal to

∑
{TH}s,I,II

1
[W ′(TH)]

∑
r

∫
TH

∆H(t)dH(tr)·χ(r)κ(t)∆0(t0)[d0(t0)+d0(tw0 )]dt,

where the first sum ranges over a set of representatives for the stable con-
jugacy classes of tori in H of types I and II, and r ranges over a set of rep-
resentatives for the conjugacy classes within the stable classes (F×/NE×

or E×3 /NE/E3E
×), is 0 if dH(tr) = dH(t) for all r and t. If dH is not stable,

note that
∆H(t)[

∑
r

χ(r)dH(tr)]κ(t)

is a nonzero class function on the elliptic set of H which is invariant under
t 7→ tw, and introduce a function dH,0 on the elliptic set of C0 by

∆0(t0)dH,0(t0) = ∆H(t)κ(t)
∑
r

χ(r)dH(tr).

Then 〈dH , dH(d0)〉H becomes

∑
{T0}e

1
2[W (T0)]

∫
T0

∆0(t0)2dH,0(t0)[d0(t0) + d0(tw0 )]dt0

=
∑
{T0}e

1
[W (T0)]

∫
T0

∆0(t0)2dH,0(t0)d0(t0)dt0 (as dH,0(tw0 ) = dH,0(t0)).

But since dH,0 is a nonzero conjugacy class function on the elliptic set of
C0 there is a square integrable irreducible representation π0 of C0 such
that 〈dH,0, χπ0〉C0 6= 0, and the proposition follows. �

Let us review several λ-lifting facts, used in the study of the character
relations below.
(1) The representation 1 o π1 of H, where π1 is a PGL(2, F )-module,
λ-lifts to the θ-invariant G-module IG(π1, π1) (Proposition V.1.2). If π1
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is cuspidal then 1 o π1 is the direct sum of two irreducible inequivalent
tempered representations π+

H = π+
H(π1) and π−H = π−H(π1) (Proposition

V.2.3(b)). Then

tr IG(π1, π1; f × θ) = trπ+
H(fH) + trπ−H(fH)

for all matching f , fH . The same assertion holds when π1 is ξ sp2, ξ2 = 1,
see (3) below.
(2) For any PGL(2, F )-module π2, the H-module ξπ2ν

1/2
o ξν−1/2 λ-lifts

to the G-module IG(ξν1/2, π2, ξν
−1/2) (Proposition V.1.2), which has com-

position series consisting of IG(ξ sp2, π2) and IG(ξ212, π2). The H-module
ξπ2ν

1/2
o ξν−1/2 has a unique irreducible subrepresentation, which we de-

note by δ(ξπ2ν
1/2, ξν−1/2). It is square integrable, and a unique quotient

L(π2ξν
1/2, ξν−1/2) which is nontempered, when π2 is cuspidal (or is sp2,

see (3) below); see Proposition V.2.2. Thus

tr IG(ξ sp2, π2; f × θ) + tr IG(ξ12, π2; f × θ)

= tr δ(ξπ2ν
1/2, ξν−1/2)(fH) + trL(π2ξν

1/2, ξν−1/2)(fH)

for all matching f and fH .
(3) We have the following decomposition into irreducibles, where the τ are
tempered and δ is square integrable:

1o σ sp2 = τ(ν1/2 sp2, ν
−1/2σ) + τ(ν1/212, ν

−1/2σ),

ν1/2 sp2oν
−1/2σ = τ(ν1/2 sp2, ν

−1/2σ) + L(ν1/2 sp2, ν
−1/2σ),

ν1/212 o ν
−1/2σ = τ(ν1/212, ν

−1/2σ) + L(ν, 1o ν−1/2σ),

1o σ12 = L(ν1/2 sp2, ν
−1/2σ) + L(ν, 1o ν−1/2σ),

ν1/2ξ sp2oν
−1/2σ = δ(ξν1/2 sp2, ν

−1/2σ) + L(ν1/2ξ sp2, ν
−1/2σ),

ν1/2ξ12 o ν
−1/2σ = L(ν1/2ξ sp2, ν

−1/2σξ) + L(νξ, ξ o ν1/2σ),

(Proposition V.2.1). Here σ and ξ are quadratic characters of F×.
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5. Character Relations

Our main local results of character relations are derived from the trace
formula identity.

5. Proposition. Let π1, π2 be two inequivalent cuspidal (resp. cuspi-
dal or special) representations of PGL(2, F ), F a local p-adic field. Then
there are two cuspidal (resp. square integrable) representations of H =
PGSp(2, F ), π+

H and π−H , such that for all matching functions f , fH , f0

on G, H, C0, we have

tr(π1 × π2)(fC0) = trπ+
H(fH)− trπ−H(fH)

and
tr I(π1, π2; f × θ) = trπ+

H(fH) + trπ−H(fH).

The same identities hold when π1 = π2 is square-integrable, but then π+
H

and π−H are the two irreducible constituents of 1 o π1. They are tempered
and π+

H + π−H = 1o π1.

Proof. This is our main local assertion in this work. The long proof
will be cut into a sequence of assertions, most of which we name “Lemmas”.
The case of π1 = π2 is in 6.5. Elsewhere we assume that π1 6= π2, unless
otherwise specified.

Let (π, V ) be an admissible representation of a p-adic reductive group
G. As in [BZ1], we introduce the

5.1 Definition. (1) Let N denote the unipotent radical of a parabolic
subgroup of G with Levi subgroup M . Then the quotient VN of V by
the span of the vectors π(n)v − v as n ranges over N and v over V , is
an admissible M -module π̃N . Its tensor product with δ

1/2
N (δN (m) =

|det(Ad(m)|LieN)|) is called the normalized M -module (πN , VN ) of N -
coinvariants of π.
(2) The representation π is called cuspidal when πN = {0} for all N 6= {1},
that is when trπN (φ) = 0 for every test measure φ on M . Analogously,
(3) If θ is an automorphism of G and π is θ-invariant (π ' θπ), we say
that π is θ-cuspidal if for every θ-invariant proper parabolic subgroup of
G we have trπN (φ× θ) = 0 for every test measure φ.
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5.2 Lemma. The representation π = I(π1, π2), π1 6= π2, is θ-invariant
and θ-cuspidal.

Proof. If N is the unipotent radical of a proper parabolic subgroup of
PGL(4, F ) then πN is zero unless the parabolic is of type (2,2), in which
case πN = π1 × π2 + π2 × π1.

However, the irreducible constituents π1 × π2 and π2 × π1 of this πN
are interchanged by θ so that the trace trπN (φ× θ) vanishes for any test
measure φ on M . �

When π1 6= π2 but one or two of them is square integrable noncuspidal
(special) representation of PGL(2, F ), the representation I(π1, π2) is (θ-
invariant and) tempered subquotient of the induced I(ν1/2, π2, ν

−1/2) (if
π1 = sp2). This is the λ-lift of π2ν

1/2
o ν−1/2, whose composition series

consists of the square integrable δ(π2ν
1/2, ν−1/2) and the nontempered

L(π2ν
1/2, ν−1/2) (if π2 is cuspidal), or square integrable δ(ξν1/2 sp2, ν

−1/2)
and nontempered L(ν1/2ξ sp2, ν

−1/2) (if π2 is the special ξ sp2, where ξ2 =
1 6= ξ). Since the functor of N -coinvariants is exact ([BZ1]), the central
exponents (central characters of constituents) of I(sp2, π2)N correspond to
those of δ(π2ν

1/2, ν−1/2) (π2 cuspidal) or δ(ξν1/2 sp2, ν
−1/2) (if π2 = ξ sp2),

which are decaying.
The twisted analogue of the orthogonality relations of Kazhdan [K2],

Theorem K, implies in our case where π1 6= π2 are square integrable
PGL(2, F )-modules:

5.3 Lemma. There exists a θ-pseudo-coefficient f1 of π = I(π1, π2).

A θ-pseudo-coefficient f1 is a test measure with the property that
tr I(π1, π2; f1 × θ) = 1 but trπ′(f1 × θ) = 0 for every irreducible G-
module π′ inequivalent to (i) I(π1, π2) if π1, π2 are cuspidal, or to (ii)
any constituent of I(a, b) if π1 (or π2) is ξ sp2, ξ2 = 1, in which case a is
ξI(ν1/2, ν−1/2) (or b is such).

Note that the θ-orbital integral Φ(g, f1×θ) of f1 is supported on the θ-
elliptic set, and is equal to the complex conjugate of the θ-twisted character
χI(g × θ) of I = I(π1, π2).

We shall show below that χI(g × θ) depends only on the stable θ-
conjugacy class of g, hence Φ(g, f1 × θ) depends only on the stable θ-
conjugacy class of g.
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We now pass to global notations. Thus we fix a totally imaginary num-
ber field F whose completion at the places vi (0 ≤ i ≤ 3) is our local field,
denoted now Fv0 . Denote our local representations by πjv0 , j = 1, 2. Fix
πjvi ' πjv0 (j = 1, 2; i = 1, 2, 3) under the isomorphism Fvi ' Fv0 .

5.4 Lemma. There exist cuspidal representation π1 and π2 which are
unramified outside the places vi (1 ≤ i ≤ 3) of F whose components at vi
are our π1vi and π2vi (respectively).

Proof. This is done using the nontwisted trace formula for PGL(2),
and a test measure f whose components fvi are pseudo coefficients of πjvi ,
and whose components fv at all other finite places are spherical. At one
of these v 6= vi take fv with trπv(fv) = 0 for all one-dimensional repre-
sentations πv of PGL(2, Fv) (the trivial representation and its twist by a
quadratic character). Most of the fv are the unit element of the Hecke
algebra, but the remaining finite set can be taken to have the property
that the orbital integral of f∞ = ⊗v<∞fv is nonzero at a rational (in
PGL(2, F )) elliptic regular element γ. The coefficients of the character-
istic polynomial of the conjugacy classes of rational conjugacy classes are
discrete and lie in a compact, once f∞ is chosen. We can choose f∞ so that
the orbital integral of f = f∞ ⊗ f∞ is nonzero at γ, but zero at any other
rational conjugacy class (in particular, choose f∞ to vanish on the singular
set). For such f the geometric side of the trace formula reduces to a single
nonzero term (the weighted orbital integrals vanish as two components fvi
are elliptic, the singular orbital integrals vanish by choice of f∞).

On the spectral side the logarithmic derivatives of the intertwining op-
erators and the contributions from the continuous spectrum vanish as two
components fvi are elliptic. If π occurs with trπ(f) 6= 0, its components
at finite v 6= vi are unramified, and its components at vi are our chosen
πjvi , since fvi are their pseudo coefficients. In the case that the πjvi are
special we chose some fv to be spherical with trace zero at each one di-
mensional representation πv. In this last case the global π will not be one
dimensional, so it has to be cuspidal. �

Once we have the cuspidal representations π1 and π2, we use our usual
trace formula identity where the contribution to the trace formula of C0

is the cuspidal representation π0 = π1 × π2. There is no contribution to
the trace formula of the θ-twisted endoscopic group C, and by the rigidity
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theorem for PGL(4) the only contribution to the θ-twisted trace formula
is I(π1, π2). The contributions to the trace formula of H are some discrete
spectrum representations πH .

Applying generalized linear independence of characters at all places v 6=
vi (0 ≤ i ≤ 3) where π1v × π2v is unramified or Fv is C, we obtain the
identity ∏

v

tr I(π1v, π2v; fv × θ) +
∏
v

tr(π1v × π2v)(fC0v)

= 2
∑
πH

m(πH)
∏
v

trπHv(fHv).(1)

The products range over v = vi (0 ≤ i ≤ 3); m(πH) are the multiplicities
of the discrete spectrum representations πH . The identity holds for all
triples (fv, fC0v, fHv) of matching measures such that at 3 out of the 4
places the orbital integrals vanish on the nonelliptic set.

It is clear that

5.5 Lemma. The distribution fv 7→ tr I(π1v, π2v; fv × θ) depends only
on fHv, namely only on the stable θ-orbital integrals of fv.

Consequently the θ-twisted character of I(π1v, π2v) is a θ-stable func-
tion. In particular, the θ-twisted orbital integral of a θ-pseudo-coefficient
of I(π1v, π2v) is not identically zero on the θ-elliptic set.

This establishes a fact which is used in the derivation of the identity (2)
below.

5.6 Lemma. Fix v ∈ {vi}. The right side of (1) is not identically zero
as fHv ranges over the functions whose orbital integrals vanish outside the
elliptic set of H.

Proof. Had it been zero we could choose fHv whose stable orbital
integrals are zero (and so fv = 0) but with unstable orbital integrals, that
is fC0,v, with tr(π1v × π2v)(fC0v) 6= 0. Hence for each v there are πHv on
the right whose character is nonzero on the elliptic set. �

Using the θ-twisted trace formula and a totally imaginary field F whose
completion at v0 is the local field of the proposition, we construct a repre-
sentation π as follows.
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5.7 Lemma. There exists a cuspidal θ-invariant automorphic repre-
sentation π with the following properties. Its component at v0 is our
πv0 = I(π1v0 , π2v0), where π1v0 6= π2v0 are square integrable representa-
tions of PGL(2, Fv0). At three nonarchimedean places v1, v2, v3 the com-
ponent is the Steinberg (square integrable) representation Stvi . At all other
nonarchimedean places v the component is unramified.

Proof. We construct π on using the stable θ-twisted trace formula and
a test function f = ⊗fv whose component fv is unramified at v 6= vi (i =
0, 1, 2, 3), our pseudo coefficient at v0, and the pseudo coefficient of Stvi
(i = 1, 2, 3) at vi.

Since the θ-character of Stvi is θ-stable (being the λ-lift of StH,vi), the
θ-twisted trace formula for f with such a component is θ-stable, namely
its geometric part depends only on the θ-stable orbital integrals. As we
showed in 5.5 above, the θ-stable orbital integral of the pseudo-coefficient
fv0 of πv0 does not vanish identically on the θ-elliptic set. This determines
the nonarchimedean components of f .

The geometric side of the stable θ-trace formula consists of orbital inte-
grals. We choose the archimedean components to be supported on a small
enough neighborhood of a single θ-regular stable elliptic θ-conjugacy class,
such that there will be only one rational stable θ-conjugacy class γ, which
is in the support of the global f and there Φst(γ, f × θ) 6= 0.

Then the geometric side of the stable θ-trace formula reduces to a single
nonzero term, namely Φst(γ, f × θ), and so the spectral side of the θ-trace
formula is nonzero.

By the choice of f there is a representation π of G(A) which is θ-
invariant, whose components outside vi (i = 0, 1, 2, 3) are unramified and
at vi are I(π1v0 , π2v0) and Stvi (i = 1, 2, 3).

In fact, π cannot have at vi (i = 1, 2, 3) components other than Stvi
because the choice of fvi and the fact that trπvi(fvi × θ) 6= 0 imply that
πvi is a constituent in the composition series of the induced representation
Ivi (from the Borel subgroup) containing Stvi . Since π has the component
I(π1v0 , π2v0), had it not been a discrete series, it could only be induced
I(π1, π2) from a cuspidal representation π1 × π2 of the Levi subgroup
of type (2,2), and its components at vi (i = 1, 2, 3) would have to be
I(ν sp2, ν

−1 sp2) or I(ν12, ν
−112), which are not unitarizable.

Of course πvi (i = 1, 2, 3) cannot be the trivial representation, since
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then π would be trivial, but is has the component I(π1v0 , π2v0).
Now since π has components Stvi it has to be cuspidal. Indeed, having

the component I(π1v0 , π2v0) prevents π from being a noncuspidal discrete
spectrum representation, a complete list of which is given in [MW1]. In
particular π is generic. �

Having the representation π we can use the trace formulae identity,
and a standard argument of generalized linear independence of characters,
applied at all places where πv is unramified, to obtain an identity∏

trπv(fv × θ) =
∑
πH

m(πH)
∏

trπHv(fHv).

The products range over v = vi (0 ≤ i ≤ 3) and the archimedean places.
By rigidity and multiplicity one theorem for G = PGL(4) the only contri-
bution on the left side is our cuspidal π. Since it has Steinberg components,
the only contribution on the right is of discrete spectrum representations
πH of H(A); there can be no contributions from the endoscopic group C0

of H, and contributions from the θ-endoscopic group C of G have been
dealt with already.

We now apply generalized linear independence of characters at the
archimedean places v of F , where Fv = C and the representation πv is
fully induced (from the Borel subgroup). At the places vi (i = 1, 2, 3) we
use fHvi which is a matrix coefficient of StHvi and fvi which is a θ-matrix
coefficient of Stvi . These functions are matching since StHvi λ-lifts to Stvi
and Φ(fHvi) = χStHvi

, Φ(fvi) = χStvi
. Their orbital integrals vanish on

the non (θ-) elliptic set.
On the side of H we have that trπHvi(fHvi) is 0 unless πHvi is a sub-

quotient of ν2 × ν o ν−3/2 (see Corollary V.1.5). Since a component of an
automorphic representation πH has to be unitarizable, the subquotients of
ν2 × ν o ν−3/2 which may occur are StHvi and the trivial representation
1Hvi . But a discrete spectrum πH which has a trivial component is trivial
(by the weak approximation theorem), and writing v for v0 we conclude
that

5.8 Lemma. There are Hv-modules πHv and positive integers m′(πHv)
such that for any matching functions fv and fHv we have

tr I(π1v, π2v; fv × θ) =
∑
πHv

m′(πHv) trπHv(fHv).(2)



5. Character Relations 139

The πH which occur are cuspidal or square integrable.

Proof. Let N denote the unipotent radical of any proper parabolic
subgroup of H. Let πH,N be the module of N -coinvariants of πH . Since (i)
the representation I(π1, π2) is θ-cuspidal if π1 6= π2 are cuspidal, and (ii) its
θ-central exponents decay if π1 6= π2 are square integrable, and (iii) each
N corresponds to the unipotent radical of a proper θ-invariant parabolic
subgroup of G, the character relation (2) implies that

∑
m′(πH)χπHN is

zero if π1 6= π2 are cuspidal, and it decays if π1 6= π2 are square integrable.
But the m′(πH) are positive. Hence all πH,N are zero if π1 6= π2 are
cuspidal, and decay if π1 6= π2 are square integrable, namely the πH which
occur are cuspidal or square integrable, respectively. �

5.9 Lemma. The sum (2) with coefficients m′ is finite.

Proof. To see this, write it in the form

tr I(f × θ) =
b∑
i=1

mi trπHi(fH), I = I(π1, π2).

where 1 ≤ b ≤ ∞. Let fi be a pseudo coefficient of the square integrable

πHi, and for any finite a ≤ b put fa =
a∑
fi, where

a∑
indicates the sum

over i (1 ≤ i ≤ a). Then

a2 ≤ (
a∑
mi)2 =

[ a∑
mi trπHi(fa)

]2 = [tr I(f(fa)× θ)]2

≤ 〈χI ,
a∑
χHi〉2 ≤ 〈χI , χI〉H · 〈

a∑
χHi,

a∑
χHi〉 = a〈χI , χI〉H .

Here χI(Ng) = χI(g × θ) is a function on the space of stable conjugacy
classes in H, since χI(g × θ) depends only on the stable θ-conjugacy class
of g in G. The orthogonality relations for twisted characters, which are
locally integrable, imply that 〈χI , χI〉H is finite, hence a is bounded, and
the sum is finite. �



140 V. Lifting from PGSp(2) to PGL(4)

6. Fine Character Relations

In this section we conclude the proof of Proposition 5. Using (2), we can
rewrite our identity in the form∏

v

tr(π1v × π2v)(fC0v) =
∑

m(⊗vπHv)
∏
v

trπHv(fHv),

where them here are integers, possibly negative. As the left side is nonzero,
there are nonzero contributions on the right whose character is nonzero on
the elliptic regular set, for each v.

Once again using (2) we write our identity – but on choosing fHv to be
a matrix coefficient of πHv which occurs on the right side, at 3 out of our
4 places, so that trπHv(fHv) is 1 or 0 (or −1) at this places, we get an
identity of the form

c tr(π1,v0 × π2,v0)(fC0,v0)

=
∑

m(πH,v0) trπH,v0(fH,v0)−
∑

m′(πH,v0) trπH,v0(fH,v0).

The term following the negative sign is tr I(π1v0 , π2v0 ; fv0 × θ). Here
fHv0 , fC0v0 are arbitrary matching functions, and c 6= 0

(c =
∏
v 6=v0

tr(π1v × π2v)(fC0v)).

Write m̃ for m/c, and note that the 4 places are the same: Fv0 = Fvi
(i = 1, 2, 3), and so are the components π1v × π2v, by our construction.
Multiplying the last identity over the 4 places (not only v0, but also v1,
v2, v3) we obtain

∏
v tr(π1v × π2v)(fC0v)

=
∏
v

[∑
m̃(πHv) trπHv(fHv)−

∑
m̃′(πHv) trπHv(fHv)

]
.

Comparing this with the original identity for the left side we deduce that
the complex number

∏
v m̃(πHv) is an integer, namely (m(πHv)/c)4 is an

integer, hence c divides each of the m. We finally get – for all matching
functions fHv and fC0v – the identity

tr(π1v × π2v)(fC0v) =
∑

m(πHv) trπHv(fHv)−
∑

m′(πHv) trπHv(fHv)
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=
∑

m′′(πHv) trπHv(fHv),

where the m′′(πHv) are integers, positive or negative.
Of course had we used the θ-trace formula with no restrictions at 3

places the derivation of the last identity from (2) would be easier, but we
do not use the unrestricted trace formula identity.

6.1 Lemma. The sum with coefficients m′′ is finite. It consists of ≤ 2
summands if π1 6= π2.

Proof. To see this, write it in the form

tr(π1 × π2)(fC0) =
b∑
i=1

m′′i trπHi(fH)

where 1 ≤ b ≤ ∞. Let fi be a pseudo coefficient of the square integrable

πHi, and for a finite a ≤ b put fa =
a∑ m′′i
|m′′

i
|fi, where

a∑
indicates sum

over i (1 ≤ i ≤ a). Then

a2 ≤ (
a∑
|m′′i |)2 =

[ a∑
m′′i trπHi(fa)

]2 =
[

tr(π1 × π2)(f0(fa))
]2

= 〈dH(χπ1×π2),
a∑ m′′i
|m′′i |

χπHi〉2H

≤ 〈dH(χπ1×π2), dH(χπ1×π2)〉H · 〈
a∑
χπHi ,

a∑
χπHi〉H

= 2(1 + δ(π1, π2))a.

The last equality follows from Corollary 4.3. Hence a ≤ 2 if π1, π2 are
inequivalent. �

6.2 Lemma. The m′′ take both positive and negative values.

Proof. To see this, we write χ = dH(χπ1×π2). Then χ is an unstable
conjugacy function on H, thus zero on the elliptic tori of types III and IV,
and its value at one conjugacy class of type I or II is negative its value at
the other conjugacy class within the stable class.

The πHi (1 ≤ i ≤ a) which occur in the identity for tr(π1 × π2)(fC0)
with mi 6= 0 are cuspidal or square integrable or constituents of 1 o π2,
π2 square integrable (see Propositions 2.1(d) and 2.3(b)), by Casselman
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[C] (compare the central exponents), since π1 × π2 is cuspidal or square
integrable. Hence, choosing F to be totally imaginary, and using pseudo-
coefficients and the trace formula as usual, we can construct a global dis-
crete spectrum representation πH with (1) a component π0

Hv0
which occurs

in the trace identity of our local π1 × π2 at v0, (2) a Steinberg component
StHvi at v1, v2, v3, (3) the nonarchimedean components of πH away from
vi (0 ≤ i ≤ 3) are unramified. This πH contributes to the trace formula
identity, where the contribution π to the twisted formula of G is necessarily
cuspidal, as it has a Steinberg component.

We apply as usual generalized linear independence of characters at the
unramified components and the archimedean ones, and use coefficients of
StHvi at v1, v2, v3. We deduce that there is a θ-invariant generic repre-
sentation π of G(Fv0) with an identity

trπ(f × θ) =
∑

m̃(πH) trπH(fH),

where m̃(πH) ≥ 0 for all πH and > 0 for the π0
H with which we started,

which occurs in the trace identity for trπ1 × π2, and which is square inte-
grable or elliptic tempered constituent of 1o π2, square integrable π2.

Clearly χπ(Nt) = χπ(t × θ) is a stable class function on H, hence
perpendicular to the unstable function χ, that is

0 = 〈χ, χπ〉H = 〈
∑
πH

m′′(πH)χπH ,
∑
π′
H

m̃(π′H)χπ′
H
〉 =

∑
πH

m′′(πH)m̃(πH).

Now the m̃ are nonnegative and m̃(π0
H) > 0 for the π0

H for which m′′(π0
H) 6=

0. Hence m′′ takes both positive and negative values. �

In particular we see that a, the number of irreducible πH withm′′(πH) 6=
0, is at least two, hence a = 2 when π1 and π2 are inequivalent.

6.3 Lemma. Suppose that π1 and π2 are (irreducible) cuspidal (resp.
square integrable) inequivalent representations of PGL(2, F ). Then there
are (irreducible) cuspidal (resp. square integrable) representations π+

H =
π+
H(π1 × π2) and π−H = π−H(π1 × π2) such that for all matching functions
fH , fC0 we have

tr(π1 × π2)(fC0) = trπ+
H(fH)− trπ−H(fH).(3)
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Proof. We have a = 2 and (
a∑
|m′′|)2 ≤ 4. As the m′′ are integers we

see that |m′′| = 1. �

We now return to the identity (1), and evaluate it at fHvi (i = 1, 2, 3)
which are matrix coefficients of π−Hvi(π1vi × π2vi). This choice determines
fC0vi and fvi (or rather their orbital integrals), and our identity becomes

c tr I(π1, π2; f × θ) = (2m(π+
H) + 1) trπ+

H(fH)

+(2m(π−H) + 1) trπ−H(fH) + 2
∑
πH

m(πH) trπH(fH).

Here we deleted the subscript v0 to simplify the notations, as usual. The
πH are inequivalent (pairwise and to π±H), hence c 6= 0. Since

tr I(π1, π2; f × θ)

is a linear combination with positive coefficients of some trπH(fH), we
conclude that c = 1 (in fact there is so far a possibility that c = 1

2 , but this
will be ruled out later). Once again, the πH which occur with m(πH) 6= 0
are cuspidal and finite in number.

6.4 Lemma. Suppose that π1 and π2 are (irreducible) cuspidal (resp.
square integrable) inequivalent representations of PGL(2, F ). Then m(π+

H)
= m(π−H). We write m(π1 × π2) for the joint value.

Proof. The twisted character χ(Nt) = χI(π1,π2)(t×θ) of I(π1, π2) is a
stable function, while χ+ − χ−, χ± = χπ±

H
, is unstable. Hence their inner

product is zero:

0 = 〈χ, χ+ − χ−〉H = (2m(π+
H) + 1)− (2m(π−H) + 1). �

Let us discuss the case of a square integrable π1 = π2 on PGL(2, F ).

6.5 Lemma. If π1 = π2 are square integrable, they satisfy the conclusion
of Proposition 5.

Proof. The representation 1oπ2 is reducible (see V.2.1(d), V.2.3(b)).
It is the direct sum of its two irreducible constituents, π+

H and π−H , which
are tempered. The induced representation 1oπ2 of H λ-lifts to the induced



144 V. Lifting from PGSp(2) to PGL(4)

representation I(π2, π2) of G by V.1.2, namely we have, for matching f ,
fH ,

tr I(π2, π2; f × θ) = tr(1o π2)(fH) = trπ+
H(fH) + trπ−H(fH).

For the other identity of Proposition 5 we denote our representation by
π2v0 , choose a totally imaginary number field F whose completion at v0 is
our local field, Fv0 , and construct two cuspidal representations, π1 and π2,
of PGL(2,A), which have the same cuspidal components at three places
v1, v2, v3 (6= v3), which are unramified outside the set V = {v0, v1, v2, v3},
such that π1v0 is unramified while the component at v0 of π2 is our square
integrable π2v0 .

We use the trace formulae identity, and the set V , such that the only
contributions are those associated with I(π2, π2). These contributions are
precisely those associated with I(π2, π2), 1 o π2 on H(A) and π2 × π2 on
C0(A). Note that at the three places v1, v2, v3 we work with fvi whose
twisted orbital integrals vanish outside the θ-elliptic set, while I(π2vi , π2vi)
is not θ-elliptic. Hence the contribution from I(π2, π2) to the trace formula
identity vanishes for our test functions.

Now 1o π2 enters the trace formula of H(A) as

1
4

∏
0≤i≤3

trR(π2vi)(1o π2vi)(fHvi),

where R(π2vi) is the normalized intertwining operator on 1 o π2vi , while
π2×π2 enters the trace formula of C0(A) as

∏
0≤i≤3 tr(π2vi×π2vi)(fC0vi).

In the identity of trace formulae, the trace formula of C0(A) enters with
coefficient − 1

4 (see e.g. first formula in Chapter IV). We conclude that∏
0≤i≤3

trR(π2vi)(1o π2vi)(fHvi) =
∏

0≤i≤3

tr(π2vi × π2vi)(fC0vi).

Repeating the same argument with π1 instead of π2 we get the same
identity but where the product ranges over 1 ≤ i ≤ 3 instead. In both
cases fC0vi (1 ≤ i ≤ 3) can be any functions supported on the elliptic set
of Cvi . Taking the quotient we conclude that

trR(π2v0)(1o π2v0)(fHv0) = tr(π2v0 × π2v0)(fC0v0)
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for all matching functions fC0v0 , fHv0 . The normalized intertwining oper-
ator R(π2v0) has order 2 but it is not a scalar on the reducible 1oπ2v0 . It
is 1 on one of the two constituents, which we now name π+

Hv0
, and −1 on

the other, which we name π−Hv0
, as required. �

We can now continue the discussion of the case of square integrable
π1 6= π2. We claim that

6.6 Lemma. The (finite) sum over πH(6= π±H) in our identity (for all
matching f , fH , where the m are nonnegative)

tr I(π1, π2; f × θ) = (2m(π+
H) + 1) trπ+

H(fH) + (2m(π−H) + 1) trπ−H(fH)

+2
∑
πH

m(πH) trπH(fH)

is empty.

Proof. To show this we introduce the class functions on the elliptic
set of H

χ1 = (2m(π+
H) + 1)χπ+

H
+ (2m(π−H) + 1)χπ−

H

and
χ0 = 2

∑
πH

m(πH)χπH .

Also write χθI(π1,π2) for the class function on the regular set of H whose
value at the stable conjugacy class Ng is χI(π1,π2)(g × θ).

Our first claim is that χ1 (and χ0) is stable. It suffices to show that
〈χ1, dH(π′1×π′2)〉H is 0 for all square integrable π′1×π′2 on C0. By (3) and
since m+ = m− this holds when π′1×π′2 is equivalent to π1×π2 (or π2×π1).
When π′1×π′2 is inequivalent to π1×π2 or π2×π1, the twisted orthogonality
relations for twisted characters imply that 〈χθI(π1,π2), χ

θ
I(π′1,π

′
2)〉H is zero.

Since the coefficients m are nonnegative, if πH ∈ {π+
H(π1×π2)}∪{π−H(π1×

π2)} then it is perpendicular to dH(π′1 × π′2), and the claim follows.
Next we claim that χ0 is zero. If not, χ = 〈χ1 + χ0, χ1〉H · χ0 − 〈χ1 +

χ0, χ0〉H · χ1 is a nonzero stable function on the elliptic set of H. (Note
that 〈χ0, χ1〉H = 0). Choose f ′v0

on Gv0 such that Φ(t, f ′v0
×θ) = χ(Nt) on

the θ-elliptic set of Gv0 and it is zero outside the θ-elliptic set. As usual fix
a totally imaginary field F and create a cuspidal θ-invariant representation
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π which is unramified outside v0, v1, v2, v3, has the component Stvi at vi
(i = 1, 2, 3), and trπv0(f ′v0

× θ) 6= 0. Since π is cuspidal as usual by
generalized linear independence of characters we get the local identity

trπv0(fv0 × θ) =
∑
πH,v0

m1(πH,v0) trπH,v0(fH,v0)

for all matching fv0 , fH,v0 . The local representation π = πv0 is perpendic-
ular to I(π1, π2) since 〈χ, χ0 + χ1〉H = 0, and χ0 + χ1 = χθI(π1,π2).

Since χ1 + χ0 is perpendicular to the θ-twisted character χθΠ of any θ-
invariant representation Π inequivalent to I(π1, π2), χ is also perpendicular
to all χθΠ, hence tr Π(f ′v0

× θ) = 0 for all θ-invariant representations Π,
contradicting the construction of πv0 with trπv0(f ′v0

× θ) 6= 0. Hence
χ = 0, which implies that χ0 = 0, namely that for π1 6= π2 we have

tr I(π1, π2; f × θ)
= (2m(π+

H) + 1) trπ+
H(fH) + (2m(π−H) + 1) trπ−H(fH).(4)

Since the character on the left is stable, it is perpendicular to the unstable
character on the left of (3). So the right sides of (3) and (4) are orthogonal,
hence m(π+

H) = m(π−H). �

6.7 Lemma. The integer m = m(π+
H) = m(π−H) is 0.

We show at the end of section 10 that precisely one out of π+
H , π−H is

generic.
Our proof of the vanishing of m(π+

H) = m(π−H) is global. It is based on
the theory of generic representations. This latter theory implies that given
automorphic cuspidal (generic) representations π1 and π2 of PGL(2,A)
there exists a generic cuspidal representation πH of PGSp(2,A) which is
a λ0-lift of π1 × π2, namely λ0(π1v × π2v) = πHv at almost all places v of
F , where π1, π2 and πH are unramified and the local lifting λ0 is defined
formally by the dual group homomorphism λ0 : Ĉ0 → Ĥ.

Moreover, in Corollary 7.2 below we prove that πH occurs in the discrete
spectrum of PGSp(2,A) with multiplicity one.

To use this, beginning with our local square integrable representations
π′1v0

and π′2v0
, we construct a totally imaginary field F with Fvi = Fv0

at three places v1, v2, v3 and global cuspidal representations π1 and π2
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of PGL(2,A), which are unramified outside vi (0 ≤ i ≤ 3), with cuspidal
components π1v3 and π2v3 , and πjvi ' π′jv0

(i = 0, 1, 2; j = 1, 2).
We set up the identity (2), which in view of (3) and (4) takes the form∏

v

(2mv+1)[trπ+
H,v(fH,v)+trπ−H,v(fH,v)]+

∏
v

[trπ+
H,v(fH,v)−trπ−H,v(fH,v)]

= 2
∑
πH

m(πH)
∏
v

trπH,v(fH,v),

where v ranges over the finite set {vi; 0 ≤ i ≤ 3}. Corollary 7.2 below
asserts that m(πH) is 1 for at least one πH = ⊗πHv (product over all
places v of F ). Hence the corresponding number

∏
i(2mvi + 1) ± 1 is

2m(πH) = 2. Since mv0 = mv1 = mv2 , and 33 ± 1 > 2, mv0 is zero. The
proposition follows. �

Remark. Our proof is global. It resembles (but is strictly different
from) the second attempt at a proof of multiplicity one theorem for the
discrete spectrum of U(3) in [F4;II], Proposition 3.5, p. 48, which is also
based on the theory of generic representations.

However, the proof of [F4;II], p. 48, is not complete. Indeed, the claim in
Proposition 2.4(i) in reference [GP] to [F4;II], that “L2

0,1 has multiplicity
1”, is interpreted in [F4;II] as asserting that generic representations of
U(3) occur in the discrete spectrum with multiplicity one. But it should
be interpreted as asserting that irreducible π in L2

0,1 have multiplicity one
only in the subspace L2

0,1 of the discrete spectrum. This claim does not
exclude the possibility of having a cuspidal π′ perpendicular and equivalent
to π ⊂ L2

0,1.
Multiplicity one for the generic spectrum would follow via this global

argument from the statement that a (locally generic) representation equiv-
alent to a globally generic one is globally generic (multiplicity one implies
this statement too). In our case of PGSp(2) this follows from [KRS], [GRS],
[Sh1]. A proof for U(3) still needs to be written down.

The usage of the theory of generic representations in the proof above
is not natural. A purely local proof of multiplicity one theorem for the
discrete spectrum of U(3) based only on character relations is proposed in
[F4;II], Proof of Proposition 3.5, p. 47. It is based on Rodier’s result [Ro1]
that the number of Whittaker models is encoded in the character of the
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representation near the origin. Details of this proof are given in [F4;IV]
in odd residual characteristic for the basechange lifting from U(3, E/F )
to GL(3, E). It implies that in a tempered packet of representations of
U(3, E/F ) there is precisely one generic representation. We carried out
this proof in the case of the symmetric square lifting from SL(2) to PGL(3)
([F3]) but not yet for our lifting from PGSp(2) to PGL(4).

7. Generic Representations of PGSp(2)

We proceed to explain the result quoted at the end of the global proof
of Proposition 5 above (after Lemma 6.7) and attributed to the theory of
generic representations.

We start with a result of [GRS] which asserts: the weak (in terms of
almost all places) lifting establishes a bijection from the set of equivalence
classes of (irreducible automorphic) cuspidal generic representations πH of
the split group SO(2n+ 1,A), to the set of representations of PGL(2n,A)
of the form π = I(π1, . . . , πr), normalized induction from the standard
parabolic subgroup of the type (2n1, . . . , 2nr), n = n1 + · · ·+nr, where πi
are cuspidal representations of GL(2ni,A) such that L(S, πi,Λ2, s) has a
pole at s = 1 and πi 6= πj for all i 6= j. The partial L-function is defined
as a product outside a finite set S where all πi are unramified.

Moreover, if πH is a cuspidal generic representation (in the space of
cusp forms) of SO(2n + 1,A) which weakly lifts to π as above, and π′H is
a cuspidal representation of SO(2n + 1,A) which weakly lifts to π and is
orthogonal to πH , then π′H is not generic (has zero Whittaker coefficients
with respect to any nondegenerate character).

Note that this result does not rule out the possibility that there exists
a cuspidal representation π′H of SO(2n + 1,A) which is both orthogonal
and equivalent to the generic cuspidal πH , and consequently is locally
generic everywhere, but is not (globally) generic. Hence πH may occur in
the discrete, in fact cuspidal, spectrum of SO(2n+ 1,A) with multiplicity
m(πH) greater than one.

Of course we are interested in the case n = 2, where

7.0 Lemma. PGSp(2) ∼→SO(5).
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Proof. This well-known isomorphism can be constructed as follows.
Let U be the 5-dimensional space of 4× 4 matrices u such that tr(u) = 0
and tJ tuJ = u. Then PGSp(2) acts on U by conjugation: g : u 7→ gug−1,
and the action preserves the nondegenerate form (u1, u2) 7→ tr(u1u2) on
U . The action embeds PGSp(2) as the connected component SO(5) of the
identity of the orthogonal group O(5) preserving this form. �

A related result is Theorem 8.1 of [KRS]. It asserts that if π0 is a
cuspidal representation of Sp(2,A) which is locally generic everywhere,
and the partial L-function L(S, π0, id5, s) is nonzero at s = 1 then π0 is
(globally) generic. Here L is the degree 5 L-function associated with the
5-dimensional representation id5 : SO(5,C) ↪→ GL(5,C) of the dual group
SO(5,C) of Sp(2). When π0 is generic this L-function is nonzero at s = 1
by Shahidi [Sh1], Theorem 5.1, since id5 can also be obtained by the adjoint
action of the SO(5,C)-factor in the Levi subgroup GL(1,C)× SO(5,C) of
SO(7,C) on the 5-dimensional Lie algebra of the unipotent radical. This
is case (xx) of Langlands [L2]. Together, [KRS], Theorem 8.1, and [Sh1],
Theorem 5.1, although do not yet imply that a locally generic cuspidal
representation of Sp(2,A) is generic, do assert that:

7.1 Proposition. Let π0, π′0 be cuspidal representations of Sp(2,A).
Suppose that π′0 is generic, π0v is generic for all v, and π0v ' π′0v for
almost all v. Then π0 is generic.

I wish to thank S. Rallis for pointing out to me [KRS], [GRS] and [Sh1]
in the context used above, and F. Shahidi for the reference to [L2], (xx).

We need this result for PGSp(2,A):

7.2 Corollary. Any generic cuspidal representation π occurs in the
discrete spectrum of the group PGSp(2,A) = SO(5,A) with multiplicity
one.

In view of the results of [GRS] quoted above it suffices to show that:

7.3 Lemma. Let πH , π′H be cuspidal representations of PGSp(2,A).
Suppose that π′H is generic, πHv is generic for all v, and πHv ' π′Hv for
almost all v. Then πH is generic.

To see this, let us explain the difference between the group PGSp(2, F )
(which is equal to GSp(2, F )/Z(F )) and the group Sp(2, F )/{±I}.
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Note that PGSp(2) = PSp(2) as algebraic groups (over an algebraic
closure F of the base field F ). We have the exact sequences

1→ Gm → GSp(2)→ PGSp(2)→ 1,

1→ {±I} → Sp(2)→ PSp(2)→ 1,

since the center Z of GSp(2) is Gm while that ZS of Sp(2) is {±I}. Since
H1(F,Gm) = {0} and H1(F,Z/2) = F×/F×2, the associate exact se-
quences of Galois cohomology give

1→ F× → GSp(2, F )→ PGSp(2, F )→ 1,

thus PGSp(2, F ) = GSp(2, F )/F×, and

1→ {±I} → Sp(2, F )→ PSp(2, F )→ F×/F×2.

Hence Sp(2, F )/{±I} = ker[PGSp(2, F )→ F×/F×2] (as PGSp(2, F ) =
PSp(2, F )). The kernel is induced from the map λλλ : GSp(2) → Gm, asso-
ciating to g its factor of similitudes. Globally we have

Sp(2,A)/ZS(A) = ker[GSp(2,A)/Z(A)→ A
×/A×2],

where ZS(A) is the group of idèles (zv) ∈ A× with zv ∈ {±I} for all v.
It will be simpler to work with the group Zp(2,A) = Z(A) Sp(2,A), with
center Z(A), and Zp(2, F ) = Z(F ) Sp(2, F ). Note that Zp(2,A)/Z(A) =
Sp(2,A)/ZS(A) and

Zp(2, F )/F× = Sp(2, F )/{±I}.

An automorphic representation of Sp(2,A) with trivial central character is
the same as an automorphic representation of Zp(2,A) with trivial central
character.

Let us also explain the passage from representations of GSp(2, F ) to
those on F× Sp(2, F ).

7.4 Lemma. Put H = GSp(2, F ) and S = Sp(2, F )Z(F ).
(i) Let π be an irreducible admissible representation of H. Then the re-
striction ResHS π of π to S is the direct sum of finitely many irreducible
representations.
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(ii) Let πS be an irreducible admissible representation of S. Then there
is an irreducible admissible representation π of H whose restriction to S

contains πS.

Proof. The map GSp(2, F ) → F× associating to h its factor λλλ(h) of
similitudes defines the isomorphism H/S

∼→F×/F×2 = (Z/2)r, r finite
(r = 2 if F has odd residual characteristic). By induction, it suffices to
show (i), (ii) with H, S replaced by H ′, S′ with S ⊂ S′ ⊂ H ′ ⊂ H,
H ′/S′ = Z/2.

(i): Let (π, V ) be an admissible irreducible representation of H ′. Then
ResH

′

S′ π is admissible. If it is irreducible, (i) follows for π. If not, V
contains a nontrivial subspace W invariant and irreducible under S′. For
h ∈ H ′ − S′ we have V = W + π(h)W . Since W ∩ π(h)W is invariant
under H ′, it is zero, and so V = W ⊕ π(h)W where W and π(h)W are
irreducible S′-modules. (i) follows.

(ii): Given an irreducible admissible representation (πS
′
,W ) of S′, put

πI = IndH
′

S′ (π
S′). For h ∈ H ′ − S′, if s 7→ πS

′
(h−1sh) (s ∈ S′) is not

equivalent to πS
′

then πI is irreducible and ResH
′

S′ (πI) contains πS
′
. Oth-

erwise there exists an intertwining operator A : (πS
′
,W )→ (πS

′
,W ) with

πS
′
(h−1sh) = A−1πS

′
(s)A (s ∈ S′) and A2 = πS

′
(h2) (by Schur’s lemma).

We can then extend πS
′

to a representation π on the space W of πS
′

by
π(h) = A. We have (π,W ) ↪→ πI by w 7→ fw(g) = π(g)w (g ∈ H ′), and
πI ' π ⊕ πω, where ω is the nontrivial character of H ′/S′ = Z/2. �

Remark. The restriction of a generic admissible irreducible π of H to
S contains no irreducible representation πS with multiplicity > 1.

Indeed, π is generic if π ↪→ IndHN ψ for some generic character ψ of
the unipotent radical N = N(F ) of H. Note that N ⊂ S. Since H =
∪diag(I,λλλI)S, λλλ ∈ F×/F×2, and diag(I,λλλI) normalizes N , each πS ⊂
ResHS π is a constituent of IndSN ψ

λ for some generic character ψλ of N .
Now πI = IndHS (πS) ⊂ IndHS IndSN ψ

λ = IndHN ψ
λ. The uniqueness of the

embedding (“Whittaker model”) of π in IndHN ψ implies the uniqueness
of the embedding of π in πI , hence of πS in π, since by Frobenius reci-
procity: HomS(πS ,ResHS π) = HomH(πI , π), and the complete reducibility
(i) above, πS is contained in π with the same multiplicity that π is con-
tained in πI . �

Proof of Lemma 7.3. Let us then take a cuspidal representation π =
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⊗πv of PGSp(2,A) which is locally generic. Thus for each v there is
a nondegenerate character ψv of the unipotent radical Nv of the Borel
subgroup of Hv = PGSp(2, Fv) (and of Sv = Zp(2, Fv)/F×v ) such that
πv ↪→ IndHvNv (ψv). Applying the exact functor ResHvSv of restriction from Hv

to Sv we see that ResHvSv πv ↪→ ⊕γ IndSvNv (ψγv ), where ψγv are the translates
of ψv under Hv/Sv ' F×v /F

×2
v . Thus each irreducible constituent πSv of

ResHvSv πv is generic.
Since π is a submodule of the space L2

0(PGSp(2, F )\PGSp(2,A)), the
restriction map φ 7→ φ|(Zp(2,A)/Z(A)) defines a subspace πS0 of

L2
0(Zp(2, F )Z(A)\Zp(2,A)).

Choose an irreducible (under the right action of Zp(2,A)) subspace πS

of πS0 . Then πS = ⊗πSv is a cuspidal representation of Zp(2,A) whose
components are all generic. The same construction, applied to the cuspidal
generic π′, gives a cuspidal generic π′S , locally equivalent to πS at almost
all places. By Proposition 7.1 (namely the results of [KRS] and [Sh1]
for Zp(2,A) = Z(A) Sp(2,A)), πS is generic. This means that for some

nondegenerate character ψ of N(F )\N(A), we have πS ↪→ IndZp(2,A)/A×

N(A) ψ.

But π ⊂ IndPGSp(2,A)
Zp(2,A)/A×(πS), and induction is transitive: IndCB IndBA = IndCA,

and exact, hence π ↪→ IndPGSp(2,A)
N(A) ψ. In other words, π is generic. �

Once we complete our global results on the lifting λ from the group
PGSp(2,A) to the group PGL(4,A) in section 10, we deduce from [GRS]
that each local tempered packet contains precisely one generic member,
and each packet which lifts to a cuspidal representation of PGL(4,A), or
to an induced I(π1, π2) where π1, π2 are cuspidal on PGL(2,A), contains
precisely one representation which is everywhere locally generic. The latter
is generic if it lifts to I(π1, π2).

8. Local Lifting from PGSp(2)

One more case remains to be dealt with.

8.1 Proposition. Let πv0 be a θ-invariant irreducible square integrable
representation of Gv0 over a local field Fv0 which is not a λ1-lift. Then
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there exists a square integrable irreducible representation πH,v0 of Hv0

which λ-lifts to πv0 , thus trπv0(fv0 × θ) = trπH,v0(fH,v0) for all matching
fv0 and fH,v0 .

In particular the θ-character of πv0 is θ-stable, and the character of
πH,v0 is a stable function on Hv0 .

Proof. Since πv0 is θ-invariant, square-integrable and not a λ1-lift, its
character is θ-stable by Proposition IV.4.4. We choose a totally imaginary
global field F and a function f = ⊗fv whose components fv at 4 places vi
(i = 0, 1, 2, 3) with Fvi = Fv0 are pseudo matrix coefficients of πv, where at
v = v0 this πv is the πv0 of the proposition, at v1 it is πv1 = IG(π1v1 , π2v1),
where πiv1 are distinct cuspidal PGL(2, Fv1)-modules, while πv2 and πv3

are the Steinberg PGL(4, Fv)-modules. The other components fv at finite
v are taken to be spherical and > 0. Since the θ-orbital integrals of fv0 (in
fact also fvi , i = 1, 2, 3) are θ-stable functions (supported on the θ-elliptic
set), the geometric part of the θ-trace formula is θ-stable: it is the sum of
θ-stable orbital integrals, Φst

γ (f). We choose f∞ = ⊗vfv, v archimedean,
to vanish on the non θ-regular set.

