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PREFACE

This volume concerns two main topics of interest in the theory of auto-
morphic representations, both are by now classical. The first concerns the
question of classification of the automorphic representations of a group,
connected and reductive over a number field F'. We consider here the clas-
sical example of the projective symplectic group PGSp(2) of similitudes.
It is related to Siegel modular forms in the analytic language. We reduce
this question to that for the projective general linear group PGL(4) by
means of the theory of liftings with respect to the dual group homomor-
phism Sp(2,C) — SL(4, C). To describe this classification we introduce the
notion of packets and quasi-packets of representations — admissible and au-
tomorphic — of PGSp(2). The lifting implies a rigidity theorem for packets
and multiplicity one theorem for the discrete spectrum of PGSp(2). The
classification uses the theory of endoscopy, and twisted endoscopy. This
leads to a notion of stable and unstable packets of automorphic forms. The
stable ones are those which do not come from a proper endoscopic group.

This first topic was developed in part to access the second topic of these
notes, which is the decomposition of the étale cohomology with compact
supports of the Shimura variety associated with PGSp(2), over an alge-
braic closure F, with coefficients in a local system. This is a Hecke-Galois
bi-module, and its decomposition into irreducibles associates to each geo-
metric (cohomological components at infinity) automorphic representation
(we show they all appear in the cohomology) a Galois representation. They
are related at almost all places as the Hecke eigenvalues are the Frobenius
eigenvalues, up to a shift. In the stable case we obtain Galois representa-
tions of dimension 447, In the unstable case the dimension is half that,
since endoscopy shows up. The statement, and the definition of stability,
is based on the classification and lifting results of the first, main, part.
The description of the Zeta function of the Shimura variety, also with co-
efficients in the local system, follows formally from the decomposition of
the cohomology.

The third part — which is written for non-experts in representation the-
ory — consists of a brief introduction to the Principle of Functoriality in
the theory of automorphic forms. It puts the first two parts in perspective.
Parts 1 and 2 are examples of the general — mainly conjectural — theory
described in this last part. Part 3 can be read independently of parts 1
and 2. It can be consulted as needed. It contains many of the definitions
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used in parts 1 and 2, but is not a prerequisite to them. For this reason
this Background part is put at the back and not at the fore. Regrettably,
it does not discuss the trace formula. But this would require another book.
Part 3 is based on a graduate course at Ohio State in Autumn 2003.

Yuval Flicker
Jerusalem, Tevet 5765
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PART 1. LIFTING
AUTOMORPHIC FORMS
OF PGSp(2) TO PGL(4)






I. PRELIMINARIES

1. Introduction

According to the “principle of functoriality”, “Galois” representations p :
Ly — LG of the hypothetical Langlands group Ly of a global field F
into the complex dual group “G of a reductive group G over F should
parametrize “packets” of automorphic representations of the adele group
G(A). Thus a map A : “H — LG of complex dual groups should give rise
to lifting of automorphic representations 7z of H(A) to those 7 of G(A).

Here we prove the existence of the expected lifting of automorphic repre-
sentations of the projective symplectic group of similitudes H = PGSp(2)
to those on G = PGL(4). The image is the set of the self-contragredient
representations of PGL(4) which are not lifts of representations of the rank
two split orthogonal group SO(4).

The global lifting is defined by means of local lifting. We define the
local lifting in terms of character relations. This permits us to introduce a
definition of packets and quasi-packets of representations of PGSp(2) as the
sets of representations that occur in these relations. Our main local result
is that packets exist and partition the set of tempered representations. We
give a detailed description of the structure of packets.

Our global results include a detailed description of the structure of the
global packets and quasi-packets (the latter are almost everywhere non-
tempered). We obtain a multiplicity one theorem for the discrete spectrum
of PGSp(2), a rigidity theorem for packets and quasi-packets, determine all
counterexamples to the naive Ramanujan conjecture, compute the multi-
plicity of each member in a packet or quasi-packet in the discrete spectrum,
conclude that in each local tempered packet there is precisely one generic
representation, and that in each global packet which lifts to a generic repre-
sentation of PGL(4) there is precisely one representation which is generic
everywhere. The latter representation is generic if it lifts to a properly
induced representation of PGL(4, A).

3



4 1. Preliminaries

We also prove the lifting from SO(4) to PGL(4). This amounts to estab-
lishing a product of two representations of GL(2) with central characters
whose product is 1. Our rigidity theorem for SO(4) amounts to a strong
rigidity statement for a pair of representations of GL(2, A).

Our method is based on an interplay of global and local tools, e.g. the
trace formula and the fundamental lemma. We deal with all, not only
generic or tempered, representations.

2. Statement of Results

2a. Homomorphisms of Dual Groups

Let G be the projective general linear group PGL(4) = PSL(4) over a
number field . Our initial purpose is to determine the automorphic repre-
sentations 7 (Borel-Jacquet [BJ], Langlands [L4]) of G(A), A is the ring of
adeles of F', which are self-contragredient: 7 ~ 7, equivalently (Bernstein-
Zelevinski [BZ1]), f-invariant: 7 ~ 7. Here 0, 0(g) = J 'tg~1J, is the

involution defined by
7=(5). w= ()

where *g denotes the transpose of g € G, and n(g) = 7(6(g)). Ac-
cording to the principle of functoriality (Borel [Bol], Arthur [A2]) these
automorphic representations are essentially described by representations
of the Weil group W of F into the dual group G = SL(4,C) of G which
are f-invariant, namely representations of Wy into centralizers Za(éé) of
Int(3)6 in G. Here 6 is the dual involution 6(3) = J~''G=1J, and § is a
semisimple element in G. These centralizers are the duals of the twisted
(by 460) endoscopic groups (Kottwitz-Shelstad [KS]). In fact these are the
connected components of the identity of the duals of the twisted endoscopic
groups Za(éé) X Wpg. But in our case the endoscopic groups are split so

the product of Za(éé) with the Weil group Wp is direct. Hence it suffices
for us to work here with the connected component of the identity.

A twisted endoscopic group is called elliptic if its dual is not contained
in a proper parabolic subgroup of G. Representations of nonelliptic en-
doscopic groups can be reduced by parabolic induction to known ones of
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smaller rank groups. For our @, up to conjugacy the elliptic twisted endo-
scopic groups have as duals the symplectic group H = Z@(G) = Sp(2,C)
and the special orthogonal group C = Za(éé) = “S0(4,C)”

=50 (( 2 %).€) = {oestmcpgsrg=s7=(22)}

. . _ (aBbB
which consists of all A® B = (CB dB), where

(A - (j Z) ,B) e [GL(2,C) x GL(2,C)]/C*
satisfy det A - det B = 1. Here z € C* embeds as the central element

(2,271), § = diag(~1,1,~1,1) and w = (fl’ —01).

The group H is the dual group of the simple F-group H = PSp(2) =
PGSp(2), the projective group of symplectic similitudes, which can also be
denoted by the shorter symbol PGp(2). It is the quotient of

GSp(2) = {(9,A) € GL(4) x Gp; 'gJg = AJ}

by its center {(X\,A?)} =~ G,,. Since A is uniquely determined by g (we
write A = A(g)), we view GSp(2) as a subgroup of GL(4) and PGSp(2) of
PGL(4).

The group C is the dual group of the special orthogonal group (“SO(4)”)

C ={(g1,92) € GL(2) x GL(2);det g1 = det g2} /Gy,
Here z € G,,, embeds as the central element (z, z). Also we write
[GL(2) x GL(2)]'/ GL(1)

for C, where the prime indicates that the two factors in GL(2) have equal
determinants.

The principle of functoriality suggests that automorphic discrete spec-
trum representations of H(A) and C(A) parametrize (or lift to) the 6-
invariant automorphic discrete spectrum representations of the group of
A-valued points, G(A), of G. Our main purpose is to describe this lift-
ing, or parametrization. In particular we define tensor products of two
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automorphic forms of GL(2, A) the product of whose central characters is
1. Moreover we describe the automorphic representations of the projec-
tive symplectic group of similitudes of rank two, PGSp(2, A), in terms of
f-invariant representations of PGL(4, A).

Motivation for the theory of automorphic forms is attractively explained
in some articles by S. Gelbart, see, e.g. [G]. For a more technical intro-
duction see part 3, “Background”, of this volume. It is based on a course
I gave at the Ohio State University in 2003. It gives most definitions used
in this work, from adeles to Weil and L-groups, to twisted endoscopy, and
a proof of (Emil) Artin’s conjecture for two dimensional Galois represen-
tations with image A4, Sy in PGL(2,C).

2b. Unramified Liftings

We proceed to explain how the liftings are defined, first for unramified
representations.

An irreducible admissible representation 7 of an adeéle group G(A) is
the restricted tensor product ®m, of irreducible admissible ([BZ1]) rep-
resentations 7, of the groups G(F,) of F,-points of G, where F, is the
completion of F' at the place v of F. Almost all the local components ,
are unramified, that is contain a (necessarily unique up to a scalar multi-
ple) nonzero K,-fixed vector. Here K, is the standard maximal compact
subgroup of G(F,), namely the group G(R,) of R,-points, R, being the
ring of integers of the nonarchimedean local field F,; G is defined over R,
at almost all nonarchimedean places v. For such v, an irreducible unram-
ified G(F,)-module 7, is the unique unramified irreducible constituent in
an unramified principal series representation I(7,), normalizedly induced
(thus induced in the normalized way of [BZ2]) from an unramified char-
acter 7, of the maximal torus T(F;,) of a Borel subgroup B(F,) of G(F,)
(extended trivially to the unipotent radical N(F,) of B(F,)). The space
of I(n,) consists of the smooth functions ¢ : G(F,) — C with

dank) = (6°n)(a)o(k), ke K,, neN(F), acT(F,),
dy(a) = det[Ad(a)| Lie N(F,)], and the G(F,)-action is (g - ¢)(h) = ¢(hg),

g,h € G(F),).
The character 7, is unramified, thus it factors as n, : T(F,)/T(R,) —
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C*. As X.(T) = Hom(G,,, T) ~ T(F,)/T(R,), ny lies in
Hom(X, (T),C*) = Hom(X*(T),C*),

where T is the maximal torus in the Borel subgroup B of @, both fixed in
the definition of the (complex) dual group G (Borel [Bol], Kottwitz [Ko2]).
Now

Hom(X*(T),C*) = X,(T)®C* =T c G.
Thus the unramified irreducible G(F,)-module 7, determines a conjugacy
class t(m,) = t(I(n,)) in G represented by the image of 1, in 7. This class
t(m,) is called the Langlands parameter of the unramified .

In the case of G = GL(n), take B to be the group of upper triangular
matrices, T the diagonal subgroup, and 7, (a1, ...,a,) = [[m(a;) (1 <i <
n). If m, is a generator of the maximal ideal of R, then ¢(I(n,)) is the
class of diag(ny(my), ..., ma(my)) in G = GL(n,C). If G = PGL(n) then
Mm...nn =1 and t(I(n,)) is a class in G = SL(n,C).

We make the following notational conventions: If the components of n
are Ny, Nov, - - - , we write I(n1y, N2y, - - . ) for I(n,). For a representation 7
and a character y we write xm for g — x(g)7(g), and not y ® m, reserving
the notation 7 ® ma, or 71 X e, for products on different groups: (h,g) —
m1(h) @ ma(g) (for example, if (h,g) ranges over a Levi subgroup, the
representation normalizedly induced from the representation m; ® o on
the Levi will be denoted by I (71, 72) or 1 X 79, depending on the context).
We prefer the notation 7 x w9 for a representation of a group which is a
product of two groups, such as our C' = SO(4, F'). By a representation we
mean an irreducible one, unless otherwise is specified.

2c. The Lifting from SO(4) to PGL(4)

We next describe our results on our secondary lifting A1, from C = SO(4)
to G = PGL(4).

We now return to G = PGL(4), 6 and C = [GL(2) x GL(2)]'/ GL(1).
Note that an irreducible unramified GL(2, F,,)-module 1, is parametrized
by a conjugacy class #(m,) in GL(2,C) (the Langlands parameter of the
representation; its eigenvalues are called the Hecke eigenvalues of the rep-
resentation). An unramified irreducible representation my, X g, of C(F,)
is parametrized by a class t(71,) X t(m2,) in

[GL(2,C) x GL(2,C)]"/C* ~ SO (( 0 “) ,c) =Cca.

wto



8 1. Preliminaries

(Double prime means det g; - det go = 1). If 7, is the unramified con-
stituent of

I(Miv),  t(miw) = diag(ni, mi2),  Mij = Nijo(Tw),  M1mi2n2in2e = 1,

we define the “lift” my, Ko, = A1(m1y X T2y) of 71, X wa, with respect to
the dual group homomorphism A; : C = SO(4,C) — G = SL(4,C) (the
natural embedding) to be the unramified irreducible constituent m, of the
PGL(4, F,)-module I(n,) parametrized by the class

t(%) = diag(ﬁunma 77117722777127721’77127722)
in G = SL(4,C). In different notations,

M (I(a1,a2) x I(b1,b2)) = I(aibi,aiba, asby, azbs) (a;,b; € C*),

provided that ajasbibs = 1. Note that the inverse image under A; of
I(ay1b1,a1ba, bias, azbs) consists only of

xI(ay,as) x X_ll(bl,bg) and xI(by,ba) X X_l.[(al,(lg)

where x is any character of F,*. Thus, Ay is two-to-one unless m, = 72,
(the contragredient of my,), where A; is injective on the set of orbits of
multiplication by x in Hom(F<,C*).

The rigidity theorem for the discrete spectrum automorphic represen-
tations of GL(n, A) asserts that discrete spectrum automorphic represen-
tations m = ®my, and 7wy = ®mg, which have w1, ~ mo, for almost all
places v of F are equivalent (Jacquet-Shalika [JS], Moeglin-Waldspurger
[MW1]). Moreover they are even equal, by the multiplicity one theorem
for GL(n) (Shalika [Shal]). Representations of PGL(n, A) (or PGL(n, F},))
are simply representations of GL(n,A) (or GL(n, F,)) with trivial central
character (since H!(F,G,,) = {0}), and the rigidity theorem applies then
to PGL(n). Both multiplicity one theorem, and the rigidity theorem for
packets (the latter asserts that 7 = ®m, and 7’ = @, must lie in the
same packet if m, ~ 7 for almost all v) hold for SL(2) ([F3]) and fail for
SL(n), n > 3 (Blasius [Bla]).

The rigidity theorem holds for C = SO(4); this is the content of the as-
sertion that the lifting A\; is injective, made in the second paragraph of the
following theorem. The first paragraph asserts that the lifting exists. By
an elliptic representation we mean one whose character (Harish-Chandra
[H]) is not identically zero on the set of elliptic elements.
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2.1 THEOREM (SO(4) 1O PGL(4)). Let 11 = @1y, T = R, be
discrete spectrum automorphic representations of GL(2,A) whose central
characters wy, wo are equal, and whose components at two places v1, vy are
elliptic. Then there exists an automorphic representation T = Ay (m X 7t2)
of PGL(4, A) with m, = A1 (71, X 72y) for almost all v.

We have A1(x1m1 X x2m2) = X1X2A1(m X m3) for x; : A*/F* — C*
with (x1x2)* = 1.

If m = wg(p1), m = wr(u2) are cuspidal monomial representations
of GL(2,A) associated with characters pi, pe of Ay /E* where E is a
quadratic extension of F' such that the restriction of pips to A* is 1, then
M(me(p) X me(p2)) = L2 (TE(H1fts), TE(p1p2))-

If {m1,m2} are cuspidal but not of the form {mg(u1), 7p(p2)}, and 71 #
Xxm2 for any quadratic character x of A* /F*, then m R g is cuspidal.

If w1 is the trivial representation 1o and mwo is a cuspidal representa-
tion of PGL(2,A), then A1(1a X ma) is the discrete spectrum noncuspidal
PGL(4, A)-module J(v*/ 27y, v=215). Here v(z) = ||, and J is the quo-
tient of the representation I(V1/27T2,V_1/27T2) normalizedly induced from
the parabolic subgroup of type (2,2) of PGL(4).

The global map A1 is injective on the set of pairs w1 X 7o with w1 = we
up to the equivalence w1 X 7o ~ X7 X X 12, X a character of AX/F*,
and m X Tg 2 79 X 1.

The injectivity means that if 7, o, 70, 79 are discrete spectrum auto-
morphic representations of GL(2,A) with central characters wy,ws,w?, w9
satisfying wijws = 1 = wlwy, each of which has elliptic components at least
at the three places vy, v, vz, and if for each v outside a fixed finite set of
places of F there is a character x, of F,X such that the set {71, X0, 20X, }
is equal to the set {79 , 73, } (up to equivalence of representations), then
there is a character x of A* /F such that the set {7m1x, m2x "'} is equal to
the set {79, 79}. In particular, starting with a pair 7, mo of automorphic
discrete spectrum representations of GL(2,A) with wjws = 1, we cannot
get another such pair by interchanging a set of their components my,,, T2,
and multiplying 71, by a local character and 7, by its inverse, unless
we interchange 71, o and multiply 71 by a global character and 75 by its
inverse.

A considerably weaker result, where the notion of equivalence is gener-
ated only by 71, X 79, = 79y X 71, but not by w1, X oy = X1y X X;lﬁgv,
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follows also on using the Jacquet-Shalika [JS] theory of L-functions, com-
paring the poles at s = 1 of the partial, product L-functions

LY (5,70 x 7ty )LY (5,79 x 7t1) = LY (s, x 7t1)LY (5,73 x 7t1).

Our global results are complemented and strengthened by very precise
local results. If 7 ~ % there is an intertwining operator A with An(g) =
7(0(g))A for all g. By Schur’s lemma we may assume that A2 = 1. Then
A is unique up to a sign. We put n(0) = A and 7(f x ) = n(f)A. We
define \;-lifting locally by means of character relations:

AM(my x7g) =m if  tra(f x 0) =tr(m X 72)(fo)

for all matching functions f, fo (and a suitable choice of A). This defini-
tion is compatible with the one given above for purely induced 7; and 7o
and unramified representations. We have A\ (Io(p, ') X 7o) = Iy(pite, p'7s)
(the central character of the GL(2, F')-module 75 is pu’). The local and
global results are closely analogous.

2d. Special Cases of the Lifting from SO(4)

Let us describe some special cases of the lifting A\;. When mo = 7 is the
contragredient of 71, Aj(m X 1) is the PGL(4, A)-module normalizedly
induced from the maximal parabolic of type (3,1) and the PGL(3,A)-
module Sym?(7;) on the GL(3)-factor of the Levi subgroup (extended triv-
ially to the GL(1)-factor of the Levi, and to the unipotent radical). Here
Sym?(m1) is the symmetric square lifting from GL(2) to PGL(3) ([F3]).
Indeed, if the local component 7y, of w1 at v is unramified then t(my,) =
diag(a,b) (thus my, is a constituent of Iy(a,b)), m, = A1(71, X 71,) has
t(m,) = diag(a/b,1,1,b/a) (thus 7, is a constituent of Iy (I5(a/b,1,b/a), 1),
and I3(a/b,1,b/a) is the symmetric square lifting of I3(a,b)). We write
I,, to emphasize that the representation is of the group GL(n), and e.g.
I(3,1)(73, 1) to indicate the representation of GL(4) induced from its max-
imal parabolic subgroup of type (3,1). However, the results of [F3] are
stronger, in lifting representations of SL(2,A) to PGL(3,A) and conse-
quently providing new results such as multiplicity one for SL(2).
Although we do not obtain here a new proof of the existence of the
symmetric square lift of discrete spectrum representations of PGL(2, A),
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we do obtain new character identities, relating the #-twisted character of
1(3,1)(Sym2 79, 1) with that of my X 5. Clearly in this case the lift \; is
injective: if

)\1(71'1 X 7‘(2) = )\1(7T0 X ﬁ'o) (: I(g,l)(Sym2(7r0), 1))

then 7 = 7o = mo for some character y of A*/F*.

In particular, if 1 is a one dimensional representation g — x(det g) of
GL(2,A), then A\ (my x71) = I(3,1y(13,1) is the representation of PGL(4, A)
normalizedly induced from the trivial representation of the maximal par-
abolic subgroup of type (3,1). An alternative purely local computation of
this twisted character is developed in [FZ].

Let m = w(u) be a cuspidal monomial representation of GL(2,A) asso-
ciated with a character p of Ay /E* where E is a quadratic extension of
F' (denote by o the nontrivial element of Gal(E/F')). Then

Sym® 1 = I o1y (m(1/1), XE/F),

where x g p is the quadratic character of A*/F*Ng/pAj, (Ng/r is the
norm map from E to F'). Moreover,

A (m(p) x 7t(p)) = Iy (m(p/ 1), Xe/ps 1)

is an induced representation from the parabolic subgroup of type (2,1,1) of
PGL(4). Note that the central character of the GL(2, A)-module 7(u) is
XE/F-pA™, for any character p of A /E*. If w(p) is a PGL(2, A)-module
we have that the restriction of p to AF/F* is x /F» nontrivial but trivial
on F*Ng/pAfg,.

If m = 7wg(p1), m = wr(pe), cuspidal monomial representations of
GL(2,A) associated with characters pu1, po of Aj,/E* where E is a qua-
dratic extension of F' such that the restriction of pjus to A* is 1, then

M(me(p) x mE(p2)) = I22)(TE(11f;), 75 (1 p2))-

Indeed

Wg/p = (2,052 € Cp,o20 ' =%,0% € Cp — Ng/rCE)
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where Cp = A% /E* (globally, and E* locally), and the representation
corresponds to

pi(z) O p2(z) 0
ZH( 0 m@)x( % u2(5)>

12 0 oy 0
_ 13 _
}_1) 15V _ (r—>) 1o
H2py H1p2 ’
0 Hoy o 0 Y2

g (m(ooz) (1)) X (uz(oaz) é)

0 1 0 pi(e?)
(e Yo ("7, )
w1 (o) 01 |°
1 0 10

where 1 p2(0?) = 1 and 11;(2) = i (Z), pafig profio = 1 and p;(z) are abbre-

>

viated to p; in the line of z. When iy = p5* we have 7(p1fis) = 7(pu1 /fi;)
and 7(pipe) = I(Xg/F,1). Thus

M(m () x @ (p1)) = L (i /Ay), Xeye, 1) = I (Sym? (n(ua)), 1).

Note that if u : AX — C* has (u/m)? = 1 # f/p then there are
quadratic extensions Ep, E3 and characters y; : Ap /B — C* with
7 (1) = me(p).

Another interesting special case is when 7 is taken to be the triv-
ial representation 1o of PGL(2,A) while 7y is a cuspidal representation
of PGL(2,A). Then A;(12 x m2) is the discrete spectrum noncuspidal
representation J(v'/ 2wy, v=/2my) of PGL(4,A), the quotient of the nor-
malizedly induced I(v*/?my, v=1/?m5) from the parabolic of type (2,2) of
PGL(4). Here v(z) = |z|. Indeed, 15 is the quotient of the induced
I(vY/? v=1/2). Hence

t()\l(].gv X 7T21,)) is (t(l/i/Qﬂ'gv),t(V;1/27T2v)). Then )\1(121, X 7'('21))

1/5/2772@, V;1/27r2,j) of the induced _7(1/1%/27@@7 1/;1/27721,)
1/27,) globally

by the rigidity theorem for this noncuspidal discrete spectrum ([MW1]).

is the quotient J(
for all v where 7y, is unramified. Hence it is J(v'/?my, v~

On the set of pairs m X mo such that at least one of m; or my is one
dimensional, the lifting A; is injective. Indeed, a discrete spectrum rep-
resentation of GL(2,A) with a one-dimensional component is necessarily
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one-dimensional. If w5 is not cuspidal but rather trivial, then the quotient
J( 215,07 1/215) of I;(v'/?15,v71/%1,) is not discrete spectrum, but the
induced I4(13) from the trivial representation of the (3,1)-parabolic; this
is A\1(12 x 12).

2e. The Lifting from PGSp(2) to PGL(4)

We now turn to the study of our main lifting A\, and of the automorphic
representations of the F-group H = (PSp(2) =) PGSp(2) = GSp(2)/G,,,,
where the center G,,, of

GSp(2) = {g € GL(4); 'gJg =AJ, IA=X(g) € G}

consists of the scalar matrices. Its dual group is H = Sp(2,C) = Z@(g) C

G = SL(4,C), where é\(g) = J~'g=1J. It has a single elliptic endoscopic
group Cy different than H itself. Thus

0b

so) il o

’ 0) EH} ~ SL(2,C) x SL(2,C),
0d

where 5o = diag(—1,1,1,—1), and Cy = PGL(2) x PGL(2). Write Aq for
the embedding 60 — ﬁ, and A for the embedding H < G.

The embedding Ao : Co = SL(2,C) x SL(2,C) < H = Sp(2,C) defines
the “endoscopic” lifting

Ao 7T2(M1,/~LII) X 7T2(#27MEI) — WPGSp(Q)(/ila,U'Q)‘

Here o (g4, ;. 1) is the unramified irreducible constituent of the normal-
izedly induced representation I(u;,u; ') of PGL(2, F,) (u; are unramified
characters of )¢, i = 1, 2); Tpasp(2) (1, p2) is the unramified irreducible
constituent of the PGSp(2, F,)-module Ipggp(2)(p1, pt2) normalizedly in-
duced from the character n - diag(«, 5,7,9) — pi(a/v)pu2(a/B) of the
upper triangular subgroup of PGSp(2, F},) (n is in the unipotent radical,
ad = ). R R

The embedding A : H = Sp(2,C) — SL(4,C) = G defines the lifting A
which maps the unramified irreducible representation Tpgsp(2)(p1, t2) of
PGSp(2, F,) to ma(p, pa, iy 5, py 1), an unramified irreducible representa-
tion of PGL(4, F,).
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The composition Ao Ay : Co = SL(2,C) x SL(2,C) — G = SL(4,C)
takes o (p, 1y 1) X mo(pa, g ) to

malpa, o pg g ) = ma(pn, oyt s iz,

namely the unramified irreducible PGL(2, F},) x PGL(2, F,,)-module 7o X 74
to the unramified irreducible constituent my(me,75) of the PGL(4, F,)-
module I4(7, 74) normalizedly induced from the representation 7o ® 75 of
the parabolic of type (2,2) of PGL(4, F,) (extended trivially on the unipo-
tent radical). For example Ao takes the trivial PGL(2, F,)) x PGL(2, F},)-
module 15 x 15 to the unramified irreducible constituent m4(1z,1s) of
I4(12,15), and 15 x 7 to m4 (1o, 72) = 74 (v 2w, v=1/%715). Note that this
last w4 is traditionally denoted by J.

The definition of lifting is extended from the case of unramified rep-
resentations to that of any admissible representations. For this purpose
we define below norm maps from the set of #-stable O-regular conjugacy
classes in G = G(F)) to the set of stable conjugacy classes in H = H(F),
and from this to the set of conjugacy classes in Cy(F'), extending the norm
maps on the split tori in these groups which are dual to the dual groups
homomorphisms A and Ag. This is used to define a relation of match-
ing functions f, fg and fe, (they have suitably defined matching orbital
integrals) and a dual relation of liftings of representations.

To express the lifting results we use the following notations for induced
representations of H = PGSp(2, F'). For characters pi, ps, o of F* with
p1ftoo? =1 we write (17 X pg x o for the H-module normalizedly induced
from the character

p=mu s p(@p®)o(\), m = diag(a,b,A\/b,Ma), uel,
a,b, A € F* of the upper triangular minimal parabolic of H.

For a GL(2, F)-module w5 and character u we write o x u for the
PGSp(2, F')-module normalizedly induced from the representation

p =mu i ma(g)p(A), m=diag(g,\w'g" w), we Uy, AeF*

(here the product of the central character w of o with p? is 1) of the Siegel
parabolic subgroup (whose unipotent radical U,y is abelian).
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We write p X 7o, if wu = 1, for the representation of PGSp(2, F') nor-
malizedly induced from the representation

p = mu +— p(a)ma(g), m = diag(a, g, A(9)/a), u € Unyy,

A(g) = det g, of the Heisenberg parabolic subgroup (whose unipotent rad-
ical U(y) is a Heisenberg group).

These inductions are normalized by multiplying the inducing represen-
tation by the character p — | det(Ad(p))| Lie U|'/?, as usual. For example,

T (i, p2) = papa X pia /o ¥ iy

Note that m x 0 ~ 7 X wo and u(r X o) =7 X po.

Complete results describing reducibility of these induced representa-
tions, stated in Sally-Tadic [ST] following earlier work of Rodier [Ro2],
Shahidi [Sh2,3], Waldspurger [W1], are recorded in chapter V, section 1,
Propositions 2.1-2.3, below. For notations see chapter II, section 4.

For properly induced representations, defining A- and Aq-liftings by char-
acter relations (A(mp) = mq if tr g (f x 0) = tr g (fir) for all matching f,
fr,and Ao(m1 X m2) = wy if trwy (fir) = tr(my X m2)(fe,) for all matching
fu, fc,), our preliminary results (obtained by local character evaluations),
are that w™! x mp A\-lifts to my = Ig (72, 7t2), that umy x u=! (here w = 1)
Mlifts to w4 = Ig(u, o, u~ 1), and that Io(u, u=1) X mo Ao-lifts from Cj to
umy Xt on H =PGSp(2, F).

Let x be a character of F*/F*2. Tt defines a one-dimensional rep-
resentation xg(h) = x(A(h)) of H, which A-lifts to the one-dimensional
representation x(g) = x(detg) of G (if h = Ng then A(h) = detg; on
diagonal matrices N(diag(a,b,c,d)) = diag(ab, ac, db,dc)). The Steinberg
representation of H M-lifts to the Steinberg representation of G, and for
any character x of F'* with x? = 1 we have A\(xz Stm) = x Sta.

2f. Elliptic Representations

Our finer local lifting results concern elliptic representations (whose char-
acters are nonzero on the elliptic set). They follow on using global tech-
niques. Elliptic representations include the cuspidal ones (terminology of
[BZ]. These are called “supercuspidal” by Harish-Chandra, who used the
word “cuspidal” for what is currently named “discrete series” or “square
integrable” representations).
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2.2 LocaL THEOREM (PGSP(2) To PGL(4)). (1) For any unordered
pair Ty, o of square integrable irreducible representations of PGL(2, F)
there exists a unique pair 77?1, my of tempered (square integrable if m # T,
cuspidal if 1 # wo are cuspidal) representations of H with

tr(my x m2)(fo,) = trwg (fu) — trwg (fa),
trIg(my, mo; f X 0) = tr )y (fu) + trog (fa)

for all matching functions f, fu, fc,-

If T = 7o is cuspidal, ﬂ;} and wy are the two inequivalent constituents
of 1 x .

If 1, = Ty = 0 spy where o is a character of F* with 0® = 1, then 71'1‘;
and wg are the two tempered inequivalent constituents T(V1/2 SPa, O'Z/_l/2),
(1?19, 007 2) 0f 1 X o spy.

If 71y = ospy, 02 = 1, and 7o is cuspidal, then WIJ; is the square inte-

1/2 1/2

grable constituent §(ov/ %1y, cv=1/2) of the induced ov/ 1y x ov 12

is cuspidal, denoted here by
5—((7”1/2”270”71/2)'

If Ty = ospy and T = &ospy, € (£ 1 = £2) and o (02 = 1) are
characters of F*, then WIJ; is the square integrable constituent

3(&v/? spy, ov1/?)
of the induced £v'/? SDoy xov~ 1?2, gy 5 cuspidal, denoted here by
6~ (v 2 spy, o™/,

(2) For every character o of F*/F*? and square integrable mo there
exists a nontempered representation wj; of H such that

tr(oly x m2)(fo,) = tr iy (fu) + tr g (fa),
trIg(ols,mo; f x 0) = trojy(fu) — trwg (fu),

for all matching f, fu, fc,. Here

gy = T (0spy X7a), 7% = L(ov?my, o0 1/?).
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(3) For any characters &, o of F*/F*? and matching f, fu, fc, we
have that tr(c€ls X ola)(fc,) is

= tr L&, € @ ov ™ ?)(fur) — tr X (612 spy, Eov™2) (fur),
and tr Ig(o0€ls,0ls; f X 0) is
=tr L(vg, & ayfl/Q)(fH) + trX(fyl/2 sp2,§mfl/2)(fH).

Here X =6~ ifE#1and X =L if £ = 1.

(4) Any O-invariant irreducible square integrable representation 7 of
G which is not a A\i-lift is a A-lift of an irreducible square integrable
representation g of H, thus trw(f x 0) = trwg(fg) for all matching
f, fu. In particular, the square integrable (resp. mnontempered) con-
stituent §(Ev, v 2my) (resp. L(Ev,v~?m3)) of the induced representa-
tion Ev x v~ 21y of H, where ms is a cuspidal (irreducible) representation
of GL(2, F) with central character £ # 1 = €2 and &my = w2, A-lifts to the
square integrable (resp. montempered) constituent

S 2y, v 2my) (resp. JW 2 my, v 27y))

of the induced representation Ig(v*/?mo,v=2m5) of G = PGL(4, F).

These character relations permit us to introduce the notion of a packet of
an irreducible representation, and of a quasi-packet, over a local field. Thus
we say that the packet of a representation wy of H consists of my alone un-
less it is tempered of the form 7}, or 7y for some pair 71, 72 of (irreducible)
square integrable representations of PGL(2, F'), in which case the packet
{my} is defined to be {7};, 7}, and we write A\o(m1 x m2) = {7};, 75} and
)\({ﬂ'?_},?‘(‘]_{}) = Ig(m1,m2). Further, we define a quasi-packet only for the
nontempered (irreducible) representations 7y, and L = L(v€, & x ov™1/2),
to consist of {75, 75} and {L, X}, X = X (&v'/2spy, Eov™1/2). We say
that o1y X w2 A¢-lifts to the quasi-packet A\o(oly X m2) = {7}, 75},
which in turn A-lifts to Ig(ols,m), and similarly, 0€1s X ol Ap-lifts
to Ao(0€1le x 013) = {L, X} which A-lifts to Ig(0€1a,012).

Conjecturally our packets and quasi-packets coincide with the L-packets
and A-packets conjectured to exist by Langlands and Arthur [A2-3].

Using the notations of section V.11 below, we state the analogue of
these results in the real case: F' = R. For clarity, denote m; and mo
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above by 7! and 7%, In (1), 7' = 7w, and 7 = my,, k1 > k2 > 0
and ki, ko are odd, are discrete series representations of PGL(2,R), and
WIJ} is the generic w,ﬁ‘f}‘kz, 7y is the holomorphic ng’lkz, which are discrete
series representations of PGSp(2,R) when k1 > ko. When ki = ko, ﬂ'I‘S
is the generic and 7y is the nongeneric (tempered) constituents of the
induced 1 x map, +1. There is no special or Steinberg representation of
GL(2,R); the analogue is the lowest discrete series m1. The 7 are self
invariant under twist with sgn. In (2) with 7% = mory3 (K > 0), 7y is
L(ovY?mopy3, 00~ 1/2), Ty is 775,?14_371, 771'; is w;’}iﬂl_&l. In (3), if £ = sgn
then X is the tempered 7 C 1 x 7y, if £ =1 then X is L(vY?my, o0 1/2).
Both of these X, as well as L(v¢€, € % ou_l/z), are not cohomological. In
(4), 72 is Topye, L(&v,v1/21?) is L(sgnv, v 2 mapys), 6(Ev,v1/21?) is

hol Wh
Tok+3,2k+1 P Topt3 2k41-

2g. Automorphic Representations

With these local definitions we can state our global results. These global
results are partial, since we work with test functions whose components
are elliptic at least at three places, and consequently we cannot detect
automorphic representations which do not have at least three components
whose (6-) characters are nonzero on the (6-) elliptic set. Thus we fix
three places {v1, ve, vs} and discuss only 7 X 7, 7y and m = m¢ whose
components there are (6-) elliptic.

Let us explain the reason for this restriction. The (noninvariant) trace
formula, as developed by Arthur, involves weighted orbital integrals and
logarithmic derivatives of induced representations. Arthur’s splitting for-
mula shows that these can be expressed as products of local distributions,
which are all invariant (orbital integrals or traces of induced representa-
tions) except at most at rank(H) places. Working with test functions
fu = ®fm, with rank(H)+1 components fr, with tr 7g,(fr,) = 0 for
every tempered properly induced representation 7y, of H, (equivalently:
frv whose orbital integrals vanish on the regular nonelliptic set of H,), all
non elliptic terms vanish. We call such fg, elliptic. At an additional place
we use a regular Iwahori biinvariant component (see [FK1], [FK2], [F2] or
[F3;VI]) to annihilate the singular orbital integrals. For the twisted trace
formula we use the twisted rank, which is equal to rank(H), to obtain the
same vanishing. This removes all complicated terms in the trace formulae
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comparison. Here rank means the F-dimension of a maximal split torus in
the derived group, or in the derived group of the group of fixed points of
the involution in the twisted case.

For very little effort we can reduce the number of restrictions to two,
rather than three. Using elliptic components fr.,, fHv,, implies that the
local factors at each v # wv1, vg, in the terms in the trace formula, are
invariant. We then use at a third, nonarchimedean, place vs a regular-
Iwahori function (as in [FK1], [FK2], [F2], [F3;VI]). Similar choice is made
for the twisted formula. The geometric sides of the trace formulae consist
now of elliptic terms only. As the distributions at vs which occur in the
trace formula are invariant, such fx,, can also be taken to be a spherical
function with the same orbital integrals as the Iwahori-regular component.
The resulting equality of discrete and continuous measures (the continuous
measure comes from the spectral sides), which are invariant distributions
in fy,, implies their vanishing by the (standard) argument of “generalized
linear independence of characters” (using the Stone-Weierstrass theorem)
employed in this context in [FK1], [FK2|, [F2], [F3]. To simplify our
exposition we do not record this argument here, but our global results
can safely be used with two restriction, at vy, vo, rather than three.

One can do better, and require that only one component, fz,, be ellip-
tic, at a single real place v. This argument, explained in Laumon [Lau],
requires very extensive referencing to much of Arthur’s deep analysis of the
distributions appearing in the trace formula. Inclusion of these arguments
here would have made this work more complicated than the relatively el-
ementary exposition I wish to present. However, our results are provable
for global representations with a single elliptic component at a real place.
This suffices for all purposes of studying the decomposition of the ¢-adic
cohomology with compact supports of the Shimura variety associated with
our group, and any coefficients, as a Galois-Hecke module ([F7]).

These constraints will be removed once the trace formulae identity is
established for general test functions. This is being developed by Arthur.
A simpler method, based on regular functions, has been introduced when
the rank is one (see [F2:I], [F3;VI], [F4;III]) to establish unconditional
comparison of trace formulae. But it has not yet been extended to the
higher rank cases.

With this reservation, emphasized by a *-superscript in the following



20 1. Preliminaries

Global Theorem, the discrete spectrum representations of PGSp(2, A), i.e.
H(A), can now be described by means of the liftings. They consist of
two types, stable and unstable. Global packets and quasi-packets define
a partition of the spectrum. To define a (global) [quasi-] packet {7y},
fix a local [quasi-] packet {mp,} at each place v of F, such that {7g,}
contains an unramified member 7%, (and then {m,} consists only of 7%
in case it is a packet) for almost all v. The [quasi-] packet {mg} is then
defined to consist of all products ®,7;, with 7%, in {mg,} for all v, and
7y, = e, for almost all v. The [quasi-] packet {7} of an automorphic
representation 7y is defined by the local [quasi-] packets {mg,} of the
components 7wy, of Ty at almost all places.

The discrete spectrum of PGSp(2,A) will be described by means of
the Ao- and A-liftings. We say that the discrete spectrum m; X mo Ag-lifts
to a packet {mg} (or to a member thereof) if {mm,} = Ao(71 X Tay)
for almost all v, and that a packet {7y} (or a member of it) A-lifts to an
irreducible self-contragredient automorphic representation m if A\({m g, }) =
7y for almost all v. The unstable spectrum of PGSp(2,A) is the set of
discrete spectrum representations which are Ag-lifts; its complement is the
stable spectrum. A [quasi-] packet whose automorphic members lie in the
(un)stable spectrum is called a(n un)stable [quasi-] packet.

2.3 GLoOBAL THEOREM* (PGSpP(2) TO PGL(4)). The packets and
quasi-packets partition the discrete spectrum of the group PGSp(2, A), thus
they satisfy the rigidity theorem: if 7y and 7y are discrete spectrum rep-
resentations locally equivalent at almost all places then their packets or
quasi-packets are equal.

The A-lifting is a bijection between the set of packets (resp. quasi-
packets) of discrete spectrum representations in the stable spectrum (of
PGSp(2, A)) and the set of self contragredient discrete spectrum representa-
tions of PGL(4, A) which are one dimensional, or cuspidal and not a Ay -lift
from C(A) (or residual J(v'/?mo,v=1/2my) where 7y is a cuspidal repre-
sentation of GL(2,A) with central character £ # 1 = €2 and Emy = 72).

The \g-lifting is a bijection between the set of pairs of discrete spectrum
representations

{71 X ma,ma X m;m £ w2} of PGL(2,A) x PGL(2,4A),

and the set of packets and quasi-packets in the unstable spectrum of the
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group PGSp(2,A). The \-lifting is a bijection from this last set to the
set of automorphic representations Ig(my,m2) of PGL(4, A), normalizedly
induced from discrete spectrum w1 X o (71 # T2) on the parabolic subgroup
with Levi factor of type (2,2). If w1 X wo is cuspidal, its Ao-lift is a packet,
otherwise: quasi-packet.

Each member of a stable packet occurs in the discrete spectrum of the
group PGSp(2, A) with multiplicity one. The multiplicity m(7g) of a mem-
ber Ty = Qmr, of an unstable [quasi-|packet \o(m1 X ma) (71 # 7a) is not
(“stable”, or) constant over the [quasi-|packet. If w1 X 7o is cuspidal, it is

m(m) = 3 (1+(~1)0) (€ {0,1)).
Here n(mg) is the number of components mwp, of my (it is bounded by the
number of places v where both 71, and 72, are square integrable). FEach
mg with m(ng) =1 is cuspidal.
The multiplicity m(mg) (in the discrete spectrum of PGSp(2,A)) of
T = QT from a quasi-packet Ao(ols X ma), where 7o is a cuspidal
representation of PGL(2,A) and o is a character of AX /F*A*X? is

S0 +elom, ") (=0 or 1),

where n(mg) is the number of components mp, of T, and (e, s) is the
usual e-factor which appears in the functional equation of the L-function
L(7a,s). In particular w3 = ®@mjy, (n(my) = 0) is in the discrete spectrum
if and only if e(oms, %) =1.

Finally we have m(mgy) = %(1+(71)”(”H)) formy = Qmpy in Ag(0€la X
ols) with n(mwg) components wp, = X,. Here mg = QL,, (n(ng) =0) is
residual.
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2h. Unstable Spectrum

Note that the quasi-packet Ag(c€1ls X 0lg) is defined by the local quasi-
packets

{Ly = L(vp&, & x oo ), Xy = X(&vi/? sDgy, Evoury V/2)}
for every v, where £ (# 1), o are characters of AX/F* with (2 =1 = o2
and &,, o, are their components. When &,,, o, are unramified, this quasi-
packet contains the unramified representation ﬂ%v = L,. Members of
this quasi-packet have been studied by means of the theta correspondence
by Howe and Piatetski-Shapiro, see, e.g., [PS1], Theorem 2.5. They at-
tracted interest since they violate the naive generalization of the Ramanu-
jan conjecture, which expects the components of a cuspidal representation
to be tempered. (The form of the Ramanujan conjecture which is ex-
pected to be true asserts that the components of a cuspidal representation
of PGSp(2, A) which A-lifts to a representation of PGL(4, A) induced from
a cuspidal representation of a Levi subgroup, are tempered.) Members of
this quasi-packet are equivalent at almost all places to the quotient of the
properly induced representation v€ x &€ x ov~1/2,

Let 7o be a cuspidal representation of PGL(2,A), o a character of
AX/F*A*2. The packet Ao(cly x m2) contains the constituent 77 =
1/2 —-1/2 —-1/2 1/2 brop-

erly induced from an automorphic representation, hence it is automorphic

®U7r1>;v of the representation ov'/“my X ov ~ oV To X OV
by [L4]. It is known that 7}; is residual precisely when L(oma, 3) # 0;
hence e(oms, ) = 1 in this case.

Let n(m2) denote the number of square integrable components of 7.
The quasi-packet A\o(c1y x 72) thus consists of 2"(™2) (irreducible) repre-
sentations. If n(mg) > 1, half of them in the discrete spectrum, all cuspidal
if L(omy, 1) = 0, all but one: 7}y = ®,7};,, are cuspidal if L(oms, 1) # 0.
If n(m2) > 1 and L(om, 3) = 0, the automorphic nonresidual 7; is cuspi-
dal when e(oms, 3) = 1.

If w2 has no square integrable components (n(m2) = 0), the packet
Ao(o1y x 73) consists only of m;. This 77 is residual if L(oms, 3) # 0;
cuspidal (by [PS1], Theorem 2.6 and [PS2], Theorem A.2) if L(o7a, 3) =0
and e(oms, 1) = 1; or (automorphic but) not in the discrete spectrum

otherwise: L(oms, 1) = 0 and &(om2, 3) = —1. In this last case the Ao-
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lift of o1s X 75 is not in the discrete spectrum, and there is no discrete
specrtum representation A-lifting to Ig (ol m2).
At a place v where Ty, is induced I(p,,u; 1), the packet

THy = >\O(0"u12 X 7721;)

is the irreducible induced p,0,12 X py L which A-lifts to the induced
Ig(pty, 0012, iy t), and not the irreducible induced
—1,1/2

X Oyfhy "V,

1/2
V) v

—-1/2 1/2 -1 —-1/2
UU:U”UV1 A UUVv / = O—U:U’UVU/ X I(N’v s Ool, / )7

v¥u
which A-lifts to the reducible induced ¢y, opI(va/?, vy /?), uz ), which
has the constituent Ig (i, 0,12, pyt).

Members of the quasi-packet A\g(0ly X 7m2) were studied numerically
by H. Saito and N. Kurokawa, and using the theta correspondence by
Piatetski-Shapiro and others, see [PS1], Theorem 2.6. They attracted in-
terest since they violate the naive generalization of the Ramanujan con-
jecture. They are equivalent at almost all places to the quotient of the

1/2 -1/2.

properly induced representation ov/“my X ov

A discrete specrtum representation 7y with a local component
L(I/va, V;1/27T2v)

(whose packet consists of itself), where mq, is a cuspidal representation
with central character &, # 1 = &2 and &,7ma, = 2., is in the packet of
L(v€,v=2m,). Here my is cuspidal with central character £ # 1 = £2,
hence £y = w9, whose components at v are my, and &,. It A-lifts to
Ja(v?me,v=12m5). At v with &, = 1 the component 7, is induced. If
Top = I(, oés), €2 = 1 and p2 = 1 (in particular whenever ¢, # 1
and 7y, is not cuspidal), then L(vav,ugl/%rgv) is Ly, = L&y, & X
,uvyv_l/Q), which A-lifts to Ig (w12, t€y1ls), and its packet contains also
X, = X(l/i/va sp2y,§upvugl/2). Thus the packet of 7wy is determined
by {L,, X} at all v where 7o, = I(jty, p€y), p2 = 1 = €2, and by the
singleton {L, = L(vy&y, Ve 1/ 27@,)} at all other v, where mq, is cuspidal,
or & = 1 and mo, = I(po, ity 1), p2 # 1. Each member of this infinite
packet occurs in the discrete specrtum with multiplicity one, and is cuspi-
dal, with the exception of L(v&,v=2my) = @, L(vpée, 1/{1/2772”), which is
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residual ([Kim], Theorem 7.2). Members of the packet L(v€,v~1/2my) are
considered in the Appendix of [PS1] and its corrigendum.

If w1 and 75 are cuspidal but there is no place v where both are square
integrable, A\g(m1 X m2) consists of a single irreducible cuspidal representa-
tion. This instance of the lifting A\g — where 7; are cuspidal — can also be
studied ([Rb]) using the theta correspondence for suitable dual reductive
pairs (SO(4), PGSp(2)) for the isotropic and anisotropic forms of the or-
thogonal group, to describe further properties of the packets, such as their
periods.

2i. Generic Representations

Our proof of the existence of the lifting A uses only the trace formula,
orbital integrals and character relations. However, for cuspidal represen-
tations 7y, mo of PGL(2, F'), F local, we get only the character relation

tr Ig(my, mo; f % 0) = (2m + V)[tr 7y (fu) + tr iy (Fur)).

Here f on G = PGL(4, F) and fg on H = PGSp(2, F) are any matching
functions, and m = m(my,72) is a nonnegative integer. To prove multi-
plicity one theorem for PGSp(2, A) we need the fact that m = 0.

Our proof is global. It uses the following results from the theory of
the theta correspondence, Whittaker models and Eisenstein series. (1)
Ginzburg-Rallis-Soudry [GRS], Theorem A: Each representation I(my, m2)
of PGL(4,A) normalizedly induced from a cuspidal representation m X
mo of its (2,2)-parabolic, where 7m; # my are cuspidal representations of
PGL(2,4A), is a A-lift of a unique generic cuspidal representation mwp of
SO(5,A) = PGSp(2,A). (2) Kudla-Rallis-Soudry [KRS], Theorem 8.1: If
7o is a locally generic cuspidal representation of Sp(2,A) and the partial
degree 5 L-function L(S,my,ids,s) is # 0 at s = 1 then 7 is (globally)
generic. (3) Shahidi [Shl], Theorem 5.1: If my is a generic cuspidal rep-
resentation of Sp(2,A), then L(S,m,ids,s) is # 0 at s = 1. See chapter
V, section 7, and the final remark in section 6, for further comments. We
do not use the assertion (attributed to “a yet to be published result of
Jacquet and Shalika”) in the Remark following the statement of Theorem
8.1 in [KRS], p. 535 (that a cuspidal representation of GSp(2) is generic iff
it lifts to GL(4)), which contradicts — at least as stated — our result that all
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representations but one in a packet of PGSp(2) are nongeneric, yet they
all lift to PGL(4).

Our global proof resembles (but is strictly different from) the second
proof of [F4;I1], Proposition 3.5, p. 48, which is also based on the theory
of generic representations. This Proposition claims the multiplicity one
theorem for the discrete spectrum of U(3, E/F). However, the proof of
[F4;10), p. 48, is not complete. Indeed, the claim in Proposition 2.4(i) in
reference [GP] to [F41], that “L§ ; has multiplicity 17, is interpreted in
[F4;I1] as asserting that generic representations of U(3) occur in the discrete
spectrum with multiplicity one. But it should be interpreted as asserting
that irreducible 7 in Lal have multiplicity one only in the subspace La1
of the discrete spectrum. This claim does not exclude the possibility of
having a cuspidal 7’ perpendicular and equivalent to m C L%,r

Multiplicity one for the generic spectrum would follow via this global
argument from the statement that a locally generic cuspidal representation
is globally generic (multiplicity one implies this statement too). In our
case of PGSp(2) we deduce from [KRS], [GRS], [Sh1] that a locally generic
cuspidal representation which is equivalent at almost all places to a generic
cuspidal representation is globally generic. A proof for U(3) still needs to
be written down.

The usage of the theory of generic representations in the proof described
above is not natural. A purely local proof of multiplicity one theorem for
the discrete spectrum of U(3) based only on character relations is proposed
in [F4;11], Proof of Proposition 3.5, p. 47. It is based on Rodier’s result
[Rol] that the number of Whittaker models is encoded in the character
of the representation near the origin. Details of this proof are given in
[F4;IV] in odd residual characteristic in the case of basechange for U(3).
It implies that in a tempered packet of representations of U(3, E/F') there
is precisely one generic representation, and that each generic packet of
discrete spectrum representations of U(3, Ag/Ap) — where a generic packet
means one which lifts to a generic representation of GL(3,Ag) — would
contain precisely one generic member. Moreover, a locally generic cuspidal
representation of U(3, Ag/AFp) is generic.

This type of a local argument was introduced in [FK1] in the proof
of the metaplectic correspondence and the multiplicity one theorem for
the discrete spectrum of the metaplectic group of GL(n, A). We have not
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carried out this local proof in the case of PGSp(2) as yet.

In the case of PGSp(2) our global proof implies that a local tempered
packet contains precisely one generic representation, and that a global
packet which lifts to a generic representation of PGL(4,A) contains pre-
cisely one everywhere generic representation. The latter is generic if the
packet is unstable (in the image of the lifting Ag). We do not show that
a locally generic cuspidal representation of PGSp(2, A) which is stable (-
lifts to a cuspidal representation of PGL(4, A)) is generic.

There is some overlap between our results on the existence of the A-
lifting and the work of [GRS] which asserts that the weak (i.e., in terms of
almost all places) lifting establishes a bijection from the set of equivalence
classes of (irreducible automorphic) cuspidal generic representations of the
split group SO(2n+1, A), to the set of representations of PGL(2n, A) of the
form w = I(my, ..., ), normalized induction from the standard parabolic
subgroup of type (2n1,...,2n,), n = ny +--- + n,, where 7; are cuspidal
representations of GL(2n;, A) such that L(S,7;, A2, s) has a pole at s = 1
and m; # m; for all i # j, and the partial L-function is defined as a
product outside a finite set S where all 7; are unramified. Of course we
are concerned only with the case n = 2, where PGSp(2) ~ SO(5).

Our characterization of the lifting A is (as in [GRS]) that I(m1,72),
cuspidal representations 7y # my of PGL(2, A), are in the image; and that
self contragredient cuspidal representations 7 of PGL(4, A) are in the image
of the lifting A from PGSp(2,A) (= SO(5, A)) precisely if they are not in
the image of the lifting Ay from SO(4, A). The cuspidal m = A(7wp), generic
7g, are characterized in [GRS] as the m ~ 7 such that L(S, 7, A% s)7! is
0 at s = 1. Thus the characterization of the cuspidal image of A\ here is
complementary to but different than that of [GRS].

However, the methods of [GRS] apply only to generic representations,
while our methods apply to all representations of PGSp(2). In particular,
we can define packets, describe their structure, establish multiplicity one
theorem and rigidity theorem for packets of PGSp(2), specify which mem-
ber in a packet or a quasi-packet is in the discrete spectrum, and we can
also A-lift the nongeneric nontempered (at almost all places) packets to
residual self-contragredient representations of PGL(4, A). Our liftings are
proven in terms of all places, not only almost all places. In addition we
establish the lifting A; from SO(4) to PGL(4), determine its fibers (that
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is, prove multiplicity one theorem for SO(4) and rigidity in the sense ex-
plained above), and show that any self-contragredient discrete spectrum
representation of PGL(4,A) which is not a A-lift from PGSp(2,A) is a
Ar-lift from SO(4, A).

2j. Orientation

This work is an analogue for (SO(4),PGSp(2),PGL(4)) of [F3], which
dealt with (PGL(2),SL(2), PGL(3)), thus with the symmetric square lift-
ing, and of [F4], which dealt with quadratic basechange for the unitary
group U(3,E/F), thus with (U(2,E/F), U(3,E/F), GL(3,E)). These
works use the twisted — by transpose-inverse (and the Galois action in the
unitary groups case) — trace formulae on PGL(4), PGL(3), GL(3, E). They
are based on the fundamental lemma: [F5] in our case, [F3;V] and [F4;]I] in
the other cases. The technique employed in these last works benefited from
work of Weissauer [W] and Kazhdan [K1]. The present work, which deals
with the applications of the fundamental lemma and the trace formula to
character relations, liftings and the definition of packets, is analogous to
[F3;IV] and [F4;11].

The trace formula identity is proven in [F3;VI] and [F4;III] for all test
functions. Here we deal only with test functions which have at least three
elliptic components. The trace formulae identity for a general test function
has not yet been proven in our case. Perhaps the method of [AC] could be
used for that, as it has been applied in a general rank case. It would be
interesting to pursue the elementary techniques of [F3;VI] and [F4;II1], and
[F'2;I], which establish the trace formulae identity for basechange for GL(2)
by elementary means, based on the usage of regular, Iwahori test functions.
In particular the present work does not develop the trace formula. It only
uses a form of it.

Our approach uses the trace formula, developed by Arthur (see [Al]),
as envisaged by Langlands e.g. in his work on basechange for GL(2).

Of course Siegel modular forms have been extensively studied by many
authors (e.g., Siegel, Maass, Shimura, Andrianov, Freitag, Klingen...) over
a long period of time, and several textbooks are available.

As noted above, an important representation theoretic approach alter-
native to the trace formula, based on the theta correspondence, Weil rep-
resentation, Howe’s dual reductive pairs, L-functions and converse theo-
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rems, has been fruitfully developed in our context of the symplectic group
by Piatetski-Shapiro, Howe, Kudla, Rallis, Ginzburg, Roberts, Schmidt,
Soudry, and others, see, e.g., [PS], [KRS], [GRS], [Rb], [Sch].

A purely local approach to character computations is developed in [FZ].

Our results are used by P.-S. Chan [Ch] to determine the representations
of GSp(2) which are invariant under twisting by a quadratic character.

The classification of the automorphic representations of PGSp(2) has
applications to the decomposition of the étale cohomology with compact
supports and twisted coefficients of the Shimura varieties associated with
GSp(2), see [F7]. Our techniques extend to deal with admissible and au-
tomorphic representations of GSp(2), but this we do not do here.

The present part is divided into five chapters: 1. Introduction, II. Basic
Facts, III. Trace Formulae, IV. The Lifting A;, V. The Lifting A\. Each is
divided into sections. Definitions or propositions are numbered together
in each section.

3. Conjectural Compatibility

Our local results are analogous to those of Arthur [A2], who verified them
in the real case, and are consistent with his conjectures. We shall assume
in this section, not to be used anywhere else in this work, familiarity with
[A2], [A3], and briefly highlight some of the definitions and conjectures of
[A2] in our context, in our notations (H,Cy in place of Arthur’'s G, H).
For brevity we write W for the Weil group of the local field, but as in
[A2], 2.1, this group has to be the motivic Galois group of the conjecturally
Tannakian category of tempered representations of all GL(n)’s in the global
case, a complex pro-reductive group, or an extension of Wg by a connected
compact group (Wr x SU(2,R) in the p-adic case).

Thus ®(H/F) denotes the set of H-conjugacy classes of admissible (in
particular, pry o¢ = idy, ) maps

¢ Wrp—TH=HxWp (H="H.