Since G(F ) is discrete in G(A) and f = ⊗fv is compactly supported,
Φst
γ (f) 6= 0 for only finitely many θ-stable conjugacy classes (θ-elliptic and

regular) γ in G(F ). Restricting the support of f∞ we can arrange that
Φst
γ (f) 6= 0 for a single θ-stable class γ. Hence the geometric side of the

θ-trace formula is nonzero. Consequently the spectral side is nonzero.
The choice of fvi (i = 0, 1, 2, 3) as a pseudo-coefficient can be used

now to show the existence of a θ-invariant π whose component at v1 is
πv1 = IG(π1v1 , π2v1), and consequently πv2 and πv3 are Steinberg (note
that trπv2(fv2 × θ) 6= 0 does not assure us that πv2 is Steinberg, but given
that πv1 is IG(π1v1 , π2v1), the global π must be generic, hence πv2 is the
square integrable generic constituent in the fully induced

IG(ν3/2
v , ν1/2

v , ν−1/2
v , ν−3/2

v )).

It follows that π is generic and cuspidal (it contributes to the sum I in
the spectral side of the θ-trace formula, not to I(2,2), etc.). Since the
components πvi (i = 1, 2, 3) and by the same argument also πv0 , are our
θ-stable ones, π is not a λ1-lift, nor it is a λ-lift of the form I(π1, π2). Thus
when we write the trace formula identity fixing all finite components to be
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those of π at all v 6= vi (i = 0, 1, 2, 3), the only contribution other than π

would be from H, namely∏
v

trπv(fv × θ) =
∑
πH

m(πH)
∏
v

trπHv(fHv).

Thus πH are discrete spectrum representations of H(A) whose components
at each finite v 6= vi (i = 0, 1, 2, 3) are unramified and λ-lift to πv. The
products range over vi (i = 0, 1, 2, 3) and the archimedean places.

Next we apply the generalized linear independence argument at the
archimedean places. Consequently we can and do omit the archimedean v
from the product, and restrict the sum to πH with λ(πH∞) = π∞.

Evaluating at v1, v2, v3 with the pseudo coefficient fvi , which is θ-
elliptic, we can delete these v from the product, but now the sum ranges
over the πH which in addition have the Steinberg component at v2 and v3,
and π+

Hv1
or π−Hv1

at v1.
Omitting the index v0, we finally get for our π = πv0 the equality

trπ(f × θ) =
∑
πH

m(πH) trπH(fH)

for all matching f and fH .
Since π is square integrable and them(πH) are nonnegative, the theorem

of [C] on modules of coinvariants implies that all πH on the right are
cuspidal, except for one square integrable noncuspidal πH if π is the square
integrable constituent of IG(ν1/2π2, ν

−1/2π2), for a cuspidal π2 = π2(µ),
where µ is a character of E×/F×, E/F being a local quadratic extension.

Evaluating at fH = faH =
∑a
i=1 f(πHi), where we list the πH and f(πHi)

denotes a pseudo coefficient of πHi, we conclude from the orthonormality
relations for twisted characters that the sum over πH is finite.

The resulting character relation

χπ(g × θ) =
∑

m(πH)χπH (Ng)

and the orthonormality relations for θ-characters of square integrable rep-
resentations, i.e.: 〈χθπ, χθπ〉 = 1, imply that

〈
∑

m(πH)χπH ,
∑

m(πH)χπH 〉

is 1, thus
∑
m(πH)2 is 1. Hence there is only one term on the right with

coefficient m = 1. �
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8.2 Corollary. Let π2 be a cuspidal (irreducible) representation of
GL(2, F ), F local, with ξπ2 = π2 and central character ξ 6= 1 = ξ2. The
square integrable subrepresentation δ(νξ, ν−1/2π2) of the H-module νξ o

ν−1/2π2, λ-lifts to the square integrable submodule S(ν1/2π2, ν
−1/2π2) of

the G-module IG(ν1/2π2, ν
−1/2π2).

Proof. This follows from the proof of the proposition. Note that the
only noncuspidal non Steinberg selfcontragredient square integrable repre-
sentation of G(F ) is of the form S(ν1/2π2, ν

−1/2π2), where π2 is a cuspidal
representation of GL(2, F ) with central character ξ, ξ2 = 1, and ξπ2 = π2.

The square integrable S(ν1/2π2, ν
−1/2π2), where π2 is a cuspidal repre-

sentation of PGL(2, F ), is the λ1-lift of sp2×π2. If the central character
of π2 is ξ 6= 1 = ξ2, it is associated with a quadratic extension E of F ,
and since ξπ2 = π2 there is a character µ of E×, trivial on F×, such that
π2 = π2(µ). The only square integrable representations of PGSp(2, F ) not
accounted for so far are δ(νξ, ν−1/2π2), ωπ2 = ξ 6= 1 = ξ2, ξπ2 = π2.

Since νξ o ν−1/2π2 λ-lifts to IG(ν1/2π̌2, ν
−1/2π2), and π̌2 = ξπ2, the

decaying central exponents in these fully induced representations corre-
spond, hence δ(νξ, ν−1/2π2) λ-lifts to S(ν1/2π2, ν

−1/2π2) from the proof of
the proposition. �

8.3 Corollary. The nontempered quotient L(νξ, ν−1/2π2) in the com-
position series of the H(F )-module νξ o ν−1/2π2, where π2 is a cuspidal
GL(2, F )-module with central character ξ 6= 1 = ξ2 and ξπ2 = π2, λ-lifts
to the nontempered quotient J(ν1/2π2, ν

−1/2π2) in the composition series
of the induced IG(ν1/2π2, ν

−1/2π2).

Proof. This follows from

trL(νξ, ν−1/2π2)(fH) = tr(νξ o ν−1/2π2)(fH)− tr δ(νξ, ν−1/2π2)(fH)

and tr J(ν1/2π2, ν
−1/2π2; f × θ)

= tr IG(ν1/2π2, ν
−1/2π2; f × θ)− trS(ν1/2π2, ν

−1/2π2; f × θ). �

For any irreducible square integrable PGL(2, F )-modules π1 and π2 we
have

tr(π1 × π2)(fC0) = trπ+
H(fH)− trπ−H(fH),

tr IG(π1, π2; f × θ) = trπ+
H(fH) + trπ−H(fH),
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for all matching functions f , fH , fC0 , where π+
H , π−H are tempered irre-

ducible (square integrable if π1 6= π2) representations of H determined by
the unordered pair π1, π2.

If π1 = π2 is cuspidal, π+
H and π−H are the two inequivalent constituents

of 1o π1.
If π1 = π2 is ξ sp2, where ξ is a character of F× with ξ2 = 1, π+

H and
π−H are the two tempered inequivalent constituents τ(ν1/2 sp2, ξν

−1/2) and
τ(ν1/212, ξν

−1/2) of 1o ξ sp2.
If π1 = ξ sp2, ξ2 = 1, and π2 is cuspidal, then π+

H is the square integrable
constituent δ(π2ξν

1/2, ξν−1/2) of the induced π2ξν
1/2
o ξν−1/2, while π−H

is cuspidal, which we denote by δ−(ξν1/2π2, ξν
−1/2).

If π1 = σ sp2 and π2 = ξσ sp2, ξ(6= 1 = ξ2) and σ are characters of
F×, then π+

H is the square integrable constituent δ(ξν1/2 sp2, ν
−1/2σ) of

the induced sp2 ξν
1/2
o σν−1/2, while π−H is cuspidal, which we denote by

δ−(ξν1/2 sp2, ν
−1/2σ).

We made this explicit list in order to describe the character relations
where in the last three paragraphs sp2 is replaced by the nontempered
trivial representation 12 of PGL(2, F ).

8.4 Proposition. For any cuspidal representation π2 of PGL(2, F )
and character ξ of F× with ξ2 = 1, we have

tr(ξ12 × π2)(fC0)

= trL(π2ξν
1/2, ξν−1/2)(fH) + tr δ−(π2ξν

1/2, ξν−1/2)(fH),

tr IG(ξ12, π2; f × θ)
= trL(π2ξν

1/2, ξν−1/2)(fH)− tr δ−(π2ξν
1/2, ξν−1/2)(fH),

for all matching f , fH , fC0 .

Proof. This follows from

tr I(ξ sp2×π2; f × θ) = tr δ(fH) + tr δ−(fH),

tr(ξ sp2×π2)(fC0) = tr δ(fH)− tr δ−(fH),

and

tr IG(ξ sp2, π2; f × θ) + tr IG(ξ12, π2; f × θ)
= tr IG(ξν1/2, π2, ξν

−1/2; f × θ)
= tr(π2ξν

1/2
o ξν−1/2)(fH) = tr δ(fH) + trL(fH)

= tr(ξI2 × π2)(fC0) = tr(ξ12 × π2)(fC0) + tr(ξ sp2×π2)(fC0),



8. Local Lifting from PGSp(2) 157

where I2 = I(ν1/2, ν−1/2). �

8.5 Proposition. For any characters ξ 6= 1 = ξ2 and σ (σ2 = 1) of
F×, for all matching f , fH , fC0 we have

tr(σ12 × σξ sp2)(fC0)

= trL(ν1/2ξ sp2, σν
−1/2)(fH) + tr δ−(ξν1/2 sp2, σν

−1/2)(fH),

tr IG(σ12, σξ sp2; f × θ)
= trL(ν1/2ξ sp2, σν

−1/2)(fH)− tr δ−(ξν1/2 sp2, σν
−1/2)(fH),

tr(σξ12 × σ12)(fC0)

= trL(νξ, ξ o ν−1/2σ)(fH)− tr δ−(ξν1/2 sp2, ξσν
−1/2)(fH),

tr IG(σξ12, σ12; f × θ)
= trL(νξ, ξ o ν−1/2σ)(fH) + tr δ−(ξν1/2 sp2, ξσν

−1/2)(fH).

Proof. We use the identities displayed above for

tr I(σ sp2, σξ sp2; f × θ) and tr(σ sp2×σξ sp2)(fC0),

and

tr IG(σ12, σξ sp2; f × θ) + tr IG(σ sp2, σξ sp2; f × θ)
= tr IG(σν1/2, σξ sp2, σν

−1/2; f × θ)
= tr(ν1/2ξ sp2oσν

−1/2)(fH)

= tr δ(ξν1/2 sp2, σν
−1/2)(fH) + trL(ν1/2ξ sp2, σν

−1/2)(fH)

= tr(σI2 × σξ sp2)(fC0)

= tr(σ sp2×σξ sp2)(fC0) + tr(σ12 × σξ sp2)(fC0).

For the last two identities we use the first two, and

tr IG(σ12, σξ12; f × θ) + tr IG(σ sp2, σξ12; f × θ)
= tr IG(σν1/2, σξ12, σν

−1/2; f × θ) = tr(ξν1/212 o σν
−1/2)(fH)

= trL(ξν1/2 sp2, σξν
−1/2)(fH) + trL(νξ, ξ o σν−1/2)(fH)

= tr(σI2 × σξ12)(fC0)

= tr(ξσ12 × σ12)(fC0) + tr(ξσ12 × σ sp2)(fC0). �
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8.6 Proposition. For all matching fH , fC0 , and characters ξ of F×

with ξ2 = 1 we have

tr(ξ12 × ξ sp2)(fC0)

= trL(ν1/2 sp2, ξν
−1/2)(fH) + tr τ(ν1/212, ξν

−1/2)(fH),

tr(ξ 12 × ξ12)(fC0)

= trL(ν, 1o ξν−1/2)(fH)− trL(ν1/2 sp2, ξν
−1/2)(fH).

Proof. The first equality follows from

tr(ξ sp2×ξ sp2)(fC0)

= tr τ(ν1/2 sp2, ξν
−1/2)(fH)− tr τ(ν1/212, ξν

−1/2)(fH)

and

tr(ξ12 × ξ sp2)(fC0) + tr(ξ sp2×ξ sp2)(fC0) = tr(ξI2 × ξ sp2)(fC0)

= tr(ν1/2 sp2oξν
−1/2)(fH)

= tr τ(ν1/2 sp2, ξν
−1/2)(fH) + trL(ν1/2 sp2, ξν

−1/2)(fH).

The second equality follows from this as well as from

tr(ξ12 × ξ12)(fC0) + tr(ξ sp2×ξ12)(fC0) = tr(ξI2 × ξ12)(fC0)

= tr(ν1/212 o ξν
−1/2)(fH)

= tr τ(ν1/212, ξν
−1/2)(fH) + trL(ν, 1o ξν−1/2)(fH). �

Recall (Proposition V.1.2) that for any admissible representation π of
PGL(2, F ) we have that 1o π λ-lifts to IG(π, π), thus

tr IG(π, π; f × θ) = tr(1o π)(fH)

for all matching f and fH . When π = π1 + π2 we get

tr IG(π1, π1; f × θ) + tr IG(π1, π2; f × θ)
+ tr IG(π2, π1; f × θ) + tr IG(π2, π2; f × θ)
= tr IG(π, π; f × θ) = tr(1o π)(fH) = tr(1o π1)(fH) + tr(1o π2)(fH)

= tr IG(π1, π1; f × θ) + tr IG(π2, π2; f × θ).
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It follows that the normalization of Π(θ) on Π = IG(π, π), which is unique
only up to a sign on any irreducible θ-invariant representation of G, as
θ2 = 1, induces a normalization of Π2,1(θ), Π2,1 = IG(π2, π1), which is
different in sign than the normalization of Π1,2(θ), Π1,2 = IG(π1, π2) ('
IG(π2, π1) when π1, π2 are irreducible), with the consequence of

tr IG(π1, π2; f × θ) + tr IG(π2, π1; f × θ) = 0

for all f . A similar phenomenon is encountered in the following.

8.7 Proposition. For all matching f and fH we have

tr IG(12,12; f × θ)
= trL(ν, 1o ν−1/2)(fH) + trL(ν1/2 sp2, ν

−1/2)(fH),

tr IG(sp2,12; f × θ) =

tr τ(ν1/212, ν
−1/2)(fH)− trL(ν1/2 sp2, ν

−1/2)(fH).

Proof. The first identity follows from λ(1o π1) = IG(π1, π1) and the
fact that the composition series of 1 o π1 for π1 = 12 consists of the two
irreducible representations L. The second identity is a consequence of the
first, as well as

tr τ(ν1/212, ν
−1/2)(fH) + trL(ν, 1o ν−1/2)(fH) = tr(ν1/212 o ν

−1/2)(fH)

= tr IG(I2,12; f × θ) = tr IG(12,12; f × θ) + tr IG(sp2,12; f × θ). �

Remark. On Π = IG(I2,12) we normalize the intertwining operator
Π(θ), whose square is the identity, by the property that it maps the un-
ramified (K-fixed) vector to itself. This coincides with the normalization
of θ on the quotient I(12 × 12) of IG(I2,12), and induces a normalization
of θ on the subrepresentation IG(sp2,12).

On the other hand, we could normalize Π′(θ) on Π′ = IG(I2, sp2) by
mapping the Whittaker vector to itself (W 7→ θW ). This coincides with
the normalization of θ on the subrepresentation IG(sp2, sp2) of Π′, and
induces a normalization of θ on the quotient IG(12, sp2) of Π′ which is the
negative of the normalization of θ on

IG(sp2,12) (' IG(12, sp2))
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viewed as a subrepresentation of Π. Indeed, using

tr IG(sp2, sp2; f × θ) = tr τ(ν1/2 sp2, ν
−1/2)(fH) + tr τ(ν1/212, ν

−1/2)(fH)

and
tr τ(ν1/2 sp2, ν

−1/2)(fH) + trL(ν1/2 sp2, ν
−1/2)(fH)

= tr(ν1/2 sp2oν
−1/2)(fH) = tr IG(I2, sp2; f × θ)

= tr IG(sp2, sp2; f × θ) + tr IG(12, sp2; f × θ)

we conclude that

tr IG(12, sp2; f × θ) = trL(ν1/2 sp2, ν
−1/2)(fH)− tr τ(ν1/212, ν

−1/2)(fH).

This does not contradict the Proposition, but reinforces it, yet with a
different normalization of the intertwining operator θ on IG(12, sp2).

9. Local Packets

These character relations permit us to define the notion of a packet of
tempered representations, and that of a quasi-packet, locally. The packet
of a nontempered representation πH is defined to consist of πH alone.

9.1 Definition. Let F be a local field. The packet of (an irreducible)
tempered H-module πH consists of πH alone unless πH is π+

H or π−H for
some pair π1, π2 of (irreducible) square integrable PGL(2, F )-modules, in
which case the packet consists of π+

H and π−H .

For example, if π2 is a cuspidal representation of GL(2, F ) with central
character ξ 6= 1 = ξ2, the packet of δ(ξν, ν−1/2π2) consists of a single
element.

We write tr{πH} for the sum of trπ′H as π′H ranges over the packet
{πH} of πH .

9.2 Definition. The quasi-packet of a nontempered (irreducible) H-
module πH is defined only for such an H-module which occurs in the
character relation for σ12 × π2, where π2 is a square integrable or one
dimensional PGL(2, F )-module and σ is a character of F×/F×2. It is
defined to be the pair π×H , π−H which occurs in this character relation
(which also defines π×H).
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Thus when π2 is square integrable the quasi-packets are defined to be

{L(π2σν
1/2, σν−1/2), δ−(π2σν

1/2, σν−1/2)},

{L(ν1/2ξ sp2, σν
−1/2), δ−(ξν1/2 sp2, σν

−1/2)}

and
{L(ν1/2 sp2, σν

−1/2), τ(ν1/212, σν
−1/2)},

for any characters ξ 6= 1, σ of F×/F×2 and cuspidal π2. Note that the π−H
in the last packet is tempered, but not square integrable.

Correspondingly we write λ0(π1 × π2) = {π+
H , π

−
H} and λ({π+

H , π
−
H}) =

IG(π1, π2) when π1, π2 are square integrable, λ0(σ12 × π2) = {π×H , π
−
H}

and λ({π×H , π
−
H}) = IG(σ12, π2) when π2 is square integrable and σ2 = 1.

This notation applies also when π2 is sp2, or ξ12, in the following sense.
The quasi-packet λ0(σξ12 × σ12), ξ 6= 1 = ξ2, σ2 = 1, is defined to

consist of

{π×H = L(νξ, ξ o ν−1/2σ), π−H = δ−(ξν1/2 sp2, ξσν
−1/2)}.

We observe that π−H of λ0(σξ12 × σ12) and of λ0(σξ12 × σ sp2) are the
same, although the corresponding π×H are not. Thus it is the π×H which
determines the quasi-packet, and not the π−H .

The quasi-packet λ0(σ12 × σ12), σ2 = 1, consists of

{π×H = L(ν, 1o σν−1/2), π−H = L(ν1/2 sp2, σν
−1/2)}.

Here we observe our π−H is not tempered, and is in fact π×H in the quasi-
packet λ0(σ12 × σ sp2).

10. Global Packets

This description of local packets of representations of H will now be used
together with the trace formula identity to describe the automorphic rep-
resentations of H(A). Taking into account the complete results on the
lifting λ1 from C(A) to G(A), the trace formula identity can be phrased
as follows:

I ′ +
1
2
I ′(2,2) = Tsp(fH ,H)− 1

4
Tsp(fC0 ,C0)
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+
1
4

∑
π2 of PGL(2)

tr(I2(1, 1)× π2)(fC).

Here I ′ is the subsum of I, namely
∑
π trπ(f × θ), over those discrete

spectrum representations π ' θπ of PGL(4,A) which are not λ1-lifts (from
C(A)).

Similarly, I ′(2,2) is the subsum of I(2,2) which consists of those induced
representations I(2,2)(π1, π2) which are not lifts via λ1 from C(A).

10.1 Lemma. If I(2,2)(π1, π2) appears in I ′(2,2) then the πi have trivial
central characters, namely are representations of PGL(2,A).

Proof. The π1 and π2 are representations of GL(2,A) with πi ' π̌i. If
ω denotes the central character of π1 (hence also of π2, since I(2,2)(π1, π2)
has trivial central character), then π̌i ' ωπi, and so ω2 = 1. If ω 6= 1, thus
ω = χE/F for some quadratic extension E of F , then π1 = πE(µ′1) and
π2 = πE(µ′2), where µ′i are characters of A×E/E

×.
The central character of such an πE(µ) is χE/F · µ|A×. So for our

πE(µ′i) of central character χE/F , we have µ′i|A× = 1, which means (since
the kernel of z 7→ z/z in A×E is A×) that there are µ1, µ2, characters of
A
×
E , with µ′i(z) = µi(z/z). Now

λ1(πE(µ)× πE(µ′)) = I(2,2)(πE(µµ′), πE(µµ′)),

so

λ1(πE(µ1µ2)× πE(1/µ1µ2)) = I(2,2)(πE(µ1/µ1), πE(µ2/µ2)).

Hence the I(2,2)(π1, π2) with ωπi 6= 1 are lifts from C(A) via λ1. The
lemma follows. �

We shall use – as usual – the form of the trace formula identity where
the local component is fixed to be a fixed unramified representation at all
places outside a finite set.

By the rigidity theorem for PGL(4) at most one of I ′ and I ′(2,2) would
have a (single nonzero) contribution.

Let π1×π2 be a discrete spectrum representation of the group C0(A) =
PGL(2,A) × PGL(2,A). It makes a contribution in Tsp(fC0 ,C0) as well
as in I ′(2,2).
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10.2 Suppose first that π2 = π1. Then the contribution to 1
2I
′
(2,2) is

1
4

tr IG(π2, π2; f × θ).

This is equal to the contribution

1
4

tr(I2(1, 1)× π2)(fC)

to the trace formula of C (see Proposition IV 3.1). Thus these two cancel
each other (of course for matching f , fC , and fH , fC0 below).

The corresponding contribution (determined by fixing all unramified
components) to the trace formula of H is

1
4

∏
v

trRv ◦ (1o π2v)(fHv).

The corresponding contribution to the trace formula of C0 is

1
4

∏
v

tr(π2v × π2v)(fC0,v).

At all places v where π2v is properly induced (and irreducible), Rv is
the scalar 1, and tr(1 o π2v)(fHv) = tr(π2v × π2v)(fC0,v), as π2v is a
representation of PGL(2, Fv) (see Proposition V 1.2).

If π2v is square integrable (or one dimensional), our local results (Propo-
sitions V 5 and 2.3(b) for square integrable π2v, Propositions V 8.6 and
2.1(d) for one dimensional π2v) assert that the two constituents of the com-
position series of 1o π2v can be labeled π+

Hv and π−Hv (= L(ν, 1o σν−1/2)
and L(ν1/2 sp2, σν

−1/2) when π2v is one dimensional σ12), such that for
matching functions

tr(π2v × π2v)(fC0,v) is trπ+
Hv(fHv)− trπ−Hv(fHv).

Moreover, Rv acts on π+
Hv as 1 and on π−Hv as −1 (this follows for example

from the global comparison). Hence these contributions to the formula of
H and of C0 cancel each other.

10.3 We can then assume that π1 6= π2. Suppose that π1, π2 are discrete
spectrum representations of PGL(2,A). Note that the pairs (π1, π2) and
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(π2, π1) make the same contribution to the formulae of C0 and of G (in
I ′(2,2)), hence the coefficient 1

4 is replaced by 1
2 .

When π1 and π2 are cuspidal the corresponding part of the trace for-
mulae identity asserts∑

m(πH)
∏
v

trπHv(fHv)

=
1
2

∏
v

tr(π1v × π2v)(fC0,v) +
1
2

∏
v

tr IG(π1v, π2v; fv × θ).(1)

The products are over the finite set V of places where both π1v and π2v are
square integrable. The sum ranges over all equivalence classes of irreducible
discrete spectrum representations πH of H(A) (πH occurs with multiplicity
m(πH) ≥ 1 in the discrete spectrum) whose component at each v outside
V is λ0(π1v × π2v). Recall that

λ0(I(µ1, µ
−1
1 )×π2) = µ1π2oµ

−1
1 and λ(µ1π2oµ

−1
1 ) = IG(µ1, π2, µ

−1
1 ).

Now at the places v in V the representations π1v, π2v are square inte-
grable and the character relations permit us to rewrite the right side of
the formula as

=
1
2

∏
v∈V

[trπ+
Hv(fHv)− trπ−Hv(fHv)] +

1
2

∏
v∈V

[trπ+
Hv(fHv) + trπ−Hv(fHv)],

where π±Hv = π±Hv(π1v×π2v) are the tempered representations of Hv deter-
mined by π1v and π2v. It follows that the discrete spectrum representations
πH of H(A) with components λ0(π1v × π2v) at all v /∈ V have components

π+
Hv(π1v × π2v) or π−Hv(π1v × π2v)

at all places v ∈ V , and the multiplicity m(πH) of such πH = ⊗πHv in the
discrete spectrum of H(A) is

m(πH) =
1
2

(1 + (−1)n(πH)),

where n(πH) is the number of components of πH of the form π−Hv. The πH
with m(πH) = 1 are all cuspidal as there are no residual representations
with components λ0(π1v × π2v) for almost all v.
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In fact since we work with test functions f = ⊗fv with 3 elliptic compo-
nents we can deduce only a weaker statement, which applies only when the
set V has at least 3 members. Namely we cannot exclude the possibility
that there exist discrete spectrum πH with properly induced components
at all v ∈ V (and components λ0(π1v × π2v) at all v /∈ V ). So our global
results be complete only after removal of the 3-places constraint on the
test functions of f , fH .

10.4 Next we deal with the case where π2 is cuspidal but π1 is one dimen-
sional, ξ12, ξ is a character of A×/F×A×2. The trace formula identity
reduces to ∑

m(πH)
∏
v

trπHv(fHv)

=
1
2

∏
v

tr(ξv12 × π2v)(fC0,v) +
1
2
ε(ξ12 × π2)

∏
v

tr IG(ξv12, π2v; fv × θ),

where the product ranges over the set V of places where π2v is square
integrable, and the sum ranges over the discrete spectrum πH whose com-
ponent πHv at v /∈ V is

π×Hv = λ0(I(µ1v, µ
−1
1v )× ξv12) = µ1vξv12 o µ

−1
1v if π2v = I(µ1v, µ

−1
1v ).

Note that the involution θ defined by θ(g) = J−1tg−1J on G(A) and its
automorphic forms, induces an involution π(θ) on each automorphic rep-
resentation. However, abstractly there are two choices of an intertwining
operator π ∼→ θπ whose square (π ∼→π) is 1, and they differ by a sign.

We observe that on a generic representation π, the global involution
equals the product of the local involutions πv(θ) which act on the Whit-
taker functions of πv by θ. This coincides with the choice of the intertwin-
ing operator πv

∼→ θπv, when πv is unramified, which maps the Kv-fixed
vector to itself. Our representation π = I(ξ12, π2) is not generic, nor it is
everywhere unramified (unless so is π2).

Hence the global involution π(θ) is the product of the local involutions
πv(θ), and a sign, which we denote by ε(ξ12 × π2). The presence of this
sign was first noticed in a different context by G. Harder ([Ha], p. 173).

Our local character relations express tr(ξv12 × π2v)(fC0,v) as the sum
of traces at fH of the nontempered constituent

π×Hv = L(ξvν1/2
v π2v, ξvν

−1/2
v )
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of the indicated induced Hv-module, and of a cuspidal (if π2v is), square
integrable (if π2v = ξ′v sp2v, ξ

′
v 6= ξv) or tempered (if π2v = ξv sp2v) repre-

sentation π−Hv. The trace

tr IG(ξv12, π2v; fv × θ)

is the difference of these two traces. Thus

=
1
2

∏
v

[trπ×Hv(fHv) + trπ−Hv(fHv)]

+
1
2
ε(ξ12 × π2)

∏
v

[trπ×Hv(fHv)− trπ−Hv(fHv)].

We conclude that if there is a discrete spectrum πH with components
λ0(ξv12×π2v) at all places where π2v is fully induced, then its component
at each v in the remaining finite set V lies in the quasi-packet {π×Hv, π

−
Hv}.

Its multiplicity is

m(πH) =
1
2

[1 + ε(ξ12 × π2)(−1)n(πH)],

where n(πH) is the number of components π−Hv in πH .

10.5 Lemma. For any cuspidal π2 and quadratic character ξ we have
ε(ξ12 × π2) = ε(ξπ2,

1
2 ).

Proof. Here ε(π2, s) is the epsilon factor in the functional equation
of the L-function of π2. Note that ε(ξ12 × π2) is 1 iff π×Hv = ⊗vπ×Hv is
discrete spectrum. It is known from the theory of Eisenstein series ([A2],
p. 32; [Kim], Theorem 7.1) that this representation is residual, namely
discrete spectrum and generated by residues of Eisenstein series, precisely
when the L-function L(ξπ2, s) of ξπ2 is nonzero at s = 1

2 .
The case of ξ 6= 1 reduces to that of ξ = 1 as

ξν1/2π2 o ξν
−1/2 = ξ(ν1/2ξπ2 o ν

−1/2).

To repeat: in this case where L(ξπ2,
1
2 ) 6= 0, ε(ξ12 × π2) is 1, as is

ε(ξπ2,
1
2 ). To determine, when L(ξπ2,

1
2 ) = 0, whether the quotient π×H

of ξν1/2π2 o ξν−1/2 is cuspidal or not, we appeal to the theory of the
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theta correspondence. As noted above, it suffices to assume ξ = 1. Then
ε(ξπ2,

1
2 ) = 1 implies that π×H is cuspidal by [W2], Proposition 24, p. 305.

The converse follows from [PS1], Theorem 2.2 (1 ⇒ 4).
To explain this, recall that the theta θ = θψ and the Waldspurger’s

Wald = Waldψ correspondences depend on a nontrivial additive character
ψ : AmodF → C

1, which we now fix. These correspondences fit in the
chart:

PGSp(2,A) = SO(5,A) θ← S̃L(2,A) Wald−→ PGL(2,A) = SO(3,A)
‖ ↑ JL

S̃L(2,A) θ← D×
A

Here S̃L(2,A) is the metaplectic two fold covering group of SL(2,A), and
JL denotes the Jacquet-Langlands correspondence from the multiplicative
group D×

A
of the quaternion algebra DA. Given π1 = ⊗vπ1v on PGL(2,A),

Wald−1(π1v) is π̃v,gen if π1v is principal series, {π̃v,gen, π̃v,ng} if π1v is
discrete series. Here π̃v,gen is the θ-image of π1v while π̃v,ng is the θ-image
of πD1v = JL−1(π1v) at the places v where D ramifies. The product ⊗vπ̃v,gen

defines a representation of S̃L(2,A) when ε(π1,
1
2 ) = 1, and the θ-lifting

S̃L(2,A)→ PGSp(2,A) maps ⊗vπ̃v,gen to

π×H = ⊗vπ×Hv = L(ν1/2π1, ν
−1/2).

This π×H is cuspidal when L(π1,
1
2 ) = 0 and ε(π1,

1
2 ) = 1 by [W2], Proposi-

tion 24, p. 305.
Now suppose that π×H is cuspidal. Then L(π1,

1
2 ) = 0. We claim that

ε(π1,
1
2 ) = 1. By definition, π×H is in ΩP of [PS1], p. 315. Hence there

is a cuspidal irreducible representation σ of S̃L(2,A) which θ-lifts to π×H
by [PS1], Theorem 2.2 (1 ⇒ 4). Moreover Wald(σ) = π1 by the rigidity
theorem for GL(2,A). If ε(π1,

1
2 ) = −1, the representation σ in Wald−1(π1)

which θ-lifts to PGSp(2,A) must have a component π̃v,ng: it cannot have
the component π̃v,gen at all places. But the local θ-lift takes π̃v,ng to
a tempered representation of PGSp(2, Fv), contradicting the assumption
that π×H , with which we started, has no tempered components.

As already noted, the case of ξ 6= 1 follows from this and the equal-
ity of ξν1/2π2 o ξν−1/2 and ξ(ξν1/2π2 o ν−1/2). Thus π×H is cuspidal iff
ε(ξπ2,

1
2 ) = 1 and L(ξπ1,

1
2 ) = 0. It is non discrete series iff ε(ξπ2,

1
2 ) = −1.
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In summary: ε(ξ12 × π2) = ε(ξπ2,
1
2 ). Further details on Waldspurger’s

correspondence can be found in Schmidt [Sch]. �

10.6 Similarly, for characters ξ 6= 1, σ of A×/F×A×2 we have the following
part of the traces identity∑

m(πH)
∏
v

trπHv(fHv) =
1
2

∏
v

tr(σvξv12 × σv12)(fC0,v)

+
1
2
ε(σξ12 × σ12)

∏
v

tr IG(σvξv12, σv12; fv × θ).

The product ranges over a set V such that σv, ξv are unramified for v /∈ V .
The sum ranges over the discrete spectrum πH of H(A) whose component
at v /∈ V is π×Hv = L(ξvνv, ξv o σvν

−1/2
v ). We also let π−Hv be the cuspidal

δ−(ξvν1/2
v sp2v, σvξvν

−1/2
v ) if ξv 6= 1

and
L(ν1/2

v sp2v, σvν
−1/2
v ) if ξv = 1.

We conclude that for each v the component of πH is π×Hv or π−Hv. The
multiplicity is again determined by the formula

m(πH) =
1
2

(1 + ε(σξ12 × σ12)(−1)n(πH)),

where n(πH) is the number of components π−Hv of πH . The sign ε here is
in fact 1 since

π×H = ⊗vπ×Hv = ⊗vL(ξvνv, ξv o σvν−1/2
v ),

which we denote also by L(ξν, ξ o σν−1/2), thus n(πH) = 0, is discrete
spectrum, in fact a residual representation, by [Kim], 7.3(2).

The representations whose components are almost all π×Hv and which
have a cuspidal component π−Hv are cuspidal (if they are automorphic).
They make counterexamples to the generalized Ramanujan conjecture, as
almost all of their components are the nontempered π×Hv.

With the complete local results on the liftings λ0 and λ, as well as the
full description of the global lifting λ0 from C0(A) to H(A) and the global
lifting λ from the image of λ0 to the self-contragredient G(A)-modules of
type I(2, 2) (induced from the maximal parabolic of type (2,2)), we can
complete the description of the lifting λ.
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10.7 Definition. The stable discrete spectrum of L2(H(F )\H(A))
consists of all discrete spectrum representations πH of H(A) which are
not in the image of the λ0-lifting (thus there is no C0(A)-module π1 × π2

such that πHv is equivalent to λ0(π1v × π2v) for almost all v).

We proceed to describe the stable spectrum of H(A).

10.8 Definition. Let F be a global field. To define a (quasi-) packet
{π} of automorphic representations of H(A) we fix a (quasi-) packet {πv}
of local representations for every place v of F , such that {πv} contains an
unramified representation π0

v for almost all v. The global (quasi-) packet
{π} which is determined by the local {πv} consists by definition of all
products ⊗πv with πv in {πv} for all v and πv = π0

v for almost all v.
Put in other words, the (quasi-) packet of an irreducible representation
π = ⊗πv of H(A) consists of all products ⊗π′v where π′v is in the (quasi-)
packet of πv and π′v = πv for almost all v.

If a (quasi-) packet contains an automorphic member, its other members
are not necessarily automorphic, as we saw in the case of λ0(π1×π2). Thus
the multiplicity m(π) of π in the discrete spectrum of H(A) may fail to be
constant over a (quasi-) packet.

10.9 Theorem. Every member of a (quasi-) packet of a stable discrete
spectrum representation of H(A) is discrete spectrum (automorphic) rep-
resentation, which occurs with multiplicity one in the discrete spectrum.
Thus packets and quasi-packets partition the stable spectrum, and multi-
plicity one theorem holds for the discrete spectrum of H(A) (at least for
those representations with at least three elliptic components).

Every stable packet which does not consist of a one dimensional repre-
sentation λ-lifts to a (unique) cuspidal self-contragredient representation
of G(A).

The quasi-packets in the stable spectrum of H(A) are all of the form
{L(νξ, ν−1/2π2)}, π2 cuspidal with central character ξ 6= 1 = ξ2.

Every packet or quasi-packet in the discrete spectrum of H(A) with a
local component which is one-dimensional or of the form L(νvξv, ν

−1/2
v π2v),

π2v cuspidal with central character ξv 6= 1 = ξ2
v , is globally so, and thus

lies in the stable spectrum.

In view of our global results we can write the remains of the trace
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formula identity as the equality of the sums

I ′ =
∑
π

′
trπ(f × θ) and I ′H =

∑
πH

′
m(πH) trπH(fH).

The sum on the left, I ′, ranges over all self-contragredient discrete spec-
trum representations of G(A) which are not λ1-lifts from C(A). The sum
on the right ranges over all discrete spectrum representations πH of H(A)
which are not in packets or quasi-packets λ0-lifted from C0(A). Our test
functions f = ⊗fv and fH = ⊗fHv have matching orbital integrals and
at least at three places their components are elliptic (the orbital integrals
vanish outside the elliptic set).

We first deal with the following residual case.

10.10 Proposition. For every cuspidal representation π2 of GL(2,A)
with central character ξ 6= 1 = ξ2 (hence ξπ2 = π2) there exists a quasi-
packet {L(νξ, ν−1/2π2)} of representations of H(A) which λ-lifts to the
residual (discrete spectrum but not cuspidal) self-contragredient represen-
tation

J(ν1/2π2, ν
−1/2π2) = ⊗vJ(ν1/2

v π2v, ν
−1/2
v π2v)

of G(A).
Each irreducible in such a quasi-packet occurs in the discrete spectrum

of H(A) with multiplicity one, and precisely one irreducible is residual,
namely ⊗vL(νvξv, ν

−1/2
v π2v).

Proof. If ξv 6= 1 and π2v is cuspidal, J(ν1/2
v π2v, ν

−1/2
v π2v) is the λ-lift

of
L(νvξv, ν−1/2

v π2v).

If ξv 6= 1 and π2v is not cuspidal, π2v has the form I(µv, µvξv), µ2
v = 1.

If π2v = I(µv, µvξv), µ2
v = 1, ξ2

v = 1, then J(ν1/2
v π2v, ν

−1/2
v π2v) is the

quotient of the induced

IG(ν1/2
v µv, ν

−1/2
v µv, ν

1/2
v µvξv, ν

−1/2µvξv),

namely IG(µv12, µvξv12). This is the λ-lift of the packet consisting of

Lv = L(νvξv, ξv o µvν−1/2
v ) and Xv = X(ν1/2

v ξv sp2v, ξvµvν
−1/2
v ).
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If ξv = 1 then π2v is induced with central character ξv = 1, thus π2v =
I(µv, µ−1

v ). We may assume that µ2
v 6= 1 as the case of µ2

v = 1 is dealt
with in the previous paragraph, and that 1 > |µv|−2 > |νv|−1, since π2v is
a component of a cuspidal π2. Then J(ν1/2

v π2v, ν
−1/2
v π2v) is the quotient

IG(µv12, µ
−1
v 12) of IG(ν1/2

v π2v, ν
−1/2
v π2v). It is the λ-lift of µ−2

v o µv12,
which is irreducible since µ−2

v 6= 1, ν±1
v , ν±2

v (Proposition V.2.1(b)). This
µ−2
v o µv12 is the quotient of

µ−2
v o µvI2(ν1/2

v , ν−1/2
v ) = µ−2

v × νv o µvν−1/2
v

= νv × µ−2
v o µvν

−1/2
v = νv × ν−1/2

v I2(µv, µ−1
v ).

So we write L(νvξv, ν
−1/2
v π2v) for µ−2

v o µv12 (when ξv = 1 and π2v =
I(µv, µ−1

v )); it λ-lifts to J(ν1/2
v π2v, ν

−1/2
v π2v).

In summary, the quasi-packet of L(νvξv, ν
−1/2
v π2v) which λ-lifts to

J(ν1/2
v π2v, ν

−1/2
v π2v),

π2v being a component of π2 as in the proposition, consists of one irre-
ducible, unless πv = I(µv, µvξv), µ2

v = ξ2
v = 1, when it consists of Lv and

Xv (this includes all v where ξv 6= 1 and π2v is not cuspidal).
Now to prove the proposition we apply the trace identity where the only

entry on the side of G, having fixed almost all components, is the resid-
ual representation J(ν1/2π2, ν

−1/2π2). Generalized linear independence of
characters on H(Fv) establishes the claim. Note that L(νξ, ν−1/2π2) =
⊗vLv is residual ([Kim], Theorem 7.2), but any other irreducible in the
packet is cuspidal. �

Proof of Theorem. Since:
1. The one dimensional representations of H(A) λ-lift to the one dimen-
sional representations of G(A); and
2. The discrete spectrum quasi-packet {L(νξ, ν−1/2π2)} of H(A) λ-lifts to
the residual representation J(ν1/2π2, ν

−1/2π2) (for every cuspidal repre-
sentation π2 of GL(2,A) with central character ξ 6= 1 = ξ2, and ξπ2 = π2);
and
3. The only other noncuspidal discrete spectrum self contragredient rep-
resentations of G(A) are the residual J(ν1/2π2, ν

−1/2π2) where π2 is a
cuspidal representation of PGL(2,A), in which case this J is the λ1-lift of
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12 × π2 from C(A);
we may assume that I ′ ranges only over cuspidal self contragredient rep-
resentations of PGL(4,A).

We pass to the form of the identity where almost all components are
fixed. If there is a global discrete spectrum πH with the prescribed local
components then the sum I ′H is nonzero, since the m(πH) are nonnegative,
by generalized linear independence of characters. Hence I ′ 6= 0 and it con-
sists of a single cuspidal π by rigidity theorem for cuspidal representations
of G(A). Each component πv of the self contragredient generic π is a λ-lift
of a packet {πHv} of representations of H(Fv) (by our local results), hence
our identity reads∏

v∈V
tr{πHv}(fHv × θ) =

∑
πH

m(πH)
∏
v∈V

trπHv(fHv).

Here V is a finite set, its complement consists of finite places where un-
ramified π0

Hv and π0
v with λ(π0

Hv) = π0
v are fixed, and the sum ranges over

the πH whose component at v /∈ V is πHv.
Generalized linear independence of characters then implies that the right

side of our identity has the same form as the left, hence the multiplicity
m(πH) is 1 and the πH which occur are precisely the members of the packet
⊗v{πHv}, where {π0

Hv} = π0
Hv for all v outside V . �

Note that since we work with test functions which have at least three
elliptic components, the only πH and π which we see in our identity have
three such components. The unconditional statement would follow once
the unconditional identity of the trace formulae is established. As ex-
plained in 1G of the Introduction, “three” elliptic components can be re-
duced to “two”, and even to “one real place”, with available technology.

10.11 Proposition. (1) Every unstable packet λ0(π1×π2) of the group
PGSp(2,A), where π1, π2 are cuspidal representations of PGL(2,A), con-
tains precisely one generic representation. It is the only representation in
the packet which is generic at all places. Every packet contains at most
one generic representation.
(2) In a tempered packet {π+

H , π
−
H} of PGSp(2, F ), F local, π+

H is generic
and π−H is not.
(3) In a stable packet of PGSp(2,A) which lifts to a cuspidal representation
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of PGL(4,A) there is precisely one representation which is generic at each
place.

Proof. (1) If π1
H and π2

H are generic, cuspidal, and lift to the same
generic induced representation I(π1, π2) of PGL(4,A), namely they are
in the same packet, then they are equivalent by [GRS]. The second claim
follows from this and Lemma 7.3. The third claim follows from the rigidity
theorem for generic representations of GSp(2), see [So], Theorem 1.5.

(2) Let F be a global field such that at an odd number of places, say
v1, . . . , v5, its completion is our local field. Construct cuspidal represen-
tations π1, π2 of PGL(2,A) such that the set of places v where both
π1v and π2v are square integrable is precisely v1, . . . , v5, and such that
λ0(π1vi × π2vi) is our local packet, now denoted {π+

Hv, π
−
Hv}, v = vi. In

λ0(π1×π2) there is a unique cuspidal generic representation π0
H , by [GRS].

By our multiplicity formula the cuspidal members of λ0(π1×π2) are those
which have an even number of components π−Hv. Hence π0

H has a com-
ponent π+

Hv, so π+
Hv must be generic. If both {π+

Hv, π
−
Hv} were generic,

Lemma 7.3 would imply that the packet of the cuspidal generic π0
H con-

tains more than one generic cuspidal representation (in fact, 25 of them),
contradicting [GRS].

(3) Every irreducible in such a packet is in the discrete spectrum. The
packet is the product of local packets. When the local packet consists
of a single representation, it is generic. If the local packet has the form
{π+

Hv, π
−
Hv}, then π+

Hv is generic but π−Hv is not. Hence the packet has
precisely one irreducible which is everywhere locally generic. �

Remark. Is the representation πH constructed in (3) above generic?
By [GRS], it is, provided L(S, π,Λ2, s) has a pole at s = 1, where λ(πH) =
π. We do not know to rule out at present the possibility that there is a
packet {πH} containing no generic member and λ-lifting to a cuspidal π,
necessarily with L(S, π,Λ2, s) finite at s = 1. Note that the six-dimensional
representation Λ2 of the dual group Sp(2,C) of PGSp(2) is the direct sum
of the irreducible five-dimensional representation id5 : Sp(2,C)→ SO(5,C)
(cf. Lemma 7.0) and the trivial representation (see [FH], Section 16.2, p.
245, for a formulation in terms of the Lie algebra of Sp(2,C)). Hence
L(S, πH ,Λ2, s) = L(S, π,Λ2, s) has a pole at s = 1 provided L(S, πH , id5, s)
is not zero at s = 1. This is guaranteed by [Sh1], Theorem 5.1 (as noted
after Lemma 7.0) when πH is generic. Thus the locally generic πH of (3) is
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generic iff L(S, π,Λ2, s) has a pole at s = 1, iff L(S, πH , id5, s) is not zero
at s = 1. An alternative approach is to consider

L(S, π ⊗ π, s) = L(S, π,Λ2, s)L(S, π,Sym2, s),

which has a simple pole at s = 1 since π ' π̌. If L(S, π,Λ2, s) does not have
a pole at s = 1, L(S, π,Sym2, s) has. One expects an analogue of [GRS] to
show that π is then a λ1-lift from SO(4,A). We shall then conclude that
π is not a λ-lift from PGSp(2,A).

11. Representations of PGSp(2,R)

The parametrization of the irreducible representations of the real symplec-
tic group PGSp(2,R) is analogous to the p-adic case, but there are some
differences. We review the listing next, starting with the case of GL(2,R).
In particular we determine the cohomological representations, those which
have Lie algebra (g,K)-cohomology, with view for further applications.

11a. Representations of SL(2,R)

Packets of representations of a real group G are parametrized by maps of
the Weil group WR to the L-group LG. Recall that

WR = 〈z, σ; z ∈ C×, σ2 ∈ R× −NC/RC×, σz = zσ〉

is
1→WC →WR → Gal(C/R)→ 1

an extension of Gal(C/R) by WC = C
×. It can also be viewed as the

normalizer C× ∪ C×j of C× in H×, where H = R〈1, i, j, k〉 is the Hamil-
ton quaternions. The norm on H defines a norm on WR by restriction
([D3], [Tt]). The discrete series (packets of) representations of G are
parametrized by the homomorphisms φ : WR → Ĝ×WR whose projection
to WR is the identity and to the connected component Ĝ is bounded, and
such that CφZ(Ĝ)/Z(Ĝ) is finite. Here Cφ is the centralizer ZĜ(φ(WR))
in Ĝ of the image of φ.
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When G = GL(2,R) we have Ĝ = GL(2,R), and these maps are φk
(k ≥ 1), defined by

WC = C
× 3 z 7→

(
(z/|z|)k 0

0 (|z|/z)k

)
× z, σ 7→

(
0 1

ι 0

)
× σ.

Since σ2 = −1 7→
(

(−1)k 0

0 (−1)k

)
× σ2, ι must be (−1)k. Then detφk(σ) =

(−1)k+1, and so k must be an odd integer (= 1, 3, 5, . . . ) to get a discrete
series (packet of) representation of PGL(2,R). In fact π1 is the lowest
discrete series representation, and φ0 parametrizes the so called limit of
discrete series representations; it is tempered.

Even k ≥ 2 and σ 7→
(

0 1

1 0

)
× σ define discrete series representations

of GL(2,R) with the quadratic nontrivial central character sgn. Packets
for GL(2,R) and PGL(2,R) consist of a single discrete series irreducible
representation πk. Note that πk ⊗ sgn ' πk. Here sgn : GL(2,R)→ {±1},
sgn(g) = 1 if det g > 0, = −1 if det g < 0.

The πk (k > 0) have the same central and infinitesimal character as the
kth dimensional nonunitarizable representation

Symk−1
0 C

2 = |det g|−(k−1)/2 Symk−1
C

2

into SL(k,C)± = {g ∈ GL(2,C); det g ∈ {±1}}. We have

det Symk−1(g) = det gk(k−1)/2,

and the normalizing factor is |det Symk−1 |−1/k. Then Symk−1
0

(
a 0

0 b

)
= diag(sgn(a)k−isgn(b)i−1|a|k−i−(k−1)/2|b|i−1−(k−1)/2; 1 ≤ i ≤ k).

In fact both πk and Symk−1
0 C

2 are constituents of the normalizedly in-
duced representation I(νk/2, sgnk−1ν−k/2) whose infinitesimal character is
(k2 ,−

k
2 ), where a basis for the lattice of characters of the diagonal torus in

SL(2) is taken to be (1,−1).

11b. Cohomological Representations

An irreducible admissible representation π of H(A) which has nonzero
Lie algebra cohomology Hij(g,K;π ⊗ V ) for some coefficients (finite di-
mensional representation) V is called here cohomological. Discrete series
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representations are cohomological. The non discrete series representations
which are cohomological are listed in [VZ]. They are nontempered. We
proceed to list them here in our case of PGSp(2,R). We are interested in
the (g,K)-cohomology Hij(sp(2,R),U(4);π ⊗ V ), so we need to compute

Hij(sp(2,R),SU(4);π ⊗ V )

and observe that U(4)/SU(4) acts trivially on the nonzero Hij , which are
C. If Hij(π ⊗ V ) 6= 0 then ([BW]) the infinitesimal character ([Kn]) of π
is equal to the sum of the highest weight ([FH]) of the self contragredient
(in our case) V , and half the sum of the positive roots, δ.

With the usual basis (1, 0), (0, 1) on X∗(T ∗S), the positive roots are
(1,−1), (0, 2), (1, 1), (2, 0). Then δ = 1

2

∑
α>0 α is (2, 1).

Here T ∗S denotes the diagonal subgroup {diag(x, y, 1/y, 1/x)} of the al-
gebraic group Sp(2). Its lattice X∗(T ∗S) of rational characters consists of

(a, b) : diag(x, y, 1/y, 1/x) 7→ xayb (a, b ∈ Z).

The irreducible finite dimensional representations Va,b of Sp(2) are para-
metrized by the highest weight (a, b) with a ≥ b ≥ 0 ([FH]). The central
character of Va,b is ζ 7→ ζa+b, ζ ∈ {±1}. It is trivial iff a+ b is even. Since
GSp(2) = Sp(2) o {diag(1, 1, z, z)}, such Va,b extends to a representation
of PGSp(2) by (1, 1, z, z) 7→ z−(a+b)/2. This gives a representation of H =
H(R) = PGSp(2,R), extending its restriction to the index 2 connected
subgroup H0 = PSp(2,R). Another – nonalgebraic – extension is V ′a,b =
Va,b ⊗ sgn, where sgn(1, 1, z, z) = sgn(z), z ∈ R×. Va,b is self dual.

To list the irreducible admissible representations π of PGSp(2,R) with
nonzero Lie algebra cohomology Hi,j(sp(2,R), SU(4); π ⊗ Va,b) for some
a ≥ b ≥ 0 (the same results hold with Va,b replaced by V ′a,b), we first list
the discrete series representations.

Packets of discrete series representations of the group H = PGSp(2,R)
are parametrized by maps φ of WR to LH = Ĥ ×WR which are admissible
(pr2 ◦φ = id) and whose projection to Ĥ is bounded and CφZ(Ĥ)/Z(Ĥ)
is finite. Here Cφ is ZĤ(φ(WR)). They are parametrized φ = φk1,k2 by a
pair (k1, k2) of integers with odd k1 > k2 > 0.

The homomorphism

φk1,k2 : WR → LG = Ĝ×WR, Ĝ = SL(4,C),
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given by

z 7→ diag((z/|z|)k1 , (z/|z|)k2 , (|z|/z)k2 , (|z|/z)k1)× z

and
σ 7→

(
0 w

−w 0

)
× σ (odd k1 > k2 > 0)

or
σ 7→

(
0 w

w 0

)
× σ (even k1 > k2 > 0),

factorizes via (LC0 →) LH = Sp(2,C) ×WR precisely when ki are odd.
When the ki are even it factorizes via LC = SO(4,C) ×WR. When the
ki are odd it parametrizes a packet {πWh

k1,k2
, πhol
k1,k2
} of discrete series rep-

resentations of PGSp(2,R). Here πWh is generic and πhol is holomorphic
and antiholomorphic. Their restrictions to H0 are reducible, consisting of
πWh
H0 and πWh

H0 ◦ Int(ι), πhol
H0 and πhol

H0 ◦ Int(ι), ι = diag(1, 1,−1,−1), and
πWh ⊗ sgn = πWh, πhol ⊗ sgn = πhol.

To compute the infinitesimal character of π∗k1,k2
we note that

πk ⊂ I(νk/2, sgnk−1ν−k/2)

(e.g. by [JL], Lemma I5.7 and Theorem I5.11) on GL(2,R). Via LC0 →
LH induced I(νk1/2, ν−k1/2)×I(νk2/2, ν−k2/2) (in our case the ki are odd)
lifts to the induced

IH(νk1/2, νk2/2) = ν(k1+k2)/2 × ν(k1−k2)/2
o ν−k2/2,

whose constituents (e.g. π∗k1,k2
, ∗ = Wh, hol) have infinitesimal character

(
k1 + k2

2
,
k1 − k2

2
) = (2, 1) + (a, b).

Here

a =
k1 + k2

2
− 2 ≥ b =

k1 − k2

2
− 1 ≥ 0

as k2 ≥ 1 and k1 > k2 and k1 − k2 is even. For these a ≥ b ≥ 0, thus
k1 = a+ b+ 3, k2 = a− b+ 1, we have

Hij(sp(2,R),SU(4);πWh
k1,k2

⊗ Va,b) = C if (i, j) = (2, 1), (1, 2),

Hij(sp(2,R),SU(4);πhol
k1,k2

⊗ Va,b) = C if (i, j) = (3, 0), (0, 3).

Here k1 > k2 > 0 and k1, k2 are odd. In particular, the discrete series
representations of PGSp(2,R) are endoscopic.
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11c. Nontempered Representations

Quasi-packets including nontempered representations are parametrized by
homomorphisms ψ : WR × SL(2,R)→ LH and φψ : WR → LH (see [A2])
defined by

φψ(w) = ψ(w,
(
‖w‖1/2 0

0 ‖w‖−1/2

)
).

The norm ‖.‖ : WR → R
× is defined by ‖z‖ = zz and ‖σ‖ = 1. Then

φψ(σ) = ψ(σ, I) and φψ(z) = ψ(z,diag(r, r−1)) if z = reiθ, r > 0. For
example,

ψ : WR×SL(2,C)→ SL(2,C), ψ|WR : zσj 7→ ξ(−1)j , ψ|SL(2,C) = id,

gives
φψ(z) =

(
r 0

0 r−1

)
× z, φψ(σ) = ξ(−1)I2 × σ,

parametrizing the one dimensional representation

ξ2 = J(ξν1/2, ξν−1/2) of PGL(2,R) (ξ : R× → {±1}, ν(z) = |z|).

Here J denotes the Langlands quotient of the indicated induced represen-
tation, I(ξν1/2, ξν−1/2).

Similarly the one dimensional representation

ξ4 = J(ξν3/2, ξν1/2, ξν−1/2, ξν−3/2)

of PGL(4,R) is parametrized by ψ : WR × SL(2,C)→ SL(4,C),

(ψ|WR)(zσj) = ξ(−1)j , ψ|SL(2,C) = Sym3
0,

thus

φψ(z) = diag(r3, r, r−1, r−3)× z, φψ(σ) = ξ(−1)I4 × σ.

This parameter factorizes via ψ : WR×SL(2,C)→ Sp(2,C), which parame-
trizes the one dimensional representation ξH of PGSp(2,R), h 7→ ξ(λλλ(h))
where λλλ(h) denotes the factor of similitude of h, whose infinitesimal char-
acter is (2, 1) = 1

2

∑
α>0 α. We have

Hij(sp(2,R),SU(4); ξH ⊗ V0,0) = C

for (i, j) = (0, 0), (1, 1), (2, 2), (3, 3). Of course 1H 6= sgnH , and 1
2 (1H +

sgnH) is the characteristic function of H0 in PGSp(2,R). Moreover, the
character of 1

2 (1H + sgnH) +πWh
3,1 +πhol

3,1 vanishes on the regular elliptic set
of PGSp(2,R), as (ξH +πWh

3,1 +πhol
3,1 )|H0 is a linear combination of properly

induced (“standard”) representations ([Vo]) in the Grothendieck group.
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11d. The Nontempered: L(ν sgn, ν−1/2π2k)

The nontempered nonendoscopic representation L(ν sgn, ν−1/2π2k) of the
group PGSp(2,R) (k ≥ 1) is the Langlands quotient of the representation
ν sgn o ν−1/2π2k induced from the Heisenberg parabolic subgroup of H.
It λ-lifts to J(ν1/2π2k, ν

−1/2π2k), the Langlands quotient of the induced
representation

I(ν1/2π2k, ν
−1/2π2k) of PGL(4,R).

Note that the discrete series π2k ' sgn ⊗ π2k ' π̌2k has central character
sgn ( 6= 1). Now

ψ : WR × SL(2,C)→ SL(4,C), ψ|WR : w 7→
(
φ2k(w) 0

0 φ2k(w)

)
×w

with
φ2k(z) =

(
(z/|z|)2k 0

0 (|z|/z)2k

)
× z, φ2k(σ) = w × σ,

and (ψ|SL(2,C))
(
a b

c d

)
=
(
aI bI

cI dI

)
, defines

φψ(z) = ψ
(
z,
(
|z| 0

0 |z|−1

))
=
(
|z|φ2k(z) 0

0 |z|−1φ2k(z)

)
× z,

φψ(σ) = ψ(σ, I) =
(
w 0

0 w

)
.

It factorizes via Ĥ = Sp(2,C) ↪→ SL(4,C) and defines L(ν sgn, ν−1/2π2k).
Note that when 2k is replaced by 2k + 1, φ2k+1(σ) = εw × σ, ε =

diag(1,−1), then

φψ(σ) = ψ(σ, I) =
(
εw 0

0 εw

)
= I ⊗ εw ∈ Ĉ,

φψ(z) =
(
|z| 0

0 |z|−1

)
⊗ φ2k+1(z) ∈ Ĉ,

thus φψ defines a representation of C(R) (which λ1-lifts to the representa-
tion

J(ν1/2π2k+1, ν
−1/2π2k+1)

of PGL(4,R)), but not a representation of PGSp(2,R).
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As in [Ty] write π1
2k,0 for L(sgnν, ν−1/2π2k+2). We have that π1

2k,0 '
sgn⊗π1

2k,0, and π1
2k,0|H0 consists of two irreducibles. In the Grothendieck

group the induced decomposes as

ν sgnoν−1/2π2k = L(ν sgn, ν−1/2π2k)+πWh
2k+3,2k+1+πhol

2k+3,2k+1, k ≥ 1.

To compute the infinitesimal character of ν sgno ν−1/2π2k, note that it
is a constituent of the induced

ν sgno ν−1/2I(νk, sgnν−k) ' sgnν2k × sgnν o ν−k−1/2sgn

(using the Weyl group element (12)(34)), whose infinitesimal character is
(2k, 1) = (2, 1) + (a, 0), with a = 2k − 2 ≥ 0 as k ≥ 1. For k ≥ 1 we have

Hij(sp(2,R),SU(4);π1
2k,0⊗V2k,0) = C if (i, j) = (2, 0), (0, 2), (3, 1), (1, 3).

11e. The Nontempered: L(ξν1/2π2k+1, ξν
−1/2)

The nontempered endoscopic representation L(ξν1/2π2k+1, ξν
−1/2) of the

group PGSp(2,R) is the Langlands quotient of the induced representation
ξν1/2π2k+1 o ξν−1/2 from the Siegel parabolic subgroup of PGSp(2,R).
It is the λ0-lift of π2k+1 × ξ2 and λ-lifts to the induced I(π2k+1, ξ2) of
PGL(4,R). The central character of π2k+1 is trivial, but that of π2k is sgn.
Hence I(π2k, ξ2) defines a representation of GL(4,R) but not of PGL(4,R).
The endoscopic map

ψ : WR × SL(2,C)→ LC0 = SL(2,C)× SL(2,C) λ0→ Ĥ,

ψ(zσj , s) = λ0(φ2k+1(zσj), ξ(−1)js),

defines

φψ(z) = ψ
(
z,
(
|z| 0

0 |z|−1

))
= diag((z/|z|)2k+1, |z|, |z|−1, (|z|/z)2k+1)× z,

φψ(σ) = ψ(σ, I) =

( 1

ξ(−1)

ξ(−1)

(−1)2k+1

)
,

which lies in Ĥ ⊂ SL(4,C) since 2k + 1 is odd.
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As in [Ty] we write π2,ξ
k−1,k−1 for L(ξν1/2π2k+1, ξν

−1/2), k ≥ 0.
Now ξπ2,1 = π2,ξ and π2,ξ|H0 is irreducible. In the Grothendieck group

the induced decomposes as

ξν1/2π2k+1 o ξν
−1/2 = π2,ξ

k−1,k−1 + πWh
2k+1,1.

Here πWh
2k+1,1 is generic, discrete series if k ≥ 1, tempered if k = 0.

Our ξν1/2π2k+1 o ξν
−1/2 is a constituent of the induced

ξν1/2I(ν(2k+1)/2, ν−(2k+1)/2)o ξν−1/2 = ξνk+1 × ξν−k o ξν−1/2,

which is equivalent to ξνk+1 × ξνk o ξν−k−1/2 (using the Weyl group
element (23)). Its infinitesimal character is (k+1, k) = (2, 1)+(k−1, k−1).
We have

Hij(sp(2,R),SU(4);π2,ξ
k−1,k−1⊗Vk−1,k−1) = C if (i, j) = (1, 1), (2, 2).

In summary, Hij(π⊗Va,b) is 0 except in the following four cases, where
it is C.
(1) One dimensional case: (a, b) = (0, 0) and π is πWh

3,1 , πhol
3,1 , ξH ,

π1
0,0 = L(ν sgn, ν−1/2π2), π2,ξ

0,0 = L(ξν1/2π3, ξν
−1/2).

(2) Nontempered unstable case: (a, b) = (k, k) (k ≥ 1) and π is

πWh
2k+3,1, πhol

2k+3,1, π2,ξ
k,k = L(ξν1/2π2k+3, ξν

−1/2).

(3) Nontempered stable case: (a, b) = (2k, 0) (k ≥ 1) and π is

πWh
2k+3,2k+1, πhol

2k+3,2k+1, π1
2k,0 = L(ν sgn, ν−1/2π2k+2).

(4) Tempered case: any other (a, b) with a ≥ b ≥ 1, a + b even, and π is
πWh
k1,k2

, πhol
k1,k2

. Here k1 = a+ b+ 3 > k2 = a− b+ 1 > 0 are odd.
Applications of the classification above in the theory of Shimura varieties

and their cohomology with arbitrary coefficients are discussed in [F7].
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The following is a computation of the orbital integrals for GL(2), SL(2),
and our GSp(2), for the characteristic function 1K of K in G, leading to a
proof of the fundamental lemma for (PGSp(2), PGL(2)×PGL(2)), due to
J.G.M. Mars (letter to me, 1997).

1. Case of SL(2)

1. Let E/F be a (separable) quadratic extension of nonarchimedean local
fields. Denote by OE and O their rings of integers. Let πππ = πππF be a
generator of the maximal ideal in O. Then ef = 2 where e is the degree of
ramification of E over F . Let V = E, considered as a 2-dimensional vector
space over F . Multiplication in E gives an embedding E ⊂ EndR(V ) and
E× ⊂ GL(V ). The ring of integers OE is a lattice (free O-module of
maximal rank, namely which spans V over F ) in V and K = Stab(OE) is
a maximal compact subgroup of GL(V ).

Let Λ be a lattice in V . Then R = R(Λ) = {x ∈ E|xΛ ⊂ Λ} is an order.
The orders in E are R(m) = O + πππmOE , m ≥ 0 of F . This is well-known
and easy to check. The quotient R(m)/R(m+ 1) is a 1-dimensional vector
space over O/πππ. If R(Λ) = R(m), then Λ = zR(m) for some z ∈ E×.

Choose a basis 1, w of E such that OE = O + Ow. Define dm ∈
GL(V ) by dm(1) = 1, dm(w) = πππmw. Then R(m) = dmOE . It follows
immediately that GL(V ) = ∪

m≥0
E×dmK, or, in coordinates with respect

to 1, w:

GL(2, F ) = ∪
m≥0

T
(

1 0

0 πππm

)
GL(2,O),

with T =
{(

a αb

b a+βb

)
; a, b ∈ F , not both = 0

}
, where w2 = α + βw, α,

β ∈ O.

182
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2. Put G = GL(V ), K = Stab(OE). Choose the Haar measure dg on
G such that

∫
K

dg = 1, and dt on E× such that
∫
OE

dt = 1. Choose γ ∈ E×,

γ /∈ F×. Let 1K be the characteristic function of K in G. Then∫
E×\G

1K(g−1γg)
dg

dt
=

∑
E×\G/K

vol(K)
vol(E× ∩ gKg−1)

1K(g−1γg).

Now E×\G/K is the set of E×-orbits on the set of all lattices in E. Rep-
resentatives are the lattices R(m), m ≥ 0. So our sum is

∑
m≥0,γ∈R(m)×

vol(O×E)
vol(R(m)×)

=
∑

m≥0,γ∈R(m)×

(O×E : R(m)×).

Note that (O×E : R(m)×) = 1 if m = 0, = qm+1−f qf−1
q−1 if m > 0.

Put M = max{m|γ ∈ R(m)×}. Then the integral equals

qM
q + 1
q − 1

− 2
q − 1

if e = 1,
qM+1 − 1
q − 1

if e = 2.

(If γ /∈ O×E , then
∫

= 0). If γ = a + bw ∈ O×E , then M = vF (b), the
order-valuation at b.

3. Let G = SL(V ), K = Stab(OE)∩G, E1 = E×∩G. Choose the Haar
measure dg on G such that

∫
K

dg = 1, and dt on E1 such that
∫
E1

dt = 1.

Let γ ∈ E1, γ 6= ±1. Then∫
E1\G

1K(g−1γg)
dg

dt
=
∫
G

1K(g−1γg)dg =
∑
G/K

1K(g−1γg)

is the number of lattices in the G-orbit of OE fixed by γ.
Let Λ be a lattice in E. If R(Λ) = OE , then Λ ∈ G·OE ⇔ Λ = OE . And

γOE = OE if γ fixes Λ. If R(Λ) = R(m) with m > 0, then Λ = zR(m) ∈
G · OE ⇔ NE/F (z)πππm ∈ O× ⇔ fvE(z) = −m and γΛ = Λ⇔ γ ∈ R(m)×.

Suppose e = 1. Then m must be even and

Λ = πππ−
m
2 uR(m), u ∈ O×E modR(m)×.

If γ ∈ R(m)×, this gives (O×E : R(m)×) = qm−1(q + 1) lattices.
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Suppose e = 2. Then Λ = πππ−mE uR(m), u ∈ O×E modR(m)×. If γ ∈
R(m)× this gives (O×E : R(m)×) = qm lattices.

Put N = max{m|γ ∈ R(m)×, m ≡ 0(f)}. Then the integral equals

qN+1 − 1
q − 1

.

For K = Stab(R(1))∩G one find qN
′+1−1
q−1 with N ′ defined as N , but with

m ≡ 1(f).
4. Notations as in 3. Choose πππ = NE/F (πππE) if e = 2. The description of

the lattices in G ·OE above gives the following decomposition for SL(2, F ).
Choose a set Am of representatives for NE/FO×E/NE/FR(m)× and for

each ε ∈ Am choose bε such that NE/F (bε) = ε. For m = 0 we may take
A0 = {1}, b1 = 1.

SL(2, F ) = ∪
m≥0,even

∪
ε∈Am

E1b−1
ε

(
1 0

0 ε

)(
πππ−

m
2 0

0 πππ
m
2

)
K if e = 1

SL(2, F ) = ∪
m≥0

∪
ε∈Am

E1b−1
ε πππ−mE

(
1 0

0 ε

)(
1 0

0 πππm

)
K if e = 2.

Remark. If e = 1, m > 0, then

NE/FO×E/NE/FR(m)× = O×/O×2(1 + πππmO)

(two elements, when |2| = 1). If |2| = 1 and e = 2, then

NE/FR(m)× = NE/FO×E

for all m.

2. Case of GSp(2)

2a. Preliminaries

1. Let V be a symplectic vector space defined over a field F of characteris-
tic 6= 2. We have G = Sp(V ) ⊂ GL(V ) ⊂ End(V ) = A. Let γ be a regular
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semisimple element of G(F ), T the centralizer of γ in G, C the conjugacy
class of γ in G.

If L denotes the centralizer of γ in A, we have L(F ) =
∏
Li, a direct

product of separable field extensions of F . The space V (F ) is isomorphic to
L(F ) as L(F )-module and V (F ) = ⊕Vi(F ), where Vi(F ) is a 1-dimensional
vector space over Li.

We denote the symplectic form on V by 〈x, y〉 and define the involution
ι of A(F ) by

〈ux, y〉 = 〈x,ιuy〉 (x, y ∈ V (F ), u ∈ A(F )).

From ιγ = γ−1 it follows that ι stabilizes L(F ). The restriction σ of ι to
L(F ) is a F -automorphism of L(F ) of order 2. It may interchange two
components Li and Lj (i 6= j) and it can leave a component Li fixed. If T
is F -anisotropic we have σ(Li) = Li for all i. Note that T (F ) is the set of
u ∈ L(F )× such that uσ(u) = 1. If σ(Li) = Li, then Vi⊥Vj for all j 6= i.

{G(F )-orbits in C(F )} ↔ G(F )\{h ∈ A(F )×|hγh−1 ∈ C}/L(F )×

h 7→ ιhh ↓ bij

{u ∈L(F )×|σ(u) = u}/{uσ(u)|u ∈ L(F )×}

2. If we take G = GSp(V ) instead of Sp(V ), we have ιγγ ∈ F× and
T (F ) is the set of u ∈ L(F )× such that uσ(u) ∈ F×. Now

{G(F )-orbits in C(F )} ↔ G(F )\{h ∈ A(F )×|hγh−1 ∈ C}/L(F )×

h 7→ ιhh ↓ bij

{u ∈L(F )×|σ(u) = u}/F×{uσ(u)|u ∈ L(F )×}

In this case consider T such that T/Z is F -anisotropic (Z = center of
G and of A×).
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Notation: L′ = {u ∈ L(F )|σ(u) = u}, Nu = uσ(u) if u ∈ L(F )×.

3. Assume F is a nonarchimedean local field. If Λ is a lattice in V (F ),
the dual lattice is

Λ∗ = {x ∈ V (F )|〈x, y〉 ∈ O for all y ∈ Λ} ' HomO(Λ,O).

Properties:
(uΛ)∗ = ιu−1Λ∗ (u ∈ GL(V (F ))),

in particular (cΛ)∗ = c−1Λ∗ if c ∈ F× and (gλ)∗ = gΛ∗ if g ∈ Sp(V (F )).
Further, Λ∗∗ = Λ.

The lattices which are equal (resp. proportional by a factor in F×) to
their dual form one orbit of Sp(V (F )) (resp. GSp(V (F ))).

We want to compute the following numbers.
Orbital integral for Sp(V (F )): Card{Λ|Λ∗ = Λ, γΛ = Λ}.
Stable orbital integral for Sp(V (F )):∑

ν∈L′×/NL(F )/L′L(F )×
Card{Λ|Λ∗ = νΛ, γΛ = Λ}.

Orbital integral for GSp(V (F )):

Card{Λ|Λ∗ ∼ Λ, γΛ = Λ}/F× =
∑

α∈F×/F×2O×
Card{Λ|Λ∗ = αΛ, γΛ = Λ}.

Stable orbital integral for GSp(V (F )):∑
ν∈L′×/F×NL(F )×

∑
α∈F×/F×2O×

Card{Λ|Λ∗ = ανΛ, γΛ = Λ}

=
2

(F× : F× ∩NL(F )×)

∑
ν∈L′×/NL(F )×

Card{Λ|Λ∗ = νΛ, γΛ = Λ}.

So the stable orbital integrals for Sp(V (F )) and GSp(V (F )) differ by a
factor, which is a power of 2, when γ ∈ Sp(V (F )).

4. Let L/F be a quadratic extension of nonarchimedean local fields.
The orders of L are OL(n) = OF + πππnFOL (n ≥ 0). We can find w ∈ L
such that OL(n) = OF +OFπππnFw for all n ≥ 0. Any lattice in L is of the
form zOL(n), z ∈ L×, n ≥ 0.

Let a symplectic form on the F -vector space L be given.
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If 〈1, w〉 ∈ O×F , the lattice dual to zOL(n) is z−1πππ−nF OL(n).

(O×L : OL(n)×) = 1 (n = 0), qn−1(q + 1) (n > 0),

if L/F is unramified,

= qn (n ≥ 0), if L/F is ramified.

Here q = number of elements of the residual field of F .

5. Let V = V1 ⊕ V2 be a direct sum of two vector spaces over a nonar-
chimedean local field F . Let Λ be a lattice in V . Put Mi = Λ ∩ Vi and
Ni = pri(Λ). Then Mi and Ni are lattices in Vi, and Mi ⊂ Ni.

The set
{(ν1 +M1, ν2 +M2)|ν1 + ν2 ∈ Λ}

is the graph of an isomorphism between N1/M1 and N2/M2.
The lattices in V correspond bijectively to the data: M1 ⊂ N1, lattices

in V1; M2 ⊂ N2, lattices in V2; N1/M1 → N2/M2, an isomorphism of
(finite) O-modules.

Assume a symplectic form is given on V and V = V1⊕V2 is an orthogonal
direct sum. If the lattice Λ corresponds to the data

M1 ⊂ N1, M2 ⊂ N2, ϕ : N1/M1
∼→N2/M2,

then the data of the dual lattice Λ∗ are:

N∗1 ⊂M∗1 , N∗2 ⊂M∗2 , −(ϕ∗)−1 : M∗1 /N
∗
1 →M∗2 /N

∗
2 .

One may identify M∗i /N
∗
i with HomO(Ni/Mi, F/O) using 〈ν, ν′〉, ν ∈

Ni, ν′ ∈M∗i . Then ϕ∗ is defined using this identification.

6. In the notation of section 1 assume that L(F ) is a field. For brevity
write L for this field. Let L′ be the field of fixed points of σ, so [L:L′] = 2.
We identify V (F ) with L(F ) = L and have then 〈x, y〉 = trL/F (aσ(x)y),
with some a ∈ L× such that σ(a) = −a. Put 〈x, y〉′ = trL/L′(aσ(x)y).
This is a symplectic form on L over L′. We have 〈x, y〉 = trL′/F (〈x, y〉′)
and 〈zx, y〉 = 〈x, zy〉 if z ∈ L′.

Assume now that F is local, nonarchimedean. If M is an OL′ -lattice in
L, then

M∗ = {x ∈ L|〈x, y〉 ∈ O for all y ∈M}
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is also an OL′ -lattice. The dual

M̃ = {x ∈ L|〈x, y〉′ ∈ OL′ for all y ∈M}

of M as an OL′ -lattice is related to M∗ by the formula M̃ = DL′/FM∗,
where DL′/F is the different of L′/F .

We have g̃M = det(g)−1gM̃ if g ∈ GLL′(L), in particular ũM =
σ(u)−1M̃ if u ∈ L×.

In the remainder of this section we assume dimV = 4.
The nonidentical automorphism of L′/F is denoted by τ or by z 7→ z.

Let Λ be an O-lattice in L. Put M = OL′Λ, N = ÕL′Λ∗. Then
M∗ = {x ∈ L|OL′x ⊂ Λ∗} is the largest OL′ -lattice contained in Λ∗ and
N = DL′/F · largest OL′ -lattice contained in Λ. We have M ⊃ Λ ⊃ N .

If ai ∈ OL′ , xi ∈ Λ, then∑
aixi ∈ N ⇒

∑
τ(ai)xi ∈ N.

Indeed, u ∈ N ⇔ 〈u, y〉′ ∈ OL′ for all y ∈ Λ∗. If
∑
aixi ∈ N , then∑

ai〈xiy〉′ ∈ OL′ for all y ∈ Λ∗. Since

〈xi, y〉′ + τ(〈xi, y〉′) = 〈xi, y〉 ∈ O,

it follows that
∑
τ(ai)〈xi, y〉′ ∈ OL′ .

So we can define a homomorphism

ϕ : M/N →M/N by
∑

aixi +N 7→
∑

τ(ai)xi +N,

whenever ai ∈ OL′ , xi ∈ Λ.
The homomorphism ϕ is OL′ -semilinear and ϕ2 = id.
The set Λ/N is the set of fixed points of ϕ. Indeed, if

∑
τ(ai)xi −∑

aixi ∈ N , then∑
τ(ai)τ(〈xi, y〉′) +

∑
ai〈xi, y〉′ ∈ OL′ ,

hence 〈
∑
aixi, y〉 ∈ O for all y ∈ Λ∗, i.e.

∑
aixi ∈ Λ.

Conversely, let M ⊃ N be two OL′ -lattices in L and ϕ : M/N →M/N

an OL′ -semilinear homomorphism.
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Necessary conditions for (M,N,ϕ) to correspond to a lattice Λ are:

ϕ2 = id, N ⊂ DL′/FM, ϕ ≡ id modDL′/FM/N,

ϕ = id on D−1
L′/FN/N.

These conditions are also sufficient when L′/F is unramified (in which
case the only condition is ϕ2 = id) and when L′/F is tamely ramified. If
Λ exists, it is unique, since Λ/N is the set of fixed points of ϕ.

The lattice M̃ can be identified with HomOL′ (M,OL′) using 〈m, m̃〉′

(this gives M ∼→
≈
M = M , m 7→ −m). If M ⊃ N , then

HomOL′ (M/N,L′/OL′) = Ñ/M̃.

If ϕ : M/N → M/N is OL′ -semilinear, then f 7→ τfϕ is a semilinear
endomorphism ϕ̃ of HomOL′ (M/N,L′/OL′), which on Ñ/M̃ is given by

〈ϕ(m), ñ〉′ ≡ τ(〈m, ϕ̃(ñ)〉′) modOL′ .

If Λ 7→ (M,N,ϕ) then Λ∗ 7→ (Ñ , M̃ ,−ϕ̃).

7. In the following computations F is a nonarchimedean local field.
Notations are as in section 1, dimV = 4. We have either L(F ) is a field
or L(F ) is the product of two quadratic fields.

2b. L(F ) is a Product

1. Assume L(F ) = L1 × L2, [Li:F ] = 2. Then V (F ) = V1 ⊕ V2, Vi a
1-dimensional vector space over Li, V1⊥V2. We identify Vi with Li. Then

T (F ) = {(t1, t2) ∈ L×1 × L
×
2 |NLi/F (ti) = 1 for i = 1, 2}.

We compute the number of lattices Λ in V (F ) which satisfy Λ∗ = νΛ and
γΛ = Λ, for a given regular element γ of T (F ) and a set of representatives
ν of F×/NL1/FL

×
1 × F×/NL2/FL

×
2 .

By section 2a.5 the lattice Λ is given by lattices Mi ⊂ Ni in Li (i = 1, 2)
and an isomorphism ϕ : N1/M1 → N2/M2.

Let γ = (t1, t2) and ν = (ν1, ν2).
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The condition Λ∗ = νΛ means that Ni = ν−1
i M∗i (i = 1, 2) and

ν2ϕν
−1
1 = −(ϕ∗)−1. Then γΛ = Λ is equivalent to tiMi = Mi (i = 1, 2)

and t2ϕt
−1
1 = ϕ.

Put Mi = ziOLi(mi) with zi ∈ L×i ,mi ≥ 0.
Choose wi ∈ Li such that OLi = O + Owi. On each Vi = Li there

is only one symplectic form, up to a factor from F×, and in order to
compute our four numbers we may assume that 〈1, w1〉 = 〈1, w2〉 = 1.
Then M∗i = z−1

i πππmiOLi(mi) and

Mi ⊂ ν−1
i M∗i ⇔ νiNLi/F (zi)πππmi ∈ O.

Moreover, ν−1
1 M∗1 /M1 and ν−1

2 M∗2 /M2 have to be isomorphic. This means
that v(νiNLi/F (zi)πππmi) must be independent of i. So put

m = v(ν1) + v(NLi/F (z1)) +m1 = v(ν2) + v(NL2/F (z2)) +m2 ≥ 0.

Then
Ni/Mi = ν−1

i M∗i /Mi ' OLi(mi)/πππmOLi(mi).

With respect to the bases 1, πππmiwi of OLi(mi), the isomorphism ϕ is given
by a matrix ϕ ∈ GL(2,O/πππmO) satisfying (from ν2ϕν

−1
1 = −(ϕ∗)−1)

det(ϕ) = −ν2ν
−1
1 πππm2−m1NL2/F (z2)NL1/F (z1)−1(modπππmO).

The conditions with respect to γ are: ti ∈ OLi(mi), t2ϕt
−1
1 = ϕ.

The number to compute is the sum over m ≥ 0 of∑
m1,m2≥0
ti∈OLi (mi)

∑
z1∈L×1 ,z2∈L

×
2

zi modOLi (mi)
×

fivLi (zi)=m−mi−v(vi)

Card{ϕ ∈ GL(2,O/πππmO)|•}

where • stands for t2ϕ = ϕt1,det(ϕ) = u and

u = −ν2ν
−1
1 πππm2−m1NL2/F (z2)NL1/F (z1)−1.

Here Card is 1 when m = 0.

2. We now assume that |2| = 1 in F . Then wi can be so chosen that
w2
i = αi ∈ O. Put ti = ai + biπππ

miwi with ai, bi ∈ O.
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Let ϕ =
( x1 x2

x3 x4

)
∈ GL(2,O/πππmO). The matrix corresponding to ti is(

ai αibiπππ
2mi

bi ai

)
.

We have a2
1 − αib2iπππ2mi = 1 (i = 1, 2).

Assume m > 0. The conditions on ϕ are:

(a1 − a2)x1 + b1x2 − α2b2πππ
2m2x3 ≡ 0

α1b1πππ
2m1x1 + (a1 − a2)x2 − α2b2πππ

2m2x4 ≡ 0

b2x1 + (a2 − a1)x3 − b1x4 ≡ 0

b2x2 − α1b1πππ
2m1x3 + (a2 − a1)x4 ≡ 0

x1x4 − x2x3 ≡ u


modπππm

where u is an element of O×.
This system cannot be solvable unless a1 ≡ a2(πππm), since t2 = ϕt1ϕ

−1

implies tr(t2) = tr(t1). Assume this. Then

(1) b2x1 ≡ b1x4

(2) α1b1πππ
2m1x1 ≡ α2b2πππ

2m2x4

(3) b1x2 ≡ α2b2πππ
2m2x3

(4) b2x2 ≡ α1b1πππ
2m1x3

(5) x1x4 − x2x3 ≡ u


modπππm

This system is unsolvable when v(b2) > v(b1) and m > v(b1), as (1) and
(3) would imply that x4 ≡ x2 ≡ 0(πππ); and also when v(b1) > v(b2) and
m > v(b2), as (1) and (4) would imply that x1 ≡ x2 ≡ 0(πππ). It remains to
consider: m ≤ v(bi) (i = 1, 2) or m > v(b1) = v(b2).

Suppose m ≤ v(b1) and m ≤ v(b2). Then x1x4 − x2x3 ≡ u(πππm) has
q3m−2(q2 − 1) solutions.

Suppose m > v(b1) = v(b2). Put k = v(b1) = v(b2). Put ci = αibiπππ
2mi

(i = 1, 2). Then (1)-(4) imply that

(b1c1 − b2c2)xi ≡ 0 modπππm+k

for all i, so we must necessarily have b1c1 ≡ b2c2 modπππm+k. This is equiv-
alent to a2

1 ≡ a2
2 modπππm+k and implies that either v(ci) ≥ m for i = 1, 2
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or v(c1) = v(c2) < m. From (3) and (4) it follows that x2 ≡ 0(πππ), unless
v(c1) = v(c2) = k, i.e. v(αi) = 0, mi = 0 (i = 1, 2). Assume we are
not in this case. Then v(ci) > k for i = 1, 2. Also x2 ≡ 0(πππ), hence
x1 ∈ O× and (5) gives x4 ≡ x−1

1 x2x3 + x−1
1 umodπππm(∗). (3) and (4) give

x2 ≡ b−1
1 c2x3 modπππm−k(∗∗). (2) is a consequence of (1). After substitu-

tion of (∗) and (∗∗) the congruence (1) reads

x2
1 ≡ b−1

2 c2x
2
3 + b1b

−1
2 umodπππm−k.

Here b−1
2 c2 ≡ 0(πππ).

We find 2qm+2k solutions when b1b
−1
2 u is a square in F , and otherwise

no solution.
Now suppose that v(αi) = 0, mi = 0 (i = 1, 2). Then L1 = L2 = the

unramified quadratic extension of F . Take α1 = α2 = α. We have b21 ≡
b22 modπππm+k. Now (1) and (2) are equivalent, (3) and (4) are equivalent.
From (1), (3), (5) one deduces that x2

1 − αx2
3 ≡ b1b

−1
2 umodπππm−k. This

congruence has qm−k−1(q + 1) solutions modulo πππm−k. For each solution
x1 ∈ O× or x3 ∈ O×.

If x1 ∈ O× we have

x2 ≡ αb2b−1
1 x3 (πππm−k), x4 ≡ x−1

1 (x2x3 + u) (πππm).

If x3 ∈ O× we have x4 ≡ b2b−1
1 x1 (πππm−k), x2 ≡ x−1

3 (x1x4 − u) (πππm).
So there are qm+2k−1(q + 1) solutions for the system in this case.

3. Recall that OLi = O+Owi, w2
i = αi and |2| = 1. Let ti = ai + biwi,

a2
i − αib2i = 1 (i = 1, 2). As t = (t1, t2) is supposed to be regular, we have
b1 6= 0, b2 6= 0, and in case L1 = L2, a1 6= a2. Let us be given:

ν1, ν2 ∈ F× (νi modNLi/FL
×
i );

m ≥ 0;
m1,m2 ≥ 0 such that ti ∈ OLi(mi), i.e. mi ≤ v(bi);
z1 ∈ L×1 , z2 ∈ L×2 (zi modOLi(mi)×) with fivLi(zi) = m−mi − v(vi).

Put u = −ν2ν
−1
1 πππm2−m1NL2/F (z2)NL1/F (z1)−1. Then u ∈ O×.

By section 2 we have that

Card{ϕ ∈ GL(2,O/πππmO)| t2ϕ = ϕt1, det(ϕ) = u}

is given by
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1 if m = 0;
q3m−2(q2 − 1) if m > 0, m+mi ≤ v(bi)(i = 1, 2), a1 ≡ a2(πππ);
2qm+2k if v(bi) = mi + k, 0 ≤ k < m, and

either v(αi) + 2mi + k ≥ m (i = 1, 2), a1 ≡ a2(πππ), and •,
where we put • for −ν2ν

−1
1 b2b

−1
1 N(z2)N(z1)−1 ∈ F×2,

or α1 = α2, m1 = m2, k < v(αi) + 2mi + k < m, •, and
a1 ≡ a2(πππm+k);

qm+2k−1(q + 1) if α1 = α2 ∈ O×, m1 = m2 = 0, 0 ≤ v(b1) = v(b2)
= k < m, and a1 ≡ a2(πππm+k).

It is zero in all other cases.
We are computing∑

ν1,ν2

∑
m≥0

∑
0≤mi≤v(bi)

mi≡m+v(νi) mod fi

∑
z′
i
∈O×

Li
/OLi (mi)×

Card{ϕ}.

We put zi = z′iπππ
m−mi−v(νi)/fi
Li

. The condition • becomes

NL1/F (z′1)NL2/F (z′2)−1

∈ −ν2πππ
−v(ν2)
2 ν−1

1 πππ
v(ν1)
1 b2πππ

−v(b2)
2 b−1

1 πππ
v(b1)
1 (πππ2πππ

−1
1 )k+mO×2,

where NLi/F (πππLi) = πππfii .
Notice that Card{ϕ} is independent of z′1, z′2, except for the cases where

the condition • plays a role. In those cases one has mi > 0 when Li/F is
unramified, so that OLi(mi)× ⊂ O×2

Li
. This is used in the following.

Our sum is the sum of the following sums.

∏
i=1,2

ei
∑

0≤k≤v(bi)

(O×Li : OLi(k)×);I)

e1e2

∑
m>0,mi≥0
m+mi≤v(bi)

q3m−2(q2 − 1)ABII)

if a1 ≡ a2(πππ); here A = (O×L1
: OL1(m1)×), B = (O×L2

: OL2(m2)×);

1
2
e1e2

∑
0≤k<m,k≤v(bi)

k+m≤v(αi)+2v(bi)

2qm+2kABIII)

if a1 ≡ a2(πππ); here A = (O×L1
: OL1(v(b1)− k)×), (O×L2

: OL2(v(b2)− k)×).
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If α1 = α2 and v(b1) = v(b2), put A = (O×L1
: OL1(v(b1)− k)×)2:

1
2
e1e2

∑
0≤k≤v(b1),2k<v(α1)+2v(b1)

v(α1)+2v(b1)<m+k≤v(a1−a2)

2qm+2kA.IV )

If α1 = α2 ∈ O× and v(b1) = v(b2):∑
v(b1)<m≤v(a1−a2)−v(b1)

qm+2v(b1)−1(q + 1).V )

Put Mi = v(bi), M = max(M1,M2), N = min(M1,M2). The sub-sums
are:

ei
∑

0≤k≤Mi

(O×Li : OLi(k)×) =
qMi+1 + qMi − 2

q − 1
if ei = 1,

=
2(qMi+1 − 1)

q − 1
if ei = 2.I)



q+1
q−1{q

M+N−1(q + 1)2 qN−1
q−1 if e1 = e2 = 1

−2(qM + qN )(q + 1) q
2N−1
q2−1 + 4q q

3N−1
q3−1 };

2 q+1
q−1{q

M1+M2(q + 1) q
N−1
q−1 if e1 = 1, e2 = 2

−(qM1+1 + qM1 + 2qM2+1) q
2N−1
q2−1 + 2q q

3N−1
q3−1 };

4 q+1
q−1{q

M+N+1 qN−1
q−1 − (qM+1 + qN+1) q

2N−1
q2−1 + q q

3N−1
q3−1 }

if e1 = e2 = 2;

II)

if a1 ≡ a2(πππ).



qM+N−1(q + 1)2(qN − 1)(qN+1 − 1)(q − 1)−2

if e1 = e2 = 1;
2qM+N (q + 1)(qN − 1)(qN+1 − 1)(q − 1)−2

if e1 = 1, e2 = 2,M1 ≤M2;
2qM+N (q + 1)(qN+1 − 1)2(q − 1)−2

if e1 = 1, e2 = 2,M1 > M2;
4qM+N+1(qN+1 − 1)2(q − 1)−2

if e1 = e2 = 2.

III)
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if a1 ≡ a2(πππ).

{
q3N (q + 1)2(qN − 1)(qv(a1−a2)−2N − 1)(q − 1)−2 if e1 = 1,

4q3N+2(qN+1 − 1)(qv(a1−a2)−2N−1 − 1)(q − 1)−2 if e2 = 2.
IV )

if L1 = L2, a1 ≡ a2(πππ).

q3N (q + 1)(qv(a1−a2)−2N − 1)(q − 1)−1V )

if L1 = L2 is unramified and a1 ≡ a2(πππ).
The formulas IV) and V) hold even when v(b1) 6= v(b2), because we

have then v(a1 − a2) = 2N + v(α1).

2c. L(F ) is a Quartic Extension

1. Assume L(F ) = L is a field. We identify V (F ) with L(F ). A quadratic
subfield L′ of L is given and T (F ) = {t ∈ L×|NL/L′(t) = 1}. We compute
the number of lattices Λ in L which satisfy Λ∗ = νΛ and tΛ = Λ, for a given
regular element of T (F ) and a set of representatives ν of L′×/NL/L′L×.
That t is regular means that F (t) = L.

We use the L′-bilinear alternating form 〈x, y〉′ = trL/L′ (aσ(x)y) intro-
duced in section 6 of Case of SL(2) (we shall choose a later). Assume that
L′/F is unramified or tamely ramified. A lattice Λ is given by OL′ -lattices
M ⊃ N and a map ϕ : M/N →M/N satisfying certain conditions (see sec-
tion 6). Moreover, Λ∗ = νΛ is equivalent to M = ν−1Ñ and −ϕ̃ = νϕν−1.
The identity tΛ = Λ is equivalent to

tM = M, tN = N, tϕt−1 = ϕ.

Put N = uOL(n), u ∈ L×, n ≥ 0. Assuming that min
x,y∈OL

vL′(〈x, y〉′) = 0

(cf. section 4 of Case of SL(2); we come back to this later) we have

M = ν−1Ñ = ν−1σ(u)−1πππ−nL′ OL(n).

Now
M ⊃ N ⇔ νNL/L′(u)πππnL′ ∈ OL′ .
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Put
m = vL′(ν) + fL/L′vL(u) + n ≥ 0.

Then
M/N ' OL(n)/πππmL′OL(n)

and we consider ϕ as a semilinear endomorphism of this OL′ -module. We
choose πππL′ = πππ when L′/F is unramified, πππ2

L′ ∈ F when L′/F is tamely
ramified. In any case ϕ must satisfy ϕ2 = id. When L′/F is tamely
ramified (DL′/F = πππL′OL′), there are more conditions, namely:
1) N ⊂ DL′/FM , i.e. m ≥ 1;
2) ϕ = id modπππL′ ;
3) ϕ = id on πππm−1

L′ OL(n)/πππmL′OL(n).
When 2) holds, condition 3) means that m is odd.
The condition −ϕ̃ = νϕν−1 translates to:

−c〈ϕ(x), y〉′ ≡ 〈x, ϕ(y)〉′modπππm+n
L′ OL′ for all x, y ∈ OL(n),∗

where
c = νNL/L′(u)/ν NL/L′(u).

Write
νNL/L′(u) = c1πππ

m−2
L′ , c1 ∈ O×L′ .

Then c = c1/c1 when L′/F is unramified or n is odd and c = −c1/c1, when
L′/F is ramified and n is even. Now ∗ is:

〈x, c1ϕ(y)〉′ ≡ ±〈c1ϕ(x), y〉′modπππm+n
L′ OL′ for all x, y ∈ OL(n)∗∗

(+ when L′/F is ramified and n even, – otherwise).
Choose wL ∈ L such that OL = OL′ + OL′wL. Then OL(n) = OL′ +

OL′πππnL′wL. In 〈x, y〉′ = trL/L′(aσ(x)y) the element a is such that σ(a) =
−a. We may take a = a1(wL − σ(wL))−1 with any a1 ∈ L′×. Note
that 〈1,πππnL′wL〉′ = a1πππ

n
L′ . So, when we take a unit for a1, we have

〈1, wL〉′ ∈ O×L′ , which was used above. A possible choice is: a1 = 1 if
L′/F is ramified, a1 ∈ O×L′ such that a1 = −a1 if L′/F is unramified.
Then 〈1,πππnL′wL〉′/〈1,πππnL′wL〉′ is just the sign in ∗∗.

With respect to the basis {1, πππnL′wL} the map c1ϕ is given by a
matrix Z in

GL(2,OL′/πππmL′OL′)
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satisfying
tZJ = JZ, J =

(
0 1

−1 0

)
,

ZZ = c1c1,

tZ = Zt,

m is odd and Z ≡ c1 modπππL′ if L′/F is (tamely) ramified.

It is perhaps better to say that the map is given by Zτ : if Z =
( z1 z2
z3 z4

)
and x =

(
x1
x2

)
, then

c1ϕ(x) =
( z1 z2
z3 z4

)(x1

x2

)
.

2. We now assume that |2| = 1 in F . Then we can take wL such
that w2

L ∈ OL′ . Suppose t ∈ OL(n). Put t = t1 + t2πππ
n
L′wL with t1, t2 ∈

OL′ . The matrix corresponding to multiplication by t is
(
t1 λt2
t2 t1

)
with

λ = πππ2n
L′w

2
L ∈ OL′ .

We have t21 − λt22 = 1. Let

Z =
( z1 z2
z3 z4

)
∈ GL(2,OL′/πππmL′OL′), m > 0.

The conditions on Z are (all ≡ modπππmL′):

(1)


z2 + z2 ≡ 0
z3 + z3 ≡ 0
z4 ≡ z1

z1z1 + z2z3 ≡ c1c1

(2)


(t1 − t1)z1 − t2z2 + λt2z3 ≡ 0

−λ t2z1 + (t1 − t1)z2 + λt2z4 ≡ 0
t2z1 + (t1 − t1)z3 − t2z4 ≡ 0

t2z2 − λ t2z3 + (t1 − t1)z4 ≡ 0

and if L′/F is ramified: z1 ≡ c1 modπππL′ . It follows from (1), in this case,
that

z2 ≡ z3 ≡ 0(πππL′), z1 ≡ ±c1(πππL′).