It contains the subset Piemp(H/F) defined using the ¢ with bounded
Im(pr; o¢). Note that for a split adjoint group H over F, H is simply
connected, and for any semisimple s in H, the centralizer Cy = Z i (s) of



3. Congectural Compatibility 29

sin H specifies the endoscopic group H uniquely (up to isomorphism).
Write Sy = S = Z5(¢(WF)) (centralizer in the connected group H of
. Z = Z5(MH) C H, and note that Sy = S¢/SgZ is a
finite abelian group, conjecturally in duality with the packet 1I4 to be as-
sociated with ¢ € Iiemp(H/F) (this is the case when F = R, see [A2]).
Arthur [A2] defines a further set W(H/F') of H -conjugacy classes of maps
¥ : Wg x SL(2,C) — L H such that ¢|Wg € ®emp(H/F), and a map

the image of ¢)

b b u(w) =, ()70 ),
which embeds W(H/F) in ®(H/F). Each ¢ can be viewed as a pair
(¢,9) € (Premp(H/F) x Hom(SL(2,C), S5))/ Int(5y)

(quotient by Sg-conjugacy). Then ®iemp(H/F) embeds in ¥(H/F') as the
(¢,1). Put
Sy = Sil = Z5(b(Wr x SL(2,C))).

It is equal to
Zs,, (p(SL(2.C))),

a subgroup of Sy, and there is a surjection Sy, = S¢/532 - Sp,,- The
group Sy is in duality with the quasi-packet IL; conjecturally associated
with 1. Globally, the quasi-packet II,; contains no discrete spectrum rep-
resentations of H unless Sy, is finite. R

Let us review the examples of [A2], where H = Sp(2,C) D Cy =
a00D

SL(2,C) x SL(2,C) = { (8 : ? 8) } The parameter ¢ can be described

c00d
by the maps

(¢ =1 X da,p=p1 X p2): Wr xSL(2,C) — SL(2,C) x SL(2,C).
If ¢; : W — SL(2,C) are irreducible and inequivalent, p = 1,
ZSL(Q,(C)(IHI¢Z’) = {i]}, S¢w = Z/2 X Z/27 de = Z/Q,

Sy =7Z/2xZJ2, Sy =7Z/2. This is a “classical” tempered case, as Im ¢,
are bounded.
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If ¢1 = ¢ is irreducible, p = 1, Sy, = O(2,C) = Sy, (this group consists
of the diag(g, %), g% = wtg~'w, w = ((1) (1)), which commute with (3 15)7
thus g'g = I), Sy, = SO(2,C) and Sy, = Sy = Z/2 (= (diag(w,w))).

These cases correspond to Ag(m1 X ma), where 71, my are in the discrete
spectrum; a local packet consists of 2 = [Z/2] elements. A global packet
in the second case consists of no discrete spectrum representations since
Sy = 0(2,C) is not finite. In the first case, where my # 7, the packet
consists of 2™ irreducibles, where n is the number of places where both mq
and 7o are square integrable; half of the members in the packet are in the
discrete spectrum (one, if n = 0).

If ¢; is irreducible and Im(¢2) C {£I}, and p = 1 x id, we have Sy, =
Z/2 x C* (= {diag(t,z,271,1); z € C*, v € {£1}}), Sy, = {1}, Sy =
Z/2 x ]2, Sy, = Z/2. This is the case of X\o(m1 X ¢21s), where ¢ is a
character.

If Im¢; C {£I} but ¢ # ¢2, and p; = id, Sy, = C* x C* (=
{diag(z,t,t71,271); z,t € C*}), Sy, = {1}, Sy = Z/2 X L/2, Sy = Z/2.
This is the case of Ag(¢11a X ¢ols), where ¢y # ¢ are characters of
F*/F*2 or AX/F*AX2,

If $1 = ¢ with image in {£[}, and p; = id, Sy, = GL(2,C) (=
{diag(g,9%); g € GL(2,C)}), Sp,, = {1}, Sy = O(2,C), Sy = Z/2. This is
the case of A\g(¢112 X ¢115), whose packet contains no discrete spectrum
representations, and indeed Sy, = O(2,C) is not finite.

In addition we determine that the multiplicity dy of [A2], p. 28, is one.

4. Conjectural Rigidity

This section explains the rigidity theorem for SO(4) via the principle of
functoriality. It is based on conversations with J.-P. Serre at Singapore.

4.1 PROPOSITION. Let 01, n2, 1y, nh: Wr — GL(2,C) be (irreducible
continuous) representations of the Weil group Wg of F which are un-
ramified at almost all places v (so they depend there only on the Frobe-
nius element) with m @ na|Wg, ~ 1 @ nh|Wg, for almost all v and
with detn; - detny = detn) - det ). Then there exists a homomorphism
X : Wg — C* such that 1}, = xm and 05 = x 712, or nh = xn2 and

/-1
N2 =X "M
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Since the subgroup of Wr generated by the Frobenii is dense, we may
consider instead a group I' (instead of Wg), and two representations p;
(instead of 71 ® 12) which are locally conjugate, which means that py ()
is conjugate to pa(7y) for each v in T, or alternatively that the restrictions
of p1, p2 to any cyclic subgroup are conjugate. We wish to know whether
they are conjugate as representations.

We say that a group G over C has the rigidity-property if for any group I',
any two locally conjugate representations p1, ps : ' — G(C) are conjugate.
Variants are naturally defined (for special T' and p). For example, if T
is finite and G = GL(n), character theory asserts that locally conjugate
p1,p2 : I' = GL(n,C) are conjugate. The group G = GL(n) has the
rigidity-property for any semisimple continuous representations pi, ps of
the Weil group. On the other hand, the group PGL(n,C) does not have
the rigidity-property since it is the dual group of SL(n), for which rigidity
does not hold.

In our case we wish to know whether locally conjugate pi, p2 into
SO(4,C) are conjugate. They are not, but almost are: they are conjugate
in O(4,C), which is the semidirect product of SO(4,C) with an element
which maps 71 ® 2 to 72 ® n;. We proceed to explain this via the group
theoretical notion of fusion control.

4.2 DEFINITION. Given groups G D H' D H we say that H' controls
the fusion of H in G if for any sets A, B in H and g in G with gAg~— = B
there is h in H' with hah™! = gag™! for every a in A, namely h~1g lies in
the centralizer Cg(A) of A in G.

4.3 EXAMPLE. Let S be an abelian p-Sylow subgroup in a finite group
G, and N = Ng(S) the normalizer of S in G. Then S C N C G and N
controls the fusion of § in G.

PROOF. Since S is abelian and A is a subset of S we have that S
is contained in the centralizer Cz(A) of A in G. Hence S is a p-Sylow
subgroup of Cg(A). Now the abelian S commutes with any subset B of
S, hence ¢~ 'S¢ commutes with g~'Bg = A, and so ¢~ 'S¢ is a p-Sylow
subgroup of Cg(A) for any g in G. Since p-Sylow subgroups are conjugate,
there is u in Cg(A) with g='Sg = uSu~!; take h = gu € Ng(S). Then

1

hah™' = guau='g~! = gag~! for any a in A. O
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3.4 EXAMPLE. Let G be an algebraic reductive group, 7" a maximal
torus and N = Ng(T') the normalizer of T'in G. Then T'C N C G and N
controls the fusion of T in G.

Proor. If A is any subset of the abelian T, we have that T lies in
the centralizer Cz(A) of A in G. Hence T is a maximal torus in Cg(A).
Now T commutes with any of its subsets B, hence ¢~ 'T¢g commutes with
g 'Bg = A, and so g~ 'Tg is a maximal torus in Cg(A). Since maximal
tori of a reductive group are conjugate, there exists u in Cg(A) such that
g 'Tg = uTu~'. Hence h = gu lies in Ng(T) and satisfies hah™! =
guau~!' = gag~! for any a in A. O

4.5 PROPOSITION. Let S =1tS be a symmetric matriz in GL(n,C). Put
g* = Stg=1S~L. Then the orthogonal group O(S,C) = {g € GL(n,C); g =
g*} controls its own fusion in GL(n,C).

PROOF. Suppose that A, B are subsets of O(S,C) and g € GL(n
satisfies gAg~! = B. For each a in A we have a* = a, hence g*ag*~
(gag™)* = gag™! (as b = b* for b = gag™'). Then ¢ = g~ 'g* commutes
with each a in A, and ¢*~! = SteS™! = Stg*tg= 181 = g7 18tg~ 1671 =
g 'g* = c. Let d be a square root of ¢, thus ¢ = d?. Using the bino-

©)

)
1

mial expansion u!/2 = >0 (é)(u — 1)™ for a unipotent matrix u and
(re?)t/2 = ¢1/2¢9/2 (0 < 6 < 27, r > 0), the Jordan decomposition
¢ = su = us and diagonalization, we express d as a function f(c) in ¢,

where f satisfies f(zyz~!) = 2f(y)z~! and f(*z) = !f(z). Then

d* =85St =8f(te)ST! = f(S'eSTH) = f(c¢"Y) = fle) =d
and h = (gd)* = g*d* = ged™! = gd satisfies (gd)a(gd)~* = gag™!, for all
ain A. |

4.6 COROLLARY. If p1, p2 : T' — O(S,C) are representations of a
group T into the orthogonal group O(S,C), and there is g in GL(n, C) with
p2 = gp1g~ ", then there is h in O(S,C) with ps = hpih™!. O

REMARK. The last Proposition and its Corollary hold (with the same
proof) for the symplectic group Sp(S,C), defined using S = —‘S.

4.7 PROPOSITION. Let 11, n2, 01, nh: T — GL(2,C) be representations
of a group T' with m @ no ~ 0} @ b in GL(4,C) and detn; - detny =
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detn] - detn. Then there exists a homomorphism x : T — C* such that
m o =xm and ny = x"'nz or ni = xm2 and 7y = X"

PROOF. The tensor products p = 11 ® 2 and p’ = 1] ® n}, have images
in SO(S,C) C O(S,C) where S = §J = antidiag(—1,1,1,—1),

§=diag(~1,1,-1,1), J= (f’ng), w= (‘jé)

Hence p and p’ are equivalent in O(S,C) = SO(S,C) x (1), where ¢ =
diag(1,w,1) acts on a ® b in SO(S,C) (a,b in GL(2,C), detab = 1) by
t:a®b— b®a. So pis equivalent under SO(S, C) to p’ or to ‘p' = nh@n],
and (n1,7m2) is equivalent to (xn;,x n5) or to (xnh, x ;). The map
X : I' — C* is a homomorphism since so are the n;, 7}, i = 1,2. O

We also note the following analogue for the group of similitudes.

4.8 PROPOSITION. If the representations p, p' : T' — GO(S,C) (of a
group T into the group of orthogonal similitudes) are conjugate in GL(n,C)
(> 8 =1tS) and have the same factor X of similitudes, then they are con-
Jugate in O(S,C).

PROOF. Replacing I by the 2-fold cover T' = 'y X ¢x 0C* (fiber product
of A\: ' — C* with C* — C*,0: z — 22), there s a character y : I — C*
with A = p?:

r % cx
! 1o

r X, cx

Then p~'p, p='p' : T — O(S,C) are conjugate in GL(n,C) hence also in
0O(S,C), and so p, p' : T' — O(S,C) are conjugate in O(S,C) and they
factorize via pr:l' — . O

We can now return to our initial Proposition 4.1. If the irreducible
continuous representations 1y, 12, 0}, 75 : Wg — GL(2,C) are unramified
and satisfy 71 @ n2(Fr,) ~ n] ® n5(Fr,) for almost all places v, then p =
m @ ng and

o =mn1@n5: Wrp — SO(S,C) C O(S,C) Cc GL(4,C)

are conjugate in GL(4,C) (since the Frobenii are dense in Wyr and p,
p’ are semisimple). Hence they are conjugate in O(S,C) and there is a
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homomorphism y : Wr — C* with n] = xn1,75 = x "2, or 0] = xn2,
M= X"

Had we known the Principle of Functoriality, namely that discrete spec-
trum representations m; of GL(2,A) are parametrized by two dimensional
representations 7; : I' = GL(2,C) of a suitable Weil group I'(= W), we
could conclude the rigidity theorem part of our global theorem about the
lifting A; from C = SO(4) to PGL(4). However, this Principle is known
only for monomial representations n; = Ind(u;; Wg, /g, Wg,, r), induced
from characters p; of Wg, /g, = A}X;i JE, where E; is a quadratic extension
of F. Thus we get an alternative proof — based only on class field theory
and the basic group theoretic consideration above — of the special case for
monomial representations m; = 7(u;) stated after that theorem.

Note that the rigidity property, that any locally conjugate p, p/ : T —
G(C) are conjugate, holds for G = GL(n), O(n), Sp(n) and Gs, and for
any connected, simply connected, complex Lie group precisely if it has no
direct factors of type Bn(n > 4), D,(n > 4), E, or Fy. For this and
related results see Larsen ([Lar]).



II. BASIC FACTS
1. Norm Maps

The norm maps are formally defined by the dual group maps, as we proceed
to explain. Denote by T the diagonal torus in Cy, and by Ty the diagonal
torus in H, Tj in Cy and T7% in H. Then

X, (Ty) = X.(Ty) = {(a,b,—b,—a);a,b € Z}
is the lattice of 1-parameter subgroups, while the lattices of characters are
X*(To) = X*(Tu) = {(z,y, 2, t) mod(n, m,m, n); z,y, 2,t € Z};
here (z,y, z, ) takes diag(a, b,b~%, a~ 1) in Ty or diag(a, a= 1) x diag(b, b~?)
in Ty to a®~'hY~*. Further we have X*(Ty) = X.(T}), while the isomor-
phism X*(Tx) = X.(T%)
= {(aaﬂa’%S) mod(s,z—:,s,s);a,ﬂ,%é,e S Z7Oé + 6 = 6+7}

is given by
(@,y,2,t) = (x+y,x+2,y+t2+1),

with inverse

(04757%5) = (O[*Vaafﬁvozo)'

In particular the map
X*(T*Iil)gX*(TEk)) iS (Oé,ﬂ,’}/,(S)*_}(Oé*’Y,Oé*ﬂ,0,0),

and we make

1.1 DEFINITION. The norm map N : T4, = T is defined by

diag(a, 8,7,6) = (07 9) x (*179).

35
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The elements (a, b, —b, —a) of X, (Tp) = X*(T§) can be viewed as char-
acters of T:

(a,b,—b,—a) : ((O(‘)l 0?2) , (% ;2>> — (a1 /a2)"(B1/B2)".

Under the isomorphism N : T% = T},
diag(a,ﬁ,’y,d)modzl4n—>(("‘é'“f),(aéﬁ?)), ad = B,

the elements (a,b, —b, —a) of X, (fH) ~ X*(T7%) can be viewed as charac-

ters of T};:
(CL, ba _b7 _a> : diag(aa 67 v, 5) = (a/f)/)a(a/ﬁ)b'

Hence corresponding to Ag : fo$fH induced by Ag : 60 < H we have
the “endoscopic” lifting

Xo t mo(pa, puy ) X ma(pe, o ') = Tpaspz) (11, p2).

Here mo(ps, pt; 1Y is the unramified irreducible constituent of the normal-
izedly induced representation I(u;, ;') of PGL(2, F,,) (u; are unramified
characters of F*

v

i = 1,2); Tpasp(2) (1, p2) is the unramified irreducible
constituent of the PGSp(2, F,)-module Ipggp(2)(p1, p2) normalizedly in-
duced from the character n - diag(w, 3,7,9) — p1(a/v)u2(a/B) of the
upper triangular subgroup of PGSp(2, F,) (n is in the unipotent radical,
ad = (3).

Corresponding to the embedding A : H = Sp(2,C) < SL(4,C) = G we
have the natural embedding

X (Ty) = X*(T\H) ={(z,y,~y,—2);z,y € Z}

o X (T) = {(z,y,2,t) € Z" 2+ y+ 2+t = 0} = X*(T*).
The torus T, consists of diag(«, 8,7, ) mod(zI4), ad = v, and the char-
acter (z,y, —y, —x) maps this element to (a/7)*(«/3)¥ (o). The torus T*

consists of diag(a, 8,7,9) in PGL(4).
Dual to the embedding

A: Ty = {diag(a,b,b",a™")} — T = {diag(a, b, ¢, d); abed = 1}
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there is the map of the character lattices

(X.(T*) =)X*(T) = {(z,y. 2, t)mod(z, 2, 2, 2) € Z* |7}
- X*(fH) = {(x,y,z,t)/(a,,@,ﬂ, a);x,y,z,t,a,ﬂ S Z}

The isomorphism
X' (Tn) S Xu(Thp)s (wy,2,0) = (@ +ye+2y+12+10),

leads us to make the

1.2 DEFINITION. The norm map N : T* — T3, is given by

N(diag(a, b, ¢,d)) = diag(ab, ac, bd, cd).

The dual map of characters

1>
=
G
U
s
H
>
!
=

X*(Th) (= X.(Tw))
is given by
A(x)(diag(a, b, ¢, d)) = x(N(diag(a, b, ¢,d)) = x(diag(ab, ac, bd, cd)).
If x = (x,y,—y, —z) then
A(x)(diag(a, b, c,d)) = (ab/bd)* (ab/ac)? = a®bYec™Yd™*

(by (e) 18 lines above) as expected. In other words the lifting A maps the
unramified irreducible PGSp(2, F,)-module 7pggp(2) (#1, p12) to the unram-
ified irreducible PGL(4, F,)-module 74 (1, po, piy 'y iy Y).
Note that the norm map extends to the Levi M, oy of PGL(4) of type
det A 0
(2,2) byN(gg) = < eBeA ),Wheresz <710>. It takes 6-

01
0 det B
conjugacy classes in M, 2y to conjugacy classes in the Levi of type (1,2,1)

in PGSp(2). Indeed,

0(50) (49)(52)

N cddet A 0 det A 0
— X =cd C~leBeAC
0 cddet B 0 det B

( w!DwAC 0 )
0 w!CwBD
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where ¢ = det C, d = det D, and
X = ew'CwBDew' DwAC = ¢dC~*eBeAC

is conjugate to e Be A times cd.
Moreover, it extends to the Levi of PGL(4) of type (1,2,1) by

a 0
N A _ aA 0 )
(0 d> ( 0 dsAe)
u 0 -1 a 0 u 0
0 v 0 d 0 v

—1
uv det B ( aB~ AB o ) .
0 de B~ " ABe

It takes

to

The composition
Ao Ao :Co=SL(2,C) x SL(2,C) — G = SL(4,C)
takes  mo(p1,py ") X walpa, py ) to

mapn, pias py gy ) = malpa, gt pe pa ),

namely the unramified irreducible PGL(2, F,,) x PGL(2, F,)-module 72 X 7}
to the unramified irreducible constituent my(me,75) of the PGL(4, F,)-
module I4(72, 74) normalizedly induced from the representation 7o ® 75 of
the parabolic of type (2,2) of PGL(4, F,,) (extended trivially on the unipo-
tent radical). For example Ao\ takes the trivial PGL(2, F,) x PGL(2, F,,)-
module 15 x 15 to the unramified irreducible constituent my(1s,1s) of
I4(12,15), and 15 x 7 to m4 (1o, m2) = 74 (v ?ma, v=1/?715). Note that this

last w4 is traditionally denoted by .J.
The embedding

A i € = [GL(2,C) x GL(2,C))'/C* S0 (( 0 W)) < G = SL(4,C)

wto

defines an embedding of diagonal subgroups

Tc = {((%1 a02> ; (%1 b(l)) = diag(a1b1, a1ba, biaz, asba); arasbiby = 1},

< T = {diag(a, b, ¢, d); abed = 1},
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and lattices

(X(T8) =) X(Te) = X.(T) (= X°(T")),
(x1,22;y1,Y2) = (T1+Y1, T1+Y2; Y1 +T2, Ta+Y2), T1+T2+y1+y2 = 0. Here
T¢ and T* are the diagonal subgroups of C = [GL(2) xGL(2)]'/ GL(1) and
G = PGL(4). The dual map N : X, (T*) = X*(T) — X*(Tc) = X.(T%),
or

N :T" - T¢, N(diag(a, 58,7,0)) = ((%1 i))(lgbz))’

satisfies
aftag bl b = (wn i) (5 0) (% o)) = x(N (@, 8,7,9))

= (w1 +y1, 1 + Y2391 + T2, 22 + y2)(diag(a, B, 7,9))
= %1ty ﬁm1+yz,yy1+:rz §%2ty2

= (aB)™ (v0)** (ay)¥ (B6)¥>
for all x = (@1, z2;y1,y2) in X*(TF), hence we are led to make the

1.3 DEFINITION. The norm map N : T* — T is defined to be

N(diag(a, 3,7,9)) = ((aoﬁ 35) ’ (QOW lg&)) '

2. Induced Representations

Let us recall the computation of the character of a representation = = I(n)
of G = G(F,) normalizedly induced from the character 7 of the Borel
subgroup B = AN, N the unipotent radical and A the maximal torus in
B. If K is the maximal compact subgroup with G = BK = NAK, the
space of 7 consists of the smooth ¢ : G — C with ¢(nak) = (6*/2n)(a)¢(k),
where

d(a) = | det(Ad a| Lie V)|

and 7 acts by right translation; of course a € A, k € K, n € N. In Lemma
2.1 G can be any quasi-split connected reductive group.

Recall that the character ([H]) of an admissible representation 7 is a
conjugacy invariant locally integrable function x, satisfying trw(fdg) =
Jo xx(9)f(g)dg for any test function f € C°(G). It characterizes the
representation up to isomorphism.
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2.1 LEMMA. The character x. of the induced representation m = I(n)
is supported on the split set and we have for reqular a € A

(Axa) () = D n(w(a)).

weW

PROOF. There is a measure decomposition dg = §~1(a)dndadk corre-
sponding to ¢ = nak, G = NAK. For a test function f € C°(G) the
convolution operator 7(fdg) = [, 7(g)f(g9)dg maps ¢ € 7 to

(r(7dg)o) = /c;f(g)¢(h9)d9 = /Gf(h_lg)ﬂb(g)dg
— /N/A/Kf(h_lnlak)(51/277)(a)¢(k)5_1(a)dnldadk,

The change of variables n; — n, where n is defined by n " ana™! = ny,
has the Jacobian
| det(1 — Ad a)|Lie N|.

The trace of 7( fdg) is obtained on integrating the kernel of the convolution
operator — viewed as a trivial vector bundle over K — on the diagonal
h =k € K. Hence, writing

A(a) = 6~Y2(a)| det(1 — Ad a)| Lie N|,

we have
trﬂ(fdg):/K/N/AAn(a)f(k_ln_lank)dndadk

w12

weW

n(w(a))(A(a) /G R

where w(A) is the cardinality of the Weyl group W. Here W is the quotient
of the normalizer of A by the centralizer of A in G.

To conclude the proof of the lemma we now use the Weyl integration
formula

/G @f o)y = > wlT) [ A0 [ fla tg)dglar

T T T\G
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Here T ranges over the conjugacy classes of tori, x(g) is a conjugacy class
function, A(#)? is the Jacobian

|det(1 — Ad(t))|(Lie N @ Lie N7)|

(over an algebraic closure F of F the torus 7T splits). N is the unipotent
radical of a Borel subgroup containing 7" and N~ is the opposite unipotent

group:
Lie(G/T) = Lie N @ Lie N~

and
|det(1 — Ad(t))|Lie N™| = 61 (t)| det(1 — Ad(t))| Lie N|.

O

Similar analysis applies in the twisted case, where A(¢f) is defined in
the course of the following proof.

2.2 LEMMA. The twisted character x,(t0) of the induced O-invariant
representation ™ = I(n) with n = no 6 vanishes outside the 0-split set (the
set of O-conjugacy classes of A), and is given by

A(t0)xx(t0) = Y n(w(a))

wew?

on the 0-reqular a € A.

PROOF. Let 6 be an involution of G preserving B and K, for example
0(g) = J tg~1J where G = GL(n, F) (or PGL(n, F), etc.) and J an
anti-diagonal matrix. Then tr(mw(f#)) is zero unless 7 is equivalent to
O7(: g — 7(6(g))), in which case, for 7 = I(n), we have

(x(8fdg)d)(h) = /G F(9)6(0(h)g)dg = /G F(6(h) " 9)b(g)dg
- // / F(O(h=)nak)(6"2n) ()6 (k)6 (a)dndadk,
hence

tr(0fdg) = / / / FOF)  nyak)(67Y%n) (a)dn, dadk.
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We change variables ny — n, where 6(n)~tana~! = ny, which has the
same Jacobian as if naf(n)~ta~! = ny, which is

| det(1 — Ad(af))| Lie N|,

to get

tw(0fdg) = [

AJA1-0
Here we put
A(af) = 67Y%(a)| det(1 — Ad(ah))| Lie N|,
AP ={ac Aja=0(a)}, A7 ={ab(a)";ac A}.

We may choose a set of representatives T' for the #-conjugacy classes of
tori in G with T'= 6(T) ([KS]), such that on the regular set

G=U U U 0(g YHitg.
T teT/T1-0 geTO\G (g )g

The corresponding Weyl integration formula is [ x(g)f(g)dg

_ ZT:wo(T)q /T

where

Aw O -a00) [ 100y d

/T1—0
A(t6)? = | det(1 — Ad(t0))| Lie(G/T)|
and w?(T) is the cardinality of the group W?(T') of #-fixed elements in the
Weyl group W(T') of T. The lemma follows. O
2.3 LEMMA. Fort = diag(a,b,c,d) we have

(ac — bd)2(ab — cd)?(a — d)2(b — )2 |*/?

(abed)3

A(t) =

PrOOF. Note that Lie(G/T) = LieN @ LieN—, and N, N are 6-
invariant. We have,

| det(1 — Ad(t0))| Lie N| = | [J(1 = Y a@))|

© a€cd
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where the product ranges over the f-orbits © of the positive roots o > 0,
and the sum over the roots in the 6-orbit. Thus for ¢ = diag(a, b, ¢, d) we

-39 (=20 -9 (=)

obtain

Further,
|det(1 — Ad(t0))| Lie N~| = §(t0) ™| det(1 — Ad(t0))| Lie N|

where §(t0) is

=T Z o)l =1(; 9 )(Z)(§)|=|£[Oa<t>|:6t
The lemma follows. O

Recall now that the map

A7 : G =PGL(4) —» C = [GL(2) x GL(2)]'/ GL(1)

dual to

A1 : C =[GL(2,C) x GL(2,C)) /C* — G = SL(4,C)

maps diag(a, b, ¢, d) to ((‘gb Cod) , (%c bod)).

2.4 DEFINITION. Let F be a local field. We say that f € C°(G(F))
weakly matches fo € C(C(F)) if

Fy() = aw) [ 069 19)d5 (t € T(F)

and

Fro(t) = Ac(t) T\CfC( ~'tg)dg (t e T(F))

are related by F(t0) = Fy, (A (t)) for t € A(F)™es.

This is a temporary definition, sufficient for the study of induced rep-
resentations; it will be completed below.
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2.5 DEFINITION. We say that the induced C(F)-module 71 x o lifts
to the induced G(F)-module 7 if tr(m X m2)(fc) = trw(0f) for all weakly
matching f and fc.

Note that the characters of the induced C(F)-modules and the twisted
characters of the induced G(F)-modules are supported on the split set,
hence our temporary definition of weakly matching is sufficient. We con-
clude

2.6 PROPOSITION. The induced representation

mo = Io(p1, ph) X To(pa, 1)

of C(F) A1-lifts to the induced representation

™= Ly(p pia, j jly, piapty s 111 11)
of G(F). Here p;, p}; : F* — C* are any characters with pyp pops = 1.

Proor. It suffices to observe that
(N1ﬂ27 Nl:u'lZv MQIUID Miﬂ;)(diag(av b, c, d))

= (pap2) (@) (i pn) (d) (1) (b) (papy ) (c)

on the G-side is equal to p;(ab)p) (ed)pz(ac)ph(bd) on the C-side, and use
the computation of the character of the induced and #-induced represen-
tations. ]

Similarly the map A\* : G = PGL(4) — H = PGSp(2) dual to
A: H =Sp(2,C) — G =SL(4,C)
maps diag(a, b, ¢, d) to diag(ab, ac, bd, cd).

2.7 DEFINITION. Let F be a local field. We say that f € C°(G(F))
weakly matches fg € CX°(H(F)) if Ff(t0) and

Fy,(t) = Au() fu(g™'tg)dg
T\H
are related by Fy(t0) = Fy, (A*(t)) for t € A(F)™®.
We say that the induced H(F')-module 7y lifts to the induced G(F)-
module 7 if for all weakly matching f and fp we have tr mgr (fir) = tr w(0f).
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2.8 PROPOSITION. The induced H(F')-module Ig(u1,pe) lifts — via A
~ to the induced G(F)-module m = Iy (1, pio, piy - p17 ).

PROOF. It suffices to observe that
(11, p2s py s iy ) (diag(a, b, ¢,d)) = pa(a/d)pa(b/c);
and that mp(p1, p2) is induced from the character

diag(a, B,7,0) = p1(a/y)pa(er/B)

of the diagonal subgroup of PGSp(2, F'), and that the value of this last
character at

A*(diag(a, b, c,d)) = diag(ab,ac,bd,cd) is p1(ab/bd)us(ab/ac).

Finally note that the map
A : H=PGSp(2) — Cy = PGL(2) x PGL(2)
dual to g : 60 < H takes
diag(c, 8,7,9) to (((S 3) , (g g)) .
We define

2.9 DEFINITION. The functions fy € C°(H(F')) and fo € C2(Co(F))
are weakly matching if Fy, (t) = Fy,(t) on t € A(F)*8. The induced
Co(F)-module my = 71 X m lifts to the induced H(F)-module mp if
trg (fu) = trmo(fo) for all weakly matching fg and fo.

2.10 PrROPOSITION. The induced representation
Io(pa, py ') x Io(po, pyt)

of Co(F') Ao-lifts to the induced representation Ig(p1, po) of H(F).

PROOF. On the H-side, we induce from

diag(cv, 8,7, 0) = p1(a/v)pu2(a/B).
This matrix is mapped by Aj to
a0 a0
((32)-(55)):

and the Cy-module is induced from the character whose value at this last
pair of matrices is p1(a/y)p2(a/B). O



46 II. Basic Facts

3. Satake Isomorphism

Our liftings are summarized in the following diagram (X = GL(2,C))

Co = SL(2,C) x SL(2,C) C =S0(4,C) ~ [X x X]'/C*
Ao N\ VRS
H=9p(2,C) <& & =SL(4C)

The dual group homomorphisms define liftings of unramified (local) repre-
sentation. These representations are uniquely determined by the semisim-
ple conjugacy classes that they define in the dual group. Thus the Ag, A,
A1 define liftings as follows.

Aot mo(pa, py ) X Ta(pa, pa ') = Tpasp(2) (11, 1i2)
€ JH(ppa X pa/pa x pyt),

A s Tpasp() (1, p2) — Tap, o, gt py ) € JTH(La(pa, po, py s ),
A1z o (pun, i) X mo(pug, py) — ma(funfia, p fr, frapiy s P ), papih prafty = 1.

We write JH () for the set of irreducible constituents of a representation
w, for example m = w1 X - X 7. X 0 on GSp(n, F) or m = mp X -+- X
mr = I(m1,...,m) on GL(|n|, F'). The subscript indicates that ms is a
representation of GL(2, F,) and 74 of PGL(4, F,,).

The 1, po are unramified characters of the local nonarchimedean field
F); write p? for their values p;(mw) at a uniformizer. Then the class
t(ma(p1, 1)) associated to the unramified irreducible o (i, p)) is that
of diag(uf, 11 ®) in GL(2,C), t(mpasp(2) (1, p2)) is the class of

diag(u, pu3, pus ™t u3 ™)
in Sp(2,C),
t(ma(puapoz, pa iy, popl s i)
is that of

diag(pf g, p3ps°®, popt s i *ps®)
in SL(4,C). Note that the homomorphisms A, Ag, A1 define dual homo-
morphisms of Hecke algebras, e.g., with G = G(F,), K = G(R,), .. .,

A He = CF(K\G/K) — Hy = C(Ku\H/Kg),
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by A : f e fu, f5(t(rr)) = fY(t(7) x 0), where the Satake isomorphism
f e fY, from Hg to C[(Ag(C) x 0)W] is given by fV (¢t x0) = trw(t)(f x 0),
and f)(tg) = trrg(ty)(fm). In particular, by definition of corresponding
functions f +— A*(f) = fu, we have that

tr Ipasp(2) (11, 12) (A" (f)) = tr mpaspa) (1, p2) (A (f)) = trma(f x 0)

=trI4(f x 0), where the traces of the full induced representation

Iy = Ty(pa pro, poa iy, o foy iy fr)

at a spherical function f is equal to that at its unramified constituent.

4. Induced Representations of PGSp(2,F)

We use results recorded in Sally-Tadic [ST] — using those of Rodier [Ro2],
Shahidi [Sh2,3] and Waldspurger [W1] — on reducibility of induced rep-
resentations of H(F) = PGSp(2, F), and unitarizability. Let us recall
some notations. Denote by GSp(n) (or GSp(n)) the group of symplectic
similitudes

{g € GL(2n); g (,Ow Z’) 9=2Xlg) (,Ou, Z’) }

Here w = wy, = (6;,n—j+1) in GL(n). Its standard parabolic subgroups are
the upper triangular subgroups P,, = P} with Levi subgroups

M, = M? = {m = diag(g1,---, 9, 0, A(h)7g; %, .. ., A(R) g7 D}
gi € GL(n;), h € GSp(n — |n|). Here n = (n1,...,n,.), n; =1, r >0,
nj=n;+--+n.<n, Tg = wfgiwi, w; = Wy, .

Put GSp(0) = G,,, = {A(h)}. These groups are in bijection with the set of
subsets of the set of simple roots of GSp(n); to a subset we associate the
Levi subgroup generated by the root subgroups of the simple roots in the
subset and their negatives. For GSp(2) the standard parabolic subgroups
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are Py = Py, 33 = GSp(2), the Siegel parabolic P(3) = P,y which has
Levi

M(g) = M{a} = {diag(g,)fg’l); g c GL(2), A€ Gm},
the Heisenberg parabolic P(;) = Py which has Levi M(;) = Mg,
= {diag(a, h,A(h)/a); a € G, h € GSp(1) = GL(2), A(h) = det h},

and P(;,;) = Py is the minimal standard parabolic subgroup with Levi
subgroup M(; 1) = My that we usually denote by Ay, consisting of

{diag(a,b,A/b,A/a); a,b,X € G, }.

If 71, ..., m are representations of GL(n;, F'), and o of GSp(n — |n|, F),
F alocal field, as in [ST] denote by m; X -+ X 7, X o the representation
I(my, ..., 7, 0) of GSp(n, F) normalizedly induced from the representation

p=mur—m(q1) Q- Q7 (gr) ®c(h) of P,=M,U,.

Here U,, denotes the unipotent radical of P,. Note that o is a character
if |n| = n (thus h € GSp(0, F) = F*). The induction is normalized by
multiplying the inducing representation by the character 5,1,/ 2(p), where
dn(p) = |det(Ad(p)| Lie(Uy))|. Normalized induction takes unitarizable
representations to unitarizable representations.

NOTATION. As in [BZ2], 4.2, we write v(z) = |z| for z € F*.

EXAMPLE. The simplest example is where GSp(1)=GL(2). Here M%l)
is the diagonal subgroup, é(diag(a,b)) = |a/b|, and p x o is the represen-
tation usually denoted by I(uo, o), normalizedly induced from the char-
acter diag(a,b) - u — (uo)(a)o(b) (if b = A/a, this is = (uo)(a)o(A/a) =
u(a)o(A)). The trivial representation 15 of GL(2, F') is a subrepresentation
of I(v=12,v1/2) = =1 xv'/? and a quotient of I(v'/2,v=1/2) = yxqv=1/2,

EXAMPLE. In the case of GSp(2, F') and Py 1), the representation de-
noted Ip (i1, o) normalizedly induced from the character

p = udiag(a,b,X/b,A/a) = p1(ab/A)uz(a/b) = ppa(a)(pa/p2)(b)uy ' (A)
is the same as 1 g X 11/ g X ufl. Its central character is trivial, namely it
is a representation of H(F) = PGSp(2, F). If £€2 = 1 then Iy ({u1,&ps) =
pape X pi1/pe X &/ p.
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4.1 LEMMA. (i) The central character of w1 X« - - XTp X0 08 Welp, - . - Wi,
if In| < n; here wy, are the central characters of m; (ws of o, o being a
representation of GSp(n—|nl|, F)). It is o

character p we have p(my X -+« X T X0) =T X -+ X 7T X po. In particular

Wy « - Wy if | =mn. (i) Fora
wr X o) =mxpo. (iii) We have 7 X 0 = T X wro O

Recall that two parabolic subgroups of a reductive group G over F
are called associate if their Levi subgroups are conjugate. This is an
equivalence relation. An irreducible representation = of G = G(F), F
a p-adic field, is supported in an associate class if there is a parabolic
subgroup P in this class such that 7 is a composition factor of a repre-
sentation of G induced from an irreducible cuspidal representation of the
Levi factor M of P extended trivially to the unipotent radical U of P.
In our case an irreducible representation m of H = PGSp(2, F) is sup-
ported in Py 1), (1), P2 or it is cuspidal. An unramified representation
is supported on Py 1). It is a subquotient 7 (p1, p2) of a fully induced
T (p1, pi2) = pripio X i1/ p > puy b, where the ju; are unramified characters
of F'*.

An irreducible representation 7 is called essentially tempered if vem is
tempered for some real number e, where (v°7)(g) = v(det g)°m(g).

The following is the Langlands classification for GSp(n, F').

4.2 PROPOSITION. Fach representation v®1my X - -+ X v°"m,. X o, where
e1 = -+ = e. >0, m are irreducible square integrable representations of
GL(n;, F), and o is an irreducible essentially tempered representation of
GSp(n — |n|, F), has a unique irreducible quotient: L(v®'my, ...,V 7w, 0).
Each irreducible representation of GSp(n, F') is of this form. g

With these notations we shall use the results stated in [ST]. These con-
cern the reducibility of the induced representations, and description of
their properties. In particular [ST], Lemma 3.1 asserts that for characters
X1, X2,0 of F'* the representation y; X x2 X o is irreducible if and only if
xi # vE and x1 # vEEL. In case of reducibility the composition series
are described in [ST], together with their properties. The list is recorded
in chapter V, section 2, 2.1-2.3 below. Moreover, we shall use [ST], The-
orem 4.4, which classifies the irreducible unitarizable representations of
GSp(2, F) supported in minimal parabolic subgroups. It shows that
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4.3 LEMMA. The representation L(v x v x v~=t) = wg (v, 1) is not uni-
tarizable. O

5. Twisted Conjugacy Classes

The geometric part of the trace formula is expressed in terms of stable
conjugacy classes, whose definition we now recall. We shall need only
strongly regular semisimple (we abbreviate this to “regular”) elements ¢
in H = H(F), those whose centralizer Zy(t) in H is a maximal F-torus
Ty. The elements t, ' of H are conjugate if there is g in H with ¢’ equal
to Int(g~ 1)t (= g~ 'tg). Such t, ¢ in H are stably conjugate if there is g
in H(= H(F)) with ¢ = Int(¢g~1)t. Then g, = go(g)~! lies in Ty for
every o in the Galois group I' = Gal(F/F), and g ~— {0 + g, } defines an
isomorphism from the set of conjugacy classes within the stable conjugacy
class of ¢ to the pointed set D(Ty/F) = ker[H'(F, Tg) — H'(F,H)].
Using the commutative diagram with exact rows

HYF,T) — HY(F,H*)
i i
1— D(Ty/F)— HYF,Tg) — HY(FH),

where H** 5 HI" — H is the simply connected covering group of the
derived (commutator [H, H]) group H?" of H, and noting that for a p-
adic field F one has H'(F,H*) = {1}, one concludes that D(Ty/F) =
Im[H!(F, T%¢) — H'(F,T)] for such F, in particular it is a group. Here
T3 = o~ 1 (Ter), T = He' N Ty. Indeed, if {0 — g,} is in D(Tg/F),
thus g, = go(g) ™"
ter of H), with z in Zg; and g; in H®*. Then g, = g1, 25, and z, = zo(2) !
is a coboundary, as Zy C Ty, and H'(F, T5S) surjects on D(Tg/F).

It is convenient to compute H!(F, Tg) using the Tate-Nakayama iso-

, write g = g1 2, using H = H" Zyg; (Zg denotes the cen-

morphism which identifies this group with
H Y F,X,(Ty)) ={X € X,(Tu); NX =0}/(X —7X;7 € Gal(L/F)).

Here L is a sufficiently large Galois extension of the local field F' which
splits Ty, N denotes the norm from L to F, and X,(Tg) is the lattice
Hom(G,,,, Th).
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In our case of H = PSp(2) = PGSp(2), H*¢ is Sp(2), and H(F,H) =
{0}, hence D(Tg/F) = H'(F, Tq) is a group.

Denote by N the normalizer Norm (T3, H) of Tj; in H, and let W =
N/T%; be the Weyl group of T3 in H. Signify by H*(F, W) the group of
continuous homomorphisms § : I' — W, where I" acts trivially on W.

5.1 LEMMA. The set of stable conjugacy classes of F-tori in H injects
naturally in the image of ker[H'(F,N) — H'(F,H)] in H*(F,W). When
H is quasi-split this map is an isomorphism. O

This is proven in Section I.B of [F5] where it is used to list the (sta-
ble) conjugacy classes in GSp(2). Our case of H = PSp(2) is simi-
lar but simpler. The Weyl group W is the dihedral group D4, gener-
ated by the reflections s; = (12)(34) and sy = (23). Its other ele-
ments are 1,(12)(34)(23) = (3421) (taking 1 to 2, 2 to 4, 4 to 3, 3 to
1), (23)(12)(34) = (2431), (23)(3421) = (42)(31), (3421)% = (32)(41),
(23)(23)(41) = (41).

Our list of F-tori follows that of loc. cit. The list of F-tori Ty is
parametrized by the subgroup of W. If Ty splits over the Galois extension
E of F then H'(F,Ty) = H'(Gal(E/F), T3(E)) where T§(E) = {t =
diag(a,b,A/b,A\/a) mod Zy; a,b, A € EX} and Gal(E/F) acts via p : I' —
W. If p(o) = Int(gy,) then I' acts on T} by o*(t) = g, - ot - g5}, and
ot = (oa,ob,0X/ob,0A/oa) mod Zg. The split torus corresponds to the
subgroup {1} of W, its stable conjugacy class consists of a single class.
There are nonelliptic tori Ty, with trivial H!(F, Tg), corresponding to
p(T) being ((23)), ((14)), ((12)(34)), ((13)(24)). The elliptic tori are:

(D) p(T) = ((14)(23)), Ty ~ {diag(a,b,A/b = cb,A/a = oa); a,b € E*,
A € Ng/pE*}, [E:F]=2. To compute D(Twu/F) we take the quotient
of X.(T%) = ((z,y,—y,—x);x,y € Z) (note that the generator o of
Gal(E/F) maps (z,y,2 —y,z — ) to (z — x,z — y,y, ) and the norm
Ng/p = N is the sum of the two) by the span (X —0X = (z,y,2 —y,2 —
)= (z—x,z—y,y,x) = 22 — 2,2y — z,2 — 2y, z — 2x)) (X ranges over
X.(Tg)); it is Z/2.

(I1) p(T) = ((14)(23), (12)(34), (13)(24)), then Ty splits over an exten-
sion E = E; Es, biquadratic over F, Gal(E/F) = Z/2 x Z/2 is generated
by o and 7 whose fixed fields are E3 = E(9), Fy = E(7) E, = E(),
say p(o) = (14)(23), p(r) = (12)(34). Then H~! is the quotient of
((x,y,—y,—x)) by ((2x — 2,2y — 2,2 — 2y, z — 2x)), namely Z/2.
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(III) p(T") = ((14),(23)), again E = E1Ey, Gal(E/F) = Z/2 x Z/2 is
generated by o and 7 with E3 = E{°) By = E¢°7) By = E(7) and p(7) =
(23), p(ro) = (14), and H~! is {0}, being the quotient of {(z,y, —y, —z))
by ((2z —2,0,0, z—2z), (0,2y — 2,z —2y,0)) = {(«,0,0, —z), (0, y, —y, 0)).

(IV) When p(T) contains an element of order four, H~! is {0}, as ex-
plained in [F5], I.B, (IV).

Next we describe the (stable) 6-conjugacy classes of a strongly 6-regular
element ¢ in G. We fix a f-invariant F-torus T*, to wit: the diagonal
subgroup. The stable #-conjugacy class of ¢t in G intersects T* ([KS],
Lemma 3.2.A). Hence there is h € G(= G = G(F)) and t* € T* such that
t = h='t*0(h). The centralizers are related by Zg(t0) = h='Zg(t*0)h,
and Zg(t*0) = T*?. The centralizer of Zg(t0) in G is an F-torus Ty: it
is Za(Za(t9))

={g€G;g tig=t:V € Za(th) = h™ ' Zg(t*0)h = h 1 T*’h}
= h™!'T*h = T,. The torus T; is §; = Int(t) o f-invariant:
Int(t)0(h~'t;h) = Rt 0(h) - O(h) ~10(t)O(h) - O(h) " 1t* " h = h=10(t))h.

We have Zg(t0) = T%: if t; € Zg(t0) = h"'T**h € h~'T*h = T, then
t7h 0 -t = t0, thus 0,(t;) = tO(t,)t~ = t,.

The 6-conjugacy classes within the stable #-conjugacy class of ¢ can be
classified as follows.

If t; = g~ 't0(g) and t are stably #-conjugate in G then g, = go(g)~! €
Za(t0) = T%. The set

D(F,0,t) = ker[H'(F, T%) — H'(F,G)]

parametrizes, via (t1,t) — {0 — g, }, the f-conjugacy classes within the
stable #-conjugacy class of t. The Galois action on T;:

o(t) =a(h't*0(h)) = h~ ' -ha(h) ' - o(t*) - 0(a(h)h"1)A(h),

induces the Galois action o* on T*, given by o*(t*) = ho(h)~! - o(t*) -
9(c(h)h™1), and
HY(F,T%) = H'(F, T*).
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The norm map N : T* — Tj; is defined to be the composition of the
projection T* — T} = T*/(1 — 0)T* and the isomorphism T} = Tjy. If
the norm Nt* of t* € T* is defined over F then for each ¢ € T there is
¢ € T* such that o*(t*) = £t*0(¢)~. Then

Ll 0(h) =t = o(t) = o(h)~L - ot - O(ch) = o(h) " et" 0~ o (h)),

hence
t* =hol - t* - 0(hel)™ , hy =ho(h)™!,

and hot € Zg(t*0) = T*? so that h, € T*. Moreover, (1 — 0)(h,) =
t*o*(t*)~1, hence (h,,t*) lies in the subset
HYF,T 28V of HYF,T 4T,

and it parametrizes the #-conjugacy classes of strongly #-regular elements
which have the same norm. We put V; = (1 — 6;)T,.

While not necessary in our case, recall that the first hypercohomology

group H'(G, A EN B) of the short complex A 7, B of G-modules placed in

degrees 0 and 1 is the group of 1-hypercocycles, quotient by the subgroup

of 1-hypercoboundaries. A 1-hypercocycle is a pair («, §) with « being a

1-cocycle of G in A and 8 € B such that f(a) = 98; 98 is the 1-cocycle

o — B71o(B) of G in B. A 1-hypercoboundary is a pair (da, f(8)), a € A.
This hypercohomology group fits in an exact sequence

H(G, A) L HY(G, B) - HY (G, AL B) — HY(G, A) L H' (G, B).

We need only the case where A =Ty, B=V; = (1—0;)T:, f=1—0;,
G = Gal(F/F). The exact sequence 1 — T? — T, k—ert — 1 induces
the exact sequence H°(F,T;) =T, =T, — H(F,V,) =V,

— HY(F,T%) — H'(F,T,) =% HY(F, V,).

Hence H'(F,T%) = H'(F, T, ~2% V).

If ¢ is a strongly f-regular element in G, then Ty = Zg(Zg(t0)°) is a
maximal torus in G. Denote by T¢ the inverse image of T; under the nat-
ural homomorphism 7 : G — G9°* < G. Note that G = 7(G*)Z(G).
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If t; = g~ 'tf(g) € G is stably f-conjugate to t € G then g = 7(gy)z for
some g; € G* and z € Z(G). Then o(g1)g; " lies in T5¢, and

(1—0)m(o(g1)g; ) = a(®)b™' where b=0(2)z"" = (1-0,)(z7") € Vy;
(0 +— o(g1)gy ", b) defines an element inv(t,t;) of H'(F, Tic(litgﬂvt).
This element parametrizes the 6-conjugacy classes under G*¢ within the

stable f-conjugacy class of t. The image in H*(F, T, 126 V) under the
map [T5¢ — V4] — [T; — V] induced by 7 : T — T is denoted by
inv/(t,t1). The set of f-conjugacy classes within the stable #-conjugacy
class of t, D(F,0,t)

=ker[H'(F,T}") — H'(F,G)| = ker [H'(F, T, =% V,) — H'(F,G)],
is the image under
H'(F T =TV — HY (P, T V)

of
ker[HY(F, T """ v,) - HY(F,G*)),

hence a subset of the abelian group

m[H (F, T """V, BY(FT, %V,

In our case of G = PGL(4), the pointed set H'(F,G) is trivial, hence
D(F,0,t) = H'(F, T?t) = HY(F, T, 1_—9§Vt). Since H'(F,T) is trivial for

every maximal torus T, we have that H'(F, T, =8 V) is Vi/(1 — 0,)T.

We list the stable 6-conjugacy classes of strongly f-regular elements ¢ in
G = PGL(4) as in [F5]. Thus we describe the F-tori T, as Zg(t0) = T
and T = T; = Zg(Zc(t0)). The conjugacy classes of F-tori T are deter-
mined by the homomorphisms p : I' — W = W(T* G?) = W(T*, G)°.
We list only the #-elliptic, or -anisotropic (7% does not contain a split
torus) as the other tori can be dealt with using parabolic induction.

(D) p(I') = ((14)(23)), [E : F] =2,

T* = {(a,b,0b,0a);a,b € E*}/Z; V ={(a,b,b,a)}/Z.
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Hence V = {(a,b,b,a) = (z0a, zob, zob, z0a); z,a,b € EX}. Then a/oa =
b/ob, or a/b = o(a/b), and (a,b,b,a) = (1,b/a,b/a,1) with b/a in F*.
Finally (1 —6)T* = {(aca,bob,bob,aca);a,be E*}/Z,

V/(1-6)T* = F*/NE* = 7/2.

(I1) p(T') = (p(oT) = (14),p(7) = (23)). The splitting field of T is
E = FE\E,, where E; = E(vD) = E(7),

Ey = E(VAD) = EY" | Es = E(VA) = E“
are the quadratic extensions of F' in E. Then
T* ={(a,b,7b,0a);a € E,b€ EX}/Z, V ={(a,b,b,a);a,be€ F*}/Z
(since (a,b,b,a) = (ta,7b,7b,7a) = (0a,ob,cb,ca) mod Z implies a/b €

Fx),
(1-60)T* = {(aca,brb,brb,aca);a € E{,b € ES}/Z,

hence
V/(L=0)T" = 1*—1></NE1/FE1X = FX/NEQ/FEQX =1Zj2.

(ITT) p(T") = (p(7) = (12)(34), p(c) = (14)(23)), the splitting field of
T is E = E1Es, a biquadratic extension of F, Gal(E/F) = (1,0,7,07T),
E, = B = F(VD), E3 = B9 = F(J/A), E; = EV“7) = F(v/AD) are
the quadratic subextensions, and so T* = {(a,7a,70a,0a);a € E*}/Z,

and
(1-6)T" ={(aca,7(aca),7(aca),aca);a € E*}/Z.

Now V' consists of (a,b,b,a) which equal (ca,ob,cb,0a)mod Z. Thus
a/b=oc(a/b) lies in E° = E3, and also (a,b,b,a) = (b, Ta,7a,7b) mod Z.
Hence b/a = 7(a/b), and so ¢ = u/Tu, u € E5 . Then

(a,b,b,a) = (bu/Tu,b,b,bu/Tu) = (u, TU, TU, U).
Hence V/(1—0)T* is E5 /Ng g, E* = 7/2.

(IV) If p(I') contains p(c) = (3421), T is isomorphic to the multipli-
cation group E* of an extension E = F(v/D) = E3(v/D) of F of degree
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4, where E3 = F(\/A) is a quadratic extension of F (A € F — F2,D =
o+ VA € E3). The Galois closure E/F of F(v/D)/F is E = F(v/D)
when F(v/D)/F is cyclic, and E = F(v/D,¢) when F(v/D)/F is not Ga-
lois. Here ¢(? = —1 and Gal(E/F) is the dihedral group Dy. In either
case

T* = {(a,0a,0%a,0%a); a€ E*}/Z,

(1—60)T* = {(ac*a,o(ac?a),0(ac’a),ac?a);a € E*}/Z,

and V consists of (a, b, b, a) with (ob, 0a,0a,0b) = (a,b,b,a)z, thus a/ob =
b/oa, or a/b=ob/oasoa/b= c*(a/b)lies in E3, and a/b = u/ou for some
u € EY. Thus (a,b,b,a) = (bu/ou,b,b,bu/ou) = (u,ou,cu,u),u € E,
and V/(1 — 0)T* is B /N, B = Z,/2.

We recall some results of [F5] concerning representatives of (stable) 6-
twisted regular conjugacy classes. These are listed according to the four
types of O-elliptic classes: I, II, IIT, TV.

A set of representatives for the 6-conjugacy classes within a stable semi
simple #-conjugacy class of type I in GL(4, F') which splits over a quadratic
extension E = F(vVD) of F, D € F — F?, is parametrized by (r,s) €
F*/Ng/pE* x F*/Ng/pE* ([F5], p. 16). Representatives for the 6-
regular (thus ¢0(t) is regular) stable #-conjugacy classes of type (I) in
GL(4, F) which split over E can be found in a torus 7' = T(F), T =
h=1T*h, T* denoting the diagonal subgroup in G, h = 6(h), and

al 0 0 azD
T:%:<82ﬁ38>:ﬁ%%;ﬁ:m%@amgwew}.

a2 0 0 al

Here a = a1 + asV/D, b = by + bovV/D € E*, and t is regular if a/oa and
b/ob are distinct and not equal to +1. Note that here T* = T*(F) where
the Galois action is that obtained from the Galois action on T

A set of representatives for the #-conjugacy classes within a stable 6-
conjugacy class can be chosen in T. Indeed, if t = h™'t*h and t; =
h=tih in T are stably f-conjugate, then there is g = h~'uh with t; =
gtd(g)~1, thus t7 = pt*0(u)~! and t;0(t7) = pt*0(t*)u=t. Since t is 6-
regular, u lies in the f-normalizer of T*(F) in G(F). Since the group
W(T*,G) = N?(T*,G)/T*, quotient by T*(F) of the f#-normalizer of
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T*(F) in G(F), is represented by the group W% (T*,G) = N(T*,G)/T*,
quotient by T™ of the #-normalizer of T in G, we may modify p by an
element of W9 (T* @), that is replace t; by a -conjugate element, and
assume that p lies in T*(F). In this case uf(u)~! = diag(u, v, ou’, ou)
(since t, t1 lie in T*), with u = ou, v = ou’ in F*. Such ¢, t; are
f-conjugate if g € G, thus g € T, so u = diag(v,v’,0v',0v) € T* and
pd(p)~t = diag(vov,v'ov’,v'ov’, vov). Hence a set of representatives for
the 6-conjugacy classes within the stable #-conjugacy class of the f-regular
tin T is given by ¢ - diag(r,s,s,r), where r, s € F* /Ng,pE*. Clearly in
PGL(4, F) the #-classes within a stable class are parametrized only by r,
or equivalently only by s.

A set of representatives for the §-conjugacy classes within a stable semi
simple #-conjugacy class of type II in GL(4, F') which splits over the bi-
quadratic extension F = EjFE, of F with Galois group (o, 7), where
E, = F(WD) = E", By, = F(WAD) = E°", B3 = F(V/A) = E°
are quadratic extensions of F, thus A,D € F — F?, is parametrized by
re€ F*/Ng, rEf,s € F*[Ng,,pES ([F5], p. 16). It is given by

0 bQS bls 0
azr 0O 0 air

air O 0 a2 Dr
( 0 bisb2ADs 0 ) = h~'t*h - diag(r,s, s, 1), t* = diag(a, b, 7b, 0a).
Here a = a1 + agvV/D € E, b = by + bovVAD € ES, 6(h) = h. In
PGL(4, F) the #-classes within a stable class are parametrized only by r,
or equivalently only by s.

A set of representatives for the 6-conjugacy classes within a stable semi
simple #-conjugacy class of type III in GL(4, F)) which splits over the
biquadratic extension E = FEjFEy of F with Galois group (o, 7), where
E, = F(VD) = E", B, = F(VAD) = E°7, B3 = F(VA) = E°
are quadratic extensions of F, thus A,D € F — F?, is parametrized by
r(= 11 +12VA) € Ef/Ng g, E* ([F5], p. 16). Representatives for the
stable regular f-conjugacy classes can be taken in the torus 7' = h=T*h,
consisting of

where h = 0(h) is described in [F5], p. 16. This ¢ is f-regular when a/oa,
7(a/oa) are distinct and # £1. Here

_ ay azA _ by bo A . _ ry r2A
a—( ), b—(b2 bl)’ put also r—(rz n)'

az ai
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Further o = a +bvD € EX, a = a1 + axVVA € B, b= b + by/A € EX,
oo = a—b/D, Ta. = Ta 4+ Tbv/D. Representatives for all f-conjugacy
classes within the stable #-conjugacy class of ¢ can be taken in T'. In fact
if ' = gt0(g)~! lies in T and g = h~tuh, p € T*(F), then pf(u)~! =
diag(u, Tu, oTu, ou) has u = ou, thus u € E5. If g € T, thus u € T*, then

p = diag(v, 7v,07mv,00) and pf(p) ! = diag(vov, TvoTv, TVOTY, VOV),

with vov € Ng/g, E*. We conclude that a set of representatives for the
f-conjugacy classes within the stable 0-conjugacy class of ¢ is given by
t - diag(r,r), as r ranges over Eg /Ng/ g, E*.