When (1) holds, (2) is equivalent to

(t1 − t1)zi ≡ 0 (all i), t2z2 ≡ λt2z3, t2z1 ≡ t2z1, λt2z1 ≡ λ t2z1.

Necessary for solvability of the system is that t1 ≡ t1(πππmL′).
We treat the cases L′/F ramified, resp. unramified, separately.
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Suppose m > vL′(t2). Put t2 = πππkL′b1, b1 ∈ O×L′ , 0 ≤ k < m. The
congruences (2) are b1z2 ≡ (−1)kλb1z3,

b1z1 ≡ (−1)kb1z1, λb1z1 ≡ (−1)kλ b1z1 modπππm−kL′ OL′ .

Introduce the new variable z′1 = b1z1. Then

z′1 ≡ (−1)kz′, λb21z
′
1 ≡ (−1)kλ b

2

1z
′
1 modπππm−kL′ OL′ .

And from (1):

z2 + z2 ≡ 0, z3 + z3 ≡ 0, z′1z1 − b1b1z2z3 ≡ b1b1c1c1 modπππmL′OL′

and z′1 ≡ b1c1 modπππL′OL′ .
From the last congruence and z′1 ≡ (−1)kz′1, we see that k must be

even. Then

z′1 ≡ x1 + πππ
m−k−1

2 y1πππL′ , z2 ≡ y2πππL′ , z3 ≡ y3πππL′ modπππmL′OL′

with x1, yi ∈ O and
(5) b1b1y2 ≡ λb21y3 modπππm−k−1

L′ OL′ , λb21x1 ≡ λ b
2

1x1 modπππm−kL′ OL′ ,
(6) x2

1 − πππm−ky2
1 − b1b1πππy2y3 ≡ b1b1c1c1 modπππ

m+1
2 O,
x1 ≡ b1c1+b1c1

2 modπππO.
Here x1 has to be taken modπππ

m+1
2 , y1 modπππ

k
2 , y2 and y3 modπππ

m−1
2 .

The congruences (5) are equivalent to

(λb21−λ b
2

1)x1 ≡ 0 modπππm−kL′ OL′ , (λb21−λ b
2

1)y3 ≡ 0 modπππm−k−1
L′ OL′ ,

2b1b1y2 ≡ y3 trL′/F (λb21) modπππ
m−k−1

2 O.

We must necessarily have λb21 ≡ λ b
2

1 modπππm−kL′ OL′ , since x1 ∈ O× by
(6). Then there are q

m−1
2 +k solutions (b1b1c1c1 is always a square in F ,

because L′/F is ramified).

Remark. The condition λb21 ≡ λ b
2

1 modπππm−kL′ OL′ , is equivalent to

t21 ≡ t
2
1 modπππm+k

L′ OL′

in both cases (L′/F ramified or not).
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3. Recall that

OL = OL′ +OL′wL, w2
L ∈ OL′ . Let t = t1 + t2wL, t21 − t22w2

L = 1.

As t is regular, we have t2 6= 0 and t1 6= t1. Let us be given:∣∣∣∣∣∣∣∣∣∣
ν ∈ L′× (νmodNL/L′L×),

m ≥ 0,

n ≥ 0 such that t ∈ OL(n), i.e. n ≤ vL′(t2),

u ∈ L×(umodOL(n)×) such that fL/L′vL(u) = m− n− vL′(ν).

By section 2 the number of corresponding ϕ is:
If L′/F is unramified:

1 if m = 0;
q3m−2(q2 + 1) if m > 0, m+ n ≤ vL′(t2), t1 ≡ t1 modπππ;
2qm+2k if vL′(t2) ≡ n+ k, 0 ≤ k < m,

and t1 ≡ t1 modπππm+kOL′ , ννNL/k(u)t2t2 ∈ F×2.

If L′/F is ramified and m odd
q

3(m−1)
2 if m+ n ≤ vL′(t2), t1 ≡ t1 modπππL′ ;

q
m−1

2 +k if vL′(t2) = n+ k, 0 ≤ k < m,

and k even, t1 ≡ t1 modπππm+k
L′ OL′ .

It is 0 in all other cases.
First, we consider the case where L′/F is unramified. We have

OL′ = O +Ow′, w′2 = α ∈ O×, πππL′ = πππ.

Suppose m ≤ vL′(t2). Only the congruences (1) are left. We have

z1 ≡ x1 + y1w
′, z2 ≡ y2w

′, z3 ≡ y3w
′

with x1, y1, y2, y3 ∈ O(modπππm). Further

x2
1 − αy2

1 − αy2y3 ≡ c1c1 modπππm.
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There are q3m(1 + q−2) solutions.
Suppose m > vL′(t2). Put t2 = πππkb1, b1 ∈ O×L′ , 0 ≤ k < m.
The congruences (2) become

b1z2 ≡ λb1z3, b1z1 ≡ b1z1, λb1z1 ≡ λ b1z1 modπππm−kOL′ .

Introduce the new variable z′1 = b1z1. Then

z′1 ≡ z′1, λb21z
′
1 ≡ λ b

2

1z
′
1 modπππm−kOL′ .

Moreover we have, from (1):

z2 + z2 ≡ 0, z3 + z3 ≡ 0

z′1z
′
1 − b1b1z2z3 ≡ b1b1c1c1

}
modπππmOL′

z′1 ≡ x1 + πππm−ky1w
′, z2 ≡ y2w

′, z3 ≡ y3w
′modπππmOL′ with x1, y1,

y2, y3 ∈ O and
(3) b1b1y2 ≡ λb21y3, λb21x1 ≡ λ b

2

1x1 modπππm−kOL′ ,
(4) x2

1 − απππ2m−2ky2
1 − αb1b1y2y3 ≡ b1b1c1c1 modπππmO.

The elements x1, y2, y3 are to be taken modulo πππm and y1 modulo πππk.
The congruences (3) are equivalent to

(λb21 − λ b
2

1)x1 ≡ 0, (λb21 − λ b
2

1)y3 ≡ 0,

2b1b1y2 ≡ y3 trL′/F (λb21) modπππm−kOL′ .

We must necessarily have λb21 ≡ λ b
2

1 modπππm−kOL′ , since x1 and y3 cannot
be both ≡ 0(πππ) because of (4).

It follows from λb21 ≡ λ b
2

1 modπππm−kOL′ that λb21 is congruent to an
element of O, which must be in πππO, for otherwise λ would be a square in
L′. So λ ∈ πππOL′ and y2 ∈ πππO. Hence, for (4) to be solvable, b1b1c1c1 must
be a square in F . The number of solutions is

2qm+2k if λb21 ≡ λ b
2

1 modπππm−kOL′ and b1b1c1c1 ∈ F×2,

and 0 otherwise.
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Next, consider the case where L′/F is ramified.
We have OL′ = O +OπππL′ , πππ2

L′ = πππ, a uniformizing element of F . Now
m is odd and

πππmL′OL′ = Oπππ
m+1

2 +Oπππ
m−1

2 πππL′ .

Suppose m ≤ vL′(t2). Then

z1 ≡ x1 + y1πππL′ , z2 ≡ y2πππL′ , z3 ≡ y3πππL′ modπππmL′OL′

with x1, yi ∈ O. Further

x2
1 − πππy2

1 − πππy2y3 ≡ c1c1 modπππ
m+1

2 O, x1 ≡
c1 + c1

2
modπππO.

Here x1 is to be taken modulo πππ
m+1

2 and the yi modulo πππ
m−1

2 .
There are q

3(m−1)
2 solutions.

We compute∑
ν

∑
m≥0

∑
0≤n≤vL′ (t2)

n≡m−vL′ (ν) mod fL/L′

∑
u1∈O×L /OL(n)×

Card{ϕ},

where we put

u = u1πππ
m−n−vL′ (ν)/fL/L′

L .

The following observations can be used to handle the sum over u1.
a) If L/L′ is unramified, vL′ induces a bijection L′×/NL/L′L× → Z/2Z.

If L/L′ is ramified,

O×L′/O
×2
L′ = O×L′/NL/L′O

×
L
∼→L′×/NL/L′L

×.

b) Assume L′/F unramified. Then NL/FO×L = O× if L/L′ is unrami-
fied, = O×2 if L/L′ is ramified.

c) Assume L/F unramified. Then NL/F : O×L /O
×2
L
∼→O×/O×2. More-

over, in the case where vL′(t2) < m+n, we have n > 0, so OL(n)× ⊂ O×2
L .
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Our sum is the sum of the following sums.
If L′/F is unramified:

I) eL/L′
∑

0≤n≤vL′ (t2)

(O×L : OL(n)×).

II) eL/L′
∑

m>0,n≥0
m+n≤vL′ (t2)

q3m−2(q2 + 1)(O×L : OL(n)×),

if t1 ≡ t1 modπππOL′ .

III) 1
2eL/L′

∑
0≤k<m,k≤vL′ (t2)

m+k≤vL′ (t1−t1)

2qm+2k(O×L : OL(vL′(t2)− k)×).

If L/F is ramified:

IV) eL/L′
∑

m>0,n≥0,m odd
m+n≤vL′ (t2)

q
3(m−1)

2 (O×L : OL(n)×),

if t1 ≡ t1 modπππL′OL′ .

V) eL/L′
∑

0≤k<m,m odd, k even

k≤vL′ (t2),m+k≤vL′ (t1−t1)

q
m−1

2 +k(O×L : OL(vL′(t2)− k)×).

Put A = vL′(t1 − t1), B = vL′(t2). We have t21 − δt22 = 1, with
δ = w2

L.

Lemma. a) A ≥ 2B + vL′(δ).
b) A = 2B+vL′(δ) except for the cases where L/F is the noncyclic Galois
extension.

Proof. a) follows from t21− t
2
1 = δt

2
2(t22t

−2
2 − δ−1δ). Note that t1 + t1 ∈

O×L′ if 2B + vL′(δ) > 0.
b) If A > 2B + vL′(δ), then t22t

−2
2 ≡ δ−1δmodπππL′ . One checks case-by-

case that this is impossible when L/F is not the composite of the three
quadratic extensions of F . �
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The sums (I)-(V) are:

q2B+2 + q2B − 2
q2 − 1

(L/L′ unramified),I)

2(q2B+2 − 1)
q2 − 1

(L/L′ ramified);

q2B−1 (q2 + 1)2

q2 − 1
qB − 1
q − 1

− 2q
q2 + 1
q2 − 1

q3B − 1
q3 − 1

(L/L′ unramified);II)

2q
q2 + 1
q2 − 1

{
q2B q

B − 1
q − 1

− q3B − 1
q3 − 1

}
(L/L′ ramified);

q2B+1(q2 + 1)(qB − 1)(qB+1 − 1)
(q − 1)2

(L/L′ unramified);III)

2q2B+1(qB+1 − 1)(qA−B − 1)
(q − 1)2

(L/L′ ramified);

Here A = 2B + 1 if L/F is cyclic.

qB−1(q + 1)(q[
B+1

2 ] − 1)
(q − 1)2

− 2(q3[B+1
2 ] − 1)

(q − 1)(q3 − 1)
(L/L′ unramified)IV )

2qB(q[
B+1

2 ] − 1
(q − 1)2

− 2(q3[B+1
2 ] − 1)

(q − 1)(q3 − 1)
(L/L′ ramified)

q
3B
2
q
A+1

2 −B − 1
q − 1

δ(B, 2
[
B

2

]
)V )

+
qB−1(q + 1)(q[

B+1
2 ] − 1)(q

A+1
2 −[B−1

2 ] − 1)
(q − 1)2

(L/L′ unramified);

2qB(q[
B
2 ]+1 + 1)(q[

B+3
2 ] − 1)

(q − 1)2
(L/L′ ramified).





PART 2. ZETA FUNCTIONS

OF SHIMURA VARIETIES

OF PGSp(2)





I. PRELIMINARIES

1. Introduction

Eichler expressed the Hasse-Weil Zeta function of a modular curve as a
product of L-functions of modular forms in 1954, and, a few years later,
Shimura introduced the theory of canonical models and used it to similarly
compute the Zeta functions of the quaternionic Shimura curves. Both
authors based their work on congruence relations.

Ihara introduced (1967) a new technique, based on comparison of the
number of points on the Shimura variety over various finite fields with
the Selberg trace formula. He used this to study forms of higher weight.
Deligne [D1] explained Shimura’s theory of canonical models in group the-
oretical terms, and obtained Ramanujan’s conjecture for some cusp forms
on GL(2,AQ), namely that their Hecke eigenvalues are algebraic and all of
their conjugates have absolute value 1 in C×, for almost all components.

Langlands [L3-5] developed Ihara’s approach to predict the contribu-
tion of the tempered automorphic representations to the Zeta function of
arbitrary Shimura varieties, introducing in the process the theory of endo-
scopic groups. He carried out the computations in [L5] for subgroups of
the multiplicative groups of nonsplit quaternionic algebras.

Using Arthur’s conjectural description [A2-4] of the automorphic non-
tempered representations, Kottwitz [K3] developed Langlands’ conjectural
description of the Zeta function to include nontempered representations. In
[K4] he associated Galois representations to automorphic representations
which occur in the cohomology of unitary groups associated to division
algebras. In this anisotropic case the trace formula simplifies.

To deal with isotropic cases, where the Shimura variety is not proper
and one has continuous spectrum on the automorphic side, Deligne con-
jectured that the Lefschetz fixed point formula for a correspondence on a
variety over a finite field remains valid if the correspondence is twisted by
a sufficiently high power of the Frobenius.

207
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Deligne’s conjecture was used with Kazhdan in [FK3] to decompose
the cohomology with compact supports of the Drinfeld moduli scheme of
elliptic modules, and relate Galois representations and automorphic rep-
resentations of GL(n) over function fields of curves over finite fields.

Deligne’s conjecture was proven in some cases by Zink [Zi], Pink [P],
Shpiz [Sh], and in general by Fujiwara [Fu]. See Varshavsky [Va] for a
recent simple proof. We use it here to express the Zeta function of the
Shimura varieties of the projective symplectic group of similitudes H =
PGSp(2) of rank 2 over any totally real field F and with any coefficients,
in terms of automorphic representations of this group and of its unique
proper elliptic endoscopic group, C0 = PGL(2)× PGL(2).

Moreover we decompose the cohomology (étale, with compact supports)
of the Shimura variety (with coefficients in a finite dimensional representa-
tion of H), thus associating a Galois representation to any “cohomological”
automorphic representation of H(A). Here A = AF denotes the ring of
adèles of F , and AQ of Q. Our results are consistent with the conjectures
of Langlands and Kottwitz [Ko4]. We make extensive use of the results
of [Ko4], expressing the Zeta function in terms of stable trace formulae of
PGSp(2) and its endoscopic group C0, also for twisted coefficients. We use
the fundamental lemma proven in this case in [F5] and assumed in [Ko4]
in general.

Using congruence relations Taylor [Ty] associated Galois representations
to automorphic representations of GSp(2,AQ) which occur in the cohomol-
ogy of the Shimura three-fold, in the case of F = Q. Laumon [Ln] used
the Arthur-Selberg trace formula and Deligne’s conjecture to get more pre-
cise results on such representations again for the case F = Q where the
Shimura variety is a 3-fold, and with trivial coefficients. Similar results
were obtained by Weissauer [W] (unpublished) using the topological trace
formula of Harder and Goresky-MacPherson.

However, a description of the automorphic representations of the group
PGSp(2,AF ) has recently become available [F6]. We use this, together
with the fundamental lemma [F5] and Deligne’s conjecture [Fu], [Va], to
decompose the Q`-adic cohomology with compact supports and describe
all of its constituents. This permits us to compute the Zeta function, in
addition to describing the Galois representation associated to each auto-
morphic representation occurring in the cohomology. To use [F6] when
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F = Q we work only with automorphic representations which have an
elliptic component at a finite place. There is no restriction when F 6= Q.

We work with any coefficients, and with any totally real base field F .
In the case F 6= Q the Galois representations which occur are related to
the interesting “twisted tensor” representation of the dual group. Using
Deligne’s “mixed purity” theorem [D6] we conclude that for all good primes
p the Hecke eigenvalues of any automorphic representation π = ⊗πp oc-
curring in the cohomology are algebraic and all of their conjugates lie on
the unit circle for π which lift ([F6]) to representations on PGL(4) induced
from cuspidal ones, or are related by lifting – in a way which we make
explicit – to automorphic representations of GL(2) with such a property.
This is known as the “generalized” Ramanujan conjecture (for PGSp(2)).

2. Statement of Results

To describe our results we briefly introduce the subjects of study; more
detailed account is given in the body of the work. Let F be a totally real
number field, H = GSp(2) the group of symplectic similitudes (whose Borel
subgroup is the group of upper triangular matrices), H ′ = RF/QGSp(2)
the Q-group obtained by restriction of scalars, AQ and AQf the rings of
adèles and finite adèles of Q, Kf an open compact subgroup of H ′(AQf )
of the form

∏
p<∞Kp, Kp open compact in H ′(Zp) for all p with equality

for almost all primes p, h : RC/RGm → H ′
R

an R-homomorphism satisfying
the axioms of [D5] and SKf the associated Shimura variety, defined over
its reflex field E, which is Q.

The finite dimensional irreducible algebraic representations of H are
parametrized by their highest weights (a, b; c) : diag(x, y, z/y, z/x) 7→
xaybzc, where a, b, c ∈ Z and a ≥ b ≥ 0. Those with trivial central
character have a+ b = −2c even, and we denote them by (ρa,b, Va,b). For
each rational prime `, the representation

(ρa,b = ⊗v∈Sρav,bv , Va,b = ⊗v∈SVav,bv )

of H ′ over F (S is the set of embeddings of F in R) defines a smooth Q`-
adic sheaf Va,b;` on SKf . We are concerned with the decomposition of the
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Q`-adic vector space Hi
c(SKf ⊗QQ,Va,b;`) as a Cc(Kf\H ′(AQf )/Kf ,Q`)×

Gal(Q/Q)-module, or more precisely the virtual bi-module

H∗c = ⊕(−1)iHi
c, 0 ≤ i ≤ 2 dimSKf .

We fix an isomorphism of fields from Q` to C. Write H∗c (πHf ) for

HomHKf (πf ,H∗c (SKf ⊗E Q,Va,b;`)).

We are concerned only with av ≥ bv ≥ 0 with even av− bv, and we con-
sider only the part of H∗c isotypic under Z ′(AQf ). Thus we work with func-
tions in the Hecke convolution algebra of compactly supported modulo the
center Z ′(AQf ) of H ′(AQf ), Kf -biinvariant functions on H ′(AQf ) which
transform trivially under Z ′(AQf ). Alternatively we take our group H to
be the projective symplectic group of similitudes. We make this restriction
since this is the case studied in [F6]. The fundamental lemma is estab-
lished in [F5] for any central character. Thus from now on H ′ = RF/QH,
H = PGSp(2). In the next line, Cc is Cc(Kf\H ′(AQf )/Kf ).

Theorem 1. The irreducible Cc×Gal(Q/Q)-modules which occur non-
trivially in H∗c (SKf ⊗Q Q,Va,b;`) are of the form π

Kf
Hf ⊗H∗c (πHf ), where

πHf is the finite component ⊗p<∞πHp of a discrete spectrum automorphic
representation πH of H ′(AQf ), and π

Kf
Hf denotes its subspace of Kf -fixed

vectors. The archimedean component πH∞ = ⊗v∈SπHv of π, S = {F ↪→
R} and H ′(R) =

∏
v∈S H(F ⊗F,v R), has components πHv whose infinites-

imal character is (av, bv)+(2, 1). Here (2, 1) is half the sum of the positive
roots.

Conversely, any discrete spectrum representation πH of H ′(AQf ) whose
archimedean component πH∞ = ⊗v∈SπHv is such that the infinitesimal
character of πHv is (av, bv) + (2, 1), av ≥ bv ≥ 0, even av − bv, for each
v ∈ S (we call such representations πH cohomological), and πKfHf 6= {0},
occurs in H∗c (SKf ⊗Q Q,Va,b;`) with multiplicity one as πKfHf ⊗H∗c (πHf ).

The main point here is that the πH which occur in H∗c are automor-
phic, in fact discrete spectrum with the prescribed behavior at ∞ and
ramification controlled by Kf . Each cohomological πH occurs for some
Kf depending on πH . The first statement here is known for IH by [BC].
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We proceed to describe the semisimplification of the Galois representa-
tion H∗c (πHf ) attached to πHf . For this purpose we first need to list the
cohomological πH . Note that H ′(Q) = H(F ) and H ′(AQ) = H(AF ).

The πH are described in [F6] in terms of packets and quasi-packets,
and liftings λ : Ĥ = Sp(2,C) → Ĝ = SL(4,C) (natural embedding), and
λ0 : SL(2,C) × SL(2,C) = Ĉ0 ↪→ Ĥ, Ĉ0 is viewed as the centralizer of
diag(1,−1,−1, 1) in Ĥ. A detailed account of the lifting theorems of [F6]
is given in the text below, as are the definitions of [F6] of packets and
quasi-packets. Quasi-packets refer to nontempered representations. We
distinguish five types of cohomological representations πH of PGSp(2,AF ).

(1) πH in a (stable) packet which λ-lifts to a cuspidal representation of
G(AF ), G = PGL(4); the components πHv(v ∈ S) are discrete series with
infinitesimal characters (av, bv) +(2, 1).

(2) πH in a (stable) quasi-packet of the form {L(ξν, ν−1/2π2)} which
λ-lifts to the residual noncuspidal representation J(ν1/2π2, ν−1/2π2) of
PGL(4,AF ). Here π2 is a cuspidal representation of GL(2,AF ) with qua-
dratic central character ξ 6= 1 with ξπ2 = π2, and discrete series compo-
nents π2

v = π2kv+2, kv ≥ 0 for all v ∈ S. Here (av, bv) = (2kv, 0).
(3) One dimensional representation πH(g) = ξ(λλλ(g)) of H(AF ). Here

λλλ(g) is the factor of similitude of g, ξ is a character A×F /F
×
A
×2
F → {±1},

and (av, bv) = (0, 0).
(4) πH in a packet which is the λ0-lift of π1 × π2, where π1 and π2

are distinct cuspidal representations of PGL(2,AF ) such that {π1
v , π

2
v} =

{πk1v , πk2v}, k1v > k2v > 0 odd integers for all v ∈ S. This packet λ-lifts to
the (normalizedly) induced representation I(π1, π2) of PGL(4,AF ). Here
(av, bv) = ( 1

2 (k1v + k2v)− 2, 1
2 (k1v − k2v)− 1).

(5) πH is in a quasi-packet {L(ξν1/2π2, ξν−1/2)} which is the λ0-lift of
ξ × π2, where ξ is a character A×F /F

×
A
×2
F → {±1} and π2 is a cuspidal

representation of PGL(2,AF ) with π2
v = π2kv+3, kv ≥ 0, v ∈ S. Here

(av, bv) = (kv, kv).
A global (quasi-)packet is the restricted product of local (quasi-)packets,

which are sets of one or two irreducibles, pointed by the property of being
unramified (the local (quasi-) packets contains a single unramified repre-
sentation at almost all places). The packets (1) and (3) and the quasi-
packet (2) are stable: each member is automorphic and occurs in the dis-
crete spectrum with multiplicity one. The packets (4) and quasi-packets
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(5) are not stable, their members occur in the discrete spectrum with mul-
tiplicity one or zero, according to a formula of [F6] recalled below.

We now describe the semisimplification H∗c (πHf )ss of the representa-
tion H∗c (πHf ) of Gal(Q/Q) associated to each of these πHf . From now
on, we write H∗c (πHf ) for H∗c (πHf )ss. The Chebotarev’s density theo-
rem asserts that the Frobenius elements Frp for almost all p make a dense
subgroup of Gal(Q/Q). Hence it suffices to specify the conjugacy class of
H∗c (πHf )(Frp) for almost all p. This makes sense since H∗c (πHf ) is unrami-
fied at almost all p, trivial on the inertia subgroup Ip of the decomposition
group Dp = Gal(Qp/Qp) of Gal(Q/Q), and Dp/Ip is (topologically) gener-
ated by Frp. The conjugacy class H∗c (πHf )(Frp) is determined by its trace,
and since H∗c (πHf )(Frp) is semisimple it is determined by H∗c (πHf )(Frjp)
for all sufficiently large j. We consider only p which are unramified in
F , thus the residual cardinality qu of Fu at any place u of F over p is
pnu , nu = [Fu : Qp]. Further we use only p with Kf = KpK

p, where
Kp = H ′(Zp) is the standard maximal compact, thus SKf has good reduc-
tion at p. Note that dimSKf = 3[F : Q].

Part of the data defining the Shimura variety is the R-homomorphism
h : RC/RGm → H ′ = RF/QH. Over C the one-parameter subgroup µ :
C
× → H ′(C), µ(z) = h(z, 1) factorizes through any maximal C-torus

T ′H(C) ⊂ H ′(C). TheH ′(C)-conjugacy class of µ defines then a Weyl group
WC-orbit µ =

∏
τ µτ in X∗(T ′H) = X∗(T̂ ′H). The dual torus T̂ ′H =

∏
σ T̂H

in Ĥ ′ =
∏
σ Ĥ, σ ∈ Emb(F,R), can be taken to be the diagonal subgroup,

and X∗(T̂H) = Z
2. See section 10 for more detail. We choose µτ to be

the character (1, 0) : diag(a, b, b−1, a−1) 7→ a of T̂H . Thus the H(C)-orbit
of the coweight µτ determines a WC-orbit of a character – again denoted
by µτ – of T̂H , which is the highest weight of the standard representation
r0
τ = st of Sp(2,C). Put r0

µ = ⊗τr0
τ . It is a representation of Ĥ ′.

The Galois group Gal(Q/Q) acts on Emb(F,Q). The stabilizer of µ,
Gal(Q/E), defines the reflex field E. In our case E = Q.

An irreducible admissible representation πHp of H(F⊗Qp) = H ′(Qp) =∏
u|pH(Fu) has the form ⊗uπHu. Suppose it is unramified. Then πHu has

the form πH(µ1u, µ2u), a subquotient of the normalizedly induced repre-
sentation I(µ1u, µ2u) of H(Fu) = PGSp(2, Fu), where µiu are unramified
characters of F×u . Write µmu for the value µmu(πππu) at any uniformizing
parameter πππu of F×u . Put tu = t(πHu) = diag(µ1u, µ2u, µ

−1
2u , µ

−1
1u ). Note
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that tr[tju] = µj1u + µj2u + µ−j2u + µ−j1u .
The representation πp is parametrized by the conjugacy class of t(πp) =

tp × Frp in the unramified dual group

LH ′p = Ĥ [F :Q]
o 〈Frp〉.

Here tp is the [F :Q]-tuple (tu;u|p) of diagonal matrices in Ĥ = Sp(2,C),
where each tu = (tu1, . . . , tunu) is any nu = [Fu :Qp]-tuple with

∏
i tui =

tu. The Frobenius Frp acts on each tu by permutation to the left: Frp(tu) =
(tu2, . . . , tunu , tu1). Each πu is parametrized by the conjugacy class of
t(πHu) = tu × Frp in the unramified dual group LH ′u = Ĥnu × 〈Frp〉, or
alternatively by the conjugacy class of tu×Fru in LHu = Ĥ×〈Fru〉, where
Fru = Frnup .

Our determination of the Galois representation attached to πHf is in
terms of the traces of the representation r0

µ of the dual group LH ′
E

=

Ĥ ′oWE at the positive powers of the n℘th powers of the classes t(πHp) =
(t(πu);u|p) parametrizing the unramified components πHp = ⊗u|pπHu.
The representation H∗c (πHf ) is determined by tr[Frj℘ |H∗c (πHf )] for every
integer j ≥ 0, prime p unramified in E, and E-prime ℘ dividing p. As
E = Q here, ℘ = p and n℘ = 1.

The following very detailed statement describes the Galois representa-
tion H∗c (πHf )(πH) attached to the cohomological πH .

Theorem 2. (1) Fix πH of type (1) which occurs in the cohomology with
coefficients in Va,b, av ≥ bv ≥ 0, even av − bv. Thus πH has archimedean
components π∗k1v,k2v

, ∗ = Wh or hol, k1v = av+bv+3 > k2v = av−bv+1 >
1 are odd. It contributes to the cohomology only in dimension 3[F : Q].
Denote by πHu = πH(µ1u, µ2u) the component of the representation πH of
H(AF ) at a place u of F above p. It is parametrized by the conjugacy class
t(πHu) = diag(t1u, t2u, t−1

2u , t
−1
1u ) in Ĥ = Sp(2,C), where tmu = µmu(πππu),

m = 1, 2. Then H∗c (πHf ) is 4[F :Q]-dimensional, and with ju = (j, nu),

tr[Frjp |H∗c (πHf )] = p
j
2 dimSKf tr r0

µ[(t(πp)× Frp)j ] =
∏
u|p

(tr[tj/juu ])ju .

Namely H∗c (πHf )(Frp) is ⊗u|pν
−1/2
u ru(Fru), where ru(Fru) acts on the

twisted tensor representation (ru, (C4)nu) as

t(πHu)× Fru, t(πHu) = (t1, . . . , tnu),
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tm diagonal with
∏

1≤m≤nu tm = t(πHu). Here νu is the unramified charac-
ter of Gal(Qu/Qu) with νu(Fru) = q−1

u . The eigenvalues of H∗c (πHf )(Frp)
are p

3
2 [F :Q]

∏
u|p t

ι(u)
m(u),u, m(u) ∈ {1, 2}, ι(u) ∈ {±1}. In our stable case

(1), the representation H∗c (πHf ) depends only on the packet of πH , and
not on πH itself.

The Hecke eigenvalues t1u, t2u are algebraic and each of their conjugates
has complex absolute value one.

(2) Representations πH in a quasi-packet {L(ξν, ν−1/2π2)} of type (2)
occur in the cohomology with coefficients in V2kv,0, kv ≥ 0, thus πH has
archimedean components πHv = L(ν sgn, ν−1/2π2kv+2), v ∈ S. At a place
u of F over p the component π2

u of π2 is unramified of the form π2(z1u, z2u).
The Hecke eigenvalues z1u, z2u satisfy z1uz2u = ξu(πππu) ∈ {±1}. The
component πHu has parameter

tu = diag(q1/2
u z1u, q

1/2
u z2u, q

−1/2
u z−1

2u , q
−1/2
u z−1

1u )

in Ĥ = Sp(2,C). The associated representation H∗c (πHf ) has dimension
4[F :Q] and H∗c (πHf )(Frp) is the same as in case (1) but with t1u = q

1/2
u z1u,

t2u = q
1/2
u z2u. The z1u, z2u are algebraic, all their conjugates lie on the

unit circle in C.
(3) The case of type (3) of the one dimensional representation πH =

ξ ◦λλλ, ξ2 = 1, occurs in the cohomology with coefficients in V000,000 only. The
parameter t(πHu) is

diag(ξuq3/2
u , ξuq

1/2
u , ξuq

−1/2
u , ξuq

−3/2
u ).

The associated representation H∗c (πHf ) is again 4[F :Q]-dimensional and
H∗c (πHf )(Frp) is the same as in case (1) but with t1u = ξuq

3/2
u , t2u =

ξuq
1/2
u , ξu ∈ {±1}.
(4) The πH of the unstable tempered case (4) occur in the cohomology

with coefficients in Va,b, av ≥ bv ≥ 0, even av− bv. Thus the archimedean
components πHv are in {πWh

k1v,k2v
, πhol
k1v,k2v

}, k1v = av + bv + 3 > k2v =
av − bv + 1 > 0 are odd. The component πHu of πH at a place u of
F over p is unramified of the form πHu = πH(µ1u, µ2u), parametrized
by tu = diag(t1u, t2u, t−1

2u , t
−1
1u ), tmu = µmu(πππu), m = 1, 2, in Ĥ. The

packet {πH} of πH is the λ0-lift of π1 × π2, where π1, π2 are cuspidal
representations of PGL(2,AF ). It is defined by means of local packets
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{πHw}, which are singletons unless π1
w and π2

w are discrete series, in which
case {πHw} = {π+

Hw, π
−
Hw}, with + indicating generic and – nongeneric.

If {πHw} consists of a single term, it is π+
Hw, and we put π−Hw = 0. We

say that πHf lies in {πHf}+ if it has an even number of components π−Hw
(w < ∞), and in {πHf}− otherwise. Write n(π1 × π2) for the number
of archimedean places v ∈ V with (π1

v , π
2
v) = (πk2v , πk1v ) (recall: {πHv} =

λ0(πk1v × πk2v ), k1v > k2v > 0). Then the dimension of H∗c (πHf ) is
1
2 · 4

[F :Q] and the trace of H∗c (πHf )(Frjp) is 1
2p

j
2 dimSKf times

tr r0
µ[(t(πp)× Frp)j ]± (−1)n(π1×π2) tr r0

µ[s(t(πp)× Frp)j ]

=
∏
u|p

(tj/ju1u + t
−j/ju
1u + t

j/ju
2u + t

−j/ju
2u )ju

±(−1)n(π1×π2)
∏
u|p

(tj/ju1u + t
−j/ju
1u − (tj/ju2u + t

−j/ju
2u ))ju

if πHf ∈ {πHf}±. The t1u, t2u are algebraic and their conjugates lie on
the unit circle.

Thus H∗c (πHf )(Frjp) is

1
2

[⊗u|pν−1/2
u r+

u (Frju)± (−1)n(π1×π2) ⊗u|p ν−1/2
u r−u (Frju)],

where r±u (Fru) acts on the twisted tensor representation (ru, (C4)[Fu:Qu]) as
s±t(πHu)×Fru where s+ = I and s− = (s, I, . . . , I), s = diag(1,−1,−1, 1).

(5) The πH of the unstable nontempered case (5) occur in the cohomology
with coefficients in Vkkk,kkk, kkk = (kv), kv ≥ 0. Its archimedean components
πHv are πWh

2kv+3,1, πhol
2kv+3,1 or the nontempered L(ξν1/2π2kv+3, ξν

−1/2),
ξ = 1 or sgn. It lies in a quasi-packet {L(ξν1/2π2, ξν−1/2)}, π2 cuspi-
dal representation of PGL(2,AF ), whose real components are π2kv+3, and
ξ is a character A×F /F

×
A
×2
F → {±1}. The unramified components πHu are

π×Hu = L(ξuν
1/2
u π2

u, ξuν
−1/2
u ), π2

u = π2
u(z1u, z2u), z1uz2u = 1, parametrized

by tu = diag(t1u, t2u, t−1
2u , t

−1
2u ), t1u = ξuq

1/2
u z1u, t2u = ξq

1/2
u z−1

1u . The
quasi-packet {πH} is the λ0-lift of π2 × ξ12, defined using the local quasi-
packets {π×Hw, π

−
Hw}, π

×
Hw = L(ξwν

1/2
w π2

w, ξwν
−1/2
w ), π−Hw is 0 unless π2

w is
square integrable in which case π−Hw is square integrable (in the real case
π−Hv is πhol

2kv+3,1).



216 I. Preliminaries

We write πHf ∈ {πHf}× if the number of components π−Hw(w <∞) of
πHf is even, and πHf ∈ {πHf}− if this number is odd. Then the dimension

of H∗c (πHf ) is 1
2 ·4

[F :Q] and the trace of H∗c (πHf )(Frjp) is 1
2p

j
2 dimSKf times

ε(ξπ2,
1
2

)
∏
u|p

(tj/ju1u + t
−j/ju
1u + t

j/ju
2u + t

−j/ju
2u )ju

±
∏
u|p

(tj/ju1u + t
−j/ju
1u − (tj/ju2u + t2u)−j/ju)ju

with + if πHf ∈ {πHf}× and – if πHf ∈ {πHf}−. Here z1u is algebraic,
its conjugates are all on the complex unit circle. Thus H∗c (πHf )(Frp) has
the same description as in case (4), except for the values of t1u and t2u.

Note that the Hodge types of πHv for each v ∈ S are (1,2), (2,1), (0,3),
(3,0) in types (1) and (4); (2,0), (0,2), (1,3), (3,1) in type (2); (1,1) and
(2,2) in type (5); and (0,0), (1,1), (2,2), (3,3) in type (3), specifying in
which Hi,j

c (SKf ⊗Q Q,Va,b) each πHf may occur.
In particular Hij

c is 0 if i 6= j and i + j < 2[F : Q] or i + j > 4[F :
Q]; Hii

c has contributions only from one dimensional representations πH
(of type (3)) if i < [F : Q] or i > 2[F : Q]; H2[F :Q]

c (and H
4[F :Q]
c ) has

contributions only from representations of type (2), (3), (5). For example,
H

2[F :Q],0
c (and H

0,2[F :Q]
c ) has contributions only from representations of

type (2). The representations of types (2) and (5) are parametrized only
by certain representations of GL(2) (and quadratic characters); these have
smaller parametrizing set than the representations of type (4) (two copies
of PGL(2)) or of type (1) (representations of PGL(4)).

In stating Theorem 2 we implicitly made a choice of a square root of p.
For unitary groups defined using division algebras endoscopy does not

show and Kottwitz [K4] used the trace formula in this anisotropic case to
associate Galois representations H∗c (πHf ) to some automorphic πH and
obtain some of their properties. However, in this case the classification of
automorphic representations and their packets is not yet known.

For GSp(2), in the case of F = Q and trivial coefficients a∞ = b∞ = 0,
in particular trivial central character (PGSp(2)), Laumon [Ln], Thm 7.5,
gave a list of possibilities for the trace of H∗c (πHf ) at Frp for πH in the
stable spectrum, removing Eisensteinian contributions, see [Ln], (6.1). His
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Thm 7.5 (1), (2) says πH might be Eisensteinian (our cases (2), (3), (5))
or endoscopic (our cases (4), (5)), his (3) corresponds to our case (1), but
our cases (2), (5) are included again as a possibility in his Thm 7.5 (4).
That is, by [F6] the πH in his Thm 7.5 (4) are already included in his (1)
and (2).

Using the results of [F6], namely classification of and multiplicity one
for the automorphic representations of the symplectic group, as well as the
fundamental lemma of [F5] and Deligne’s conjecture of [Fu], [Va], makes it
possible for us to obtain more precise results, namely specify the H∗c (πHf )
such that πHf ⊗H∗c (πHf ) occurs in H∗c , for all πH , and list the πH which
occur. Also, knowing the structure of packets and quasi-packets from [F6]
lets us state and deal with the general case of F 6= Q.

Laumon [Ln] works with F = Q and uses very extensively Arthur’s deep
analysis of the distributions occurring in the trace formula, together with
the ideas of the simple trace formula of [FK3], [FK2] (the test function has
an elliptic ([Ln], p. 301: “very cuspidal”) real component and a regular
component). This lets him put no restriction on the test function, but leads
to very involved usage of the spectral side of the Arthur trace formula.

A simple trace formula (for a test measure with no cuspidal compo-
nents) is available for comparisons in cases of F -rank 1 (see [F2;I], [F3;VI],
[F4;III]) but not yet in F -rank 2. Hence in [F6] we use instead the trace
formula with 3 discrete components (in fact 2 suffice, as explained in [F6],
1G). Using the results of [F6] leads us to the restriction (elliptic component
at a finite place) we made here when F = Q. This can be removed, to get
unconditional result also for F = Q, on using Arthur’s deep analysis of the
distributions occurring in the trace formula, as [Ln] explains.

Results similar to [Ln] have been obtained by Weissauer [W] (unpub-
lished), who used the topological trace formula of Harder and Goresky-
MacPherson. This trace formula applies to “geometric” representations
only, namely those with elliptic (in fact cohomological) components at the
real places. Previously some results (for a dense set of places) were derived
by Taylor [Ty] from the congruence relations.
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3. The Zeta Function

The Zeta function Z of the Shimura variety is a product over the rational
primes p of local factors Zp each of which is a product over the primes ℘ of
the reflex field E which divide p of local factors Z℘. In our case E = Q and
℘ = p but we keep using the symbol ℘ to suggest the general form. Write
q = q℘ for the cardinality of the residue field F = Rp/℘R℘ (R℘ denotes
the ring of integers of E℘; q is p in our case). We work only with “good”
p, thus Kf = KpK

p
f , Kp = H ′(Zp), SKf is defined over R℘ and has good

reduction mod ℘.
A general form of the Zeta function is for a correspondence, namely for

a Kf -biinvariant Q`-valued function fpH on H(Apf ), (A is AF and we fix a

field isomorphism Q`
∼→C), and with coefficients in the smooth Q`-sheaf

Va,b;` constructed from an absolutely irreducible algebraic finite dimen-
sional representation Va,b = ⊗v∈SVav,bv of H ′ over F , each Vav,bv with
highest weight (av, bv), av ≥ bv ≥ 0, even av − bv.

The standard form of the Zeta function is stated for fpH = 1H(Ap
f
), and

for the trivial coefficient system ((av, bv) = (0, 0) for all v). In this case the
coefficients of the Zeta function store the number of points of the Shimura
variety over finite residue fields. Thus the Zeta function, or rather its
natural logarithm, is defined by

lnZ℘(s,SKf , f
p
H ,Va,b;`)c

=
∞∑
j=1

1
jqjs℘

2 dimSKf∑
i=0

(−1)i tr[Frj℘ ◦f
p
H ;Hi

c(SKf ⊗E Q,Va,b;`)].

The subscript c on the left emphasizes that we work with Hc rather than
H or IH; we drop it from now on. One can add a superscript i on the left
to isolate the contribution from Hi

c.
Our results decompose the alternating sum of the traces on the coho-

mology for a correspondence fpH projecting on the subspace parametrized
by those representations πH of H(AF ) with at least 2 discrete series com-
ponents. We make this assumption from now on. The coefficient of 1/jqjs℘
is then equal to the sum of 5 types of terms. The first 3, stable, terms, are
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of the form∑
{πH}

∑
πH∈{πH}

tr{πpHf}(f
p
H) · q

j
2 dimSKf
℘ tr[⊗

u|p
r0
u(t(πHu))j ].

The 4th, unstable tempered term, is the sum of

∑
{πH}

∑
πH∈{πH}

[tr{πpHf}
+(fpH)+tr{πpHf}

−(fpH)]·q
j
2 dimSKf
℘ tr[⊗

u|p
r0
u(t(πHu))j ]

and ∑
π1×π2

(−1)n(π1×π2)[tr{πpHf}
+(fpH)− tr{πpHf}

−(fpH)]

·q
j
2 dimSKf
℘ tr[⊗

u|p
r0
u(s t(πHu))j ].

The 5th, unstable nontempered term, is the sum of

ε(ξπ2,
1
2

)
∑
{πH}

∑
πH∈{πH}

[tr{πpHf}
×(fpH)− tr{πpHf}

−(fpH)]

·q
j
2 dimSKf
℘ tr[⊗

u|p
r0
u(t(πHu))j ]

and∑
π1×π2

[tr{πpHf}
×(fpH) + tr{πpHf}

−(fpH)] · q
j
2 dimSKf
℘ tr[⊗

u|p
r0
u(s t(πHu))j ].

The representation (r0
u, (C

4)[Fu:Qp]) is the twisted tensor representa-
tion of L(RFu/QpH) = Ĥ [Fu:Qp]

o Gal(Fu/Qp). Here C4 is the standard
representation of Ĥ ⊂ GL(4,C) and the generator Fru of Gal(Fu/Qp)
acts by permutation Fru(x1 ⊗ x2 ⊗ · · · ⊗ xnu) = x2 ⊗ · · · ⊗ xnu ⊗ x1,
nu = [Fu : Qp]. The class t(πHu) is (t1, . . . , tnu), tm is diagonal in Ĥ

with
∏

1≤m≤nu tm = t(πHu) being the Satake parameter of the unramified
component πHu. Further, s = (s, I, . . . , I), s = diag(1,−1,−1, 1).

The three stable contributions to the first sum are parametrized by:
(1) Stable packets {πH}. These λ-lift to cuspidal θ-invariant represen-

tations π of G(AF ), G = PGL(4). The infinitesimal character of each
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archimedean component πHv(v ∈ S) is (av, bv) + (2, 1), determined by
(a,b). The components πHu for each place u of F over p are unramified
and tempered. In fact the 4 nonzero, namely diagonal, entries of t(πHu)
are algebraic, all conjugates lie on the complex unit circle.

(2) Stable quasi-packets {πH = L(ξν, ν−1/2π2)}, which λ-lift to the
quotient J of the induced I(ν1/2π2, ν−1/2π2) of PGL(4,AF ). Here π2 is
a cuspidal representation of GL(2,AF ) with central character ξ 6= 1 = ξ2,
archimedean components π2

v = π2kv , kv ≥ 1, v ∈ S, and unramified
components π2

u, u|p. The infinitesimal character of πHv is (2kv, 1) =
(2, 1) + (av, 0), thus these contributions occur only when all bv are 0. The
diagonal entries of t(πHu) are (q1/2

u zmu)±1, m = 1, 2, where the Satake
eigenvalues zmu of π2

u are algebraic all of whose conjugates are on the
complex unit circle.

(3) One dimensional representations πH = ξ ◦λλλ, λλλ denotes the factor of
similitude, ξ a character A×F /F

×
A
×2
F → {±1}. This case occurs only when

(av, bv) = (0, 0) for all v ∈ S, and we have

t(πHu) = diag(ξuq3/2
u , ξuq

1/2
u , ξuq

−1/2
u , ξuq

−3/2
u ),

ξu ∈ {±1} indicates the value at πππu of the u-component of ξ.
The two unstable contributions are parametrized by:
(4) Unordered pairs π1 × π2 of cuspidal representations of PGL(2,AF ),

π1 6= π2, with discrete series archimedean components π1
v = πk1v , π2

v =
πk2v , k1v > k2v > 0 odd, specify the packet {πH} = λ0(π1 × π2). This
occurs when av = 1

2 (k1v + k2v)− 2, bv = 1
2 (k1v − k2v)− 1 for all v ∈ S. In

this case the t(πHu) are as in (1). The number of v ∈ S with (π1
v , π

2
v) =

(πk2v , πk1v ), k1v > k2v, is denoted by n(π1 × π2).
(5) Pairs π2× ξ12, where π2 is a cuspidal representation of PGL(2,AF )

with discrete series archimedean components π2
v = π2kv+3, kv ≥ 0, all

v ∈ S, unramified components π2
u, u|p, with Satake parameters z±1

u , and
character ξ : A×F /F

×
A
×2
F → {±1}. Such pair specifies the quasi-packet of

π×H = L(ξν1/2π2, ξν−1/2) = λ0(π2 × ξ12), whose archimedean components
have infinitesimal characters (2, 1) plus (av, bv) = (kv, kv) for all v ∈ S.
Thus this case occurs only for (a,b) with av = bv for all v ∈ S. The
diagonal entries of t(πHu), u|p, are (ξuq

1/2
u z±1

u )±1. The zu are algebraic,
all its conjugates have absolute value one. The terms in the first sum are
multiplied by ε(ξπ2, 1

2 ).
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To express the Zeta function as a product of L-functions, recall that

lnLp(s, πH , r) = ln det(1− p−sr(tp(πHp)))−1 =
∞∑
j=1

1
jpjs

tr r(tp(πHp)j),

where r is a representation of LH ′ = Ĥ ′×Gal(Qp/Qp) and πHp is unram-
ified. For general E, r = Ind(r0;WQ,WE).

We now continue with E = Q, ℘ = (p), q = p.

Theorem 3. The Zeta function is equal to the product over the {πH}
and the πH in {πH} of

Lp(s−
1
2

dimSKf , πH , r)
tr{πp

Hf
}(fp

H
)

if πH is stable (of type (1), (2) or (3)), or

Lp(s−
1
2

dimSKf , πH , r + (−1)n(π1×π2)r ◦ s)tr{πp
Hf
}+(fp

H
)

times

Lp(s−
1
2

dimSKf , πH , r − (−1)n(π1×π2)r ◦ s)tr{πp
Hf
}−(fp

H
)

if πH is (unstable and tempered) of type (4), or

Lp(s−
1
2

dimSKf , πH , ε(ξπ2,
1
2

)r + r ◦ s)tr{πp
Hf
}×(fp

H
)

times

Lp(s−
1
2

dimSKf , πH ,−ε(ξπ2,
1
2

)r + r ◦ s)tr{πp
Hf
}−(fp

H
)

if πH is (unstable and nontempered) of type (5). Here

r(tp(πHp)) is ⊗u|p ru(t(πHu))

and
(r ◦ s)(tp(πHp)) = ⊗u|pr(s t(πHu)).

In the case of Shimura varieties associated with subgroups of GL(2), a
similar statement is obtained in Langlands [L5]. In general, our result is
predicted by Langlands [L3-5] and more precisely by Kottwitz [Ko4].
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4. The Shimura Variety

Let G be a connected reductive group over the field Q of rational numbers.
Suppose that there exists a homomorphism h : RC/RGm → GR of alge-
braic groups over the field R of real numbers which satisfies the conditions
(2.1.1.1-3) of Deligne [D5]. The G(R)-conjugacy class X∞ = Int(G(R))(h)
of h is isomorphic to G(R)/K∞, where K∞ is the fixer of h in G(R); it
carries a natural structure of a Hermitian symmetric domain. Let Kf be
an open compact subgroup of G(AQf ), where AQf is the ring of adèles of
Q without the real component, sufficiently small so that the set

SKf (C) = G(Q)\[X∞ × (G(AQf )/Kf )] = G(Q)\G(AQ)/K∞Kf

is a smooth complex variety (manifold).
The group RC/RGm obtained from the multiplicative group Gm on re-

stricting scalars from the field C of complex numbers to R is defined over R.
Its group (RC/RGm)(R) of real points can be realized as {(z, z); z ∈ C×} in
(RC/RGm)(C) = C

× × C×. The G(C)-conjugacy class Int(G(C))µh of the
homomorphism µh : Gm,C → GC, z 7→ h(z, 1), is acted upon by the Galois
group Gal(C/Q). The subgroup which fixes Int(G(C))(µh) has the form
Gal(C/E), where E is a number field, named the reflex field. There is a
smooth variety over E determined by the structure of its special points (see
[D5]), named the canonical model SKf of the Shimura variety associated
with (G, h,Kf ), whose set of complex points is SKf (C) displayed above.

Let L be a number field, and let ρ be an absolutely irreducible finite
dimensional representation of G on an L-vector space Vρ. Denote by p

the natural projection G(AQ)/K∞Kf → SKf (C). The sheaf V : U 7→
Vρ(L) ×

ρ,G(Q)
p−1U of L-vector spaces over SKf (C) is locally free of rank

dimL Vρ. For any finite place λ of L the local system V ⊗L Lλ : U →
Vρ(Lλ) ×

ρ,G(Q)
p−1U defines a smooth Lλ-sheaf Vλ on SKf over E.

The Baily-Borel-Satake compactification S ′Kf of SKf has a canonical
model over E as does SKf . The Hecke convolution algebra HKf ,L of com-
pactly supported bi-Kf -invariant L-valued functions on G(AQf ) is gen-
erated by the characteristic functions of the double cosets Kf · g · Kf

in G(AQf ). It acts on the cohomology spaces Hi(SKf (C),V), the co-
homology with compact supports Hi

c(SKf (C),V), and on the intersec-
tion cohomology L-spaces IHi(S ′Kf (C),V). These modules are related
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by maps: Hi
c → IHi → Hi. The action is compatible with the isomor-

phism Hi
c(SKf (C),V) ⊗L Lλ ' Hi

c(SKf ⊗E Q,Vλ), (same for Hi and for
IHi(S ′)), but the last étale cohomology spaces have in addition an action
of the absolute Galois group Gal(Q/E), which commutes with the action
of the Hecke algebra (X ⊗E Q abbreviates X ×SpecE SpecQ).

5. Decomposition of Cohomology

Of interest is the decomposition of the finite dimensional Lλ-vector spaces
IHi, Hi and Hi

c as HKf ,Lλ × Gal(Q/E)-modules. They vanish unless
0 ≤ i ≤ 2 dimSKf . Thus

Hi
c(SKf ⊗E Q,Vλ) = ⊕ π

Kf
f,Lλ
⊗Hi

c(π
Kf
f,Lλ

).(1)

The (finite) sum ranges over the inequivalent irreducible HKf ,Lλ -modules

π
Kf
f,Lλ

. The Hi
c(π

Kf
f,Lλ

) are finite dimensional representations of Gal(Q/E)
over Lλ. Similar decomposition holds for Hi and IHi(S ′).

In the case of IH, the Zucker conjecture [Zu], proved by Looijenga and
Saper-Stern, asserts that the intersection cohomology of S ′Kf is isomorphic
to the L2-cohomology of SKf . The isomorphism commutes with the action
of the Hecke algebra. The L2-cohomology with coefficients in the sheaf
VC : U 7→ Vρ(C) ×

ρ,G(Q)
p−1(U) of C-vector spaces, Hi

(2)(SKf (C),VC), has a

(“Matsushima-Murakami”) decomposition (see Borel-Casselman [BC]) in
terms of discrete spectrum automorphic representations. Thus

Hi
(2)(SKf (C),VC) = ⊕

π
m(π)πKff ⊗Hi(g,K∞;π∞ ⊗ Vρ(C)).

Here π ranges over the equivalence classes of the discrete spectrum (irre-
ducible) automorphic representations of G(AQ) in

L2
d = L2

d(G(Q)\G(AQ),C)

and m(π) denotes the multiplicity of π in L2
d. Write π = πf ⊗ π∞ as

a product of irreducible representations πf of G(AQf ) and π∞ of G(R),
according to AQ = AQfR, and π

Kf
f for the space of Kf -fixed vectors in
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πf . Then π
Kf
f is a finite dimensional complex space on which HKf =

HKf ,L⊗LC acts irreducibly. The representation π∞ is viewed as a (g,K∞)-
module, where g denotes the Lie algebra of G(R), and

Hi(g,K∞;π∞ ⊗ ρC) = Hi(g,K∞;π∞ ⊗ Vρ(C)), ρC = ρ⊗L C,

denotes the Lie-algebra cohomology of π∞ twisted by the finite dimen-
sional representation ρC of G(R). Then the finite dimensional complex
space Hi(g,K∞;π∞ ⊗ ρC) vanishes unless the central character ωπ∞ and
the infinitesimal character inf(π∞) are equal to those ωρ̌C , inf(ρ̌C) of the
contragredient ρ̌C of ρC; see Borel-Wallach [BW].

There are only finitely many equivalence classes of π in L2
d with fixed

central and infinitesimal character, and a nonzero Kf -fixed vector (πKff 6=
0). The multiplicities m(π) are finite. Hence Hi

(2)(SKf (C),VC) is finite
dimensional. The Zucker isomorphism (for a fixed embedding of Lλ in C)
of HKf ,L ⊗L C = HKf -modules

IHi(S ′Kf ×E Q,Vλ)⊗Lλ C
∼→ Hi

(2)(SKf (C),VC)

then implies that the decomposition (1) ranges over the finite set of equiv-
alence classes of irreducible π in L2

d with π
Kf
f 6= 0 and π∞ with central

and infinitesimal characters equal to those of ρ̌C. Further, πKff,Lλ of (1) is

an irreducible HKf ,Lλ -module with πKff,Lλ ⊗Lλ C = π
Kf
f for such a discrete

spectrum π = πf ⊗ π∞, and

dimLλ IH
i(πKff ) =

∑
π∞

m(πf ⊗ π∞) dimCHi(g,K∞;π∞ ⊗ ρ̌C).

Moreover, each discrete spectrum π = πf ⊗ π∞ such that the central and
infinitesimal characters of π∞ coincide with those of ρ̌C (where ρ is an
absolutely irreducible representation of G on a finite dimensional vector
space over L) has the property that for some open compact subgroup
Kf ⊂ G(AQf ) for which π

Kf
f 6= {0}, there is an L-model πKff,L of πKff .

It is also known that the cuspidal cohomology in Hi
c, that is, its part

which is indexed by the cuspidal π, makes an orthogonal direct summand
in Hi

c ⊗Lλ C, and also in IHi ⊗Lλ C (and Hi ⊗Lλ C). When we study
the πf -isotypic component of Hi

c ⊗Lλ C for the finite component πf of
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a cuspidal representation π, we shall then be able to view it as such a
component of IHi.

Our aim is then to recall the classification of automorphic represen-
tations of PGSp(2) given in [F6], in particular list the possible πH =
πHf ⊗ πH∞ in the cuspidal and discrete spectrum. This means listing the
possible πHf , then the πH∞ which make πHf ⊗ πH∞ occur in the cusp-
idal or discrete spectrum. Further we list the cohomological πH∞, those
for which Hi(h,K;πH∞ ⊗ ρC) is nonzero, and describe these spaces. In
particular we can then compute the dimension of the contribution of πHf
to IH∗. Then we describe the trace of Frp acting on the Galois repre-
sentation H∗c (πHf ) attached to πHf in terms of the Satake parameters of
πHp, in fact any sufficiently large power of Frp. This determines uniquely
the Galois representation H∗c (πHf ), of Gal(Q/Q), and in particular its di-
mension. The displayed formula of “Matsushima-Murakami” type will be
used to estimate the absolute values of the eigenvalues of the action of the
Frobenius on H∗c (πHf ).

6. Galois Representations

The decomposition (1) for IH then defines a map πf 7→ IHi(πf ) from
the set of irreducible representations πf of G(AQf ) for which there exists
an irreducible representation π∞ of G(AQ) with central and infinitesimal
characters equal to those of ρ̌C such that π∞ ⊗ πf is discrete spectrum,
to the set of finite dimensional representations of Gal(Q/E). We wish
to determine the representation IHi(πf ) associated with πf , namely its
restriction to the decomposition groups at almost all primes.

However, the cohomology with which we work in this paper is Hi
c and

not IHi(S ′).
Let p be a rational prime. Assume that G is unramified at p, thus

it is quasi-split over Qp and splits over an unramified extension of Qp.
Assume that Kf is unramified at p, thus it is of the form Kp

fKp where
Kp
f is a compact open subgroup of G(Ap

Qf ) and Kp = G(Zp). Then E is
unramified at p. Let ℘ be a place of E lying over p and λ a place of L such
that p is a unit in Lλ. Let f = fpfKp be a function in the Hecke algebra
HKf ,L, where fp is a function on G(Ap

Qf ) and fKp is the quotient of the
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characteristic function of Kp in G(Qp) by the volume of Kp. Denote by Fr℘
a geometric Frobenius element of the decomposition group Gal(Qp/E℘).

Choose models of SKf and of S ′Kf over the ring of integers of E. For
almost all primes p of Q, for each prime ℘ of E over p, the representa-
tion Hi

c(SKf ⊗EQ,Vλ) of Gal(Q/E) is unramified at ℘, thus its restriction
to Gal(Qp/E℘) factorizes through the quotient Gal(Qur

p /E℘) ' Gal(F/F)
which is (topologically) generated by Fr℘; here Qur

p is the maximal unram-
ified extension of Qp in the algebraic closure Qp, F is the residue field of
E℘ and F an algebraic closure of F. Denote the cardinality of F by q℘; it
is a power of p. As a Gal(F/F)-module Hi

c(SKf ⊗EQ,Vλ) is isomorphic to
Hi
c(SKf ⊗E F,Vλ).
Deligne’s conjecture proven by Zink [Zi] for surfaces, by Pink [P] and

Shpiz [Sh] for varieties X (such as SKf ) which have smooth compactifi-
cation X which differs from X by a divisor with normal crossings, and
unconditionally by Fujiwara [Fu], and recently Varshavsky [Va], implies
that for each correspondence fp there exists an integer j0 ≥ 0 such that
for any j ≥ j0 the trace of fp · Frj℘ on

2 dimSKf
⊕
i=0

(−1)i Hi
c(SKf ⊗E F,Vλ)

has contributions only from the variety SKf and not from any boundary
component of S ′Kf . The trace is the same in this case as if the scheme

SKf ⊗E F were proper over F, and it is given by the usual formula of the
Lefschetz fixed point formula. This is the reason why we work with Hi

c in
this paper, and not with IHi(S ′).
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1. Stabilization and the Test Function

Kottwitz computed the trace of fp ·Frj℘ on this alternating sum (see [Ko6],
and [Ko4], chapter III, for ρ = 1) at least in the case considered here. The
result, stated in [Ko4], (3.1) as a conjecture, is a certain sum∑

γ0

∑
(γ,δ)

c(γ0; γ, δ) ·O(γ, fp) · TO(δ, φj) · tr ρ(γ0),

rewritten in [Ko4], (4.2) in the form

τ(G)
∑
γ0

∑
κ

∑
(γ,δ)

〈α(γ0; γ, δ), κ〉 · e(γ, δ) ·O(γ, fp
C

)

·TO(δ, φj) ·
tr ρC(γ0)

|I(∞)(R)/AG(R)0|
,

where O and TO are orbital and twisted orbital integrals and φj is a
spherical (Kp = G(Zp)-biinvariant) function on G(Qp). Theorem 7.2 of
[Ko4] expresses this as a sum∑

ι(G,H) STFreg
e (f j,s,ρH )

over a set of representatives for the isomorphism classes of the elliptic
endoscopic triples (H, s, η0 : Ĥ → Ĝ) for G. The STFreg

e (f j,s,ρH ) indicates
the (G,H)-regular Q-elliptic part of the stable trace formula for a function
f j,s,ρH on H(AQ). The function f j,s,ρH , denoted simply by h in [Ko4], is
constructed in [Ko4], Section 7 assuming the “fundamental lemma” and
“matching orbital integrals”, both known in our case by [F5] and [W].

Thus f j,s,ρH is the product of the functions fpH on H(Ap
Qf ) which are

obtained from fp
C

by matching of orbital integrals, f jsHp on H(Qp) which is
a spherical function obtained by the fundamental lemma from the spher-
ical function φj , and fsρH∞ on H(R) which is constructed from pseudo-
coefficients of discrete series representations of H(R) which lift to discrete

227
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series representations of G(R) whose central and infinitesimal characters
coincide with those of ρ̌C. We denote by f j,s,ρH = fpHf

js
Hpf

sρ
H∞ Kottwitz’s

function h = hphph∞, so that functions on the adèle groups are denoted
by f , and the notation does not conflict with that of h : RC/RGm → G.

The factor 〈αp(γ0; γ), s〉 is missing on the right side of [Ko4], (7.1). Here

αp =
∏

v 6=p,∞

αv, where αv(γ0; γv) ∈ X∗(Z(Î0)Γ(v)/Z(Î0)Γ(v),0Z(ĜΓ(v)))

as defined in [Ko4], p. 166, bottom paragraph
We need to compare the elliptic regular part STFreg

e (f j,s,ρH ) of the stable
trace formula with the spectral side. To simplify matters we shall work
only with a special class of test functions fp = ⊗v 6=p,∞fv for which the
complicated parts of the trace formulae vanish. Thus we choose a place
v0 where G is quasi-split, and a maximal split torus A of G over Qv0 , and
require that the component fv0 of fp be in the span of the functions on
G(Qv0) which are bi-invariant under an Iwahori subgroup Iv0 and sup-
ported on a double coset Iv0aIv0 , where a ∈ A(Qv0) has |α(a)| 6= 1 for all
roots α of A. The orbital integrals of such a function fv0 vanish on the
singular set, and the matching functions fHv0 on H(Qv0) have the same
property. This would permit us to deal only with regular conjugacy classes
in the elliptic part of the stable trace formulae STFreg

e (f j,s,ρH ), and would
restrict no applicability.

To avoid dealing with weighted orbital integrals and the continuous
spectrum, we note that these vanish if two components of the test func-
tion f j,s,ρH are discrete, by which we mean that they have orbital integrals
which are zero on the regular nonelliptic set. The component fsρ∞H has
this property. If G = RF/QG1 is obtained by restriction of scalars from
a group G1 defined over a totally real field F , then G(Q) = G1(F ) and
G(R) = G1(F⊗R) =

∏
G1(R); the last product has [F : Q] factors. Corre-

spondingly the function fsρH∞ is a product of [F : Q] discrete factors. This
gives the equality of the elliptic regular part of the stable trace formula
with the discrete spectral side when F 6= Q. If F = Q, and in general,
we may take some of the components fw of fp to be discrete, for example
pseudo-coefficients of discrete series representations, to achieve this van-
ishing of the weighted terms in the trace formula. Such a choice of course
will limit our results to only those automorphic representations with the
specified (by the fw) elliptic components.
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2. Automorphic Representations of PGSp(2)

We then need to describe the stable trace formulae. This we can do only in
the special case, studied in [F6]. We then use the notations of [F6] from now
on, and in particular the group denoted so far by G will be denoted from
now on by H ′ = RF/QH, where F is a totally real number field and H is
the projective group PGSp(2) of symplectic similitudes over F . When de-
scribing the automorphic representations of H ′, note that H ′(Q) = H(F )
and H ′(AQ) = H(A), where A denotes now the ring of adèles of F (and AQ
of Q). It is more convenient to describe the automorphic representations
of H/F . Working with PGSp(2) is the same as working with GSp(2) and
functions transforming trivially under the center.

A detailed description of the automorphic representations of H/F is
given in [F6]. We recall here only the most essential facts. The group

H = PGSp(2) is the quotient of (we put J =
(

0 w

−w 0

)
, w =

(
0 1

1 0

)
)

GSp(2) = {(g,λλλ) ∈ GL(4)×Gm; tgJg = λλλJ}

by its center {(λλλ,λλλ2); λλλ ∈ Gm}. It has a single proper elliptic endoscopic
group C0 = PGL(2)×PGL(2) over F . The group H itself is one of the two
elliptic endoscopic groups of G = PGL(4) with respect to the involution θ,
θ(g) = J−1 tg−1J . The other θ-twisted elliptic endoscopic group of G is

C = “ SO(4)/F” = {(g1, g2) ∈ GL(2)×GL(2); det g1 = det g2}/Gm.

The automorphic representations of H are described in [F6] in terms of
liftings, defined by means of the natural embeddings of L-groups. The
groups G, H, C, C0 are split. Hence their L-groups (LG, . . . ) are the
direct product of the connected component of the identity (Ĝ, . . . ) with
the Weil group. Let θ̂ be the involution on Ĝ defined by the formula which
defines θ. Writing ZĜ(ŝθ̂) for the group of g in Ĝ with ŝθ̂(g)ŝ−1 = g, the
L-group homomorphisms are

λ : Ĥ = Sp(2,C) = ZĜ(θ) ↪→ Ĝ = SL(4,C),

λ1 : Ĉ = “ SO(4,C)” = ZĜ(ŝθ̂) ↪→ Ĝ, λ0 : Ĉ0 = ZĤ(ŝ0) ↪→ Ĥ.
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Here ŝ0 = diag(1,−1,−1, 1), ŝ = diag(−1, 1,−1, 1), and Ĉ consists of the

A⊗B =
(
aB bB

cB dB

)
, where

(
A =

(
a b

c d

)
, B
)

ranges over GL(2,C)×GL(2,C)

with detA ·detB = 1, modulo (z, z−1), z ∈ C×. These homomorphisms of
complex groups define liftings of unramified representations via the Satake
transform. They are extended in [F6] to ramified representation by char-
acter relations involving packets and quasi-packets (which are introduced
in [F6]).

The packets and quasi-packets define a partition of the discrete spec-
trum of H(A). To define a global (quasi-) packet P = {π}, fix a local
(quasi-) packet Pv = {πv} at every place v of F , such that Pv = {πv} con-
tains an unramified representation π0

v at almost all places. Then P = {π}
consists of all products ⊗πv over all v, where πv ∈ Pv = {πv} for every v
and πv = π0

v for almost all v.
Before we recall the definition of local packets, we state that the discrete

spectrum of H(A) is the disjoint union of what we call the stable and un-
stable spectra. The lifting λ defines a bijection from the set of packets and
quasi-packets of discrete spectrum representations in the stable spectrum
to the set of self contragredient discrete spectrum (cuspidal or residual)
representations of G(A) which are not in the image of λ1.

In particular, λ maps one dimensional representations of H(A) to one
dimensional representations of G(A), stable non one-dimensional packets
of H(A) to cuspidal self contragredient representations of G(A), and the
quasi-packets in the stable discrete spectrum of H(A), each of which has
the form {L(ξν, ν−1/2π2)}, to J(ν1/2π2, ν−1/2π2), residual representations
of G(A).

Here L(ξν, ν−1/2π2) is the unique quotient of the representation of H(A)
normalizedly induced from the “Heisenberg” maximal parabolic subgroup
(whose unipotent radical is a (nonabelian) Heisenberg group) and the indi-
cated representation on the Levi subgroup A××GL(2,A): π2 is a cuspidal
irreducible automorphic representation of GL(2,A) with central character
ξ 6= 1 of order two and ξπ2 = π2.

The J(ν1/2π2, ν−1/2π2) is the unique quotient of the representation
I(ν1/2π2, ν−1/2π2) normalizedly induced from the parabolic subgroup of
type (2,2) and the indicated representation of the Levi factor, where ν(x) =
|x| and π2 is a cuspidal automorphic representation of GL(2,A) with cen-
tral character ξ 6= 1 of order two and ξπ2 = π2.
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In particular, the image of λ in the discrete spectrum self-contragredient
representations of PGL(4,A) is precisely the complement of the lifting λ1

from C(A).
Similarly, the lifting λ0 defines a bijection to the set of packets and

quasi-packets in the unstable spectrum of H(A) from the set of unordered
pairs {π1 × π2, π2 × π1;π1 6= π2} of discrete spectrum automorphic rep-
resentations of PGL(2,A). This last set is bijected by λ with the set of
automorphic (irreducible) representations I(π1, π2) normalizedly induced
from the representation π1⊗π2 on the Levi subgroup of G(A) of type (2,2),
where π1, π2 are discrete spectrum on PGL(2,A) with π1 6= π2. In fact
if π1 × π2 is cuspidal it is mapped by λ0 to a packet, while if not, that is
when π1 or π2 are one-dimensional, λ0(π1 × π2) is a quasi-packet.

To repeat, the global liftings are defined by the L-group homomorphisms
for almost all components, which are unramified, and it is a theorem that
the liftings extend to all places in terms of packets and quasi-packets, and
have the properties listed above.

The stable part of the discrete spectrum, defined above by means of the
bijection λ, has the property that the multiplicity in the discrete spectrum
of H(A) is stable, namely constant over each packet. Thus each member
⊗vπv of a packet {π} which λ-lifts to a discrete spectrum representation
π ' π̌ of PGL(4,A) occurs in the discrete spectrum of H(A) with multi-
plicity one. The same is true for the stable quasi-packets, each of which is
of the form {L(ξν, ν−1/2π2)}.

3. Local Packets

The multiplicity is not constant on the unstable packets, but it is bounded
by one. It is possible that a member in an unstable packet will not occur
in the discrete spectrum of H(A). Then its multiplicity is zero. To specify
the multiplicity, we need to describe the local packets. For this purpose
we recall the main local theorem of [F6]. It has 4 parts.

Let F be a local field.
(1) For any unordered pair π1, π2 of irreducible square integrable rep-

resentations of PGL(2, F ) there exists a unique pair π+
H , π−H of tempered
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(square integrable if π1 6= π2, cuspidal if π1 6= π2 are cuspidal) represen-
tations of H(F ), π+

H is generic, π−H is not, with

tr(π1 × π2)(fC0) = trπ+
H(fH)− trπ−H(fH)

tr IG(π1, π2; f × θ) = trπ+
H(fH) + trπ−H(fH)

for every triple of matching functions f , fH , fC0 , for a suitable choice of an
operator π(θ), π = IG(π1, π2), intertwining π with θπ, and having order 2.

We define the packet of π+
H and of π−H to be {π+

H , π
−
H}. The packet of

any other irreducible representations of H(F ) is defined to be a singleton.
More details are known.

If π1 = π2 is cuspidal, π+
H and π−H are the two inequivalent constituents

of the induced representation 1 o π1 from the Heisenberg parabolic sub-
group, π+

H is the generic constituent.
If π1 = π2 = σ sp2 where σ is a character of F× with σ2 = 1, then π+

H

and π−H are the two tempered inequivalent constituents τ(ν1/2 sp2, σν
−1/2)

and τ(ν1/212, σν
−1/2) of 1o σ sp2.

If π1 = σ sp2, σ2 = 1, and π2 is cuspidal, then π+
H is the square in-

tegrable constituent δ(σν1/2π2, σν−1/2) of the induced σν1/2π2
o σν−1/2

from the Siegel maximal parabolic subgroup of H(F ) (with abelian unipo-
tent radical). The π−H is cuspidal, denote by δ−(σν1/2π2, σν−1/2).

If π1 = σ sp2 and π2 = ξσ sp2, ξ (6= 1 = ξ2) and σ (σ2 = 1) are
characters of F×, then π+

H is the square integrable constituent

δ(ξν1/2 sp2, σν
−1/2)

of the induced ξν1/2 sp2oσν
−1/2. The π−H is cuspidal, denoted by

δ−(ξν1/2 sp2, σν
−1/2).

(2) For every character σ of F×/F×2 and square integrable π2 there
exists a nontempered representation π×H of H(F ) such that

tr(π2 × σ12)(fC0) = trπ×H(fH) + trπ−H(fH)

tr IG(π2, σ12; f × θ) = trπ×H(fH)− trπ−H(fH)

for every triple (f, fH , fC0) of matching functions. Here

π−H = π−H(σ sp2×π2) and π×H = L(σν1/2π2, σν−1/2).
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(3) For any characters ξ, σ of F×/F×2 and matching f , fH , fC0 we
have

tr(σξ12 × σ12)(fC0)

= trL(νξ, ξ o σν−1/2)(fH)− trX(ξν1/2 sp2, ξσν
−1/2)(fH),

trIG(σξ12, σ12; f × θ)
= trL(νξ, ξ o σν−1/2)(fH) + trX(ξν1/2 sp2, ξσν

−1/2)(fH).

Here X = δ− if ξ 6= 1 and X = L if ξ = 1.
(4) Any θ-invariant irreducible square integrable representation π of

G which is not a λ1-lift is a λ-lift of an irreducible square integrable
representation πH of H, thus trπ(f × θ) = trπH(fH) for all matching
f , fH . In particular, the square integrable (resp. nontempered) con-
stituent δ(ξν, ν−1/2π2) (resp. L(ξν, ν−1/2π2)) of the induced representa-
tion ξνoν−1/2π2 of H, where π2 is a cuspidal (irreducible) representation
of GL(2, F ) with central character ξ 6= 1 = ξ2 and ξπ2 = π2, λ-lifts to the
square integrable (resp. nontempered) constituent

S(ν1/2π2, ν−1/2π2) (resp. J(ν1/2π2, ν−1/2π2))

of the induced representation IG(ν1/2π2, ν−1/2π2) of G = PGL(4, F ).
We define a quasi-packet only for the nontempered irreducible represen-

tations π×H , and L = L(νξ, ξ o σν−1/2), to consist of {π×H , π
−
H}, and of

{L,X}, X = X(ξν1/2 sp2, ξσν
−1/2).

Using the notations of sections IV.1-IV.5 below, we state the analogue
of these results in the real case: F = R. In (1), π1 = πk1 and π2 = πk2 ,
k1 ≥ k2 > 0 and k1, k2 are odd, are discrete series representations of
PGL(2,R), and π+

H is the generic πWh
k1,k2

, π−H is the holomorphic πhol
k1,k2

,
which are discrete series when k1 > k2. When k1 = k2, π+

H is the generic
and π−H is the nongeneric constituents of the induced 1 o π2k1+1. There
is no special or Steinberg representation of GL(2,R); the analogue is the
lowest discrete series π1. It is self invariant under twist with sgn. In (2)
with π2 = π2k+3 (k ≥ 0), π×H is L(σν1/2π2k+3, σν

−1/2), π−H is πhol
2k+3,1. In

(3), if ξ = sgn then X is π−H ⊂ 1oπ1, if ξ = 1 then X is L(ν1/2π1, σν−1/2),
but both of these X, as well as L(νξ, ξ o σν−1/2), are not cohomological,
and will not concern us in this work.
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4. Multiplicities

We are now ready to describe the multiplicities of the representations in
the packets and quasi-packets in the unstable spectrum of H(A).

Each member of a stable packet occurs in the discrete spectrum of
PGSp(2,A) with multiplicity one. The multiplicity m(πH) of a member
πH = ⊗πHv in an unstable [quasi-] packet λ0(π1 × π2) (π1 6= π2) is not
(“stable”, namely) constant over the [quasi-] packet.

If π1 × π2 is cuspidal then

m(πH) =
1
2

(1 + (−1)n(πH)) (∈ {0, 1}).

Here n(πH) is the number of components π−Hv of πH (n(πH) is bounded
by the number of places v where both π1

v and π2
v are square integrable). If

m(πH) = 1 then πH is cuspidal.
If π2 is a cuspidal representation of PGL(2,A) and σ is a character

of A×/F×A×2, the multiplicity m(πH) of πH = ⊗πHv in a quasi-packet
λ0(π2 × σ12) is

1
2

(
1 + ε(σπ2,

1
2

)(−1)n(πH)

)
(= 0 or 1),

where n(πH) is the number of components π−Hv of πH , and ε = ε(σπ2, 1
2 )

is 1 or −1, being the value at 1
2 of the ε-factor occurring in the functional

equation of the L-function L(σπ2, s) of σπ2. This ε is 1 if and only if
π×H = ⊗π×Hv (n(πH) = 0) is discrete series.

Finally we have m(πH) = 1
2 (1+(−1)n(πH)) for πH = ⊗πHv in λ0(σξ12×

σ12) with n(πH) components πHv = Xv. Here πH = ⊗Lv (n(πH) = 0) is
residual.

5. Spectral Side of the Stable Trace Formula

We are now in a position to describe the spectral side of the stable trace for-
mula for a test function fH = ⊗fHv with at least two discrete components,
on H(A). Thus STFH(fH) is the sum of five parts: I(H, 1), . . . , I(H, 5).
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The first, I(H, 1), is the sum of three subterms: I(H, 1)i, i = 1, 2, 3, each
of which is a sum of products∏

v

tr{πHv}(fHv),

where tr{πHv} indicates the sum of trπHv over all πHv in a packet or quasi-
packet {πHv}, over all packets and quasi-packets in the stable spectrum.
I(H, 1)1 ranges over the packets {πH} which λ-lift to cuspidal self con-

tragredient representations π of PGL(4,A) not in the image of λ1.
I(H, 1)2 ranges over the discrete series quasi-packets {L(ξν, ν−1/2π2)}

(which λ-lift to the residual J(ν1/2π2, ν−1/2π2), cuspidal π2 with quadratic
central character ξ 6= 1 with ξπ2 = π2).
I(H, 1)3 is a sum over the one dimensional representations πH of H(A).
The second part, I(H, 2), of STFH(fH), is the sum of

1
2

∏
v

{trπ+
Hv(fHv) + trπ−Hv(fHv)}

over all unordered pairs (π1, π2) of distinct cuspidal representations of
PGL(2,A). Here {πH} is the λ0-lift of π1 × π2, that is λ0(π1

v × π2
v) =

{π+
Hv, π

−
Hv} for all v, and π−Hv is zero if π1

v and π2
v are not both discrete

series.
The third part, I(H, 3), is the sum of

ε(σπ2, 1
2 )

2

∏
v

{trπ×Hv(fHv)− trπ−Hv(fHv)}

over all pairs (σ, π2), where π2 is a cuspidal representation of PGL(2,A)
and σ is a character of A×/F×A×2. For each v the pair {π×Hv, π

−
Hv} is the

quasi-packet λ0(π2
v×σv12) when π2

v is discrete series, while it consists only
of π×Hv (and π−Hv is zero) when π2

v is not discrete series.
The fourth part, I(H, 4), is the sum of

1
2

∏
v

{trLHv(fHv) + trXHv(fHv)}

over all unordered pairs (σξ, σ) of characters of A×/F×A×2 with ξ 6= 1.
For each v the pair {LHv, XHv} is the λ-lift of σvξv12 × σv12.
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The fifth part, I(H, 5), is the sum over all discrete spectrum represen-
tations π2 of PGL(2,A) of the terms

1
4

∏
v

trRv ◦ (1o π2
v)(fHv).

At each place v where π2
v is properly induced (hence irreducible), the nor-

malized intertwining operator Rv is the scalar 1, and tr(1 o π2
v)(fHv) =

tr(π2
v × π2

v)(fC0v) for a matching function fC0v on C0(Fv). If π2
v is square

integrable (or one dimensional), our local results assert that the two con-
stituents of the composition series of 1oπ2

v can be labeled π+
Hv (or π×Hv) and

π−Hv, such that for matching functions tr(π2
v × π2

v)(fC0v) is trπ+
Hv(fHv)−

trπ−Hv(fHv) (or trπ×Hv(fHv) + trπ−Hv(fHv)). Moreover, Rv acts on π+
Hv as

1 and on π−Hv as −1 when π2
v is square integrable, and as 1 on both π+

Hv

and π−Hv when π2
v is one dimensional.

6. Proper Endoscopic Group

The spectral side of the other trace formula which we need is for a function
fC0 = ⊗fC0v on C0(A) = PGL(2,A)× PGL(2,A). It comes multiplied by
the coefficient 1

4 . Since PGL(2) has no proper elliptic endoscopic groups,
this trace formula is already stable. Thus STFC0(f0) = TFC0(f0). It is a
sum of three sums, I(C0, i), i = 1, 2, 3. The first, I(C0, 1), is a sum of∏

v

tr(π1
v × π2

v)(fC0v)

over all ordered pairs (π1, π2) of cuspidal representations of PGL(2,A).
The second part, I(C0, 2), is a sum of∏

v

tr(π2
v × σv12)(fC0v) +

∏
v

tr(σv12 × π2
v)(fC0v)

over all pairs (σ, π2), where π2 is a cuspidal representation of PGL(2,A)
and σ is a character of A×/F×A×2. The third, I(C0, 3), is the sum over
all ordered pairs (σ, ξσ) of characters of A×/F×A×2 of the products∏

v

tr(σvξv12 × σv12)(fC0v).
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At all places v 6= p,∞ the component fC0v is matching fHv, so the local
factor indexed by v in each of the 3 cases can be replaced by

trπ+
Hv(fHv)− trπ−Hv(fHv),

trπ×Hv(fHv) + trπ−Hv(fHv),

trLHv(fHv)− trXHv(fHv).



III. LOCAL TERMS

1. Representations of the Dual Group

Part of the data which is used to define the Shimura variety is the G(C)-
conjugacy class Int(G(C))(µh) of the homomorphism µh : Gm → G over C.
Let Ck denote the set of conjugacy classes of homomorphisms µ : Gm → G

over a field k. The embedding Q → C induces an Aut(C/Q)-equivariant
map C

Q
→ CC. This map is bijective. Indeed, choose a maximal torus T

of G defined over Q. Then Hom
Q

(Gm, T )/W → C
Q

is a bijection, where
W is the Weyl group of T in G(Q). Similarly HomC(Gm, T )/W → CC
is a bijection. Since Hom

Q
(Gm, T ) → HomC(Gm, T ) is an Aut(C/Q)-

equivariant bijection, so is C
Q
→ CC. The conjugacy class of µh over C is

then a point in Hom
Q

(Gm, T )/W . The subgroup of Gal(Q/Q) which fixes
it has the form Gal(Q/E), where E is a number field, named the reflex
field. It is contained in any field E1 over which G splits, since T can be
chosen to split over E1.

In our case (G is) H ′ = RF/QH, where H is PGSp(2) over a totally real
field F . Thus H ′ is split over Q, and E = Q. Note that H ′(Q) = H(F )
and H ′(R) = H(R) × · · · × H(R) ([F : Q] times). The dimension of
the corresponding Shimura variety is 3[F : Q], where 3 is half the real
dimension of the symmetric space H(R)/KH(R).

Let (r0
µ, Vµ) be the representation of LH ′

E
= Ĥ ′ oWE determined by

Int(H ′(C))µh (see [L5] and section 1). It is determined by two properties.
(1) The restriction of r0

µ to Ĥ ′ is irreducible with extreme weight −µ.
Here µ = µh ∈ X∗(T̂ ) = X∗(T ) is a character of a maximal torus T̂ of
Ĥ ′, uniquely determined up to the action of the Weyl group. (2) Let y be
a splitting ([Ko3], Section 1) of Ĥ ′. Assume that y is fixed by the Weil
group WE of E. Then WE ⊂ LH ′

E
acts trivially on the highest weight space

of Vµ corresponding to y. Put r = rµ for the representation induced from
r0
µ on Ĥ ′ oWE to Ĥ ′ oWQ.

We proceed to specify this representation explicitly in our case, as the
twisted tensor 4[F :Q]-dimensional representation of Sp(2,C)[F :Q]

oWE, E =

238
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Q. In particular, r = r0.
Consider first H = PGSp(2)/Q. Take h : RC/RGm → HR to be defined

by h(a + bi) =
(
aI bI

−bI aI

)
, I = I2. Over C, the homomorphism h can be

diagonalized to (z, w) 7→ diag(zI, wI). We claim that the representation
r of Ĥ = Sp(2,C) is its natural embedding in GL(4,C). Let T ∗H be the
diagonal torus in H, and T̂H the diagonal torus in Ĥ. Then X∗(T̂H) =
{(a, b,−b,−a); a, b ∈ Z} and

X∗(T̂H) = {(x, y, z, t) mod(n,m,m, n);x, y, z, t ∈ Z}.

Here (x, y, z, t) takes diag(a, b, b−1, a−1) in T̂H to ax−tby−z. The isomor-
phism u : X∗(T̂H) ∼→X∗(T ∗H)

= {(α, β, γ, δ) mod(ε, ε, ε, ε);α, β, γ, δ, ε ∈ Z, α+ δ = β + γ}

is given by u : (x, y, z, t) 7→ (x + y, x + z, y + t, z + t), with inverse
u−1 : (α, β, γ, δ) 7→ (α − γ, α − β, 0, 0). Now X∗(T ∗H) is spanned by the
cocharacters α0 = (0, 0, 1, 1) : x 7→ diag(1, 1, x, x),

α1 = (1, 0, 0,−1) : x 7→ diag(x, 1, 1, x−1),

α2 = (0, 1,−1, 0) : x 7→ diag(1, x, x−1, 1).

An extremal weight of r is α0, viewed as a character of T̂H , thus
u−1(α0) = (−1, 0, 0, 0).

The orbit under the Weyl group W = 〈(23), (12)(34)〉 of α0 is

α0, (23)α0 = α0 +α2 = (0, 1, 0, 1), (14)α0 = α0 +α1 = (1, 0, 1, 0),

(23)(14) α0 = α0 + α1 + α2 = (1, 1, 0, 0). Their images under u−1 are
(−1, 0, 0, 0), (0,−1, 0, 0) (equivalently (0,0,0,1), (0,0,1,0)), (0,1,0,0), and
(1,0,0,0).

The representation r with these weights is the natural embedding r :
Ĥ = Sp(2,C) ↪→ GL(4,C).

The unramified representation πH(µ1, µ2) of H = PGSp(2,Qp) con-
tained in the composition series of the representation normalizedly induced
from the character n · diag(α, β, γ, δ) 7→ µ1(α/γ)µ2(α/β) of the upper tri-
angular subgroup is parametrized by the conjugacy class of t × Frp in
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LH = Ĥ ×W (Qur
p /Qp). Here Frp is the Frobenius element, which gener-

ates the unramified Weil group W (Qur
p /Qp). Further t = t(πH(µ1, µ2)) =

diag(µ1, µ2, µ
−1
2 , µ−1

1 ) in Ĥ = Sp(2,C) (where we write here µi for µi(πππ)).
The matrix r(t(πH(µ1, µ2))) has the eigenvalues µ1, µ2, µ

−1
2 , µ−1

1 , the val-
ues of the weights (1,0,0,0), (0,1,0,0), . . . at t = diag(µ1, µ2, µ

−1
2 , µ−1

1 ).
Let now F be a totally real number field, H = PGSp(2) over F ,

and H ′ = RF/QH. Fix an embedding ι : F ↪→ Q ∩ R. Then the
set S of archimedean places of F can be identified with the coset space
Gal(Q/Q)/Gal(Q/F ) by τ 7→ ιτ , where ιτ : F ↪→ Q is x 7→ τι(x).
Then H ′(Q) = H(F ) and H ′(R) =

∏
S H(R). The connected dual group

Ĥ ′ is
∏
S Ĥ, Ĥ = Sp(2,C), and the L-group is the semidirect product

LH ′ = Ĥ ′oWQ where the Weil group WQ acts by translation of the factors
via its projection to Gal(F/Q). The homomorphism h : RC/RGm → H ′

R
is

taken to be
h(a+ bi) =

((
aI bI

−bI aI

)
, . . . ,

(
aI bI

−bI aI

))
([F : Q] copies on the right). Up to conjugacy by the Weyl group, the
weight µ : T̂H′ → C

×, where T̂H′ is the diagonal torus in Ĥ ′ (product of
the |S| = [F : Q] diagonal tori in Ĥ), has the form

µ(
∏
v

diag(av, bv, b−1
v , a−1

v )) =
∏
v∈S

av.

The group Gal(Q/Q) stabilizes µ, thus the reflex field E is Q. Let
r1 be the natural embedding of Ĥ = Sp(2,C) in GL(4,C). Then the
representation r = rµ of LH ′

E
= Ĥ ′ oWE is defined on the [F : Q]-fold

tensor product ⊗SC4, as follows. For h = (hv; v ∈ S) ∈ Ĥ ′ we have
rµ(h) = ⊗v∈Sr1(hv). The Weil group WE acts by permuting the factors,
thus by left multiplication on S. Then dim rµ = 4[F :Q] and rµ is the twisted
tensor representation.

2. Local Terms at p

Let p be a rational prime which is unramified in F . The Q-group H ′ =
RF/QH is Qp-isomorphic to

∏
u|pH

′
u, where H ′u = RFu/QpH and u ranges

over the primes of F over Q. The set S of embeddings ι of F into Q (or R, C
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or Qp) is parametrized by the homogeneous space Gal(Q/Q)/Gal(Q/F ),
once we fix such an embedding. The Galois group Gal(Qp/Qp) acts on
the left. If p is unramified in F this action factorizes via its quotient
Gal(Qur

p /Qp) by the inertia subgroup. The orbits of the Frobenius gener-
ator Frp are the places u of F over Q. The group of Qp-points of H ′ is
H ′(Qp) =

∏
u|pH

′
u(Qp) =

∏
u|pH(Fu).

An irreducible admissible representation πHp of H ′(Qp) has the form
⊗uπHu. If πHp is unramified then each πHu has the form πH(µ1u, µ2u),
where µ1u, µ2u are unramified characters of F×u . We write µmu (m = 1, 2)
also for its value µmu(πππu) at any uniformizing parameter πππu of F×u . Put
tu = t(πHu) = diag(µ1u, µ2u, µ

−1
2u , µ

−1
1u ).

The representation πHp is parametrized in the unramified dual group
LH ′p = Ĥ [F :Q]

o 〈Frp〉 by the conjugacy class of tp × Frp. Here tp is
the [F : Q]-tuple (tu;u|p) of diagonal matrices in Ĥ = Sp(2,C), each
tu = (tu1, . . . , tunu) is any nu = [Fu : Qp]-tuple with

∏
i tui = tu. The

Frobenius Frp acts on each tu by permutation to the left: Frp(tu) =
(tu2, . . . , tunu , tu1). Each πHu is parametrized by the conjugacy class of
tu × Frp in the unramified dual group LH ′u = Ĥ [Fu:Qp]

o 〈Frp〉, or alter-
natively by the conjugacy class of tu × Fru in LHu = Ĥ × 〈Fru〉, where
Fru = Fr[Fu:Qp]

p .
The representation r = ⊗Srι of LH ′p can be written as the product

⊗u|pru, where ru = ⊗ι∈urι. A basis for r is given by ⊗Seι, where eι lies
in the standard basis {e1, e2, e3, e4} of C4. A basis for ru is given by
⊗ι∈ueι. The representation ru is called the twisted tensor representation.
The vectors fixed by Frp are those which are homogeneous on each orbit of
S, in the sense that eι = ei for a fixed i = i(u) for all ι ∈ u. In particular

tr r(tp×Frp) =
∏
u|p

tr ru(tu×Frp) =
∏
u|p

tr(tu) =
∏
u|p

(µ1u+µ2u+µ−1
2u +µ−1

1u ).

More generally let us compute the trace

tr rµ[(tp × Frp)j ] =
∏
u|p

tr ru[(tu × Frp)j ].

We proceed to describe the action of Frp on Emb(F,R).
Fixing a σ0 : F ↪→ Q ∩ R (⊂ R), we identify Gal(Q/Q)/Gal(Q/F )

with Emb(F,Q ∩ R) = {σ1, . . . , σn}. The decomposition group of Q at
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p, Gal(Qp/Qp), acts by left multiplication. Suppose p is unramified in F .
Then Frp acts, and the Frp-orbits in Emb(F,R) are in bijection with the
places u1, . . . , ur of F over p.

The Frobenius Frp acts transitively on its orbit u = Emb(Fu,Qp).
The smallest positive power of Frp which fixes each σ ∈ u is nu. The
action of Frp on Ĝ′u = Ĝnu is by Frp(tu) = (tu2, . . . , tunu , tu1), where
tu = (tu1, . . . , tunu). Then Frnup (tu) is tu,

(tu × Frp)nu =
( ∏

1≤i≤nu

tui, . . . ,
∏

1≤i≤nu

tui

)
× Frnup ,

and

(tu × Frp)j = (. . . , tu,itu,i+1 . . . tu,i+j−1, . . . ; 1 ≤ i ≤ nu)× Frjp .

A basis for the 4nu -dimensional representation ru = ⊗σrσ, σ ∈ u, is
given by ⊗σ∈ueσ`(σ), where e`(σ) lies in the standard basis {e1, e2, e3, e4}
of C4 for each σ. To compute the action of Frjp on these vectors it is
convenient to enumerate the σ so that the vectors become

⊗1≤i≤nue
i
`(i) = e1

`(1) ⊗ e
2
`(2) ⊗ · · · ⊗ e

nu
`(nu),

and Frp acts by sending this vector to

⊗iei−1
`(i) = ⊗iei`(i+1) = e1

`(2) ⊗ e
2
`(3) ⊗ · · · ⊗ e

nu
`(1).

Then Frnup fixes each vector, and a vector is fixed by Frjp iff it is fixed by
Frj0p , 0 ≤ j0 < nu, j ≡ j0(modnu). A vector ⊗iei`(i) is fixed by Frjp iff

it is equal to ⊗iei−j`(i) ≡ ⊗ie
i−j0
`(i) , thus `(i) depends only on imod j (and

imodnu), namely only on imod ju, where ju = (j, nu). Then

(tu × Frp)ju = (. . . ,
∏

0≤k<ju

tu,i+k, . . . )× Frjup .

This is

(tu1tu2 . . . tu,ju , tu2tu3 . . . tu,ju+1, . . . , tu,jutu,ju+1 . . . tu,2ju−1;

tu,ju+1 . . . tu,2ju , . . . )× Frjup .
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It acts on vectors of the form

(e1
u,`(1) ⊗ e

2
u,`(2) ⊗ · · · ⊗ e

ju
u,`(ju))⊗ (e1

u,`(1) ⊗ e
2
u,`(2) ⊗ · · · ⊗ e

ju
u,`(ju))⊗ . . . .

The product of the first ju vectors is repeated nu/ju times.
On the vectors with superscript 1 the class (tu × Frp)ju acts as

tu,1tu,2 . . . tu,ju · tu,ju+1 . . . tu,2ju · . . . · tu,(nuju −1)ju+1 . . . tu,nuju ju

=
∏

1≤i≤nu

tu,i = tu = diag(µ1u, µ2u, µ
−1
2u , µ

−1
1u ),

and so (tu×Frp)j acts as tj/juu . The trace is then µj/ju1u +µ
j/ju
2u +µ

−j/ju
2u +

µ
−j/ju
1u . The same holds for each superscript, so we get the product of ju

such factors. Put ju = (j, nu). We then have

tr ru[(tu × Frp)j ] = (µ
j
ju
1u + µ

j
ju
2u + µ

−j
ju
2u + µ

−j
ju
1u )ju .

The spherical function fsjC0p
is defined by means of L-group homomor-

phisms LC ′0 → LH ′ → LH ′j , where H ′j = RQj/QpH
′ and Qj denotes the

unramified extension of Qp in Qp of degree j. Since the groups C ′0 and H ′

are products of groups C ′0u = RFu/QpC0 and H ′u = RFu/QpH, it suffices to
work with these groups. Thus H ′j =

∏
u|pH

′
uj , where H ′uj = RQj/QpH

′
u.

The function fsjC0p
will be ⊗fsjC0u

, for analogously defined fsjC0u
.

Now

LH ′j = (Ĥ ′)jo〈Frp〉 =
∏
u|p

(Ĥ ′u)jo〈Frp〉, Ĥ ′ = Ĥ [F :Q], Ĥ ′u = Ĥnu ,

and Frp acts on

x = (xu), xu = (xu1, . . . ,xuj), xui ∈ Ĥ ′u = Ĥnu ,

by

Frp(x) = (Frp(xu)), Frp(xu) = (Frp(xu2), . . . ,Frp(xuj),Frp(xu1)).

It suffices to work with LH ′uj = (Ĥ ′u)j o 〈Frp〉.
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Let s1, . . . , sj be Frp-fixed elements in Z(Ĉ ′0u), thus si = (si, . . . , si),
si ∈ Z(Ĉ0) = {±I2} × {±I2} repeated nu times, with s1 . . . sj = s =
(s, . . . , s), s = diag(1,−1,−1, 1). Define

η̃j : LC ′0u = Ĉnu0 × 〈Frp〉 → LH ′uj = (Ĥ ′u)j o 〈Frp〉

by
t 7→ (t, . . . , t), Frp 7→ (s1, s2, . . . , sj)× Frp,

thus
Frip 7→ (s1s2 . . . si, s2 . . . si+1, . . . , sjs1 . . . si−1)× Frip .