Representatives for the stable regular -conjugacy classes of type (IV)
can be taken in the torus T = h~!T*h, consisting of

t= (‘; bf) = h7t*h, t* = diag(a, o, 03, 02a),

where h = 0(h) is described in [F5], p. 18. Here « ranges over a quadratic
extension F = F(v/D) = E3(vV/D) of a quadratic extension Ez = F(v/A)
of F. Thus A€ F—F?, D=d, + dyv/A lies in Es —E§ where d; € F.
The normal closure E’ of E over F'is E if E/F is cyclic with Galois group
Z/4, or a quadratic extension of F, generated by a fourth root of unity ¢,
in which case the Galois group is the dihedral group D4. In both cases
the Galois group contains an element o with ov/A = —V/A, 0/D = VoD,
02V/D = —/D. In the Dy case Gal(E’/F) contains also 7 with 7¢ = —(,
we may choose D = \/Z, D =D and ovD = C\/ﬁ.

In any case, t is f-regular when o # o2c.. We write a = a+bvD € E*,
a=a;+aVA€ES b="b +bAc€ ES oca=oca+obVoD, o’a =
a—bvD. Also

_ al O.QA _ b1 b2A _ d1 d2A
a_<a2 al)’ b_(bz bl>7 D_<d2 d1>.
Representatives for all #-conjugacy classes within the stable #-conjugacy
class of t can be taken in T. In fact if t = gtf(g)~! lies in T and g =

h=tuh, p € T*(F), then uf(p)~t = diag(u, ou,o®u,0?u) has u = o2u,
thus uw € ES. If g € T, thus p € T*, then p = diag(v, ov, 0%v, 0?v) and

pd(p) ' = diag(vo?v, o(vo?v), o(vo®v), vav),
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with vov € Ng g, E*. It follows that a set of representatives for the
f-conjugacy classes within the stable 6-conjugacy class of

t=h"1t"h = (‘; bf) , where t* = diag(a, oo, 03, o%a),
is given by multiplying a by r, that is t* by t; = diag(r, or, o3r, o2r),
where r = o2r ranges over a set of representatives for ES/Ng /B, B

Oor
t-diag(r,r), r € E;/NE/ESEX.

Now to = h™ltih = (T O). Hence a set of representatives is given by



III. TRACE FORMULAE

1. Twisted Trace Formula: Geometric Side

The comparison of representations is based on comparison of trace formu-
lae, which are equalities of geometric and spectral sides. In this section we
first state the spectral side of the f-twisted trace formula on the discrete
spectrum, and then we record the geometric side of the f-twisted trace
formula for G, in fact only its #-elliptic strongly 6-regular part, stabilized
according to its f-elliptic endoscopic groups, as in [KS]. This geometric side
is a linear form, with complex values, on the space C2°(G(A)) of smooth
compactly supported complex valued functions on G(A). This space is
spanned by products ®@f,, where f, € C°(G(F,)) for all v and f, = f°
is the characteristic function of K, = G(R,) for almost all v. In fact we
need the measure fdg where dg = ®dg, is a Haar measure on G(A), but
we suppress the dg from the notations. We later compare trace formulae
for test measures fdg, fudh, fc,dco, etc., with matching orbital integrals.
The dependence on measures is implicit.

The trace formula is obtained on integrating over the diagonal g = & in
G(F)\G(A) the kernel K¢(h,g) of the convolution operator r(f)r(f) on
L? = L*(G(F)\G(A)), defined by

(r(f)¢)(h) = /G(A) f(9)¢(hg)dg and (r(0)d)(h) = $(67"(h))
for ¢ € L%. The discrete part Ly of L? splits as a direct sum @, L, of sub-
spaces transforming according to inequivalent irreducible representations
m of G(A). Thus L, = m(m)r is a multiple of an irreducible 7, occurring
with finite multiplicity m(7) in L?, and the sum is over inequivalent 7.

If {¢T'} is an orthonormal basis of L, then the kernel of r(f)r(0) on Ly
is

Kalh) =3 3 / SR 0()FT(h)dh - 67 (g), hin G(F)\G(A).

T ¢TELS

60
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Indeed,
r(Hr@)e(g) =YD (r(£)r(0)6, 67 )67 (9)
T qb"
-y /h ey OO an-47(0)

=SS [ [ SO0 T 0 o o)
=SSN [ [ 00 a7 0otk

The trace of 7(f x 8) = r(f)r(6) over the discrete spectrum is the integral
of K4 over the diagonal k = g in G(A):

pra —1 m

—ZZ / / o7 (h ! (hg))dgdh
—ZZ/ m))(R)FT (h)dh
_ZZ 0)pT, ) = Zm Ytrw(f x 0),

where 7(f) and 7r(9) denote the restriction of r(f) and r(f) to 7, and
w(f x 0) = w(f)m(6). One can see that the sum > _m(7)|[trw(f x 6)| is
convergent.

The 7 in L4 which contribute a nonzero term to this sum are those which
are f-invariant: 7 ~ 7. The contribution to the trace formula from the
complement of Ly in L? is described using Eisenstein series; we describe
this spectral side below. This side will be used to study the representations
7w whose traces occur in the sum.

We now turn to the geometric side of the trace formula.
The geometric side of the trace formula is obtained on integrating over
the diagonal g = h € G(F)\G(A) the kernel of the convolution operator

r(f)r(0) on L?: here  (r(f)r(0)¢)(h) is
= h=lo dg = h=1~0(g dg,
/. S0 | o, 2, (07000051

'yGG
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and we consider only the subsum

= > f(h7'é0(g

S€G(F).

over the set G(F). of f-semisimple, strongly #-regular and f-elliptic ele-
ments § in G(F).

An element § of G(F) is called 8-semisimple if the automorphism Int(d)o
6 = Int(00) is quasi-semisimple, by which we mean that its restriction to
the derived group is semisimple (thus there is a pair (B, T) in G fixed
by the automorphism). As for @-regularity, denote by I5s = Zg(06) the
centralizer of 60 in G (this is the group {g € G;60(g9)d~! = g} of fixed
points of Int(8)-0). A f-semisimple § in G is called 6-regularif Zg (66)° is a
torus, and strongly 0-reqular if Zg(60) is abelian. If ¢ is strongly 6-regular
then Ts = Zg(Zc(06)°)) (centralizer in G of Zg(66)°) is a maximal torus
in G fixed under Int(66), and Zg(d6) = Int(&g) A f-semisimple element
§ of G(F) is called 6-elliptic if (Z(;(ég)/Z( )9)? is anisotropic over F'.

The integral T.(f, G,0) over h = g in G(F)\G(A) of K.(g,g) is the
sum over a set of representatives ¢ for the #-conjugacy classes in G(F'), of
orbital integrals:

/ (9766(g))dg
5 Y Zc(60)(F)\G(A)

= 3 vl (Za(06) (F)\ Za (30)(4) [ Flg™"56(9))dg/dt.
é

Za(50)(AN\G(A)

It is rewritten in [KS], (7.4.2) as a sum over a set of representatives
(H,H, s, &) for the isomorphism classes of elliptic endoscopic data for (G, 9)
([KS], (2-1)) and over a set of representatives for the H(F)-conjugacy
classes of elliptic strongly G-regular v in H(F') (v € H is called strongly
G-regular if the image under the norm map Ay, ([KS], (3.3)) of the
conjugacy class of 7 consists of (strongly) f-regular elements):

> ag-[Ouwt(H,H,5,6)[ 71D @5(f)
(H,H,s,€) B!
Here Out(H, H, s, §) is the group defined in [KS], (2.1.8); ag is the number
defined in [KS], (6.4.B); and the twisted x-orbital integral ®Z(f) is defined
in [KS], 3 lines above (6.4.10) and 3 lines above (6.4.16).
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If fu = Qfom, forr € C°(H(F,)) has matching orbital integrals with
fv for all v ([KS], (5.5)), then ®%(f) can be replaced by the stable orbital
integral ®3'(fy), and the stabilized trace formula takes the form ([KS],
(7.4.4))

> UG, 0,H)ST.(fn),

(H,H,s,£)

where

STe(fu) = an Yy ¥ (fu),  am = |wo(Z(H)")| ker (F. Z(H))| ",

and
UG,0,H) = ac|Out(H, H, 5,£)| ag',

oo @D Im(Z@GN 0 @)
[ker' (F,Z(G))] [mo((2(G)/2(G) N (T7)°)")

In our case G = PGL(4), 6(g) = J 'tg~1J, there are two elliptic -
endoscopic groups H = PGSp(2) and C = [GL(2) x GL(2)]'/G],, with
H = Sp(2,C) and

C = {(A,B) € [GL(2,C) x GL(2,C)]/C*; det Adet B = 1},

Z(G) = pa, Z(H) = Z(C) = pp = {£I}, the Galois group T' = Gal(F/F)
acts trivially as G, H and C are split, Z; = Z(G) N (T?)° of [KS], Lemma
6.4.B, is {1}, hence Z there (= Z(G)/Zy) is pa, Zy N (Z(G)F)? is trivial,
ker!(F, Z(G)) = 1, hence ag = 2. For H and C there is no 0, Z; =
Z(f[) and Z = 1, kerl(F,ug) = 1, hence ag = 2 = ac. In particular
((G,0,H) = [Out(H, H, s,€)|"! is 1 and «(G,0,C) = 1.

Similarly we consider the elliptic regular part of the geometric side of
the trace formula of H = PGSp(2) and stabilize it, to obtain (here 6 is
trivial and is omitted from the notations)

Te(fHaH) = STe(fH> + [’(H7 17 CO) STE(fCU)

where fe, is a function on Cy(A) matching fy. Here Cy = PGL(2) x

o~

PGL(2) is the only elliptic endoscopic group of H other than H, Cy =
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SL(2,C) x SL(2,C) has center {£I} x {£I} of order 4, hence ac, = 4.
Also Out(Cy,...) has order 2 and ag = 2, hence (H,1,Cq) = 1.

The 6-endoscopic group C of G has a proper endoscopic subgroup Cg
for each quadratic extension F of F. Its connected dual group GE =
Z5(3p)°, 3 = (diag(1, —1),diag(1, —1)), is

{(diag(a1, az), diag(b1, b2)) mod C*; arazbiby = 1},

and Gal(E/F) acts via (( 0 1) ,( 0 1)) Thus

~10 ~10
Cr = {(21,22) € Re/rGm X R pGum)/Gm; 2121 = 2272}

and Cg(F) = {(21,22) € (E* x EX)/F*;z1Z1 = 2272}, and @g’al(E/F)
is Z/2, generated by (—LI). Since Out(Cg,...) has order 2,ac,, = 4 and

ac = 2, we get ¢(C,1,Cg) = 1 and

To(fe, €) =STo(fo) + 1 3 STr(for).
E

This identity can be used to associate to any pair uq, o of characters
of Ap/E* whose restriction to A*/F* is xg/p the pair m(u1) X m(u2)
of representations of C(A) = [GL(2,A) x GL(2,A)]’/A*. This lifting is
well-known. Whenever possible we shall work with fo = ®fc,, whose
component at a relevant place has orbital integrals which are stable, so
that there won’t be a contribution from Tg(fc,) = STe(fcy,)-

In summary, the f-elliptic #-semisimple strongly 6-regular part of the
geometric side of the f-twisted trace formula for G, T.(f, G, ), takes the
form

To(fir H) — {Telfon o)+ 5[Telfen ©) — 1 32 Talfen)l

[E:F]=2

Here fyg = ®fy, and fo = ®fc, have orbital integrals matching the
(stable and unstable) 8-twisted orbital integrals of f = ®f,, for each place
v, those of fo, = ®fc,» match those of fr and those of fo, = Qfcpe
match those of fo. Of course by this we mean that the measures fdg,
fudh, fcdc, are matching, and fc,dcy and frdh are matching, and so are
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fogpder and fode. The identities of trace formulae hold for such matching
measures. We suppress the measures from the notations.

Complete analysis of the geometric sides of the trace formulae would
include terms related to singular and to nonelliptic orbital integrals. In
order to not deal with these in this work, we take a component of all
global functions at a fixed place vy of F to vanish on the singular set, and
then the integrals over the singular classes vanish a-priori and need not be
computed. This mild restriction does not restrict the uses for lifting appli-
cations of the identity of trace formulae. For example we may take these
functions to be biinvariant under the Iwahori subgroup, and supported
on double cosets of elements in the maximal split torus (diagonal, in our
case) on which the absolute values of the roots are big (the eigenvalues
have distinct absolute values, in our case).

To avoid dealing with the non-(6-)elliptic conjugacy classes, we observe
that using the process of truncation, integration over these orbits leads to
(#-) orbital integrals weighted by a factor which can be expressed as a sum
of local products involving number of factors bounded by the (twisted)
rank. Thus these weighted (6-) orbital integrals are sums of products
of local factors which are all — except for at most rank-(G,6) factors —
orbital integrals on the non-6-elliptic class. In our case the #-twisted rank
of G is two, and the ranks of H, C and Cj, are two too. The restrictive
assumption that we make is that we fix three places: vy, vs, v3, of F', and
work with functions f whose components f, at v = v; (i = 1,2,3) have
f-orbital integrals equal to 0 on the strongly #-regular orbits which are not
f-elliptic. In this case the geometric side of the twisted trace formula is
equal to the #-elliptic part T.(f, G, 6).

The matching functions on H, C and Cy can also be chosen now to
have components at v1, vs, v3 whose orbital integrals vanish on the regu-
lar nonelliptic sets of these groups, and the component at vy vanishes on
the non regular set. The geometric sides of the trace formulae are then con-
centrated on the elliptic regular sets, and are equal for such test functions
to Te(fu,H),  Te(fcy,Co)y  Telfc,C).

The requirement that the orbital integrals of f,, (i = 1,2,3) be zero on
the strongly 6-regular non #-elliptic set is weaker than an assumption that
the functions themselves be zero there. The requirement that we make per-
mits applying the trace formula with coefficients of elliptic representations
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at the places v; (i = 1,2,3).

We compare the geometric sides of the trace formulae with the spectral
sides, which include, in addition to the contribution ) _m(w)trz(f x 0)
(in the case of the f-twisted trace formula for f on G) from the discrete
spectrum Ly, also contributions from the continuous spectrum. These
contributions are described in terms of Eisenstein series, and lead to a
sum of discrete terms and integrals of continuous series of representations,
involving logarithmic derivatives. The weight factor splits as sum of local
products whose number of terms is bounded by the (#-)rank. In our case
the rank is 2, and assuming as we do the vanishing of the orbital integrals
on the regular nonelliptic set at 3 places leads to the vanishing of all
continuous sums, or integrals, of traces of representations which contribute
to the (6-)trace formula. We proceed to describe only the discrete sums
contributions to the spectral sides of the trace formulae.

2. Twisted Trace Formula: Analytic Side

We now record the analytic side of the twisted trace formula; it involves
twisted traces of representations. The expression is taken from [CLL], XV,
p- 15. Fix a minimal #-invariant F-parabolic subgroup Py of G, and its
Levi subgroup My. Denote by P any standard (containing Py) F-parabolic
subgroup of G, by M its Levi subgroup which contains Mg, and by Ang
the split component of the center of M. Then Ay C Ag = An,. Let
X*(An) be the lattice of rational characters of Ang, An the vector space
X«(Am) ® R = Hom(X*(Am),R), and A}, the vector space dual to Anm.
Let Wy = W(Ag, G) be the Weyl group of Ag in G. Both 8 and every s in
Wy act on Ag. The truncation and the general expression to be recorded
depend on a vector T in Ay = Am,. In our specific case of G = PGL(4)
we shall use only the constant term, or value at T = 0, and in fact only
the discrete part, of terms where A* = {0}, below.

2.1 PROPOSITION ([CLL]). The spectral, or analytic side of the trace
formula is equal to a sum over
(1) the set of all Levi subgroups M containing Mgy of the F-parabolic sub-
groups of G;



2. Twisted Trace Formula: Analytic Side 67

(2) the set of subspaces A of Ay such that for some s in Wy we have
A= .Afvfe, where .Afvf‘g is the space of s X B-invariant elements in the
space Ay associated with a 0-invariant F-parabolic subgroup P of G;
(3) the set WA(Am) of distinct maps on Ay obtained as restrictions of
the maps s x 0 (s in Wy) on Ay whose space of fized vectors is precisely
A; and
(4) the set of discrete spectrum representations T of M(A) with (sx0)T ~ T,
sx 0 asin (3).
The terms in the sum are equal to the product of
(e
(Wo]

(det(1 — s x )] ap/a) "

and

[ 5 RO Mo (5.0) T (6. % 0)] .

Here [W{1] is the cardinality of the Weyl group WM = W (Aq, M) of Ay
in M. Also P is an F-parabolic subgroup of G with Levi component M;
Mp|g(py is an intertwining operator; ML (P, )) is a logarithmic derivative
of intertwining operators, and Ip -(¢) is the G(A)-module normalizedly
induced from the M(A)-module m + 7(m)efS-H (™) in standard notations.

The sum of the terms corresponding to M = G in the formula is equal
to the sum I = )" trw(f x 6) over all discrete spectrum representations 7
of G(A).

We proceed to describe, in our case of G = PGL(4) and the involution
0, the terms corresponding to M # G and A = {0} in the formula. Let
My be the diagonal subgroup of G.

There are [Wy]/[W] = 4 Levi subgroups M D Ag of maximal par-
abolic subgroups P of G (of type (3,1)) isomorphic to GL(3), that is to
the image of GL(3) x GL(1) in PGL(4). The space Apm = {(a,a,a,b)*;
a,b € R} (the superscript * means image in R*/R, where R is embedded
diagonally), has A = A3 = {0} for any s € W (for which s x 6 maps
Am back to Anm ), and the contribution is

3!

1
T3 ZtrM(s,O)IP,T(O; fx0)
M T

1
=3 YD trM(azasar, 0)Ip, (1, x; f X 6).
X T



68 III. Trace Formulae

Here P denotes the upper triangular parabolic subgroup of G of type
(3,1). We write a1 = (12), as = (23), az = (34), J = (14)(23) for
the transpositions in the Weyl group Wy. In the last sum, y ranges over
the characters of A*/F* of order at most two, while 7 ranges over the
discrete spectrum representations of GL(3, A) whose central character is x
and 70 ~ 7.

There are [Wp]/2[W] = 3 Levi subgroups M D Aj of maximal para-
bolic subgroups P of G (of type (2,2)) isomorphic to the image of GL(2) x
GL(2) in PGL(4). The space

AM = {(aya’abv b)*vaab € RQ}

has A = A3x? equal to {(0,0,a,a)*} for s € WM, and A = {0} for all
s # 1in W/WM. Consider only the case of A = {0}, and choose s = J to
be a representative. Then

1—-Jx86:(a,a,b,b)* — (—a,—a,—b,—b)*

has determinant 2 on the one dimensional space Ang, and the contribution
is

2.2 1
3 S > tr M(J,0)Ip - (0; f x 0)
M T

= %Z > tr M(J,0)Ip, (11, 72; f x 0).
X T1XT2

Here P5 denotes the upper triangular parabolic subgroup of G of type
(2,2). The last sum ranges over the ordered pairs (71, 72) of discrete spec-
trum representations 71, 72 of GL(2,A) with central characters w,, and
wr, With wrw,, = 1 and Tf ~ 7;, thus 7y and 7 are discrete spectrum
representations of PGL(2, A) (then we write x = 1) or 7, = 7(u;), p; char-
acters of Ay /E*A*, and E/F is the quadratic extension determined by
X = Wy, = Wy,. Thus the sum over y ranges over all characters of A*/F*
of order at most two.

There are [Wy]/2[W] = 6 Levi subgroups M D Ay of parabolic sub-
groups P of G (of type (2,1,1)) isomorphic to the image of GL(2) x GL(1) x
GL(1) in PGL(4). If s € Wy is such that s x 8 maps Ap = {(a,a,b,¢)*}
to itself, then (up to multiplication by (a1 = (12)) = W), s can be
(1) s = (14)(23), in which case

sx0:(a,a,b,¢)" — (—a,—a,—b,—c)",
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A= {0} and det(1 — s X 0)|4,, = 4, or (2) s = (13)(24), then
sx0:(a,a,b,¢)" — (—a,—a,—c,—b)"
and A # {0}. The term with A = {0} is

1

1
=3 > " tr M((14)(23),0)Ip, - (0; f x 0).

M,r

Here P35 is the upper triangular parabolic subgroup of type (2,1,1), and
7 = (T1,X1, X2) is equivalent to (7¥,x7",x5"). If x denotes the central
character of 71 then x = xix2, and 71 ~ 7f = 71x. We can write the
induced representation as x2I(71,x1,1). If x = x1 # 1 then 71 = 7(p1)
where pi1 is a character of Ay /E*, where E/F is determined by x. The
central character of 7(py) is x - p1|A*; if this is equal to x, then uq|A* =
1, hence there is a character po of Ax/E* with pi(z) = po(z/z). Put
Tio(2) = po(Z), z € A, then 71 = m(po/Hg)- If on the contrary xy = x1 =1
then 71 is a discrete spectrum representation of PGL(2, A). We then obtain
from the terms with A = {0} the sum

é S e M((14)(23),0) (xIp, (11, 1, 1))(f x 0)

+i D>t M((14)(23),0) (xIp, (7 (1o /o) X1, 1)) (f % 0)
X171,10,X

where y is any quadratic character, x; is a quadratic character # 1, 7
ranges over the discrete spectrum of PGL(2,A) and p; = po/f, over the
characters of A%, /AXE*, or pig over the characters of AL /E', where AL =
{z € Aj;2zz = 1}. Note that I(m,x,1) and I(m,1,x) contribute two
equivalent contributions when y # 1.

Let 7 be an irreducible f-invariant representation of G = PGL(4), which
is properly induced from a parabolic subgroup. We proceed to list these.

If 7 is induced from the (standard) parabolic of type (3,1) the 7 =
I(1,x), where 7 is a representation of GL(3) and y is a character (of
GL(1)), and wx = 1 where w = w, is the central character of 7. From
7% ~ m we conclude that

7 (%(g) = 7(Jtg71J), J = antidiagonal(1, —1,1))
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and x? = 1. Then m = xI (7, 1), where Ty is a representation of PGL(3)
with (7x)? ~ 7x, hence the image of the symmetric square lifting from
GL(2) (or rather SL(2), see [F3]) to PGL(3). Globally we have that the
lifting

A1 :S0(4) = [GL(2) x GL(2))'/ GL(1) — PGL(4)

takes 71 X 7y to I(x Sym?(r1), x)-
If 7 is induced from the (standard) parabolic of type (2,2) then it is

r=I(nm) ~nl = 16, md), (g =r(w'gw ).

If 7¥ ~ 75, then 7 lies in a continuous family I(m1v%, 701 ~%), v(g) = | det g,

of f-invariant representations. Otherwise 7{ ~ 71 and 7§ ~ 75, thus w2 =
1, and wy,wy, = 1. If w,, = 1 then 7; is a representation of PGL(2), and if
wy, # 1 then 7, = m(u;), where u; is a character of Cg(= E* in the local
case, A, /E; in the global case) which is trivial on Cr, where E/F is the

quadratic extension determined by w;, = w,.

Interlude about GL(2): if E/F is the quadratic extension determined
by a quadratic character w of F* (F local), and p is a complex valued
character of E*, there is a two dimensional representation p(u) of the
extension

Wgp=(z € EX 0;0% € F — Ng/pE, 02 = Zo)

of Gal(E/F) = (o) by Wg,g = Cg, given by

uw(z) 0 0 1
ZH( 0 u@)’ "H(u(az)o)'

Then det p(p)(2) = u(z%), det p(u)(c) = —u(0?). The corresponding ad-
missible (globally: automorphic) representation of GL(2) is denoted by
7(), and its central character is w(z) = xg/p(z)u(z).

In the case of the parabolic of type (2,2) above, w,, # 1 then implies that
wi| F* =1, hence there is a character u} : EX — C* with p;(2) = ul(z/z)
so that 7, = m(u;/m;). Choose square roots of

a(2)® = (whps)(2/2),  b(2)* = (i /ph)(2/7),
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ab 1/
a b a/b — 1 /1y
(") (") - b/a - /1t

1/ab Y

A1 . —
m(a) x w(b) == I(m(uy /7)), w(pa/15))-
If 7 is induced from the standard parabolic of type (2,1,1) then

=11 xxe) = =100t g ), =1
and m = x20(Tx2,X1X2,1). Further 7% ~ 7 (it is a representation of
GL(2)), and 70 = 7x2 ~ 7¢, and xo = x1x2 has order two. If yo = 1
then 7y is a representation of PGL(2), while if x¢ # 1 then 79 = 7 (o /Hg),
where g is a character of the quadratic extension E of F' determined by
Xo- In this case

m(po) X x2m (ko) — X2l (7(po/Ho), X0 1)-

If 7 is induced from the minimal parabolic, of type (1,1,1,1), and

m=1I(x1,x2, X3, xa) =7 =I(x7 " xa xs X )

is not in a continuous family of f-invariant representations, then x? = 1.
If two x}s are equal then 7 is xoI (x,x "1, 1,1). Otherwise 7 is the twist by
Xo of T(x1,X2,X1X2,1). Denote by E5 the extension of F' determined by
X2, put p(z) = x1(2%) (Z is the image of z € ES under the Galois action
over F). Then pu =i (fi(z) is u(z)) and p = p~* since x3 = 1. Then there

is i on By with pu(2) = p1(2/2)(= pa(2/2) # 1), and

m(p1) x xom(p1) — xod (w(p1 /11 ), x2, 1) = xol (X1, X1X25 X2, 1)-

We now take the Levi subgroup Ay and list the different types of
maps s X 0. The involution 6 maps an element (a,b,c,d)* of Ay to
(—=d, —c,—b,—a)*, and it is convenient to write s as sJ (J = (14)(23)).
In these notations, there are 1 (resp. 8, 6, 6, 3) distinct maps sJ x 6
where s is 1 (resp. has order 3, is a transposition, has order 4, is a product
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of two transpositions of disjoint support). Representatives are given by
s =1 (resp. (321), (12), (4321), (12)(34)). The subspace A of vectors
in Ay fixed by sJ x 6 is {0} (resp. {0}, {(a,—a,0,0)*}, {(a,b,a,b)*},
{(a,b,c,a+b—c)*}) and det(1 — sJ x 6) is 8 (resp. 2, 2, 1, 1). We record
only the discrete part, where A = {0}.

11
% > tr M(J,0)Ip, (0, f x 6)

1 8
+os ZtrM((?)Zl)J, 0)Ip,,- (0, f x ).

The 7 in the first sum are the characters (x1, X2, X3, x4) of Ag fixed by
J x 0, that is x? = 1. There are 4! such ordered 4-tuples of distinct x’s,
3! - 2 ordered 4-tuples where {x;} has 3 distinct elements, 3 x 2 ordered
4-tuples where each y; occurs twice in (x1, X2, X3, X4), 4 ordered 4-tuples
where exactly 3 of the 4 x}s are equal. The first sum becomes

1
S Z tr MI((x1,x2, X3, xa); [ % 0)

XiFEX5 X7 =1, x1x2X3Xa=1

1

TI1s D e MI((xa, x1s X2 X2); f < 0)
x17x2:x; =1

D>t MI((x, x, X, X); £ % 0).

x*=1

L
418

Since (321).J x @ maps 7 to (x3 ', X7 X5 X4 ), the fixed 7 have x7 = 1
and x1x3 = X1X2 = X2X3 = 1, thus x;1 = x2 = x3 has x3 = 1. Since
X1X2X3X4 = 1, we get x4 = x. The contribution is then

é Dt M((321),0)1((x: X X, X); f X 6).

x*=1
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3. Trace Formula of H: Spectral Side

The spectral side of the trace formula for H = PGSp(2) can be written
out too as the case where 0 is trivial. We proceed to specify the objects
involved. As usual, a superscript * indicates image in the projective group.
We choose Py to be the upper triangular subgroup in H. Its fixed Levi
subgroup is chosen to be Ay = {t = diag(a,b,A\/b,A/a)*}. A basis of
the root system is A = A(H, Pg, Ag) = {a, 3}, at) = a/b, B(t) = b2/,
and the root system is R = RT U —R*, where RT = RT(H, Py, Ag) =
{a, B, a4, 2a+ 3} is the set of distinet homomorphisms in the action (Int)
of Ay on Lie(Py/Ap). The group X.(Ag) = Hom(G,,, Ay) is a lattice in
the vector space Ay = X, (Ag) ® R which we identify with R? via the map
log : X.(Ag) — Ao = R?,

x 1 1
IOg((I, ba A/ba A/a’) = (logq |CL| - 5 lqu ‘A|710gq ‘b| - 5 logq |A|)

The roots, characters of Ag(F) = X, (Ag)®F*, lie in the group X*(Ag) =
Hom(Ay, G,,), which is a lattice in the dual space A = X*(Ag) ® R
to Ap = Hom(X*(Ay),R). Identifying Aj with R? with the usual inner
product: A5x4y — R, ((z,y), (u,v)) = zu+yv, the roots can be identified
with the vectors o = (1,-1), 8 = (0,2), a+ 3 = (1,1), 2a+ 6 = (2,0)
in A5 = R2. The coroots a¥ = 2a/(a,a),... are in Ay identified with
a’ = (1,-1), By = (0,1), (O‘“‘B)v = (1,1), (2a+ﬁ)v = (1,0).

The Weyl group Wy = W(H, Ag) of Ap in H, which is the quotient
by (the centralizer in H of) A of the normalizer of Ay in H, viewed as a
group of permutations in the symmetric group S4 on 4 letters, is generated
by the reflections s, = (12)(34), sg = (23), Sa+s = (13)(24), s20+5 = (14)
in Sy. Put 0 = s3sq = SaS2a+4(= (23)(12)(34) = (12)(34)(14)). Then

Wo = (0,53;0" = 3% =1,8p085 =0 ') = {sgoj;i =0,1;=0,1,2,3}

is the dihedral group Dy. Note that sgo = 54, $502 = S2a-+4, S50° = Sa+4-
Under the identification of X, (Ag) with a lattice in Ay = R?, the Weyl
group can be identified with a group of automorphisms of Ag: so(x,y) =

(y,z),

Sﬁ(x»y) = (.’E, _y)a Sa+ﬁ(x7y) = (_yv —{L‘), S2a+ﬁ(‘ray) = (_xay)a
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o(x,y) = (y,—x), 02 = —1. Note that for each root 7 in {«, 3, + 3, 2a +
B} and for § € A§ perpendicular to v, we have s,y = —v and 5,6 = .
Then the s, are reflections, and o is a rotation of 7/2, clockwise.

The Levi (components of parabolic) subgroups of H containing A other
than H and Ag are M, = sgMgsg, M)y = s,Mpsa,

M, = M) = {diag(4, AwfA7lw)*; Ain GL(2),Ain G,,},

Mg = {diag(a, A,det A/a)"; Ain GL(2), ain GL(1)}.

We determine the subspaces of Ay associated with these. The (split compo-
nent of the) center A, = Ang, of M, consists of t = (a,a,A/a,A/a)*, thus
X.(Ay) = Hom(G,,, Ay) is Z(1,1) and A, = X« (Ay) @R is R(a + 3)V
in Ag. Since X.(Am,) = spX.(Am,) we have Ay = Ra¥. From
X.(Am;) = Z(1,0) we obtain Ay, = R(2a + 3)Y in Ay, and since
X (Any) = 50X (Am,) we have Amy, = RBY. Hence

Sa _ sg __ Satp _ 82048 _
Aoa = .AMQ, -AO = ‘AMB’ Aoa = .AM/Q, -AO T = AM/ﬁ
Here is the diagram (where a; = &1 — €9):

Qg = 269 a1 + Qo as + 201

>T<a
To list the contributions to the trace formula, note that the w in Wy
with AY = {0} are 0, 02, 0. Recall that o(a,b,A/b,A/a) = (b,\/a,a,\/b)

and the character (u1, u2) from which I(pq, pue) = pape X po/p x py 't is
induced takes at t = (a,b,A/b,A/a) the value

pa(a/b)pa(ab/X) = piy " (V) (1 piz) (@) (piz/ i) ().
Then ° (p1, 12)(g) = (p1, u2)(cg) is the character

t > (ot —)p1(ab/A) pa(b/a) = py 't (A)(pa/p2) (@) (11 p2) ().
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We have 7 (pu1, pi2) = (1, p2) if g1 = p2 = py ' Since
0%t = (A/a,\/b,b,a), 7 (s ) (8) = (1, 12)(0t) = pa(b/a) pa(A/ab)
is equal to (py,pe)(t) if u3 = 1 = p3. Note also that 1 — o : (z,y) —
(v,y) — (y,—x) = (z — y,y + ) has determinant 2, while det(1 — 0?) = 4.

Since [Wy] = 8 and W' = {1}, the contribution to the trace formula from
M = A and A = {0}, thus W% (4y) = {0,062, 0%}, is

Z tr M (0,0)Ip, (11, t2; fr)

—1
H1=H2=y

| =
DN | =

1 1
+33 3 1trM(0'370)IP0(,U17M2§fH)
H1=p2=ly
2 DS MR, 0) ey (a1, 123 fi)
5 1 o°, Po 1, H25 JH)-

pi=1=p3

Note that the representations Ip, (1, p2) = pipe X p1/pa X py ' with
u? =1 = p2 are irreducible (by [ST]), hence the operators M are scalars
which in fact are equal to 1.

Next we consider the Ay for Levi subgroups other than H and Ay,
and the w in the Weyl group which map A to itself with fixed points
{0} only. These are Ayi*” = {0}, Ayj, = {0}, Ayp™ = {0} and Aiﬁ% —
{0}. The reflection sq4p acts on M, by mapping diag(A4,AA*), A* =
w!Atw, to (AA*, A). The representation ma @ p, from which Ing, (7o, 1) =
o X 4 is induced, takes diag(A,AA*) to u(A)me(A). Since In, (w2, p) is
a representation of PGSp(2), we have p?w = 1, where w is the central
character of . The representation mo® p takes (AA*, A) to p(A)ma(AA*) =
pN)wA)w™! (det A)m2(A). Then we have sqip(m2 ® p) = 72 @ p when
w = 1, thus 7y is a representation of PGL(2). Since [Wo] = 8, [Wa'*] = 2,
det(1 — s)| 4y, = 2 and M/, contributes a term equal to that contributed
by My, the contribution to the trace formula from the W*(An) with
A ={0} and M =M, and M/, is (w2 is a representation of PGL(2,A))

2.2, Z ZtrM(sa_w,O)Ipa(@,#;fH>-

{m;p2=1} m2

[0 2 \V]
N | =
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The representations Ip_ (2, 1) = 7o X p are irreducible (by [ST]), hence
the operators M are constants, in fact equal 1.

The only element of Wy which maps An, = R(2a + )Y to itself with
{0} as its only fixed point is s(g124) = (14). It takes t = diag(a, A, det A/a)
to diag(det A/a, A, a). The representation p ® m of GL(1,A) x GL(2,A)
from which the representation Ip, (11, m2) = pxme of PGSp(2, A) is induced
takes the value p(a)me(A) at ¢, and p(det A/a)ma(A) at soa4pt. Since
it is a representation of the projective group we have uw = 1, where w
denotes the central character of 7. From p ® mo =~ Soq1p(p ® m2) we
conclude that p? = 1 and mp ~ wmy, w = p is 1 or has order 2. We have
det(1 — s2a1p)[AM, = 2, [Wo] = 8, [Wéwﬁ] = 2, and the contribution
from M, is the same as that from Mg, hence the contribution to the trace
formula of H from Mg and Mj; and the unique element in WA(Am,)
when A = {0} is

9. % . % 3 STt M(szass 0)Ip, (1, 723 fir).
{wsp?=1} {ma;ma=pmo}

The representations Ip,(u,m2) = p % mo are irreducible when p # 1,
in which case the operator M is a constant, equal to 1. When p = 1,
the representation 1 x 75 is a product of local representations 1 X g,
which are irreducible unless w9, is square integrable or one dimensional.
The operator M can be written as a product m ®, R, of a scalar valued
function m and local normalized operators R, (they map the K,-fixed
vector in an unramified 1 X 7y, to itself). When 1 x 7y, is irreducible,
R, acts trivially. When 75, is square integrable 1 x w5, decomposes as a
direct sum of two tempered constituents, 7, and 7y, and R, acts on
one constituent trivially, and by multiplication by —1 on the other. When
Ty is E1g, €2 = 1, 1 x €15 has two irreducible (nontempered) constituents:
L(v,1 x v=12¢) and L(v'/?spy, v=1/2¢), and R, acts on the first trivially
and by multiplication with —1 on the second. The scalar m is 1.

Similarly we describe the spectral discrete contributions to the trace
formula of the endoscopic group Cy = PGL(2) x PGL(2) of H = PGSp(2).
The terms corresponding to the parabolic group Cy itself is as usual a sum
over the discrete spectrum representations 7y, w9 of PGL(2, A):

> tr(m x m)(fo).

T1,T2
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The proper parabolic subgroups are Mg = Ag x PGL(2), M, = PGL(2) x
Ay, My = Ag x Ay, where Ay denotes here the diagonal subgroup in
PGL(2). Thus M consists of ¢t = diag(a,1)* x diag(b, 1)*. The roots are
a(t) = a, B(t) = b. They can be viewed as a = (1,0), 8 = (0,1), in the
lattice X*(Mg) = Z x Z in Aj; = R x R. The coroots oV = 2a/(a, ) =
(2,0), BY = (0,2) lie in the lattice X,(Mg) = Z X Z in Ag = R x R.
Since X*(Mpg) = X.(Ag x {0}) = Z x {0} and X, (M,) = {0} x Z, we
have A, = Am, = RBY and Ag = Am, = Ra”. The Weyl group Wy =
W (My) is generated by the commuting reflections s, and sg, where s, (t) =
diag(1l, a)* x diag(b,1)* and sg(t) = diag(a,1)* x diag(1,b)*. Identifying
X*(My) with a lattice in R xR these reflections become s, (z,y) = (—x,y),
sg(z,y) = (z, —y). The other nontrivial element in Wy is sqs3 = —1. For
A = {0} we have WA(Ap) = {sass}. Since 1 — 5,85 = 2 and dim Ay = 2,
det(1 — s4s5)[Ag = 4. Further, W{%(A,) = {s5} and W{}(A4y) =
{Sa}, (1—54)(0,y) = (0,2y) hence det(1—s,)|Ag = 2 and det(1—sg)|As =
2. The representation 3 ® ps of My, taking t to uq(a)us2(b), is equal
to sa55(p1 @ pa), whose value at ¢ is puy ' (a)uy ' (b), precisely when the
characters p; are of order at most 2. The representation ;1 ® 72 of Mg is
equal to s, (i1 ® ma) precisely when p3 = 1. We obtain

1 1
11 tr M (sass,0)Ip, (11, 12; fc,)
ni=1=p3
2 1
+Z§ tI‘M(Sa70)IPﬁ(M177T2;fCO)
u%:l,ﬂ'g
2 1
+ 15 tr M(sg,0)Ip, (72, pi2, fcy)-
u%:l,ﬂ'z

Note that the representations which occur in these three sums are well-
known to be irreducible, from the theory of GL(2). Hence the operators
M are scalars, equal 1.
Similar analysis applies to the #-twisted endoscopic group
C = [GL(2) x GL(2))' /G,

whose group of F-points consists of (g1, g2), g; in GL(2, F'), det g1 = det go,
with (g1,92) = (201, 292), z € F*. A character

(b1, s przs ) mod (p, ™), propty = 1,
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of the diagonal subgroup My of
t = diag(ay, ag) x diag(by, b2) mod(z, z), ajas = byba,
invariant under s,ss satisfies
pa(an)py (@) pa(br)py(b2) = pa(az)py (ar)pa(b2) s (b1)
for all ajas = b1bo, thus
1=y =yt = s,

which replaces the requirement p? = p2 = 1 in the case of Cp.

As for a representation (w1, pj) X m2 of the Levi subgroup Mg, thus
i phw, = 1, if it is s,-fixed then its value at diag(a,b) x g, ab = detg,
which is pq(a)uy (b)m2(g), is equal to its value at diag(b,a) x g, which is
w1 (b)) (a)m2(g). Here ab = det g, so we conclude that Z—i(dzgg) =1 for all
a, g, so ) = pi1.

Since all of the representations which contribute to the spectral sides of

the trace formulae of H, C, Cy associated to proper parabolic subgroups
are induced and are irreducible, except in the cases of 1 X 7o, the intertwin-
ing operator M(s,0) in each case where the representation is irreducible
is a scalar which comes outside the trace. Hence our assumption on the
components of the test function f, hence also on the matching functions
fu, fc, fc,, implies the vanishing of the contributions from the properly
induced representations to the spectral sides of the trace formulae of H,
C, Cy.

4. Trace Formula Identity

We now review the trace formula identity for a test function f = ®f,
on G(A) = PGL(4, A), and matching functions fg = ®fg, on H(A) =
PGSp(2,A), fc, on Co(A) = PGL(2,A) x PGL(2,A), fc on

C(A) = [GL(2,A) x GL(2,A)]' /A

where the prime indicates (g1, 92) = ((91v), (g20)) with det g1, = det ga,
in F} for all v, and fo, = @fcp. on Cg(A) = A, x A, The f-elliptic
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f-semisimple strongly #-regular part of the geometric side of the 6-twisted
trace formula, T.(f, G,0), is

Te(fH7 )_ _T (fCovCO) [ fca Z TE fCE

[E Fl=2

The assumption that at the place vy of F' the components fi,,, fHuv,,---
vanish on the (0)— singular set of G(F,), H(F,,),..., and the assump-
tions that the components of f, fg, ... at v = vy, ve, v3 have (#-) orbital
integrals which vanish on the strongly-(6-) regular non-(6-) elliptic sets,
imply that the geometric sides of the (f-twisted) trace formulae are equal
to the (6-) elliptic parts. The geometric sides are equal to the spectral sides
— these are the trace formulae for each of the groups under consideration.

The spectral side Tgy(f, G,6) of the f-trace formula for G and f will
be equal to the (weighted) sum of the spectral sides of the trace formulae:

T ) {Top(fe Co) + 5 (Taplfen ©) = 1 3 Tlfe, )]

([E:F]=2

Here is a summarized expression of the form of the spectral side of the
f-twisted trace formula for f on G(A) = PGL(4,A):

1 1 1
Top(f, G, 0) =1+ 51(3,1) + 51—(2,2) + -

41(2,1,1) + 1,

where

I=> trr(f x0),

m ranges over the (equivalence classes of) discrete spectrum representations
m of G(A) which are #-invariant. Note that each of these 7 occurs with
multiplicity 1 in the discrete spectrum of L?(G(F)\G(A)).

Further,

1(3 1) = Z Z trM 0430[20[1, )(XIP(S,I)(T’]‘))(f X 9)3

x2=171~0r

where 7 ranges over the discrete spectrum representations of PGL(3, A)
which satisfy 7 >~ 7%; here 0(g) = J~*g~'J and J is (6;3—;), and ¥ is any
quadratic character of A* /F* or 1.



80 III. Trace Formulae

Furthermore, I(5 5 is the sum of IéQ 2)

LYY e M@ (@) g (). (0 £ 6,

[E:F]=2 pe (A} JAXEX)A

Z tI‘M(J,?T([Lﬂ,?‘((ﬂg))fp(lz) (7T<ﬂ'1)a7r(/12);f X 0),
[B:F1=2 iy £ € (A /AX EX )N

1
Il = 3 Ztr M(J, 7, 7)Ip,, (7,75 f x 0)

+ Z tI‘M(J,7'1,7‘2)IP(2’2)(7_177_2;fX 0).

T1#T2

Here we put ji(z) = p(z/z) for a character u of AL/E'; i is a character
of A, /A*E>*; 7y and 75 (and 7) are discrete spectrum representations of
PGL(2,A) and the sum over 71 # 75 is over the unordered pairs; the sum
over iy # [l is over the unordered pairs too. Note that for representations
of PGL(2) we have 7 ~ 7.

Next I(3,1,1) is the sum of

% Z Z tI‘[M(J, (Tlv L, 1))(XIP(2,1,1) (Tlv L 1))](f X 9)

x2=1 71

and

2. > X

[B:F]=2 x*=1 po(hly/ EV)"

where
X=tr [Mu (o). x5 D) Iprm s 1) (X (o) X0 1))] (f x ).

Here x is a quadratic character of A*/F*, 71 is a discrete spectrum rep-
resentation of PGL(2,A), and xg signifies the character # 1 on A*/F*
which is trivial on Ng,pAf.
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Finally,

1
L= > M(J0)I(x; f x 0)
a:?:l:H Xi

Xi #Xj

1
+4—8 Z trM(J?O)I((Xth?XQvXQ);fXa)

X12¢X2
Xi =1

1
+ 18 Z tr M (J,0)((x. X X, X)s f % 6)
o

o ST M (E2,01((6 % x0: X 0)

x*=1

The twisted trace formula for f on G(A) is equal to a sum of trace
formulae listed below. First we have T, (fm, H), which is

Z tr @y Ry - (1 % m20) (fHw)

72 of PGL(2,A)

> =

ZtI‘ﬂ'H(fH) +

_1_3 Z Z tr MIp, (1, w25 frr)

pFl=p? {mo;uma=mz}

J& > > tr MIp,, (o, 5 frr) + ...
/

u?2=1 7y of PGL(2,A)

The fourth contribution here involves a properly induced representation
Ip_ (ma, 1), which is irreducible. Consequently the intertwining opera-
tor M(Sa+8,0) is a scalar which can be taken outside the trace. Then
trIp_ (mo, i frr) is a product of local terms, and those local terms at
v = V1, Vg, U3 are zero by the assumption that we made, that the orbital
integrals of frr,, vanish at the regular nonelliptic orbits. Similar observa-
tion applies to the third term in the spectral side of the trace formula of
H and fy (Ip,(u,72), p # 1 = p?), as well as to the contributions from
P, that we did not write out here: they vanish for our test function fg.
Only the first two terms remain under our local assumption.

From this we subtract i of the spectral side Ty (fc,,Co) of the trace
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formula of Cy and fc,:

_Hztr(mxm(fcwi 2 trMlsa,0)es (11, foi)

2_
T1,T2 pi=1,m2

1
+1 tr M(sg,0)Ip, (72, 11; fc,)
'u,?zl,ﬂ'z

1
+ ﬁ Z trM(Sasﬁ’O)IPo(MhNQ;fCo):l‘

py=1=p3
The representations  Ip, (p1,m2) = I(p1) X ma,

Ip, (w2, pn) = w2 x I(p1),  Ipo(pi, pi2) = I(pa) x I(p2)

are properly induced, where I(u) denotes the representation of PGL(2, A)
induced from the character (g a&) — w(a) of the proper parabolic sub-

group. Since the group in question is PGL(2) they are irreducible, hence
the operator M(s,0) is a scalar, can be taken in front of the trace (in fact
it is equal to 1), and the tr Ip(7; fc,) are products of local factors, those
indexed by v = v1, v, v3 are zero by our assumption on the vanishing of
the orbital integrals of the components fc, ,, on the regular elliptic set,
hence the only contribution is the first:

—i > tr(my x m)(foy)-

To this we add % of the spectral side of the stabilized trace formula for
C and f¢; it is stabilized by subtracting i > g Te(fcy). To explain this
trace formula, recall that a representation of C(A) is an equivalence class
of representations m; x m2 of GL(2,A) x GL(2,A) with wr,wr, = 1 under
the equivalence relation m x mg ~ ym X x !

A*/F*. Thus the terms

o for any character x of

1
1 tr M (8o, 0)Ip, (11, p1, 725 f),

sum over the discrete spectrum representations mo of GL(2, A) and charac-
ters pp of A*/F*, which appear in the trace formula for GL(2) x GL(2),



4. Trace Formula Identity 83

would contribute to the trace formula of C' precisely one term: (g1, p1,7m2)

would make a representation of C(A) precisely when p3w,, = 1, and

I(py, pig, m2) ~ I(1,1, uy 'm) for any py as a representation of C(A). For

any representation o of PGL(2, A) (thus the central character w,, is triv-

ial), I(1,1,79) is irreducible. Hence the intertwining operator M is a

scalar, which can be evaluated to be equal to one by standard arguments.
Similarly, the terms

1
ZtrM(s/a,O)IPa(M,MhHl;f) (niwr, = 1)

contribute just

1
Z tI‘IPa (772) 1a 17 fC)a

which is in fact equal to %tr Ip,(1,1,72; fc). Thus we have

1 1
+2|: Z tI'(’ITl ><’/T2)(fc)+2'Eztrlpg(lalaﬂ—Q;fC)
T X T2 el
Foe O M(sass, 0)p, (1 TOREED DI FN
16 2 T Sa583, Po L, 1, 2, 1425 JC 4 E\JCEg) |-
pi=py=1 [E:F]=2

The first sum ranges over all discrete spectrum representations
~ -1 =1
T Xy (X XTLX X T2, WrWr, = 1)

of C(A). The second sum ranges over all discrete spectrum representations
7o of PGL(2, A).

As the group C = [GL(2) X GL(2)]’ /G, is a proper subgroup of [GL(2) x
GL(2)]/G,y, the induced representations Ip, might be reducible (I have not
checked this). Recall that a representation I(p) of SL(2, F'), induced from

a character (8 aél ) — p(a) is reducible precisely when p has order 2 (or

w(x) = |2|*1), in which case I(u), u> = 1 # p, is the direct sum of two
tempered constituents.

To derive lifting consequences from this identity of trace formulae —
or rather their spectral sides — we use a usual argument of “generalized
linear independence of characters”, which is based on the “fundamental
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lemma”. Almost all components of a representation 7 = ®m, of G(A) are
unramified and for any spherical function f, on G(F,) we have tr m,(f, X
0) = f)(t(my) x 0) where f) is the Satake transform of f, and t(m,) x 0
is the semisimple conjugacy class in Gx0 parametrizing the unramified
representation .

A standard argument (see, e.g., [FK2]) shows that the spherical func-
tions provide a sufficiently large family to separate the classes t(m,) x 6.
The trace identity takes then the form where we fix a finite set V' of places
of F including the archimedean places, and an irreducible unramified rep-
resentation m, of G(F,) at each place v outside V, and then all sums
range only over the 7 (or I(7)) whose component at v is m,, while the
sums of representations of the groups H(A), C(A), Co(A),... range over
the representations 7y = @y, Tc = ®Tcw, Te, = @Mcyw, €tc., whose
components at v outside V' are unramified and satisfy

AUmry)) = (), Mi(t(mon)) = Hmo),  Ao(E(Toy,0))) = Hm).

Note that by multiplicity one and rigidity theorem for discrete spectrum
representations for PGL(4, A), there exists at most one nonzero term in
all the sums in Ts,(f, G,0). However, fixing t(m,) at all v ¢ V' does not
fix the t(mc,) and at this stage it is not even clear that the number of 7y,
mc, Tc, which appear in the trace formulae is finite.

The terms themselves in the sum are replaced by a finite product of
local terms over the places v at V', taking the forms

H trm, (fy X 0), m(s, ) H tr R(7y) (7o fo X 0).

veV veV

The intertwining operator M (s, 7) is of the form m(s, 7) [, R(s, 7,), where
m(s,7) is a normalizing global scalar valued function of the inducing rep-
resentation 7 on the Levi subgroup, and the R(s,7,) are local normalized
intertwining operators, normalized by the property that they map the nor-
malized (nonzero) K,-fixed vector in the unramified representation to such
a vector.

We shall view the identity of spectral sides of trace formulae stated
above for matching test functions as stated for a choice of a finite set
V', unramified representations m, at each v outside V', and matching test
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functions f,, fry,... at the places v in V| where the terms in the sum are
such finite products over v in V.

For the statement of the fundamental lemma in our context and its
proof we refer to [F5]. The existence of matching functions follows by a
general argument of Waldspurger [W3] from the fundamental lemma. The
statement (“generalized fundamental lemma”) that corresponding (via the
dual groups homomorphisms) spherical functions have matching orbital in-
tegrals, follows from the fundamental lemma (which deals only with unit
elements in the Hecke algebras of spherical functions, namely with those
functions which are supported and are constant on the standard maximal
compact subgroups) by a well-known local-global argument, which uses
the trace formula. We do not elaborate on this here, but simply use the
(“generalized”) fundamental lemma and the existence of matching func-
tions.



IV. LIFTING FROM SO(4) TO PGL(4)
1. From SO(4) to PGL(4)

We begin with the study of the lifting A1, and employ the trace identity

Tsp(fa G,G) = TSp(fHaH) - iTSP(fCO?CO)

> Tu(fe)]

[E:F]=2

RNy

45 Tap(fe ©) -

with data of a term in T, (fc, C). We choose the components at v outside
V to be those of the trivial representation 1 = 15 x 15 of C(A). The
parameters

to(Lay x 1a,) = [diag(qy/?, ¢, V/?) x diag(qy/?, ¢, /)] /{£I}

of its local components are mapped by \; to t = diag(q,,1,1,q;!), thus
to the class of I31(13,1), the unramified irreducible representation of
PGL(4, F,) normalizedly induced from the trivial representation of the
standard parabolic subgroup of type (3,1). Consequently the only nonzero
contribution to Ty, (f, G,0) is to %1(371). Had there been a nonzero con-
tribution to Ty (f, H), almost all of its local components would have the
parameters ¢, associated to Tpggp(2)(v,1) = L(v x v x v~1), which is not
unitarizable by [ST|, Theorem 4.4. However, all components of an auto-
morphic representation of PGSp(2, A) are unitarizable, hence there is no
contribution to Tsy,(fr, H).

Similarly there is no contribution to Ts,(fc,, Co), since had there been a
contribution its local components would have to be ma (v, v71) x m2(1,1) at
almost all places, but the irreducible (v, »~1) is not unitarizable. There
is no contribution to any of the Tg(fg), since a contribution from a pair
1, po of characters of C(A) = Af X AF corresponds to a (cuspidal) repre-
sentation ma(p1) X mo(u2) of C(A). But we fixed the parameters of the triv-
ial representation 1¢ = 13 x 15 of C(A) = [PGL(2,A) x PGL(2,A)]'/A*.

86
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Moreover, since a discrete spectrum representation of PGL(2,A) with a
trivial component is necessarily trivial, the only contribution to Ty, (fc, C)
is from 1. We conclude that the trace formula reduces in our case to

(1) I tr Lo (1s, 15 £ x 0) = ] tr1cw(fon)-

veV veV

Since each of the representations 1¢, is elliptic — its character is not
zero on the regular elliptic set in C,, = C(F,) — we can choose three of
the functions f, so that fc, not only has orbital integrals which vanish
on the regular nonelliptic set but moreover be supported on the regular
elliptic set of Cy, and tr 1¢,(fow) # 0. The equality (1) then implies that
tr Iy, (13,1; fy x 0) is a nonzero multiple of tr1¢,(fc ) for all matching

fvv fC,v-

1.1 PROPOSITION. For every place v of F, and for all matching func-
tions f, and fc. we have

trI(3,1),0(13,1; fu X 0) = tr 1o (fou)

PrOOF. Name the place v of the proposition vg. We apply the displayed
identity with a set V' containing at least 3 places, but not the place vy,
and use f, such that fo, is supported on the regular elliptic set for 3
places v in V. We then apply the displayed identity with the set V' U {vg},
and with the same functions f,, fo, for v € V. Of course we use f,, foo
with tr1c,(fo») # 0 for all v in V. Taking the quotient, the proposition
follows. O

Let us derive a character relation for the #-elliptic #-regular elements ¢
from the equality of the proposition, using the Weyl integration formula.

1.2 PROPOSITION. We have the character identity
A(t0)xx (t"0) = wi(r) Ac(Nt)xre (NE) (7 =1(1,1), 7o =10),

where t* denotes the element stably 0-conjugate but not 6-conjugate to t,
and r ranges over F* [Ng,pE* in casel, E5 /[Ng g, E* in case I1I, and
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K denotes the nontrivial character of this group. Here v is 2 in case 1, 1 in
case 111, and 0 in cases I1 and IV.

PROOF. In local notations,

trI(1,1; f x 0) = zT: ﬁ /T/T19 A(t0)x (t0) - Fy(t)dt
is equal to
tr lc(fc) = Z m ‘/TC Ac(Nt)Xﬂrc (Nt) - Fy,, (Nt)d(Nt)

Tc

for test functions f and fo with matching orbital integrals. Matching
means that for f-elliptic f-regular t of type I or III, the (k, 8)-orbital inte-
gral of f on G, denoted

F7(t) = Fy(t) — Fy(t')

(here t' is an element stably f-conjugate but not f-conjugate to the 6-
regular ¢; k indicates the nontrivial character on the group of #-conjugacy
classes within the stable f-conjugacy class) is equal to the stable orbital
integral of fo on C' at the norm Nt of ¢, denoted

Fit.(Nt) = Fy.(Nt) + Fy (Nt)),

where (Nt)’ denotes an element stably conjugate but not conjugate to Nt.
Implicitly we use the fact that the norm map N is onto. It is defined for
elliptic elements only in types I and III, as recalled in chapter II, section
5. The notation F(t) and Fy,(t) for the (6-) orbital integral multiplied
by the A-factor was introduced in Definition 11.2.4.

To determine the group of conjugacy classes within the stable class of
Tc = NT in C where T is of type I or III, we compute H 1 (F, X,.(T¢)).
It is the quotient of the lattice {X € X.(T¢); NX = 0}

= {(z1, y1; T2, y2) mod(z, ; ¥, y); T, i, Y, yi € Z,x1 +y1 = z2+ y2(mod 2)}

by
(X —7X;7 € Gal(F/F)) = {(z, —x;y, —y); &,y € Z},
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namely Z/2. Indeed, in case I the Galois group is Gal(E/F') = (o), with

J(!E17y1;$27y2) = (y17$1;y2,$2)~

In case III the Galois group is Gal(E/F) = (o, 7) with
o(x1,y15 %2, 42) = (Y1, 213Y2, 22)  and  7(21,91522,92) = (%1, Y15 Y2, T2).