The diagonal map H ′u → H ′uj defines LH ′uj → LH ′u, (t1, . . . , tj) × Frip 7→
t1 . . . tj × Frip. The composition ηj : LC ′0u → LH ′u gives

t× Frip 7→ tjsi × Frip .

The homomorphism η̃j defines a dual homomorphism

H(Kuj\Huj/Kuj)→ H(K0u\C0u/K0u)

of Hecke algebras. The function fsjC0u
is defined to be the image by the

relation
trπHu(η̃j(t))(φju) = trπC0u(t)(fsjC0u

)

of the function φj of [Ko4], p. 173, or rather the u-component φuj of φj ,
which is the characteristic function of Kuj ·µFj (p−1) ·Kuj . Theorem 2.1.3
of [Ko3] (see also [Ko4], p. 193) asserts that the product over u|p in F of

these traces is the product of p
j
2 dimSKf with the product over u|p of

tr ru(st(πHu)j × Frp) = tr(st(πHu)j) = µj1u + µ−j1u − µ
j
2u − µ

−j
2u .

Similarly for s = I we have that the analogous factor (with C0 replaced
by H) is the product with factors

tr ru(t(πHu)j × Frp) = tr(t(πHu)j) = µj1u + µ−j1u + µj2u + µ−j2u .
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3. The Eigenvalues at p

We proceed to describe the eigenvalues µ1u, µ2u for the various terms in
the formula, beginning with STFH(fH), according to the five parts which
make it. Note that

λ(πH(µ1u, µ2u)) = πG(µ1u, µ2u, µ
−1
2u , µ

−1
1u ),

where G = PGL(4, Fu). We choose the complex numbers µmu to have
|µmu| ≥ 1 (otherwise we replace as we may µmu by µ−1

mu; m = 1, 2). Write
tu for diag(µ1u, µ2u, µ

−1
2u , µ

−1
1u ).

The first part of STFH(fH) describes the stable spectrum. It has 3
types of terms.

(1) For the packets {πH} which λ-lift to cuspidal πG ' π̌G (/∈ Imλ1),
tu is

diag(µ1u, µ2u, µ
−1
2u , µ

−1
1u ) with q−1/2

u < |µmu| < q1/2
u ,

since πG is unitary and so its component πGu is unitarizable. Note that the
unramified component πGu is generic (since πG is), hence fully induced.

(2) For the quasi-packets {L(ξν, ν−1/2π2)}, they λ-lift to the resid-
ual J(ν1/2π2, ν−1/2π2), π2 cuspidal with central character ξ 6= 1 = ξ2

satisfying ξπ2 = π2. The component π2
u of π2 at u is unramified of

the form π2(z1u, z2u). This is an unramified generic representation of

GL(2, Fu), hence fully induced, normalizedly from the character
(
a b

0 c

)
7→

z
val(a)
1u z

val(c)
2u . We have that z1uz2u = ξu(πππu) has square 1. If ξu 6= 1 then

{z1u, z2u} = {1,−1}. If ξu = 1, since π2 is unitary its component π2
u is

unitarizable, and so q−1/2
u < |zmu| < q

1/2
u . In both cases we have

tu = diag(q1/2
u z1u, q

1/2
u z2u, q

−1/2
u z−1

2u , q
−1/2
u z−1

1u ).

Better estimates are known for the |zmu| (the exponent 1/2 can be reduced
to 1/4 by the theory of the symmetric square lifting), but for our π2 we
shall show below that |zmu| = 1.

(3) For one dimensional representations πH , λ(πH) = πG is one dimen-
sional representation g 7→ χ(det g), where χ is a character of order 2, and
t(πHu) = diag(µ1u, µ2u, µ

−1
2u , µ

−1
1u ) is

diag(χuq3/2
u , χuq

1/2
u , χuq

−1/2
u , χuq

−3/2
u ),
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where χu = χ(πππu) has square 1. Since πH is a quadratic character we have
that µ1u = ±q3/2

u , µ2u = ±q1/2
u .

The second part of STFH(fH) is a sum of terms indexed by {πH} =
λ0(π1 × π2). Here π1, π2 are cuspidal representations of PGL(2,A), and
trπ−Hu(fHu) = 0 as fHu is spherical. Then the component of πm (m = 1, 2)
at u is the unramified generic thus fully induced πmu = π2(zmu, z−1

mu), and
tu = diag(z1u, z2u, z

−1
2u , z

−1
1u ), where |zmu|±1 ≤ q1/2

u .
The terms in the third part of STFH(fH) correspond to λ0(π2 × σ12),

where π2 is a cuspidal representation of PGL(2,A) and σ is a character of
A
×/F×A×2. The factors at u|p of π2 are π2

u(zu, z−1
u ), q−1/2

u < |zi| < q
1/2
u .

So tu = diag(σuq
1/2
u , zu, z

−1
u , σuq

−1/2
u ), where σu = σu(πππu) has square 1.

The terms in the fourth part correspond to λ0(σξ12 × σ12), where σ, ξ
are characters of A×/F×A×2 with ξ 6= 1. Put σu = σu(πππu). Then

tu = diag(σuξuq1/2
u , σuq

1/2
u , σuq

−1/2
u , σuξuq

−1/2
u ), ξu = ξu(πππu).

The fifth part consists of terms indexed by πH = 1 o π2 where π2 is
a cuspidal representation of PGL(2,A). At u the factor π2

u = π2(zu, z−1
u )

is fully induced with |zu|±1 < q
1/2
u and λ(1 o π2

u) = I(π2
u, π

2
u) so that

tu = diag(zu, z−1
u , zu, z

−1
u ).

In summary, as noted in the last section, the factor at p of each of the
summands in STFH(fH) has the form (where ju = (nu, j))

p
j
2 dimSKf tr rµ[(t(πHp)× Frp)j ] = p

j
2 dimSKf

∏
u|p

(tr[tu × Frp]j)

= p
j
2 dimSKf

∏
u|p

(tj/ju1u + t
−j/ju
1u + t

j/ju
2u + t

−j/ju
2u )ju .

Remark. As p splits in F into a product of primes u with Fu/Qp un-
ramified with [F : Q] =

∑
u|p[Fu : Qp], and the dimension of the symmetric

space H(R)/KH(R) is 3, we note that

dimSKf = 3[F : Q] = 3
∑
u|p

[Fu : Qp].
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4. Terms at p for the Endoscopic Group

The other trace formula which contributes is that of C0(A) = PGL(2,A)×
PGL(2,A). The factors at p of the various summands have the form

p
j
2 dimSKf

∏
u|p

tr(s[tu × Frp]j)

= p
j
2 dimSKf

∏
u|p

(tj/ju1u + t
−j/ju
1u − tj/ju2u − t−j/ju2u )ju ,

where s = diag(1,−1,−1, 1) is the element in Ĥ = Sp(2,C) whose cen-
tralizer is Ĉ0 = SL(2,C) × SL(2,C). We need to specify the 4-tuples tu
again, according to the three parts of STFC0(f0). For the first part, where
the summands are indexed by pairs π1 × π2 of cuspidal representations
of PGL(2,A), the tu is the same as in the second part of STFH(fH) if
π1 6= π2, and as in the fifth part if π1 = π2. For the second part of
STFC0(f0), the tu for the term indexed by (σ, π2) is the same as for the
third part of STFH(fH). For the third part of STFC0(f0), the tu for the
term indexed by (σ, ξσ) is the same as for the fourth part of STFH(fH) if
ξ 6= 1 or the fifth part when ξ = 1.



IV. REAL REPRESENTATIONS

1. Representations of SL(2,R)

Packets of representations of a real group G are parametrized by maps of
the Weil group WR to the L-group LG. Recall that WR = 〈z, σ; z ∈ C×,
σ2 ∈ R× −NC/RC×, σz = zσ〉 is

1→WC →WR → Gal(C/R)→ 1

an extension of Gal(C/R) by WC = C
×. It can also be viewed as the

normalizer C× ∪ C×j of C× in H×, where H = R〈1, i, j, k〉 is the Hamil-
ton quaternions. The norm on H defines a norm on WR by restriction
([D3], [Tt]). The discrete series (packets of) representations of G are
parametrized by the homomorphisms φ : WR → Ĝ×WR whose projection
to WR is the identity and to the connected component Ĝ is bounded, and
such that CφZ(Ĝ)/Z(Ĝ) is finite. Here Cφ is the centralizer ZĜ(φ(WR))
in Ĝ of the image of φ.

When G = GL(2,R) we have Ĝ = GL(2,R), and these maps are φk
(k ≥ 1), defined by

WC = C
× 3 z 7→

(
(z/|z|)k 0

0 (|z|/z)k

)
× z, σ 7→

(
0 1

ι 0

)
× σ.

Since σ2 = −1 7→
(

(−1)k 0

0 (−1)k

)
× σ2, ι must be (−1)k. Then detφk(σ) =

(−1)k+1, and so k must be an odd integer (= 1, 3, 5, . . . ) to get a dis-
crete series (packet of) representation of PGL(2,R). In fact π1 is the
lowest discrete series representation, and φ0 parametrizes the so called
limit of discrete series representations; it is tempered. Even k ≥ 2 and
σ 7→

(
0 1

1 0

)
× σ define discrete series representations of GL(2,R) with

the quadratic nontrivial central character sgn. Packets for GL(2,R) and
PGL(2,R) consist of a single discrete series irreducible representation πk.
Note that πk ⊗ sgn ' πk. Here sgn : GL(2,R) → {±1}, sgn(g) = 1 if
det g > 0, = −1 if det g < 0.

248
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The πk (k > 0) have the same central and infinitesimal character as the
kth dimensional nonunitarizable representation

Symk−1
0 C

2 = |det g|−(k−1)/2 Symk−1
C

2

into
SL(k,C)± = {g ∈ GL(2,C); det g ∈ {±1}}.

Note that det Symk−1(g) = det gk(k−1)/2. The normalizing factor is

|det Symk−1 |−1/k. Then Symk−1
0

(
a 0

0 b

)
= diag(sgn(a)k−i sgn(b)i−1|a|k−i−(k−1)/2|b|i−1−(k−1)/2; 1 ≤ i ≤ k).

In fact both πk and Symk−1
0 C

2 are constituents of the normalizedly in-
duced representation I(νk/2, sgnk−1 ν−k/2) whose infinitesimal character
is (k2 ,−

k
2 ), where a basis for the lattice of characters of the diagonal torus

in SL(2) is taken to be (1,−1).

2. Cohomological Representations

An irreducible admissible representation π of H(A) which has nonzero
Lie algebra cohomology Hij(g,K;π ⊗ V ) for some coefficients (finite di-
mensional representation) V is called here cohomological. Discrete series
representations are cohomological. The non discrete series representations
which are cohomological are listed in [VZ]. They are nontempered. We
proceed to list them here in our case of PGSp(2,R). We are interested in
the (g,K)-cohomology Hij(sp(2,R),U(4);π ⊗ V ), so we need to compute
Hij(sp(2,R),SU(4);π ⊗ V ) and observe that U(4)/SU(4) acts trivially on
the nonzero Hij , which are C. If Hij(π⊗V ) 6= 0 then ([BW]) the infinites-
imal character ([Kn]) of π is equal to the sum of the highest weight ([FH])
of the self contragredient (in our case) V , and half the sum of the positive
roots, δ. With the usual basis (1, 0), (0, 1) on X∗(T ∗S), the positive roots
are (1,−1), (0, 2), (1, 1), (2, 0). Then δ = 1

2

∑
α>0 α is (2, 1).

Here T ∗S denotes the diagonal subgroup {diag(x, y, 1/y, 1/x)} of the al-
gebraic group Sp(2). Its lattice X∗(T ∗S) of rational characters consists of

(a, b) : diag(x, y, 1/y, 1/x) 7→ xayb (a, b ∈ Z).



250 IV. Real Representations

The irreducible finite dimensional representations of Sp(2) are Va,b, para-
metrized by the highest weight (a, b) with a ≥ b ≥ 0 ([FH]). The central
character of Va,b is ζ 7→ ζa+b, ζ ∈ {±1}. It is trivial iff a+ b is even. Since
GSp(2) = Sp(2)o{diag(1, 1, z, z)}, such Va,b extends to a representation of
PGSp(2) by (1, 1, z, z) 7→ z−(a+b)/2. This gives a representation of H(R) =
PGSp(2,R), extending its restriction to the index 2 connected subgroup
H0 = PSp(2,R). Another – nonalgebraic – extension is V ′a,b = Va,b ⊗ sgn,
where sgn(1, 1, z, z) = sgn(z), z ∈ R×. Va,b is self dual.

To list the irreducible admissible representations π of PGSp(2,R) with
nonzero Lie algebra cohomology Hi,j(sp(2,R), SU(4); π ⊗ Va,b) for some
a ≥ b ≥ 0 (the same results hold with Va,b replaced by V ′a,b), we first list
the discrete series representations.

Packets of discrete series representations of H(R) = PGSp(2,R) are
parametrized by maps φ of WR to LH = Ĥ ×WR which are admissible
(pr2 ◦φ = id) and whose projection to Ĥ is bounded and CφZ(Ĥ)/Z(Ĥ)
is finite. Here Cφ is ZĤ(φ(WR)). They are parametrized φ = φk1,k2 by a
pair (k1, k2) of integers with k1 > k2 > 0 and odd k1, k2.

The homomorphism φk1,k2 : WR → LG = Ĝ×WR, Ĝ = SL(4,C), given
by

z 7→ diag((z/|z|)k1 , (z/|z|)k2 , (|z|/z)k2 , (|z|/z)k1)× z

and
σ 7→

(
0 w

−w 0

)
× σ (odd k1 > k2 > 0)

or
σ 7→

(
0 w

w 0

)
× σ (even k1 > k2 > 0),

factorizes via (LC0 →) LH = Sp(2,C) ×WR precisely when ki are odd.
When the ki are even it factorizes via LC = SO(4,C) ×WR. When the
ki are odd it parametrizes a packet {πWh

k1,k2
, πhol
k1,k2
} of discrete series repre-

sentations of H(R). Here πWh is generic and πhol is holomorphic and
antiholomorphic. Their restrictions to H0 are reducible, consisting of
πWh
H0 and πWh

H0 ◦ Int(ι), πhol
H0 and πhol

H0 ◦ Int(ι), ι = diag(1, 1,−1,−1), and
πWh ⊗ sgn = πWh, πhol ⊗ sgn = πhol.

To compute the infinitesimal character of π∗k1,k2
we note that πk ⊂

I(νk/2, sgnk−1 ν−k/2) (e.g. by [JL], I5.7 and I5.11) on GL(2,R). Via
LC0 → LH induced I(νk1/2, ν−k1/2) × I(νk2/2, ν−k2/2) (in our case the
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ki are odd) lifts to the induced

IH(νk1/2, νk2/2) = ν(k1+k2)/2 × ν(k1−k2)/2
o ν−k2/2,

whose constituents (e.g. π∗k1,k2
, ∗ = Wh, hol) have infinitesimal character

(k1+k2
2 , k1−k2

2 ) = (2, 1) + (a, b). Here a = k1+k2
2 − 2 ≥ b = k1−k2

2 − 1 ≥ 0
as k2 ≥ 1 and k1 > k2 and k1 − k2 is even. For these a ≥ b ≥ 0, thus
k1 = a+ b+ 3, k2 = a− b+ 1, we have

Hij(sp(2,R),SU(4);πWh
k1,k2

⊗ Va,b) = C if (i, j) = (2, 1), (1, 2),

Hij(sp(2,R),SU(4);πhol
k1,k2

⊗ Va,b) = C if (i, j) = (3, 0), (0, 3).

Here k1 > k2 > 0 and k1, k2 are odd. In particular, the discrete series
representations of PGSp(2,R) are endoscopic.

3. Nontempered Representations

Quasi-packets including nontempered representations are parametrized by
homomorphisms ψ : WR × SL(2,R) → LH and φψ : WR → LH defined
([A]) by

φψ(w) = ψ(w,
(
‖w‖1/2 0

0 ‖w‖−1/2

)
).

The norm ‖.‖ : WR → R
× is defined by ‖z‖ = zz and ‖σ‖ = 1. Then

φψ(σ) = ψ(σ, I) and φψ(z) = ψ(z,diag(r, r−1)) if z = reiθ, r > 0. For
example, ψ : WR × SL(2,C)→ SL(2,C),

ψ|WR : zσj 7→ ξ(−1)j , ψ|SL(2,C) = id,

gives
φψ(z) =

(
r 0

0 r−1

)
× z, φψ(σ) = ξ(−1)I2 × σ,

parametrizing the one dimensional representation ξ2 = J(ξν1/2, ξν−1/2) of
PGL(2,R) (ξ : R× → {±1}, ν(z) = |z|). Here J denotes the Langlands
quotient of the indicated induced representation, I(ξν1/2, ξν−1/2).

Similarly the one dimensional representation

ξ4 = J(ξν3/2, ξν1/2, ξν−1/2, ξν−3/2)



252 IV. Real Representations

of PGL(4,R) is parametrized by ψ : WR × SL(2,C)→ SL(4,C),

(ψ|WR)(zσj) = ξ(−1)j , ψ|SL(2,C) = Sym3
0,

thus

φψ(z) = diag(r3, r, r−1, r−3)× z, φψ(σ) = ξ(−1)I4 × σ.

This parameter factorizes via ψ : WR×SL(2,C)→ Sp(2,C), which parame-
trizes the one dimensional representation ξH of H(R), h 7→ ξ(λλλ(h)) where
λλλ(h) denotes the factor of similitude of h, whose infinitesimal character is
(2, 1) = 1

2

∑
α>0 α. We have

Hij(sp(2,R),SU(4); ξH ⊗ V0,0) = C

for (i, j) = (0, 0), (1, 1), (2, 2), (3, 3). Of course 1H 6= sgnH , and 1
2 (1H +

sgnH) is the characteristic function of H0 in H(R). Moreover, the char-
acter of 1

2 (1H + sgnH) + πWh
3,1 + πhol

3,1 vanishes on the regular elliptic set of
H(R), as (ξH +πWh

3,1 +πhol
3,1 )|H0 is a linear combination of properly induced

(“standard”) representations ([Vo], [Ln]) in the Grothendieck group.

4. The Cohomological L(ν sgn, ν−1/2π2k)

The nontempered nonendoscopic representation L(ν sgn, ν−1/2π2k) of the
group H(R) (k ≥ 1) is the Langlands quotient of the representation
ν sgnoν−1/2π2k induced from the Heisenberg parabolic subgroup of H.
It λ-lifts to

J(ν1/2π2k, ν
−1/2π2k),

the Langlands quotient of the induced representation I(ν1/2π2k, ν
−1/2π2k)

of PGL(4,R). Note that the discrete series π2k ' sgn⊗π2k ' π̌2k has
central character sgn(6= 1). Now

ψ : WR × SL(2,C)→ SL(4,C), ψ|WR : w 7→
(
φ2k(w) 0

0 φ2k(w)

)
×w

with
φ2k(z) =

(
(z/|z|)2k 0

0 (|z|/z)2k

)
× z, φ2k(σ) = w × σ,
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and (ψ|SL(2,C))
(
a b

c d

)
=
(
aI bI

cI dI

)
, defines

φψ(z) = ψ
(
z,
(
|z| 0

0 |z|−1

))
=
(
|z|φ2k(z) 0

0 |z|−1φ2k(z)

)
× z,

φψ(σ) = ψ(σ, I) =
(
w 0

0 w

)
,

which factorizes via Ĥ = Sp(2,C) ↪→ SL(4,C) and parametrizes

L(ν sgn, ν−1/2π2k).

Note that when 2k is replaced by 2k + 1, φ2k+1(σ) = εw × σ, ε =
diag(1,−1), then

φψ(σ) = ψ(σ, I) =
(
εw 0

0 εw

)
= I ⊗ εw ∈ Ĉ,

φψ(z) =
(
|z| 0

0 |z|−1

)
⊗ φ2k+1(z) ∈ Ĉ,

thus φψ defines a representation of C(R) (which λ1-lifts to the representa-
tion

J(ν1/2π2k+1, ν
−1/2π2k+1)

of PGL(4,R)), but not a representation of H(R).
As in [Ty] write π1

2k,0 for L(sgn ν, ν−1/2π2k+2). We have that π1
2k,0 '

sgn⊗π1
2k,0, and π1

2k,0|H0 consists of two irreducibles. In the Grothendieck
group the induced decomposes as

ν sgnoν−1/2π2k = L(ν sgn, ν−1/2π2k)+πWh
2k+3,2k+1+πhol

2k+3,2k+1 k ≥ 1.

To compute the infinitesimal character of ν sgnoν−1/2π2k, note that
it is a constituent of the induced ν sgnoν−1/2I(νk, sgn ν−k) ' sgn ν2k ×
sgn ν o ν−k−1/2 sgn (using the Weyl group element (12)(34)), whose in-
finitesimal character is (2k, 1) = (2, 1) + (a, 0), with a = 2k − 2 ≥ 0
as k ≥ 1. For k ≥ 1 we have Hij(sp(2,R),SU(4);π1

2k,0 ⊗ V2k,0) = C if
(i, j) = (2, 0), (0, 2), (3, 1), (1, 3).
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5. The Cohomological L(ξν1/2π2k+1, ξν
−1/2)

The nontempered endoscopic representation L(ξν1/2π2k+1, ξν
−1/2) of the

group H(R) is the Langlands quotient of the representation ξν1/2π2k+1 o

ξν−1/2 induced from the Siegel parabolic subgroup of H(R). It is the λ0-
lift of π2k+1 × ξ12 and λ-lifts to the induced I(π2k+1, ξ12) of PGL(4,R).
The central character of π2k+1 is trivial, but that of π2k is sgn. Hence
I(π2k, ξ2) defines a representation of GL(4,R) but not of PGL(4,R). The
endoscopic map

ψ : WR × SL(2,C)→ LC0 = SL(2,C)× SL(2,C) λ0→ Ĥ,

ψ(zσj , s) = λ0(φ2k+1(zσj), ξ(−1)js),

defines

φψ(z) = ψ
(
z,
(
|z| 0

0 |z|−1

))
= diag((z/|z|)2k+1, |z|, |z|−1, (|z|/z)2k+1)× z,

φψ(σ) = ψ(σ, I) =

( 1

ξ(−1)

ξ(−1)

(−1)2k+1

)
,

which lies in Ĥ ⊂ SL(4,C) since 2k + 1 is odd.
As in [Ty] we write π2,ξ

k−1,k−1 for L(ξν1/2π2k+1, ξν
−1/2), k ≥ 0. Now

ξπ2,1 = π2,ξ and π2,ξ|H0 is irreducible. In the Grothendieck group the
induced decomposes as

ξν1/2π2k+1 o ξν
−1/2 = π2,ξ

k−1,k−1 + πWh
2k+1,1.

Here πWh
2k+1,1 is generic, discrete series if k ≥ 1, tempered if k = 0. Our

ξν1/2π2k+1 o ξν
−1/2 is a constituent of the induced

ξν1/2I(ν(2k+1)/2, ν−(2k+1)/2)o ξν−1/2 = ξνk+1 × ξν−k o ξν−1/2,

which is equivalent to ξνk+1 × ξνk o ξν−k−1/2 (using the Weyl group
element (23)). Its infinitesimal character is (k+1, k) = (2, 1)+(k−1, k−1).
We have

Hij(sp(2,R),SU(4);π2,ξ
k−1,k−1⊗Vk−1,k−1) = C if (i, j) = (1, 1), (2, 2).
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In summary, Hij(π⊗Va,b) is 0 except in the following four cases, where
it is C.
(1) One dimensional case: (a, b) = (0, 0) and π is πWh

3,1 , πhol
3,1 , ξH ,

π1
0,0 = L(ν sgn, ν−1/2π2), π2,ξ

0,0 = L(ξν1/2π3, ξν
−1/2).

(2) Unstable nontempered case: (a, b) = (k, k) (k ≥ 1) and π is

πWh
2k+3,1, πhol

2k+3,1, π2,ξ
k,k = L(ξν1/2π2k+3, ξν

−1/2).

(3) Stable nontempered case: (a, b) = (2k, 0) (k ≥ 1) and π is

πWh
2k+3,2k+1, πhol

2k+3,2k+1, π1
2k,0 = L(ν sgn, ν−1/2π2k+2).

(4) Tempered case: any other (a, b), thus a > b ≥ 1, a + b even, and π is
πWh
k1,k2

, πhol
k1,k2

. Here k1 = a+ b+ 3 > k2 = a− b+ 1 > 0 are odd.

6. Finite Dimensional Representations

The Q-rational representation (ρ, V ) of H ′ = RF/QH has the form (hι) 7→
⊗ρι(hι), where H ′ =

∏
ιHι, Hι = H, over Q, and ρι is a represen-

tation (irreducible and finite dimensional) of Hι. Here ι ranges over
S = Gal(Q/Q)/Gal(Q/F ), = Hom(F,R) and so H ′ = {(hι); hι ∈ H}.
The Galois group Gal(Q/Q) acts by τ((hι)) = ((τhι)τι) = ((τhτ−1ι)ι).
The fixed points are the the (hι) with hι = ιh1, where h1 ranges over H(F )
(the “1” indicates the fixed embedding F ↪→ R). Thus H ′(Q) = H(F ) and
H ′(R) =

∏
S H(R) with |S| = [F : Q] since F is totally real; S is the set of

embeddings F ↪→ R. Now the representation ρ is defined over Q, namely
fixed under the action of Gal(Q/Q). Thus ⊗ιρι(hι) = ⊗ιρτι(τhι). The
element h = (h1, 1, . . . , 1) (thus hι = 1 for all ι 6= 1) is mapped by τ to
(1, . . . , 1, τh1, 1, . . . , 1) (the entry τh1 is at the place parametrized by τ).
Hence ρ1(h1) equals ρτ (τh1) (both are equal to ρ(h)(= ρ(τh))). Hence
ρτ = τρ1(: h1 7→ ρ1(τ−1h1)), and the components ρτ of ρ are all trans-
lates of the same representation ρ1. For (hι) = (ιh1) in H ′(Q) = H(F ),
ρ((hι)) = ⊗ιρι(ιh1) = ⊗ιρ1(h1) = ρ1(h1)⊗ · · · ⊗ ρ1(h1) ([F : Q] times).

However, over F we have H ′ '
∏
v∈S Hv with Hv = H. An irreducible

representation (ρρρ,V) of H ′ over F has the form (ρa,b = ⊗v∈Sρav,bv , Va,b =
⊗v∈SVav,bv ), where av ≥ bv ≥ 0, even av − bv for all v ∈ S.
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7. Local Terms at ∞

Next we wish to compute the factors at∞ of each of the terms in the trace
formulae STFH(fH) and TFC0(fC0). The functions fH,∞ (= h∞ of [Ko4])
and fC0,∞ are products ⊗fHv and ⊗fC0v over v in S. We fixed a finite
dimensional representation

(ρρρ, Vρρρ) = (ρa,b = ⊗v∈Sρav,bv , Va,b = ⊗v∈SVav,bv ), av ≥ bv ≥ 0,

even av−bv for all v ∈ S, over F of the group H ′ over Q. Denote by {ρπHv}
the packet of discrete series representations of H(R) with infinitesimal
character (av, bv) + (2, 1).

For any (ρv, Vav,bv ), the packet {ρπHv} consists of two representations,
ρπ

+
Hv = πWh

k1v,k2v
and ρπ

−
Hv = πhol

k1v,k2v
, where k1v = av + bv + 3 > k2v =

av − bv + 1 > 0 are odd. It is the λ0-lift of the representations πk1v × πk2v

and πk2v×πk1v of C0(R) = PGL(2,R)×PGL(2,R). Denote by h(πWh
k1v,k2v

),
h(πhol

k1v,k2v
) a pseudo coefficient of the indicated representation. Then

fH′,∞ = ρfH′,∞ =
∏
v∈S

hH,v,

hH,v = hH,v({ρπ±Hv}) =
(−1)q(H)

2
[h(ρπ+

Hv) + h(ρπ−Hv)].

Put

fC′0,∞ = ρfC′0,∞ =
∏
v∈S

hC0,v, C ′0 = RF/QC0,

hC0,v = hC0,v(πk1v × πk2v ) = (−1)q(H)[h(πk1v × πk2v )− h(πk2v × πk1v )].

Note that if πk1 = πk2v then λ0(πk1 × πk2v ) = 1 o πk1 which is not
discrete series but properly induced. In particular, the fifth term I(H, 5)
of STFH(fH), and the corresponding terms of I(C0, 2) in TFC0(fC0) –
those which are parametrized by π2 × σ12 where π2 is cuspidal whose
components at ∞ are π1, vanish for our functions fH , fC0 . Moreover, as
explained at the end of section 6, I(H, 4) and I(C0, 3) are 0 for our fH ,
fC0 .
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Note that q(H ′) = [F : Q]q(H) is half the real dimension of the sym-
metric space attached to H ′(R), and q(H) is that of H(R), thus q(H) = 3
in our case.

Then trπWh
k1v,k2v

(hH,v) = trπhol
k1v,k2v

(hH,v) = 1
2 (−1)q(H) = − 1

2 . When
(a, b) = (2k, 0), k ≥ 0, we have in addition trL(ν sgn, ν−1/2π2k+2)(hH,v) =
1. When (a, b) = (k, k), k ≥ 0, we have trL(ξν1/2π2k+3, ξν

−1/2)(hH,v) =
1
2 . When (a, b) = (0, 0), we have in addition tr ξH(hH,v) = 1, ξ2 = 1.

Note that if πH contributes to I(H, 1)2 then its archimedean compo-
nents πHv have infinitesimal characters of the form (2kv, 0), kv ≥ 0, for all
v ∈ S.

If πH contributes to I(H, 3) then there is a contribution to I(C0, 2), and
the archimedean components πHv have infinitesimal characters of the form
(kv, kv), kv ≥ 0, for all v ∈ S.

If πH contributes to I(H, 1)3 the infinitesimal characters of its archime-
dean components are (0, 0).



V. GALOIS REPRESENTATIONS

1. Tempered Case

We apply the Lefschetz formula in Deligne’s conjecture form to the étale
cohomology

H∗c (SKf ⊗E F,Va,b;λ)

with compact supports and coefficients in the representation (ρa,b, Va,b),
even av − bv, for all v ∈ S.

Suppose πH occurs in the stable spectrum, namely in I(H, 1)1.
The choice of the function ρρρf∞H guarantees that the components πHv

lie in the packet {πWh
k1v,k2v

, πhol
k1v,k2v

}, k1v = av + bv + 3, k2v = av − bv + 1,
at each archimedean place v ∈ S.

We start by fixing a cuspidal representation πH with πHv in the set
{πWh

k1v,k2v
, πhol

k1v,k2v
} for all v in S and with π

Kf
Hf 6= 0. In particular the

component at p of such πH is unramified, of the form ⊗u|pπH(µ1u, µ2u).
We use a correspondence fpH , which is a Kp

f -biinvariant function on
H(Apf ). Since there are only finitely many discrete series representations of
H(A) with a given infinitesimal character (determined by ρρρ) and a nonzero
Kf -fixed vector, we can choose fpH to be a projection onto {πKfHf}. Writing

tmu for µmu(πu), m = 1, 2, the trace of the action of Frjp on the {πKfHf}-
isotypic component ofH∗c (SKf⊗FF,Vρρρ) (which vanishes outside the middle
dimension 3[F : Q]), is multiplication by (we put ju = (j, nu))

p
j
2 dimSKf

∏
u|p

(tj/ju1u + t
j/ju
2u + t

−j/ju
2u + t

−j/ju
1u )ju .

Note that H3[F :Q]
c occurs in the alternating sum H∗c with coefficient

(−1)3[F :Q]. This sign is canceled by the sign (−1)q(H
′) of the definition of

the functions fH′,∞ = ⊗v∈ShHv.
Thus the {πKfHf}-isotypic part of H3[F :Q]

c (namely the πKfHf -isotypic part

for each member of the packet) is of the form {πKfHf} ⊗ ρ({πH}). Here

258
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ρ({πH}) is a 4[F :Q]-dimensional representation of Gal(Q/Q). The 4#{u|p}

nonzero eigenvalues t of the action of Frp are p
3
2 [F :Q]

∏
u|p t

ι(u)
m(u),u, m(u) ∈

{1, 2}, ι(u) ∈ {±1}. This we see first for sufficiently large j by Deligne’s
conjecture, but then for all j ≥ 0, by multiplicativity.

Deligne’s “Weil conjecture” purity theorem asserts that the Frobenius
eigenvalues are algebraic numbers and all their conjugates have equal com-
plex absolute values of the form q

i/2
℘ (0 ≤ i ≤ 2 dimS). This is also referred

to as “mixed purity”. The eigenvalues of Fr℘ on IHi have complex abso-
lute values equal qi/2℘ , by a variant of the purity theorem due to Gabber.
We shall use this to show that the absolute values in our case are all equal

to q
1
2 dimS
℘ . In our case E = Q, the ideal ℘ is (p), the residual cardinality

q℘ is p, and n℘ = [E℘ : Qp] is 1.
Note that the cuspidal π define part not only of the cohomology

Hi
c(SKf ⊗E Q,V)

but also part of the intersection cohomology IHi(S ′Kf ⊗E Q,V). By the
Zucker isomorphism it defines a contribution to the L2-cohomology, which
is of the form π

Kf
f ⊗ Hi(g,K∞;π∞ ⊗ Vξ(C)). We shall compute this

(g,K∞)-cohomology space to know for which i there is nonzero contri-
bution corresponding to our πf . We shall then be able to evaluate the ab-
solute values of the conjugates of the Frobenius eigenvalues using Deligne’s
“Weil conjecture” theorem.

The space Hi,j(g,K;π ⊗ Va,b) is 0 for π = π∗k1,k2
, ∗ = Wh or hol, k1 >

k2 > 0 are odd (indexed by a ≥ b ≥ 0) except when (i, j) = (2, 1), (1, 2),
(3, 0), (0, 3) (respectively), when this space is C. From the “Matsushima-
Murakami” decomposition of section 2, first for the L2-cohomology H(2)

but then by Zucker’s conjecture also for IH∗, and using the Künneth
formula, we conclude that IHi(πf ) is zero unless i is equal to dimSKf =
3[F : Q], and there dim IH2[F :Q](πf ) is 4[F :Q] (as there are [F : Q] real
places of F ). Since πf is the finite component of cuspidal representations
only, πf contributes also to the cohomology Hi

c(SKf ⊗E Q,Va,b;λ) only in

dimension i = 3[F :Q], and dimH
3[F :Q]
c (πf ) = 4[F :Q]. This space depends

only on the packet of πf and not on πf itself.
Deligne’s theorem [D6] (in fact its IH-version due to Gabber) asserts

that the eigenvalues t of the Frobenius Fr℘ acting on the `-adic intersection
cohomology IHi of a variety over a finite field of q℘ elements are algebraic
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and “pure”, namely all conjugates have the same complex absolute value, of
the form q

i/2
℘ . In our case i = dimSKf = 3[F : Q], hence the eigenvalues

of the Frobenius are algebraic and each of their conjugates is q
3
2 [F :Q]
℘ in

absolute value. Consequently the eigenvalues µ1u, µ2u are algebraic, and
all of their conjugates have complex absolute value 1.

Note that we could not use only “mixed-purity” (that the eigenvalues
are powers of q1/2

℘ in absolute value) and the unitarity estimates |µmu|±1 <

q
1/2
u on the Hecke eigenvalues, since the estimate (less than (√q℘)

1
2 dimS

away from (√q℘)dimS) does not define the absolute value ((√q℘)dimS)
uniquely. This estimate does suffice to show unitarity when dimS = 1.

In summary, the representation ρ = ρ(πHf ) of Gal(Q/Q) attached to
πHf depends only on the packet of πHf , its dimension is 4[F :Q]. Its re-
striction to Gal(Qp/Qp) is unramified, and the trace of ρ(Frp) on the

{πKfHf}-isotypic part of H3[F :Q]
c is equal to the trace of ⊗ν−1/2

u ru(t(πHu)×
Fru). Here (ru, (C4)[Fu:Qp]) denotes the twisted tensor representation of
LRFu/Qp H = Ĥ [Fu:Qp]

oGal(Fu/Qp), Fru is Fr[Fu:Qp]
p , and νu is the char-

acter of LRFu/Qp H which is trivial on the connected component of the
identity and whose value at Fru is q−1

u , where qu = p[Fu:Qp]. The eigenval-
ues of t(πHu) and all of their conjugates, lie on the complex unit circle.

We continue by fixing a cuspidal representation πH with πHv in the set
{πWh

k1v,k2v
, πhol

k1v,k2v
} for all v in S and with π

Kf
H 6= 0. But now we assume

it occurs in the unstable spectrum, namely in I(H, 2). We fix a correspon-
dence fpH which projects to the packet {πpHf}. Since the function fpC0

is cho-
sen to be matching fpH , by [F6] the contributions to I(C0, 1) are precisely
those parametrized by π1×π2 and π2×π1, where πm are cuspidal represen-
tations of PGL(2,A) whose real components are {π1

v , π
2
v} = {πk1v , πk2v},

a set of cardinality two.
Write {πHf}+ for the set of πHf = ⊗wπHw, w <∞, which are the finite

part of an irreducible πH in our packet {πH}, such that πHw is π−Hw for
an even number of places w < ∞. Similarly define {πHf}− by replacing
“even” with “odd”. The contribution of {πH} to I(H, 2) is

1
2

∏
v|∞

tr{πHv}(hHv) · [tr{πHf}+(fpH) + tr{πHf}−(fpH)]
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·p
j
2 dimSKf

∏
u|p

(tj/ju1u + t
−j/ju
1u + t

j/ju
2u + t

−j/ju
2u )ju .

Here and below fpH indicates – as suitable – its product with the unit
element of the H ′(Zp)-Hecke algebra of H ′(Qp).

The corresponding contribution to I(C0, 1) is twice (from π1 × π2 and
π2 × π1)

1
4

∏
v|∞

tr{π1
v × π2

v}(hC0v) · tr(π1
f × π2

f )(fpC0
)

·p
j
2 dimSKf

∏
u|p

(tj/ju1u + t
−j/ju
1u − tj/ju2u − t−j/ju2u )ju .

By choice of fpC0
we have that tr(π1

f × π2
f )(fpC0

) = tr{πHf}+(fpH) −
tr{πHf}−(fpH). The choice of hHv is such that tr{πHv}(hHv) = (−1)q(H),
and tr(π1

v ×π2
v)(hC0v) is (−1)q(H) if π1

v ×π2
v is πk1v ×πk2v , and −(−1)q(H)

if it is πk2v × πk1v .
We conclude that for each irreducible πHf ∈ {πHf}+, the πKfHf -isotypic

part of Hi
c is zero unless i = 3[F : Q] (middle dimension), in which case it

is πKfHf ⊗ ρ({πHf}+), and Frjp acts on ρ({πHf}+) with trace

1
2
p
j
2 dimSKf [

∏
u|p

(tj/ju1u + t
−j/ju
1u + t

j/ju
2u + t

−j/ju
2u )ju

+(−1)n(π1×π2)
∏
u|p

(tj/ju1u + t
−j/ju
1u − (tj/ju2u + t

−j/ju
2u ))ju ].

We write n(π1 × π2) for the number of archimedean places v of F with
(π1
v , π

2
v) = (πk2v , πk1v ).

Similarly, for each irreducible πHf ∈ {πHf}−, the πKfHf -isotypic part of
Hi
c is zero unless i = 3[F : Q] (middle dimension), in which case it is

π
Kf
Hf ⊗ ρ({πHf}−), and Frjp acts on ρ({πHf}−) with trace

1
2
p
j
2 dimSKf [

∏
u|p

(tj/ju1u + t
−j/ju
1u + t

j/ju
2u + t

−j/ju
2u )ju

−(−1)n(π1×π2)
∏
u|p

(tj/ju1u + t
−j/ju
1u − (tj/ju2u + t

−j/ju
2u ))ju ].
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As usual, we conclude from Deligne’s mixed purity [D6] that the Hecke
eigenvalues tmu are algebraic and their conjugates all lie in the unit circle
in C.

2. Nontempered Case

Next we deal with the case of πH which occurs in I(H, 1)2, namely in a
quasi packet {L(ξν, ν−1/2π2)} which λ-lifts to the residual representation
J(ν1/2π2, ν−1/2π2) of G(A), G = PGL(4). Here π2 is a cuspidal represen-
tation of GL(2,A) with quadratic central character ξ 6= 1 and ξπ2 = π2,
and π2

v = π2kv+2 at each v ∈ S. The infinitesimal character of πHv is
(2kv, 0) + (2, 1), kv ≥ 0, for all v ∈ S. Choosing fpH to project on π

Kf
Hf

for such πH , we note that there are no contributions from the endoscopic
group C0, thus I(C0, i) are zero. Namely the contributions to I(H, 1)2 are
stable. The result for Shimura varieties associated with GL(2) assures us
that the Hecke eigenvalues, or Satake parameters, of each component π2

u of
π2 at u|p are algebraic and their conjugates have complex absolute value
one. Alternatively we can conclude that the components above p are all
– unramified – of the form L(ξuνu, ν

−1/2
u π2

u) where π2
u = π(µ1u, ξu/µ1u),

ξ2
u = 1, µ1u unramified and equals 1 or −1 if ξu = −1.

As noted in section 12,

t(πHu) = diag(q1/2
u z1u, q

1/2
u z2u, q

−1/2
u z−1

2u , q
−1/2
u z−1

1u )

with z1u = µ1u, z2u = ξu/µ1u, where we write µ1u and ξu also for their
values at πππu. Using the estimate q−1/2

u < |zmu| < q
1/2
u we conclude from

Deligne’s theorem [D6] that µ1u is algebraic and the complex absolute
value of each of its conjugates is equal to one. On the πKfHf -isotypic part of

the cohomology, Frp acts with the 4#{u|p} eigenvalues p
1
2 dimSKf

∏
u|p au,

where

au ∈ {q1/2
u µ1u, q1/2

u ξuµ
−1
1u , q−1/2

u ξuµ1u, q−1/2
u µ−1

1u }.

Note that πHv = L(sgn νv, ν
−1/2
v π2kv+2) has Hij(πHv⊗Vav,bv ) 6= 0 only

when av = 2kv, bv = 0, and (i, j) = (2, 0), (0, 2), (3, 1), (1, 3).
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Next we deal with the case of πH which occurs in I(H, 3), namely
in a quasi-packet λ0(π2 × ξ12), where π2 is a cuspidal representation
of PGL(2,A) whose real components are π2kv+3, and ξ is a character
of A×/F×A×2. There are corresponding contributions in I(C0, 2) from
π2× ξ12 and from ξ12×π2. The infinitesimal character of πHv is (kv, kv),
kv ≥ 0, for all v ∈ S.

We fix a correspondence fpH which projects to the packet {πpHf}. Since
the function fpC0

is chosen to be matching fpH , by [F6] the contributions to
I(C0, 1) are precisely those parametrized by π2 × ξ12 and ξ12 × π2.

Write {πHf}× for the set of πHf = ⊗wπHw, w < ∞, which are the
finite part of an irreducible πH in our quasi-packet {πH}, such that πHw
is π−Hw for an even number of places w <∞. Similarly define {πHf}− by
replacing “even” with “odd”. The contribution of {πH} to I(H, 3) is

ε(ξπ2, 1
2 )

2

∏
v|∞

tr(π×Hv − π
−
Hv)(hHv) · [tr{πHf}

×(fpH)− tr{πHf}−(fpH)]

·p
j
2 dimSKf

∏
u|p

[(ξuq1/2
u µu)j/ju + (ξuq1/2

u µu)−j/ju

+(ξuq1/2
u µ−1

u )j/ju + (ξuq1/2
u µ−1

u )−j/ju ]ju .

Here π2
u = I(µu, µ−1

u ), and we abbreviate µu(πππu) to µu and ξu(πππu) to ξu.

The corresponding contribution to I(C0, 2) is twice (from π2 × ξ12 and
from ξ12 × π2)

1
4

∏
v|∞

tr(π2
v × ξ12)(hC0v) · tr(π2

f × ξf12)(fpC0
)

·p
j
2 dimSKf

∏
u|p

[(ξuq1/2
u µu)j/ju + (ξuq1/2

u µu)−j/ju

−(ξuq1/2
u µ−1

u )j/ju − (ξuq1/2
u µ−1

u )−j/ju ]ju .

By choice of fpC0
we have that tr(π2

f × ξf12)(fpC0
) = tr{πHf}×(fpH) +

tr{πHf}−(fpH). The choice of hHv is such that trπ−Hv(hHv) = 1
2 (−1)q(H) =

− 1
2 , trπ×Hv(hHv) = 1

2 , and tr(π1
v × π2

v)(hC0v) is (−1)q(H) if π1
v × π2

v is
π2
v × ξv12 and −(−1)q(H) if it is ξv12 × π2

v .
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We conclude that Frjp acts on the π
Kf
Hf -isotypic past of H∗c , for each

irreducible πHf ∈ {πHf}×, with trace 1
2p

j
2 dimSKf times

ε(ξπ2,
1
2

)
∏
u|p

[(ξuq1/2
u µu)j/ju + (ξuq1/2

u µu)−j/ju

+ (ξuq1/2
u µ−1

u )j/ju + (ξuq1/2
u µ−1

u )−j/ju ]ju

+
∏
u|p

[(ξuq1/2
u µu)j/ju + (ξuq1/2

u µu)−j/ju

− (ξuq1/2
u µ−1

u )j/ju − (ξuq1/2
u µ−1

u )−j/ju ]ju .

Similarly, Frjp acts on the πKfHf -isotypic past of H∗c , for each irreducible

πHf ∈ {πHf}−, with trace 1
2p

j
2 dimSKf times

ε(ξπ2,
1
2

)
∏
u|p

[(ξuq1/2
u µu)j/ju + (ξuq1/2

u µu)−j/ju

+ (ξuq1/2
u µ−1

u )j/ju + (ξuq1/2
u µ−1

u )−j/ju ]ju

−
∏
u|p

[(ξuq1/2
u µu)j/ju + (ξuq1/2

u µu)−j/ju

− (ξuq1/2
u µ−1

u )j/ju − (ξuq1/2
u µ−1

u )−j/ju ]ju .

Note that πHv = L(ξvν
1/2
v π2k+3, ξvν

−1/2
v ) has Hij(πHv ⊗ Vav,bv ) 6= 0

only when av = kv, bv = kv, and (i, j) = (1, 1) or (2, 2).
As usual, we conclude from Deligne’s mixed purity [D6] that the µmu

are algebraic and their conjugates all lie in the unit circle in C.

Finally we deal with the case of a one dimensional representation πH =
ξH , which occurs in I(H, 1)3. We can choose fpH to factorize through
a projection onto this one dimensional representation πH = ξ such that
π
Kf
Hf 6= 0. The infinitesimal character of πHv is (0, 0) for all v ∈ S. In

particular the component at p of such πH is unramified, and the trace of
the action of Frjp on the πHf -isotypic component of H∗c (SKf ⊗F F,Vρ) is

p
j
2 dimSKf

∏
u|p

[(ξuq3/2
u )j/ju +(ξuq1/2

u )j/ju +(ξuq−1/2
u )j/ju +(ξuq−3/2

u )j/ju ]ju .
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Note that Hij
c (sp(2,R),SU(4);C) is C for (i, j) = (0, 0), (1, 1), (2, 2),

(3, 3) and {0} otherwise. Thus πH = ξH contributes only to the (even)
part

⊕
0≤m≤dimSKf

H2m
c (SKf ⊗F F,1).

Note that the functions fH′,∞ = ⊗v∈ShHv satisfy

tr(ξHv)(hHv) = −(−1)q(H) = 1.

We conclude that the representation ρ(πHf ) of Gal(Q/Q) on H∗c at-
tached to πHf is 4[F :Q]-dimensional. Its restriction to Gal(Qp/Qp) is un-

ramified. Its trace is equal to the trace of ⊗u|pν
−1/2
u ru(Fru). Here ru(Fru)

acts on the twisted tensor representation (ru, (C4)[Fu:Qp]) as t(ξu) × Fru,
t(ξu) = (t1, . . . , tnu), tm diagonal with∏

1≤m≤nu

tm = diag(ξuq3/2
u , ξuq

1/2
u , ξuq

−1/2
u , ξuq

−3/2
u ).





PART 3. BACKGROUND





I. ON AUTOMORPHIC FORMS

1. Class Field Theory

Underlying the discipline of Automorphic Representations is a hypothetical
reciprocity law that would generalize to the context of connected reductive
groups G over local or global fields F the deep Class Field Theory, which
simply asserts that W ab

F ' CF , and is to be viewed as the special case
of GL(1) = Gm. We review some of the key notions here, starting with
basics. Key topics are in bold letters, and new terms are in italics.

Number Theory concerns number fields F , finite extensions of the field
Q of rational numbers. The completion of F at each of its valuations, v, is
denoted by Fv. It is the field C of complex numbers or the field R of real
numbers if v is archimedean (|x + y|v ≤ |x|v + |y|v), or a finite extension
of Qp for a prime p if v is nonarchimedean (|x + y|v ≤ max(|x|v, |y|v)).
There is a positive characteristic analogue, where F is the function field of
a curve C over a finite field Fq, the places v are the closed points of C and
Fv is Fqr ((t)), the field of power series over a finite extension of Fq. In the
nonarchimedean case denote by Rv the ring of integers of Fv (defined by
|x|v ≤ 1).

The ring of F -adèles, denoted AF or simply A, is the union over all
finite sets S of valuations of F containing the archimedean ones, of the
products

∏
v∈S Fv ×

∏
v/∈S Rv. Thus an adèle is a tuple (xv), xv ∈ Fv for

all v and xv ∈ Rv for almost all v (finite number of exceptions). The field
F embeds diagonally (xv = x for all v) in A as a discrete subgroup, and
AmodF is compact. By AF,f , or Af , we denote the ring of adèles without
archimedean components. Thus A = Af

∏
v∈∞ Fv where ∞ is the set of

archimedean places of F .
The multiplicative group of A is the group of idèles, A×, consisting

of (xv) with xv ∈ F×v for all v, xv ∈ R×v for almost all v, where the
multiplicative group R×v of Rv is the group of units, defined by |x|v = 1.
Thus A× = ∪S

∏
v∈S F

×
v ×

∏
v/∈S R

×
v . The multiplicative group F× embeds

diagonally as a discrete subgroup in A×, and A1/F× is compact, where

269
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A
1 consists of the (xv) in A× with

∏
v |xv|v = 1. The product formula∏

v |x|v = 1 for x in F× implies that F× ⊂ A1. Denote by πππv a generator of
the maximal ideal Rv−R×v of the local ring Rv, when v is nonarchimedean.
The field Rv/(πππv) is finite, of cardinality qv and residual characteristic pv.

The quotient space A×/F× is called the idèle class group and is denoted
by CF . When F is a local field put CF = F×. For more on valuations,
adèle, idèles, see, e.g., Platonov-Rapinchuk [PR].

Class Field Theory can be stated as providing a bijection between the
set of characters χ of finite order of the profinite Galois group Gal(F/F ) of
F (F denotes a separable algebraic closure of F ), and the set of characters
π of finite order of CF .

When F is global, the bijection is defined as follows.
The decomposition group Dv of v, which consists of the g in Gal(F/F )

which fix an extension v of v to F , is isomorphic to Gal(F v/Fv). (In factDv

depends on v. Replacing v by v′ leads to a subgroup Dv′ conjugate to Dv.
Thus Dv is determined by v only up to conjugacy). Its inertia subgroup
Iv consists of the g ∈ Dv which induce the identity on Rv modulo its
maximal ideal. The quotient group Dv/Iv is Gal(Fqv/Fqv ). Any element
of Dv which maps to the generator x 7→ xqv of the Galois group of Fqv is
called a Frobenius at v, denoted Frv. Now χ is unramified at almost all v,
which means that its restriction to Dv is trivial on Iv. It is then determined
by its value χ(Frv) at Frv. Chebotarev’s density theorem asserts that χ is
uniquely determined by χ(Frv) at almost all v.

On the other hand, the character π of A× is the product ⊗vπv, where
πv is the restriction of π to F×v (F×v is embedded in A× as (xw), xw = 1 if
w 6= v). Since π is continuous, almost all components πv are unramified,
namely trivial on R×v . Thus they are determined by their value πv(πππv) at
the generator πππv of the maximal ideal Rv − R×v in the local ring Rv. By
the Chinese Remainder Theorem F× ·

∏
v/∈S F

×
v is dense in A×. Hence the

character π of A×/F× is uniquely determined by πv(πππv) for almost all v.
The bijection of global Class Field Theory is χ ↔ π if χ(Frv) = π(πππv)

for almost all v.
The bijection of local class field theory can be derived from this on

embedding a local situation in a global one, thus starting from χv or πv
one can construct global χ and π with components χv and πv at v, when
χv or πv are ramified.
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In fact, CFT provides a homomorphism CF → Gal(F/F )ab, named
the reciprocity law, where the maximal abelian quotient Gal(F/F )ab of
Gal(F/F ) is the inverse limit of Gal(E/F ) over all abelian extensions E
of F in F (if G is a topological group, Gab is its quotient by the closure
Gc of its commutator subgroup).

However, in this form the statement is unsatisfactory, as it applies only
to characters of finite order, and indeed these are all the continuous char-
acters of the compact, profinite group Gal(F/F ). However A×/F× is not
compact, and has characters of infinite order, e.g. x 7→ ‖x‖ =

∏
v |xv|v. To

extend CFT to characters of CF of any order, Weil introduced the group
WF that we describe next, following Deligne [D2] and Tate [Tt].

To introduce Weil groups, note that a Weil datum for F/F , F local
or global and F a separable algebraic closure, is a triple (WF , ϕ, {rE}).
Here WF is a topological group and ϕ : WF → Gal(F/F ) is a continuous
homomorphism with dense image; E ranges over all finite extensions of F
in F . Put WE = ϕ−1(Gal(F/E)). It is open in WF for each E since ϕ is
continuous and {Gal(F/E)}E makes a basis of the topology of Gal(F/F ).
As Imϕ is dense in Gal(F/F ), ϕ induces a bijection of homogeneous spaces

WF /WE
∼→ Gal(F/F )/Gal(F/E) ' HomF (E,F )

for each E, and a group isomorphism WF /WE
∼→ Gal(E/F ) when E/F is

Galois. The rE : CE
∼→W ab

E are isomorphisms. A Weil datum is called a
Weil group if

(W1) For each E, the composition CE

rE∼→ W ab
E

ϕ→Gal(F/E)ab is the
reciprocity law homomorphism of CFT.

(W2) For each w ∈WF and any E, commutative is the square

CE
rE //

ϕ(w)

��

W ab
E

Int(w)

��
Cϕ(w)E rϕ(w)E

// W ab
ϕ(w)E .
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(W3) If E′ ⊂ E, commutative is the square

CE′
rE′ //

E′⊂E
��

W ab
E′

tr

��
CE rE

// W ab
E .

The transfer map on the right is defined as follows. Suppose H is a closed
subgroup of finite index in a topological group G, s : H\G→ G a section.
For any g ∈ G, x ∈ H\G, define hg,x ∈ H by s(x)g = hg,xs(xg), and
tr(gGc) =

∏
x∈H\G hg,x(modHc). Then tr : Gab → Hab is a homomor-

phism.
(W4) Put WE/F for WF /W

c
E . The natural map WF → lim

←−
WE/F is an

isomorphism of topological groups.
It follows that if (WF , ϕ, {rE}) is a Weil group for F/F and E is a

finite extension of F in F , then (WE , ϕ|WE , {rE1}E1⊃E) is a Weil group
for F/E. We usually abbreviate the triple to WF . Note that via rE , the
norm NE/E1 : CE → CE1 (for F ⊂ E1 ⊂ E) becomes the map W ab

E →W ab
E1

induced by the inclusion WE ⊂WE1 . Note also the exactness of

1→ CE →WE/F → Gal(E/F )→ 1

whenever E/F is a Galois extension.
When F is local archimedean, if F = C we take WF = C

×, ϕ : C× →
{1}, rF = id.

If F = R we take WR to be the subgroup C× ∪ jC× of H×, where H is
the Hamiltonian quaternions. It is 〈z, j; z ∈ C×, j2 = −1, jz = zj〉 where
z is the complex conjugate of z. Then ϕ : WR → Gal(C/R) takes C× to
1 and jC× to the nontrivial element in Gal(C/R). Further rC = 1 and
rR : R× → W ab

R
is x 7→

√
xW c

R
if x > 0, and −1 7→ jW c

R
, where W c

R
is the

unit circle C1 = {z/z; z ∈ C×} = kerNC/R. The norm map N : H× → R
×
>0

induces a norm z1 + jz2 7→ z1z1 + z2z2 on WR.
When F is local nonarchimedean, for each finite extension E of F in F

let kE = RE/(πππE) be the residual field of E and qE its cardinality. Put
k = ∪EkE and k = kF . Then

1→ IF → Gal(F/F )→ Gal(k/k)→ 0,
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where IF is the inertia subgroup, consisting of the σ ∈ Gal(F/F ) fixing
k. The Galois group Gal(k/k) is the profinite group Ẑ = lim

←
Z/nZ, topo-

logically generated by x 7→ xqF . Any element of Gal(F/F ) which maps
to this generator is called Frobenius and denoted by FrF . Then WF is the
dense subgroup of Gal(F/F ) generated by the Frobenii. Thus the sequence
1→ IF →WF → Z→ 1 is exact. The subgroup IF is a profinite subgroup
of Gal(F/F ), and open in WF , making WF a topological group. Then
ϕ : WF → Gal(F/F ) is the inclusion and rE : E× → W ab

E are the reci-
procity law homomorphisms, rE(a) acts as x 7→ x|a|E on k, the valuation
being normalized by |πππE |E = q−1

E .
When F is a global function field the situation is similar to the previous

case, with “residual field” replaced by “constant field”, “inertia group IF ”
by “geometric Galois group Gal(F/Fk)”, and the absolute value |a|E of
the idèle class a = (av) ∈ CE is

∏
v |av|v.

When F is a number field Weil gave an abstract, cohomological con-
struction of WF , and asked for a natural construction. He showed that
ϕ : WF → Gal(F/F ) is onto. Its kernel is the connected component of the
identity in WF .

The isomorphism rF : CF
∼−→ W ab

F and the absolute value CF → R
×
>0,

x = (xv) 7→ |x|F =
∏
v |xv|v, define the norm WF → R

×
>0, w 7→ |w|.

Since W ab
E ⊂ W ab

F corresponds via rE and rF to NE/F : CE → CF and
|NE/Fa|F = |a|E , the restriction of WF → R

×
>0 to WE coincides with the

norm WE → R
×
>0, and we write simply |w| instead of |w|F . The kernel W 1

F

of w 7→ |w| is compact. The image of w 7→ |w| is qZF and WF is W 1
F o Z

in the nonarchimedean and function field cases, while in the archimedean
and number field cases the image is R×>0 and WF is W 1

F × R
×
>0.

Finally there are commutative squares of local-to-global maps, for each
v,

WFv −→ Gal(F v/Fv)
↓ ↓
WF −→ Gal(F/F ).

Class Field Theory, which asserts that W ab
F ' CF , can then be phrased

as an isomorphism between the set of continuous, complex valued charac-
ters of WF , and the set of continuous, complex valued characters of CF (=
A
×/F× globally, F× locally). One is interested in all finite dimensional
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(continuous, over C) representations of the Weil group WF , as by the Tan-
nakian formalism these determine WF itself as the “motivic Galois group”
of their category. The hypothetical reciprocity law would associate to
an irreducible n-dimensional representation λ : WF → GL(n,C) a cuspidal
representation π of GL(n,A) if F is global and of GL(n, F ) if F is local, and
to ⊕ri=1λi the representation IP (π1, . . . , πr) normalizedly induced from the
cuspidal representation π1⊗· · ·⊗πr of the parabolic P (trivial on its unipo-
tent radical) of type (dimλ1, . . . ,dimλr), where λi 7→ πi. We postpone
the explanation of the new terms, but note that this new correspondence
is defined similarly to the case of CFT, which is that of n = 1. The local
analogue has recently been proven (by Harris-Taylor [HT], Henniart [He])
in the nonarchimedean case, and by Lafforgue [Lf] in the function field
case.

Once the connection between n-dimensional representations of WF and
admissible (locally) or automorphic (globally) representations is accepted,
one would like to include all admissible and automorphic representations.
For that the group WF has to be replaced by a bigger group, which is
the Weil-Deligne group WF × SU(2,R), an extension of WF by a com-
pact group (see [D2], [Tt], Kazhdan-Lusztig [KL], and Kottwitz [Ko2],
§12) when F is nonarchimedean (when F is archimedean the group re-
mains WF ). This is necessary for inclusion of the square integrable but
noncuspidal representations of GL(n, F ) in the reciprocity law. The rep-
resentations λ of WF × SU(2,R) of interest are analytic in the second
variable, thus extend to SL(2,C). We embed WF in WF × SL(2,C) by
w 7→ w × diag(|w|1/2, |w|−1/2), where |.| : WF → F× → C

× is the compo-
sition of the usual absolute value with W ab

F ' F×.

For example, the Steinberg representation of GL(n, F ) is parametrized
by the homomorphism λ which is trivial on WF while its restriction to
SL(2,C) is the irreducible n-dimensional representation Symn−1; it maps

diag(a, a−1) to diag(a(n−1)/2, a(n−3)/2, . . . , a−(n−1)/2) and
(

1 1

0 1

)
to the

regular unipotent matrix exp((δ(i,i+1))). The nontempered trivial repre-
sentation of GL(n, F ) is the quotient of the normalizedly induced rep-
resentation I(µ1, . . . , µn) of GL(n, F ), with µi = ν

n+1
2 −i, ν(x) = |x|,

while the square integrable Steinberg is a subrepresentation. The quo-
tient is parametrized by λ trivial on the second factor, SU(2,R), and with
λ(w) = diag(µ1(w), . . . , µn(w)), w ∈WF .
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If the reciprocity law holds, the category of the representations π should
be Tannakian, with addition π1 � · · · � πr being normalized induction
IP (π1, . . . , πr), and multiplication π1� · · ·�πr, and fiber functor. At least
when considering only those representations formed by twisting tempered
representations, and assuming the Ramanujan conjecture (“cuspidal rep-
resentations of GL(n,A) are tempered, i.e. all their components are tem-
pered”), if the category is Tannakian, its motivic Galois group is expected
to be the correct substitute for WF , for which the reciprocity law holds.
This hypothetical group is denoted LF , named the “Langlands group”. We
often write WF below for what would one day be LF . See Arthur [A5] for
a proposed construction.

2. Reductive Groups

Since progress on the global reciprocity law for GL(n) is not expected
soon, one looks for a generalization to the context of any reductive
connected F -group G. This is not a generalization for its own sake, as
it leads to two practical developments. The first is the theory of liftings
of representations of one group to another. Reflecting simple relations of
representations of Galois or Weil groups, one is led to deep relations of
automorphic and admissible representations on different groups.

The second is the use of Shimura varieties (see [D5]) to actually prove
parts of the global reciprocity law for groups which define Shimura va-
rieties (symplectic, orthogonal and unitary groups, but not GL(n) and
its inner forms if n > 2), and for “cohomological” representations, whose
components at the archimedean places are discrete series or nontempered
representations with cohomology 6= 0.

The reciprocity law for G is stated in terms of the Langlands dual group
LG = ĜoWF , where Ĝ is the connected component of the identity of LG,
a complex group, and WF acts via its image in Gal(F/F ). The law relates
homomorphisms λ : WF → LG whose composition with the projection to
WF is the identity, with admissible and automorphic representations of
G(F ) or G(A), in fact with packets of such representations. It was proven
by Langlands [L7] for archimedean local fields, as part of his classification
of admissible representations of real reductive connected groups, and for
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tori in [L8]. Globally it is compatible with the theory of Eisenstein series
[L3], [MW2]. For unramified representations of a p-adic group it coincides
with the theory of the Satake transform, and for representations with a
nonzero Iwahori fixed vector it was proven by Kazhdan and Lusztig [KL].
These results, and those on liftings and cohomology of Shimura varieties,
in addition to the local and function field results for GL(n), give some hope
that the reciprocity law is indeed valid. Of course, a final form of this law
will be stated with LF replacing the Weil group WF , once LF is defined.

We proceed to review the definition of the connected dual group
Ĝ and the L-group LG, following Langlands [L1], Borel [Bo1], Kottwitz
[Ko2], §1.

Books on linear algebraic groups include Borel [Bo2], Humphreys [Hu],
Springer [Sp].

Associated with a torus T defined over F is the characters lattice X∗(T )
= Hom(T,Gm) and the lattice X∗(T ) = Hom(Gm, T ) of 1-parameter sub-
groups, or cocharacters. These are free abelian groups, dual in the pairing

〈., .〉 : X∗(T )×X∗(T )→ Z = Hom(Gm,Gm).

The connected dual group of T is the complex torus T̂ = Hom(X∗(T ),C×).
Then X∗(T̂ ) = X∗(T ), and by duality X∗(T̂ ) = X∗(T ). Thus T 7→ T̂

interchanges X∗ and X∗. As T is defined over F , Gal(F/F ) acts on X∗(T ),
hence on T̂ . An action of Gal(F/F ) on T̂ , or LT = T̂ oWF , determines T
as an F -torus (up to isomorphism), since the F -isomorphism class of T is
determined by the Gal(F/F )-module X∗(T )(= X∗(T̂ )). The Gal(F/F )-
action is trivial iff T is an F -split torus.

Let X, X∨ be free Z-modules of finite rank, dual in a Z-valued pairing
< ., . >. Suppose ∇ ⊂ X, ∇∨ ⊂ X∨ are finite subsets and α 7→ α∨,
∇ → ∇∨, is a bijection with < α,α∨ > = 2. The 4-tuple (X,∇, X∨,∇∨)
is a root datum if the reflection sα(x) = x − 〈x, α∨〉α (x ∈ X) maps ∇
to itself, and sα∨(y) = y − 〈α, y〉α∨ (y ∈ X∨) maps ∇∨ to itself. Then
∇ is the set of roots and ∇∨ the set of coroots. The root datum is called
reduced if α and nα in ∇ (n ∈ Z) implies that n = ±1. The set ∇
defines a root system in a subspace of the the vector space X ⊗ R. Thus
one has the notions of positive roots and simple roots. If ∆ = {α} is a
set of simple roots, put ∆∨ = {α∨}. The 4-tuple Ψ = (X,∆, X∨,∆∨)
is called a based root datum (it determines the root datum). The dual
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based root datum is Ψ∨ = (X∨,∆∨, X,∆), and the dual root datum is
(X∨,∇∨, X,∇).

A Borel pair (B, T ) of a reductive connected F -group G is a maximal
torus T of G and a Borel subgroup B of G containing T , both defined over
F . If G has a Borel pair defined over F , it is called quasisplit. It is split if
there is such a pair with T split over F . Any pair (B, T ) defines a reduced
root datum Ψ(G,B, T ) = (X∗(T ),∆, X∗(T ),∆∨). Here ∆ = ∆(B, T ) ⊂
X∗(T ) is the set of simple roots of T in B, and ∆∨ = ∆∨(B, T ) ⊂ X∗(T ) is
the set of coroots dual to ∆. Any two Borel pairs are conjugate under the
adjoint group Gad = G/Z(G) of G (here Z(G) denotes the center of G).
If Int(g) (x 7→ gxg−1) maps (B, T ) to (B′, T ′), it defines an isomorphism
Ψ(G,B, T ) ∼→ Ψ(G,B′, T ′), independent of g. Using this, we identify the
based root data, to get Ψ(G). Then Aut(G) acts on Ψ(G), with Gad acting
trivially.

A connected dual group for G is a complex connected reductive group
Ĝ with an isomorphism Ψ(Ĝ) ∼→ Ψ(G)∨.

The map G 7→ Ψ(G) defines a bijection from the set of F -isomorphism
classes of connected reductive groups G to the set of isomorphism classes
of reduced based root data Ψ. An isomorphism G1

∼→ G2 determines an
isomorphism Ψ(G1) ∼→ Ψ(G2), which in turn determines G1

∼→ G2 up to
an inner automorphism.

This classification theorem implies that a connected dual group Ĝ of G
exists and is unique up to an inner automorphism. It depends only on the
F -isomorphism class of G.

If (B, T ) is a Borel pair for G and (B̂, Ŝ) is a Borel pair for Ĝ, there
exists a unique isomorphism T̂ (defined from T )→ Ŝ inducing the chosen
isomorphism

Ψ(Ĝ) = (X∗(Ŝ), ∆̂, X∗(Ŝ), ∆̂∨) ∼→

Ψ(G)∨ = (X∗(T ) = X∗(T̂ ),∆∨, X∗(T ) = X∗(T̂ ),∆).

If f : G → G′ is a normal morphism (its image is a normal subgroup),
and (B, T ) is a Borel pair in G, there exists a Borel pair (B′, T ′) in G′ with
f(B) ⊂ B′, f(T ) ⊂ T ′. Hence there is a map Ψ(f) : Ψ(G)→ Ψ(G′) and a
dual map Ψ∨(f) : Ψ(G′)∨ → Ψ(G)∨, and so a map f̂ : Ĝ′ → Ĝ. Any other
such map has the form Int(t) · f̂ · Int(t′) (t ∈ T̂ , t′ ∈ T̂ ′), mapping T̂ ′ to T̂ ,
B̂′ to B̂.
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The simplest example is that of G = GL(n). Then X∗(T ) = Z
n has the

standard basis {ei; 1 ≤ i ≤ n}, and X∗(T ) = Z
n the dual basis {e∨i (= ei)}.

Also ∆ = {ei − ei+1; 1 ≤ i < n} and ∆∨ = {e∨i − e∨i+1; 1 ≤ i < n}. Then
Ψ(G) = Ψ(G)∨ and Ĝ = GL(n,C).

A more complicated example is G = PGSp(2) = {g ∈ GL(4), tgJg =

λJ}/Gm, J =
(

0 w

−w 0

)
, w =

(
0 1

1 0

)
, the projective symplectic group of

similitudes of rank 2. With the form J , a Borel subgroup B is the upper
triangular matrices, and a maximal torus T is the diagonal subgroup. The
simple roots in X∗(T ) = Z

2 are α = e1 − e2, β = 2e2, and the other
positive roots are α+β = e1 +e2, 2α+β = 2e1. Then ∆∨ = {α∨ = e1−e2,
β∨ = e2}. The isomorphism from the lattice

X∗(T̂ ) = {(x, y, z, t) mod(n,m,m, n);x, y, z, t ∈ Z},

where (x, y, z, t) takes diag(a, b, b−1, a−1) in T̂ to ax−tby−z, to the lattice

X∗(T ) = {(α, β, γ, δ) mod(ε, ε, ε, ε);α+ δ = β + γ, α, β, γ, δ, ε ∈ Z},

is given by (x, y, z, t) 7→ (x+ y, x+ z, y + t, z + t), with inverse

ι : (α, β, γ, δ) 7→ (α− γ, α− β, 0, 0).

The isomorphism ι∗ : X∗(T̂ ) ∼→ X∗(T ) dual to ι : X∗(T ) ∼→ X∗(T̂ ) is
defined by 〈ι(u), v〉 = 〈u, ι∗(v)〉. Thus v = (a, b,−b,−a) ∈ X∗(T̂ ) maps to
the character

ι∗(v) : diag(α, β, γ, δ) 7→ (α/γ)a(α/β)b

of T . The character η : diag(α, β, γ, δ) 7→ µ1(α/γ)µ2(α/β) of T corre-
sponds to the homomorphism

z(∈W ab
F ) 7→ diag(µ1(z), µ2(z), µ2(z)−1, µ1(z)−1) (∈ T̂ ).

By an isogeny we mean a surjective homomorphism f : G → G′ of
algebraic groups whose kernel is finite and central (in G). The finite kernel
is always central if char F = 0, and if char F > 0 our f is usually named
central isogeny.
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A connected (linear algebraic) group is called reductive if its unipo-
tent radical (the maximal connected unipotent normal subgroup) is trivial,
and semisimple if its radical (replace “unipotent” by “solvable” in the def-
inition of the unipotent radical) is trivial. A semisimple group G is called
simply connected if every isogeny f : H → G, where H is connected reduc-
tive (as is G), is an isomorphism, and adjoint if every such f : G→ H is an
isomorphism. The adjoint group of a reductive G is Gad = G/Z(G), where
Z(G) is the center of G. This Gad is adjoint. The derived group Gder

of a reductive G (the closure of the subgroup generated by commutators
[x, y] = xyx−1y−1) is semisimple, denoted also by Gss.

Let G be semisimple and Ψ(G) = (X,∆, X∨,∆∨), ∇ the root system
with basis ∆ and ∇∨ the root system with basis ∆∨. Then G is simply
connected iff the lattice of weights P (∇) ⊂ X ⊗Q of ∇ is X, and adjoint
iff the group Q(∇) generated by ∇ in X is X. Since

P (∇) = {Λ ∈ X ⊗Q; 〈Λ,∇∨〉 ⊂ Z}

and
P (∇∨) = {Λ ∈ X∨ ⊗Q; 〈Λ,∇〉 ∈ Z},

G is simply connected iff Ĝ is adjoint, G is adjoint iff Ĝ is simply connected.
A simple group G (one which has no nontrivial connected normal sub-

group) is characterized – up to isogeny – by its type An, . . . , G2. The map
Ψ(G)→ Ψ(G)∨ interchanges Bn with Cn, and fixes all other types. Thus
the connected dual of a simple group is a simple group of the same type
unless G is of type Bn or Cn, and duality changes simply connected to ad-
joint. The classical simply connected simple groups and their duals are in
type An : SL(n), PGL(n,C); Bn : Spin(2n+1), PGSp(2n,C); Cn : Sp(2n),
SO(2n+ 1,C); Dn : Spin(2n), PO(2n,C).

The dual group, or L-group, LG = Ĝ oWF , is the semidirect product
of the connected dual group Ĝ with the Weil group WF , which acts on Ĝ

via its image (by ϕ) in Gal(F/F ).
To explain how Gal(F/F ) acts, note that we have a split exact sequence

1→ InnG→ AutG→ OutG→ 1,

where InnG = IntG ' Gad is the subgroup of inner automorphisms of G,
and the group OutG = AutG/ InnG of outer automorphisms is isomorphic
to the group Aut Ψ(G) = Aut Ψ(Ĝ) of automorphisms of Ψ(G) (or Ψ(Ĝ)).
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A splitting for Ĝ is a triple Σ = (B̂, T̂ , {Xα;α ∈ ∆̂}), where Xα is an α-
root vector in Lie Ĝ for each simple root α of T̂ in B̂. The set of splittings
is a principal homogeneous space for (the action of) Gad (by conjugation).
A choice of a splitting Σ determines a splitting Aut Ψ(Ĝ)→ AutG of our
exact sequence: an element of Aut Ψ(Ĝ) maps to the unique automorphism
of G fixing Σ.

The action of Gal(F/F ) on Ψ(G)∨ = Ψ(Ĝ) then lifts to an action on Ĝ
which fixes the fixed splitting Σ. The L-group LG = ĜoWF depends on
the choice of Σ, but a different choice gives rise to an isomorphic L-group.

If v is a place of the number field F there is a naturalWF -conjugacy class
of embeddings WFv ↪→ WF , hence such a class of embeddings LG/Fv ↪→
LG/F which restrict to the identity Ĝ→ Ĝ.

3. Functoriality

The purpose of the principle of functoriality is to parametrize the admissi-
ble representations of G(F ) in the local case, and automorphic representa-
tions of G(A) in the global case, in terms of L-parameters. These are the
(continuous) homomorphisms λ : LF → LG = Ĝ oWF , where LF is WF

if F is archimedean and WF × SU(2,R) if F is nonarchimedean, such that
λ followed by the projection to WF is the natural map LF →WF , pr

Ĝ
◦λ

is complex analytic if F is archimedean, and pr
Ĝ

(λ(w)) is semisimple for
all w in LF .

Two parameters λ, λ′ are called equivalent if z · λ′ = Int(g)λ for some g
in Ĝ and z : LF → Z(Ĝ) such that the class of the 1-cocycle z in H1(LF ,
Z(Ĝ)) is locally trivial.

If Gal(F/F ) acts trivially on the center Z(Ĝ) of Ĝ then

H1(LF , Z(Ĝ)) = Hom(LF , Z(Ĝ)).

In this case Chebotarev density theorem for Lab
F = W ab

F implies that any
locally trivial element of H1(LF , Z(Ĝ)) is trivial. Thus λ(w) = φ(w) ×
δ(w) where δ denotes the projection LF → WF followed by ϕ : WF →
Gal(F/F ), and φ is a (continuous) 1-cocycle of LF in Ĝ. The cocycle
λ′(w) = φ′(w) × δ(w) is equivalent to λ iff φ and φ′ are cohomologous.
Hence the set of equivalence classes, denoted Λ(G/F ), is the quotient of the



3. Functoriality 281

group H1(LF , Ĝ) of (continuous) cohomology classes by ker[H1(LF , Z(Ĝ))
→ ⊕vH1(LFv , Z(Ĝ))].

Functoriality for tori T over F concerns then (continuous) homo-
morphisms λ : WF → LT = T̂ oWF with prWF

◦λ = idWF
, thus λ which

factorize through the projection LF → WF . Langlands [L8] shows that
when F is local, H1(WF , T̂ ) is canonically isomorphic to the group of
characters of T (F ) = HomGal(E/F )(X∗(T ), E×), where E is a finite Galois
extension of F over which T splits. If F is global the group of characters of
T (AF )/T (F ) is the quotient of H1(WF , T̂ ) by the kernel of the localization
maps

ker[H1(WF , T̂ )→ ⊕vH1(WFv , T̂ )].

Let π : G(F ) → AutV be a representation (which simply means a
homomorphism) of the group G(F ) of F -points of the connected reduc-
tive F -group G, on a complex vector space V . In other words, V is a
G(F )-module. If F is a nonarchimedean local field, π is called algebraic
(Bernstein-Zelevinsky [BZ1]) or smooth if for each vector v in V there is an
open subgroup U of G(F ) which fixes v (thus π(U)v = v). Such π is called
admissible if moreover, for every open subgroup U of G(F ) the space V U

of U -fixed vectors in V is finite dimensional. Admissible representations
(π1, V1) and (π2, V2) are equivalent if there exists a vector space isomor-
phism A : V1 → V2 intertwining π1 and π2, thus A(π1(g)v) = π2(g)Av.

In the next few paragraphs we abbreviate G for G(F ) (same for a par-
abolic subgroup P , its unipotent radical N , its Levi factor M), where F
is a local field. Put δP (p) = |det(Ad(p)|LieN)| for p ∈ P .

A useful construction in module theory is that of induction. Let (τ,W )
be an admissible M -module. Denote by π = I(τ) = I(τ ;G,P ) the space
of all functions f : G → W with f(nmg) = δ

1/2
P (m)τ(m)f(g) (m ∈ M ,

n ∈ N , g ∈ G). It is viewed as a G-module by (π(g)f)(h) = f(hg).
Another useful construction is that of the module πN of N -coinvariants

of an admissible G-module π. Thus if V denotes the space of π, put
′VN for V/〈π(n)v − v;n ∈ N, v ∈ V 〉. Since the Levi factor M = P/N

of P normalizes N , ′VN is an M -module, with action ′πN . Put πN =
δ
−1/2
P

′πN . The functor π 7→ πN of N -coinvariants is exact and left-adjoint
to the exact functor of induction. Indeed, this is the content of Frobenius
reciprocity ([BZ1], 3.13): HomM (πN , τ) = HomG(π, Ind(τ ;G,P )). Let
N be the unipotent radical of the parabolic subgroup P opposite to P
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(thus P ∩ P = M). Unpublished lecture notes of J. Bernstein show that
the functor π 7→ πN is right adjoint to induction τ 7→ I(τ ;G,P ), namely
HomG(Ind(τ ;G,P ), π) = HomM (τ, πN ).

An irreducible admissible representation π is called cuspidal if πN is zero
for all proper F -parabolic subgroups P of G. Related notions are of square
integrability and temperedness. Thus π is square integrable, or discrete se-
ries, if its central exponents decay. A π is tempered if its central exponents
are bounded. A cuspidal π is square integrable. A square integrable π
is tempered. Cuspidal π exist only for p-adic F . Langlands classification
parametrizes all irreducible π as unique quotients of induced I(τνs;G,P )
where τ is tempered on M and νs is a character in the “positive cone” (see
[L7], [BW], [Si]). As for central exponents, they are the central characters
of the irreducibles in the πN for proper P . Decay means that these expo-
nents are strictly less than 1 on the positive cone (defined by the positive
roots being positive on the center of M), and bounded means that these
exponents are ≤ 1 there. All three definitions can be stated in terms of
matrix coefficients of π.

Harish-Chandra used the term “supercuspidal” for what is termed in
[BZ1] and above “cuspidal”. He used the term “cuspidal” for what is
currently named “square integrable” or “discrete series”.

If F is R or C, let K be a maximal compact subgroup of G(F ). By an
“admissible representation of G(F )” we mean a (g,K)-module V , thus
a complex vector space V on which both K, and the Lie algebra g of
G(F ) act. The action is denoted π. The action of k obtained from the
differential of the action of K coincides with the restriction to k of the
action of g, π(Ad(k)X) = π(k)π(X)π(k−1) (k ∈ K, X ∈ g). As a K-
module, V decomposes as a direct sum of irreducible representations of
K, each occurring with finite multiplicities. A (g, K)-module (π1, V1) is
equivalent to (π2, V2) if there is an isomorphism V1 → V2 which intertwines
the actions of both K and g.

Denote by Π(G(F )) the set of equivalence classes of irreducible admis-
sible representations of G(F ), namely (g,K)-modules when F is R or C.

The local Langlands conjecture, or the local Principle of Functori-
ality, predicts that there is a partition of the set Π(G/F ) of equivalence
classes of irreducible admissible representations of G(F ) into finite sets,
named (L-)packets, which are parametrized by the set Λ(G/F ) of admis-
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sible homomorphisms λ of LF into LG, the “L-parameters”.
When F is R or C the partition and parametrization were defined by

Langlands [L7].
When F is p-adic, a packet for G = GL(n, F ) consists of a single irre-

ducible, and the parametrization Π(GL(n)/F ) = Λ(GL(n)/F ) is defined
by means of (identity of) L- and ε- (or γ-) factors. The parametrization
for GL(n, F ) has recently been proven by Harris-Taylor [HT] and Henniart
[He].

Packets for G = SL(n, F ) can be defined to be the set of irreducibles
in the restriction to SL(n, F ) of an irreducible of GL(n, F ). This is done
for G = SL(2, F ) in Labesse-Langlands [LL]. Alternatively, packets for
G(F ) = SL(n, F ) can be defined to be the Gad(F )-orbit πg (where πg(h) =
π(g−1hg)) of an irreducible π, as g ranges over Gad(F ) = PGL(n, F ).

Other cases where packets were introduced are those of the unitary
group U(3, E/F ) in 3-variables ([F4]) and the projective symplectic group
of similitudes of rank 2 ([F6]). Although the Gad(F )-orbit of an irreducible
representation is contained in a packet, in both cases there are packets
which consist of several orbits. In both cases the packets are defined by
proving liftings to representations of GL(n, F ) for a suitable n, by means
of the trace formula and character relations. Such an intrinsic definition
is given in [F3] for SL(2).

There are several compatibility requirements on the packets Πλ and
their parameters λ. Some are:

(1) One element of Πλ is square integrable modulo the center Z(G)(F )
of G(F ) iff all elements of Πλ have this property, iff λ(LF ) is not contained
in any proper Levi subgroup of LG.

(2) One element of Πλ is (essentially) tempered iff all elements are, iff
λ(LF ) is bounded (modulo the center Z(Ĝ) of Ĝ, resp.).

A representation π is “essentially ∗” if its product with some character
is ∗.

(3) A packet should contain at most one unramified irreducible, and be
parametrized in this case by an unramified parameter (which is trivial on
the factor SU(2,R) and the inertia subgroup IF of WF ), see below.

The parametrization is to be compatible with central characters. We
proceed to explain this (for details see [L1]).
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Given a parameter λ : LF → LG, we define a character of the center
Z(G)(F ) of G(F ) as follows. Suppose Z is the maximal torus in Z(G).
The normal homomorphism Z ↪→ G defines a surjection LG→ LZ, hence
a map Λ(G/F ) → Λ(Z/F ). Duality for tori associates to λ ∈ Λ(G/F ) a
character ωλ of Z(F ). If Z(G) is a torus, this is the desired character.
If not, choose a connected reductive F -group G1 generated by G and a
central torus, whose center is a torus. The normal homomorphism G ↪→ G1

defines a surjection Λ(G1/F )→ Λ(G/F ). We get a character of the center
of G1(F ), and by restriction one of the center of G(F ), independent of the
choice of G1.

Given a parameter ζ : LF → Z(Ĝ) o WF , equivalently ζ ∈ H1(LF ,
Z(Ĝ)), where Z(Ĝ) is the center of Ĝ, we define a character ξζ of G(F )
as follows. Let H be a z-extension of G (see [Ko1]), namely an extension
1 → D → H → G → 1 of G by a quasitrivial torus D (product of tori
RE/FGm, obtained by restriction of scalars from Gm), H and D are defined
over F and the derived group of H is simply connected, equal to Gsc. Then
the commutative diagram

Gsc u−→ G
↓ ‖

1→ D → H −→ G → 1
‖ ↓
D

v−→ H/Gsc

has as dual the commutative diagram

(H/Gsc)∧ v̂−→ D̂
↓ ‖

1→ Ĝ −→ Ĥ −→ D̂ −→ 1
‖ ↓

Ĝ
û−→ (Gsc)∧

As (Gsc)∧ = Ĝad, Z(Ĝ) = ker û. A diagram chase implies that Z(Ĝ) =
ker v̂. Hence there is a map

H1(LF , Z(Ĝ))→ ker[H1(LF , (H/Gsc)∧)→ H1(LF , D̂)].

Thus given ζ ∈ H1(LF , Z(Ĝ)) there is a character σζ of (H/Gsc)(F ) which
is trivial on D(F ), hence a character ξζ of G(F ) = H(F )/D(F ). It can be
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shown that ξζ is independent of the choice of D. We have

ωζλ = ξζωλ, ζ ∈ H1(LF , Z(Ĝ)), λ ∈ Λ(G/F ).

Further conditions on λ 7→ Πλ, Λ(G/F )→ Π(G/F ), are:
(1) The central character ωπ of π ∈ Πλ is ωλ.
(2) If λ′ = ζλ [λ′, λ′ ∈ Λ(G/F ), ζ ∈ H1(LF , Z(Ĝ))], then Πλ′ = {ξζπ;
π ∈ Πλ}.

Note that (ξζ · π)(g) = ξζ(g)π(g).

4. Unramified Case

Local functoriality for tori leads to functoriality for unramified rep-
resentations. This is necessary for the global theory, as each irreducible
admissible representation π of G(A) decomposes as the restricted product
⊗πv of representations πv of G(Fv) over all places v of F , where πv is un-
ramified for almost all v. Thus assume that F is local p-adic with residual
field Fq. Suppose G is (connected reductive) unramified over F , namely G
is quasisplit over F and split over an unramified extension of F . Then the
inertia subgroup IF of WF acts trivially on Ĝ, hence Ĝo 〈Fr〉 is defined.

An L-parameter λ is called unramified if it reduces to 〈Fr〉 → Ĝo 〈Fr〉.
It is determined by λ(Fr) = t × Fr where t is semisimple in Ĝ. The set
Λur(G/F ) of equivalence classes of unramified L-parameters is the set of
Ĝ-conjugacy classes in LG of elements to Fr, where t is semisimple. This
set is naturally bijected with the set Πur(G/F ) of equivalence classes of
unramified representations π of G(F ) (namely the irreducible admissible
representations (π, V ) of G(F ) which have a nonzero K-fixed vector, where
K is a fixed hyperspecial ([Ti]) maximal compact subgroup K of G(F ).
Note that all such K are conjugate under Gad(F )).

Let us explain the isomorphism Λur(G/F ) = Πur(G/F ) when G is an
F -torus T .

There is an isomorphism

u : T (F )/T (R)→ Hom(X∗(T )Gal(F/F ),Z) = X∗(T )Gal(F/F ),

where T (R) is the maximal compact subgroup of T (F ). The isomorphism
is defined by (u(t))(χ) = ordF (χ(t)).
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Here ordF is the map F× → Z, valF (xπππn) = n if x is in the group R×

of units (|x| = 1).
The surjectivity of u follows on using an unramified splitting field E of

T and descending using Hilbert’s theorem 90, which implies

H1(Gal(E/F ), R×E) = {1}, thus H1(Gal(E/F ), T (R)) = {1}.

Let S denote the maximal F -split torus in T . Then
X∗(S) = X∗(T )Gal(F/F ), so

Ŝ = Hom(X∗(T )Gal(F/F ),C×) = Hom(T (F )/T (R),C×) = Πur(T/F ).

The inclusion X∗(S) → X∗(T ) defines the exact sequence 1 → T̂ 1−Fr →
T̂ → Ŝ → 1. But Ŝ = T̂ /T̂ 1−Fr is T̂ o Fr / Int(T̂ ) = Λur(T/F ).

When G is an unramified reductive group, let S be a maximal F -
split torus in G, and T a maximal F -torus containing S. There is a
unique Ĝ-conjugacy class of embeddings of T̂ in Ĝ compatible with ι :
Ψ(Ĝ) ∼→Ψ(G)∨. Choose such an embedding and a Borel B̂ ⊃ T̂ such
that (B̂, T̂ ) is fixed by the Galois action. Then we get LT ↪→ LG

and a map Ŝ = Λur(T/F ) → Λur(G/F ). The Weyl group WF (T ) (=
normalizer of T (F ) in G(F ), quotient by T (F )) of T (F ) in G(F ) pre-
serves S and acts on Ŝ by duality. The map factorizes to an isomorphism
Λur(T/F )/WF (T ) = Λur(G/F ).

On the representation theoretic side there is a bijection

Πur(T/F )/WF (T ) ∼→Πur(G/F ),

χ 7→ π(χ), constructed by means of the unramified principal series I(χ)
as follows. Let B be a Borel subgroup containing T , and N its unipo-
tent radical. Then B(F ) = T (F )N(F ) and G(F ) = B(F )K. Extend
χ ∈ Πur(T/F ) to a character of B(F ) trivial on N(F ). The induced rep-
resentation I(χ) of G(F ) acts by right translation on the space of locally
constant functions f : G(F ) → C with f(nag) = δ1/2(a)χ(a)f(g) for all
a ∈ T (F ), n ∈ N(F ), g ∈ G(F ), where δ(a) = |det(Ad(a)|LieN)|. Since
G(F ) = B(F )K, I(χ) is admissible and contains a unique (up to a scalar
multiple) nonzero K-invariant vector. Hence I(χ) has a unique unramified
irreducible constituent, denoted π(χ). Every unramified irreducible repre-
sentation of G(F ) is of the form π(χ) for some unramified χ : T (F )→ C

×,



4. Unramified Case 287

and π(χ) ' π(χ′) iff χ′ = χ ◦ Int(w), w being a representative in G(F ) for
WF (T ).

The Hecke algebraH(G) ofG(F ) with respect toK is the convolution al-
gebra of compactly supported Z-valued K-biinvariant functions f on G(F ).
One has HC(G) = H(G) ⊗ C. The Satake transform f 7→ f∨, f∨(π) =
trπ(fdg) on Πur(G/F ), is a map from HC(G) to the space of functions on
the affine variety Ŝ/WF (T ), whose coordinate ring is C[X∗(S)]WF (T ). It
is an algebra isomorphism.

Let F be a global field, and G a connected reductive group over F .
A (smooth) representation π of G(A) is a vector space V which is both
a (g∞,K∞)-module (K∞ =

∏
v∈∞Kv, G∞ =

∏
v∈∞Gv, g∞ denotes the

Lie algebra of G∞, ∞ signifies the set of archimedean places of F ) and a
(smooth) G(Af )-module (each vector of V is fixed by some open subgroup
of G(Af )), such that the action of G(Af ) commutes with that of K∞ and
g∞. Let Kv be a maximal compact subgroup of G(Fv) at each place v of F ,
which is hyperspecial ([Ti]) at almost all places, and put Kf =

∏
v/∈∞Kv,

K = K∞Kf .
A representation π is called admissible if it is smooth and for each

isomorphism class γ of continuous irreducible representations of K, the
γ-isotypic component of V has finite dimension.

Every irreducible admissible representation (π, V ) ofG(A) is factorizable
as the restricted tensor product of admissible irreducible representations
(πv, Vv) of G(Fv), over all v, where πv is unramified for almost all v. Thus
we fix a nonzero Kv-fixed vector ξ0

v at each place v where πv is unramified,
and the space V of π is spanned by the products ⊗vξv, where ξv ∈ πv
for all v and ξv = ξ0

v for almost all v. We write π = ⊗vπv; the local
components πv are uniquely determined by π up to isomorphism.

Suppose Fv is nonarchimedean, and G(Fv) acts on a Hilbert space Hv

by a unitary representation πv. The space H0
v of Kv-finite vectors is stable

under the action of G(Fv). If Hv is irreducible, H0
v is admissible. Unitary

π1v, π2v are unitarily equivalent iff the admissible π0
1v, π

0
2v are equivalent.

If {Hv} is a family of Hilbert spaces, fix a unit vector xv in Hv for
almost all v. The Hilbert restricted product H = ⊗̂xvHv is a Hilbert
space with basis ⊗̂vhv, hv ∈ Pv for all v, hv = xv for almost all v, where
Pv is an orthonormal basis of Hv, including xv for almost all v. If π is a
continuous irreducible unitary Hilbert space representation of G(A) then
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there exist such representations πv of G(Fv), unramified for almost all v,
unique up to isomorphism, with π ' ⊗̂πv. For each isomorphism class γ
of continuous irreducible representations of K, the γ-isotypic component
of π has finite dimension. The space π0 of K-finite vectors in π is an
admissible irreducible G(A)-module. Then π0 = ⊗π0

v , and π0
v is isomorphic

as an admissible G(Fv)-module to the space of Kv-finite vectors of πv. For
references and further comments see Flath [Fl].

By Schur’s lemma ([BZ1]), an admissible irreducible representation πv
has a central character, ωv. Thus if Z(Fv) is the center of G(Fv), πv(zg) =
ωv(z)πv(g) for all z ∈ Z(Fv), g ∈ G(Fv). Similarly, an admissible irre-
ducible π of G(A) has central character, ω.

5. Automorphic Representations

Very few of the admissible representations π of G(A) are of number the-
oretic significance. Those which are of interest are the automorphic
representations. Let Z denote the center of G, and let ω be a unitary
character of Z(A)/Z(F ). Let L = L2

ω(G(F )Z(A)\G(A)) be the space of
smooth functions φ on G(F )\G(A) with φ(zg) = ω(z)φ(g) (z ∈ Z(A)) and∫
|φ(g)|2dg < ∞, where dg is the unique up to scalar invariant measure

on G(F )Z(A)\G(A). The completion of this space in the L2-norm is a
Hilbert space of the φ which are measurable (not smooth: right invariant
under an open subgroup of G(Af )). The space L is a G(A)-module un-
der right translation: (r(g)φ)(h) = φ(hg). Any irreducible constituent, or
subquotient, of (r, L), is called an automorphic representation.

The space L decomposes as a direct sum of irreducible representations
only when the homogeneous space G(F )Z(A)\G(A) is compact. In this
case G is called anisotropic, and all elements of G(F ) are semisimple.

In general Langlands theory of Eisenstein series [L3] decomposes L as a
direct sum of two invariant subspaces, the discrete spectrum Ld, and the
continuous spectrum Lc. The discrete spectrum is the sum of all irreducible
subspaces of L. Each irreducible summand, π, in Ld, occurs with finite
multiplicity, m(π). The continuous spectrum Lc is the direct integral of
families of representations induced from parabolic subgroups of G(A).

The discrete spectrum splits as the direct sum of the cuspidal spectrum
L0, and the residual spectrum Lr. The cuspidal spectrum consists of the
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φ in L with
∫
N(F )\N(A)

φ(ng)dn = 0 for the unipotent radical N of any
proper F -parabolic subgroup P ofG, and any g ∈ G(A). The residual spec-
trum is generated by residues of Eisenstein series associated with proper
parabolic subgroups. The irreducible constituents in Lr, named residual
representations, are quotients of properly induced representations. They
are determined in Moeglin-Waldspurger [MW1] for G = GL(n), in terms
of the divisors d of n and cuspidal representations of GL(d,A) (and the
parabolic subgroup of the type (d, . . . , d)). Cuspidal representations are
the constituents of L0. Langlands [L4] has shown that the constituents of
an induced representation I(σ) from a cuspidal representation σ = ⊗σv of
a parabolic subgroup P (A) (σ trivial on the unipotent radical N(A)) are
the ⊗vπv, where πv is a constituent of I(σv) for all v, and πv is the unique
unramified constituent of I(σv) for almost all v. Moreover, an admissible
irreducible representation π of G(A) is automorphic iff π is a constituent
of I(σ) for some P and some σ.

The global principle of functoriality relates parameters λ : LF → LG

with irreducible automorphic representations π of G(A). The relation is
such that for almost all places, where the restriction λv of λ to LFv ↪→ LF
is unramified and the component πv of π is unramified, the Ĝ-conjugacy
class λv(Frv) = t(λv)× Frv in Ĝ× 〈Frv〉 corresponds to πv = π(χv), χv in

Πur(T/Fv)/WFv (T ) = Πur(G/Fv) = Φur(G/Fv) = Φur(T/Fv)/WFv (T ).