We choose the function fo to be supported only on the regular elliptic
set, and stable, namely such that Fy,(Nt) and Fy,((Nt)') be equal. We
choose the function f on G to be supported on the f-regular 8-elliptic set
and unstable, thus Fy(t) = —F¢(t') if ¢, t' are stably #-conjugate but not
f-conjugate. Thus we choose f, fc related on elements of type I by

air O 0 a2Dr
0 sby sDb 0
Ff < 0 Zb; Ssbl2 0 ) = HE(rS)FfC(a7IB)7

aar 0 0 ar

o= (al a2D) if @ = o1 + a2V D, where

o = a1by + Dagby + (b1a2 + albz)\/ﬁ(: (a1 + az\/ﬁ)(bl + bz\/ﬁ))
and
ﬂ = albl — Dagbg + (b1a2 — a1b2>\/5(= (a1 + ag\/ﬁ)(bl — bQ\/B)),

and similarly in case III. Taking f, fc with F¢(t) supported on a small
neighborhood of a f-regular tg, the proposition and the Weyl integration
formulae imply — since the characters are locally constant functions on the
f-regular set — the character identity

A(t0) X (170) = Tﬂfﬁ(r)Ac(Nt)Xﬂc (Nt) (r=1I(1,1), 7c=1c),

where t* denotes the element stably 6-conjugate but not 6-conjugate to t,
and r ranges over F*/Ng,pE* in case I, E5' /Ng/p, E* in case III, and
k denotes the nontrivial character of this group.
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Since the #-conjugacy classes of type II and IV are not related by the
norm map to conjugacy classes in C', whatever the choice of f is on these
classes, the integral

[ A r
T/T1-6

is zero, hence x(t0) vanishes on the #-regular 6-conjugacy classes of type
II or IV.

It remains to compute the numbers [W9(T)] and [W(T¢)]. The torus
Tc consists of elements

((22).(257)), & D=8~ Damoar=

Cco2 C1 d2 dl
Its normalizer (modulo centralizer) in C(F) is generated by
(dlag(%*l)?I), (Iadlag(%*l))a

where i € F* with i2 = —1. Hence [W(T¢)] is 4.
The #-normalizer modulo the -centralizer of the torus T is generated

by (13 3)7 w = (?(1)), and diag(i, 1,1, —i) in case I. Hence [W?(T)] is

8, and [W?(T)]/[W(T¢)] = 2. In case III the #-normalizer modulo the -
centralizer is Z/2 x 7Z/2, generated by the matrices diag(—1,—1,1,1) and
diag(—1,1,—1,1), hence [W%(T)]/[W (T¢)] = 1. O

REMARKS. (1) The computation of the twisted character xj(1,1)(t*0) is
reached by purely local means in the paper [FZ] with D. Zinoviev.
(2) The propositions remain true when the local field F,, is archimedean.
Indeed, we choose the global field F' to be QQ or an imaginary quadratic
extension thereof, and apply the global identity (1) once with a set V
consisting of 3 nonarchimedean places (and f,, fc, supported on the (6-)
elliptic set for v € V), and once with V' U {vg}. In the real case, where
F,, = R, the only #-elliptic elements are of type I, and we obtain the
character relation

At0)xr1,1)(t70) = 26(r) Ac(Nt)x1o (Nt), K : R*/RY ={£1}.

In the complex case there are no f-elliptic elements, and all f-regular
elements are 6-conjugate to elements in the diagonal torus 7. For ¢t =
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diag(a, b, c,d) and Nt = (diag(ab, cd), diag(ac, bd)), noting that W(T') =
D, has cardinality 8, and W(T¢) is Z/2 x Z/2, generated by (w,I) and
(I,w), w= (2 _01), of cardinality 4, we have

A(t0)x (t0) = 2A6(Nt)xne (N?),

when F,, = C, # = I(13,1) and m¢ = 1¢, or F' is any local field, m¢ =

I(p, pyt) x I(po, ppt) and 7 = My (7¢) = I(pipiz, ji1 ) 2, pio ) i1, 1/ pa i)
are induced.

1.3 DEFINITION. The admissible representation 7o = w1 X 7o of
C =|[GL(2,F) x GL(2,F)]'/F*

lifts to the admissible representation 7 of G = PGL(4, F'), F local, and we
write m = A\ (7¢), if for all matching functions f, fo we have

trw(f x 0) =trwe(fo).

Equivalently we have the character relations y,(t0) = 0 for f-regular
elements without norm in C (type IT and IV for 6-elliptic elements, as well
as non-f-elliptic elements of type (2), (3) of [F5], p. 15 and p. 9, where
T* = {diag(a, b, oa, ob);a,b € E*}), and

A(t0)xx(t70) = ((WO(T)]/We(NT)))k(r) Ac(Nt) xre (NT)

for f-regular ¢ in G with norm in C, thus of type I and III for 6-elliptic ¢,
for split ¢ and for ¢ of type (1) and (1’) of [F5], p. 15 (and p. 9).

Type (1) has T* = {diag(a,ca,b,0b);a,b € E*}, type (1’) has T* =
{diag(a,b,ob,0a);a,b € E*}, [E : F] = 2. The norms are

(diag(aca,bod), diag(ab, cacd)) and (diag(ab,cacd),diag(aca,bobd)),

in cases (1) and (1), and stable #-conjugacy coincides with #-conjugacy
in cases (1), (1') and the split elements. Thus kK = 1 and r = 1 in these
cases. In the case of split t, W9(T) = D, has 8 elements while Wo(NT) =
7./2x7/2 has 4. For t of type (1), W9 (T*) consists of 1, (12)(34), (13)(24),
(14)(23) (W?(T) is generated by diag(1, —1,1,—1) and antidiag (I,I)), and
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0
diag(—1,1)). In type (1') WY(T) is generated by diag(—1,—1,1,1) and

diag(w, w), and W (NT) by (diag(—1,1), diag(—1,1)) and (Z, ((1) 701) ).

Then in cases (1) and (1') we have [W%(T)]/[Wc(NT)] = 1, and = 2 for
split T or T of type L. In type III, W?(T') is generated by diag(1, —1,1, —1)
and diag(—1I,I) (which act on diag(wo, T, 07, 0ar) in T as (43)(21) and
(32)(41)), and W (NT) by (diag(i, —i),I) and (I, diag(i, —i)), hence the
quotient [W9(T)]/[Wec(NT)] is 1 in type IIL

Wo(NT) = Z/2 x Z/2 too, generated by ((? 71) ,I) and (diag(—1,1),

Given a representation 7o = m; X mg of C = [GL(2, F') x GL(2, F))]'/F*
— thus the central characters wy,ws of 71,7 satisfy wjws = 1 — and
characters x1,x2 of F* with x?x3 = 1, F local, we write x1m X Y272
for the representation (g1, g2) — (m1(g1) ® m2(g2))x1(91)x2(g2); note that

x1(91)x2(g2) = x1x2(91) = x1X2(g2) since det g1 = det g5. The character
relation implies

1.4 PROPOSITION. If m; X o lifts to a representation m of the group
G =PGL(4, F), then x1m X Xxama lifts to x1XaT.

ProOOF. The characters x1, x2 depend only on the determinant. As the
norm map is

N(diag(a,b,c,d)) = (diag(ab, cd), diag(ac, bd)),
we have

(x1x2)(abed) = x1(ab - ed)x2(ac - bd). O

Denote by sp, or Sto the special (= Steinberg) square integrable subrep-
resentation of the induced representation I(v/2,v=1/2) of PGL(2, F), and
by St3 the Steinberg square integrable subrepresentation of the induced
representation I(v,1,v71) of PGL(3, F). Put also spy(Y) = X ® sp, for a
character y of F*/F*2,

Since Xj(y1/2,,-1/2) = Xsp, T X1, vanishes on the regular elliptic set of
PGL(2, F), for a function h on the regular elliptic set of PGL(2, F) we
have trspy(h) = —tr 1a(h). Hence for a function fo on C, supported on
the regular elliptic set of C, we have

tr(12 x 12)(fc) = —tr(spy x12)(fc)
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= —tr(1a2 x spy)(fc) = tr(spe x spy)(fo).

Let 7o denote an irreducible unitarizable representation of PGL(2, F').
Let J(v'/?my,v~Y2m5) be the unique (“Langlands”) quotient of the in-
duced representation I = I(v'/?my,v=1/?1;5) of PGL(4, F). Tt is unram-
ified if 7o is, in fact it is the unique unramified constituent of I if I is
unramified.

1.5 PROPOSITION. The representations mc,.y, = Ty, X Ly, and 1,, X
Ty, Of Cyy lift via A1 to J(Vio/zmo, V,Ijl/27rvo) for every square integrable
representation m,, of PGL(2, F,).

PrROOF. We choose a number field F' whose completion at a place
vp is our nonarchimedean field F),,, and 3 other nonarchimedean places:
vy, v9, v3. Fix a cuspidal representation m,, of PGL(2,F,,), and let
Ty, and m,, be the special representations sp, at ve and vs. Using the
trace formula for PGL(2,A) one constructs a cuspidal representation
whose components at vy, ve,v3 are our 7,,, which is unramified outside
V = {v1,v2,v3,00}, and a cuspidal representation ' whose components
at v in V' = {vg, v1, va, v3, 00} are our m,, which is unramified outside V.

We use the trace identity with the sets V' (resp. V'), such that 7 x 15
and 1o X7 (resp. 7' x 15 and 15 x ') are the only contributions to the trace
formula of C(A). We choose test functions f (resp. f’) such that their
components at vg, vz are supported on the #-regular elliptic set, and such
that the stable #-orbital integral of f,, and f,, are zero. This guarantees
that in the trace identity there are no contributions from H.

Now in the trace identity, for v outside V' we fix the class

tow(lz X may) = [diag(ay/?, ¢, /%) x diag(us,, 13, 1)]/{C*D,

where g, is the unramified component of I (g, u§v1)7 and u$, = fio, ().
This class is mapped by A; to

t, = diag(qh/2us,, a2 usy o ay sy, 4y sy ),

which is the parameter of J(Vle;/Qﬂ'QfU, Vv_l/27T2U).
Thus the unique contribution to the trace formula of G = PGL(4, F) is
the discrete spectrum noncuspidal representation

JW v 2.
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Since the trace formula for C' appears in our identity with coefficient %, and
both 1 x m and 7 x 1 make equal contribution, we conclude the equalities

Htr J(V$/27rv, V;1/27rv;f1, x 0) = Htr(lv x ) (fow),

v

where the products range over V', and over V’. Since we can choose f¢ .,
for which the terms on the right are nonzero, dividing the equality for V'
by that for V, and noting that f,, is arbitrary, the proposition follows. O

2. Symmetric Square

The diagonal case of the lifting A\; : m¢ = m X w2 +— m, that is when
71 = ma, coincides with the symmetric square lifting from SL(2) to PGL(3)
established in [F3]. More precisely we shall use here the results of [F3] to
relate terms in our identity of trace formulae, and in particular obtain the
(new) character relation Aj(my x 1) = I(31)(Sym® 1, 1) for admissible
representations ;. The global and local results of [F3] are considerably
stronger than what we need here. Not only that we work in [F3] with arbi-
trary cuspidal representations 71, and put no local restrictions (that 3 local
components 1, of 7y, be elliptic) as here, but more significantly, [F3] lifts
representations of SL(2) — rather than of GL(2). Consequently [F3] proves
in particular multiplicity one theorem for discrete spectrum representations
of SL(2,A) as well as the rigidity theorem for packets of such representa-
tions, as well as it characterizes all representations of PGL(3, A) which are
invariant under transpose-inverse as lifts from SL(2, A) (or PGL(2, A)).

For our purposes here we simply observe that the restriction of a rep-
resentation of GL(2,A) (resp. of GL(2,F), F local) to SL(2,A) (resp.
SL(2, F)) defines a packet of representations on SL(2, A) (resp. SL(2, F)).
At almost all places of a number field, the unramified components of
T = ®m, satisfy A\ (m, X 7,) = 1(371)(Sym2 Ty, 1), where if m, = I(ay, by)
then Sym?(a,, by) = (ay /by, 1,by/ay).

Here is a summary of the symmetric square case in our context of

PGL(4).
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2.1 PROPOSITION. (1) For each cuspidal representation wo of GL(2, A)
there exists an automorphic representation m = Sym?(my) of PGL(3,A)
which is invariant under the transpose-inverse involution 63 such that
A1(ma X Frg) = 1(371)(Sym2(7rg), 1).

(2) If mo is of the form mo(p), related to a character p : Ay /E* — C*
where E/F is a quadratic extension of number fields, then Sym?(my) is
Iy (m2(p1/ 1), XE), where fi(x) = wu(Z), © — T denotes the action of
the nontrivial automorphism of E/F and xg is the quadratic character
of A /F* trivial on the norm subgroup Ng pAj.

(3) If mo is cuspidal but not of the form ma(p), then Sym?(mo) is cuspidal.
(4) If Sym?*(my) = Sym?(wh) then 7, = xmy for some character x of
AX/JF*.

(5) Each O3-invariant cuspidal 73 is of the form Sym?® ().

The analogous results hold locally. For each admissible irreducible rep-
resentation mo, of GL(2, F,) there is an irreducible representation s, =
Sym?(ma,) of PGL(3, F,), invariant under the transpose-inverse involution
03, such that the character relation Ai(ma, X 7o) = 1(3’1)(Sym2(7721,),1)
holds. If Sym?(mh,) = Sym?®(ma,) then wh, = XuTay for some character
Xv of E)S. Each 0s-invariant cuspidal s, is of the form Sym2(7r27j). As
Sym?(spy) = Sts, we have A (spy X spy) = I(3,1)(Sts, 1).

PROOF. The global claims (1)-(5) are consequences of the results of
[F3]. The new claim here is the character relation. Note that the character
relation has already been proven by direct computation for o, which is an
induced representation, as well as for the trivial representation mo, = 1o,.
Thus we need to prove the character relation for square integrable my,,.

We fix a global field F' which is Q if F;, = R or totally imaginary if
F, is nonarchimedean , whose completion at a place vg is our F,,, cuspidal
representations ma,, , m2,,, and the special representation g, of GL(2, F,)
at the nonarchimedean places v = vy, v, v3 of F', and construct a cuspidal
representation mo whose components at v; (0 <14 < 3) are those specified,
while those outside the set V' consisting of the archimedean places and v;
(0 < ¢ < 3), are unramified.

We apply the trace formula identity with the set V' and a contribution
To = T2 X 72 to the trace formula identity. We take the test function f,,
to be supported on the f-elliptic regular set, such that tr 7c y, (fov,) # 0
and with fz,, = 0 (thus the stable f-orbital integrals of f,, are zero).
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This choice is possible by the character identity tr(1s, X 12,)(fow) =
tr I(3,1)(130, 1) (fo x 0). Consequently we get a trace identity with no
contributions from the trace formula of H, while the contribution to the -
twisted trace formula of G is only I3 1) (Sym? 75, 1), by the rigidity theorem
for GL(4). Note that the coefficient of Ty, (fc,C) is 3, and so is the
coefficient of the term I(5 1y in Ts,(f, G, 0).

Denoting by V; the set {vg,v1,v2,v3}, we conclude, for all matching
functions f,, and fc ,, the identity

m(asozar, 7) [] tr ey (e D(fe x 0) = ] trrcw(fow)-

veVy veVy

Here we wrote the intertwining operator M(azasay,T), 7 = Sym?(my)
where 1o = my X 72, as a product of local factors R(aszasaq,T,) over
all places v and a global normalizing factor m(my) = m(agasaq, ), and
incorporated the local factor in the definition of the operator 6, thus
tr I(3,1)(7v, 1)(fu x 0) stands for

tr R(azapa, 7o) (3,1 (70, 1) (fo ¥ 0).

Note that R(r,) = R(asasai,T,) is normalized by the property that
R(7,)m,(0) fixes the K,-fixed vector when 7, = I(31)(7y,1) is unramified.

We now repeat our argument with the set Vi =V —{vo} and construct
a cuspidal 75 unramified outside Vjﬁ whose components at vy, ve,v3 are as
above (we are assuming that vg is nonarchimedean). Dividing the identity
for Vy by the new identity for Vi we get

m(agagay, T)

m(a3a2a1,7-/) tr 1(3’1)(7-1107 1)(fv0 X 9) =t 7TC, v, (fC,”Uo)-

The constant m(agagay, 7)/m(azasar, ') is independent of the global
representations 7, 7’; it depends only on the local representation 7a,,, and
will be denoted m(ma,,). It is equal to 1 for me, = 1, the trivial rep-
resentation, by Proposition 1.1, hence also for the special representation
SP2y-

Hence m(ms) = [[ m(may), product only over the cuspidal components
oy Of ma, and we replace R(7,) by m(me,)R(7,) when my, is cuspidal to
obtain the character relation as claimed. |
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3. Induced Case

We then turn to the study of the A;-lifting of m1 X 79, wiws = 1 (w; is the
central character of 7;), when my is not the contragredient 71 of m;. Note
that 71 (A) = m(A) where A = w!A~'w. This 7, is equivalent to wy 'm;.

3.1 PROPOSITION. Let 7o be an admissible representation of GL(2, F')
(F is a local field) with central character w. Let my = I(u1,p}) be an
induced representation of GL(2, F) with pipiw = 1. Then A1 (I2(p1, p}) X
ma) = m, where m = Iy(u17e, pyme) is the representation of PGL(4, F)
induced from the parabolic subgroup of type (2,2) as indicated.

PROOF. Since A\j(um x pu=tmy) = Ai(m x ma), it suffices to show that
A (Io(1,w™1) x mp) = I4(ma, 7o), as the contragredient 7o of 7o is w™tms.
We then compute the O-twisted character of the induced representation
m=my = I4(ma,72). Put p = 7o ® 7ry. Write

p(diag(A,C)) for p(A,C) = m(A) @ 72(C).
Its space consists of ¢ : G — p with
$(nmk) = 6'/%(m)(mwy x it2)(m) (k)

m = diag(A, C) with A, C in GL(2, F) and n is a unipotent matrix (upper
triangular, type (2,2)),

§(m) = | det(Ad(m)| Lie N)| = |det(AC™Y)|?,

and 7 acts by right translation.

Note that m = m4 is f-invariant. Namely there exists an intertwining op-
erator s’ : m — 7 with s'w(g) = m(Ag)s’. Fix s’ to be (s¢)(g) = p(0)(4(8g)).
Here p(f) intertwines mo @ 7y with 7y ® mo by p(0)(E @ €) = € ® € and

p(0)(ma(A) ® 72(C)) = (72(C) @ ma(A))p(6).
Note that s is well defined. When 7 is irreducible (this is the case unless

my = v 2mh, 7wl ~ 7)), ' is a scalar by Schur’s lemma, so we can multiply
s’ by a scalar to assume s’2 = I, and so s’ is unique up to a sign. It is
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easy to see that our choice of s’ = s here is the same as our usual choice of
m(0), preserving Whittaker models or a K-fixed vector if 72 is unramified.

Extend p, by p(6) = s, to a representation of [GL(2, F') x GL(2, F')] x ().
Note that  trp(8)(m2(A) @ 72 (C))

= tr[ma(A) @ 1- p(6) - (1 @ ta(C))] = tr(ma(AC) @ 1)p(6).

To compute tr p(6)(m2(A) ® 1) choose an orthogonal basis v; for 2, and
a dual basis ©; for 75. (It is standard to “smooth” our argument on using
test functions). Then m(A) ® 1 takes v; ® U; to me(A)v; ® 05, and p(0)
takes ma(A)v; ® 05 to U; ® ma(A)v;. The trace tr p(0)(m2(A) ® 1) is then

> (55 @ ma(A)vi,vi @ 0) = (07, vi) (ma(A)vy, T5)

= (ma(A)v;, 1) = trma(A).
Asusual, (7w(0f dg)o)(h)
:/ F(9)p(0)((6( dg—/ f(o p(0)(6(g))dg
// / F(O(R) " nmk)§Y/2(m) (y x 7t2)(9m)d(k)6~* (m)dn dm dk.

Write m = diag(A,C) as 0(m; )mgem, with m, = diag(I,C) and mo =
diag(A’, I), where A’ = w!C~twA. We have tr(my x i2)(0 diag(A, C)) =
tr mo (Aw!C~1w). Put

My = {diag(X,1); X € GL(2,F)}, M, = {diag(I, X); X € GL(2, F)}

as well as for the images of these groups in PGL(4, F'). Note that j(m) =
§(mg). Then, putting m = 6(m; )momy, mo = diag(A, I), we have

trw(0f dg) = ///f “Hnymk)s ™2 (m) tr mo(A)dnidm dk.

Change variables ny +— n, where n; = nm#(n~1)m~1. This has the
Jacobian | det(1 — Ad(m#))|Lie N|. Replace n by 6(n)~! and note that

Ad(O(m7 HYmomy - 0) = Ad(0(m7 1)) Ad(me) Ad(0(m)).
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We obtain  trw(0f dg) = fMo Apr(mof) tr mo(A) X dmg, where

X:/ / FOF It m Y Yymomynk)dndk,
K JN JM,
and

Apr(mof) = 671/2(my)| det(1 — Ad(m))| Lie(N)|.

Note that if mo = diag(A,I) and A has eigenvalues a, b, then d(mg) =
lab|?, and

Apr(mob) = [(1 —a)(1 = b)(1 — ab)/abd|

has the same value at A and at w!A~ 1w (or A~1). Writing the trace again
as

twr(0fdg) = [ Aaslmad)xe, (4) /M 1O o) dm,

mo = diag(A,I), we use the fact that the f-normalizer of M in G is
generated by M and J. Since

o) (39) = (5,5) =l

my = diag(l, wAw), mo = diag(*A~1, 1),
and since Y, (!A™!) = Xy, (det A1 - A) = w(det A)xx, (A4), we finally
conclude that trw(6f dg) is

= [ 3Aulmed) 1+ et A () [ 70l mog)dg dm
My Mo\G

On the other hand, using the 2-fold submersion
Mp.reg X M\G — G- reg, (m,g) — 6(g")mg,
whose Jacobian is
|det(1 — Ad(m#))| Lie(G/M)| = 6 ' (m)|det(1 — Ad(m0))| Lie N |?,

and noting that the §-Weyl group Wy(M) = {g € G;0(g9)"*Mg= M}/M
is represented by I and J, if g — x(gf#) denotes the #-character of 7 then
we have

tr(0f dg) = /G F(9)xn(g0)dg = /M 507 (m)] det(1 — Ad(md))| Lie N|?
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X (mb) /M\G f(0(g)""mg)dg dm.

On writing m = 6(my) " mgm; this becomes

1 .
— [ SAurlmat)xalmot) [ $600) M mog)dg dm
My MO\G

We conclude that
Anr(mob)xr(mod) = (1 +w (det A))xn, (A), mo = diag(A4, I),
and that y,(gf) is supported on the set 8(g~1)mog, mo € Mp,g € G. In

particular it vanishes on the #-elliptic stable conjugacy classes of types I,
11, 111, TV.

Now
A (mof) = %Mdmg(dem, 1),
A(mgh)/Ac(Nmyg) = |w‘l/?’-

ab

if A has eigenvalues a and b, and As is the usual Jacobian of GL(2) :

2
Ay(A) = \%P/Q. We rewrite our conclusion as

A(mod)xx(mod) = Ac(Nmo)X1(1,0-1)(diag(det A, 1)) xx, (A)
= Ac(Nmo)X(I(l,w_1> X 7T2)(Nm0)

where N(diag(A,I)) = ((deSA (1]) ,A), since

X1 (1 2) (diag(a; ) = (pa (1) 2 (0) + pr (b)pa(a)) / Az (diag(a, b))

(and it is zero on the elliptic element in GL(2)). But this is precisely the
statement that I(1,w™!) x o Aq-lifts to m = I (o, 72). O

REMARK. The character relation implies that x,. vanishes on the 6-
elliptic conjugacy classes.
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3.2 COROLLARY. Let F be a local field. For every cuspidal representa-
tion mo of PGL(2, F') the representations mo = ma X 8py and spy Xm2 of C
A1-lift to the subrepresentation

S(V1/27r27 1/*1/2772)(: ke1r[[(y1/27r27 1/71/271'2) — J(V1/2772, V71/27T2)])

of the fully induced I(v'/*my, v=1/1y).

Proor. To simplify the notations we write simply0 - S — I — J — 0
omitting the (vY/2my,v=1/2m,). Since A\ (I(vY/?,v71/2) x my) = I and
A1 (12 x ) = J, and since the composition series of I(v/2,v=1/2) consists
of 15 and sp,, while the composition series of I consists of J and S, the
claim of the corollary follows from the additivity of the character of a
representation: X, 4r, = X, + Xro- g

4. Cuspidal Case

It remains to A;-lift cuspidal representations of C.

4.1 PROPOSITION. Let F be a local field. Let  and w4 be (irreducible)
cuspidal representations of GL(2, F) with central characters w', w" with
Ww'w” =1 so that m¢ = wh x 7Y is a cuspidal representation of C'. Then
A1 (mh x 7)) exists as an irreducible O-invariant representation m of G.

This m is cuspidal unless (1) i = #hx, x*> = 1, where
A1 (h x Thx) = XI(3,1)(Sym2 7h, 1),

or (2) there is a quadratic extension E of F' and characters py and po of
E* with pipe|F'™* = 1 such that wy = wp(p), 75 = wr(p2), in which
case

M(me(p) x mE(2)) = I2.2)(TE(111l), TE(p1p2))-

In particular, if 75 and 74 are monomial but not associated to the same
quadratic extension, then A\ (wh x ) is cuspidal.

When F is a global field and ©h, w5 are automorphic cuspidal repre-
sentations of GL(2,A) (with w'w” = 1) the analogous global results hold.
In particular A\ (mh x 7)) exists as an irreducible automorphic 0-invariant
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representation m of G(A), which is cuspidal except at the indicated cases.
In this global case we require that at least at 3 places the components of
mh, w5 be square integrable.

PROOF. We denote the local fields of the proposition by F’, E’. Sup-
pose F’ is nonarchimedean. Choose a totally imaginary global field F
whose completion at a place vg is our F”. Fix four nonarchimedean places
v1, V2, U3, V4 (# vo) of F, and cuspidal representations ,, (i = 1, 2, 3, 4)
of PGL(2, F,,). Let V' be the set of places of F' consisting of v; (0 < i < 4)
and the archimedean places. Construct cuspidal representations 71, mg of
GL(2,A) (with wqwe = 1) which are unramified outside V' whose compo-
nents at vg are 7y, 7y of the proposition, at vy are spy ,, (resp. 7, ), and
s Ty T, (TOSD. SD3.u,1 SDy s D0,

Set up the trace formula identity with the set V such that 71 x w5 (and

at vo, v3, V4 are T

79 X 1) contribute to the side of C'. Take the components fc ., (i =1, 2,
3) to have orbital integrals equal zero outside the elliptic set. Consequently
we may and do choose the matching f,, (i = 1, 2, 3) to have zero stable
G-orbital integrals. Hence fm ., (i = 1, 2, 3) are zero, and there is no
contribution to the trace formulae of H and Cj.

We need to show that there is a contribution 7 to the #-twisted trace
formula of G. If there is then it is unique, by rigidity theorem for automor-
phic representations on GL(n), and it is cuspidal, since A1 (spy,,, X7, ) =
S(Vzh/z / -1/2_,

vy Voa | T, ) is not induced from any proper parabolic subgroup.

We may apply “generalized linear independence” of characters at the
archimedean places of F. There the completion is the complex numbers.
Hence the local components are induced and the local lifting known. All
matching functions f,, fc, are at our disposal. There remain in our trace
identity only products over the set V; = {v;;0 < i < 4} of finite places in
V.

Note that both m; X w9 and w9 X 71 contribute to the side of C, which
has coefficient %, while the coefficient of the cuspidal contribution to the
f-twisted trace formula of G is 1. Choosing the fc.,(0 < i < 4) to be
pseudo coefficients of the m¢,, we obtain on the side of C' a sum of 1’s.
We conclude that the side of G is also nonzero, hence 7 exists.

Next we make this choice only at the places v; (i = 1, 2, 3, 4). Observe
that trmey, (fow,) is 1, and trm,, (fy,) = 1, since for ¢ = 1, 2, 3, 4 the

component 7, of 7 is S(Vvli/Qw’ vy 2 ), which is the A\;-lift of m¢ ., =

v Vi Vi
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T, X SPa,,. In fact the character relation i (7, X spy,,) = Sy, on the
f-elliptic set alone, and the orthogonality relations for twisted characters
(used below), would imply that the component m,, is S,, or J,,. Had
the component m,, been J,, for an odd number of places v; (1 < i < 4)
we would get a coefficient —1, and a contradiction. We obtain, for all
matching functions f,, and fc ., the identity (v = vg)

(1) tr Wu(ffu X 9) = Ny trﬂ'C'u(fC'u) + Z n<7r,Cv> tr Tré}',v(fcv)'

n(rl,,)>0

Here 7, are representations of C, not equivalent to 7¢, = m5 X Ty
of the proposition, under the equivalence relation generated by 7’ x 7"/ ~
7" xw' and 'y x"'x ' ~ 7/ x7”. The coefficient n, counts the number of
equivalence classes of global automorphic cuspidal representations whose
components at each w are in the equivalence class of 714, X mo,, (Where 71,
7 are our global representations).

We claim that all the w(,, which appear on the right are cuspidal. For
this we use the central exponents of the representations which appear in
our identity. Since all of the n(my,,) are nonnegative real numbers, a famil-
iar ([FK1], [F4;I1]) argument of linear independence of central exponents,
based on a suitable choice of the functions fc,, implies that if one of
the m ,, which appears with n(m,,) > 0 has nonzero central exponents —
namely it is not cuspidal — then 7, must have matching 6-twisted central
exponents. This means that 7, is the A;-lift of some 75 x 7§ where 7/ of
w4 are not cuspidal, since we already know to A;-lift 75 x 74 where 7} is
fully induced or special. Linear independence of characters (after replacing
trm, (fy, x 6) on the left by tr(wh x 74)(fcw)) gives a contradiction which
implies that all the 7, which appear on the right are cuspidal, as claimed.

Note that the identity exists for each local cuspidal ¢ ,.

We claim that m, is uniquely determined by mc,, and that the identity
defines a partition of the cuspidal representations of C,,. For this we use the
orthogonality relations for characters of elliptic representations of Kazh-
dan [K2] in its twisted form [F1;IT]. These assert the existence of pseudo
coefficients: if f, is a pseudo coefficient of a -elliptic 7 inequivalent to
7y then trm,(f, x 8) = 0; thisis # 0if 7, = 7, and = 1 if 7, = 7, is

cuspidal. Now let f, be a pseudo coefficient of 7] inequivalent to 7, for
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which we have the identity (sum over the «¢., with n(mf,) > 0)

tr W;)(f{;) = Z n(ﬂg’,v) tr Wg’,v(fé,v)y

where f(,, is the matching function on C,. We then have that the stable
orbital integrals of f(, , are equal to Zn(ﬂgv)xﬂgm on the elliptic set of
Cy. Evaluating our identity (1) at f;, and f¢,, we note that only finite
number of terms in (1) can be nonzero. Indeed, 7, of (1) is a component
of an automorphic representation of C(A) which is unramified outside V,
its archimedean components (hence their infinitesimal characters) lie in a
finite set, and the ramification of the remaining components is bounded
(fixed at vy, ve, v3, vg; bounded by f,, — which is biinvariant under some
small compact open subgroup — at vg). Hence 0 = trm,(f, x 0) is

=Ny <7TCU7 Z n(ﬂ-g’v)ﬂ-g’v> + Z n(ﬂ-/Cv)<7T/Cv7 Z n(ﬂ-g’v)ﬂ-g’v>'

n(mg,)>0

The inner products (mcy, Téy, ), OF (Xre, s Xav, ), are nonnegative integers,
hence no 7., can equal w¢oy, or T, as claimed.
Given a cuspidal 7, we now denote the m, specified by (1) by A/ (7¢y)-
We claim that

M (me(p) X m(p2)) = L2,2)(TE(p1Ts), T (1 12)),

where p1, po are characters of the local quadratic extension E'/F’ of the
proposition, with py # Ty, pe # Ty and ppuo|F'* = 1. As in the beginning
of this proof, we choose a totally imaginary global quadratic extension E/F
such that at the place vy of F' the completion E,,/F,, is our E'/F’.

Then we choose global characters i1, po of Aj/E* with our local com-
ponents at v, with pqpus|A* = 1, which are unramified outside a set V
consisting of the archimedean places of F', vg and three finite places vy, va,
v3 (# vo) which do not split in E, where the components are taken to sat-
isfy piv; # P, (bar indicates the action of the nontrivial automorphism of
E/F). The existence of u, e is shown on using the summation formula
for A% /E*, which is the trace formula for GL(1). First we construct pq,
and then jip — which is known to be ;" on AX/F* — has to be constructed
on Ay /E*A*.
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Set up the trace formula identity with the set Vy = {v;;0 < ¢ < 3} such
that mg(p1) X mg(u2) contributes to the trace formula of C. We choose the
components fc,, of the test function to have stable orbital integrals which
vanish on the regular nonelliptic set. Hence we may take f,, (i =1,2,3)
to have zero stable orbital integrals, so that we can choose fx,, to be zero,
hence there is no contribution to the trace formulae of H and Cj.

The trace formula of G will have the (unique) contribution

I2,9)(mE(p1F2), mE (11 p2)).
Indeed, we follow the homomorphisms of the Weil group
Wg/p = (2,052 € Cp,o20 ' =%,0%€ Cp — Ng/rCE)

which define mg(p1), mg(u2), and their composition with A (put p; =
1i(2), iy = pi(2)):

p1 0 u2 0
o= () < ()

\ Hipz (13) M2ty

1 Hipy 1ty

~ Hapy H1p2 ’
HoyHa Ty g

0 1 0 1
o <u1(02) o) X <u2<02> o)

1 0 (6?)
Ay ( , H2(e®) ) 13) (uz(UQ) " ) .
pi(o”) 01
1 10

This homomorphism implies that

M(me(p) X 7p(p2)) = Lo (TE(Bp2), 7E(1112))

at all places where (E/F and) 1, uo are unramified. Following the argu-
ments leading to (1), we obtain (1) for our 7¢,, = TE(p1) X Te(pe), where
Ty 18 I(g,0)(TE(Hypi2), TE(p112)), as claimed.

Note that when 1y = 5 ' we have 75 (i1 7is) = 75 (11 /T ) and 7g (11 f12)
=I(xg/r: 1), thus  M(me(u) X me()Y) s

= I (7 (1 /M), X r, 1) = 3.1y (Sym?(m(p1)), 1),

as is known already.
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At this stage we note that we dealt with all square integrable repre-
sentations m¢,, of C,, except pairs m X my = 7, (#1) X TE, (p2), where
E1, By are two distinct quadratic extensions of the local field F’, and u;
are characters of E* with p; # 11; and pyps|F’* =1, and 7g, (p;) is not
monomial from E; ({i,j} = {1,2}). In fact, in residual characteristic 2
there are also “extraordinary” representations, which are not monomial;
we shall deal with these later.

We claim that m, in (1) for such a 7g, (1) X T, (pe2) is cuspidal.

Let us review the homomorphisms of the Weil group which define the
product 7g, (1) X g, (p2). Denote by E the compositum of E; and Es
and by (o, 7) the Galois group of E/F, so that By = E™, E5 = E° are
the fixed points fields of 7, o respectively (thus Gal(E,/F) = (o) and
Gal(Ey/F) = (1)). To multiply 7g, (u1) and 7g,(12) we view their pa-
rameters as homomorphisms of Wg,p, an extension of Gal(E/F) by E*,
which factorize through Wg, ,p and Wg, /p. For 7g, (1) we have:

z (€ EX)Nrﬂ%1 27z (€ Ng/p, E™) — (’“(‘3”) 0 ),

p1(oz-07z)

T2
7 (€ Gal(E/F)) — 1> (€ B} — N/, EX) (mg ) #1(372)) :

o (€ Gal(E/F), viewed in Wg,/r) = (lrt) 0) -

We surnply pull IHd(/,Ll, WEl/F7 WEI/EI) from WEl/F to WE/F using the
diagram

Wg g, = W, /Wi = (Cg,7) = Wg/p = Wp/Wg — Gal(E1/F) = (o)

l | |
WE1/E1 = VVE'I/VV]%1 = CEl — WEl/F = VVF/VVE1 —» Gal(El/F)

The middle vertical (surjective) arrow is the quotient by
(Wg, /W) ={erz v 2 € O} = C}E/Fl.
The arrow on the left is also surjective. Its restriction to Cg C Wg/,p, is
2+ Ng/p,z2 (€ Ng/p,Cg C Cg,),

and 7 € W/, maps to 72 € Cp, — Ng/e, CE.
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For g, (u2) we have:

N
2(e EX) 25 s (e Ng/p, E™) — (Mz(zo'az) 0 ) )

po(t2z-T702)

2
o(€ Gal(E/F)) — 0® (€ EX — Ng/g, EX) — (M(OU ) M2(§U2)) ,
7(€ Gal(E/F), viewed in Wg, p) (MQ?T2) (1)) .

Composing these two representations by A1, we obtain the 4-dimensional
representation p of Wg JF"

z(€ E™) v diag(pn " pop, o pa "2 2, a7 2t a7 e o)
where *u means pu(«(z)), or z — diag(p,” 1,” 1, " 1) where

= p1(2)p (T2)p2(2)p2(0z),

0 , pi(7?) 0 0
pipz(r™) 0 0 0
—
T 0 0 0 pi(or?) |
0 0 p(em)pa(r?) 0
0 0 1o (0?) 0
0 0 0 pa(ro?)
o —
pipz(o?) 0 0 0
0 p(e®)pz(re?) 0 0

When p1 # up and pg # o this 4-dimensional representation p is irre-
ducible, hence — repeating the global construction employed twice already
in this proof — we conclude that (1) is obtained with 7, cuspidal, as had m,
been induced from a proper parabolic subgroup of G, the representation
p would have had to be reducible. This establishes the claim.

After completing the study of the lifting from PGSp(2) to PGL(4) we
shall conclude the same result — that Aj(m; X 72) has to be cuspidal if m
is not xi2, x> = 1, and 7, 7 are cuspidal but not 7z (u1), Te(uz2), by
showing that there are no induced G-modules that such m; X 7w can A;-lift
to.

e Since \{(wg, (111) X 7g,(12)) = m, is cuspidal, the orthonormality re-
lations for twisted characters of cuspidal representations on G,, and the
orthonormality relations for characters on C,, imply that the identity (1)



108 IV. Lifting from SO(4) to PGL(4)

reduces to only one contribution on the right side, namely our 7o, =

7w, (1) X T, (p2), with coefficient n, = 1, thus A (7, (1) X 7g, (2))
Ty, & cuspidal representation of G,,.

e The orthogonality relations now imply (in odd residual characteristic)
that for 7o, = e (u1) X mg(us2), the trace identity (1) has only the term
Tey on the right, and it becomes

tr I (o2 (7 (Hafly), TE(p1p2)) (fo X 0) = ny tr(Te(p1) X TE(p2))(fou)-

Clearly when one of mg(u;) is induced (thus p; = i;), we have this identity
with n, = 1.

We claim that n,, is 1 for all mg(u1) X 7g(ps2).

But first let us explain the meaning of the n,. A global (cuspidal,
automorphic) representation mo = m X9 (with at least 3 square integrable
components) defines an automorphic representation = of G(A) on using the
trace formula identity, by the arguments used repeatedly above (we choose
test functions such that the function fg is zero at one of the places where
7 is square integrable, and such that tr m¢y, (fey) is 1 for square integrable
Tew). Note that both ¢ = 71 X 19 and ¢ = 7o X w1 contribute to the
trace formula of C when m % x#2, x2 = 1, as we now assume. The trace
formula identity (for a suitable finite set V') then takes the form

[[emfox0)= > []tmo.(fe)

veV {re o veV
On the other hand we have the local character relations

trmy (fo X 0) = ny trwey(fow)

for each m, on the left, where n, = 1 unless ¢, = (1) X 7g(us2).
Replacing then the left side by [, <y
linear independence of characters on C),) that there are ||

Ny T Tew (fe) we conclude (applying
vey M DAITs T,
7¢, of cuspidal representations of C(A) whose local components belong to
the pair {mcy, Tcw}. In other words, the representations my = m X
mo which contribute to the right side are obtained from each other on
interchanging the local components of 71 and 75 at a set .S of places of F
which is infinite and whose complement is infinite (if 71, 7] differ by only

finitely many components and both are cuspidal then they are equal by
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rigidity theorem for GL(2)). If all n, are 1, we would have on the right
side only the contributions []tr 7oy, (fow) and [ tr ey (fow)-

Let E'/F’ be a quadratic extension of local fields, and 7t = wg/(p1) X
mg(12) a cuspidal representation of C(F'), where u; # T, puipe|F’ =1,
pipe # X © Ng/ g for any quadratic character x of F'. Our claim is that
the associated n, s 1.

For this we construct first a totally imaginary number field F' whose
completion at a place vy is F’, and a cuspidal representation wc of C(A)
which is unramified outside the set V' consisting of the archimedean places
and the finite places vg,...,v3. The component of mc at vy is our 7
and at vy, va, v3 it is spy,, X spy,,,. Then there are n,, (a positive integer
depending on 7{,) pairs my,, 7. of cuspidal representations of C(A) whose
components at vy, v, V3 are sp, X spy and at each v the components belong
to the pair {mcy, Tow}. Now we apply the theory of basechange for GL(2)
for a quadratic extension F of F' whose completion F ®@p F,, = E,, is the
local quadratic extension E’ of F' = F,,,. Then m¢,, = 7 = mg(p1) ¥
7 (p2) lifts to a fully induced representation 75, = I(p1, 1) X I(p2, fiz)
of C(E,,), and the global ¢ lifts to the cuspidal representation Wg whose
components at the places of E above vy, va, v3 are spy X Spy, at vg it is
7T(E::7UO specified above, and it is unramified at the places outside V.

Since m& has no components of the form s (1)) x mar(pb), where pf,
15 are characters of M >, M a quadratic extension of F, and it has at least
three square integrable components, it and its companion ﬁ'g are the only
cuspidal representations (with the indicated components at the places of
E above vy, ve, v3) which \i-lift to 7% = X\;(nf&). Consequently, each
of the n,, pairs 7, T of cuspidal representations of C(A) which A;-lift
to A1(m), basechange from F to E to the pair 7&, 7& of cuspidal rep-
resentations of C(Ag), which A-lift to 77 = A\ (7E). But the fiber of
the base change map BCpg,p, which takes mo to ﬂg , consists only of m¢o
and Xg/pmc, where xg/r is the quadratic character of AX/FXNE/FAE.
Consequently each pair {7, 7} is equal to the pair {m¢, ¢}, up to mul-
tiplication by xg,p. But this implies that n,, =1, as asserted.

In residual characteristic two there are also the “extraordinary” cuspidal
representations, which are not associated with a character of a quadratic
extension. But since the relation (1) defines a partition of the set of rep-
resentations of C, and we already handled the monomial representations,
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the orthogonality relations imply the lifting and character relation, and
the proof of the proposition is complete. O

We obtain the following rigidity theorem for representations of SO(4),
that is of C(A).
Note that A;(xm x x " tme) = A1 (m1 X 7)) = A1 (m2 x 7).

4.2 COROLLARY. Let my, ma, m, w5, be cuspidal representations of
GL(2,A) with central characters wy, wa, W, wh, satisfying wiws = 1,
wiwhy = 1. Suppose that there is a set S of places of F such that (77,
7he) = (T10Xw, T2uXy 1) for allv in S and (7}, 7h,) = (TawXw, T10X, 1) for
all v outside S, for some character x, of F,* (for each v). Then the pair
(7, 7h) is (m1x, max 1) or (max, mix ") for some character x of A*/F*.

A considerably weaker result, where the notion of equivalence is gener-
ated only by 71, X gy o 72, X 71, but not by m1, X 2, = XoT10 X Xy *Fov,
follows also on using the Jacquet-Shalika [JS] theory of L-functions, com-
paring the poles at s = 1 of the partial, product L-functions

LV(S,’]Tll X ﬁl)Lv(s,ﬂJQ X ’fl’l) = LV(S,Wl X 7VT1)LV(S,’/T2 X 7VT1)

Moreover, such a proof assumes the theory of L-functions.
This has a consequence purely for characters.

4.3 COROLLARY. Let E/F be a quadratic extension of number fields,
and pn, peo, ph, ph characters of Ag/E* such that the restriction to
AXJF* of the products p1 o and ph ph is trivial. Suppose that at 3 places v
of F which do not split in E we have that Ti;, # iy (i = 1,2). Suppose that
there is a set S of places of F', and characters x, of F* for each place v
of F, such that if i, are the local components of u; on EY = (EQp F,)*,
then

(/-Lllmuév) = (va “Xv O N, pigy - (Xv o N)il)

for allv in S, and

(:u/l'ua/j',m;) = (MQ’U *Xv N,/.tlv ' (X’U © N)il)

for all v outside S (where N is the norm map from E,, to F,). Then there
is a character x of A*/F* such that

(11, 1) = (p1-xoN, pa-(xoN) ™1 or (ph, ) = (pa-xoN, pa-(x-N) ™).
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PrROOF. Consider the cuspidal representations mg (1), mg(u2). Note
that they are cuspidal at least at three places, and that xmg(p) = 7 (@ -
x © N). Apply the previous corollary. O

4.4 PROPOSITION. Let m,, be a square integrable 0-invariant represen-
tation of the group PGL(4, F,,). Its 0-character is not identically zero on
the O-elliptic regular set (by the orthonormality relations). Suppose it is
not a 6-stable function on the 0-elliptic regular set. Then it is a \1-lift of a
square integrable representation oy, X Ty, of C(Fy,), and its §-character
is a 0-unstable function.

PROOF. Let F be a totally imaginary global field such that F,, = F,,
(i =0,1,2,3). We use a test function f = ®f, such that f,, (i = 1,
2, 3) is a pseudo-coefficient of a f-invariant cuspidal representation m,, =
A (e (1) X7y (H2)), E1, By are quadratic extensions of Fy, and g pg| F)
=1, and f,, is a pseudo coefficient of m,,. At all finite v # v; (0 < i < 3)
we take f, to be spherical, such that for x # 1 which corresponds to
the endoscopic group C and with f>*° = ®f,, v finite, the k-0-orbital
integral ®%5(f°°) is not zero at some f-regular elliptic v in G(F); this
simply requires taking the support of the f, > 0 for v # v; (0 < i < 3)
to be large enough. Since the #-stable orbital integrals of f,, (1 < i < 3)
are 0, the f-elliptic regular part of the f-trace formula consists entirely of
k-B-orbital integrals, by a standard stabilization argument.

As G(F) is discrete in G(A), for every foo = ®yfy, v archimedean,
f = foof° is compactly supported, we can choose f, to have small enough
support around v € G(F) with ®5(f°°) # 0 in the f-regular set of G(Fi),
to guarantee that <I>§( f) # 0 for a single 6-stable f-regular conjugacy class
v in G(F'), which is necessarily 6-elliptic. Hence the geometric part of the
f-trace formula reduces to the single term ®%(f), which is nonzero, hence
the geometric part is nonzero, and so is the spectral side.

The choice of the pseudo coefficients f,, implies that in the spectral side
we have a @-invariant cuspidal representation 7 of G(A) with the cuspidal
components m,, (i = 1,2,3) and the square integrable component m,, of
the proposition (note that 7 is cuspidal since it has cuspidal components at
v; (1 =1,2,3), hence it is generic). The components of 7 at any other finite
place are spherical. Since the f-stable orbital integrals of f,, (i = 1,2,3)
are zero, we may take fr,, and so fg to be zero. Hence there is no
contribution to the spectral form of the trace formula identity from the
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trace formulae of H and Cj.

Using generalized linear independence of characters we get the form of
the trace formula identity with only our 7 as the single term on the spectral
side of G, while the only contributions to the other side — 7 — depend
only on fe. Any unramified component of o A;-lifts to the corresponding
component of 7, and similar statement holds for the archimedean places.

Using the pseudo-coefficients f,, at the places v; (i = 1,2,3) we see that
Tow, = Tg; (1) X Tgy (12). We are left with an identity of trmy, (fu, x 0)
with a sum Y m(m¢) tr mc v, (fo,v,) for all matching fo,, fo v, from which
we conclude as usual using the character relations that the m¢ ,, are square
integrable, finite in number, and in fact consist of a single square-integrable
Ty X Moy, Which Ai-lifts to m,,. This has already been treated by our
complete description of the A;-lifting. O

REMARK. The central character of a monomial mg(u) is
X-ulF* (x: FX/Ng/pE* S{£1}).

If mp(p1) x mg(use) defines a representation of C' then the product of the
central characters is 1, thus pjpue|F* = 1. Hence wg(uify), mr(u1ps2)
have central characters x - 1| F>* = x = x - pap2|F*. Thus

I(mp(pfis), me(p1p2))

will not be in the image of A —see Proposition V.5 below: it is not I(my, m2),
T, T2 ON PGL(Q)



V.LIFTING FROM PGSp(2) TO PGL(4)
1. Characters on the Symplectic Group

Next we proceed with preliminaries on the lifting of representations of
H = PGSp(2) to those on G = PGL(4). Recall that the norm map
N : G — H is defined on the diagonal tori N : T* — Ty by

N (diag(a, b, c,d)) = diag(ab, ac, db, dc),
and on the Levi factors on the other two proper parabolic subgroups by

N(diag(A, B)) = diag(det A,eBeA,det B) where ¢ = ((1) _01) ,

and N(diag(a, A,d)) = diag(aA,deAe). The dual, lifting, map of repre-
sentations takes the induced-from-the-Borel representation

T (pa, o) = papie X pa/pe ¥ py 't to Ia(ua, po, gt py ),

where H = PGSp(2, F'), G = PGL(4, F), F a local field. Lifting is defined
by means of the character relation.
Before continuing, let us verify

1.1 LEMMA. The Jacobians satisfy Ag(t0) = Ag(Nt).

Proor. We take ¢t = diag(«, 8,7, 9), ad = Bv, and compute
Ag(t) = | det(Ad(t)| Lie N)|~'/2| det(1 — Ad(t))| Lie N|,

where N denotes the upper triangular unipotent subgroup in H. The Lie
algebra Lie N consists of X € Lie H = {X = —J !X J} of the form

Ozy =z
00u vy
000 —z |’
000 O

113
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and the effect of 1 — Ad(¢) is

z— (1—-—a/f)z, y—1—-a/fy)y, z+—(1-a/d)z, u— (1-7/7)u.

Thus
_ By6y 1/2 o a o I6]
sat=| 205 (1-5) - (1-2) - (-5)-(1-2)]
gives Ag(h8) when Ag(t) is evaluated at t = Nh. O

We are now ready to extend the basic lifting result from the minimal
parabolic to the other two proper parabolic subgroups of H.

1.2 PROPOSITION. We have that wy x 7 = w1 x 7 (\-) lifts to mq =
Ig(m, %), where wy is the central character of the representation m = wo of
GL(2,F) = GSp(1, F), and % = w_'x is the contragredient of 7.

For the representation mo of PGL(2, F) we have that juymexuyt (A-) lifts
to gy = Ig(p1, o, ufl), and Io (1, M;l) X o Ng-lifts from Cy to p1mo mufl
on H.

PROOF. Recall that at my = diag(A,I), A € GL(2, F'), the value of the
character X, (mo), where w4 = I4(m, %), has been computed to be

(1—a)(1—b)(1 — ab)

(1+w; (det A4))xx(4)/| = !

Since N(diag(A4,I)) is diag(A, A,1), XA = det A, we have to compute the
character x,,—1y, at diag(A, A,1). A general element m of the Levi My of
type (1,2,1) in H has the form m = diag(a, A,A/a), a € F*. If N = Ny
is the corresponding upper triangular unipotent subgroup then

Sn(m) = |det(Ad(m)| Lie N)| = |a?/ det A|?

(using the X of the proof of Lemma 1.1 with v = 0). The usual argu-
ment, using the measure decomposition dg = (5;,1 (m)dndmdk, shows that

(m (fdg)9)(h) is

= / / / F(h namk)N 2 (m)(wt i 7)(m)p(k)sy" (m)dndmdk.
NJMJIK
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Hence

trmy (fdg) = / / / F™ namk)5 % (m)xr (a= ' A)dny dmdk.

The change n; = nmn~1m~! of variables has |det(1 — Ad(m))| Lie N| as
Jacobian. Hence with

be
a2

a—ba—ca—d

Ay (m) = 632 (m)| det(1 — Ad(m))| Lie N| = o

(we denoted the eigenvalues of A by b and c¢), the trace is
= Ay (m)xx(a™ " A) / / F(k~*n " mnk)dndkdm
My K JN

— [ Autmpala ) [ fg img)dgdm.

My My\H

Now the Weyl group of My in H (normalizer/Mp;) is represented by
1 and J. Changing variables g — Jg has the effect of mapping m =
diag(a, A, A/a) to m’ = diag(A/a, A,a). We have x -1, (m) = Xx(a"1A)
and a

Xwglmr(m/) = XW(XA) = w.,r(det(aflA))flxﬁ(aflA).

The trace becomes

/ S B (m)(1 + wr(det(a™ 4) ) xe(a4) / f(g™ " mg)dgdm.
My Mg \H

Hence
Xoom e (ding(A, 4,1)) = (1 + w(det A))xx (A) /Ay (ding(, A, 1)),

where b1

a— _
c——(ab—1
D (@b - 1)

(where a,b are the eigenvalues of A), and we recover xn,(mof). We are
done by Lemma 1.1: Ag(t0) = Ag(Nt).

Ay (diag(ab, 4,1)) = |

To show that A(uime x py') = Ig(u1, 72, uy "), we first compute the
f-character of m4 = Ig(ul,m,ufl). Note that ¢ € w4 takes nmk to
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611\42 (m)u1 (a/d)ma(A)é(k), where m = diag(a, A, d) is in the standard Levi
M of G of type (1,2,1). The measure decomposition contributes a factor
Sar(m)~1, so we have

trw(0f dg) = / / / FOk) " namk)5y (m)p (a)d) Xy (A)dny dmdk.

The Jacobian of ny — n, ny = nmf(n=)m=1 is | det(1 — Ad(mf))| Lie N|.
Putting
A (mB) = 532 (m)| det(1 — Ad(m#))| Lie N|

we get

_ /M At (m)p (/) xry (A) /M\G F(0(g) " mg)dg dm.

The #-Weyl group W?(M) of M in G (f-normalizer/M) is represented by
{I, J}. Hence the trace is

:/ %AM(mﬁ)[ﬂl(a/d)+u1(d/a)]xw2(A)/ F(0(g) " mg)dg dm,
M M\G

and the character is 3[u1(a/d) + p1(d/a)]xr, (A)/ A (mb).
This we compare with the character of myg = pi1mo % ,ul_l, the represen-
tation of H normalizedly induced from the representation

(3 arens) = (2 pwionn ) = i det A)ma(A)

of the standard parabolic subgroup of H whose Levi My is of type (2,2).
As usual we have that tr g (f dg)

— [ Ay (m)pn (A" det A)xr, (A) / F(h=Ymb)dh dm.
Mu Mp\H

The Weyl group of My in H (normalizer /Myp) is represented by {I,J}.
Writing |A| for det A, and X for fMH\H f(h=tmh)dh,

0 w A 0 0 —w)\ _ (AJA] 'wAw 0
—w 0 0 de)t‘AEAE w 0 0 wAw
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= (A [ADm (A Al wAw),

and we obtain

_ /M %AMH(m)[,ul()\_ldetA)+u1()\/ det A)]xr, (A) X dm.

The character of Ty = pyme % ul_l is then

Sl O et A) i3 Vet A)] e, (4)/ B, ().

We need to compare the characters at an element g = diag(a, A, d)
whose norm is h = Ng = diag(aA, deAe). Note that on this h, the char-
acter from which 7y is induced takes the value

(%! saiae ) = mia/d)ma(ad) = pi(a/d)ma(A),

the last equality since my has trivial central character. As Ag(gf) =
Ap(Ng) our character identity be complete once we show

1.3 LEMMA. We have Ap(g0) = Apry, (Ng).

PrOOF. As these factors depend only on the eigenvalues of A, we may
take t = diag(a,b,c,d), and Nt = diag(a, §,v,d) = diag(ab, ac, db, dc).
Then A 2,1)(t0) is the product of 8y (t0) !, where

o (t0) =

with

‘ det(l — Ad(t@))‘ Lie N(1,2,1)

o5 (-23)0-9

namely
(ab — cd)?(ac — bd)?(a — d)?|"/?
A2.)(t0) = 322 d3
Similarly
25 |12 « @ I}
AR (Nt) = | L2 -2 (122 (1-2
@2V ‘Oﬂﬁ ( 7) ( 5) < 7)‘




118 V. Lifting from PGSp(2) to PGL(/)

Y21 (ab — db)2(ab — cd)?(ac — bd)? |

a2b?acd?b2cd

(o —7)*(a—9)*(B—7)?
a2 3~25

as (v, 3,7,0) = (ab, ac, db, dc). We conclude that A 2 1)(t0) = Ag,Q)(Nt).
This completes the proof of the lemma, hence also of the proposition. [

Let x denote a character (multiplicative function) of F* /F*2, Tt defines
one dimensional representation x g of H by h — x(A(h)). If h = Ng (on
diagonal matrices, if g = diag(a, b, ¢, d) then h = diag(ab, ac, db, dc)) then
A(h) = det g. Hence

1.4 LEMMA. The one dimensional representation x g, or x -1y, of H,
A-lifts to the one dimensional representation x : g — x(det g) of G. The
trivial representation of H lifts to the trivial representation of G. O

We conclude

1.5 COROLLARY. The Steinberg representation of H \-lifts to the Stein-
berg representation of G.

PROOF. We use Lemma 3.5 of [ST], which asserts the following decom-
position result: 2 x v x v~ 3/25  is equal to

=32 SPa v 320 + 1321, w320 =12 v lo spy +12 x v o1,

in the Grothendieck group (Z-module generated by the irreducible repre-

sentations) of H. Here o2

= 1 to have trivial central character, and as
usual v(z) = |z|. The terms on the right decompose into irreducibles (on
the right of the following four equations, which in fact define the square

integrable Steinberg representation of H = PGSp(2, F')):

a) V3215 x v™320 = 0 - 1ggp(e) + L(v?, v 1o - spy),

b) vixvlo.spy=o0- Stasp(2) +L(v2, vt - spy),

c) V2xvlo1y =0 1gspe) + L(v3/? spy, v=3/%0),

d) v3/28py 1320 = o - Stagp(a) +L(1¥? spy, v/ %0).

We can apply the A-lifting to a), as the lifts of two of its term is known:

oI(v™32 15,0°%) = 6 - 14+ ML(2, v o - spy)).
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Next we apply the M-lifting to b) and note that oI(v~!sp, xvsp,),
the left side, is known to be of length two, consisting of the Steinberg
representation o-Sty, and an irreducible which lies in the composition series
of aI(v=3/2,15,1%/2) (which is also of length two, the other irreducible

being o - 14). Hence the common irreducible is A(L(v2, v~ 1o - sp,)), and
the A-lift of o Stgsp(2) is 0 Sty.