In other words, the unramified components of λ and π correspond under
the correspondence for unramified representations. For split groups, LG
is a direct product, and the unramified λv and πv are parametrized by
semisimple conjugacy classes in Ĝ.

For the group G = GL(n) the principle can be stated as asserting that
there is a bijection between the set of n-dimensional irreducible represen-
tations λ : LF → GL(n,C), and the set of cuspidal (irreducible) represen-
tations π of GL(n,A). Here λ is uniquely determined by λv for almost all
v by the Chebotarev density theorem: the set of Frobenii at almost all v
is dense in Gal(F/F ). The cuspidal π is uniquely determined by almost
all of its unramified components, by the rigidity theorem for GL(n) ([JS]).
When the global field F is a function field, this principle was proven by
Lafforgue [Lf].

This case has as an application the (Emil) Artin conjecture, which pre-
dicts that the L-function of an irreducible nontrivial representation λ of
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Gal(F/F ) is entire. Indeed, if λ ↔ π then L(s, λ) = L(s, π), and the
L-function of a cuspidal π is entire.

Note that if λi ↔ πi(1 ≤ i ≤ k) then ⊕iλi ↔ �iπi, where �iπi indicates
the representation I(π1, . . . , πk) normalizedly induced from π1 ⊗ · · · ⊗ πk
on the parabolic subgroup P (A) of G(A) of type (dimλ, . . . ,dimλk) which
is trivial on the unipotent radical N of P (A). The normalizing factor is
δ1/2, where δ(m) = |det(Ad(m)|LieN)|.

For general reductive connected group G over a global field F , a weak
form of the principle would assert the existence of an automorphic repre-
sentation π of G(A) for each parameter λ : LF → LG, such that λv ↔ πv
for almost all v, and conversely, given such π there is a λ. The last claim,
that π defines λ, is false even for GL(n), and the group LF has to be in-
creased to LF × SL(2,R). Before we explain this, let us present a strong
form of the conjectural principle of functoriality, in terms of all places.

Let Pv be a packet of admissible irreducible representations of G(Fv)
for each place v of the global field F , such that Pv contains an unramified
representation π0

v for almost all v. The global packet P = P ({Pv}v) consists
of all G(A)-modules ⊗vπv with πv ∈ Pv for all v and πv = π0

v for almost
all v. It is the restricted product of the Pv with respect to {π0

v}v. The
global packet is called automorphic (discrete spectrum, cuspidal, . . . ) if it
contains such a representation. The example of SL(2) shows that not all
irreducibles in an automorphic packet need be automorphic.

A strong form of the principle would assert that there is a bijection
between Λ(G/F ), the set of equivalence classes of parameters λ : LF →
LG, and the set of automorphic packets P = {π} = ⊗{πv}, such that
λv ↔ {πv} for all v. Moreover it would specify which members of P = Pλ
are automorphic.

6. Residual Case

As noted above, the group LF does not carry sufficiently many param-
eters λ : LF → LG to account for all discrete spectrum, or even cuspi-
dal, automorphic representations. These λ correspond, by the Ramanujan
conjecture, to those discrete spectrum representations whose local compo-
nents are all tempered. A bigger group than LF has to be introduced to
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account for the discrete spectrum, including cuspidal, representations of
G(A) which are not tempered, in fact at almost all places. To present it,
we consider first the case of GL(n).

The discrete spectrum representations of GL(n,A) have been deter-
mined by Moeglin and Waldspurger [MW1] in terms of the divisors d of
n, and the cuspidal representations τ of GL(d,A). Denote by P the stan-
dard parabolic subgroup of GL(n) of type d = (d, d, . . . , d), and by N its
unipotent radical. Put δPv (p) = |det(Ad(p)|LieN)|v for p ∈ P (Fv). Thus

δPv (diag(g1, . . . , gm)) =
∏

1≤i≤m

|det gi|(m+1−2i)/2
v ,

where md = n, for gi ∈ GL(d, Fv). Thus

δPv = νm−1
v × νm−3

v × · · · × ν−(m−1)
v ,

where νv(g) = |det g|v. The normalizedly induced representation

I(δ1/2
Pv
τd
v ) = I(ν

m−1
2

v τv, ν
m−3

2
v τv, . . . , ν

−m−1
2

v τv)

is realized in the space of smooth functions f : G(Fv)→ Vv ⊗ · · · ⊗ Vv (Vv
is the space of τv) with

f(pg) = δPv (p)[τv(g1)⊗ · · · ⊗ τv(gm)]f(g) (g ∈ GL(n, Fv)),

where diag(g1, . . . , gm) is the Levi component of p. It has a unique quotient

J(δ1/2
Pv
τd
v ) = J(ν

m−1
2

v τv, . . . , ν
−m−1

2
v τv) when τv is generic (or tempered), by

[Z]. The discrete spectrum representations of GL(n,A) are precisely the

J(δ1/2
P τd) = J(ν

m−1
2 τ, ν

m−3
2 τ, . . . , ν−

m−1
2 τ)

= ⊗vJ(ν
m−1

2
v τv, ν

m−3
2

v τv, . . . , ν
−m−1

2
v τv) = ⊗vJ(δ1/2

Pv
τd
v )

as d ranges over the divisors of n, m = n/d, and τ range over the cuspidal
representations of GL(d,A).

If the cuspidal representations π of GL(n,A) are parametrized by the
λ : LF → LG = GL(n,C) × WF , namely n-dimensional representa-
tions λ : LF → GL(n,C), the discrete spectrum representations can be
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parametrized by the equivalence classes of the irreducible complex repre-
sentations

α : LF × SL(2,C)→ GL(n,C),

where α is the tensor product αss ⊗ αunip. Here αss : LF → GL(d,C) and
αunip : SL(2,C)→ GL(m,C) are irreducible representations with n = dm.

In particular αunip

((
1 1

0 1

))
is a regular unipotent element in GL(m,C)

(single Jordan block).
The cuspidal representations can then be viewed as the semisimple ones,

while the unipotent representations are those with αss = 1. The associated
discrete spectrum representation J is the trivial representation of GL(n,A).
Further, the map

λα(w) = α
(
w,
(
|w|1/2 0

0 |w|−1/2

))
, λα : LF → GL(n,C),

is the n-dimensional representation of LF which parametrizes J(δ1/2
P τd),

τ = τ(αss), by the principle of functoriality. Here |.| is the composition of
LF →WF →W ab

F ' CF and the absolute value on CF .
The group GL(n) has the special property that the decomposition of

its discrete spectrum into the cuspidal and residual parts is conjecturally
the same as its decomposition into tempered and nontempered represen-
tations. Indeed, the Ramanujan conjecture predicts that all local compo-
nents of any cuspidal representation of GL(n,A) are tempered. From the
explicit description given above of the residual spectrum it is clear that
each component of a residual representation of GL(n,A) is nontempered.
Such partition, cuspidal equals temperedness and residual equals nontem-
peredness, does not hold for groups which are not closely related to GL(n),
such as inner forms or SL(n).

To describe a conjectural picture of the automorphic representations of
G(A) for a reductive connected group G over a global field F , Arthur ([A2],
[A3], [A4]) introduced the notion of what we call A-parameter. It is a
homomorphism

α : LF × SL(2,C)→ LG

whose restriction to LF is an essentially tempered L-parameter (the pro-
jection to Ĝ of α(LF ) is bounded modulo Z(Ĝ), the composition of α|LF
with the projection LG→WF is the natural map LF →WF , pr

Ĝ
◦α(w) is
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semisimple for every w ∈ LF ) and whose restriction to the factor SL(2,C)
is a homomorphism SL(2,C)→ Ĝ of complex algebraic groups. Moreover,
α is globally relevant: if pr

Ĝ
of its image lies in a parabolic subgroup of

Ĝ the corresponding parabolic subgroup of G has to be defined over F .
Thus a tempered L-parameter λ is an A-parameter; an A-parameter α
whose restriction to the second factor SL(2,C) is trivial (thus α is also
an L-parameter) is tempered; and the restriction of α to LFv × SL(2,C)
defines a local parameter αv up to equivalence, for each v.

Two A-parameters α1 and α2 are called equivalent if there exist g in
Ĝ and a 1-cocycle z of LF in Z(Ĝ) with Int(g)α1 = zα2 such that the
class of z in H1(LF , Z(Ĝ)) is locally trivial (lies in ker[H1(LF , Z(Ĝ)) →∏
vH

1(LFv , Z(Ĝ))]). If Gal(F/F ) (hence LF , WF ) acts trivially on Z(Ĝ)
then H1(LF , Z(Ĝ)) = Hom(LF , Z(Ĝ)) and Chebotarev density theorem
for Lab

F = W ab
F implies that z is trivial.

Denote by ℵ(G/F ) the set of equivalence classes of A-parameters for G
over F .

For any α the parameter

λα(w) = α
(
w,
(
|w|1/2 0

0 |w|−1/2

))
lies in Λ(G/F ). Here w ∈ LF , and LF → WF → W ab

F ' CF together
with the absolute value on CF defines w 7→ |w|. The map α 7→ λα injects
ℵ(G/F ) in Λ(G/F ), Λ(G/F ) is the subset of ℵ(G/F ) of α with α = 1.

Locally, to each α ∈ ℵ(G/Fv) there should be associated a finite set∏
α of irreducibles, containing

∏
λα

. The set
∏
α, named A-packet or

quasipacket, does not partition the set of representations. Examples of
U(3, E/F ) ([F4]) and PGSp(2, F ) ([F6]) show that a quasipacket has non-
trivial intersection with a packet of cuspidal representations. Quasipackets
come up in character relations which define liftings, by means of the trace
formula. They do however define a global partition of the discrete spec-
trum.

We define a global quasipacket as the restricted product over all v of
a family of local quasipackets for all v which contain a fixed unramified
irreducible π0

v for almost all v. In fact π0
v is

∏
λαv

for v where αv =
α|(LFv × SL(2,C)) is unramified.

However, not every irreducible in a quasipacket is discrete spectrum, or
automorphic.
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Let Sα = Sα(G) be the set of s ∈ Ĝ such that sα(w′)s−1 = z(w′)α(w′)
for all w′ in LF × SL(2,C), where z(w′) ∈ Z(Ĝ) depends only on the LF -
factor w of w′, and the class of the cocycle z in H1(LF , Z(Ĝ)) is locally
trivial, namely in the kernel ker[H1(LF , Z(Ĝ)) →

∏
vH

1(LFv , Z(Ĝ))] of
all localization maps. Put Sα = Sα/S

0
α · Z(Ĝ) = π0(Sα/Z(Ĝ)). Then

Sα → Sλα is surjective, where Sλ = π0(Sλ/Z(Ĝ)) and Sλ is the group of
s ∈ Ĝ with sλ(w)s−1 = z(w)λ(w) (w ∈ LF ), where z(w) ∈ Z(Ĝ) defines a
locally trivial element in H1(LF , Z(Ĝ)).

The composition of the map LFv × SL(2,C) → LF × SL(2,C) with α

defines a parameter αv ∈ ℵ(G/Fv). There are natural maps Sα → Sαv and
Sα → Sαv . Arthur ([A2], 1.3.3) then expects to have a finite set,

∏
αv

,
of irreducible representations of G(Fv), containing

∏
λαv

, and a function
εαv :

∏
αv
→ {±1} which is 1 on

∏
λαv

, and which is 1 if αv is tempered,

and a pairing 〈., .〉v : Sαv ×
∏
αv
→ C

1, with various properties, including:

(i) π ∈
∏
λαv

(⊂
∏
αv

) iff 〈., π〉v is a character of Sαv pulled via Sαv � Sλαv
from a character of Sλαv .

(ii) The invariant distribution
∑
π∈
∏

αv

εαv (π)〈1, π〉 trπ is stable (de-

pends only on the stable orbital integrals of the test measure fdg).

(iii)
∏
λαv

contains an unramified irreducible π0
v whenever αv is unramified

(trivial on the inertia subgroup of WFv ) and G is unramified over Fv.

There should also be a function cv : Sαv/Z(Ĝ)→ {±1} which is conju-
gacy invariant, such that the map π 7→ cv(s)〈s, π〉v on

∏
αv

is independent
of the pairing 〈., 〉v. Here s is the projection of s to Sαv . It is used in
endoscopy.

We name the
∏
αv

quasipackets. When αv is trivial on the factor
SL(2,C) the quasipacket

∏
αv

is simply a packet. The quasipackets do
not partition the set of (equivalence classes of) irreducible admissible rep-
resentations. The examples of U(3, E/F ) ([F4]) and PGSp(2) ([F6]) show
that often a quasipacket consists of a nontempered irreducible together
with a cuspidal representation, and the cuspidal lies in a packet of cuspi-
dals. These examples show that quasipackets naturally occur in character
relations describing liftings, and are necessary to describe the discrete spec-
trum automorphic representations.

Given α ∈ ℵ(G/F ) we define the quasipacket
∏
α as the restricted

tensor product of the local quasipackets
∏
αv

with respect to the unramified
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π0
v ∈

∏
λαv

for almost all v. There should be a global pairing

〈., .〉 : Sα ×Πα → C
1, 〈s, π〉 =

∏
v

〈sv, πv〉v

where sv is the image of s in Sαv . Further there should be a function

εα : Πα → {±1}, εα(π) =
∏
v

εαv (πv), π = ⊗πv.

Almost all εαv (πv) should be 1, and 〈sv, πv〉v = 1 for almost all v. Further
one expects that for s ∈ Sα/Z(Ĝ) the product

∏
v cv(sv) is 1, where sv is

the image of s in Sαv/Z(Ĝ).
It is expected of the quasipackets, parametrized by α ∈ ℵ(G/F ), to

partition the automorphic representations of G(A). The automorphic π
in
∏
α occur in the discrete spectrum iff Sα is finite. If Sα is finite there

should exist an integer dα > 0 and a homomorphism ξα : Sα → {±1} such
that the multiplicity m(π) with which π ∈

∏
α occurs in the discrete

spectrum of L2(G(F )/G(A)) is

dα

|Sα|

∑
s∈Sα

〈s, π〉ξα(s).

In particular, if Sα and each Sαv are abelian then the multiplicity of π is
dα if 〈., π〉 = ξα, and 0 otherwise.

If Sα consists of a single element then the multiplicity m(π) is constant
on
∏
α, and we say that

∏
α is stable.

In case the quasipackets have nonzero intersection, the multiplicitym(π)
will be the sum of the expressions displayed above over all α such that
π ∈

∏
α.

7. Endoscopy

An auxiliary notion is that of an endoscopic group H of G. It comes
up on stabilizing the trace formula, which permits lifting representations
from H to G. We recall its definition following Kottwitz [Ko2].
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Let G be a connected reductive group over a local or global field F . An
endoscopic datum for G is a pair (s, ρ). The s is a semisimple element of
Ĝ/Z(Ĝ). Put Ĥ for the connected centralizer Z

Ĝ
(s)0 of s in Ĝ. The ρ :

WF → Out(Ĥ) is a homomorphism (which factorizes viaWF → Gal(F/F ).
We may work with Gal(F/F ) instead of WF ). For each w in WF the
element ρ(w) is required to have the form n×w ∈ Ĝ×w and it normalizes
Ĥ. In particular ρ induces an action of WF on Z(Ĥ). Of course WF acts
on Ĝ and on its subgroup Z(Ĝ). The map Z(Ĝ) ↪→ Z(Ĥ) is a WF -map.
The exact sequence 1 → Z(Ĝ) → Z(Ĥ) → Z(Ĥ)/Z(Ĝ) → 1 gives a long
exact sequence ([Ko2], Cor. 2.3)

· · · → π0(Z(Ĥ)WF )→ π0([Z(Ĥ)/Z(Ĝ)]WF )→ H1(F,Z(Ĝ))→ . . . .

The element s ∈ Z(Ĥ)/Z(Ĝ) is required to be fixed by WF , and its image
in

π0([Z(Ĥ)/Z(Ĝ)]WF )

is in the subgroup K(s, ρ), consisting of the elements whose image in
H1(F,Z(Ĝ)) is trivial if F is local, and locally trivial if F is global.

An isomorphism of endoscopic data (s1, ρ1) and (s2, ρ2) is g ∈ Ĝ with

Int(g)Ĥ1 = Ĥ2; ρ2 = (Int g)0 ◦ ρ1

((Int g)0 is the isomorphism Out(Ĥ1)→ Out(Ĥ2) induced by Int g;
Int(g)s1 and s2 have the same image in K(s, ρ).

Write Aut(s, ρ) for the group of automorphisms of (s, ρ). It is an alge-
braic subgroup of Ĝ with identity component Ĥ. Put

Λ(s, ρ) = Aut(s, ρ)/Ĥ.

An endoscopic datum (s, ρ) is elliptic if (Z(Ĥ)WF )0 ⊂ Z(Ĝ). Then
the 3rd condition in the definition of an isomorphism can be replaced by
Int(g)s1 = s2.

An endoscopic group H of G is in fact a triple (H, s, η), where H is a
quasisplit connected reductive F -group, s ∈ Z(Ĥ), and η : Ĥ → Ĝ is an
embedding of complex groups. It is required that
(1) η(Ĥ) is the connected centralizer Z

Ĝ
(η(s))0 of η(s) in Ĝ, and that
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(2) the Ĝ-conjugacy class of η is fixed by WF (that is, by ϕ(WF ) ⊂
Gal(F/F )).

We regard Z(Ĝ) as a subgroup of Z(Ĥ). By (2), the WF -actions on
Z(Ĝ) and Z(Ĥ) are compatible. Define a subgroup K(H/F ) of

π0([Z(Ĥ)/Z(Ĝ)]WF )

analogously to K(s, ρ) above. It is further required that
(3) the image of s in Z(Ĥ)/Z(Ĝ) is fixed by WF and its image in π0

([Z(Ĥ)/Z(Ĝ)]WF ) lies in K(H/F ).
An isomorphism of endoscopic groups (H1, s1, η1) and (H2, s2, η2) is an

F -isomorphism α : H1 → H2 satisfying:
(1) η1 ◦ α̂ and η2 are Ĝ-conjugate. (α̂ is defined up to Ĥ1-conjugacy; it
induces a canonical isomorphism K(H2/F ) ∼→K(H1/F )).
(2) The elements of K(Hi/F ) defined by si correspond under

K(H2/F ) ∼→K(H1/F ).

The group Aut(H, s, η) of automorphisms of (H, s, η) contains
Had(F )(= (IntH)(F )) as a normal subgroup. Put

Λ(H, s, η) = Aut(H, s, η)/Had(F ).

An endoscopic group (H, s, η) determines an endoscopic datum (η(s), ρ),
where ρ is the composition

WF → Aut(Ĥ) ∼→Aut(Z
Ĝ

(η(s))0)→ Out(Z
Ĝ

(η(s))0).

Every endoscopic datum arises from some endoscopic group. There is
a canonical bijection from the set of isomorphisms from an endoscopic
group (H1, s1, η1) to another, (H2, s2, η2), taken modulo Int(H2), to the
set of isomorphisms from the corresponding endoscopic datum (η(s1), ρ1)
to (η(s2), ρ2), taken modulo Z

Ĝ
(η(s2))0. Thus there is a bijection from the

set of isomorphism classes of endoscopic groups to the set of isomorphism
classes of endoscopic data. Moreover, there is a canonical isomorphism
Λ(H, s, η) ∼→Λ(η(s), ρ).

We say that (H, s, η) is elliptic if (η(s), ρ) is elliptic.
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Twisted endoscopic groups are defined, discussed and used to stabilize
the twisted trace formula in [KS].

For further discussion of parameters and (quasi) packets see [A4].

Let f : G∗ → G be an F -isomorphism of F -groups. It defines a map
f : Ψ(G∗) → Ψ(G). It is called an inner twist if for every σ in Gal(F/F )
there is gσ in G(F ) with f(σ(g)) = Int(gσ)(σ(f(g))). In this case G∗ is
called an inner form of G. The L-group LG depends only on the class
of inner forms of G. In each such class there exists a unique quasisplit
form. The L-group determines the F -isomorphism class of the quasisplit
form. The Galois action on Ĝ is trivial iff G is an inner form of a split
group. The L-parameters of G are only those which factorize through LP

for an F -parabolic subgroup P of the quasisplit form G∗ of G, provided P
is relevant, namely is an F -parabolic subgroup of G itself.

The group G is defined over a field F , and the theory for G depends on
the choice of F . What would happen if we replace the base field by a
finite extension E of F? For this it is convenient to recall the theory of
induced groups. Let A′ be a subgroup of finite index in a group A. The
example of interest to us will later be A = Gal(F/F ) and A′ = Gal(F/E).
Suppose A′ acts on a group G. The induced group IAA′(G) = IndAA′(G)
is defined to consist of all f : A → G with f(a′a) = a′f(a) (a ∈ A,
a′ ∈ A′). The group structure is (ff ′)(a) = f(a)f ′(a). The group A acts
by (r(a)f)(x) = f(xa) (a, x ∈ A). For a coset s in A′\A put

Gs = {f ∈ IAA′(G); f(a) = 0 if a /∈ s}.

It is a group and IAA′(G) is
∏
s∈A′\AGs. The groups Gs are permuted

by A. The subgroup Ge is stable under A′, and f 7→ f(e), Ge → G, is
an A′-module isomorphism. Shapiro’s lemma asserts H1(A, IAA′(G)) =
H1(A′, G).

Let B be a group, µ : B → A a homomorphism, put B′ = µ−1(A′),
and suppose µ induces a bijection B′\B ∼→A′\A. Then B′ acts on G via
µ : b′ · g = µ(b′)g. The map f 7→ µ ◦ f is a µ-equivarient isomorphism
µ′ : IAA′(G) ∼→ IBB′(G). We have r(µ(a))(µ ◦ f)(x) = µ ◦ f(xa).

If E/F is a finite field extension, we have

WE\WF = Gal(F/E)\Gal(F/F ) = HomF (E,F ).
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If G is an E-group, its restriction of scalars G′ = RE/FG is the F -group

IG where I = I
Gal(F/F )

Gal(F/E)
. Thus G′(F ) = I(G(F )) =

∏
σ G(F )σ where σ

ranges over HomF (E,F ). Let σi ∈ WF (1 ≤ i ≤ [E : F ]) be a set of
representatives for WE\WF . Define an action of τ ∈ WF on (i; 1 ≤ i ≤
[E : F ]) by WEσiτ

−1 = WEστ(i). Put τi = στ(i)τσ
−1
i ∈WE . Then

(γτ)i = σ(γτ)(i)γτσ
−1
i = σ(γτ)(i)γσ

−1
τ(i) · στ(i)τσ

−1
i = γτ(i)τi ∈WE .

The group WF acts on G′(F ) =
∏
iG(F ) by (gi)γ = (γ−1

i (gγ(i))). Indeed,

(gi)(γτ) = ((γτ)−1
i (g(γτ)(i))) = ((γτ(i)τi)−1(gγ(τ(i))))

= (γ−1
i (gγ(i)))τ = ((gi)γ)τ.

In particular G′(F ) = G(E) and if E/F is Galois then G′(E) =
∏
σ G(E).

Suppose G is reductive connected. Then Ψ(G′) = (X ′,∇′, X ′∗,∇′∨)
is related to Ψ(G) = (X,∇, X∗,∇∨) by X ′ = IX, ∇ = ∪σ∇σ (σ ∈
Gal(F/E)\Gal(F/F )). Similarly, bases ∆′ and ∆ of ∇′ and ∇ are related
by ∆′ = ∪σ∆σ. In particular we have a natural isomorphism Ĝ′

∼→ I(Ĝ),
thus Ĝ′ ' Ĝ[E:F ].

The map P 7→ RE/FP induces a bijection from the set of E-parabolic
subgroups of G to the set of F -parabolic subgroups of G′, P is a Borel
subgroup of G iff RE/FP is one of G′. Hence G is quasisplit over E iff G′

is quasisplit over F .
If α : LE × SL(2,C) → LG is an A-parameter for G, then the corre-

sponding parameter α′ : LF × SL(2,C)→ LG′ is defined by

α′(τ × s) = (α(τ1 × s), . . . , α(τ[E:F ] × s))× τ.

The diagonal embedding Ĝ ↪→ Ĝ′ induces Sα → Sα′ , and by Shapiro’s
lemma gives ker1(LE , Z(Ĝ)) → ker1(LF , Z(Ĝ′)), where ker1 denote the
set of classes in H1 which are locally trivial. We have a commutative
square

Sα −→ Sα′
↓ ↓

ker1(LE , Z(Ĝ)) → ker1(LF , Z(Ĝ′)).

Hence Sα′ = Z(Ĝ′) · Im(Sα), and the diagonal map yields an isomorphism
Sα = Sα′ . In other words, the representation theory of G(E) is the same
as that of G′(F ).
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8. Basechange

As an example, let us consider the case of basechange lifting. It concerns
an F -group G, and “lifting” admissible representations of G(F ) to such
representations of G(E) if F is local and E/F is a finite extension of fields,
or automorphic representations of G(AF ) to such representations of G(AE)
if E/F is an extension of global fields. We need to view G(E) (or G(AE))
as the group of points of an F -group in order to compare L-parameters of
the F -group G with those of what should describe G(E). Such a group
is given by G′ = RE/FG, which is an F -group with G′(F ) = G(E). As
for L-parameters, we have that the composition of λ : WF → LG with the
diagonal embedding

bcE/F : LG = ĜoWF → LG′ = Ĝ′ oWF = (Ĝ× · · · × Ĝ)oWF

gives an L-parameter λ′ = bcE/F (λ) : WF → LG′. In particular, the group
WF permutes the factors Ĝ in Ĝ′. The parameter λ′ can be viewed as the
restriction λE : WE → LG = ĜoWE of λ from WF to WE .

As a special case, suppose G is split, thus the group WF acts trivially
on Ĝ, but it permutes the factors Ĝ in Ĝ′. Suppose E/F is an unramified
local fields extension. Then an unramified representation π of G(F ) is
determined by the image t(π) = λ(Fr) of the Frobenius in Ĝ. This image
is determined up to conjugacy. The image of t(π) in LG′ is the conjugacy
class of t(π′) = (t(π)× · · · × t(π))o Fr = (t(π)[E:F ], 1 . . . , 1)o Fr, which is
the conjugacy class of t(π)[E:F ] in the L-group L(G/E) of G over E.

For example, the unramified irreducible constituent π in the normal-
izedly induced representation I(µ1, . . . , µn) of GL(n, F ), where µi : F× →
C
× are unramified characters, lifts to the unramified irreducible constituent

πE in the normalizedly induced representation I(µ1◦NE/F , . . . , µn◦NE/F ),
NE/F : E× → F× being the norm.

If v is a place of a global field F which splits in E, thus Ev = E⊗F Fv =
Fv ⊕ · · · ⊕ Fv, then bcE/F (πv) = πv × · · · × πv is a representation of
G(Ev) = G(Fv)× · · · ×G(Fv).

The problem of basechange is to show, given an automorphic π of
G(AF ), the existence of an automorphic πE of G(AE) = G′(AF ) with
t(πE,v) = bcE/F (t(πv)) for almost all v. For G = GL(n), if πE exists it is
unique by rigidity theorem for GL(n).
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A related question is to define and prove the existence of the local lifting.
In any case, basic properties of basechange are, suitably interpreted:
• transitivity: if F ⊂ E ⊂ L then bcL/E(bcE/F (π)) = bcL/F (π) for π

on G(F ).
• twists: bcE/F (π⊗χ) = bcE/F (π)⊗χE , χE = χ◦NE/F (if G = GL(n),

χ : A×F /F
× → C

×).
• parameters compatibility: bcE/F (π(λ)) = π(λE).
For G = GL(n), cyclic basechange (thus when E/F is a cyclic, in par-

ticular Galois, extension of number fields) was proven by Arthur-Clozel
[AC]. A simple proof, but only for π with a cuspidal component, is given
in [F2;II], where the trace formula simplifies on using a regular-Iwahori
component of the test function. The case of n = 2 had been done by
Langlands [L6], using ideas of Saito and Shintani (twisted trace formula,
character relations). A simple proof of basechange for GL(2), with no
restrictions, is given in [F2;I], again using regular-Iwahori component to
simplify the trace formula. Basechange for GL(n) asserts (see [AC]): Let
E/F be a cyclic extension of prime degree `.
•Given a cuspidal automorphic representation of GL(n,AF ) there exists

a unique automorphic representation πE = bcE/F (π) of GL(n,AE) which
is the basechange lift of π. It is cuspidal unless ` divides n and πω = π for
some character ω 6= 1 of A×F /F

×NE/FA
×
E .

• If π and π′ are cuspidal then bcE/F (π) = bcE/F (π′) iff π′ = πω for
some character ω of A×F /F

×NE/FA
×
E

• A cuspidal representation πE of GL(n,AE) is the basechange bcE/F (π)
of a cuspidal π of GL(n,AF ) iff σπE = πE for all σ ∈ Gal(E/F ). Here
σπE(g) = πE(σg).
• If n = `m and π is a cuspidal representation of GL(n,AF ) with πω =

π, ω 6= 1 on A×F /F
×NE/FA

×
E (thus ω has order ` = [E : F ]), then there

is a cuspidal representation τ of GL(m,AE) with στ 6= τ for all σ 6= 1 in
Gal(E/F ) such that bcE/F (π) is the representation I(τ,στ,σ

2
τ, . . . ,σ

`−1
τ)

normalizedly induced from τ ⊗σ τ ⊗ · · · ⊗σ`−1
τ on the parabolic of type

(m, . . . ,m).

The last statement can also be stated as τ 7→ π, as follows.
Let E/F be a cyclic extension of prime degree `. Let τ be a cuspidal

representation of GL(m,AE) with στ 6= τ for all σ 6= 1 in Gal(E/F ). Con-
jecturally this τ is parametrized by an L-parameter λE : WE → GL(m,C).
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Consider λ = IndFE λ
E . It is a representation of WF in GL(n,C), n = m`.

The group GL(m,E), or RE/F GL(m), can be viewed as an ω-twisted
endoscopic group of GL(n) over F , where ω is a primitive character on
A
×
F /F

×NE/FA
×
E . At a place v of F which stays prime in E, an unram-

ified representation I(µi; 1 ≤ i ≤ m) of GL(m,Ev) would correspond to
I(ζjµ1/`

i ; 0 ≤ j ≤ `, 1 ≤ i ≤ m) on GL(n, Fv). Here ζ is a primitive `th
root of 1. At a place v of F which splits in E, λv = ⊕w|vλEw and τv of
GL(m,Ev), which is ⊗w|vτw of

∏
w|v GL(m,Fw) corresponds to I(⊗w|vτw).

The last result stated above, as part of basechange for GL(n), asserts that
endoscopic lifting for GL(n) exists. Denote it be endE/F (τ). Namely
• Let E/F be a cyclic extension of prime degree `, and τ and a cus-

pidal representation of GL(m,AE). Then π = endE/F (τ) exists as an
automorphic representation of GL(n,AF ), which is cuspidal when στ 6= τ

for all σ 6= 1 in Gal(E/F ). Moreover πω = π for any character ω of
A
×
F /F

×NE/FA
×
E . Any cuspidal π of GL(n,AF ) with ωπ = π for such

ω 6= 1 is π = endE/F (τ) for a cuspidal τ of GL(m,AE) with στ 6= τ for all
σ in Gal(E/F ). Further, endE/F (τ ′) = endE/F (τ) iff τ ′ = στ .

This result was first proven for m = 1, thus ` = n, by Kazhdan [K1] for π
with a cuspidal component, and by [F1;I] without such restriction, and by
Waldspurger [W3] and [F1;I] for all m. This technique, of endoscopic lifting
(twisted by ω, into GL(n, F )), has the advantage of giving (local) character
relations which are useful in the study of the metaplectic correspondence
([FK1]). The theory of basechange gives other character relations, and lifts
π with πω = π to I(τ,στ, . . . ). The endoscopic case of n = 2 = ` had been
done by Labesse-Langlands [LL]. See also [F6].

The basechange and endoscopic liftings described above were proven
using the trace formula, and they apply only to cyclic (Galois) extensions
E/F . By means of the converse theorem, Jacquet, Piatetski-Shapiro, Sha-
lika ([JPS]) showed
• Let E/F be a non-Galois extension of degree 3 of number fields.

If π is a cuspidal representation of GL(2,AF ) then the basechange lift
bcE/F (π) exists and is a cuspidal representation of GL(2,AE).

Again, the lifting is defined by means of almost all components πv, and
bcE/F (π) is unique – if it exists – by rigidity theorem for GL(2).
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Let F be a number field, F an algebraic closure, and λ : Gal(F/F ) →
AutV , dimC V < ∞, an irreducible representation. Define L(s, λ) to be
the product over all finite places v of F of the local factors L(s, λv) =
det[1−q−sv ·(λv|V Iv )(Frv)]−1, where V Iv is the space of vectors in V fixed by
the inertia group Iv at v, and λv is the restriction of λ to the decomposition
group Dv at v. Artin’s conjecture asserts that the L-function L(s, λ) is
entire unless λ is trivial (= 1). Langlands proposed approach to it is to
show that there exists a cuspidal representation π(λ) of GL(dimV,AF )
with L(s, λv) = L(s, π(λ)v) for almost all v. In this case, the holomorphy
follows from the fact that L(s, π) =

∏
v L(s, πv) is entire for a cuspidal

π = ⊗πv 6= 1. Thus π = π(λ) is related to λ by the identity t(πv) = λ(Frv)
of semisimple conjugacy classes in GL(n,C) for almost all v. If this relation
holds, λ is uniquely determined by Chebotarev’s density theorem, and π is
uniquely determined by the rigidity theorem for cuspidal representations
of GL(n,AF ). The case of dimC V = 1 is that of Class Field Theory, which
asserts that π(λ) exists as a character of A×F /F

×.
Suppose dimλ (i.e., dimV ) is two. Denote by Sym2 : GL(2,C) →

GL(3,C) the irreducible 3 dimensional representation of GL(2,C) which
maps g to Int(g) on Lie SL(2). Its image is SO(3,C) and its kernel is the
center of GL(2,C) (thus it gives

PGL(2,C) ∼→SO(3,C) ⊂ SL(3,C)).

The finite subgroups of SO(3,C) are cyclic, dihedral, the alternating groups
A4 or A5, or the symmetric group S4 on four letters; see, e.g., Artin [A], Ch.
5, Theorem 9.1 (p. 184). If Im(Sym2 ◦λ) is cyclic then Im(λ) is contained
in a torus of GL(2,C) and λ is reducible, the sum of two characters. This
case reduces to the case of CFT.

Let λ : G→ GL(2,C) be an irreducible two dimensional representation
of a finite group.
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1. Proposition. Im(Sym2 ◦λ) is dihedral iff λ = IndGH χ is induced
from a character χ of an index two subgroup H of G, and gχ 6= χ for all
g ∈ G−H.

Proof. Assume λ is faithful by replacing G with G/ kerλ. Let T be
the cyclic subgroup of Im(Sym2 ◦λ) of index two. Since the kernel of
Sym2 is central in GL(2,C) and λ is faithful, the inverse image H of T
in G is abelian. Hence the restriction of λ to H is the sum of two one
dimensional representations, χ and χ′. If χ = χ′, Clifford’s theory implies
that χ extends to G in two different ways (differing by the sign character
on G/H). But λ is irreducible two-dimensional, hence χ′ 6= χ, χ′ = gχ for
any g ∈ G−H, and λ = IndGH χ. �

2. Corollary. Suppose Im(Sym2 ◦λ) is dihedral, where λ : Gal(F/F )
→ GL(2,C) is two-dimensional. Then π(λ) exists as a cuspidal represen-
tation of GL(2,AF ).

Proof. By Proposition 1 there is a quadratic extension E of F and
a character χ of Gal(F/E) such that λ = IndFE χ, χ 6= σχ for all σ ∈
Gal(F/F )−Gal(F/E). The existence of π(IndFE χ) is proven in [JL], [LL],
[F3]. �

The irreducible representations of the symmetric group Sn are paramet-
rized by the partitions of n, and the associated Young tableaux. The rep-
resentation λ′ associated to the dual Young tableaux is λ · sgn, where λ
is associated with the original Young tableaux, and sgn is the nontrivial
character of Sn/An. The representation λ of Sn becomes reducible when
restricted to An precisely when the Young tableaux is selfdual. The di-
mension of λ is the number of removal chains, by which we means a chain
of operations of deleting a spot of a Young diagram at the right end of a
row under which there is no spot. For example, S4 has the representations
listed in the table on the next page.

There the partitions (4) and (1,1,1,1) are dual. They parametrize the
trivial and sgn one dimensional representations of S4. The partitions (3,1)
and (2,1,1) are dual (obtained from each other by transposition), and pa-
rametrize 3-dimensional representations whose restrictions λ3 to A4 re-
main irreducible and equal to one another. The selfdual partition (2,2)
parametrizes the 2-dimensional irreducible representation of S4 whose re-
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striction to A4 is reducible, equal to the sum of the two quadratic charac-
ters of A4 (trivial on the 3-Sylow subgroup).

partition Young T chains dim

(4) xxxx
(
xxx, xx, x

)
1

(3, 1) xxx
x

(
xxx, xx, x

)
,

(
xx xx, x
x ,

)
,

(
xx x x
x , x,

)
3

(2, 2) xx
xx

(
xx xx, x
x ,

)
,

(
xx x x
x , x,

)
2

(2, 1, 1)
xx
x
x

x x x
x x,
x,

(xx xx, x
x ,

)
,

(
xx x x
x , x,

)
3

(1, 1, 1, 1)

x
x
x
x

x x x
x x,
x,

 1

The 3-dimensional representation λ3 of A4 is induced. Indeed, consider
the 2-Sylow subgroup A′4 of A4. It is generated by (12)(34), (13)(24),
(14)(23), and is isomorphic to Z/2⊕Z/2. The quotient A4/A

′
4 is Z/3. The

restriction to the abelian A′4 of the irreducible 3-dimensional representation
λ3 of A4 is the sum of 3 characters permuted by the quotient Z/3 of A4,
hence λ3 is induced IndA4

A′4
χ, χ2 = 1 6= χ.

3. Theorem. There exists a cuspidal representation π(λ) of GL(2,AF )
where λ : Gal(F/F )→ GL(2,C) is an irreducible representation such that
Im(Sym2 ◦λ) = A4.

We record Langlands’ proof ([L6]).

4. Lemma. There exists a cuspidal representation π(Sym2 ◦λ) of
GL(3,AF ).

Proof. The composition of Sym2 ◦λ with the projection A4 → Z/3 is a
surjective map Gal(F/F )→ Z/3. Its kernel has the form Gal(F/E), where
E/F is a cubic extension. As noted before the lemma, Sym2 ◦λ = IndFE χ,
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where χ : Gal(F/E) � {±1}, and σχ 6= χ for σ 6= 1 in Gal(E/F ) =
Z/3. The existence of π(IndFE χ) now follows from the theory of (cubic)
basechange for GL(3) [AC] or the endoscopic lifting for SL(3) of [K1] and
[F1;I]. �

Put λE for λ|Gal(F/E).

5. Lemma. There exists a cuspidal representation π(λE) of GL(2,AE).

Proof. We claim that λE is irreducible. If not, it would be the direct
sum of two characters, permuted by Gal(F/F )/Gal(F/E) = Gal(E/F ) =
Z/3. This action would then be trivial and λ be reducible. But λ is
irreducible, hence so is λE . Now Sym2 ◦λE has as image the order 4
dihedral group, hence π(λE) exists. �

6. Proposition. Suppose π is a cuspidal representation of GL(2,AF )
whose basechange bcE/F (π) to E is π(λE), whose central character ωπ
is detλ, and such that its symmetric square lift Sym2(π) is π(Sym2 ◦λ).
Then π = π(λ).

Proof. Denote by [a, b] the conjugacy class of diag(a, b) in GL(2,C).
At any place v where πv and λv = λ|Dv are unramified (Dv ' Gal(F v/Fv)
is the decomposition group of v in Gal(F/F )), put t(πv) = [a, b] and
λ(Frv) = [α, β]. If v splits in E then bcE/F (π) = π(λE) implies that
[a, b] = [α, β]. We need to show this also when Ev = E ⊗F Fv is a field,
to conclude that π = π(λ) by rigidity theorem for GL(2). When Ev is a
field, from bcE/F (π) = π(λE) we conclude that [a3, b3] = [α3, β3], and from
ωπ = detλ that ab = αβ. Hence a = ζα and b = ζ2β for some ζ ∈ C× with
ζ3 = 1. As Sym2(π) = π(Sym3 ◦λ), we have [a/b, 1, b/a] = [α/β, 1, β/α].
From t(πv) = [ζα, ζ2β], ζ 6= 1, we then conclude that ζ−1α/β = β/α,
hence that α/β = ±ζ2. If α/β = ζ2, then a = ζα = β, b = ζ2β = α and
[a, b] = [α, β]. If α/β = −ζ2 then Sym2 ◦λ(Frv) = [−ζ2, 1,−ζ], but A4 has
no element of order 6. �

It remains to show that π as in Proposition 6 exists. Since σλE = λE for
all σ in Gal(F/F ), we have σπ(λE) = π(λE). Hence there exists a cuspidal
π of GL(2,AF ) with bcE/F (π) = π(λE). This π is unique only up to a twist
by a character of A×F /F

×NE/FA
×
E = Z/3. From bcE/F (π) = π(λE) we

get ωπ ◦NE/F = detλ ◦NE/F , hence ωπω = detλ for some character ω of
A
×
F /F

×NE/FA
×
E . As ωπ⊗ω2 = ωπω

4 = ωπω, we may and do choose π with
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ωπ = detλ. It remains to show that π1 = Sym2(π) and π2 = π(Sym2 ◦λ)
are equal, namely that the classes t(π1v) and t(π2v) are equal for almost
all v. For this we use the following theorem of Jacquet and Shalika [JS].

7. Lemma. Let π1, π2 be automorphic representations of GL(n,AF )
with π2 cuspidal, such that t(π1v) ⊗ t(π̌2v) = t(π2v) ⊗ t(π̌2v) for almost
all v, where π̌2v denotes the representation contragredient to π2v. Then
π1 = π2.

We take n = 3, and note that t(π1v) = t(π2v) when v is split in E. It
remains to verify the requirement of the Lemma when v stays prime in
E. In this case the image of Frv ∈ Gal(F/F ) in A4 has order 3, namely
t(π2v) = Sym2(λ(Frv)) = [1, ζ, ζ2] for some ζ 6= 1 = ζ3. Hence λ(Frv) =
[α, ζα] for some α ∈ C×. Since π2 is self-contragredient, we have t(π̌2v) =
t(π2v). But t(πv)3 = λ(Frv)3 and det(t(πv)) = det(λ(Frv)). Hence t(πv) =
[a, b] with a3 = b3 = α3 and ab = ζα2. So t(πv) = [α, ζα] or [ζ2α, ζ2α].
Consequently t(π1v) is [1, ζ, ζ2] or [1, 1, 1], and we have t(π1v) ⊗ t(π̌2v) =
t(π2v)⊗ t(π̌2v) in both cases.

This completes the proof of the existence of a cuspidal representation
π(λ) of GL(2,AF ) where λ : Gal(F/F ) → GL(2,C) is irreducible with
Im(Sym2 ◦λ) = A4. �

The next case, completed by Tunnell [Tu] after some work of Langlands,
is that of

8. Theorem. Let λ : Gal(F/F ) → GL(2,C) be an irreducible repre-
sentation with

Im(Sym2 ◦λ) = S4 (' PGL(2,F3)).

Then π(λ) exists as a cuspidal representation of GL(2,AF ).

Suppose ker(Sym2 ◦λ) = Gal(F/N), thus N/F is an S4-Galois exten-
sion. The subgroup S0 of S4, generated by (12)(34), (13)(24), (14)(23), is
normal in S4, isomorphic to Z/2⊕ Z/2, and there is an exact sequence

1→ S0 → S4 → S3 → 1.

As S0 is normal in S4, its fixed field, M , is a Galois extension of F of
type S3. The sgn character on S3 defines a character of S4; let E be the
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quadratic extension of F defined by its kernel. Let K be the nonGalois
cubic extension of F fixed by a fixed 2-Sylow subgroup containing S0. Since
Im(Sym2 ◦λK) is a dihedral group (λK = λ|Gal(F/K)), π(λK) exists as
a cuspidal representation of GL(2,AK). Since Im(Sym2 ◦λE) is A4, π(λE)
exists as a cuspidal representation of GL(2,AE). As usual, by bcA/F (π)
we mean the basechange of π from GL(2,AF ) to GL(2,AA).

We have the following diagram of fields

K

@@@@@@@

N M

||||||||

BBBBBBBB F

E

~~~~~~~

9. Lemma. Let π be a cuspidal representation of GL(2,AF ) such that
bcE/F (π) = π(λE) and bcK/F (π) = π(λK). Then π = π(λ).

Proof. At a place v of F where both π and λ are unramified, put
t(πv) = [a, b] and λ(Frv) = [α, β]. If v splits in E or if Kv = K ⊗F Fv has
Fv as a direct summand, we have t(πv) = λ(Frv) (equality of conjugacy
classes in GL(2,C)). If not, we get t(πv)2 = λ(Frv)2 and t(πv)3 = λ(Frv)3.
If t(πv) and λ(Frv) share an eigenvalue, say a = α, then b2 = β2 and
b3 = β3 imply b = β and t(πv) = λ(Frv). If t(πv) 6= λ(Frv) then they do
not share an eigenvalue, and we may assume that a = −α. As t(πv)3 =
λ(Frv)3, we have β = ζa, ζ3 = 1 6= ζ. Hence λ(Frv) = [−a, ζa] and
(Sym2 ◦λ)(Frv) = [−ζ, 1,−ζ2], an element of order 6, which does not exist
in S4. Hence t(πv) = λ(Frv). �

It remains to manufacture π as in Lemma 9. Since λE extends to λ we
have σλE = λE for σ ∈ Gal(F/F ), σ|E 6= 1. Hence σπ(λE) = π(λE), and
basechange theorem for GL(2,AF ) implies that there exist precisely two
cuspidal representations π1 and π2 of GL(2,AF ) with bcE/F (πi) = π(λE),
and π2 = π1 ⊗ χE/F , where χE/F (g) is 1 iff det g ∈ A×/F×NE/FA×E .

Since Im(Sym2 ◦λM ) is dihedral, and λM is irreducible (see Lemma 5
in proof of Theorem 3), the cuspidal π(λM ) of GL(2,AM ) exists. Hence
π(λK) lifts to π(λM ). But π(λM ) = bcM/K(π′) for precisely two cuspidal
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representations π′ of GL(2,AK), and these two differ by a twist with χM/K .
Hence π′ are π(λK) and π(λK)⊗ χM/K .

At this stage we require a theorem of Jacquet, Piatetski-Shapiro and
Shalika [JPS].

10. Proposition. Let K/F be a field extension of degree 3 which is
nonGalois. Then the basechange bcK/F (π) of a cuspidal representation π

of GL(2,AF ) exists and is a cuspidal representation of GL(2,AK). �

This is proven by means of the converse theorem.
In particular bcK/F (π1) and bcK/F (π2) exist. They lift to π(λM ). In-

deed, basechange is transitive, and is compatible with the Langlands cor-
respondence λ 7→ π(λ). Hence

bcM/K(bcK/F (πi)) = bcM/F (πi)

= bcM/E(bcE/F (πi)) = bcM/E(π(λE)) = π(λM ).

But π1 = π2 ⊗ χE/F , and χM/K = χE/F ◦NK/F . By the compatibility of
basechange with twisting,

bcK/F (π1) = bcK/F (π2 ⊗ χE/F ) = bcK/F (π2)⊗ χM/K .

Hence bcK/F (πi) = π(λK) for either i = 1 or i = 2. This πi has the
properties required by Lemma 9, hence theorem 8 follows. �
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AUTOMORPHIC FORMS AND
SHIMURA VARIETIES OF PGSp(2)

by Yuval Z. Flicker (The Ohio State University, USA)

The area of automorphic representations is a natural continuation of
the 19th and 20th centuries studies in number theory and modular forms.
A guiding principle is a reciprocity law relating the infinite dimensional
automorphic representations, with finite dimensional Galois representa-
tions. Simple relations on the Galois side reflect deep relations on the
automorphic side, called “liftings”. This monograph concentrates on an
initial example of the lifting, from a rank 2 symplectic group PGSp(2) to
PGL(4), reflecting the natural embedding of Sp(2,C) in SL(4,C). It devel-
ops the technique of comparison of twisted and stabilized trace formulae.
Main results include:

• A detailed classification of the representations of PGSp(2).
• A definition of the notions of “packets” and “quasi-packets”.
• A statement and proof of the “lifting” by means of character relations.
• Proof of multiplicity one and rigidity theorems for the discrete spectrum.

These results are then used to study the decomposition of the cohomol-
ogy of an associated Shimura variety, thereby linking Galois representa-
tions to geometric automorphic representations.

To put these results in a general context, the book ends with a technical
introduction to Langlands’ program in the area of automorphic represen-
tations. It includes a proof of known cases of Artin’s conjecture.

This research monograph will benefit an audience of graduate students
and researchers in number theory, algebra and representation theory.