An alternative proof is obtained on A-lifting c) to get
oI(v ™ 1y x v1y) = o1y + MNL(v*? spy, v™3/%0)),

the last irreducible is the one common with ol (1/‘3/ 2 spy, v3/ 2), which is
the M-lift of the left side of d); the latter has o Sty as the other irreducible
in its composition series, hence the A-lift of the o Stggp(2) on the right of
d) has to be o Sty. O

2. Reducibility

It will be useful to record the results of [ST], Lemmas 3.3, 3.7, 3.4, 3.9,
3.6, 3.8, on reducibility of induced representations of H. This we do next.
Note that the case of 2 x v x v~3/2¢ is discussed in the proof of Corollary

1.5 above.

2.1 PROPOSITION. (a) The representation x1 X x2 X o of H, where
X1, X2,0 are characters of F'*, is reducible precisely when x1, X2, X1X2 OT
X1/X2 equals v or v~ (its central character is x1X202).

(b) If x & {EvFY2,u%3/2) for any character € with €2 = 1, then X - spy X0
and x - 15 X o are irreducible and

V1/2X><I/_1/2X><10:X'12><10-|—X'Sp2>40'.

If x # 1, vt vE2 then x x o -spy and x % o - 15 are irreducible and

1/2

XXVUXVv /70 =xX0-Spy+x Xo-1ls.

For any character o we have that v x v=/2¢ . Spy and v X v 126 .15 are
irreducible and

VXUVUX 1/_10:u>41/_1/20-Sp2—|—u>41/_1/20-12.
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() If € #1 = €%, vE x € x v=Y20 contains a unique essentially square
integrable subrepresentation denoted 5(51/”2 SPa, V*I/ZU). Since

&x v %G = I(fayfl/Q,m/*l/Q) =&x 1/71/205,
we have

vE X € X v 126 = Vl/zfsp2 20 4 V1/2§12 v 20

=vE X & X y—1/20.§ - V1/2§Sp2 >4V_1/20§ + V1/2§12 . V_l/ga57

S(&v 2 spy, v 20) = 8(EvY 2 spy, v 20¢€),

as well as

V2¢ spy )iV 20 = 5(6v % spy, v 20) + LY %¢ spy, v 20),
V1261 x vV 20 = LY 2¢spy, v 20€) + L(ve, € x v~ 2%0);

the 4 representations on the right of the last two lines are irreducible.

12 5p, v~ 20 (resp. v'/?14 %

(d) The representations 1 X o - spy and v
1/’1/20) have a unique irreducible subquotient in common; it is essentially
tempered, denoted by

(V' /2 spy, v 120) (resp. T(v1/?19,071/20)). These two T’s are inequiva-
lent, and we have

1/2

vx1xv V20 = 25p, V20 4+ 0121, x vV 20

1/2

=1lxvxyr /o =1X0-spy+1xo0o-1y,

as well as the following decomposition into irreducibles:

v 2 spy xv V20 = 7(1 2 sy, v 20) + L(v 2 spy, v 20),
V215 v V20 = 7(b1 215,07 20) + L(v,1 x v~ 20),
1% ospy = 7(vY? spy, v 20) + 7(v/? 15,71 20),

1% 01y = L ?spy, v %0) + L(v,1 x v™20). O

Note that the 4 x 4 matrix representing the last four equations is not
invertible, hence the irreducibles on the right cannot be expressed as linear
combinations of the representations on the left.



2. Reducibility 121

Note that the A-lift of v€ x &€ x v~/ 20 is oI (VY2 V1 /2¢, v=1/2¢ L=1/2)

= GI(V1/2,§Sp2,1/71/2) —|—0’I(1/1/27§12,V71/2)
= 0l(spy XEsPy) + 0I(1a X Espy) + 0I(spy xE1a) + 0l (1a X £12).

It is invariant under multiplication by & (¢€2 = 1). To determine the liftings

of the constituents of v€ x & xv /20 we shall use the trace formula identity.

We shall also state the results of [Sh2], Proposition 8.4, [Sh3], Theorem
6.1, as recorded in [ST], Propositions 4.6-4.9, on reducibility of representa-
tions of H supported on the proper maximal parabolics P2) of type (2,2)
and Py of type (1,2,1).

2.2 PROPOSITION. (a) Let wo be a cuspidal representation of PGL(2, F)

and o a character of F*. Then vY/2my x v=1/2

o has a unique irreducible
subrepresentation, which is square integrable. Inequivalent (m2,0) define
inequivalent square integrables, and each square integrable representation
of H supported in Py is so obtained (with wr,0? = 1).

(b) All irreducible tempered non square integrable representations of H
supported in Py are of the form w2 X o where 7o is cuspidal unitarizable
and o is a unitary character (with wy,0? = 1). The only relation is ToXo =
g X Wr, 0.

(¢) The unitarizable nontempered irreducible representations of H sup-
ported in Py are L(VPry,0),0< B < %, o a unitary character of F*, mg
a cuspidal representation of PGL(2, F). O

2.3 PROPOSITION. (a) Let my be a cuspidal unitarizable representation

of GL(2, F) such that mof = mo for a character £ # 1 = &2 of F*. Then
vé x v=2my has a unique subrepresentation, which is square integrable.
Inequivalent (72, &) define inequivalent square integrables. All irreducible
square integrable representations of H supported in P(1) are so obtained,
with Ewy, = 1.
(b) All tempered irreducible non square integrable representations of H
supported in Pyy are either of the form x x m, mo cuspidal unitarizable
representation of GL(2,F) and x # 1, as well as xwr, = 1 (the only
equivalence relation on this set is x X Ty ~ Y~ X x72), or one of the two
inequivalent constituents of 1 X mo.
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(c) The irreducible unitarizable representations of H supported on Py
which are not tempered are L(vP€¢,v=P?m), 0 < B <1, £ # 1= €2, and
mo a cuspidal unitarizable representation of GL(2, F) with m& ~ mo and
Ewr, = 1. 0

3. Transfer of Distributions

In relating characters on the group Cyp = PGL(2, F') x PGL(2, F') with
those on H = PGSp(2, F), F local, we need a transfer Dy — Dp of
distributions which is dual to the transfer of orbital integrals fy — fo for
functions on H and on Cjy. This transfer is crucial to the orthogonality
relations of characters, a main tool in our work.

Let us recall (from chapter II, section 5) some basic definitions. Two
regular elements h, h' of H, and two tori Txy, T}, of H, are called stably
conjugate if they are conjugate in H(F); F is a separable algebraic closure
of F.

Let A(Tw/F) be the set of z in H(F) such that T}, = T§ = v ' Tyx
is defined over F. The set B(Ty/F) = Ty (F)\A(Ty/F)/H parametrizes
the morphisms of Ty into H over F', up to inner automorphisms by ele-
ments of H. If Ty is the centralizer of h in H then B(Ty/F) parametrizes
the set of conjugacy classes within the stable conjugacy class of h in H.
The map

s {12, =71(2)z”"; 7in Gal(F/F)}

defines a bijection
B(Ty/F) ~ ker[H (F,Ty) — H'(F, H)].
Since F is nonarchimedean, H'(F, Hy.) = {0}. Hence
ker[H'(F,Ty) — H'(F,H)] = Im[H"(F, Ty s.) — H'(F, H)].

Consequently it is a group, which is isomorphic — by the Tate-Nakayama
theory — to

C(Ty/F) = Im[H 1 (Xu(Th ) — H™H(Xu(Th))].
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Stable conjugacy for regular elliptic elements of H = PGSp(2, F) differs
from conjugacy only for elements in tori of types I and II, where the stable
conjugacy class consists of two conjugacy classes.

Denote by W (Ty) the Weyl group of Ty in H, and by W’ (Tx) the Weyl
group of Ty in A(Ty/F).

Let dg be a locally integrable conjugacy invariant complex valued func-
tion on H. The Weyl integration formula asserts that

/Hf(h)dH(h)dh: Z m . Ap(t)*0(t, frr)dp (t)dt.

{Tu}

The sum ranges over a set of representatives Ty for the conjugacy classes
of tori in H; [X] denotes the cardinality of a set X.

Suppose t is a regular element of H which lies in Ty. Then the num-
ber of § in B(Ty/F) such that t° is conjugate to an element of Ty is
[W'(Tg)]/[W (Tw)]- Hence when the function dg is invariant under stable
conjugacy, we have

[ s0anman = 3 o [ Ape2e 1 fa)an (o)
{Tw}s Tn

Here {TH}s is a set of representatives for the stable conjugacy classes of
tori in H.

3.1 DEFINITION. Given a distribution Dy on Cp, let Dy = Dy (Dy)
be the distribution on H defined by Dy (fr) = Do(fo), where fy is the
function on Cy matching fy on H.

Our next aim is to compute Dy if Dy is represented by a locally inte-
grable function. We first state the result, and explain the notations at the
beginning of the proof.

3.2 PROPOSITION. Suppose that Dy is a distribution on Cy represented
by the locally integrable function do. Then the corresponding distribution
Dy = Dy (Dy) on H is given by a locally integrable function dy defined
on the regular elliptic set of H by dp(t) =0 if t lies in a torus of type IIT
or IV, and by

Ap(t)du(t") = x(r)k(t)Ao(to)[do(to) + do(ty)]
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if t is of type I or II, where r ranges over F* /[Ng,p E* or E5 [Ng g, E*,
and x is the nontrivial character of this group; if r # 1 then t" indicates

the element stably conjugate but not conjugate to t. If to =ty x tj € Cp =
PGL(2, F) x PGL(2, F), then ty indicates t{ X t,.

REMARK. If Dy is represented by dy and Dy by dy, we shall also write
dH = dH(do) for DH = DH(D())

PROOF. We need to recall the description of elements of types I (and
later IT) and their properties. A torus T of type I splits over a quadratic
extension F = F(\/B) of F', and we choose explicit representatives for the
two tori in the stable conjugacy class:

Qg 0 0 ﬁlD
0 Dr 0 1k .
T ={t" = ( 0 r,afﬁz ﬂ;r 0 > = h 't h,;t = diag(xy, T2, axs, axy)}.

B O 0 a

Here 7 ranges over a set of representatives for F'* /Ng,pE*, o is the non-
trivial automorphism of E over F, z; = o, + 8;v/D € E* are the eigen-
values of t", and h, are suitable matrices in Sp(2, F), described in [F5], p.
11. The norm map relates the elliptic torus Ty of Cy which splits over
to T, on the level of eigenvalues it is given by

ty = (diag(t1, oty), diag(ta, ota)) P

tt = dlag(xl = tth,ZL'Q = tlth,O'ZL'Q = O'tl . tg,cr:cl = O'tl . (Ttg).

Now the Weyl group of an elliptic torus in PGL(2, F') is Z/2, hence the
Weyl group W (Tp) of Ty in Cy is Z/2x Z /2. The Weyl group W (Ty) of Ty
in H (of type I) contains Z/2 x Z/2: it contains s; = (12)(34) (acting on

the diagonal matrix ¢*), which is represented by diag ((2 é) , (? é)) in H

(acting on t € Ty ), and (14)(23), which is represented by diag(1, —1,1, —1)
(and hence W (T ) contains also (13)(24)).

To use the Weyl integration formula we need to compute W' (T ). There
are two cases for Ty of type I. In case I;, —1 ¢ Ng/pE* (this happens
when E/F is ramified and —1 ¢ F*?2). Then we can take r # 1 to be
—1. Choose i € F with i = —1, and put w = diag(1,4, —i,1). It lies in
Sp(2, F), and w™'tw = t". Then w represents § # 1 in B(Ty/F), and
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W'(Ty) = Dy (w acts as (23) on ¢*, and so = (23), s1 = (12)(34) generate
Dy) contains W(Ty) =7Z/2 x Z/2 = W (1)) as a subgroup of index 2.

In case I we have —1 € Ng/pE*, hence we can write diag(—1,1) as
cs, s € SL(2, F), ¢ € Car2,r)(TE) (= centralizer in GL(2, F) of an elliptic
torus T which splits over E), and w = diag(1,—1,1,1) as ch with h in
Sp(2, F) and ¢ in Cara,p)(Th). Then (ch)~'tch =t", ¢ = h="'*h, h'* =
diag(z1, 022,22, 021). Hence in case Iy we have W/ (Ty) = W(Ty) = Dy,
as w € W/(Ty) is represented by h € Sp(2, F'), and it acts as (23) on t*.

Note that the action of w in both cases I; and I is to interchange x5 and
oxy, namely tg = (diag(ty, ot1), diag(ta, ots)) with (t*)o = (diag(ts, ots),
diag(t1,0t1)). Then

K(t) = xp/r((1 — 0x1) (72 — 022)/D)
and
k(") = xg/r((x1 — 0x1)(072 — 22)/D) = X /r(—1)K(?).

Let now fg be a function on H such that the orbital integral ®(¢, fxr)
is supported on the conjugacy class of a single torus of type I. Then

Dy (fu) = Do(fo) = m ; Ao (t0)2®(to, fo)do(to)dto
= m [ MR (O[O fr) = B fi)ldo(ro).

Note that the norm map N : Ty — Ty is an isomorphism. Now in
case Iy, w represents § # 1, and x(t") = xg/r(—1)k(t) = —k(t), and
W(Tg) = W(Tp), so we get

m . Ao(to) A (&) [k()P(t, fu) + ()P, fr)]do(to)dt
- m . Ao (to) Ap (t)k(t)(t, fr)ldo(to) + do((t*)o))dt,

and since ®(¢, fir) is any function (locally constant) on the regular set of
Ty, we conclude — by the Weyl integration formula — that

Ag(t)du(t") = xe/r(r)Ao(to)k(t)[do(to) + do((t*)o)]-
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Again, t"is t* whenr # 1in F* /Ng,p E*, and dy (t*) = —dg(t),t € Th.
In case I we have that ¢ is conjugate to t in H, and [W(Ty)] =
2[W(Tp)], and @(¢, fg) is supported on Tj; for a single . Hence Dy (fr)

is
1

m/T 2AO(tO)AH@)H(t)XE/F(r)q)(trafH)do(tO)dt,

Since ®(t", f) is any locally constant function on the regular set of Ty,
we obtain Ag(t)du(t") = xg/r(r)Do(to)r(t)2do(to)

= Xg/r(1)k(t)Ao(to)[do(to) + do((t*)o)]-

Tori of type II split over a biquadratic extension £ = E1EyFE3 of F,
where Ey = E™ = F(v/D), Ey = E°" = F(\V/AD), E3 = E° = F(VA); A,
D, AD are in F — F?, and we write t; = a; + 31v/D for elements of E,
to = ag + 52\/@ for elements of F. The norm map takes

ta = (diag(tl,Utl),diag(tgmtg))
to
A diag(xl = t1t2,7’.’131 = tthQ,O'Txl = O'tl 't2,0'.131 = Utl . TtQ).

Thus Ty ~ E{/F* x E5/F* (in contrast to case I where F1 = Ey = F
is quadratic over F') has Weyl group W(Ty) = Z/2 x Z/2. The tori T},
consist of

_ o —1gx _ a bDr)\._. _ (a1 aA [ b1 b2 A
= —aen = (8,7 (55 = (55

where 1 = a+bVD; a = a1 +asVA, b= b +bs/A € Ef; om = a—bVD,
721 = Ta + 7b- /D, thus

21 = ai + asVA+ b1V D + byVAD,
721 = ay — azV A+ b VD — byVAD,
otz =a; —asVA— b VD + bg\/@,
or1 = a1+ agx/z — bl\/ﬁ — bg\/@.
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Further, 7 ranges over EJ /N g, £*, and if r = 71 + roV/A we put r =

(72724). Then hy =k (£0), and h=hp = ("2 0 ) (1 V2), ha =

(1 _@), €= ((1) 701)’ see [F5], p. 12.

The Weyl group W'(T};) of T}, in A(T},/F) is Z/2 x Z/2, generated
by & = (14)(23), which maps the eigenvalue z; of t* to oz, and 7 =
(12)(34), which maps x1 to 7z1. It is equal to the Weyl group W (T'5;) of
T} in H, since (14)(23) is represented in H by diag(l,—I), and (12)(34)
is represented by diag(1,—1,1,—1).

We shall compare the norm map Ty —— Ty with that for Tp —> Ty,
where the tilde indicates that the roles of F; and FEs are interchanged.
Thus

{8 = ((dlag(tg, Ttg), diag(tl, Jtl))

= E* = dlag(xl = tQtl,UTﬂfl = tQ . Jtl,Tﬂfl = Ttg . tl,Uﬂfl = Ttg . O'tl)

and with b’ = (blb;A z;> )

~ -1 ~ ~ ’
(22 b 7 an (12) = (5, 4)
Note that ¢* is obtained from t* by the transposition (23).
We claim that ¢t and ¢ are stably conjugate. For this choose a in F with
a* = —A/4, thus 2a% + A/2a% = 0. Put

o %61}60 o « A/ro _ 1 0
Y*(dé y)’ y*(1/2a a )’ 5*(071)'

Then Y € Sp(2, F) satisfies

y—1 (Ebf)yz (]:/b:D>.

These t and  are conjugate if —1 ¢ F*2? and |A| = 1 (we normalize A
and D to lie in R* or mR*). Indeed in this case we may choose A = —1.
Then either 2 € F*2 or —2 € F*2, and there is a € F* with o =1/2 or
= —1/2 (respectively), hence a* = 1/4 = —A/4, and t, t are conjugate in
GSp(2, F).

If -1 € F*2 say —1 =42, i € FX, then (2ia?)? = A has no solution
with o in F*. If |A| = ¢! then (2a2)? = —A has no solutions with « in

F*, sotis conjugate to t", r # 1.
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The transfer factor k(t) is

k(t) = Xp,r((m1—01)(T21—T021) /D) = X, s P (bTD) = X I, /1 (U] —D3A).

The transfer factor k(t) is
Xma/r((21 = o21) (0721 — T21) JAD) = X, /1 (V'7V) = X, 1 (b3 — 7 /A)

= XEQ/F(—A)XEQ/F(b% - b%A) = XEQ/F<_A)XE1/F(b% - bgA)~
For the last equality note that bf —b3A € Np, /pE5 lies in Ng, pE5 iff
it lies in N, p E7 iff it lies in F*2.

Note that X,/ r(—A) = 1if A=—1¢ F*2 If -1 € F*? and |A] = 1
then x g, /p(—A) = —1, since then Ey/F is ramified, R*NNg, /p By = R*?
and A ¢ R*?so —A ¢ Ng,,rE;. Moreover xg, /p(—A) = —1if [A] = ¢~
if Ey/F is unramified then —A ¢ Ng, /pEy; and if Ey/F is ramified we
may assume that D = v € R* — R*2, and then Ng, rEy = {2% — y?ur}
where we write ® for A. But if —4 = —1 = 22 — y?um is solvable then
z € R and y?u = 1 mod 7 and u be a square in R*.

We conclude that x(f) = x(t) if t, t are conjugate, and k(t) = —r(t) if
t, t are not conjugate. Consequently

Ao(to)®(to, fo) = Au(t)k(t) Z XE/E(r)2(", fi)

r€E) /Np gy BX

is equal to the expression obtained on replacing t by ¢, which we denote
by t* from now on to be consistent with the case of type L. It follows that
each stable conjugacy class of t € Ty of type II is obtained twice, from ¢
and 1y (or t¥). As W(Ty) = W(Typ), we conclude that Dy (fx) is equal to

1

W/T 200(to)k(t)Xp/ B, (r)do(to) - A () R(t", fr)dt

if ®(¢, fgr) is supported on the conjugacy class of T7;, and hence

Ap(t)du(t") = Xp/5, (1)) Ao(to)[do(to) + do((t")o)]-

It is clear that tori of types IIT and IV do not contribute to Dy (fr), which
is equal to Dy (fo). O
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4. Orthogonality Relations

We are interested in relating the distributions Dy and Dy since we need
to relate orthogonality relations on H and on Cj.

4.1 DEFINITION. (1) Let dgy, d% be conjugacy invariant functions on
the elliptic set of H. Put

/ . 1 .
<dH,dH>H = {qg}e m /TH AH(t)de(t)dH(t)dt
: —
= _ A (£ 2d s (1) (19) .
{Tg}:ﬁvs W (Tn)] 5€B(2TI:-I/F) Ty 1 (8) i (£7) gy (#7)

Here {Tu}. (resp. {Th}e,s) is a set of representatives for the (resp. stable)
conjugacy classes of elliptic tori Ty in H.
(2) Let dy, djy be conjugacy invariant functions on the elliptic set of Cp.

Put
1

Wm%%=123miﬁﬁéﬁ%@f%@%ﬁﬂt

{To}e

where {Tp}. is a set of representatives for the conjugacy classes of elliptic
tori in Cp.
(3) Write d¥(t) for do(t¥), where if t = ¢ x t" € Cy then t* or tis ¢/ x t'.

4.2 PROPOSITION. Let dy, dj be locally integrable class functions on
the elliptic set of Cy, and dg = dy(dy), dy = dg(dy) the associated class
function on the elliptic regular set of H. Then

<dH, d}{>H = 2<d0, d6>0 + 2<d0, dlw0>0.

PROOF. By definition (dg,dy)m is a sum over {Tx}e . For tori of
type I we have [W' (T )] = 2[W (Tp)], so the contribution is

[FX : NE/FEX]
{T%I - 2W(To)] /TO X/ (r)?K()? Ao(to)?

[do(to) + do(ty)][do(to) + do(ty)]dto
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where X%/F = 1 and the set of 7, '’* /Np,p E*, has cardinality two. For
tori of type II we have W/(Ty) = W (Tp), but each t in Ty is obtained —
up to stable conjugacy — twice: once from Tj and once from 7;". Hence
the integral over Ty has to be expressed as the sum of integrals over Tj
and 7", divided by 2. Then the contribution to (dg, d;)r will be the sum
over {Tp}e 1 of

[E; . NE/ESEX]
2[W (To)]

| o (008000

[do(to) + do(£3)][dy (to) + d (£)]dto,

where x%/EB =1 and x? = 1. The cardinality of the r is |E} /Ng, p, E*| =
2. We then obtain a sum over all Tp, of types I (splitting over a quadratic
extension F of F') and II (splitting over a biquadratic extension):

=3 [W(l—TO)] Ao(to)*(do + d¥) (to) (dy + dy® ) (to)dto

{TO}e TO
= (do + dg dy + dy")o = 2(do, dg)o + 2(di, df o,
since (dy, d(")o = (do,d)o- =

4.3 COROLLARY. Let m;, w; (i = 1,2) denote square integrable repre-
sentations of PGL(2, F'). Put

do(t1,t2) = X, (t1)Xmo (t2),  dp(t1,t2) = Xt (t1) Xy (t2),

where xn denotes the character of m. Then

dy (t1,t2) = do(ta,t1), (do,dg)o = 6(my, ) )d(ma, m5)
and
< Ow’d6>0 = (5(7T2,7T/1)(5(7T177Té),
where §(m,7') is 1 if m and 7' are equivalent and 0 otherwise, so that
and m; % 7}
(dy,dy)y =< 2, m = mp and m; % ), or m % and m; =~ T

":7'(']'

where {i,7} = {1,2}. O
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4.4 PROPOSITION. Let dy be a locally integrable class function on the
elliptic set of H. Then dp is stable if and only if (dg,dpg(do)) s is O for
every class function dy = xr,, where my ranges over the square integrable
irreducible representations of Cy.

ProOF. We have that (dy,dm(do))y is equal to

Z mZ/T Ap (t)dg (t7)-x(r)k(t) Ao (to)[do(to)+do(ty)]dt,

{Tu}s 1,11

where the first sum ranges over a set of representatives for the stable con-
jugacy classes of tori in H of types I and II, and r ranges over a set of rep-
resentatives for the conjugacy classes within the stable classes (F* /N E*
or E5 /Ng g, E*),is 0if dg(t") = dg(t) for all 7 and t. If dp is not stable,
note that

A ()Y x(r)du(t")]x(t)

is a nonzero class function on the elliptic set of H which is invariant under
t — t*, and introduce a function dg o on the elliptic set of Cy by

Ao(to)dmo(to) = A (t)k(t) > x(r)du(t").
Then (dg,dg(do))r becomes

Z M/ Ao(to)?do(to)[do(to) + do(ty)]dto
{To}e To

_ {%e m /T 0 Ao(to)2dsr o (to)do(to)dts (a5 drro(t?) = daro(to)).

But since dg o is a nonzero conjugacy class function on the elliptic set of
Cy there is a square integrable irreducible representation my of Cy such
that (du,0, Xmy )y # 0, and the proposition follows. O

Let us review several A-lifting facts, used in the study of the character
relations below.
(1) The representation 1 x 7; of H, where m is a PGL(2, F')-module,
A-lifts to the f-invariant G-module Ig(my,m) (Proposition V.1.2). If m
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is cuspidal then 1 x 71 is the direct sum of two irreducible inequivalent
tempered representations 7j; = 7}, (m1) and 7 = 75 (m) (Proposition

V.2.3(b)). Then
trlg(m,m; f < 0) =ty (fu) + trwg (far)

for all matching f, fz. The same assertion holds when 7y is £ spy, £2 =1,
see (3) below.

(2) For any PGL(2, F)-module 7, the H-module émov/? x £v~1/2 Mlifts
to the G-module I (£vY/?, o, Ev~1/2) (Proposition V.1.2), which has com-
position series consisting of I (€ spy, m2) and Ig (€212, m2). The H-module
§7T2V1/2
note by & (&mprt/?, 51/_1/2). It is square integrable, and a unique quotient
L(meév'/? €071/2) which is nontempered, when 7, is cuspidal (or is sps,
see (3) below); see Proposition V.2.2. Thus

x £v~1/2 has a unique irreducible subrepresentation, which we de-

tr I (€ spy, mo; f X 0) + tr Ig(E1g, ma; f X 0)

= trd(Emar’/ 2, &0 2) (fi) + tr L(mab?, &0 2) (fu)

for all matching f and fg.
(3) We have the following decomposition into irreducibles; where the 7 are
tempered and J is square integrable:

1% ospy = (12 spy, v™20) + 7 (11?19, v71/%0),

yt/? SDs xy V2 = 7'(1/1/2 SDa, V_1/2U) + L(V1/2 SPa, V_1/20'),
V215 x v V20 = 7(01 215,07 20) + L(v, 1 x v~ 20),

1% 0ly = Lt/ ?spy, v 20) + L(v,1 x v 120),

v 2¢spy v V20 = §(EvY % spy, v 20) + L(w € spy, v 20),
V2615 x v 120 = L2 spy, v 20€) + L(vE, € x v/ %0),

(Proposition V.2.1). Here o and £ are quadratic characters of F'*.
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5. Character Relations

Our main local results of character relations are derived from the trace
formula identity.

5. PROPOSITION. Let mq, mo be two inequivalent cuspidal (resp. cuspi-
dal or special) representations of PGL(2, F'), F a local p-adic field. Then
there are two cuspidal (resp. square integrable) representations of H =
PGSp(2, F), m}; and wy;, such that for all matching functions f, fu, fo
on G, H, Cy, we have

tr(my % m2)(fo,) = trmfy (fu) —trmp (fa)

and
trI(my,ma; f X 6) = ter(fH) +trmgy (fu).

The same identities hold when w1 = s is square-integrable, but then WE

and w are the two irreducible constituents of 1 x my. They are tempered
andﬂ'}S—l—ﬂ';{ =1xm.

PROOF. This is our main local assertion in this work. The long proof
will be cut into a sequence of assertions, most of which we name “Lemmas”.
The case of m; = w9 is in 6.5. Elsewhere we assume that m; # 7o, unless
otherwise specified.

Let (7, V) be an admissible representation of a p-adic reductive group
G. As in [BZ1], we introduce the

5.1 DEFINITION. (1) Let N denote the unipotent radical of a parabolic
subgroup of G with Levi subgroup M. Then the quotient Vy of V by
the span of the vectors w(n)v — v as n ranges over N and v over V| is
an admissible M-module 7. Its tensor product with 611\,/2 (On(m) =
| det(Ad(m)|Lie N)|) is called the normalized M-module (wn,Vn) of N-
coinvariants of .

(2) The representation 7 is called cuspidal when w1y = {0} for all N # {1},
that is when tr 7wy (¢) = 0 for every test measure ¢ on M. Analogously,

(3) If 0 is an automorphism of G and 7 is -invariant (7 ~ ¢

), we say
that 7 is 0-cuspidal if for every #-invariant proper parabolic subgroup of

G we have trmy (¢ x ) = 0 for every test measure ¢.



134 V. Lifting from PGSp(2) to PGL(/)

5.2 LEMMA. The representation m = I(my,m), m # ma, is O-invariant
and 0-cuspidal.

PRrROOF. If N is the unipotent radical of a proper parabolic subgroup of
PGL(4, F) then 7y is zero unless the parabolic is of type (2,2), in which
case Ty = ] X Mo + Mo X 7.

However, the irreducible constituents m; X w9 and 7 X 7y of this mn
are interchanged by 6 so that the trace tr m (¢ x 6) vanishes for any test
measure ¢ on M. O

When 71 # 75 but one or two of them is square integrable noncuspidal
(special) representation of PGL(2, F'), the representation I(mq,ms) is (6-
invariant and) tempered subquotient of the induced I(v*/2 my,v=1/2) (if
71 = spy). This is the A-lift of /2 x v~1/2, whose composition series
consists of the square integrable 6(7r21/1/ 2yt 2) and the nontempered
L(mov'/2,v=1/2) (if 7y is cuspidal), or square integrable §(¢01/2 sp,, v=1/2)
and nontempered L(v'/2€ sp,, v~1/?) (if 7 is the special € sp,, where £2 =
1 # &). Since the functor of N-coinvariants is exact ([BZ1]), the central
exponents (central characters of constituents) of I(spy, m2) N correspond to
those of &(mort/2, v=1/2) (75 cuspidal) or §(£v'/2 spy, v=1/2) (if o = Espy),
which are decaying.

The twisted analogue of the orthogonality relations of Kazhdan [K2],
Theorem K, implies in our case where m # my are square integrable
PGL(2, F)-modules:

5.3 LEMMA. There exists a 0-pseudo-coefficient f1 of m = I(my,m2).

A @-pseudo-coefficient f! is a test measure with the property that
trI(my,mo; f1 x 0) = 1 but tra/(f! x ) = 0 for every irreducible G-
module 7’ inequivalent to (¢) I(m,ms) if 71, 7o are cuspidal, or to (i4)
any constituent of I(a,b) if m (or m2) is £spy, 2 = 1, in which case a is
EI(WY2,071/2) (or b is such).

Note that the f-orbital integral ®(g, f* x 6) of f! is supported on the 6-
elliptic set, and is equal to the complex conjugate of the #-twisted character
x1(g x 0) of T = I(my,m).

We shall show below that x;(g x ) depends only on the stable 6-
conjugacy class of g, hence ®(g, f! x ) depends only on the stable -
conjugacy class of g.
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We now pass to global notations. Thus we fix a totally imaginary num-
ber field F' whose completion at the places v; (0 < < 3) is our local field,
denoted now F,,. Denote our local representations by mj,,, j = 1, 2. Fix
Tju, ~ Tju, (J =1, 2;4=1, 2, 3) under the isomorphism F,, ~ F,.

5.4 LEMMA. There exist cuspidal representation m1 and we which are
unramified outside the places v; (1 < i < 3) of F whose components at v;
are our Ty, and o, (respectively).

PrOOF. This is done using the nontwisted trace formula for PGL(2),
and a test measure f whose components f,, are pseudo coefficients of 7;,,,
and whose components f, at all other finite places are spherical. At one
of these v # v; take f, with trm,(f,) = 0 for all one-dimensional repre-
sentations m, of PGL(2, F,) (the trivial representation and its twist by a
quadratic character). Most of the f, are the unit element of the Hecke
algebra, but the remaining finite set can be taken to have the property
that the orbital integral of f® = ®u<c0fy I8 nonzero at a rational (in
PGL(2, F)) elliptic regular element . The coefficients of the character-
istic polynomial of the conjugacy classes of rational conjugacy classes are
discrete and lie in a compact, once f, is chosen. We can choose f, so that
the orbital integral of f = f,, ® f°° is nonzero at -y, but zero at any other
rational conjugacy class (in particular, choose fo to vanish on the singular
set). For such f the geometric side of the trace formula reduces to a single
nonzero term (the weighted orbital integrals vanish as two components f,,
are elliptic, the singular orbital integrals vanish by choice of fo).

On the spectral side the logarithmic derivatives of the intertwining op-
erators and the contributions from the continuous spectrum vanish as two
components f,. are elliptic. If m occurs with tr7(f) # 0, its components
at finite v # v; are unramified, and its components at v; are our chosen
Tjuv,, since f,, are their pseudo coefficients. In the case that the 7;,, are
special we chose some f, to be spherical with trace zero at each one di-
mensional representation 7,. In this last case the global 7 will not be one
dimensional, so it has to be cuspidal. O

Once we have the cuspidal representations 7; and 7y, we use our usual
trace formula identity where the contribution to the trace formula of Cjy
is the cuspidal representation my = m; X me. There is no contribution to
the trace formula of the #-twisted endoscopic group C, and by the rigidity
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theorem for PGL(4) the only contribution to the #-twisted trace formula
is I(my,m2). The contributions to the trace formula of H are some discrete
spectrum representations 7.

Applying generalized linear independence of characters at all places v #
v; (0 <4 < 3) where 71, X 7o, is unramified or F, is C, we obtain the
identity

Htr I(T10, Ton; fo X 0) + Htr(mv X 720 ) (fegw)

(1) =2 m(ra) [ ] tr mao (frr0)-

The products range over v = v; (0 < i < 3); m(my) are the multiplicities
of the discrete spectrum representations mg. The identity holds for all
triples (fv, fegu, frvy) of matching measures such that at 3 out of the 4
places the orbital integrals vanish on the nonelliptic set.

It is clear that

5.5 LEMMA. The distribution f, — tr (w1, Toy; fo X 0) depends only
on fuv, namely only on the stable 8-orbital integrals of f,.

Consequently the #-twisted character of I(my,,7a,) is a f-stable func-
tion. In particular, the 6-twisted orbital integral of a @-pseudo-coefficient
of I(m1y,ma,) is not identically zero on the f-elliptic set.

This establishes a fact which is used in the derivation of the identity (2)
below.

5.6 LEMMA. Fiz v € {v;}. The right side of (1) is not identically zero
as [y ranges over the functions whose orbital integrals vanish outside the
elliptic set of H.

ProoFr. Had it been zero we could choose fp, whose stable orbital
integrals are zero (and so f, = 0) but with unstable orbital integrals, that
is fogws With tr(my X m2,)(fogw) # 0. Hence for each v there are mg, on
the right whose character is nonzero on the elliptic set. |

Using the 6-twisted trace formula and a totally imaginary field F' whose
completion at vy is the local field of the proposition, we construct a repre-
sentation 7 as follows.
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5.7 LEMMA. There exists a cuspidal 0-invariant automorphic repre-
sentation w with the following properties. Its component at vy is our
e = L(T10gs T2vy ), Where M1y, # Moy, are square integrable representa-
tions of PGL(2, F,,). At three nonarchimedean places vy, va, vs the com-
ponent is the Steinberg (square integrable) representation St,,. At all other
nonarchimedean places v the component is unramified.

PROOF. We construct 7 on using the stable §-twisted trace formula and
a test function f = ®f, whose component f, is unramified at v # v; (i =
0, 1, 2, 3), our pseudo coefficient at vy, and the pseudo coefficient of St,,
(i=1,2,3) at v;.

Since the §-character of St,, is -stable (being the A-lift of Sty ,,), the
f-twisted trace formula for f with such a component is #-stable, namely
its geometric part depends only on the f-stable orbital integrals. As we
showed in 5.5 above, the f-stable orbital integral of the pseudo-coefficient
fv, of my, does not vanish identically on the f-elliptic set. This determines
the nonarchimedean components of f.

The geometric side of the stable f-trace formula consists of orbital inte-
grals. We choose the archimedean components to be supported on a small
enough neighborhood of a single #-regular stable elliptic #-conjugacy class,
such that there will be only one rational stable #-conjugacy class v, which
is in the support of the global f and there ®'(v, f x ) # 0.

Then the geometric side of the stable 8-trace formula reduces to a single
nonzero term, namely ®%¢(y, f x 6), and so the spectral side of the #-trace
formula is nonzero.

By the choice of f there is a representation = of G(A) which is 6-
invariant, whose components outside v; (i = 0, 1, 2, 3) are unramified and
at v; are I(M1y,, Tou,) and St,, (i =1, 2, 3).

In fact, 7 cannot have at v; (i = 1, 2, 3) components other than St,,
because the choice of f,, and the fact that trm,,(f,, x 8) # 0 imply that
Ty, 1S a constituent in the composition series of the induced representation
I,,, (from the Borel subgroup) containing St,,. Since 7 has the component
I(714y, T2, ), had it not been a discrete series, it could only be induced
I(my,m2) from a cuspidal representation m; x mo of the Levi subgroup
of type (2,2), and its components at v; (i = 1, 2, 3) would have to be
I(vspy, v 1spy) or I(v1a, v~ 11,), which are not unitarizable.

Of course m,, (i = 1, 2, 3) cannot be the trivial representation, since
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then 7 would be trivial, but is has the component I (714, T2y, )-

Now since 7 has components St,, it has to be cuspidal. Indeed, having
the component I(71y,, T2y, ) Prevents 7 from being a noncuspidal discrete
spectrum representation, a complete list of which is given in [MW1]. In
particular 7 is generic. g

Having the representation m we can use the trace formulae identity,
and a standard argument of generalized linear independence of characters,
applied at all places where 7, is unramified, to obtain an identity

Htrm,(fv x 0) = Zm(WH) HtrTrHU(va).

The products range over v = v; (0 < ¢ < 3) and the archimedean places.
By rigidity and multiplicity one theorem for G = PGL(4) the only contri-
bution on the left side is our cuspidal 7. Since it has Steinberg components,
the only contribution on the right is of discrete spectrum representations
g of H(A); there can be no contributions from the endoscopic group Cy
of H, and contributions from the #-endoscopic group C of G have been
dealt with already.

We now apply generalized linear independence of characters at the
archimedean places v of F, where F,, = C and the representation 7, is
fully induced (from the Borel subgroup). At the places v; (i = 1, 2, 3) we
use fry, which is a matrix coefficient of Sty,,, and f,, which is a #-matrix
coefficient of St,,. These functions are matching since Stzr,, A-lifts to St,,
and O(fr,,) = XSt 1, O(fy,) = Xst,, - Their orbital integrals vanish on
the non (6-) elliptic set.

On the side of H we have that tr mpy, (fro,) is 0 unless 7, is a sub-
quotient of v? x v x v=3/2 (see Corollary V.1.5). Since a component of an
automorphic representation 7wy has to be unitarizable, the subquotients of

V2 XU X 1/_3/2

which may occur are Stg,, and the trivial representation
1p,,. But a discrete spectrum 7y which has a trivial component is trivial
(by the weak approximation theorem), and writing v for vy we conclude

that

5.8 LEMMA. There are H,-modules g, and positive integers m'(mpry)
such that for any matching functions f, and fg, we have

(2) tr (71, T fo X 0) = Y (wr0) v W (frro)-

THv
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The gy which occur are cuspidal or square integrable.

PRrROOF. Let N denote the unipotent radical of any proper parabolic
subgroup of H. Let mg, v be the module of N-coinvariants of mz. Since (7)
the representation I(my, ms) is #-cuspidal if 1 # 75 are cuspidal, and (i4) its
f-central exponents decay if my # 7o are square integrable, and (i4i) each
N corresponds to the unipotent radical of a proper f-invariant parabolic
subgroup of G, the character relation (2) implies that Y m/(7g)Xryy 18
zero if 71 # 7o are cuspidal, and it decays if m; # 7o are square integrable.
But the m/(7g) are positive. Hence all 7y n are zero if m; # 7 are
cuspidal, and decay if m; # 7o are square integrable, namely the 7y which
occur are cuspidal or square integrable, respectively. O

5.9 LEMMA. The sum (2) with coefficients m’ is finite.

PROOF. To see this, write it in the form

b
tl"I(fX@)ZZmitI"}THi<fH), I:I(ﬂ'l,’frg).

=1

where 1 < b < co. Let f; be a pseudo coefficient of the square integrable

a a
i, and for any finite @ < b put f* = 5" f;, where > indicates the sum
over ¢ (1 <1i < a). Then

a® < (Y ma)? = [N mateam(F9)]* = [ I(f(F9) x 0))
=< <XLZXH¢>2 <X x1)H " <Z XHi,ZXHi> = a{X1, X1)H-

Here x;(Ng) = x1(g x ) is a function on the space of stable conjugacy
classes in H, since x;(g x 6) depends only on the stable §-conjugacy class
of g in G. The orthogonality relations for twisted characters, which are
locally integrable, imply that (xr, x7)m is finite, hence a is bounded, and
the sum is finite. O
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6. Fine Character Relations

In this section we conclude the proof of Proposition 5. Using (2), we can
rewrite our identity in the form

Htl" Ty X 71—21) fCov Zm QuTHy HtrWHv va

where the m here are integers, possibly negative. As the left side is nonzero,
there are nonzero contributions on the right whose character is nonzero on
the elliptic regular set, for each v.

Once again using (2) we write our identity — but on choosing fg, to be
a matrix coefficient of my, which occurs on the right side, at 3 out of our
4 places, so that tr 7y, (fry) is 1 or 0 (or —1) at this places, we get an
identity of the form

Ctr(ﬂ-Lvo X 7727v0)<fco,vo)
= Z m(wH,Uo) 81 T 0 (fHWO) - Z m,(ﬁH,v()) T H (va'UO)'

The term following the negative sign is tr I(m1y,, T2vy; fuv, X 0). Here
fHvo, foou, are arbitrary matching functions, and ¢ # 0

(C = H tr(mv X WQU)(fCOU))‘
v#£vg

Write m for m/ec, and note that the 4 places are the same: F,, = F,,
(i =1, 2, 3), and so are the components 71, X 7a,, by our construction.
Multiplying the last identity over the 4 places (not only vg, but also vy,
v, v3) we obtain  [[, tr(mi, X m24)(feyw)

= H [Zm(ﬂ-HU) trﬂ-Hv(va) - Zm/(ﬂHv) trﬂ'Hv(va)]-

Comparing this with the original identity for the left side we deduce that
the complex number [], 7m(mp,) is an integer, namely (m(my,)/c)? is an
integer, hence ¢ divides each of the m. We finally get — for all matching
functions fr, and fc,, — the identity

tr(mre X 720) (Foo) = D m(wmy) tr gy (fae) = Y 1 (Tr) v T (Frro)
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_ Zm//(ﬂHv) tr THo (fHY),

where the m” (7p,) are integers, positive or negative.

Of course had we used the f-trace formula with no restrictions at 3
places the derivation of the last identity from (2) would be easier, but we
do not use the unrestricted trace formula identity.

6.1 LEMMA. The sum with coefficients m” is finite. It consists of < 2

summands if m # mwo.

PROOF. To see this, write it in the form

tr (7T1 X 7T2 fco Zm tI"l‘rHZ fH)

i=1

where 1 < b < co. Let f; be a pseudo coefficient of the square integrable

a " a
i, and for a finite @ < b put f* = > ‘:Z—,‘,‘fl, where > indicates sum
over i (1 <4 <a). Then

a

2< (> ml)? Zm”tmm £ = [tr(m x ) (fo(f9))]
<dH(XTr1><Tr2 Z| //‘XWH1>2

2

< <dH(XTr1><ﬂ'2)7dH(X7F1><7T2)>H ’ <Z Xﬂ'HiVZXTin>H
— 9(1 4 6(m1,m2))a.

The last equality follows from Corollary 4.3. Hence a < 2 if w1, mo are
inequivalent. O

6.2 LEMMA. The m" take both positive and negative values.

PROOF. To see this, we write X = dg(Xx, xr,)- Then x is an unstable
conjugacy function on H, thus zero on the elliptic tori of types III and IV,
and its value at one conjugacy class of type I or II is negative its value at
the other conjugacy class within the stable class.

The 7, (1 < i < a) which occur in the identity for tr(m x m2)(fc,)
with m; # 0 are cuspidal or square integrable or constituents of 1 x 7o,
7o square integrable (see Propositions 2.1(d) and 2.3(b)), by Casselman
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[C] (compare the central exponents), since m; X 7o is cuspidal or square
integrable. Hence, choosing F' to be totally imaginary, and using pseudo-
coefficients and the trace formula as usual, we can construct a global dis-
crete spectrum representation wp with (1) a component W%UO which occurs
in the trace identity of our local 71 x 72 at vy, (2) a Steinberg component
Str,, at vy, ve, vs, (3) the nonarchimedean components of 7 away from
v; (0 < ¢ < 3) are unramified. This my contributes to the trace formula
identity, where the contribution 7 to the twisted formula of G is necessarily
cuspidal, as it has a Steinberg component.

We apply as usual generalized linear independence of characters at the
unramified components and the archimedean ones, and use coefficients of
Strry, at vi, ve, vs. We deduce that there is a f-invariant generic repre-
sentation 7 of G(Fy,) with an identity

trw(f x 0) = Zm(ﬂH)trﬂH(fH>a

where m(mg) > 0 for all 7 and > 0 for the 7% with which we started,
which occurs in the trace identity for tr w1 x w9, and which is square inte-
grable or elliptic tempered constituent of 1 x 75, square integrable 5.

Clearly x=(Nt) = xx(t x 0) is a stable class function on H, hence
perpendicular to the unstable function y, that is

0= (6 Xm) i = (Y m" (W) Xrsgs p_ (T )X, ) = D" ()i )-

TH Ty

Now the 7 are nonnegative and m(7%) > 0 for the 7% for which m” (r%,) #

0. Hence m” takes both positive and negative values.

In particular we see that a, the number of irreducible 7y with m” (7)) #
0, is at least two, hence a = 2 when m; and 75 are inequivalent.

6.3 LEMMA. Suppose that w1 and wo are (irreducible) cuspidal (resp.

square integrable) inequivalent representations of PGL(2, F'). Then there

are (irreducible) cuspidal (resp. square integrable) representations ﬂ'}f} =

7l (m x ) and 7w = 7 (w1 X w2) such that for all matching functions

fu, fo, we have

(3) tr(my x m2)(fo,) = trwg (fu) — trwg (far).
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a
PROOF. We have a = 2 and (3 |m”|)? < 4. As the m” are integers we
see that |m”| = 1. O

We now return to the identity (1), and evaluate it at fi,, (i = 1,2,3)
which are matrix coefficients of 7, (714, X 72,,). This choice determines
feow;, and f,, (or rather their orbital integrals), and our identity becomes

ctrI(my,mo; f x 0) = 2m(n};) + V) trfy (fur)

+@2m(rg) + D) trng (fa) +2 Z m(rg)trog(fr).
TH
Here we deleted the subscript vy to simplify the notations, as usual. The
7y are inequivalent (pairwise and to 73 ), hence ¢ # 0. Since

trI(my, mo; f X 6)

is a linear combination with positive coefficients of some trmwy(fr), we
conclude that ¢ = 1 (in fact there is so far a possibility that ¢ = %, but this
will be ruled out later). Once again, the mp which occur with m(7g) #0

are cuspidal and finite in number.

6.4 LEMMA. Suppose that w1 and o are (irreducible) cuspidal (resp.
square integrable) inequivalent representations of PGL(2, F). Then m(r};)
=m(my). We write m(my X ma) for the joint value.

PROOF. The twisted character x(Nt) = X1(x, x,)(t X 8) of I(71,m2) is a
stable function, while x* — x—, x* = X+, is unstable. Hence their inner
H
product is zero:

0=06x" —x 7w = @m(rf) +1) — 2m(rg) + 1). O

Let us discuss the case of a square integrable m; = w3 on PGL(2, F').

6.5 LEMMA. Ifm = mo are square integrable, they satisfy the conclusion
of Proposition 5.

PROOF. The representation 1 x s is reducible (see V.2.1(d), V.2.3(b)).
It is the direct sum of its two irreducible constituents, 7}, and 7, which
are tempered. The induced representation 1 xmo of H A-lifts to the induced
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representation I(mg,m3) of G by V.1.2, namely we have, for matching f,

Ju,
tr I(my, mo; f X 0) = tr(1 x mo)(fu) = trajy (fu) + tr o (fu).

For the other identity of Proposition 5 we denote our representation by
T2y, , choose a totally imaginary number field F' whose completion at vy is
our local field, F3,,, and construct two cuspidal representations, m; and 2,
of PGL(2,A), which have the same cuspidal components at three places
vy, V2, v3 (# v3), which are unramified outside the set V' = {vg, v1,v2,v3},
such that 7, is unramified while the component at vy of 7 is our square
integrable mo,,.

We use the trace formulae identity, and the set V', such that the only
contributions are those associated with I(my, w2). These contributions are
precisely those associated with (g, m3), 1 x 5 on H(A) and 79 X 73 on
Co(A). Note that at the three places vy, va, v3 we work with f,, whose
twisted orbital integrals vanish outside the #-elliptic set, while I(ma,,, T2y,;)
is not G-elliptic. Hence the contribution from I(my, m2) to the trace formula
identity vanishes for our test functions.

Now 1 x 7o enters the trace formula of H(A) as

% H trR(ngi)(l X '/T2v,:)(wa,)v

0<i<3

where R(m,,) is the normalized intertwining operator on 1 X 7a,,, while

mp X mp enters the trace formula of Co(A) as [[)<; <5 tr(720, X T20,) (feyv:)-
In the identity of trace formulae, the trace formula of Co(A) enters with

coefficient —% (see e.g. first formula in Chapter IV). We conclude that

H trR(ﬂ'QUi)(l A 7T2vi)(vai) = H tr(TrQUi X WQU'i)(fC(JUi)'

0<i<3 0<i<3

Repeating the same argument with 7, instead of mo we get the same
identity but where the product ranges over 1 < ¢ < 3 instead. In both
cases fcyv; (1 <14 < 3) can be any functions supported on the elliptic set
of C,,. Taking the quotient we conclude that

tr R(ﬂ—?vo)(l X 7T2vo)(vao) = tr(7T2vo X 7-‘—21)0)(]000110)
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for all matching functions fcyv,, fHv,- The normalized intertwining oper-
ator R(may,) has order 2 but it is not a scalar on the reducible 1 X 7a,,. It
is 1 on one of the two constituents, which we now name WEUO, and —1 on
the other, which we name 7z, , as required. O

We can now continue the discussion of the case of square integrable
w1 # mo. We claim that

6.6 LEMMA. The (finite) sum over my(# %) in our identity (for all
matching f, fu, where the m are nonnegative)

trI(my,ma; f X 6) = (2m(ﬂ'}§) +1) trw}’_‘I(fH) +@m(ry) + 1) troy (fa)

+2) m(rg) trry (fu)

TH
is emptly.

PRrOOF. To show this we introduce the class functions on the elliptic
set of H

Xh = @mr) + Dxgs + @miry) + 1),

and
XO =2 Z m(ﬂ-H)XWH'

TH

Also write X?( 2) for the class function on the regular set of H whose

1,7
value at the staiale conjugacy class Ng is X1(x, ) (g X 0).

Our first claim is that ! (and x°) is stable. It suffices to show that
(X%, dp (7} x 7)) g is O for all square integrable 7] x 74 on Cp. By (3) and
since m* = m™ this holds when 7} X 7}, is equivalent to m; X o (or 7o X 71).
When 7] X 74 is inequivalent to m X 7o or mo X 71, the twisted orthogonality

relations for twisted characters imply that <X?(w1,wQ)’X§(ﬂ;,w;)>H is zero.
Since the coefficients m are nonnegative, if 7 € {7} (71 x ma) }U {75 (m1 x
m2)} then it is perpendicular to dg (7} X %), and the claim follows.

Next we claim that x is zero. If not, x = (x> + x", x\)m - x°* — (x' +
X%, x%) & - x! is a nonzero stable function on the elliptic set of H. (Note
that (x°, x")z = 0). Choose f; on Gy, such that ®(t, f; x6) = x(Nt) on
the #-elliptic set of G,,, and it is zero outside the #-elliptic set. As usual fix
a totally imaginary field F' and create a cuspidal #-invariant representation
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7 which is unramified outside vy, v1, va, vs, has the component St,, at v;
(1t =1, 2, 3), and trm,,(f, x 6) # 0. Since 7 is cuspidal as usual by

Vo
generalized linear independence of characters we get the local identity

trﬂvo(fvo X 9) = Z ml(wH,Uo)teryvo(fH,U())

TH vy

for all matching f,,, frv,. The local representation m = m,, is perpendic-
ular to I(my, ) since (x, X" + x')u =0, and x° + x! = X?(m,m)'

Since x* + x° is perpendicular to the f-twisted character x¥ of any -
invariant representation II inequivalent to I(m1,m3), X is also perpendicular
to all x{, hence trII(f] x @) = 0 for all f-invariant representations II,
contradicting the construction of m,, with trm,,(f; x ) # 0. Hence

x = 0, which implies that x° = 0, namely that for m; # T we have

trI(m, ma; f X 0)
(4) = @m(ry) + D trag (fr) + @m(rg) + 1) trrg (fa)-

Since the character on the left is stable, it is perpendicular to the unstable
character on the left of (3). So the right sides of (3) and (4) are orthogonal,
i)

hence m(nj;) = m(ry). O

6.7 LEMMA. The integer m = m(nj;) = m(ry) is 0.

We show at the end of section 10 that precisely one out of 7r1+{, Ty 18
generic.

Our proof of the vanishing of m(7};) = m(7) is global. It is based on
the theory of generic representations. This latter theory implies that given
automorphic cuspidal (generic) representations m; and w3 of PGL(2,A)
there exists a generic cuspidal representation mp of PGSp(2, A) which is
a Ao-lift of w1 X 79, namely Ag(71, X 72, ) = 7a, at almost all places v of
F', where w1, mo and 7y are unramified and the local lifting \g is defined
formally by the dual group homomorphism A : Co— H.

Moreover, in Corollary 7.2 below we prove that 7y occurs in the discrete
spectrum of PGSp(2, A) with multiplicity one.

To use this, beginning with our local square integrable representations
T, and mh, , we construct a totally imaginary field F' with F,,, = F,,

at three places v1, v, v3 and global cuspidal representations 7m; and 7o
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of PGL(2, A), which are unramified outside v; (0 <14 < 3), with cuspidal
components m1,, and may,, and mj, ~ 77, (i =0,1,2;5 = 1,2).

We set up the identity (2), which in view of (3) and (4) takes the form

H(2mv+1) [tr W;,i)(fH,U)+tr Wﬁ,v(fH,v)]+H[tr W;rl,v(fH,v)*tr THv (frw)]

v v

— QZm(ﬂ'H) HtI‘ﬂ'H,v(fH,v%

where v ranges over the finite set {v;; 0 < ¢ < 3}. Corollary 7.2 below
asserts that m(mp) is 1 for at least one 7y = ®mp, (product over all
places v of F). Hence the corresponding number [],(2m,, + 1) £ 1 is
2m () = 2. Since my, = My, = My,, and 3% £ 1 > 2, m,, is zero. The
proposition follows. O

REMARK. Our proof is global. It resembles (but is strictly different
from) the second attempt at a proof of multiplicity one theorem for the
discrete spectrum of U(3) in [F4;1I], Proposition 3.5, p. 48, which is also
based on the theory of generic representations.

However, the proof of [F4;11], p. 48, is not complete. Indeed, the claim in
Proposition 2.4(i) in reference [GP] to [F4;I1], that “L§; has multiplicity
17, is interpreted in [F4;II] as asserting that generic representations of
U(3) occur in the discrete spectrum with multiplicity one. But it should
be interpreted as asserting that irreducible 7 in L(2),1 have multiplicity one
only in the subspace L%’l of the discrete spectrum. This claim does not
exclude the possibility of having a cuspidal 7’ perpendicular and equivalent
tom C L.

Multiplicity one for the generic spectrum would follow via this global
argument from the statement that a (locally generic) representation equiv-
alent to a globally generic one is globally generic (multiplicity one implies
this statement too). In our case of PGSp(2) this follows from [KRS], [GRS],
[Sh1]. A proof for U(3) still needs to be written down.

The usage of the theory of generic representations in the proof above
is not natural. A purely local proof of multiplicity one theorem for the
discrete spectrum of U(3) based only on character relations is proposed in
[F4;IT], Proof of Proposition 3.5, p. 47. It is based on Rodier’s result [Rol]
that the number of Whittaker models is encoded in the character of the
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representation near the origin. Details of this proof are given in [F4;IV]
in odd residual characteristic for the basechange lifting from U(3, E/F)
to GL(3,E). It implies that in a tempered packet of representations of
U(3,E/F) there is precisely one generic representation. We carried out
this proof in the case of the symmetric square lifting from SL(2) to PGL(3)
([F3]) but not yet for our lifting from PGSp(2) to PGL(4).

7. Generic Representations of PGSp(2)

We proceed to explain the result quoted at the end of the global proof
of Proposition 5 above (after Lemma 6.7) and attributed to the theory of
generic representations.

We start with a result of [GRS] which asserts: the weak (in terms of
almost all places) lifting establishes a bijection from the set of equivalence
classes of (irreducible automorphic) cuspidal generic representations 7y of
the split group SO(2n + 1, A), to the set of representations of PGL(2n, A)
of the form « = I(my,..., ), normalized induction from the standard
parabolic subgroup of the type (2n4,...,2n,), n = ny + - - -+ n,, where m;
are cuspidal representations of GL(2n;,A) such that L(S,m;, A%, s) has a
pole at s =1 and m; # m; for all 4 # j. The partial L-function is defined
as a product outside a finite set S where all 7; are unramified.

Moreover, if 7y is a cuspidal generic representation (in the space of
cusp forms) of SO(2n + 1, A) which weakly lifts to = as above, and 7}, is
a cuspidal representation of SO(2n + 1, A) which weakly lifts to 7 and is
orthogonal to 7y, then 7% is not generic (has zero Whittaker coefficients
with respect to any nondegenerate character).

Note that this result does not rule out the possibility that there exists
a cuspidal representation 7% of SO(2n + 1, A) which is both orthogonal
and equivalent to the generic cuspidal g, and consequently is locally
generic everywhere, but is not (globally) generic. Hence 7wy may occur in
the discrete, in fact cuspidal, spectrum of SO(2n + 1, A) with multiplicity
m(mg) greater than one.

Of course we are interested in the case n = 2, where

7.0 LEMMA. PGSp(2) = SO(5).
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PROOF. This well-known isomorphism can be constructed as follows.

Let U be the 5-dimensional space of 4 x 4 matrices u such that tr(u) =0

1
)

and *J'uJ = u. Then PGSp(2) acts on U by conjugation: g : u +— gug™
and the action preserves the nondegenerate form (uq,u2) — tr(ujuz) on
U. The action embeds PGSp(2) as the connected component SO(5) of the

identity of the orthogonal group O(5) preserving this form. g

A related result is Theorem 8.1 of [KRS|. It asserts that if mg is a
cuspidal representation of Sp(2,A) which is locally generic everywhere,
and the partial L-function L(S,mg,ids,s) is nonzero at s = 1 then g is
(globally) generic. Here L is the degree 5 L-function associated with the
5-dimensional representation ids : SO(5,C) — GL(5,C) of the dual group
SO(5,C) of Sp(2). When g is generic this L-function is nonzero at s = 1
by Shahidi [Sh1], Theorem 5.1, since id5 can also be obtained by the adjoint
action of the SO(5, C)-factor in the Levi subgroup GL(1,C) x SO(5,C) of
SO(7,C) on the 5-dimensional Lie algebra of the unipotent radical. This
is case (xx) of Langlands [L2]. Together, [KRS|, Theorem 8.1, and [Sh1],
Theorem 5.1, although do not yet imply that a locally generic cuspidal
representation of Sp(2, A) is generic, do assert that:

7.1 PROPOSITION. Let mg, m}, be cuspidal representations of Sp(2, A).
Suppose that ), is generic, mo, is generic for all v, and mo, ~ w,, for
almost all v. Then mg is generic.

I wish to thank S. Rallis for pointing out to me [KRS], [GRS] and [Sh1]
in the context used above, and F. Shahidi for the reference to [L2], (xx).
We need this result for PGSp(2, A):

7.2 COROLLARY. Any generic cuspidal representation m occurs in the
discrete spectrum of the group PGSp(2,A) = SO(5,A) with multiplicity
one.

In view of the results of [GRS] quoted above it suffices to show that:

7.3 LEMMA. Let my, my be cuspidal representations of PGSp(2,A).
Suppose that 'y is generic, T, is generic for all v, and T, ~ ., for
almost all v. Then Ty s generic.

To see this, let us explain the difference between the group PGSp(2, F)
(which is equal to GSp(2, F')/Z(F)) and the group Sp(2, F)/{£I}.
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Note that PGSp(2) = PSp(2) as algebraic groups (over an algebraic
closure F of the base field F). We have the exact sequences

1 — G, — GSp(2) — PGSp(2) — 1,

1— {£+I} — Sp(2) - PSp(2) — 1,

since the center Z of GSp(2) is G,,, while that Zg of Sp(2) is {£I}. Since
HY(F,G,,) = {0} and HY(F,Z/2) = F*/F*2, the associate exact se-
quences of Galois cohomology give

1— F* — GSp(2,F) —» PGSp(2, F) — 1,
thus PGSp(2, F) = GSp(2, F)/F*, and
1 — {+I} — Sp(2,F) — PSp(2, F) — F*/F*2.

Hence Sp(2, F)/{£I} = ker[PGSp(2, F) — F*/F*?] (as PGSp(2, F) =
PSp(2, F)). The kernel is induced from the map A : GSp(2) — G,,,, asso-
ciating to g its factor of similitudes. Globally we have

Sp(2,A)/Zs(A) = ker[GSp(2, A)/Z(A) — A*/A*?],

where Zg(A) is the group of ideles (z,) € A* with z, € {£I} for all v.
It will be simpler to work with the group Zp(2,A) = Z(A) Sp(2,A), with
center Z(A), and Zp(2,F) = Z(F)Sp(2, F). Note that Zp(2,A)/Z(A) =
Sp(2,A)/Zs(A) and

Zp(2,F)/F* =Sp(2, F)/{£I}.

An automorphic representation of Sp(2, A) with trivial central character is
the same as an automorphic representation of Zp(2, A) with trivial central
character.

Let us also explain the passage from representations of GSp(2, F') to
those on F* Sp(2, F).

7.4 LEMMA. Put H = GSp(2,F) and S = Sp(2, F)Z(F).
(i) Let w be an irreducible admissible representation of H. Then the re-
striction Resgﬂ of ™ to S is the direct sum of finitely many irreducible
representations.
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(ii) Let 7 be an irreducible admissible representation of S. Then there
is an irreducible admissible representation m of H whose restriction to S

contains 5.

PROOF. The map GSp(2,F) — F* associating to h its factor A(h) of
similitudes defines the isomorphism H/S = F*/F*? = (Z/2)", r finite
(r = 2 if F has odd residual characteristic). By induction, it suffices to
show (i), (ii) with H, S replaced by H', S’ with S ¢ S’ ¢ H' C H,
H'|S' =17)2.

(i): Let (m, V) be an admissible irreducible representation of H'. Then
Resg/ 7 is admissible. If it is irreducible, (i) follows for m. If not, V
contains a nontrivial subspace W invariant and irreducible under S’. For
h e H — 5" we have V.= W + w(h)W. Since W N w(h)W is invariant
under H', it is zero, and so V. = W & w(h)W where W and w(h)W are
irreducible S’-modules. (i) follows.

(ii): Given an irreducible admissible representation (x5, W) of S’, put
T = Indg,l(ﬂ'sl). For h € H — &', if s — 7% (h~'sh) (s € S') is not
equivalent to 75" then 77 is irreducible and Resg/(m) contains 5. Oth-
erwise there exists an intertwining operator A : (75", W) — (75", W) with
78 (h=1sh) = A= '75 (5)A (s € §") and A% = 75" (h?) (by Schur’s lemma).
We can then extend 75 to a representation 7 on the space W of 5 by
m(h) = A. We have (7, W) — 71 by w — fi,(9) = 7(9)w (¢ € H'), and
71 ~ 7@ 7w, where w is the nontrivial character of H'/S" = Z/2. O

REMARK. The restriction of a generic admissible irreducible 7 of H to
S contains no irreducible representation 7° with multiplicity > 1.

Indeed, 7 is generic if T — Ind%i/; for some generic character 1 of
the unipotent radical N = N(F') of H. Note that N C S. Since H =
Udiag(I,AI)S, A € F*/F*2 and diag(I,AI) normalizes N, each 7° C
Resg 7 is a constituent of Ind}g\, Y™ for some generic character ¢* of N.
Now 77 = Ind¥ (7°) ¢ Ind¥ nd%, ¢* = Ind% ¢*. The uniqueness of the
embedding (“Whittaker model”) of 7 in Indﬁw implies the uniqueness
of the embedding of 7 in 77, hence of 7 in , since by Frobenius reci-
procity: Homg (7%, Resf 7) = Homy (77, 7), and the complete reducibility

S

(i) above, 7 is contained in 7 with the same multiplicity that = is con-

tained in 7j. O

PrOOF OoF LEMMA 7.3. Let us then take a cuspidal representation m =
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®@m, of PGSp(2,A) which is locally generic. Thus for each v there is
a nondegenerate character 1, of the unipotent radical N, of the Borel
subgroup of H, = PGSp(2,F,) (and of S, = Zp(2, F,)/F,) such that
Ty Ind]H\,: (1,). Applying the exact functor Resgv v of restriction from H,
to S, we see that Resg: Ty = Dy Indi”v (¢7), where 97 are the translates
of ¥, under H,/S, ~ F)/F)X2. Thus each irreducible constituent 75 of
Res?; v 1, is generic.

Since 7 is a submodule of the space LZ(PGSp(2, F)\ PGSp(2,A)), the
restriction map ¢ — ¢|(Zp(2,A)/Z(A)) defines a subspace 7 of

L§(Zp(2, F)Z(A)\ Zp(2, A)).
Choose an irreducible (under the right action of Zp(2,A)) subspace 7
of 7. Then 7% = ®77 is a cuspidal representation of Zp(2,A) whose
components are all generic. The same construction, applied to the cuspidal
generic 7', gives a cuspidal generic 7%, locally equivalent to 75 at almost
all places. By Proposition 7.1 (namely the results of [KRS] and [Shl]
for Zp(2,A) = Z(A)Sp(2,A)), 75 is generic. This means that for some
nondegenerate character v of N(F)\N(A), we have 7% — Ind]ZVp@’A)/AX .

(&)
gﬁif)g’/i)x (7%), and induction is transitive: Ind% Ind5 = Ind9,

PGSp(2,A
N(A)

But 7 C Ind

and exact, hence m — Ind ) 1. In other words, 7 is generic. O

Once we complete our global results on the lifting A from the group
PGSp(2, A) to the group PGL(4, A) in section 10, we deduce from [GRS]
that each local tempered packet contains precisely one generic member,
and each packet which lifts to a cuspidal representation of PGL(4, A), or
to an induced I(my,m2) where 71, 7o are cuspidal on PGL(2, A), contains
precisely one representation which is everywhere locally generic. The latter
is generic if it lifts to I(mq, m2).

8. Local Lifting from PGSp(2)

One more case remains to be dealt with.

8.1 PROPOSITION. Let m,, be a 0-invariant irreducible square integrable
representation of G, over a local field F,, which is not a Ai-lift. Then
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there exists a square integrable irreducible representation g ., of Hy,
which A-lifts to my,, thus tr myy (fu, X 0) = tr Th 0o (fHw,) for all matching
Joo and fH.u,-

In particular the 0-character of m,, is 0-stable, and the character of
TH.v, 15 @ stable function on H,,.

PROOF. Since m,, is f-invariant, square-integrable and not a A;-lift, its
character is #-stable by Proposition IV.4.4. We choose a totally imaginary
global field F' and a function f = ®f, whose components f, at 4 places v;
(1=0,1,2,3) with F,, = F,, are pseudo matrix coefficients of ,, where at
v = vg this 7, is the m,, of the proposition, at vy it is m,, = Ig(T1v,, ™20, )s
where 7;,, are distinct cuspidal PGL(2, F,, )-modules, while m,, and m,,
are the Steinberg PGL(4, F,))-modules. The other components f,, at finite
v are taken to be spherical and > 0. Since the -orbital integrals of f,, (in
fact also f,,,i = 1,2, 3) are f-stable functions (supported on the #-elliptic
set), the geometric part of the f-trace formula is #-stable: it is the sum of
f-stable orbital integrals, <I>?‘yt( f). We choose foo, = ®, fy, v archimedean,
to vanish on the non f-regular set.

Since G(F) is discrete in G(A) and f = ®f, is compactly supported,
<I>§Yt( f) # 0 for only finitely many #-stable conjugacy classes (6-elliptic and
regular) v in G(F). Restricting the support of f,, we can arrange that
<I>§Yt( f) # 0 for a single #-stable class 7. Hence the geometric side of the
f-trace formula is nonzero. Consequently the spectral side is nonzero.

The choice of f,, (i = 0,1,2,3) as a pseudo-coefficient can be used
now to show the existence of a #-invariant m whose component at vy is
T, = I (T1v,, T2, ), and consequently m,, and m,, are Steinberg (note
that trm,, (fv, X 0) # 0 does not assure us that m,, is Steinberg, but given
that m,, i8 Ig(71y,, T2y, ), the global m must be generic, hence m,, is the
square integrable generic constituent in the fully induced

IG(VS/Qv V$/27 V;1/27 V;3/2))'

It follows that 7 is generic and cuspidal (it contributes to the sum I in
the spectral side of the O-trace formula, not to I(32), etc.). Since the
components 7, (¢ = 1,2,3) and by the same argument also m,,, are our
f-stable ones, 7 is not a A;-lift, nor it is a A-lift of the form I(my, m2). Thus
when we write the trace formula identity fixing all finite components to be
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those of m at all v # v; (i = 0,1,2,3), the only contribution other than =
would be from H, namely

Htrm,(fy x ) = Zm(ﬂ'H) Htrﬂ'Hv(va).

Thus 7g are discrete spectrum representations of H(A) whose components
at each finite v # v; (i = 0,1,2,3) are unramified and M-lift to m,. The
products range over v; (i = 0,1,2,3) and the archimedean places.

Next we apply the generalized linear independence argument at the
archimedean places. Consequently we can and do omit the archimedean v
from the product, and restrict the sum to 7y with A(THeo) = Too-

Evaluating at v;, ve, vs with the pseudo coeflicient f,,, which is -
elliptic, we can delete these v from the product, but now the sum ranges
over the my which in addition have the Steinberg component at v, and vs,
and Trj{lvl or g, at vi.

Omitting the index vy, we finally get for our m = 7, the equality

tr(f x 0) = > m(ry)trou(fu)

for all matching f and fg.

Since 7 is square integrable and the m(m ) are nonnegative, the theorem
of [C] on modules of coinvariants implies that all 7y on the right are
cuspidal, except for one square integrable noncuspidal 7y if 7 is the square

Y27y v=127y), for a cuspidal mp = (1),

integrable constituent of I (v
where p is a character of E* /F*  E/F being a local quadratic extension.

Evaluating at fg = f§ = >, f(7mi), where we list the 75 and f(7p;)
denotes a pseudo coefficient of 7g;, we conclude from the orthonormality
relations for twisted characters that the sum over mg is finite.

The resulting character relation

Xx(g % 0) = m(wu)xxy (Ng)

and the orthonormality relations for f-characters of square integrable rep-
resentations, i.e.: (x?,x%) =1, imply that

(7 M) X 3 ()Xo

is 1, thus Y m(my)? is 1. Hence there is only one term on the right with
coefficient m = 1. O
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8.2 COROLLARY. Let w9 be a cuspidal (irreducible) representation of
GL(2,F), F local, with £me = T and central character &€ # 1 = £2. The
square integrable subrepresentation 5(V§,V‘1/27r2) of the H-module v x
v=121y, N-lifts to the square integrable submodule S(V1/27T2,V_1/27T2) of
the G-module Ig(v'/ %1y, v~ %1y).

ProoF. This follows from the proof of the proposition. Note that the
only noncuspidal non Steinberg selfcontragredient square integrable repre-
sentation of G(F) is of the form S(v'/?my, v=1/?1y), where 7y is a cuspidal
representation of GL(2, F') with central character &, £€2 = 1, and &mg = .

The square integrable S(v'/?my, v=1/21,), where sy is a cuspidal repre-
sentation of PGL(2, F'), is the Aj-lift of sp, xms. If the central character
of my is € # 1 = €2, it is associated with a quadratic extension F of F,
and since £mo = 7o there is a character p of £ trivial on F'*, such that
w9 = ma(p). The only square integrable representations of PGSp(2, F') not
accounted for so far are 6(v€, v1/2my), wr, = € # 1= €2, Emy = Ty,

Since v€ x v—1/2my Mlifts to Ig(l/l/Qirg,zfl/Qﬂg), and 7o = &y, the
decaying central exponents in these fully induced representations corre-
spond, hence §(v€, v=1/21y) Mlifts to S(vY/ 2wy, v=1/%715) from the proof of
the proposition. O

8.3 COROLLARY. The nontempered quotient L(v€, v=/?1y) in the com-
position series of the H(F)-module v& x v=27, where T4 is a cuspidal
GL(2, F)-module with central character & # 1 = €2 and &mg = o, A-lifts

1/2

to the nontempered quotient J(v 7T2,V_1/27T2) in the composition series

of the induced I (v ?my, v=12m5).
Proor. This follows from
tr L(v€, V_1/27r2)(fH) = tr(v€ x V_1/27T2)(fH) —tro(vé, V_1/27T2)(fH)

and  tr J(v1/?me, v 215 f % 0)

= tr Ig(v ?my, v 2m0; f % 0) — tr S( 27, v 2 1a; f % 0). O

For any irreducible square integrable PGL(2, F')-modules 7; and 75 we

have
tr(my x m2)(fo,) = trmg (fu) — trwg (far),

trIg(my, mo; f X 0) = tr oy (fu) + trog (fa),
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for all matching functions f, fm, fc,, where WIJ}, 7Ty are tempered irre-
ducible (square integrable if m; # mg) representations of H determined by
the unordered pair w1, ms.

If m = 7 is cuspidal, 7r}'_} and 7y are the two inequivalent constituents
of 1 x my.

If 1, = 7 is £spy, where £ is a character of F* with £2 = 1, 77?1 and
7y are the two tempered inequivalent constituents 7(v*/2sp,, év~1/2) and
TV 219, €07 1/2) of 1 x Espy.

If 1 = £spy, €2 = 1, and 75 is cuspidal, then WE is the square integrable
constituent §(melrt/2, Ev=1/2) of the induced molr/? x Ev=1/2 while 7
is cuspidal, which we denote by 6~ (£v1/2my, £~ 1/2).

If 11 = ospy, and Ty = &ospy, £(# 1 = £2) and o are characters of

F*, then 7r;} is the square integrable constituent 5(§u1/2 sp271/_1/20) of

1/2 3 gy—1/2

the induced sp, {v
5~ (&2 spy, v 20).

We made this explicit list in order to describe the character relations
where in the last three paragraphs sp, is replaced by the nontempered

trivial representation 12 of PGL(2, F).

, while 7, is cuspidal, which we denote by

8.4 PROPOSITION. For any cuspidal representation o of PGL(2, F)
and character € of F* with €2 = 1, we have

tr(§1s x m2)(fc,)
= tr L(mobv/?, €0 2) (far) + tr 8™ (mabr'2, €072 (fr),
trIg(§1g, ma; f X 6)
= tr L(mp&r'/2, 07 2) (fir) — b6 (maw' 2, €07 2) (f),
for all matching f, fu, fo,-

ProoF. This follows from
tr [(Espy xma; f X 0) =trd(fu) +trd (fu),
tr(€spe xm2)(fo,) = trd(fu) —trd™ (fu),

and
tr I (§spy, mas f x 0) + tr Ig(€12, mas f X 0)
= trlg(§y1/2,ﬂ'2,.fy_1/2;f x 0)
= tr(malv'? 0 &) (fu) = tr6(fu) + tr L(fu)
= tr(&ly x m2)(fe,) = tr(&la x m2)(fe,) + tr(€spy Xm2)(foy,)s
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where Iy = (/2 v=1/2), O

8.5 PROPOSITION. For any characters € # 1 = &2 and o (02 = 1) of
F>*, for all matching f, fu, fc, we have
tr(oly x 0€spy)(fe,)

= tr L(V"/?Espg, ov ™ 2) (fur) + tr 6 (E01/? spa, ov™ %) (fa),
trIg(ola, o€ spy; f % 0)

= tr L(v"2Espy, ov™V2) (i) — tr 67 (E01? spy, ov ™2 (fur),
tr(c€ls X ola)(fe,)

=tr L(v€, & x v 20)(fu) — tr 6 (Ev /2 spy, Eov™ %) (fu),
trIg(o€ls,0ly; f X 6)

=tr L&, &€ x v 20) (fu) + tr 6~ (€0 % spy, Eav™ V) (fa).
PrOOF. We use the identities displayed above for

tr[(ospy, 0€spy; f x 0) and  tr(ospy xo&spy)(fey),

and

trIg(ola,0€8py; f X 0) + tr Ig(o spy, o€ spa; f X 6)

= trIg(ov'/?, o€ spy, o V2, f % 0)

= tr(v" /¢ spy xov %) (fir)

= tr6(vM 2 spy, ov V) (fu) + tr L€ spy, o0 ?) (fir)
= tr(olz x 0§ sp,)(fcy)

= tr(ospy X0 spy)(fe,) + tr(oly X o€ spy)(fey)-

For the last two identities we use the first two, and

trIg(ole,08ls; f X 0) + tr Ig(o spy, 0€1la; f X 6)

= tr Ig(ov/?, 010,007 Y2 f x 0) = tr(E0Y /%15 x ov™V2) (i)

= tr L(&v' % spy, 0607 2) (fur) + tr L(vE, € x ov™ /%) (fur)

=tr(olz x 0€12)(fc,)

=tr(€oly X ola)(fe,) + tr(€ols X ospy)(foy)- O
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8.6 PROPOSITION. For all matching fu, fc,, and characters & of F'*
with €2 = 1 we have

tr(€1z x Espo)(fey)

= tr L2 sp,y, 07 V2 (fu) + tr (v ?1a, &0 2 (f1),
tr(§ 12 x §12)(fc,)

=tr L(v, 1 x &v™Y2)(frr) — tr L ? spy, 07 2) (far).
PrOOF. The first equality follows from

tr(§spy xEspy)(fey)
= tr (v % spy, &7 V2) (fu) — tr (v ?1a, E07V) (fur)

and

tr(&1y x fSPQ)(fCo) + tr(& spy XESPQ)(fCo) = tr(&lz x §SP2)(fCo)
= tr(v"/? spy x&v ™ /?)(fur)

= tr (12 spy, &7 V2) (fur) + tr L spy, €072 (fur).
The second equality follows from this as well as from
tr(§1z x £12)(fo,) + tr(€spy x€12)(fe,) = tr(§12 X E12)(fey)
= tr(v' /15 x vV (fr)

=tr (%15, 6072 (fy) + tr L(v, 1 x &0 Y2 (fy). O

Recall (Proposition V.1.2) that for any admissible representation 7 of
PGL(2, F) we have that 1 x 7 A\-lifts to Ig(m, 7), thus

trIg(m,m; f x 0) =tr(1l x 7)(fr)
for all matching f and fz. When m = m + w5 we get
trIg(my,m; f X 0) + tr Ig(m, ma; f X 0)
+ tr Ig(ma, m1; f X 0) + tr Ig(ma, ma; f X 6)

=trig(mm fx0)=tr(1 x7)(fg)=tr(1 xm)(fg)+tr(1l xm2)(fr)
=trIg(m,m; f x 0) + trIg(me, mo; f X 6).



8. Local Lifting from PGSp(2) 159

It follows that the normalization of TI(#) on II = I4(7, 7), which is unique
only up to a sign on any irreducible #-invariant representation of G, as
6? = 1, induces a normalization of I3 (), Il = Ig(ma, 1), which is
different in sign than the normalization of IIy 5(0), Iy o = Ig(m1, m2) (=~
I (me, 1) when mp, 7o are irreducible), with the consequence of

trIg(my, ma; f X ) + trIg(ma, w5 f x 0) =0

for all f. A similar phenomenon is encountered in the following.

8.7 PROPOSITION. For all matching f and fy we have

trIg(1e,12; f % 0)

=trL(v,1 x V_l/z)(fH) + tr L(V1/2 SPs, y_l/z)(fH),
trIg(spg, 1o; f X 6) =

trr (%19, Y2 (fu) — tr LY % spy, vV 2) (fur).

PrOOF. The first identity follows from A(1 x 71) = Ig(71,71) and the
fact that the composition series of 1 x 71 for m; = 15 consists of the two
irreducible representations L. The second identity is a consequence of the
first, as well as

tr (219, V) (i) + tr L(v, 1 x v Y2) (fr) = tr(vY/ %15 x v Y2) (fi)
= trIg(I2, 12; f x 0) = tr Ig(12, 125 f X 0) + tr Ig(spy, 12; f X 0). O

REMARK. On II = I5(I3,12) we normalize the intertwining operator
TI(6), whose square is the identity, by the property that it maps the un-
ramified (K-fixed) vector to itself. This coincides with the normalization
of 6 on the quotient I(1s x 15) of I5(I2,12), and induces a normalization
of 0 on the subrepresentation I(sps, 12).

On the other hand, we could normalize II'(f) on II' = Ig(I2,sp,y) by
mapping the Whittaker vector to itself (W +— ?W). This coincides with
the normalization of # on the subrepresentation Ig(spsy,sp,) of I, and
induces a normalization of # on the quotient I (12,sps) of II' which is the
negative of the normalization of € on

IG(spy,12) (=~ Ig(12,8ps))
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viewed as a subrepresentation of II. Indeed, using
tr 16 (5pa, pa; f X 0) = tr (v spo, v V2) (fir) + tr 7 (21,07 2) (fir)

and
tI‘T(I/l/2 SPa, Vﬁl/Q)(fH) + tr L(lll/2 SPs, yil/z)(fH)
= tr(y1/2 SPo Nu_l/z)(fH) = trIg(Iz,spy; f X 0)
= tr Ig(spg,spg; f X 0) + tr Ig(12,8py; f % 0)

we conclude that
trIg(1a,spy; f X 0) = trL(V1/2 SPa, V_l/Z)(fH) — tI‘T(Vl/2127V_1/2)(fH).

This does not contradict the Proposition, but reinforces it, yet with a
different normalization of the intertwining operator 6 on I (1a,sp,).

9. Local Packets

These character relations permit us to define the notion of a packet of
tempered representations, and that of a quasi-packet, locally. The packet
of a nontempered representation 7wy is defined to consist of 7wy alone.

9.1 DEFINITION. Let F' be a local field. The packet of (an irreducible)
tempered H-module 7y consists of my alone unless 7y is 7r;} or my for
some pair 7, 7 of (irreducible) square integrable PGL(2, F')-modules, in
which case the packet consists of w;} and 7.

For example, if 7 is a cuspidal representation of GL(2, F') with central
character € # 1 = £2, the packet of §(¢v,v~/?m,) consists of a single
element.

We write tr{mgy} for the sum of tr7; as 7% ranges over the packet
{ﬂ'H} of TH.

9.2 DEFINITION. The quasi-packet of a nontempered (irreducible) H-
module 7y is defined only for such an H-module which occurs in the
character relation for ol X 7o, where mo is a square integrable or one
dimensional PGL(2, F)-module and o is a character of F*/F*2. Tt is
defined to be the pair 7}, 75 which occurs in this character relation
(which also defines 7).
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Thus when 79 is square integrable the quasi-packets are defined to be
{L(myov/?, 007 12), 6™ (mo /2, o0~/ 2},

{L(V1/2§ SPa, UV?1/2)a 57(§V1/2 SPa, UV?1/2>}

and
(L0 5py, 0™ 2), 70?15, 007 )},

for any characters £ # 1, o of F*/F*? and cuspidal 72. Note that the 75
in the last packet is tempered, but not square integrable.

Correspondingly we write \o(m x m2) = {7}, 75} and \({n};,75;}) =
I(m1,m2) when 71, T2 are square integrable, A\o(oly X ma) = {7}, 75}
and N({m}y,m5z}) = Ig(01l2, ) when my is square integrable and o2 = 1.
This notation applies also when 7y is sp,y, or £14, in the following sense.

The quasi-packet \g(0€ly X 0l3), € # 1 = €2, 02 = 1, is defined to
consist of

{rfy = L(v&, €% V71/20'), Ty = (57(§V1/2 Sp2,§O'V71/2)}.

We observe that mp; of A\g(c€ls x 0lz) and of A\g(c€ls X ospy) are the
same, although the corresponding 77, are not. Thus it is the 75 which
determines the quasi-packet, and not the my;.

The quasi-packet A\g(cls X 0ls), 02 = 1, consists of

{7} = L(r,1 x ov™1/?), Ty = LY spy, ov 12}

Here we observe our 77 is not tempered, and is in fact 7}; in the quasi-
packet A\g(01ly X 0 Spy).

10. Global Packets

This description of local packets of representations of H will now be used
together with the trace formula identity to describe the automorphic rep-
resentations of H(A). Taking into account the complete results on the
lifting A; from C(A) to G(A), the trace formula identity can be phrased
as follows:

1 1
II + 5[{272) = Tsp(fH;H) - ZTSp(fC()?CO)
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j% > tr(fa(1,1) x m)(fo).

wo of PGL(2)

Here I' is the subsum of I, namely ) _tra(f x ), over those discrete
spectrum representations 7 ~ 97 of PGL(4, A) which are not \;-lifts (from
C(A)).

Similarly, I€272) is the subsum of I3 5y which consists of those induced
representations [(5 y(m1,72) which are not lifts via A; from C(A).

10.1 LEMMA. If I(39)(71,m2) appears in IE2 2) then the m; have trivial
central characters, namely are representations of PGL(2, A).

PROOF. The m; and 7y are representations of GL(2, A) with m; ~ ;. If
w denotes the central character of 7y (hence also of ma, since (3 9)(71, m2)
has trivial central character), then #; ~ w;, and so w? = 1. If w # 1, thus
w = Xg/r for some quadratic extension E of F, then m; = 7 (u]) and
mo = mg(uh), where p are characters of A /E*.

The central character of such an mg(u) is xg/r - u[A*. So for our
7 (p;) of central character x g, p, we have pi|A* = 1, which means (since
the kernel of z — 2z/Z in A} is A*) that there are i, po, characters of
A%, with p}(z) = pi(z/z). Now

M(me(p) x me(1') = o) (te(ui’), me(uu')),

SO

M (TE(pip2) X TE(1/pafin)) = L2y (T (11 /1), mE(12/H2))-

Hence the I(39)(m1,m2) with wy, # 1 are lifts from C(A) via A;. The
lemma follows. 0

We shall use — as usual — the form of the trace formula identity where
the local component is fixed to be a fixed unramified representation at all
places outside a finite set.

By the rigidity theorem for PGL(4) at most one of I’ and I€272) would
have a (single nonzero) contribution.

Let 71 X w2 be a discrete spectrum representation of the group Cy(A) =
PGL(2,A) x PGL(2,A). It makes a contribution in Tgy(fc,, Co) as well
asin [ 2272).
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10.2 Suppose first that my = m1. Then the contribution to %Iéz 2) is

1
1 tr Ig(me, ma; f X 0).
This is equal to the contribution

L r(B(1,1) x ) ()

to the trace formula of C' (see Proposition IV 3.1). Thus these two cancel
each other (of course for matching f, fc, and fm, fe, below).

The corresponding contribution (determined by fixing all unramified
components) to the trace formula of H is

1
1 [Tt R0 (12 m20)(fr0)-
The corresponding contribution to the trace formula of Cy is

% [ tr(m20 % w20) (fo.0)-

At all places v where my, is properly induced (and irreducible), R, is
the scalar 1, and tr(1 X ma,)(frw) = tr(moy X m2y)(foy,w), S T2y IS a
representation of PGL(2, F),) (see Proposition V 1.2).

If 9, is square integrable (or one dimensional), our local results (Propo-
sitions V 5 and 2.3(b) for square integrable ms,, Propositions V 8.6 and
2.1(d) for one dimensional 75, ) assert that the two constituents of the com-
position series of 1 x 72, can be labeled 7};, and 75, (= L(v,1 x ov=1/2)
and L(v'/?sp,,ov~1/?) when my, is one dimensional o1;), such that for
matching functions

tr(may X T20) (foow) I8 traf, (Fro) — tr 7, (Frw)-

Moreover, R, acts on WIJ;U as 1 and on 7y, as —1 (this follows for example

from the global comparison). Hence these contributions to the formula of
H and of Cj cancel each other.

10.3 We can then assume that w1 # mo. Suppose that 7y, mo are discrete
spectrum representations of PGL(2,A). Note that the pairs (m,m2) and
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(72, m) make the same contribution to the formulae of Cy and of G (in
T
When m; and 7y are cuspidal the corresponding part of the trace for-

), hence the coeflicient i is replaced by %

mulae identity asserts

Zm(ﬂ-H)Htrﬂ—Hv(va>
(1) = %1:[1’,1"(71'11, X WQU)(fCO,U) + %l}trlG(ﬂ'h}aﬂ'Qv;fv X 9)

The products are over the finite set V' of places where both 71, and 75, are
square integrable. The sum ranges over all equivalence classes of irreducible
discrete spectrum representations 7wy of H(A) (7g occurs with multiplicity
m(mg) > 1 in the discrete spectrum) whose component at each v outside
V is Ao(m1, X Tay). Recall that

No(X(prr, iy ') X o) = pumo xipyt and A(pama Xy ) = Ia(pa, ma, 7).

Now at the places v in V' the representations 71,, 7, are square inte-
grable and the character relations permit us to rewrite the right side of
the formula as

= & Tt (i) — g (i) + 5 TT v, () + e, ()
veV veV

where WIZSU = ﬂflv(mv X Tr9, ) are the tempered representations of H, deter-

mined by 7, and 7y,. It follows that the discrete spectrum representations
g of H(A) with components Ag(m1, X 72,) at all v ¢ V have components

WEU(TI'lv X Tay) O Ty, (T1y X T2y)

at all places v € V, and the multiplicity m(mwp) of such 7y = ®m g, in the
discrete spectrum of H(A) is

1
m(m) = 5(1+ (~1)"0),
where n(mg) is the number of components of g of the form 7,,,. The 7y

with m(mg) = 1 are all cuspidal as there are no residual representations
with components Ag(71, X 7a,) for almost all v.
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In fact since we work with test functions f = ® f,, with 3 elliptic compo-
nents we can deduce only a weaker statement, which applies only when the
set V' has at least 3 members. Namely we cannot exclude the possibility
that there exist discrete spectrum wy with properly induced components
at all v € V' (and components A\o(m1, X 7a2,) at all v ¢ V). So our global
results be complete only after removal of the 3-places constraint on the
test functions of f, fg.

10.4 Next we deal with the case where my is cuspidal but 7w is one dimen-
sional, €1, € is a character of AX/FXA*2. The trace formula identity
reduces to

Zm(WH) Htr?THv(va)

- %Htr(&)lg X 20 ) (fogw) + %5(512 X 13) Htrfa(fvl%mv? fo % 0),

where the product ranges over the set V' of places where ms, is square
integrable, and the sum ranges over the discrete spectrum 7wy whose com-
ponent 7y, at v ¢ V is

750 = Aol (1o, u1}) X Eula) = pro€ola 3 ppt if oy = I(pw, u1))-

Note that the involution # defined by 6(g) = J~tg=1J on G(A) and its
automorphic forms, induces an involution 7(6) on each automorphic rep-
resentation. However, abstractly there are two choices of an intertwining
operator 7~ %7 whose square (7 = 7) is 1, and they differ by a sign.

We observe that on a generic representation m, the global involution
equals the product of the local involutions m,(#) which act on the Whit-
taker functions of 7, by 6. This coincides with the choice of the intertwin-
ing operator m, = ?7,, when 7, is unramified, which maps the K,-fixed
vector to itself. Our representation m = I(£12,m2) is not generic, nor it is
everywhere unramified (unless so is ma).

Hence the global involution 7(6) is the product of the local involutions
m(0), and a sign, which we denote by £(£12 x m3). The presence of this
sign was first noticed in a different context by G. Harder ([Hal, p. 173).

Our local character relations express tr(€,1a X ma,)(fc,.v) as the sum
of traces at fy of the nontempered constituent

7%, = L€t 2oy, Eovy H?)
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of the indicated induced H,-module, and of a cuspidal (if 7o, is), square
integrable (if ma, = &) spa,,, &, # &) or tempered (if ma, = &, spy,,) repre-
sentation 7, . The trace

tr IG(fv]-Qaﬂ'Qv; fv X 0)

is the difference of these two traces. Thus

- % [t 750 (Fro) + trm, (frr0)]

v

1 _
+5e(Ely x 7m2) [Tite 755, (Ferw) = trmg, (frro))-
v
We conclude that if there is a discrete spectrum 7y with components
Ao(€p1a X e, ) at all places where g, is fully induced, then its component
at each v in the remaining finite set V lies in the quasi-packet {77,757, }-
Its multiplicity is

mira) = 2 {1+ (€1 x m)(~1)"),

where n(7g) is the number of components 7y, in 7g.

10.5 LEMMA. For any cuspidal w9 and quadratic character & we have
£(£1y x o) = g(éma, ).

PRrOOF. Here e(ms, s) is the epsilon factor in the functional equation
of the L-function of my. Note that e(§1p x mo) is 1 iff 7}5, = ®,7jy, is
discrete spectrum. It is known from the theory of Eisenstein series ([A2],
p. 32; [Kim], Theorem 7.1) that this representation is residual, namely
discrete spectrum and generated by residues of Eisenstein series, precisely
when the L-function L(&7, s) of {7a is nonzero at s = 1.

The case of € # 1 reduces to that of £ =1 as
§1/1/27r2 X €V71/2 = §(V1/2§7r2 X 1/*1/2).
To repeat: in this case where L({ma,3) # 0, e(€1y x m) is 1, as is

e(&ma, %) To determine, when L(&ms, %) = 0, whether the quotient 7};
of €121y x €v~1/2 is cuspidal or not, we appeal to the theory of the
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theta correspondence. As noted above, it suffices to assume £ = 1. Then
g(&éma, 3) = 1 implies that 7} is cuspidal by [W2], Proposition 24, p. 305.
The converse follows from [PS1], Theorem 2.2 (1 = 4).

To explain this, recall that the theta § = 6, and the Waldspurger’s
Wald = Wald,; correspondences depend on a nontrivial additive character
Y : Amod F — C!, which we now fix. These correspondences fit in the
chart:

PGSp(2,A) =SO(5,A) < SL(2,4A) 2 PGL(2,A) =S0(3,A)
R 1L
SL(2,A) & D}

Here éi(Q, A) is the metaplectic two fold covering group of SL(2,A), and
JL denotes the Jacquet-Langlands correspondence from the multiplicative
group D, of the quaternion algebra Dy. Given m = ®,71, on PGL(2, A),
Wald_l(mu) is Ty gen if 71, is principal series, {7, gen, Tong} if 71y is
discrete series. Here 7y gen is the 6-image of 71, while 7, ¢ is the f-image
of 7P = JL=1(my,) at the places v where D ramifies. The product ®u Ty, gen
defines a representation of SL(2, A) when £(my, 1) = 1, and the 6-lifting
SL(2,A) — PGSp(2, A) maps @,y gen t0

T = Quljy, = L(V1/2ﬂ'1, 1/71/2).

This }; is cuspidal when L(my, 3) = 0 and £(m1, 3) = 1 by [W2], Proposi-
tion 24, p. 305.

Now suppose that 7}; is cuspidal. Then L(mi,3) = 0. We claim that
g(m1, 1) = 1. By definition, 75 is in Qp of [PS1], p. 315. Hence there
is a cuspidal irreducible representation o of SL(2,A) which 6-lifts to 7;
by [PS1], Theorem 2.2 (1 = 4). Moreover Wald(c) = m; by the rigidity
theorem for GL(2, A). If e(my, %) = —1, the representation ¢ in Wald ™ (1)
which 6-lifts to PGSp(2, A) must have a component 7, »g: it cannot have
the component 7, gen at all places. But the local 6-lift takes 7, ¢ to
a tempered representation of PGSp(2, F,,), contradicting the assumption
that 77, with which we started, has no tempered components.

As already noted, the case of £ # 1 follows from this and the equal-
ity of &v'/2my x &v™1/2 and &(€v'/?my x v™1/2). Thus 7 is cuspidal iff
e(éma, 3) = 1 and L(&my, 3) = 0. It is non discrete series iff £(£ma, 2) = —1.
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In summary: €(£1s X mg) = &(&ma, %) Further details on Waldspurger’s
correspondence can be found in Schmidt [Sch]. O

10.6 Similarly, for characters & # 1, o of AX /F*A*2 we have the following
part of the traces identity

Zm(ﬂ'H) HtYWHv(va) = %Htf(dufvlz x 0y12)(fcy,0)

1
+§E(U§12 X 012) HtrIG(vav:lQaavl% fv X 9)

The product ranges over a set V such that o,, &, are unramified for v ¢ V.
The sum ranges over the discrete spectrum 7g of H(A) whose component
at v ¢ Vis wjy, = L(&y, & % JUV;1/2)

07 (£ spgy, 0oy /?) i €, #1

. We also let mp;, be the cuspidal

and
L(ui/2 Sp%,gvy;lﬂ) if & =1.

We conclude that for each v the component of my is mj;, or m,. The
multiplicity is again determined by the formula

m(a) = (14 (081 x 01)(~1)"7),

where n(7g) is the number of components 7, of 7. The sign ¢ here is
in fact 1 since

77;1 = ®U7TEU = QuL(Eply, &y X crvz/;1/2)7

which we denote also by L(¢v,& x ov=1/2), thus n(my) = 0, is discrete
spectrum, in fact a residual representation, by [Kim]|, 7.3(2).

The representations whose components are almost all 757, and which
have a cuspidal component 7, are cuspidal (if they are automorphic).
They make counterexamples to the generalized Ramanujan conjecture, as
almost all of their components are the nontempered 75, .

With the complete local results on the liftings A\g and A, as well as the
full description of the global lifting Ag from Cy(A) to H(A) and the global
lifting A from the image of Ao to the self-contragredient G(A)-modules of
type 1(2,2) (induced from the maximal parabolic of type (2,2)), we can
complete the description of the lifting .
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10.7 DEFINITION. The stable discrete spectrum of L?(H(F)\H(A))
consists of all discrete spectrum representations wgy of H(A) which are
not in the image of the \g-lifting (thus there is no Cy(A)-module m X o
such that 7, is equivalent to Ag(m1, X 72, ) for almost all v).

We proceed to describe the stable spectrum of H(A).

10.8 DEFINITION. Let F' be a global field. To define a (quasi-) packet
{n} of automorphic representations of H(A) we fix a (quasi-) packet {m,}
of local representations for every place v of F', such that {m,} contains an
unramified representation 70 for almost all v. The global (quasi-) packet
{7} which is determined by the local {m,} consists by definition of all
products ®@m, with 7, in {m,} for all v and m, = 7¥ for almost all v.
Put in other words, the (quasi-) packet of an irreducible representation
m = ®m, of H(A) consists of all products ®7/, where 7} is in the (quasi-)
packet of m, and 7, = 7, for almost all v.

If a (quasi-) packet contains an automorphic member, its other members
are not necessarily automorphic, as we saw in the case of Ag(m1 x w2). Thus
the multiplicity m(m) of 7 in the discrete spectrum of H(A) may fail to be
constant over a (quasi-) packet.

10.9 THEOREM. FEvery member of a (quasi-) packet of a stable discrete
spectrum representation of H(A) is discrete spectrum (automorphic) rep-
resentation, which occurs with multiplicity one in the discrete spectrum.
Thus packets and quasi-packets partition the stable spectrum, and multi-
plicity one theorem holds for the discrete spectrum of H(A) (at least for
those representations with at least three elliptic components).

Every stable packet which does not consist of a one dimensional repre-
sentation A-lifts to a (unique) cuspidal self-contragredient representation
of G(A).

The quasi-packets in the stable spectrum of H(A) are all of the form
{L(v&,v=1%79)}, T cuspidal with central character € # 1 = £2.

Every packet or quasi-packet in the discrete spectrum of H(A) with a
local component which is one-dimensional or of the form L(v,&,, I/JI/QWQU),
7oy cuspidal with central character &, # 1 = &2, is globally so, and thus
lies in the stable spectrum.

In view of our global results we can write the remains of the trace
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formula identity as the equality of the sums

I’:Z/trw(fxﬁ) and I}IZZ,m(ﬂ'H)tI“WH(fH).

T TH

The sum on the left, I’, ranges over all self-contragredient discrete spec-
trum representations of G(A) which are not A;-lifts from C(A). The sum
on the right ranges over all discrete spectrum representations 7y of H(A)
which are not in packets or quasi-packets Ap-lifted from Cp(A). Our test
functions f = ®f, and fy = ®fg, have matching orbital integrals and
at least at three places their components are elliptic (the orbital integrals
vanish outside the elliptic set).
We first deal with the following residual case.

10.10 PROPOSITION. For every cuspidal representation o of GL(2, A)
with central character € # 1 = &2 (hence émy = o) there exists a quasi-
packet {L(vE,v="%my)} of representations of H(A) which \-lifts to the
residual (discrete spectrum but not cuspidal) self-contragredient represen-
tation

J(V1/27T2, 1/71/2#2) = ®UJ(Z/$/27T2U, 1/;1/27@,)

of G(A).

Each irreducible in such a quasi-packet occurs in the discrete spectrum
of H(A) with multiplicity one, and precisely one irreducible is residual,
namely Q,L(vy&y, u;1/27r2y).

Proor. If &, # 1 and mo, is cuspidal, J(I/I%/Q’]TQU, 1/1,_1/27@@) is the A\-lift
of

L(vavy 1/171/271'21)).

If & # 1 and 7o, is not cuspidal, 7o, has the form I(ji,, po€,), u2 = 1.
If oy = (o, po€s), p2 = 1, €2 = 1, then J(ve/*ma0, v /*10,) is the
quotient of the induced

_1/

IG(V3/2M1/;VU 2/111;”3/2”1/51),”_1/2”1)5@)7

namely I (1,12, €y 12). This is the A-lift of the packet consisting of

Ly = L&y, &0 % pory 2) and Xy = X (U226, 8Py, ooy /2.

v
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If £, = 1 then w9, is induced with central character &, = 1, thus my, =
I(jty, iy t). We may assume that pu2 # 1 as the case of u2 = 1 is dealt
with in the previous paragraph, and that 1 > |u,| =2 > |v,| 7!, since g, is
a component of a cuspidal m3. Then J (V}, 271'%, Vy ! 27T2U) is the quotient
I (pola, pytls) of Ig(z/i/zﬂgv,yv_lmw%). It is the A-lift of p; 2 x p, 1o,
which is irreducible since u;2 # 1, vfl, vF? (Proposition V.2.1(b)). This
w2 X g, 1o is the quotient of

1y % 5 o Ta (v, v V%) = i Xy vyt

1/2

= vy X 52 % vy Y2 = vy X v Y2 Iy (g, ).

So we write L(Vvﬁv,yv_l/QWQU) for ;2 x p,1ls (when &, = 1 and mo, =
I(py, 1y t)); it A-lifts to J(V5/27T2v, V;1/27T2v).
In summary, the quasi-packet of L(v,&,, vy 1 27T2U) which A-lifts to

1/2 —1/2
J(V'u/ T20, Uy, / 7T2v)>

To, being a component of w9 as in the proposition, consists of one irre-
ducible, unless 7, = I(py, &y), p2 = €2 = 1, when it consists of L, and
X, (this includes all v where &, # 1 and 72, is not cuspidal).

Now to prove the proposition we apply the trace identity where the only
entry on the side of G, having fixed almost all components, is the resid-
ual representation J (1/1/ 2rg, v 215). Generalized linear independence of
characters on H(F,) establishes the claim. Note that L(v€¢,v—'/?m,) =
®y Ly is residual ([Kim], Theorem 7.2), but any other irreducible in the

packet is cuspidal. O

PROOF OF THEOREM. Since:

1. The one dimensional representations of H(A) M-lift to the one dimen-
sional representations of G(A); and

2. The discrete spectrum quasi-packet {L(v€, v=2m5)} of H(A) Mlifts to
the residual representation J (1/1/ 20, v~V 21y) (for every cuspidal repre-
sentation 7y of GL(2, A) with central character £ # 1 = ¢2, and £mg = m2);
and

3. The only other noncuspidal discrete spectrum self contragredient rep-
resentations of G(A) are the residual J(v'/?my, v=1/%715) where 5 is a
cuspidal representation of PGL(2, A), in which case this J is the A;-lift of
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15 x my from C(A);
we may assume that I’ ranges only over cuspidal self contragredient rep-
resentations of PGL(4, A).

We pass to the form of the identity where almost all components are
fixed. If there is a global discrete spectrum 7y with the prescribed local
components then the sum I}; is nonzero, since the m(m) are nonnegative,
by generalized linear independence of characters. Hence I’ # 0 and it con-
sists of a single cuspidal 7 by rigidity theorem for cuspidal representations
of G(A). Each component 7, of the self contragredient generic 7 is a A-lift
of a packet {mp,} of representations of H(F,) (by our local results), hence
our identity reads

H tr{ﬂHU}(va X 9) = Zm(ﬂ'H) H trWHU(va).

veV veV

Here V is a finite set, its complement consists of finite places where un-

0
v

ramified 7%, and 70 with A(7%,) = 70 are fixed, and the sum ranges over
the 7y whose component at v € V' is 7.

Generalized linear independence of characters then implies that the right
side of our identity has the same form as the left, hence the multiplicity
m(mg) is 1 and the 7y which occur are precisely the members of the packet

@u{mHo}, where {r%, } = 7Y for all v outside V. O

Note that since we work with test functions which have at least three
elliptic components, the only 7y and 7w which we see in our identity have
three such components. The unconditional statement would follow once
the unconditional identity of the trace formulae is established. As ex-
plained in 1G of the Introduction, “three” elliptic components can be re-
duced to “two”, and even to “one real place”, with available technology.

10.11 PROPOSITION. (1) Every unstable packet \o(m1 X 72) of the group
PGSp(2,A), where w1, ma are cuspidal representations of PGL(2,A), con-
tains precisely one generic representation. It is the only representation in
the packet which is generic at all places. Every packet contains at most
one generic representation.

(2) In a tempered packet {7}, 75} of PGSp(2, F), F local, 3, is generic
and Ty is not.
(3) In a stable packet of PGSp(2, A) which lifts to a cuspidal representation
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of PGL(4, A) there is precisely one representation which is generic at each
place.

PROOF. (1) If 7}; and 7% are generic, cuspidal, and lift to the same
generic induced representation I(m,ms) of PGL(4,A), namely they are
in the same packet, then they are equivalent by [GRS]. The second claim
follows from this and Lemma 7.3. The third claim follows from the rigidity
theorem for generic representations of GSp(2), see [So], Theorem 1.5.

(2) Let F be a global field such that at an odd number of places, say
v1,...,Us, its completion is our local field. Construct cuspidal represen-
tations 7, m of PGL(2,A) such that the set of places v where both
m1, and 7y, are square integrable is precisely vq,...,vs, and such that
Ao(714, X T2y,) is our local packet, now denoted {7}, , 75}, v = v;. In
Ao(m1 x m2) there is a unique cuspidal generic representation 7%, by [GRS].
By our multiplicity formula the cuspidal members of Ag(m1 X 72) are those
which have an even number of components 75,. Hence 7% has a com-

+ + : + - :
ponent my,, so 7, must be generic. If both {7}, ,7,} were generic,

Lemma 7.3 would imply that the packet of the cuspidal generic 7% con-
tains more than one generic cuspidal representation (in fact, 2° of them),
contradicting [GRS].

(3) Every irreducible in such a packet is in the discrete spectrum. The
packet is the product of local packets. When the local packet consists
of a single representation, it is generic. If the local packet has the form
{ﬂ;v,ﬂ'ﬁv}, then WI-SU is generic but 7, is not. Hence the packet has

precisely one irreducible which is everywhere locally generic. g

REMARK. Is the representation 7y constructed in (3) above generic?
By [GRS], it is, provided L(S, 7w, A?, s) has a pole at s = 1, where \(7g) =
m. We do not know to rule out at present the possibility that there is a
packet {my} containing no generic member and A-lifting to a cuspidal m,
necessarily with L(S, m, A2, s) finite at s = 1. Note that the six-dimensional
representation A2 of the dual group Sp(2,C) of PGSp(2) is the direct sum
of the irreducible five-dimensional representation ids : Sp(2,C) — SO(5,C)
(cf. Lemma 7.0) and the trivial representation (see [FH], Section 16.2, p.
245, for a formulation in terms of the Lie algebra of Sp(2,C)). Hence
L(S, 7y, A, s) = L(S,7,A?, s) has a pole at s = 1 provided L(S, 7g,ids, s)
is not zero at s = 1. This is guaranteed by [Sh1], Theorem 5.1 (as noted
after Lemma 7.0) when 7y is generic. Thus the locally generic mg of (3) is
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generic iff L(S, 7, A% s) has a pole at s = 1, iff L(S, 7g, ids, ) is not zero
at s = 1. An alternative approach is to consider

L(S,m @7, s) = L(S,m, A%, s)L(S, 7, Sym?, s),

which has a simple pole at s = 1 since 7 ~ 7. If L(S, 7, A%, 5) does not have
apoleat s =1, L(S,m, Sym?, s) has. One expects an analogue of [GRS] to
show that 7 is then a A;-lift from SO(4,A). We shall then conclude that
7 is not a A-lift from PGSp(2, A).

11. Representations of PGSp(2,Rr)

The parametrization of the irreducible representations of the real symplec-
tic group PGSp(2,R) is analogous to the p-adic case, but there are some
differences. We review the listing next, starting with the case of GL(2, R).
In particular we determine the cohomological representations, those which
have Lie algebra (g,K)-cohomology, with view for further applications.

11a. Representations of SL(2,R)

Packets of representations of a real group G are parametrized by maps of
the Weil group Wy to the L-group “G. Recall that

Wi = (2,072 € C*, 0% € RX — Ng/rC*, 02 = Zo)

is
1— We — Wg — Gal(C/R) — 1

an extension of Gal(C/R) by W = C*. It can also be viewed as the
normalizer C* U C*j of C* in H*, where H = R(1, 4, j, k) is the Hamil-
ton quaternions. The norm on H defines a norm on Wy by restriction
([D3], [Tt]). The discrete series (packets of) representations of G are
parametrized by the homomorphisms ¢ : Wg — G x Wx whose projection
to Wg is the identity and to the connected component G is bounded, and
such that C4Z(G)/Z(Q) is finite. Here Oy is the centralizer Zs(0(Wr))
in G of the image of ¢.
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When G = GL(2,R) we have G = GL(2,R), and these maps are ¢y
(k > 1), defined by

We=C"5zr ((Z/Iozl)k <|z|3z)’“) X% 07 (Oé) xa

k
Since 02 = —1 <(_01) (_2)k) x 02, 1 must be (—1)*. Then det ¢y (c) =
(—1)**1, and so k must be an odd integer (= 1,3,5,...) to get a discrete
series (packet of) representation of PGL(2,R). In fact 7 is the lowest
discrete series representation, and ¢y parametrizes the so called limit of
discrete series representations; it is tempered.

Even &k > 2 and o — ((1)(1)

of GL(2,R) with the quadratic nontrivial central character sgn. Packets
for GL(2,R) and PGL(2,R) consist of a single discrete series irreducible
representation 7. Note that 7, ® sgn ~ 7. Here sgn : GL(2,R) — {1},
sgn(g) =1if detg >0, = —1if det g < 0.

The 7, (k > 0) have the same central and infinitesimal character as the

) X o define discrete series representations

kth dimensional nonunitarizable representation
Symﬁf1 C? = | det g|7(k*1)/2 Sym*~! C?
into SL(k,C)* = {g € GL(2,C);det g € {£1}}. We have
det Sym"~!(g) = det gF*k—1)/2,

and the normalizing factor is | det Sym”~!|~1/* Then Sym{~* (g 2)

= diag(sgn(a)* “isgn(b)'|a|FTimRTD2|pim = (k=172 < < ),

In fact both m; and Sym'gf1 C? are constituents of the normalizedly in-
duced representation I (l/k/ 2 sgnk—1y—k/ 2) whose infinitesimal character is
(%, —%), where a basis for the lattice of characters of the diagonal torus in

SL(2) is taken to be (1, —1).

11b. Cohomological Representations

An irreducible admissible representation m of H(A) which has nonzero
Lie algebra cohomology H% (g, K;m ® V) for some coefficients (finite di-
mensional representation) V is called here cohomological. Discrete series
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representations are cohomological. The non discrete series representations
which are cohomological are listed in [VZ]. They are nontempered. We
proceed to list them here in our case of PGSp(2,R). We are interested in
the (g, K)-cohomology H% (sp(2,R),U(4); 7 ® V), so we need to compute

H%Y(sp(2,R),SU4); 7@ V)

and observe that U(4)/SU(4) acts trivially on the nonzero H% which are
C. If HY(m ® V) # 0 then ([BW]) the infinitesimal character ([Kn]) of m
is equal to the sum of the highest weight ([FH]) of the self contragredient
(in our case) V, and half the sum of the positive roots, d.

With the usual basis (1,0), (0,1) on X*(T§), the positive roots are
(1,-1), (0,2), (1,1), (2,0). Then § = £ > . is (2,1).

Here T denotes the diagonal subgroup {diag(x,y,1/y,1/x)} of the al-
gebraic group Sp(2). Its lattice X*(7¢) of rational characters consists of

(a.0) : ding(z,y,1/y,1/2) = ™ (a,b € Z).

The irreducible finite dimensional representations V, , of Sp(2) are para-
metrized by the highest weight (a,b) with @ > b > 0 ([FH]). The central
character of V,  is ¢ — ¢t ¢ € {£1}. Tt is trivial iff a + b is even. Since
GSp(2) = Sp(2) x {diag(1,1, 2, 2)}, such V,; extends to a representation
of PGSp(2) by (1,1, 2, z) — 2~ (@+8)/2 This gives a representation of H =
H(R) = PGSp(2,R), extending its restriction to the index 2 connected
subgroup H° = PSp(2,R). Another — nonalgebraic — extension is Va/)b =
Vap @ sgn, where sgn(1,1, 2z, z) = sgn(z), z € R*. V, is self dual.

To list the irreducible admissible representations 7 of PGSp(2,R) with
nonzero Lie algebra cohomology H*’(sp(2,R), SU(4); © @ V, ;) for some
a > b > 0 (the same results hold with V; , replaced by V ), we first list
the discrete series representations.

Packets of discrete series representations of the group H = PGSp(2,R)
are parametrized by maps ¢ of Wy to L H = H x Wy which are admissible
(pry o = id) and whose projection to H is bounded and C¢Z(H')/Z(H')
is finite. Here Cy is Zy(¢(Wr)). They are parametrized ¢ = ¢y, 1, by a
pair (k1,k2) of integers with odd k; > ko > 0.

The homomorphism

Okykn : W — YG =G xWg, G =SL(4,0),
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given by
2 diag((2/12)", (2/121)*2, (121/2)*, (121/2)") x =
and
o (_Ow‘g) xo  (odd ki > ks > 0)
or

UH(S}%’)XU (even k1 > ko > 0),

factorizes via (FCy —) PH = Sp(2,C) x Wy precisely when k; are odd.
When the k; are even it factorizes via “C' = SO(4,C) x Wg. When the

k; are odd it parametrizes a packet {m\Vh  ghol of discrete series rep-
i p b K1 ,ko Tky ko p

hol is holomorphic

resentations of PGSp(2,R). Here 7V is generic and 7

and antiholomorphic. Their restrictions to H° are reducible, consisting of

e and mhat o Int(e), 7! and b o Int(:), ¢ = diag(1,1,—1,—1), and
Wh ® sgn = 7.[.Wh’ 7Thol ® sgn = 7.‘.hol.

To compute the infinitesimal character of 7 , ~we note that

k/2 k=1y,-k/2)

mr C I(V¥=, sgn

(e.g. by [JL], Lemma I5.7 and Theorem 15.11) on GL(2,R). Via XCy —
LH induced I(vF1/2 p=F1/2) x [(v*2/2 1y=k2/2) (in our case the k; are odd)
lifts to the induced

IH(Vkl/Q,sz/Q) — V(k}1+k2)/2 X V(klfktg)/Q X 1/7192/27

whose constituents (e.g. Ty ky ¥ = Wh, hol) have infinitesimal character

ki+ ks ki —k
(P2, B2y = 2,1) + (a.),

Here
:M_2>52M_120
2 2

as ko > 1 and k1 > kg and k1 — ko is even. For these a > b > 0, thus
ki=a+b+3,k =a—b+ 1, we have

HY(sp(2,R),SUMA); MY @ Voy) =C it (4,5) = (2,1), (1,2),
H'(sp(2,R),SU4);mpo, @ Vap) =C  if (4,5) = (3,0), (0,3).

Here k1 > ko > 0 and ky, ko are odd. In particular, the discrete series
representations of PGSp(2,R) are endoscopic.
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11c. Nontempered Representations
Quasi-packets including nontempered representations are parametrized by
homomorphisms 9 : Wg x SL(2,R) — LH and ¢y, : Wg — LH (see [A2])
defined by ,
= w2 0
by (w) = ww, (75000,
The norm ||.|| : Wg — R* is defined by ||z|| = 2Z and ||o|| = 1. Then
py(0) = ¥(o,I) and ¢y (2) = (2, diag(r,r~1)) if 2 = re?, r > 0. For
example,
1/} : W]R X SL(27 C) - SL(2a C)a w|WR : Zgj = é(il)Jv 7/}| SL(27(C) = 1d7
gives
du(2)= (5,0 ) x 2 dulo) =E(-DLxo,
parametrizing the one dimensional representation
£y = J(EVY2 071/ of PGL(2,R) (€:R* — {#1}, wv(z)=|2]).
Here J denotes the Langlands quotient of the indicated induced represen-
tation, I(¢v'/2, ¢v=1/2).
Similarly the one dimensional representation
€= J(E*2 2 et 673
of PGL(4,R) is parametrized by v : Wg x SL(2,C) — SL(4,C),
(¥|We)(207) = £(-1)7,  ¥|SL(2,C) = Symy,
thus

by (2) = diag(r®, r,r~ 1 r73) x 2, (o) =&(—1)I4 X 0.
This parameter factorizes via ¢ : Wg xSL(2,C) — Sp(2, C), which parame-
trizes the one dimensional representation £y of PGSp(2,R), h — £(A(h))

where A(h) denotes the factor of similitude of h, whose infinitesimal char-
acter is (2,1) = 33", . We have

H"Y(sp(2,R),SU4); &g @ Vo0) =C

for (i,5) = (0,0), (1,1), (2,2), (3,3). Of course 1y # sgny, and (1 +
sgny) is the characteristic function of H® in PGSp(2, R). Moreover, the
character of $(1x +sgny) + W;Ylh + wg‘ﬁl vanishes on the regular elliptic set
of PGSp(2,R), as (§g + w31 + 759 )[H is a linear combination of properly

induced (“standard”) representations ([Vo]) in the Grothendieck group.
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11d. The Nontempered: L(vsgn,v~"/?my;)

The nontempered nonendoscopic representation L(v sgn, v 2191,) of the

group PGSp(2,R) (k > 1) is the Langlands quotient of the representation

vsgn X v~ /21, induced from the Heisenberg parabolic subgroup of H.

It Mlifts to J(vY/ 2w, v=/2ma;), the Langlands quotient of the induced
representation

I ?r, v ?19;,)  of PGL(4,R).

Note that the discrete series mop =~ sgn ® mo, =~ 7o, has central character
sgn (# 1). Now

¥ : Wi x SL(2,C) — SL(4,C),  o|Wg : w (¢2k0<W> ¢2k°(w)) X W

with
2/|z 2k
don(2) = (( /12D (|z|/()z>2k> Xz, (o) =wx 0,

and (¢| SL(2,C)) (Z Z) = ('Z Zﬁ), defines

Py(2) =2 (Z’ (‘(z)| \z\o_l)) - (VMS]C(Z) \Zl_lgzk(z)) %

du(0) =vio D) = (40).

It factorizes via H = Sp(2,C) < SL(4,C) and defines L(vsgn, v=/27y;).
Note that when 2k is replaced by 2k + 1, ¢ort1(0) = ew X 0, € =
diag(1,—1), then

0 ew

dy(0) =P(o,1) = (Ew 0 ) —IoeweC,

by (2) = (‘é' ‘Z‘o_l) ® por+1(2) € C,

thus ¢, defines a representation of C(R) (which A;-lifts to the representa-
tion
JW * mop g1, v mops1)

of PGL(4,R)), but not a representation of PGSp(2,R).
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As in [Ty] write my, , for L(sgnv, v=Y2715045). We have that Toro =
sgn ® 7y, o, and my, o|HO consists of two irreducibles. In the Grothendieck
group the induced decomposes as

1/2

- ~1/2 Wh hol
vsgn Xy mor = L(vsgn,v / T2k )+ T2kt 3 2k-+1F T2ht3,2k+15 k> 1.

To compute the infinitesimal character of v sgn x v=Y275, note that it

is a constituent of the induced

—k—1/2

vsgn x v 21k sgnyF) ~ sgni®* x sgnw x v sgn

(using the Weyl group element (12)(34)), whose infinitesimal character is
(2k,1) = (2,1) + (a,0), with a =2k —2 >0 as k > 1. For k > 1 we have

Hij(sp(QvR)’ SU(4>;7T:2lkZ,O ®V2k,0) =Cif (17]) = (2’0)7 (O’ 2)’ (37 1)7 (1’ 3)

11e. The Nontempered: L(£v'/?mop iy, v~ 12)

The nontempered endoscopic representation L(£vY2mopiq, 07 1/2) of the
group PGSp(2, R) is the Langlands quotient of the induced representation
v %91 x Ev71/2 from the Siegel parabolic subgroup of PGSp(2,R).
It is the Ag-lift of mori1 X & and A-lifts to the induced I(mop41,&2) of
PGL(4,R). The central character of o1 is trivial, but that of 7oy, is sgn.
Hence I(mag, &2) defines a representation of GL(4, R) but not of PGL(4, R).
The endoscopic map
¥ W x SL(2,C) — LCy =SL(2,C) x SL(2,C) 2% H,

P(z07,5) = Xo(Gar41(207),€(—1)5),

defines

0u(2) = (= (5 0 ) = diag((2/ 1)1, 2l 12l (21251 x

1
Py(0) = (o, 1) = (( ) e )
_1)2k+1

which lies in H C SL(4, C) since 2k + 1 is odd.
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As in [Ty] we write Wika_l for L(&v'?mopyq,év712), k > 0.
Now &t = 72¢ and 72¢|HY is irreducible. In the Grothendieck group
the induced decomposes as

1/2 —1/2 2, Wh
Ev / Top41 X EV /2 — kal,k—l +7T2k+1,1'

Here 77;7%3_171 is generic, discrete series if k > 1, tempered if k = 0.
Our vY2myp 41 x Ev~1/2 is a constituent of the induced

EATRT(CRAD/2 = GRED/2Y g e =1/2 g R gk o )12,
which is equivalent to &v*t1 x vk x €v=F=1/2 (using the Weyl group

element (23)). Its infinitesimal character is (k+1,k) = (2,1)+(k—1,k—1).
We have

HY(sp(2,R), SUM); 7% @ Viciem1) =C  if (i,5) = (1,1), (2,2).
In summary, HY (7 ® V) is 0 except in the following four cases, where

it is C.
(1) One dimensional case: (a,b) = (0,0) and wis w3, w5, &n,

77(1)’0 = L(vsgn, v %m,), ﬂ'g:g = L(ev g, €071/,
(2) Nontempered unstable case: (a,b) = (k,k) (k> 1) and 7 is
Wg\k/;}ig,p 7T§1131+3,1a Wzi = L(§V1/27F2k+37fV_1/2)~
(3) Nontempered stable case: (a,b) = (2k,0) (k> 1) and 7 is
Tohpsokils  Toessonets  Tako = L(vsgn, v mapg).

(4) Tempered case: any other (a,b) with @ > b > 1, a + b even, and 7 is

ﬂ,\c’\lfflkz, w}c‘f}kz. Here k1 =a+b+3>ky=a—b+1 >0 are odd.
Applications of the classification above in the theory of Shimura varieties

and their cohomology with arbitrary coefficients are discussed in [F7].



VI. FUNDAMENTAL LEMMA

The following is a computation of the orbital integrals for GL(2), SL(2),
and our GSp(2), for the characteristic function 1x of K in G, leading to a
proof of the fundamental lemma for (PGSp(2), PGL(2)xPGL(2)), due to
J.G.M. Mars (letter to me, 1997).

1. Case of SL(2)

1. Let E/F be a (separable) quadratic extension of nonarchimedean local
fields. Denote by O and O their rings of integers. Let 1 = mp be a
generator of the maximal ideal in O. Then ef = 2 where e is the degree of
ramification of E over F'. Let V = E, considered as a 2-dimensional vector
space over F. Multiplication in F gives an embedding F C Endg (V) and
E* C GL(V). The ring of integers Op is a lattice (free O-module of
maximal rank, namely which spans V over F') in V and K = Stab(Op) is
a maximal compact subgroup of GL(V).

Let A be a lattice in V. Then R = R(A) = {z € E|zA C A} is an order.
The orders in E are R(m) = O + 7™ Og, m > 0 of F. This is well-known
and easy to check. The quotient R(m)/R(m+1) is a 1-dimensional vector
space over O/x. If R(A) = R(m), then A = zR(m) for some z € E*.

Choose a basis 1, w of E such that O = O + Ow. Define d,, €
GL(V) by dn(1) = 1, dp(w) = #™w. Then R(m) = d,,Og. It follows
immediately that GL(V) = mLiOE *dn K, or, in coordinates with respect

to 1, w:

. 10
GL2,F)= U T (O W) GL(2,0),

m>

with T' = { (Zail,;b); a, b € F, not both = 0}, where w? = a + fw, a,
B e .

182
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2. Put G = GL(V), K = Stab(Og). Choose the Haar measure dg on

G such that [dg =1, and dt on E* such that | dt = 1. Choose v € E*,
K Of

v ¢ F*. Let 1k be the characteristic function of K in G. Then

_ dg vol(K) .
1x(g " vg)— = 1k (g~ 'vg).
/EX\G dt EX\ZGU( vol(EX NgKg™1)

Now E*\G/K is the set of E*-orbits on the set of all lattices in E. Rep-
resentatives are the lattices R(m), m > 0. So our sum is

o MO s (o rm)).

X
m>0,yER(m)X VOl(R(m) ) m>0,yER(m)*

Note that (Of : R(m)*)=1ifm=0, = q”l"'l_lt‘](1f7—711 if m > 0.
Put M = max{m|y € R(m)*}. Then the integral equals
M+1 _
watl 2 e g VA T,
g—1 q¢—1 q—1

(If v ¢ OF, then [ =0). If y = a+bw € OF, then M = vp(b), the
order-valuation at b.
3. Let G = SL(V), K = Stab(Og)NG, E! = EXNG. Choose the Haar

measure dg on G such that [dg = 1, and dt on E' such that [ dt = 1.
K El
Let v € E', v # £1. Then

/ 1;49”79)% =/1K(g‘1vg)d9 = 1xk(g 'v9)

EN\G G G/K

is the number of lattices in the G-orbit of Of fixed by 7.

Let A be alatticein E. If R(A) = O, then A € G-Op < A = Op. And
~Op = Og if v fixes A. If R(A) = R(m) with m > 0, then A = zR(m) €
G-Op < Ng/p(2)r™ € O & fop(z) = —mand YA = A & v € R(m)*.

Suppose e = 1. Then m must be even and

A =7 ZuR(m), u € Ofmod R(m)*.

If v € R(m)*, this gives (O : R(m)*) = ¢™ ' (q+ 1) lattices.
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Suppose e = 2. Then A = nz;™uR(m), u € Of mod R(m)*. If v €
R(m)* this gives (O : R(m)*) = ¢™ lattices.
Put N = max{m|y € R(m)*, m = 0(f)}. Then the integral equals

qN+1 -1

q—1

qN’+171

For K = Stab(R(1)) NG one find - —

m = 1(f).

4. Notations as in 3. Choose ™ = N, p(mg) if e = 2. The description of

with N’ defined as N, but with

the lattices in G- O above gives the following decomposition for SL(2, F).

X

Choose a set A, of representatives for Ng,pOp /Ng/pR(m)” and for

each ¢ € A, choose b. such that Ng/p(b.) = . For m = 0 we may take
Ag={1}, b1 = 1.

SLF)= Uy BB (30) (7% 4 K ife=1
™

m>0,even eCA,, Oe

SLEF)= U U B (00) (o0 ) K ife=2
REMARK. If e =1, m > 0, then
NppOg/NgpR(m)* = 0% JO**(1 +7™0)
(two elements, when |2] = 1). If |2| = 1 and e = 2, then

NE/FR(TTL)X = NE/FOE

for all m.
2. Case of GSp(2)
2a. Preliminaries

1. Let V be a symplectic vector space defined over a field F' of characteris-
tic # 2. We have G = Sp(V) € GL(V) € End(V) = A. Let v be a regular
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semisimple element of G(F), T the centralizer of v in G, C the conjugacy
class of v in G.

If L denotes the centralizer of v in A, we have L(F) = [] L;, a direct
product of separable field extensions of F'. The space V(F') is isomorphic to
L(F) as L(F)-module and V(F) = @V;(F'), where V;(F) is a 1-dimensional
vector space over L;.

We denote the symplectic form on V' by (x,y) and define the involution
L of A(F) by

(uz,y) = (z,'uy)  (z,y € V(F), wue A(F)).
From ‘v = v~! it follows that ¢ stabilizes L(F). The restriction o of ¢ to
L(F) is a F-automorphism of L(F') of order 2. It may interchange two
components L; and L; (i # j) and it can leave a component L; fixed. If T'

is F-anisotropic we have o(L;) = L; for all i. Note that T'(F) is the set of
u € L(F)* such that uo(u) = 1. If o(L;) = L;, then V; LV} for all j # i.

{G(F)-orbits in C(F)} + G(F)\{h € A(F)*|hyh~t € C}/L(F)*
h— ‘hh | bij
{u €L(F)"|o(u) = u}/{uo(u)lu € L(F)"}

2. If we take G = GSp(V) instead of Sp(V'), we have ‘“yy € F* and
T(F) is the set of u € L(F)* such that uo(u) € F*. Now

{G(F)-orbits in C(F)} « G(F)\{h e A(F)*|hyh~t e C}/L(F)*
h— ‘hh | bij

{ueL(F)*|o(u) = u}/F*{uo(u)|lu € L(F)"}

In this case consider T such that T/Z is F-anisotropic (Z = center of
G and of A*).
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Notation: L' ={u € L(F)|o(u) =u}, Nu=wuo(u)ifue L(F)*.

3. Assume F is a nonarchimedean local field. If A is a lattice in V' (F),
the dual lattice is

AN ={z e V(F){z,y) € O for all y € A} ~ Homp (A, O).

Properties:
(uh)* = ‘u=tA* (u € GL(V(F))),

in particular (cA)* = ¢7'A* if c € F* and (g\)* = gA* if g € Sp(V(F)).
Further, A** = A.

The lattices which are equal (resp. proportional by a factor in F*) to
their dual form one orbit of Sp(V(F')) (resp. GSp(V (F))).

We want to compute the following numbers.
Orbital integral for Sp(V (F)): Card{A|A* = A,yA = A}
Stable orbital integral for Sp(V (F)):

Card{A|A* = vA,vA = A}.
VEL'X /Ny gy, 1 L(F)*

Orbital integral for GSp(V (F)):

Card{A|A* ~ A,yA = A}/F* = Z Card{A|A* = aA,vA = A}.

QEFX |FX20%

Stable orbital integral for GSp(V (F)):

> > Card{AJA* = avA,yA = A}

VvEL'X /JFXNL(F)*x a€FX/FX20x

2

_ AJA* = A, vA = A}

(F*: F* N NL(F)¥) 2, Card{A|A"=vAy }
veL'* /NL(F)*

So the stable orbital integrals for Sp(V(F')) and GSp(V (F)) differ by a
factor, which is a power of 2, when v € Sp(V (F)).

4. Let L/F be a quadratic extension of nonarchimedean local fields.
The orders of L are Or(n) = Op + %0 (n > 0). We can find w € L
such that Op(n) = Op + Opn’hw for all n > 0. Any lattice in L is of the
form zOp(n), z € L*, n > 0.

Let a symplectic form on the F-vector space L be given.
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If (1,w) € OF, the lattice dual to 20y (n) is 27w " OL(n).

(OF:0L(m)) =1 (n=0), " Hg+1) (n>0),
if L/F is unramified,
=q¢" (n>0), if L/F is ramified.

Here ¢ = number of elements of the residual field of F'.

5. Let V =V ® V5 be a direct sum of two vector spaces over a nonar-
chimedean local field F'. Let A be a lattice in V. Put M; = ANV, and
N; = pr;(A). Then M; and N; are lattices in V;, and M; C N;.

The set

{(r1 + My, v2 + Mo)|vy +v2 € A}

is the graph of an isomorphism between N;/M; and No/M,.

The lattices in V' correspond bijectively to the data: M; C Ny, lattices
in Vi; My C N, lattices in Va; Nyi/M; — Ny/Ms, an isomorphism of
(finite) O-modules.

Assume a symplectic form is given on V and V = V; @ V5 is an orthogonal
direct sum. If the lattice A corresponds to the data

M1CN1, MQCNQ, ()01A7\7'1/1\4'1:>]\72/]\427
then the data of the dual lattice A* are:
Nfc My, NycM;,  —(¢) " :M;/N— M;/N;.

One may identify M} /N; with Home (N;/M;, F/O) using (v,v'), v €
N;, v/ € M}. Then ¢* is defined using this identification.

6. In the notation of section 1 assume that L(F’) is a field. For brevity
write L for this field. Let L’ be the field of fixed points of o, so [L:L'] = 2.
We identify V(F') with L(F) = L and have then (z,y) = tr/p (ac(x)y),
with some a € L* such that o(a) = —a. Put (z,y)" = trp,p (ac(x)y).
This is a symplectic form on L over L. We have (z,y) = trp,,p((z,y)")
and (zz,y) = (v, 2y) if z € L.

Assume now that F' is local, nonarchimedean. If M is an Op/-lattice in
L, then

M*={zx e Ll{zx,y) €O forall ye M}
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is also an Op,-lattice. The dual
M ={z e L|(z,y) €Oy forall ye M}

of M as an Op,-lattice is related to M™* by the formula M = DrypM~,
where Dy, is the different of L'/F.

We have gM = det(g)’lgj\z if g € GLz/(L), in particular uM =
a(u)_llTj ifue L*.

In the remainder of this section we assume dim V' = 4.

The nonidentical automorphism of L'/F is denoted by 7 or by z — Z.

Let A be an O-lattice in L. Put M = Op A, N = (Q/L\rX* Then
M* ={z € L|Opx C A*} is the largest Op/-lattice contained in A* and
N =Dy, p- largest Op/-lattice contained in A. We have M D A D N.

If a; € Opr,x; € A, then

Zaixi eN = ZT((LZ')ZL'Z' € N.

Indeed, u € N & (u,y) € Op for all y € A*. If > a;x; € N, then
> ai{ziy) € O for all y € A*. Since

(zi,y) + (i, y)) = (zi,y) € O,

it follows that Y 7(a;)(x:,y) € Op.
So we can define a homomorphism

p:M/N — M/N by Z%%-FNHZT(G@)%—FN,

whenever a; € Op/,x; € A.

The homomorphism ¢ is Op/-semilinear and ¢? = id.

The set A/N is the set of fixed points of ¢. Indeed, if > 7(a;)z; —
> ajx; € N, then

S ra)r((@ny)) + 3 aieiy) € O,

hence (> a;x;,y) € O for all y € A*, ie. > a;x; € A.
Conversely, let M D N be two Op/-lattices in L and ¢ : M/N — M/N
an Op/-semilinear homomorphism.
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Necessary conditions for (M, N, ¢) to correspond to a lattice A are:
¢*=id, N CDr,pM, ¢=idmodDy, rM/N,

¢=id on D), N/N.
These conditions are also sufficient when L’/F is unramified (in which
case the only condition is ¢? = id) and when L'/F is tamely ramified. If
A exists, it is unique, since A/N is the set of fixed points of .

The lattice M can be identified with Home,,(M,Or/) using (m,m)’
(this gives M:>]\7 =M, m— —m). If M O N, then

Homo,, (M/N,L'/OL)) = N/M.

If o : M/N — M/N is Op/-semilinear, then f — 7f¢ is a semilinear
endomorphism @ of Home,, (M/N,L'/Oy/), which on N /M is given by

(gp(m), ﬁ>/ = T<<m, [’Z(ﬁ)y) mod OL’ .

If A— (M,N,yp) then A* — (]\7,?\2,—{5).

7. In the following computations F' is a nonarchimedean local field.
Notations are as in section 1, dimV = 4. We have either L(F) is a field
or L(F) is the product of two quadratic fields.

2b. L(F) is a Product

1. Assume L(F) = Ly X Lo, [Li:F] = 2. Then V(F) = Vi &V, V; a
1-dimensional vector space over L;, V3 1 V5. We identify V; with L;. Then

T(F) = {(t1,t2) € L} x L} [Ny, /p(t:) =1 for i=1,2}.

We compute the number of lattices A in V' (F) which satisfy A* = vA and
~A = A, for a given regular element v of T'(F) and a set of representatives
vof F*/Np,/pL{ x F* /Ny, ,pL;.

By section 2a.5 the lattice A is given by lattices M; C N; in L; (i = 1,2)
and an isomorphism ¢ : Ny /M; — No/Ms.

Let v = (t1,t2) and v = (v, 19).
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The condition A* = vA means that N; = v; "M} (i = 1,2) and
vapryt = —(¢*)~1. Then yA = A is equivalent to t;M; = M; (i = 1,2)
and tQ@tfl = .

Put M; = 2,0r,(m;) with z; € L, m; > 0.

Choose w; € L; such that Or, = O + Ow;. On each V; = L; there
is only one symplectic form, up to a factor from F*, and in order to
compute our four numbers we may assume that (1,w;) = (L,we) = 1.
Then M} = Z; 'x™Or,(m;) and

M,; C Vi_lMi* = VZ‘NLi/F(ZZ‘)ﬂ'mi e 0.

Moreover, v; * My /M, and vy ' Mj /My have to be isomorphic. This means
that v(v; N, p(2;)m"™) must be independent of i. So put

m = U(l/1) + U(NLi/F<Zl)) +m; = U(VQ) + U(NLQ/F(ZQ)) +mq > 0.

Then
Nz/Mz = V;lM:/Ml >~ OLi(mi)/ﬂ'mOLi (ml)
With respect to the bases 1, 7™ w; of Of,(m;), the isomorphism ¢ is given
by a matrix ¢ € GL(2,0/n™0O) satisfying (from vppr; ' = —(¢*)~1)
det(p) = —vouy '™ M N, /g (22) Niy yr(21)H (mod 7™ O).

The conditions with respect to ~ are: t; € Or,(my), tggotfl = .
The number to compute is the sum over m > 0 of

> > Card{p € GL(2,0/x™O)|e}

my,m2>0 z1€LY z0€LY

tiEOLi (ml) z; mod OLi (ml)x

fior; (zi)=m—m;—o(v;)
where e stands for tap = ¢t;, det(¢) = u and
u = —V2V1_17rm27m1NL2/F(Z2)NL1/F(Zl)71.

Here Card is 1 when m = 0.

2. We now assume that |2| = 1 in F. Then w; can be so chosen that
wf =ao; € O. Put t; = a; + byw™iw,; with a;,b; € O.
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Let ¢ = (xl xz) € GL(2,0/n™©). The matrix corresponding to t; is

XT3 T4
a; Ozibiﬂ‘Qmi
b; a; ’

We have a3 — a;bim*™i =1 (i = 1,2).
Assume m > 0. The conditions on ¢ are:

((Il — a2)$1 + b1z — a2b27r2m2x3 =0
a1b17r2m1:v1 + (a1 - ag).’EQ — a2b27r2m2x4 =0
box1 + (a2 — a1)xrs — byzy =0 » mod ™

baxy — Oélb17l'2mll’3 + (CL2 — a1)$4 =0

T1Xg4 — T2X3 = U

where u is an element of O*.
This system cannot be solvable unless a; = aq(7™), since to = @t1p~
implies tr(¢2) = tr(t;). Assume this. Then

1

(1) boxy = bray

(2) a1b1m2™M 1z = agbem? ™1y

(3)  bizy = apbom®™23 mod ™
(4) boxo = aybym?™ a3

(5) @1y —x2T3 =1

This system is unsolvable when v(by) > v(b1) and m > v(b1), as (1) and
(3) would imply that x4 = z2 = 0(w); and also when v(b1) > v(b2) and
m > v(b2), as (1) and (4) would imply that 1 = x2 = 0(w). It remains to
consider: m < v(b;) (i =1,2) or m > v(b1) = v(b2).

Suppose m < v(by) and m < v(bz). Then x4 — x223 = u(n™) has
@™ 2(¢® — 1) solutions.

Suppose m > v(b1) = v(by). Put k = v(by) = v(bg). Put ¢; = a;b;w*™i
(i =1,2). Then (1)-(4) imply that

(bicy — baco)z; = 0Omod ™+

for all 4, so we must necessarily have byc; = baco mod a1k This is equiv-

alent to a? = a3 modw™** and implies that either v(c;) > m for i = 1,2
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or v(c1) = v(cz) < m. From (3) and (4) it follows that x5 = 0(w), unless
o(c1) = v(er) =k, ie. v(a;) =0, m; =0 (i = 1,2). Assume we are
not in this case. Then v(¢;) > k for ¢ = 1,2. Also x2 = 0(mr), hence
x1 € 0% and (5) gives x4 = 27 "woxz + x7 'umod ™ (x). (3) and (4) give
xy = b teprz mod ™ (x%). (2) is a consequence of (1). After substitu-
tion of (%) and (xx) the congruence (1) reads

22 = by tepxt 4 biby fumod ™.
Here by *cy = 0(mr).

We find 2¢™+2* solutions when byby L is a square in F, and otherwise
no solution.

Now suppose that v(a;) =0, m; =0 (i = 1,2). Then Ly = Ly = the
unramified quadratic extension of F'. Take ay = ag = a. We have b% =
b2mod ™%, Now (1) and (2) are equivalent, (3) and (4) are equivalent.
From (1), (3), (5) one deduces that 3 — ax? = b1b, 'umod ™ *. This
congruence has ¢™*~1(q 4 1) solutions modulo #™~%. For each solution
x1 € OX or 23 € O*.

If 1 € O* we have

mfk)

Ty = ozbgbl_la:g (m , Ty = xl_l(mgxg +u) (7).

If z3 € O we have x4 = bgbl_ll‘l (em=kY), o = acgl(xlm —u) (™).
So there are  ¢™*2¢¥=1(¢+1) solutions for the system in this case.
3. Recall that O, = O+ Ow;, w? = o; and |2| = 1. Let t; = a; + byw;,

a? —a;b? =1 (i = 1,2). Ast = (t1,t3) is supposed to be regular, we have

b1 # 0, by # 0, and in case L1 = La, a; # as. Let us be given:

vy, vy € % (vimod Np,/pL;);

m > 0;

my,ms > 0 such that ¢; € Op,(m;), i.e. m; < o(b;);

21 € LY, 2z € LY (2;modOp,(m;)*) with fior,(z) =m —m; —o(v;).
Put u = —VQVflﬂmz_mlNLQ/F(ZQ)NLl/F(Zl)_l. Then v € O%.

By section 2 we have that
Card{p € GL(2,0/x™O)| tap = ¢t;, det(p)=u}

is given by
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1 if m=0;
P2 -1) if m>0, m+m;<ob)(i=1,2), a;=as(n);
2qm+2k if o(b;)=m;+k 0<k<m, and

either  o(a;)+2m;+k>m (i=1,2), a3 =az(m), and e,
where we put e for  —vouy thoby TN (22)N(21) ! € F*2,

or a;=az, mi=my k<o(a)+2m;+k<m, e and
ar = ag(wmtk);
qm+2k—1(q + ].) ifa; =ag € OX, my = meo =0, 0< U(bl) = U(bz)
=k<m, and a; = as(a™tk).
It is zero in all other cases.
We are computing

> > X > Candfe).

vi,v2 m>0 0<m;<v(b;) z/EOZV/OL, (m;)*
m;=m+v(v;) mod f; ‘ g ‘

We put z; = Zz’,';rzz*m"fn('/"')/f’i. The condition e becomes

Ny, /r(21)Npy r(23) 7!
€ —vomy "Ry it ) gy 0 B2 1 0O (kM X2,
where N, /p(mr,) = 7r1f
Notice that Card{p} is independent of 2, 25, except for the cases where
the condition e plays a role. In those cases one has m; > 0 when L;/F is

unramified, so that Or, (m;)* C Off This is used in the following.
Our sum is the sum of the following sums.

) I[Ie X 004k

i=1,2  0<k<o(b;)

IT) e1es E "2 (¢* —1)AB
m>0,m; >0

if a1 = ag(m); here A= (Of : Or,(m1)*), B= (0, :Op,(m2)");

1
I11) Se1€2 > 2¢" 2k AB

0<k<m,k<v(b;)
k4+m<v(a;)+20(b;)

if a1 = ag(m); here A= (OF, : Or, (0(b1) —k)™), (Of, : O, (v(b2) — k)*).
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If a; = ag and v(b1) = v(b2), put A = (Of : O, (0(b) — k)*)*

1
IV) —€1€2 Z 2qm+2kA.

2 0<k<v(b1),2k<v(a1)+20(b1)
v(a1)+20(br1)<m+k<v(a;—as2)

If oy = @y € O and v(by) = v(ba):
V) 2. ¢ g 4 1),
U(b1)<mSn(a1—a2)—b(b1)
Put M; = v(b;), M = max(M;, Ms), N = min(My, M3). The sub-sums
are:

ci Y, (OF :0L(k))= I if e; = 1,
0<k<M; q—
2(Mt —1
1) S Ui B
q—1
N— .
%{qMJerl(q_'_lP qq—ll ifeg =ey=1
2N _ 3N _
_2((1M + qN)(q + 1)qq2—11 + 4qqq3_11 ;
2 (lf:_l{qM1+M2(q+ 1)qN71 if ey = 1,62 =2

II) 1 qg—1
2N 3N _
_(qM1+1+qM1 _|_2qM2+1)Qq2711 +2qql13711 :

g+l M+N+1 ¢V -1 M+1 N+1y¢*V -1 N -1
4 5 4{q 1 @) e iy

if e; = ey =2;

if a1 = aq(m).

"N g+ 1) (@Y =)@V =g - 1)
ife; = ey =1;
2¢"* N (g + 1) (" = D" - 1)(¢-1)7?
ife; =1,e0 =2, My < Moy;
2¢M N (g + 1) (VT = 1)* (¢ - 1)7?
ifey =1,e0 =2, M7 > Mo;
4qM+N+1(qN+1 _ 1)2(61 _ 1)72

if61:€2:2.

1)
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if a1 = aq(m).

IV){ Mg+ 1@V - ("D =) (-1 ifer =1,
4q3N+2( N+1 _ )( v(a;—az)—2N-1 1)(q_ 1)—2 if ey = 2.

if Ll = LQ, a] = CL2(7I').

V) N (g + 1) (g7 1) (g —1)7?

if L1 = Ly is unramified and a1 = aq ().
The formulas IV) and V) hold even when v(b;) # v(bs), because we
have then v(a; — az) = 2N + v(aq).

2c. L(F) is a Quartic Extension

1. Assume L(F') = L is a field. We identify V(F') with L(F'). A quadratic
subfield L' of L is given and T'(F') = {t € L*|Np 1/ (t) = 1}. We compute
the number of lattices A in L which satisfy A* = vA and tA = A, for a given
regular element of T'(F') and a set of representatives v of L'* /Ny, L*.
That ¢ is regular means that F(t) = L.

We use the L’-bilinear alternating form (z,y)" = try, /. (ac(x)y) intro-
duced in section 6 of Case of SL(2) (we shall choose a later). Assume that
L'/ F is unramified or tamely ramified. A lattice A is given by Op-lattices
M D N and amap ¢ : M/N — M/N satisfying certain conditions (see sec-
tion 6). Moreover, A* = vA is equivalent to M = vIN and =@ = vprL.
The identity tA = A is equivalent to

tM = M, tN = N, tot™! = .
Put N =uOr(n),u € L*, n > 0. Assuming that zr;lelgL o ({x,y))=0
(cf. section 4 of Case of SL(2); we come back to this later) we have
M=v"'N= v to(u)tn MO (n).

Now
M>DN & I/NL/L/<’LL)7T21 e Op.
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Put
m=vop/ (V) + frypop(u) +n > 0.

Then
M/N ~ Op(n)/x}.Or(n)

and we consider ¢ as a semilinear endomorphism of this Or/-module. We
choose 7, = m when L'/F is unramified, 72, € F when L'/F is tamely
ramified. In any case ¢ must satisfy p? = id. When L'/F is tamely
ramified (Dy//p = w1, OL), there are more conditions, namely:
1) NCDpypM,ie. m>1;
2) ¢ =idmodmy/;
3) p =id on w71 O (n) /7T O (n).

When 2) holds, condition 3) means that m is odd.

The condition —@ = vpr~! translates to:

x —c{p(x),y) = (z,¢(y)) mod w7 " O for all z,y € Or(n),

where
C = VNL/L/(U)/H NL/L’(U)'

Write
VNp o (u) = w2 c €05,

Then ¢ = ¢1/¢; when L'/F is unramified or n is odd and ¢ = —¢; /¢, when
L'/ F is ramified and n is even. Now x is:

wx (2, c10(y)) = £{erp(z),y) mod w7 O, for all z,y € O (n)

(+ when L’/F is ramified and n even, — otherwise).

Choose wy, € L such that O, = Op + Oprwy. Then Op(n) = O +
Opm,wp. In (x,y)" = trp  (ao(z)y) the element a is such that o(a) =
—a. We may take a = a1(wy, — o(wg))™! with any a; € L'*. Note
that (1,77, wr) = aiw},. So, when we take a unit for a;, we have
(1,wr) € OF,, which was used above. A possible choice is: a; = 1 if
L'/F is ramified, a; € O, such that a; = —ay if L'/F is unramified.
Then (1,77, wr)’ /(1,77 ,wr)’ is just the sign in sx.

With respect to the basis {1, @}, wg} the map ci¢p is given by a
matrix Z in

GL(2,01/ /7O
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satisfying
A 01
7] =JZ, J= (710) ,
77 = ciC1,
t7 = 7t,
m is odd and Z = ¢; modmy, if L'/F is (tamely) ramified.

Z1 22
zZ3 Z4)

It is perhaps better to say that the map is given by Z7: if Z = (

and z = (2), then
Z1 22 fl
Cl@(m) = (23 24) <52>
2. We now assume that |2| = 1 in F. Then we can take wy, such

that w? € Op/. Suppose t € Op(n). Put t = t1 + tow’, wy, with t1,t €
Op:. The matrix corresponding to multiplication by ¢ is (2 iﬁ"’) with
A=nw? € Op.

We have t7 — \t3 = 1. Let

7 = (21 22) EGL(27OL//7I’7E/OL/), m > 0.

Z3 %4

The conditions on Z are (all = mod«7’):

29 +Z2=0 (t1 —t1)z1 — oz + Aaz3 =0

1) z3+23=0 @) —\ oz + (t} - fl)Zg 4+ Mozs =0
=7 tozy 4+ (t1 —t1)23 —t224 =0
2171 + 2223 = 101 tozy — N lozz + (t; —11)24 =0

and if L' /F is ramified: z; = ¢y modwy,. It follows from (1), in this case,
that
ZgEZg,EO(ﬂ'L/), Z1 E:l:cl(ﬂ'[/).

When (1) holds, (2) is equivalent to
(tl — Zl)Zl =0 (all ’L), fQZQ = )\f2237 t221 = 5221, Atﬁl = X fQZl.

Necessary for solvability of the system is that ¢; = ¢ (@7?).
We treat the cases L'/F ramified, resp. unramified, separately.
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Suppose m > vr/(t2). Put to = @k, by, by € 0}, 0 <k < m. The
congruences (2) are  by2g = (—1)¥\by 23,

blzl = (—].)kl_)lfl, )\blfl = (—1)16} 512’1 mOdﬂ'EnlikOL/.
Introduce the new variable 2] = byz;. Then

()%, AWZ| = (~1)FX b12, mod kO

2
And from (1):
20+2Z2=0, 234+23=0, Zizl — b1512223 = b1B1C1E1 HlOdﬂ'T/OL/

and 2] = bycy modwp Op.
From the last congruence and z; = (—1)¥Z}, we see that k& must be
even. Then

/ m—k—1
Z1=ET+7T 2

WNTL, 22 = Yoy, 23 = ysmp modwy,Op
with z1,y; € O and

(5) bibiys = Abjyz mod 1O, A2z = A 5?:]51 mod 7. O,
(6) a2 —wmFy? — bibiwyoys = bibicicy mod ™z 0,

T = W modwO.
m+1

Here z; has to be taken mod@w ™2, 11 modﬂ‘%, Yo and y3 mod 77" .

The congruences (5) are equivalent to

(AD? — X Bf)xl = 0mod w7 " Oy, (AD? — X Ef)yg = 0modn7 1Oy,

m—k—1

2b151y2 =3 trL//F()\b%)mod'n' 2 0.

— 2

We must necessarily have A\b? = \ b; modw?‘k(’)y, since 1 € O* by
(6). Then there are qu_l“‘k solutions (b1byc;¢; is always a square in F,
because L'/F is ramified).

o 5 12 — . .
REMARK. The condition A\bf = X b; mod '}, *OL, is equivalent to
2 = mod kO,

in both cases (L’/F ramified or not).



2c. L(F) is a Quartic Extension 199

3. Recall that
O =0 +Opwy, w% € Op. Let t=t+twp, t?—t%w% =1.
As t is regular, we have t3 # 0 and t; # t;. Let us be given:

vel™ (vmod Ny, L™),

m > 0,

n > 0 such that t € Op(n), i.e. n < v (ta),

u € L* (umod Or(n)*) such that fr,0r(u) =m—n—vp(v).

By section 2 the number of corresponding ¢ is:
If L'/F is unramified:

1 if m=0;
P 2(g% + 1) if m>0, m+n<ovop(t), t; =t modm;
9™ +2k if vp(te)=n+k, 0<k<m,

and t; =t moda™ T O, VUN i (u)tals € F*2.

If L’ /F is ramified and m odd

3(m—1)

q= 2 if m+n<vop(tz), t1 =t modmy;
g Tk if vp(ty)=n+k 0<k<m,

and keven, t =t HlOdTl’T/J'_kOL/.

It is 0 in all other cases.

First, we consider the case where L'/F is unramified. We have
O =0+0u, Ww?=ac0*, 7wy =m.
Suppose m < vy (t2). Only the congruences (1) are left. We have
2 =x+yw, 2z =pw, 23 =ysw
with 21,91, y2,y3 € O(modn™). Further

2 2 — = m
T —ayi; —aysys =cjcgmodm”.
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There are ¢>™(1 + ¢—?2) solutions.
Suppose m > v/ (t2). Put  to =wkby, b €0, 0<k<m.
The congruences (2) become

brzo = Abizs, bizg = b1Z1, Ab1Z1 = X bizymoda™ *OL.
Introduce the new variable 2] = byz;. Then
2y =74, A7 =X\ E?zi mod ™ *Op,.
Moreover we have, from (1):

20+2Z2=0, 234+23=0
modnw™Op,

= 7 — 1 7 =
Z1R1 — b1b12223 = b1b16101

2 = xRy, 2 = pew!, 23 = ysw modw™Op with x4, 1,
Yo, y3 € O and
(3) bibiys = Ablys, A2z = A Eixl mod 7™ kO,
(4) 2?2 — am?™2ky2 — ab1byyays = bibicié mod ™ O.
The elements x1, y2, y3 are to be taken modulo 7 and y; modulo 7*.
The congruences (3) are equivalent to

(A2 =X D1 =0, (Ab2—Abi)ys =0,
2b151y2 = Y3 tI‘L//F(Ab%) InOdﬂ'm_kOL/.

We must necessarily have Ab? = X 5? mod 7™ kO, since x; and y3 cannot
be both = 0(rr) because of (4).

It follows from Ab? = X\ b modw™ *Op, that Ab? is congruent to an
element of O, which must be in 7O, for otherwise A would be a square in
L'. So A € mOrs and y» € 7O. Hence, for (4) to be solvable, bybjci¢; must
be a square in F. The number of solutions is

2" i A2 =X 5? mod 7™ *Op and  bibieie; € F*2,

and 0 otherwise.
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Next, consider the case where L'/F is ramified.
We have Op = O 4+ O7ypy, ﬂ%/ =, a uniformizing element of F. Now
m is odd and

m—+1
w0 = O 2

m—1
+On"2 mp.

Suppose m < vy (t2). Then
z1 =21+ Y1, 22 = YoTps, 23 = yswp modwy, O
with z1,y; € O. Further

9 +1 c1+¢

r] — ﬂ'yf — Y23 = C1C1 modﬂmT(Q, T = mod 0.
Here x; is to be taken modulo a5 and the 1; modulo xi

3(m—1)

There are ¢~ 2z solutions.
We compute

>0 > > Card{g},

v m20 0<n<o/(t2) u1€0) /OL(n)*
n=m—v,(v)mod fr,

where we put
w = UI“TLn_n_nL’(V)/fL/L’.
The following observations can be used to handle the sum over u;.
a) If L/L" is unramified, vy, induces a bijection L'* /Ny, L* — Z/27Z.
If L/L' is ramified,

OZ//OZ? — OZ;/NL/L’OZ lLIX/NL/L/LX.

b) Assume L’/F unramified. Then Ny, pOf = O* if L/L is unrami-
fied, = O*2 if L/L’ is ramified.

c) Assume L/F unramified. Then Ny, p: OF /OF* 5 0> /O*2. More-
over, in the case where v/ (t3) < m+n, we have n > 0, so Or(n)* C O
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Our sum is the sum of the following sums.
If L//F is unramified:

D e > (0f:0L(n)).

0<n<v,/(t2)

) ep/r > @2 +1)(0F : Op(n)”),
m>0,n>0
m—&-nﬁby (tz)

if fl = Zl mOdﬂ'OL/.

III) %eL/L/ Z 2qm-"_2k((/)z< : OL(UL/(tQ) - k)x)
0<k<m,k<v,(t2)
m+k<vp,(t1—%1)

If L/F is ramified:
3(m—1)
IV) eL/L’ Z q 2 (OE : OL(TL)X),
m>0,n>0,m odd
m+4n<v;/(t2)
if t = fl moer/OL/.
V) ewsw > ¢ HOF  OLlor (t2) — k)).
0<k<m,m odd, k even
k<o, (tg),m+kSUL/ (tlle)

Put A=vp(t; —t), B=uvp(ts). Wehavet?—§ti=1, with

— 2
0= w;.

LEMMA. a) A > 2B+ v5/(0).
b) A =2B+v./(5) except for the cases where L/ F is the noncyclic Galois
extension.

PROOF. a) follows from 2 —, = 6%, (t2f,  —6'5). Note that t; +7; €
(/)E, if 2B +0y/(d) > 0.

b) If A> 2B+ v/ (d), then t%f;Q =6 'dmodmy,. One checks case-by-
case that this is impossible when L/F' is not the composite of the three
quadratic extensions of F'. O
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The sums (I)-(V) are:

@B 2B 2

I) 51 (L/L' unramified),
¢ —
2 2B+4+2 _ 1
@(]271) (L/L/ ramiﬁed);
2 2 B 2 3B
_ +1)%¢° -1 ¢ +1 ¢ -1 .
I ~2 L/L fied);
) ¢ R — qq2_1 71 (L/L" unramified);
2 1 B __ 1 3B __ 1
2¢2 + 2B 4 (L/L' ramified);
g —1 g—1 ¢ —1
2B+1/,2 1 B __ 1 B+1 _ 1
I17) 2 (g” + ()(q I g ) (L/L' unramified);
q—
) 2B+1(,B+1 __ 1 A—B __ 1
" (g = 1))2(q )L/ ramified);

Here A =2B+1if L/F is cyclic.

B+1

R i VI R )

) (¢ —1)? T - D(@ 1) (L/L" unramified)
2qB(q[%] -1 2@3[%] _1) / |
(g —1)° (@— D@ -1 (L/L' ramified)
V) q%@(S(B 9 [Eb
q—1 2
Vi R (G VB e ) A
i (q—1)2 (L/L' unramified);
2¢% (B + 1)) - 1)

(L/L' ramified).

(g—1)?






PART 2. ZETA FUNCTIONS
OF SHIMURA VARIETIES
OF PGSp(2)






I. PRELIMINARIES

1. Introduction

Eichler expressed the Hasse-Weil Zeta function of a modular curve as a
product of L-functions of modular forms in 1954, and, a few years later,
Shimura introduced the theory of canonical models and used it to similarly
compute the Zeta functions of the quaternionic Shimura curves. Both
authors based their work on congruence relations.

Thara introduced (1967) a new technique, based on comparison of the
number of points on the Shimura variety over various finite fields with
the Selberg trace formula. He used this to study forms of higher weight.
Deligne [D1] explained Shimura’s theory of canonical models in group the-
oretical terms, and obtained Ramanujan’s conjecture for some cusp forms
on GL(2,Ag), namely that their Hecke eigenvalues are algebraic and all of
their conjugates have absolute value 1 in C*, for almost all components.

Langlands [L3-5] developed Thara’s approach to predict the contribu-
tion of the tempered automorphic representations to the Zeta function of
arbitrary Shimura varieties, introducing in the process the theory of endo-
scopic groups. He carried out the computations in [L5] for subgroups of
the multiplicative groups of nonsplit quaternionic algebras.

Using Arthur’s conjectural description [A2-4] of the automorphic non-
tempered representations, Kottwitz [K3] developed Langlands’ conjectural
description of the Zeta function to include nontempered representations. In
[K4] he associated Galois representations to automorphic representations
which occur in the cohomology of unitary groups associated to division
algebras. In this anisotropic case the trace formula simplifies.

To deal with isotropic cases, where the Shimura variety is not proper
and one has continuous spectrum on the automorphic side, Deligne con-
jectured that the Lefschetz fixed point formula for a correspondence on a
variety over a finite field remains valid if the correspondence is twisted by
a sufficiently high power of the Frobenius.

207
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Deligne’s conjecture was used with Kazhdan in [FK3] to decompose
the cohomology with compact supports of the Drinfeld moduli scheme of
elliptic modules, and relate Galois representations and automorphic rep-
resentations of GL(n) over function fields of curves over finite fields.

Deligne’s conjecture was proven in some cases by Zink [Zi], Pink [P],
Shpiz [Sh], and in general by Fujiwara [Fu]. See Varshavsky [Va] for a
recent simple proof. We use it here to express the Zeta function of the
Shimura varieties of the projective symplectic group of similitudes H =
PGSp(2) of rank 2 over any totally real field F' and with any coefficients,
in terms of automorphic representations of this group and of its unique
proper elliptic endoscopic group, Cp = PGL(2) x PGL(2).

Moreover we decompose the cohomology (étale, with compact supports)
of the Shimura variety (with coefficients in a finite dimensional representa-
tion of H), thus associating a Galois representation to any “cohomological”
automorphic representation of H(A). Here A = Ar denotes the ring of
adeles of F', and Ag of Q. Our results are consistent with the conjectures
of Langlands and Kottwitz [Ko4]. We make extensive use of the results
of [Ko4], expressing the Zeta function in terms of stable trace formulae of
PGSp(2) and its endoscopic group Cp, also for twisted coefficients. We use
the fundamental lemma proven in this case in [F5] and assumed in [Ko4]
in general.

Using congruence relations Taylor [Ty] associated Galois representations
to automorphic representations of GSp(2, Ag) which occur in the cohomol-
ogy of the Shimura three-fold, in the case of F' = Q. Laumon [Ln] used
the Arthur-Selberg trace formula and Deligne’s conjecture to get more pre-
cise results on such representations again for the case F' = QQ where the
Shimura variety is a 3-fold, and with trivial coefficients. Similar results
were obtained by Weissauer [W] (unpublished) using the topological trace
formula of Harder and Goresky-MacPherson.

However, a description of the automorphic representations of the group
PGSp(2, Ap) has recently become available [F6]. We use this, together
with the fundamental lemma [F5] and Deligne’s conjecture [Fu], [Va], to
decompose the Q-adic cohomology with compact supports and describe
all of its constituents. This permits us to compute the Zeta function, in
addition to describing the Galois representation associated to each auto-
morphic representation occurring in the cohomology. To use [F6] when
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F = Q we work only with automorphic representations which have an
elliptic component at a finite place. There is no restriction when F # Q.
We work with any coefficients, and with any totally real base field F.
In the case F' # Q the Galois representations which occur are related to
the interesting “twisted tensor” representation of the dual group. Using
Deligne’s “mixed purity” theorem [D6] we conclude that for all good primes
p the Hecke eigenvalues of any automorphic representation m = ®m, oc-
curring in the cohomology are algebraic and all of their conjugates lie on
the unit circle for 7 which lift ([F6]) to representations on PGL(4) induced
from cuspidal ones, or are related by lifting — in a way which we make
explicit — to automorphic representations of GL(2) with such a property.
This is known as the “generalized” Ramanujan conjecture (for PGSp(2)).

2. Statement of Results

To describe our results we briefly introduce the subjects of study; more
detailed account is given in the body of the work. Let F' be a totally real
number field, H = GSp(2) the group of symplectic similitudes (whose Borel
subgroup is the group of upper triangular matrices), H = Rp/q GSp(2)
the Q-group obtained by restriction of scalars, Ag and Ag; the rings of
adeles and finite adeles of @, Ky an open compact subgroup of H'(Agy)
of the form [,
for almost all primes p, i : Re/rG,, — Hp an R-homomorphism satisfying

K,, K, open compact in H'(Z,) for all p with equality

the axioms of [D5] and Sk, the associated Shimura variety, defined over
its reflex field E, which is Q.

The finite dimensional irreducible algebraic representations of H are
parametrized by their highest weights (a,b;¢) : diag(x,y,z/y,z/x) —
x%yb2¢, where a, b, ¢ € Z and a > b > 0. Those with trivial central
character have a + b = —2c even, and we denote them by (pap, Vas). For
each rational prime ¢, the representation

(pa7b = ®v€Spav,bv 5 Va,b = ®UESVav,bv>

of H' over F (S is the set of embeddings of F' in R) defines a smooth Q,-
adic sheaf Vj .0 on Sk, We are concerned with the decomposition of the
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Q-adic vector space H.(Sk; ®9Q, Vabye) as a Co(K\H'(Ags) /Ky, Qq) %
Gal(Q/Q)-module, or more precisely the virtual bi-module

H' =a(-1)'H, 0 <i < 2dimSk;.
We fix an isomorphism of fields from Q, to C. Write H} (7 s) for
HomHKf (7Tf, HZ(SKf ®[E @, Va,b;l))-

We are concerned only with a, > b, > 0 with even a, — b,,, and we con-
sider only the part of H isotypic under Z’(Agy). Thus we work with func-
tions in the Hecke convolution algebra of compactly supported modulo the
center Z'(Aqy) of H'(Agy), K ¢-biinvariant functions on H'(Agys) which
transform trivially under Z’(Agy). Alternatively we take our group H to
be the projective symplectic group of similitudes. We make this restriction
since this is the case studied in [F6]. The fundamental lemma is estab-
lished in [F5] for any central character. Thus from now on H' = Rp/oH,
H =PGSp(2). In the next line, C. is C.(K¢\H'(Agf)/Ky).

THEOREM 1. The irreducible C,. x Gal(Q/Q)-modules which occur non-
trivially in H}(Sk, ®g Q, Vapy) are of the form W;I(;» ®@ H}(mwy), where
wH 48 the finite component @p<ooThp 0Of a discrete spectrum automorphic
representation 7y of H'(Agy), and 775; denotes its subspace of K¢-fized
vectors. The archimedean component Troo = QuesTHy of ™, S = {F —
R} and H'(R) = [],cq H(F ®F,»R), has components mg., whose infinites-
imal character is (ay,b,)+(2,1). Here (2,1) is half the sum of the positive
T0018.

Conversely, any discrete spectrum representation mg of H'(Agy) whose
archimedean component THo = RuesTHy 1S such that the infinitesimal
character of wgy s (ay,by) + (2,1), a, > b, > 0, even a, — b, for each
v € S (we call such representations Ty cohomological), and 7r§§ # {0},

occurs in H}(Sk, ®q Q, Va,b:e) with multiplicity one as 7r§§ Q@ H} (may).

The main point here is that the mp which occur in H} are automor-
phic, in fact discrete spectrum with the prescribed behavior at co and
ramification controlled by K;. Each cohomological my occurs for some
K depending on mg. The first statement here is known for IH by [BC].



2. Statement of Results 211

We proceed to describe the semisimplification of the Galois representa-
tion H(mgy) attached to mg . For this purpose we first need to list the
cohomological mg. Note that H'(Q) = H(F) and H'(Ag) = H(AF).

The 7y are described in [F6] in terms of packets and quasi-packets,
and liftings X : H = Sp(2,C) — G = SL(4,C) (natural embedding), and
Ao : SL(2,C) x SL(2,C) = Cy — H, Cy is viewed as the centralizer of
diag(1,—1,—1,1) in H. A detailed account of the lifting theorems of [F6]
is given in the text below, as are the definitions of [F6] of packets and
quasi-packets. Quasi-packets refer to nontempered representations. We
distinguish five types of cohomological representations 7 of PGSp(2, Af).

(1) 7 in a (stable) packet which A-lifts to a cuspidal representation of
G(Ar), G = PGL(4); the components mg, (v € S) are discrete series with
infinitesimal characters (a,, b,) +(2,1).

(2) 7y in a (stable) quasi-packet of the form {L(¢v,v~'/?72)} which
A-lifts to the residual noncuspidal representation J (1/1/ 252 1/ 272) of
PGL(4,Ar). Here 72 is a cuspidal representation of GL(2, Ar) with qua-
dratic central character & # 1 with én? = 72, and discrete series compo-
nents T2 = ok, 12, ky > 0 for all v € S. Here (a,,b,) = (2k,,0).

(3) One dimensional representation 7 (g) = £(A(g)) of H(Ap). Here
A(g) is the factor of similitude of g, £ is a character A} /F*AR* — {£1},
and (a,,b,) = (0,0).

(4) 7g in a packet which is the Ag-lift of 7! x 72, where 7! and 72
are distinct cuspidal representations of PGL(2,Ar) such that {r}, 72} =
{Mhyys Thay }» K10 > k2o > 0 0dd integers for all v € S. This packet A-lifts to
the (normalizedly) induced representation I(7!, 72) of PGL(4,AFr). Here
(avvbv) = (%(klv + k’2v) - 27 %(klv - ka) - 1)'

(5) 7y is in a quasi-packet {L(¢v'/272 év~1/2)} which is the Ao-lift of
¢ x w2, where ¢ is a character A% /F*A%? — {+1} and 72 is a cuspidal
representation of PGL(2,Ar) with 72 = moy, 13, ky > 0, v € S. Here
(a'l)7 bv) = (k’U7 k'U)’

A global (quasi-)packet is the restricted product of local (quasi-)packets,
which are sets of one or two irreducibles, pointed by the property of being
unramified (the local (quasi-) packets contains a single unramified repre-
sentation at almost all places). The packets (1) and (3) and the quasi-
packet (2) are stable: each member is automorphic and occurs in the dis-
crete spectrum with multiplicity one. The packets (4) and quasi-packets
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(5) are not stable, their members occur in the discrete spectrum with mul-
tiplicity one or zero, according to a formula of [F6] recalled below.

We now describe the semisimplification H}(mgs)®° of the representa-
tion H}(mpys) of Gal(Q/Q) associated to each of these mgy. From now
on, we write H(mgys) for H}(mpf)®. The Chebotarev’s density theo-
rem asserts that the Frobenius elements Fr, for almost all p make a dense
subgroup of Gal(Q/Q). Hence it suffices to specify the conjugacy class of
H}(mmy)(Frp) for almost all p. This makes sense since H} (g ) is unrami-
fied at almost all p, trivial on the inertia subgroup I, of the decomposition
group D, = Gal(Q,/Q,) of Gal(Q/Q), and D, /I, is (topologically) gener-
ated by Fr,. The conjugacy class H} (7p)(Frp) is determined by its trace,
and since H}(mm¢)(Frp) is semisimple it is determined by H (ﬂHf)(Frf))
for all sufficiently large j. We consider only p which are unramified in
F, thus the residual cardinality ¢, of F, at any place u of F over p is
p", ny = [Fy : Qp]. Further we use only p with Ky = K,KP?, where
K, = H'(Z,) is the standard maximal compact, thus S, has good reduc-
tion at p. Note that dim Sk, = 3[F': Q].

Part of the data defining the Shimura variety is the R-homomorphism
h : RerGm — H' = RpjgH. Over C the one-parameter subgroup s :
C* — H'(C), u(z) = h(z,1) factorizes through any maximal C-torus
T}, (C) C H'(C). The H'(C)-conjugacy class of y defines then a Weyl group
We-orbit pn =[], pr in X, (Ty) = X*(Tl’q) The dual torus ﬁ'q =L, T
in H = IL, ﬁ, o € Emb(F,R), can be taken to be the diagonal subgroup,
and X*(fH) = Z2. See section 10 for more detail. We choose p, to be
the character (1,0) : diag(a,b,b=',a~!) — a of Ty. Thus the H(C)-orbit
of the coweight p. determines a We-orbit of a character — again denoted
by pr — of fH, which is the highest weight of the standard representation
) = st of Sp(2,C). Put 7, = @Y. Tt is a representation of H'.

The Galois group Gal(Q/Q) acts on Emb(F,Q). The stabilizer of p,
Gal(Q/E), defines the reflex field E. In our case E = Q.

An irreducible admissible representation 7, of H(F®Q),) = H'(Q,) =
Hu‘p H(F,) has the form ®,mp,. Suppose it is unramified. Then 7, has
the form 7g (1, toy), a subquotient of the normalizedly induced repre-
sentation I(p1qy, p2y) of H(F,) = PGSp(2, Fy,), where p;, are unramified
characters of F. Write iy, for the value i, (m,) at any uniformizing
parameter m, of F.X. Put t, = t(rpg,) = diag(ulu,ugu,ugj,uﬁ). Note
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that tr(t]] = pf,, + i, + Hay + 17
The representation m, is parametrized by the conjugacy class of t(m,) =
t, X Fr,, in the unramified dual group

LH) = HF® x (Fr,).

Here t,, is the [F': Q]-tuple (t,;u|p) of diagonal matrices in H = Sp(2,C),
where each t, = (tu1,...,tun,) is any n, = [F, : Qp]-tuple with ], t,; =
ty. The Frobenius Fr,, acts on each t,, by permutation to the left: Fr,(t,) =
(tuzs- s tun,,tu1). Bach m, is parametrized by the conjugacy class of
t(Thy) = tu x Frp in the unramified dual group “H/, = Hm™ x (Frp), or
alternatively by the conjugacy class of ¢, x Fr, in L H,, = H x (Fr,), where
Fr, = Fry*.

Our determination of the Galois representation attached to mg is in
terms of the traces of the representation 7“2
H’ x Wi at the positive powers of the neth powers of the classes t(mmp) =

of the dual group “Hf =

(t(my); ulp) parametrizing the unramified components Tr, = QqupTHu-
The representation H;(mgy) is determined by tr[Fr) |H (7my)] for every
integer 7 > 0, prime p unramified in F, and E-prime @ dividing p. As
E = Q here, p = p and n, = 1.

The following very detailed statement describes the Galois representa-
tion HY(mrys)(mr) attached to the cohomological mg.

THEOREM 2. (1) Fiz 7wy of type (1) which occurs in the cohomology with
coefficients in Va p, a, > b, > 0, even a, —b,. Thus wy has archimedean
components W,’;lmk%, * = Wh orhol, k1, = ay+by+3 > koy = ay—by+1 >
1 are odd. It contributes to the cohomology only in dimension 3[F : Q.
Denote by wry = mH (1w, iow) the component of the representation wy of
H(AFR) at a place u of F above p. It is parametrized by the conjugacy class
) = diag(tlu,tgu,t;},tfj) in H = Sp(2,C), where tmy = pmu(Ty),
m =1,2. Then H*(ngy) is A7 -dimensional, and with j, = (j, 1),

J

tr[Fr) [H (o p)] = p= 555 b [(6(mp) x Fry)7] = [ (erfed/7+])7.
u|p

Namely H! (mmy)(Frp) is ®u|pu1;1/2ru(Fru), where 1, (Fr,) acts on the
twisted tensor representation (1, (C*)") as

t(may) X Fry, t(mgw) = (1, ooy tny,)s
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m diagonal with H1<m<nu tm = t(7py). Here vy, is the unramified charac-
ter of Gal(@u/(@u) wzth vu(Fry) = q; ' The eigenvalues of H: (mpf)(Frp)
are p3 QT o by 0 (W) € { 2} t(u) € {£1}. In our stable case
(1), the representation H}(mwry) depends only on the packet of mr, and
not on g itself.

The Hecke eigenvalues t1,, ta, are algebraic and each of their conjugates
has complex absolute value one.

(2) Representations mg in a quasi-packet {L(Ev,v=27%)} of type (2)
occur in the cohomology with coefficients in Vay, o, ky > 0, thus 7y has
archimedean components wg, = L(v sgn, V_1/2772k1)+2), v € S. At a place
u of F over p the component w2 of w2 is unramified of the form 7% (214, 22u)-
The Hecke eigenvalues z1y, 2oy Satisfy ziyzew = &u(my) € {£1}. The
component Tr, has parameter

1/2 1/2

1 2
Zluy qu /

1/2 -1

= diag(q, s @ P2

22u5 Gy
in H = Sp(2,C). The associated representation H*(mrys) has dimension
4 gnd H* (npr5)(Frp) is the same as in case (1) but with ty, = qi/Qzlu,
tow = qi 222u. The z1y, 22y are algebraic, all their conjugates lie on the
unit circle in C.

(3) The case of type (3) of the one dimensional representation g =
o, €2 =1, occurs in the cohomology with coefficients in Vo,0 only. The
parameter () is

diag(£.q3/?, €uql/?, €uqy V%, €uqy ).

The associated representation H}(mwy) is again 45U -dimensional and
H}(rmy)(Frp) is the same as in case (1) but with t1, = fuqi/Z, toy, =
uq/” €0 € {1}

(4) The wp of the unstable tempered case (4) occur in the cohomology
with coefficients in Vap, ay > by, > 0, even a, —b,. Thus the archimedean
components Ty, are in {wxz:,m l}clfikz} kipv = Gy + by +3 > koy =
ay — by, +1 > 0 are odd. The component wy, of 7y at a place u of
F over p is unramified of the form mwg, = g1y, pou), parametrized
by t, = diag(ti, tou, o, s t0)), tma = ,umu(ﬂ'u) m = 1,2, in H. The
packet {my} of my is the Xo-lift of ' x w2, where nt, w2 are cuspidal
representations of PGL(2,Ar). It is deﬁned by means of local packets
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{THw}, which are singletons unless 7l and 72 are discrete series, in which
case {Trw} = {7l Thwts With + indicating generic and — nongeneric.
If {mrw} consists of a single term, it is 7}, and we put T, = 0. We
say that wg ¢ lies in {mps}* if it has an even number of components Ty,
(w < o), and in {mgs}~ otherwise. Write n(w' x w2) for the number
of archimedean places v € V with (w}, 72) = (Tpy,, Tky,) (recall: {mp,} =

Ao(Thyy X Thyy ), k1o > ko2y > 0). Then the dimension of Hf(mmy) is

24P and the trace of H;(WHf)(Frfg) is %p% dmSKs times

tr Tg[(t(ﬂ'p) X Frp)j] + (—1)"(”1X”2) tr rg [s(t(mp) x Frp)j]

ulp

1 2 L Yy
:I:(_l)n(ﬂ' X )H(t{{ju +t11:z/]u _ (t]/Ju +t2]/1u))

ulp

if THy € {ﬂ'Hf}i, The t1,, to, are algebraic and their conjugates lie on
the unit circle.
Thus H (mgy)(Fr)) is

S Bup V2 (R (-1 ) 1, 7 2 (B,
where rF (Fr,,) acts on the twisted tensor representation (r,,, (C*)[FuiQuly g5
jEt(7rHu)><F1ru where st =1 and s~ = (s,1,...,1), s = diag(1, —1,—1,1).
(5) The mp of the unstable nontempered case (5) occur in the cohomology
with coefficients in Vi, k = (ky), ky > 0. Its archimedean components
THy are W¥Z5+371, 7r£‘,‘§i+3,1 or the nontempered L(§V1/27r2kv+3,fu_1/2),
€ =1 orsgn. It lies in a quasi—packet {L(&v2r? v=Y2)), 7% cuspi-
dal representation of PGL(2, Ar), whose real components are may, 13, and
¢ is a character A% /F*AR? — {£1}. The unramified components mr,, are
Thyy = L(&uv 1/27r3, wVu 1/2), 72 = 72(214, 22u), Z1u22q = 1, parametrized
by ty = diag(tiu, tou, 3.0, t50)s tie = Euqi! 210 tou §q1/2 1 The
quasi-packet {mg} is the \o-lift of w2 x £1g, defined using the local quasi-
packets {5y Trwts The = L(fwl/i,/Qﬁﬁ,7 wim? )s T, 18 0 unless w2 is
square integrable in which case Ty, is square integrable (in the real case

— . hol
Ty ¥ Tog,+3,1 )-
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We write ¢ € {muys}™ if the number of components my, (w < 00) of
wryf is even, and gy € {mp g} if this number is odd. Then the dimension

of H (ty) is & -4 and the trace ofH:(ﬂHf)(FrZ)) is %p% dim Sk times

1 L . L o
clen®, 5 TL + 2 + 0 113300
ulp

£ [T+ 67— (37 + )9/

ulp

with + if gy € {7} and — if 1y € {muys}~. Here z1, is algebraic,
its conjugates are all on the complex unit circle. Thus H}(mwgys)(Fr,) has
the same description as in case (4), except for the values of t1,, and to,.

Note that the Hodge types of 7y, for each v € S are (1,2), (2,1), (0,3),
(3,0) in types (1) and (4); (2,0), (0,2), (1,3), (3,1) in type (2); (1,1) and
(2,2) in type (5); and (0,0), (1,1), (2,2), (3,3) in type (3), specifying in
which Hé’j(SKf ®g Q, Vap) each THf May OCCUr.

In particular HY is 0 if i # j and i+ j < 2[F : Q] or i +j > 4[F :
QJ; HY has contributions only from one dimensional representations g
(of type (3)) if i < [F : Q] ori > 2[F : Q) g (and Hé[F:Q]) has
contributions only from representations of type (2), (3), (5). For example,
Hc2 [£:Q).,0 (and HS ’Q[F:Q]) has contributions only from representations of
type (2). The representations of types (2) and (5) are parametrized only
by certain representations of GL(2) (and quadratic characters); these have
smaller parametrizing set than the representations of type (4) (two copies
of PGL(2)) or of type (1) (representations of PGL(4)).

In stating Theorem 2 we implicitly made a choice of a square root of p.

For unitary groups defined using division algebras endoscopy does not
show and Kottwitz [K4] used the trace formula in this anisotropic case to
associate Galois representations H} (7w s) to some automorphic mg and
obtain some of their properties. However, in this case the classification of
automorphic representations and their packets is not yet known.

For GSp(2), in the case of F' = Q and trivial coefficients ao, = boo = 0,
in particular trivial central character (PGSp(2)), Laumon [Ln], Thm 7.5,
gave a list of possibilities for the trace of H}(mgy) at Fr, for 7y in the
stable spectrum, removing Eisensteinian contributions, see [Ln], (6.1). His
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Thm 7.5 (1), (2) says mg might be Eisensteinian (our cases (2), (3), (5))
or endoscopic (our cases (4), (5)), his (3) corresponds to our case (1), but
our cases (2), (5) are included again as a possibility in his Thm 7.5 (4).
That is, by [F6] the 7w in his Thm 7.5 (4) are already included in his (1)
and (2).

Using the results of [F6], namely classification of and multiplicity one
for the automorphic representations of the symplectic group, as well as the
fundamental lemma of [F5] and Deligne’s conjecture of [Fu], [Va], makes it
possible for us to obtain more precise results, namely specify the H} (7 ¢)
such that mp s ® H) (g ) occurs in HY, for all mg, and list the my which
occur. Also, knowing the structure of packets and quasi-packets from [F6]
lets us state and deal with the general case of F' # Q.

Laumon [Ln] works with F' = Q and uses very extensively Arthur’s deep
analysis of the distributions occurring in the trace formula, together with
the ideas of the simple trace formula of [FK3], [FK2] (the test function has
an elliptic ([Ln], p. 301: “very cuspidal”) real component and a regular
component). This lets him put no restriction on the test function, but leads
to very involved usage of the spectral side of the Arthur trace formula.

A simple trace formula (for a test measure with no cuspidal compo-
nents) is available for comparisons in cases of F-rank 1 (see [F2;1], [F3;VI],
[F4;I1I]) but not yet in F-rank 2. Hence in [F6] we use instead the trace
formula with 3 discrete components (in fact 2 suffice, as explained in [F6],
1G). Using the results of [F6] leads us to the restriction (elliptic component
at a finite place) we made here when F' = Q. This can be removed, to get
unconditional result also for F' = Q, on using Arthur’s deep analysis of the
distributions occurring in the trace formula, as [Ln] explains.

Results similar to [Ln] have been obtained by Weissauer [W] (unpub-
lished), who used the topological trace formula of Harder and Goresky-
MacPherson. This trace formula applies to “geometric” representations
only, namely those with elliptic (in fact cohomological) components at the
real places. Previously some results (for a dense set of places) were derived
by Taylor [Ty] from the congruence relations.
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3. The Zeta Function

The Zeta function Z of the Shimura variety is a product over the rational
primes p of local factors Z, each of which is a product over the primes p of
the reflex field E which divide p of local factors Z,. In our case E = Q and
g = p but we keep using the symbol g to suggest the general form. Write

= ¢, for the cardinality of the residue field F = R,/pR,, (R, denotes
the ring of integers of E,; ¢ is p in our case). We work only with “good”
p, thus Ky = Kije, K, = H'(Zy), Sk, is defined over R, and has good
reduction mod g.

A general form of the Zeta function is for a correspondence, namely for
a K g-biinvariant Q,-valued function f%, on H(AY), (Ais Ap and we fix a

field isomorphism @, = C), and with coefficients in the smooth Q,-sheaf
Va,b;¢ constructed from an absolutely irreducible algebraic finite dimen-
sional representation Vap = ®uesVa, b, of H over F, each V,, ;, with
highest weight (a,,b,), a, > b, > 0, even a, — b,.

v

The standard form of the Zeta function is stated for f = lH(A?)7 and
for the trivial coefficient system ((ay, b,) = (0,0) for all v). In this case the
coefficients of the Zeta function store the number of points of the Shimura
variety over finite residue fields. Thus the Zeta function, or rather its
natural logarithm, is defined by

In ZP<S7 SKfvf]pfvva,b;ﬁ)c
2dimSKf

<1 ) ) . _
= § — E (1) tr[Fr) ofps Ho(Sk, ®k Q, Vabie)]-
j=

Js
179 =0

The subscript ¢ on the left emphasizes that we work with H,. rather than
H or I H; we drop it from now on. One can add a superscript 7 on the left
to isolate the contribution from H.

Our results decompose the alternating sum of the traces on the coho-
mology for a correspondence f}; projecting on the subspace parametrized
by those representations 7wy of H(Ap) with at least 2 discrete series com-
ponents. We make this assumption from now on. The coefficient of 1/ quf
is then equal to the sum of 5 types of terms. The first 3, stable, terms, are
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of the form

SN w308 ™ e o (b))

{ra} wu€lnn} vl
The 4th, unstable tempered term, is the sum of
+ d1m SKf 0 ]
Yo > lelmh U vl ) e[ 1 (t(mpr)))

{ru}rue{rnu} ulp

and

> ()M (a3 (f]) - tr{ng ) (F)]

T X T

4 dim Sk
2 ftr

dp [@ (s t(mma))]-

ulp

The 5th, unstable nontempered term, is the sum of

den5) Y0 S0 lurl () — i b ()

{ru}mue{nu}

g2 [ 18t )
and
Z [tr{WHf} (fH)+tr{7THf} ()] - q dlmSKf tr[ﬁx)p?" u(s t(WHu))j]'

TT1 X2

The representation (r0, (C*)F+*@l) is the twisted tensor representa-
tion of “(Rp, o, H) = HFQ 5 Gal(F,/Q,). Here C* is the standard
representation of H C GL(4,C) and the generator Fr, of Gal(F,/Qp)
acts by permutation Fr,(z;1 @ 22 ® -+ @ 2p,) = T2 ® -+ @ Tp, ® 7,

= [Fy : Q). The class t(msy) is (t1, .., tn,), tm is diagonal in H
with [[,<,,<,. tm = t(7Hu) being the Satake parameter of the unramified
component 7. Further, s = (s,I,...,I), s =diag(l,—1,-1,1).

The three stable contributions to the first sum are parametrized by:

(1) Stable packets {mg}. These A-lift to cuspidal f-invariant represen-
tations 7 of G(Ar), G = PGL(4). The infinitesimal character of each
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archimedean component mg,(v € S) is (ay,by) + (2,1), determined by
(a,b). The components 7y, for each place u of F' over p are unramified
and tempered. In fact the 4 nonzero, namely diagonal, entries of ¢(7r.,)
are algebraic, all conjugates lie on the complex unit circle.

(2) Stable quasi-packets {my = L(¢v,v='/272)}, which Mlift to the
quotient J of the induced I(v'/?m%,v=/272) of PGL(4, Ar). Here 72 is
a cuspidal representation of GL(2, Ar) with central character ¢ # 1 = ¢2,
archimedean components Wg = T, kv > 1, v € S, and unramified
components 72, ulp. The infinitesimal character of g, is (2k,,1) =
(2,1) + (ay,0), thus these contributions occur only when all b, are 0. The
diagonal entries of t(mp,) are (q}/%mu)ﬂ, m = 1,2, where the Satake
eigenvalues z,,, of 72 are algebraic all of whose conjugates are on the
complex unit circle.

(3) One dimensional representations m = £ o X, A denotes the factor of
similitude, ¢ a character A% /F*A%? — {£1}. This case occurs only when
(@, by) = (0,0) for all v € S, and we have

t(mp) = diag(§udy®, 6ut/”, € * . €00 ™),
&, € {£1} indicates the value at 7, of the u-component of &.
The two unstable contributions are parametrized by:

L x 72 of cuspidal representations of PGL(2, Af),

nt # 72, with discrete series archimedean components 7} = my, , 72 =
Thyy, K10 > k2o > 0 odd, specify the packet {mgy} = Ao(m! x 72). This
occurs when a, = %(k‘lv +koy) —2,b, = %(lﬁv —koy)—1forallve S. In
this case the t(mp,,) are as in (1). The number of v € S with (7}, 72) =

(Thoy» Thyy )s K1o > Koy, is denoted by n(m; X m2).

(4) Unordered pairs 7

(5) Pairs m2 x £1g, where 72 is a cuspidal representation of PGL(2, Ar)
with discrete series archimedean components Wg = Mok, +3, ky > 0, all
v € S, unramified components 72, u|p, with Satake parameters 2!, and
character ¢ : A% /F*A%? — {£1}. Such pair specifies the quasi-packet of
75 = L(€v/2n2, ¢v71/2) = \o(n? x £1,), whose archimedean components
have infinitesimal characters (2,1) plus (a,,b,) = (ky, k) for all v € S.
Thus this case occurs only for (a,b) with a, = b, for all v € S. The

diagonal entries of t(mpy,), ulp, are (Euqi/szl)il. The z, are algebraic,
all its conjugates have absolute value one. The terms in the first sum are

multiplied by (72, ).
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To express the Zeta function as a product of L-functions, recall that
= 1
In Ly (s, s, 7) = Indet(1 — p~*r(ty(mmy))) "t = Z -
J

j=1

tr T(t;n(ﬂ'Hp)j)a

where r is a representation of L H' = H’ x Gal(Q,/Q,) and 7y, is unram-
ified. For general E, r = Ind(r%; Wq, Wg).
We now continue with E =Q, p = (p), ¢ = p.

THEOREM 3. The Zeta function is equal to the product over the {mp}
and the g in {rg} of

1
Lp(s - 5 dim SKfaﬂ'H7 r)tr{ﬂzf}(fg)

if mp is stable (of type (1), (2) or (3)), or

1 ,
Ly(s— 3 dim Sk, , 7w, 7 + (—1)n(mxm2)y o s)"{“%f}Jr(fg)

times

1 .
L,(s— 3 dim Sk, mh, 7 — (=1)™mxm2)y o s)tr{ﬂilf} (/&)

if 7y is (unstable and tempered) of type (4), or

1 1 x
Ly(s — B dimSKf»WH75(§7727 5)7“ +ro s)tr{Wpr} (#)
times

1 1 Py (P
Lp(S_ §dimSKfa7TH7_€(§7T2,§)T+TOS)tr{ﬂHf} (fH)

if 7y is (unstable and nontempered) of type (5). Here
r(tp(ﬂ—H;D)) is ®u\p Tu(t(ﬂ—Hu))
and
(T o 8)(tp(7THP)) = ®u|pr(s t<7THu))

In the case of Shimura varieties associated with subgroups of GL(2), a
similar statement is obtained in Langlands [L5]. In general, our result is
predicted by Langlands [L.3-5] and more precisely by Kottwitz [Ko4].
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4. The Shimura Variety

Let G be a connected reductive group over the field Q of rational numbers.
Suppose that there exists a homomorphism % : Rc/rG, — Gr of alge-
braic groups over the field R of real numbers which satisfies the conditions
(2.1.1.1-3) of Deligne [D5]. The G(R)-conjugacy class Xo = Int(G(R))(h)
of h is isomorphic to G(R)/K, where K, is the fixer of h in G(R); it
carries a natural structure of a Hermitian symmetric domain. Let Ky be
an open compact subgroup of G(Agy), where Agy is the ring of adeles of
Q without the real component, sufficiently small so that the set
Sk, (C) = GQ\[Xeo x (G(Agy)/Ky)] = GQ\G(Ag) /Koo Ky

is a smooth complex variety (manifold).

The group R¢/rGy obtained from the multiplicative group G, on re-
stricting scalars from the field C of complex numbers to R is defined over R.
Its group (Rg/rGrm)(R) of real points can be realized as {(z,%); 2z € C*} in
(Rg/rGm)(C) = C* x C*. The G(C)-conjugacy class Int(G(C))pup of the
homomorphism py, : Gy,,c — Gc, 2 — h(z,1), is acted upon by the Galois
group Gal(C/Q). The subgroup which fixes Int(G(C))(up) has the form
Gal(C/E), where E is a number field, named the reflex field. There is a
smooth variety over E determined by the structure of its special points (see
[D5]), named the canonical model Sk, of the Shimura variety associated
with (G, h, Ky), whose set of complex points is S, (C) displayed above.

Let L be a number field, and let p be an absolutely irreducible finite
dimensional representation of G on an L-vector space V,. Denote by p
the natural projection G(Ag)/KoKs — Sk,(C). The sheaf V : U

Vo(L) x p~'U of L-vector spaces over Sk, (C) is locally free of rank
p,G(Q)
dimy, V,. For any finite place A of L the local system V®r Ly : U —

Vo(Ly) X% p~ U defines a smooth Ly-sheaf V) on Sk, over E.
p,G(Q)

The Baily-Borel-Satake compactification S'Kf of Sk, has a canonical
model over E as does Sk ;. The Hecke convolution algebra Hp, ; of com-
pactly supported bi-K j-invariant L-valued functions on G(Agy) is gen-
erated by the characteristic functions of the double cosets Ky - g - Ky
in G(Agy). It acts on the cohomology spaces H'(Sk,(C),V), the co-
homology with compact supports Hf;(SKf (C),V), and on the intersec-
tion cohomology L-spaces TH'(S% (C),V). These modules are related
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by maps: H: — IH® — H'. The action is compatible with the isomor-
phism H:(Sk,(C),V) ®L Ly ~ Hi(Sk, ®& Q,V)), (same for H* and for
TH'(8")), but the last étale cohomology spaces have in addition an action
of the absolute Galois group Gal(Q/E), which commutes with the action
of the Hecke algebra (X ®g Q abbreviates X Xgpecr Spec Q).

5. Decomposition of Cohomology

Of interest is the decomposition of the finite dimensional L-vector spaces
IH', H" and H} as Hg, 1, x Gal(Q/E)-modules. They vanish unless
0<s< 2dimSKf. Thus

i _ K i K
) Hi(Sk, ©3Q,V3) = & 7, © Hilxsd, ).

The (finite) sum ranges over the inequivalent irreducible H, ,-modules

7'('?:2)\. The H ;(wfik) are finite dimensional representations of Gal(Q/E)
over Ly. Similar decomposition holds for H* and I H!(S").

In the case of TH, the Zucker conjecture [Zu], proved by Looijenga and
Saper-Stern, asserts that the intersection cohomology of S’Kf is isomorphic
to the L2-cohomology of Sk - The isomorphism commutes with the action
of the Hecke algebra. The L2-cohomology with coefficients in the sheaf
Ve : U — V,(C) cif((@) p~(U) of C-vector spaces, H(,)(Sk,(C), Vc), has a

P,
(“Matsushima-Murakami”) decomposition (see Borel-Casselman [BC]) in

terms of discrete spectrum automorphic representations. Thus
i K i
H(y) (Sk;(C),V¢) = ?m(w)ﬂ'f T® H' (g, Koo; Too ® V,(C)).

Here 7 ranges over the equivalence classes of the discrete spectrum (irre-
ducible) automorphic representations of G(Ag) in

Ly = L3(G(Q)\G(Ag), C)

and m(m) denotes the multiplicity of m in L2. Write 7 = 7 ® 7o as
a product of irreducible representations 7y of G(Agys) and 7o of G(R),
according to Ag = AgsR, and W]Ic(f for the space of Ky-fixed vectors in
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my. Then ch{f is a finite dimensional complex space on which Hy, =
Hg 2 ®1C acts irreducibly. The representation 7. is viewed as a (g, Koo )-
module, where g denotes the Lie algebra of G(R), and

H' (g, Koo; Moo @ pc) = H'(9, Kooi Moo @ V,(C)), pc=p®L C,

denotes the Lie-algebra cohomology of 7, twisted by the finite dimen-
sional representation pc of G(R). Then the finite dimensional complex
space H'(g, Koo; Too ® pc) vanishes unless the central character w,_ and
the infinitesimal character inf(7) are equal to those wj., inf(pc) of the
contragredient pc of pc; see Borel-Wallach [BW].

There are only finitely many equivalence classes of 7 in L? with fixed
central and infinitesimal character, and a nonzero K ;-fixed vector (ﬂ'ch(f #
0). The multiplicities m(n) are finite. Hence HZQ)(SKf (C),V¢) is finite
dimensional. The Zucker isomorphism (for a fixed embedding of Ly in C)
of Hg, 1 ®1, C = Hg ,-modules

TH! (S}, x5 Q, V) @1, C 5 Hiy (Sk, (C), Vg)

then implies that the decomposition (1) ranges over the finite set of equiv-
alence classes of irreducible 7 in L2 with W;(‘f # 0 and 7o with central

and infinitesimal characters equal to those of pc. Further, ﬂfﬁ)\ of (1) is

an irreducible H, 1,,-module with Wfﬁ/\ ®r, C= ﬂ;(f for such a discrete
spectrum m = Ty ® Moo, and

dimy,, IHi(ﬂ]Iff) = Zm(ﬂf ® Too) dimg Hi(g7 Koo; Too ® pe)-

Too

Moreover, each discrete spectrum m = 7y ® T, such that the central and
infinitesimal characters of 7. coincide with those of pc (where p is an
absolutely irreducible representation of G on a finite dimensional vector
space over L) has the property that for some open compact subgroup
Ky C G(Agy) for which wff # {0}, there is an L-model ’ﬂ'fc{i of T;(f.

It is also known that the cuspidal cohomology in H/, that is, its part
which is indexed by the cuspidal 7, makes an orthogonal direct summand
in H! @, C, and also in TH' ®1, C (and H' ®, C). When we study
the 7s-isotypic component of H! ®r, C for the finite component 7; of
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a cuspidal representation 7, we shall then be able to view it as such a
component of TH*.

Our aim is then to recall the classification of automorphic represen-
tations of PGSp(2) given in [F6], in particular list the possible 7y =
THf ® THoo in the cuspidal and discrete spectrum. This means listing the
possible Ty, then the o which make gy ® T occur in the cusp-
idal or discrete spectrum. Further we list the cohomological 7g,, those
for which H(h, K;Treo @ pc) is nonzero, and describe these spaces. In
particular we can then compute the dimension of the contribution of mg ¢
to IH*. Then we describe the trace of Fr, acting on the Galois repre-
sentation H (7 ) attached to mgy in terms of the Satake parameters of
THp, in fact any sufficiently large power of Fr,. This determines uniquely
the Galois representation H} (7 ¢), of Gal(Q/Q), and in particular its di-
mension. The displayed formula of “Matsushima-Murakami” type will be
used to estimate the absolute values of the eigenvalues of the action of the
Frobenius on H} (7g ).

6. Galois Representations

The decomposition (1) for [H then defines a map ny — [H'(7s) from
the set of irreducible representations 7 of G(Agy) for which there exists
an irreducible representation 7, of G(Ag) with central and infinitesimal
characters equal to those of pc such that 7o @ 7y is discrete spectrum,
to the set of finite dimensional representations of Gal(Q/E). We wish
to determine the representation I'H i(ﬂ'f) associated with 7y, namely its
restriction to the decomposition groups at almost all primes.

However, the cohomology with which we work in this paper is H and
not TH'(S').

Let p be a rational prime. Assume that G is unramified at p, thus
it is quasi-split over @, and splits over an unramified extension of Q,.
Assume that K is unramified at p, thus it is of the form K;’Kp where
K% is a compact open subgroup of G(Ag;) and K, = G(Zp). Then E is
unramified at p. Let p be a place of E lying over p and A a place of L such
that p is a unit in Lx. Let f = f?fx, be a function in the Hecke algebra
Hg,,r, where f? is a function on G(Aaf) and fr, is the quotient of the
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characteristic function of K, in G(Qp) by the volume of K,. Denote by Fr,,
a geometric Frobenius element of the decomposition group Gal(Q,/E,).

Choose models of Sk, and of S}(f over the ring of integers of E. For
almost all primes p of Q, for each prime p of E over p, the representa-
tion H(Sk, ®&Q, V) of Gal(Q/E) is unramified at g, thus its restriction
to Gal(Q,/E,,) factorizes through the quotient Gal(Q}"/E,,) ~ Gal(F/F)
which is (topologically) generated by Fr,; here Q)" is the maximal unram-
ified extension of @, in the algebraic closure Q,, F is the residue field of
E, and IF an algebraic closure of F. Denote the cardinality of IF by gq; it
is a power of p. As a Gal(F/F)-module H}(Sk, ®&Q, V) is isomorphic to
Hci(SKf RRr F, V)\).

Deligne’s conjecture proven by Zink [Zi] for surfaces, by Pink [P] and
Shpiz [Sh] for varieties X (such as Sk,) which have smooth compactifi-
cation X which differs from X by a divisor with normal crossings, and
unconditionally by Fujiwara [Fu], and recently Varshavsky [Va], implies
that for each correspondence fP there exists an integer jo > 0 such that
for any j > jo the trace of f7 - Fré on

2 dim SKf ) ) _
_690 (=1)" H(Sk, @ F,Vy)
1=
has contributions only from the variety Sk, and not from any boundary
component of S'Kf. The trace is the same in this case as if the scheme

Sk; O F were proper over F, and it is given by the usual formula of the
Lefschetz fixed point formula. This is the reason why we work with H¢ in
this paper, and not with IH*(S").



II. AUTOMORPHIC REPRESENTATIONS
1. Stabilization and the Test Function

Kottwitz computed the trace of f?- Fré on this alternating sum (see [Ko6],
and [Kod], chapter III, for p = 1) at least in the case considered here. The
result, stated in [Ko4], (3.1) as a conjecture, is a certain sum

3 e(10;7:6) - O(, f7) - TO(6, ;) - tr p(0),

Yo (7v,9)

rewritten in [Kod4], (4.2) in the form

ZZZ a(70:7,6), ) - €(7,6) - O(x, f2)

K (7,9)

(6, 6;) - T tr pc(70) -
o0)(R)/Ac(R)°|
where O and TO are orbital and twisted orbital integrals and ¢; is a
spherical (K, = G(Z,)-biinvariant) function on G(Q,). Theorem 7.2 of
[Ko4] expresses this as a sum

> (G, H)STF2(f1;7)
over a set of representatives for the isomorphism classes of the elliptic
endoscopic triples (H,s,n0 : H — G) for G. The STF:8(f}°") indicates
the (G, H)-regular Q-elliptic part of the stable trace formula for a function

f5° on H(Ag). The function f}*”, denoted simply by h in [Ko4], is
constructed in [Ko4], Section 7 assuming the “fundamental lemma” and

“matching orbital integrals”, both known in our case by [F5] and [W].
Thus f};°* is the product of the functions f% on H (A;) which are
obtained from f& by matching of orbital integrals, fifp on H(Qp) which is
a spherical function obtained by the fundamental lemma from the spher-
ical function ¢;, and f;f. on H(R) which is constructed from pseudo-
coefficients of discrete series representations of H(R) which lift to discrete

227
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series representations of G(R) whose central and infinitesimal characters
coincide with those of pc. We denote by f3;™" = f; fi7, [ Kottwitz’s
function h = hPhyh, so that functions on the adele groups are denoted
by f, and the notation does not conflict with that of h: R¢/rGn — G.
The factor (aP(y0;7), s) is missing on the right side of [Ko4], (7.1). Here

o’ = [ aw, where ay(vo;7) € X*(Z(10)" ™ /Z(Io)" 0 Z(GF™)))

v#Pp,00

as defined in [Ko4], p. 166, bottom paragraph

We need to compare the elliptic regular part STF.8( if’p ) of the stable
trace formula with the spectral side. To simplify matters we shall work
only with a special class of test functions fP = ®yxp.ccfv for which the
complicated parts of the trace formulae vanish. Thus we choose a place
vo where G is quasi-split, and a maximal split torus A of G over Q,,, and
require that the component f,, of f? be in the span of the functions on
G(Q,,) which are bi-invariant under an Iwahori subgroup I,, and sup-
ported on a double coset I, al,,, where a € A(Q,,) has |a(a)| # 1 for all
roots o of A. The orbital integrals of such a function f,, vanish on the
singular set, and the matching functions fr,, on H(Q,,) have the same
property. This would permit us to deal only with regular conjugacy classes
in the elliptic part of the stable trace formulae STFX8(f%%7), and would
restrict no applicability.

To avoid dealing with weighted orbital integrals and the continuous
spectrum, we note that these vanish if two components of the test func-
tion f%}s’p are discrete, by which we mean that they have orbital integrals
which are zero on the regular nonelliptic set. The component f3”;, has
this property. If G = Rp oG is obtained by restriction of scalars from
a group Gy defined over a totally real field F', then G(Q) = G1(F) and
G(R) = G1(F®R) =[] G1(R); the last product has [F : Q)] factors. Corre-
spondingly the function f;¥_ is a product of [F : Q] discrete factors. This
gives the equality of the elliptic regular part of the stable trace formula
with the discrete spectral side when F' # Q. If F = Q, and in general,
we may take some of the components f,, of fP to be discrete, for example
pseudo-coefficients of discrete series representations, to achieve this van-
ishing of the weighted terms in the trace formula. Such a choice of course
will limit our results to only those automorphic representations with the
specified (by the f,,) elliptic components.
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2. Automorphic Representations of PGSp(2)

We then need to describe the stable trace formulae. This we can do only in
the special case, studied in [F6]. We then use the notations of [F'6] from now
on, and in particular the group denoted so far by G will be denoted from
now on by H' = Rp,gH, where F is a totally real number field and H is
the projective group PGSp(2) of symplectic similitudes over F'. When de-
scribing the automorphic representations of H’, note that H'(Q) = H(F)
and H'(Ag) = H(A), where A denotes now the ring of adeles of F' (and Ag
of Q). It is more convenient to describe the automorphic representations
of H/F. Working with PGSp(2) is the same as working with GSp(2) and
functions transforming trivially under the center.

A detailed description of the automorphic representations of H/F is
given in [F6]. We recall here only the most essential facts. The group

H = PGSp(2) is the quotient of (we put J = (_Ow Lg) , w= (2 (1)))

GSp(2) = {(9:A) € GL(4) X Gy 'gJg = AT}

by its center {(A,A*); A € G,,}. It has a single proper elliptic endoscopic
group Cy = PGL(2) x PGL(2) over F. The group H itself is one of the two
elliptic endoscopic groups of G = PGL(4) with respect to the involution 6,
0(g) = J~! tg=1J. The other #-twisted elliptic endoscopic group of G is

C=%“S0(4)/F” ={(g1,92) € GL(2) x GL(2); det g1 = det g2}/G,.

The automorphic representations of H are described in [F6] in terms of
liftings, defined by means of the natural embeddings of L-groups. The
groups G, H, C, Cy are split. Hence their L-groups (YG,...) are the
direct product of the connected component of the identity (CA}’7 ...) with
the Weil group. Let 0 be the involution on G defined by the formula which
defines 6. Writing ZG(éé) for the group of g in G with 80(g)§~! = g, the
L-group homomorphisms are

M C = “S0(4,C) = Z5(30) — G, )Xo :Co= Zz(50) — H.
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Here §y = diag(1,—1,—1,1), § = diag(—1,1,—1,1), and C consists of the
A®B = (Zg Zg )7 where (A = (Z Z) ,B) ranges over GL(2,C)xGL(2,C)
with det A-det B = 1, modulo (2,27 1), 2 € C*. These homomorphisms of
complex groups define liftings of unramified representations via the Satake
transform. They are extended in [F6] to ramified representation by char-
acter relations involving packets and quasi-packets (which are introduced
in [F6]).

The packets and quasi-packets define a partition of the discrete spec-
trum of H(A). To define a global (quasi-) packet P = {r}, fix a local
(quasi-) packet P, = {m,} at every place v of F', such that P, = {m,} con-
tains an unramified representation 70 at almost all places. Then P = {7}
consists of all products ®m, over all v, where 7, € P, = {m,} for every v
and 7, = 70 for almost all v.

Before we recall the definition of local packets, we state that the discrete
spectrum of H(A) is the disjoint union of what we call the stable and un-
stable spectra. The lifting A defines a bijection from the set of packets and
quasi-packets of discrete spectrum representations in the stable spectrum
to the set of self contragredient discrete spectrum (cuspidal or residual)
representations of G(A) which are not in the image of A;.

In particular, A maps one dimensional representations of H(A) to one
dimensional representations of G(A), stable non one-dimensional packets
of H(A) to cuspidal self contragredient representations of G(A), and the
quasi-packets in the stable discrete spectrum of H(A), each of which has
the form {L(¢v,v='/272)}, to J(v'/?x%,v=1/272), residual representations
of G(A).

Here L(¢v, v~1/272) is the unique quotient of the representation of H (A)
normalizedly induced from the “Heisenberg” maximal parabolic subgroup
(whose unipotent radical is a (nonabelian) Heisenberg group) and the indi-
cated representation on the Levi subgroup A* x GL(2,A): 72 is a cuspidal
irreducible automorphic representation of GL(2, A) with central character
€ # 1 of order two and &n? = 72,

The J(v'/?7%,v~1/272) is the unique quotient of the representation
I (1/1/ 252 p=V/ 272) normalizedly induced from the parabolic subgroup of
type (2,2) and the indicated representation of the Levi factor, where v(x) =
|z| and 72 is a cuspidal automorphic representation of GL(2,A) with cen-

tral character ¢ # 1 of order two and {72 = 72,
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In particular, the image of A in the discrete spectrum self-contragredient
representations of PGL(4, A) is precisely the complement of the lifting A
from C(A).

Similarly, the lifting Ao defines a bijection to the set of packets and
quasi-packets in the unstable spectrum of H(A) from the set of unordered
pairs {7} x 72,72 x 7l;7! # 72} of discrete spectrum automorphic rep-
resentations of PGL(2,A). This last set is bijected by A with the set of
automorphic (irreducible) representations (7t 72) normalizedly induced
from the representation 7! ®7? on the Levi subgroup of G(A) of type (2,2),
where 7!, 72 are discrete spectrum on PGL(2,A) with 7 # 2. In fact
if ! x 72

when 7! or 72 are one-dimensional, \o(7! x 72) is a quasi-packet.

is cuspidal it is mapped by g to a packet, while if not, that is

To repeat, the global liftings are defined by the L-group homomorphisms
for almost all components, which are unramified, and it is a theorem that
the liftings extend to all places in terms of packets and quasi-packets, and
have the properties listed above.

The stable part of the discrete spectrum, defined above by means of the
bijection A, has the property that the multiplicity in the discrete spectrum
of H(A) is stable, namely constant over each packet. Thus each member
®,my, of a packet {7} which A-lifts to a discrete spectrum representation
7w ~ 7 of PGL(4, A) occurs in the discrete spectrum of H(A) with multi-
plicity one. The same is true for the stable quasi-packets, each of which is
of the form {L(¢v,v=1/%72)}.

3. Local Packets

The multiplicity is not constant on the unstable packets, but it is bounded
by one. It is possible that a member in an unstable packet will not occur
in the discrete spectrum of H(A). Then its multiplicity is zero. To specify
the multiplicity, we need to describe the local packets. For this purpose
we recall the main local theorem of [F6]. It has 4 parts.

Let F' be a local field.

(1) For any unordered pair '

, w2 of irreducible square integrable rep-
resentations of PGL(2, F) there exists a unique pair WE, g of tempered
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(square integrable if 7! # 72, cuspidal if 7! # 72 are cuspidal) represen-
tations of H(F), 7}, is generic, 7 is not, with

tr(r! x 72)(fe,) = trajy(fi) — trmg (fr)

tI‘Ig(Wl,W2;f x 0) = ter(fH) +trog(fu)

for every triple of matching functions f, fr, fc,, for a suitable choice of an
operator 7(0), ® = Ig(n', 7%), intertwining 7 with 7, and having order 2.

We define the packet of 7}, and of 7} to be {n};,75;}. The packet of
any other irreducible representations of H(F) is defined to be a singleton.
More details are known.

If 7t = 72 is cuspidal, WIJQ and 7, are the two inequivalent constituents
of the induced representation 1 x 7! from the Heisenberg parabolic sub-
group, Tr;} is the generic constituent.

If 7! = 7% = o sp, where o is a character of F'* with 0 = 1, then WE

1/2

and 75; are the two tempered inequivalent constituents 7(1*/2 sp,, ov=1/2)

and 7(v'/?15,0071/2) of 1 x 0 sp,.

If 71 = osp,y, 02 = 1, and 72 is cuspidal, then 771‘; is the square in-

tegrable constituent §(ov'/?7% ov=1/2) of the induced ov'/?7? x ov=1/2
from the Siegel maximal parabolic subgroup of H(F') (with abelian unipo-
tent radical). The 75 is cuspidal, denote by 6~ (ov'/27% ov=1/2).

If 7t = ospy, and 7 = Eospy, & (# 1 = €2) and o (0? = 1) are

characters of F'*, then WI‘; is the square integrable constituent

3(&v/? spg, ov1/?)

—~1/2

of the induced év'/2 sp, xov~1/2. The 7}, is cuspidal, denoted by

5_(§u1/2 SPa, Uu_1/2).

(2) For every character o of F'*/F*? and square integrable 72 there
exists a nontempered representation 7;; of H(F') such that

tr(n? x ol2)(fo,) = trmy (fu) + tr g (frr)
trIg(n?, ola; f x 0) = trm ) (fu) — trmy (Fr)
for every triple (f, fu, fc,) of matching functions. Here

g =ng(ospy x7?) and 7w = L(ov'/?7% ov1/?).
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(3) For any characters &, o of F*/F*? and matching f, fu, fc, we
have

tr(o€1ls x ola)(fc,)

=tr L&, € x ov Y2 (fu) — tr X (E0Y /2 spy, Eov™2) (fu),
trig(o€ly,01y; f X 0)

= tr L(v&, & x ov™ ) (fur) + tr X (€012 sp,. Eov™ V%) (fn).

Here X =6 ifé#A1and X =L if £ = 1.

(4) Any f-invariant irreducible square integrable representation m of
G which is not a A;-lift is a A-lift of an irreducible square integrable
representation wp of H, thus trw(f x ) = trwg(fy) for all matching
f, fm. In particular, the square integrable (resp. nontempered) con-
stituent 6(Ev, v=1/272) (resp. L(€v,v~1/?7?)) of the induced representa-
tion v x v~ 1/272 of H, where 72 is a cuspidal (irreducible) representation
of GL(2, F) with central character £ # 1 = ¢2 and &n? = 72, M-lifts to the
square integrable (resp. nontempered) constituent

S 2n? y=1272) (resp. JW?x? v 202))

of the induced representation I (v/?7? v=1/272) of G = PGL(4, F).

We define a quasi-packet only for the nontempered irreducible represen-
tations 7, and L = L(v€, & x ov™1/2), to consist of {m);, 75}, and of
{L, X}, X = X(&v'/%spy, Eov™1/2).

Using the notations of sections IV.1-IV.5 below, we state the analogue

1

of these results in the real case: F' = R. In (1), 7! = 7, and 72 = 7y,,

k1 > ko > 0 and kq, ko are odd, are discrete series representations of
PGL(2,R), and WE is the generic 77,\?17?‘,92, 7y is the holomorphic W}C]?’lkz,
which are discrete series when k1 > ko. When k1 = ko, WE is the generic
and 7y is the nongeneric constituents of the induced 1 x mag,+1. There
is no special or Steinberg representation of GL(2,R); the analogue is the

1

lowest discrete series 7'. It is self invariant under twist with sgn. In (2)

with 72 = mo43 (k > 0), 75 is L(ov' o3, 007 1/2), my is 712‘,‘313’1. In
(3),if € = sgn then X is 7 C Ix7!, if £ =1 then X is L(w'?7t ov=1/2),
but both of these X, as well as L(v€,& x cﬂ/*l/2)7 are not cohomological,
and will not concern us in this work.
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4. Multiplicities

We are now ready to describe the multiplicities of the representations in
the packets and quasi-packets in the unstable spectrum of H(A).

Each member of a stable packet occurs in the discrete spectrum of
PGSp(2, A) with multiplicity one. The multiplicity m(mp) of a member
TH = ®TH, in an unstable [quasi-] packet A\o(m! x 72) (7! # 72) is not
(“stable”, namely) constant over the [quasi-] packet.

If 7' x 72 is cuspidal then

m(m) = 51+ (-1 (€ {0,1)).

Here n(mg) is the number of components 7y, of 7y (n(ny) is bounded
by the number of places v where both 7} and 72 are square integrable). If
m(mg) = 1 then 7y is cuspidal.

If 72 is a cuspidal representation of PGL(2,A) and o is a character
of AX/F*A*2, the multiplicity m(rg) of 7y = @7, in a quasi-packet
Ao(m? x 013) is

1

3 <1 + e(on?, %)(—1)"“1{)) (=0or1),

where n(rp) is the number of components 75, of 7y, and € = e(on?, 1)
is 1 or —1, being the value at % of the e-factor occurring in the functional

2. This ¢ is 1 if and only if

equation of the L-function L(o7?,s) of om

7y = ®mpy, (n(rg) = 0) is discrete series.
Finally we have m(ry) = 1(1+(=1)"("#)) for 1y = @y, in Ag(0€1y x

ols) with n(mg) components 7wy, = X,. Here 71y = ®L, (n(mg) =0) is

residual.

5. Spectral Side of the Stable Trace Formula

We are now in a position to describe the spectral side of the stable trace for-
mula for a test function fy = ® fg, with at least two discrete components,
on H(A). Thus STFy(fy) is the sum of five parts: I(H,1),...,I(H,5).
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The first, I(H, 1), is the sum of three subterms: I(H,1);, i = 1,2, 3, each
of which is a sum of products

[T tr{mao} (fao),

where tr{m, } indicates the sum of tr m g, over all wg,, in a packet or quasi-
packet {7, }, over all packets and quasi-packets in the stable spectrum.

I(H,1); ranges over the packets {my } which A-lift to cuspidal self con-
tragredient representations m of PGL(4, A) not in the image of A;.

I(H, 1), ranges over the discrete series quasi-packets {L(¢v, v~1/272)}
(which M-lift to the residual J(v'/272, v=1/272), cuspidal 72 with quadratic
central character £ # 1 with {2 = 72).

I(H,1)3 is a sum over the one dimensional representations mp of H(A).

The second part, I(H,2), of STFy(fx), is the sum of

% H{trﬂ';v(va) + trﬂ-;[v(fHU)}

over all unordered pairs (7', 72) of distinct cuspidal representations of

PGL(2,A). Here {mg} is the X\o-lift of 7! x 72, that is \o(7} x 72) =
{70 i} for all v, and 7y, is zero if 7} and 72 are not both discrete
series.

The third part, I(H, 3), is the sum of

0'7'('2 1
% [Tt it (o) = tr g, (fra0)}

2 is a cuspidal representation of PGL(2, A)

over all pairs (o,7%), where 7
: X X A X2 : X — :

and o is a character of A* /F*A**. For each v the pair {mj, , 7y, } is the

quasi-packet \o(72 x 0,12) when 72 is discrete series, while it consists only

of myy, (and 7y, is zero) when 72 is not discrete series.

The fourth part, I(H,4), is the sum of
1
B H{tr Lyo(fav) +tr Xgo(fro)}

over all unordered pairs (0, ) of characters of AX/F*A*? with ¢ # 1.
For each v the pair {Lg,, X, } is the M-lift of 0,€,12 X 0,15.
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The fifth part, I(H,5), is the sum over all discrete spectrum represen-
tations 72 of PGL(2,A) of the terms

i Hter o (1 X Wg)(va)

At each place v where 72 is properly induced (hence irreducible), the nor-
malized intertwining operator R, is the scalar 1, and tr(1 x 72)(fw,) =
tr(m2 x 72)(foyw) for a matching function fc,, on Co(F,). If 72 is square
integrable (or one dimensional), our local results assert that the two con-
stituents of the composition series of 1372 can be labeled W;,FIU (or mj,) and
T, Such that for matching functions tr(w2 x m2)(fcow) is tr iy, (fre) —
tr ., (Fro) (or trmyy, (Fro) +tr 7, (fio)). Moreover, R, acts on 77, as

1 and on 7, as —1 when 72 is square integrable, and as 1 on both 71';_}”

2

2 is one dimensional.

and 7y, when 7

6. Proper Endoscopic Group

The spectral side of the other trace formula which we need is for a function
feo = ®fcyw on Co(A) = PGL(2,A) x PGL(2,A). It comes multiplied by
the coefficient %. Since PGL(2) has no proper elliptic endoscopic groups,
this trace formula is already stable. Thus STF¢,(fo) = TF¢, (fo). It is a
sum of three sums, I(Cy,4),7 = 1,2,3. The first, I(Cp, 1), is a sum of

[T (s > 72 (feow)

over all ordered pairs (7!, 72) of cuspidal representations of PGL(2,A).
The second part, I(Cy,2), is a sum of

Htr(ﬂ'?} X UUIQ)(fCoU) + Htr(av]-Q X Wg)(fco'u)

over all pairs (o,72), where 72 is a cuspidal representation of PGL(2,A)

and o is a character of AX/F*A*2. The third, I(Cp,3), is the sum over
all ordered pairs (o,&0) of characters of AX/F*A*? of the products

H tr(av&;lQ X 01)12)(fcov)'

v
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At all places v # p, oo the component f¢,, is matching f#,,, so the local
factor indexed by v in each of the 3 cases can be replaced by

trﬂEv(fHU) —tr 7wy, (fHo),
tr 7wy, (frw) + 0w, (fro),
tI'LHU(va) - trXHv(va)-



III. LOCAL TERMS
1. Representations of the Dual Group

Part of the data which is used to define the Shimura variety is the G(C)-
conjugacy class Int(G(C))(pp) of the homomorphism pp, : G, — G over C.
Let C}, denote the set of conjugacy classes of homomorphisms p : G,, — G
over a field k. The embedding Q@ — C induces an Aut(C/Q)-equivariant
map C@ — Cc. This map is bijective. Indeed, choose a maximal torus T
of G defined over Q. Then Homg(G,,,T)/W — Cg is a bijection, where
W is the Weyl group of T in G(Q). Similarly Hom¢(G,,, T)/W — Cc
is a bijection. Since Hom@(Gm,T) — Homg(G,,,T) is an Aut(C/Q)-
equivariant bijection, so is C’@ — C¢. The conjugacy class of up over C is
then a point in Homg(Gy,, T')/W. The subgroup of Gal(Q/Q) which fixes
it has the form Gal(Q/E), where E is a number field, named the reflex
field. It is contained in any field E; over which G splits, since T can be
chosen to split over E;.

In our case (G is) H' = Rp/gH, where H is PGSp(2) over a totally real
field F. Thus H' is split over Q, and E = Q. Note that H'(Q) = H(F)
and H'(R) = H(R) x --- x HR) ([F : Q] times). The dimension of
the corresponding Shimura variety is 3[F : Q], where 3 is half the real
dimension of the symmetric space H(R)/K g ).

Let (r,V,) be the representation of »Hy = H' x Wi determined by
Int(H'(C))up (see [L5] and section 1). It is determined by two properties.
(1) The restriction of 7% to H' is irreducible with extreme weight —p.
Here p = pp € X*(T) = X.(T) is a character of a maximal torus 7" of
H' , uniquely determined up to the action of the Weyl group. (2) Let y be
a splitting ([Ko3], Section 1) of H’. Assume that y is fixed by the Weil
group Wg of E. Then Wg C L H{, acts trivially on the highest weight space
of V,, corresponding to y. Put » = r,, for the representation induced from
7 on H' x Wy to H' x Wy.

We proceed to specify this representation explicitly in our case, as the
twisted tensor 47@-dimensional representation of Sp(2, (C)[F:Q] Wk, E =

238
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Q. In particular, r = 0.

Consider first H = PGSp(2)/Q. Take h : Rg/rGy — Hg to be defined

by h(a + bi) = (_abII Zf.) ,I = I. Over C, the homomorphism A can be

diagonalized to (z,w) +— diag(zI,wI). We claim that the representation
r of H = Sp(2,C) is its natural embedding in GL(4,C). Let T3 be the
diagonal torus in H, and Ty the diagonal torus in H. Then X,(Ty) =
{(a,b,—b,—a); a,b € Z} and

X*(TH) = {(z,y, z,t) mod(n,m,m,n); x,y, z,t € Z}.

Here (z,y, z,t) takes diag(a,b,b=%,a™!) in Ty to a® tb¥=%. The isomor-
phism  u: X*(TH) :>X*(T}f1)

:{(a7ﬁ7’776)m0d(6767676);a7ﬂ’77676GZ’a+6:ﬂ+7}

is given by u : (x,y,2,t) — (x +y,xz + z,y + t,2 + t), with inverse
ut i (a,8,7,0) — (@ —v,a—3,0,0). Now X,(T}) is spanned by the
cocharacters ap = (0,0,1,1) : z — diag(1,1,z, x),

ar; = (1,0,0,—1) : 2 — diag(x, 1,1,z 1),
as = (0,1,-1,0) : 2 — diag(l,z,27*1).

An extremal weight of r is ag, viewed as a character of TH, thus
u Y ap) = (~1,0,0,0).
The orbit under the Weyl group W = ((23), (12)(34)) of «y is

g, (23)0[0 =g+ ay = (0, 1,0, 1), (14)0&0 = t+a; = (170, 1,0),

(23)(14) a9 = ap + a1 + az = (1,1,0,0). Their images under u~! are
(-1,0,0,0), (0,—1,0,0) (equivalently (0,0,0,1), (0,0,1,0)), (0,1,0,0), and
(1,0,0,0).

The representation r with these weights is the natural embedding r :
H =Sp(2,C) — GL(4,C).

The unramified representation g (u1,p2) of H = PGSp(2,Q),) con-
tained in the composition series of the representation normalizedly induced
from the character n - diag(a, 8,7,0) — p1(a/v)uz(a/B3) of the upper tri-
angular subgroup is parametrized by the conjugacy class of ¢t x Fr, in
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LH = H x W(Qp'/Qp). Here Fry, is the Frobenius element, which gener-
ates the unramified Weil group W(Q}"/Q,). Further t = (g (p1, p2)) =
diag (g1, o, i3 5, py ) in H = Sp(2,C) (where we write here j; for pu;(m)).
The matrix 7(t(7g (11, p12))) has the eigenvalues puq, pg, 15, iy *, the val-
ues of the weights (1,0,0,0), (0,1,0,0), ... at t = diag(su1, iz, 5~ gty )-
Let now F be a totally real number field, H = PGSp(2) over F,
and H' = RpgH. Fix an embedding ¢ : F — QNR. Then the
set S of archimedean places of F' can be identified with the coset space
Gal(Q/Q)/ Gal(Q/F) by T + u,, where 1, : F — Q is x — 7u(x).
Then H'(Q) = H(F) and H'(R) = [[4 H(R). The connected dual group
H is Il H, H = Sp(2,C), and the L-group is the semidirect product
LH = H'x Wg where the Weil group Wy acts by translation of the factors
via its projection to Gal(F/Q). The homomorphism A : Re/r G, — Hp is

taken to be
oty = (50 ) (50 )

([F : Q] copies on the right). Up to conjugacy by the Weyl group, the
weight p1 : Ty — C*, where Ty is the diagonal torus in H’ (product of
the |S| = [F : Q] diagonal tori in H), has the form

M(H diag<av7bmb;17a;1>) = H Ay -

veS

The group Gal(Q/Q) stabilizes p, thus the reflex field E is Q. Let
r1 be the natural embedding of H = Sp(2,C) in GL(4,C). Then the
representation r = r, of “Hf, = H' x Wy is defined on the [F : Q]-fold
tensor product ®gC?, as follows. For h = (hy;v € S) € H' we have
ru(h) = ®vesri(hy). The Weil group Wg acts by permuting the factors,
thus by left multiplication on S. Then dimr, = A0 and r,, is the twisted
tensor representation.

2. Local Terms at p

Let p be a rational prime which is unramified in F. The Q-group H' =
Rp/oH is Qp-isomorphic to Hu|p H,,, where H = Rp, o, H and u ranges

over the primes of F over Q. The set S of embeddings ¢ of F' into Q (or R, C
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or Q,) is parametrized by the homogeneous space Gal(Q/Q)/ Gal(Q/F),
once we fix such an embedding. The Galois group Gal(Q,/Q,) acts on
the left. If p is unramified in F' this action factorizes via its quotient
Gal(Q,"/Qyp) by the inertia subgroup. The orbits of the Frobenius gener-
ator Fr, are the places u of F' over Q. The group of Q,-points of H' is
H'(Qp) =11, Hi(Qp) = [T, H(Fu).

An irreducible admissible representation g, of H'(Q,) has the form
®umHy. If Tap is unramified then each g, has the form mg (p1q, tou),
where fi14, fi2,, are unramified characters of F)X. We write i, (m = 1,2)
also for its value pip,(m,) at any uniformizing parameter m,, of F,*. Put
tu = t(mra) = dag(iius s oy » Hiy )-

The representation g, is parametrized in the unramified dual group
LH;, = HIFU (Frp) by the conjugacy class of tp x Fr,. Here t, is
the [F : QJ-tuple (t,;ulp) of diagonal matrices in H = Sp(2,C), each
ty = (tuts- .- tun,) is any n, = [F, : Qp-tuple with ], ¢, = t,. The
Frobenius Fr, acts on each t, by permutation to the left: Fr,(t,) =
(tuzs - s tun,,tu1). Bach mp, is parametrized by the conjugacy class of
t, x Fr, in the unramified dual group “H! = HF«=®l x (Fr,), or alter-
natively by the conjugacy class of ¢, x Fr, in H, = H x (Fr,), where
Fr, = FrLF“:QP].

The representation r = ®gr, of LHZ') can be written as the product
®@u|pTu;, Where 7, = ®,e,7,. A basis for r is given by ®ge,, where e, lies
in the standard basis {e1, es, €3, e4} of C*. A basis for r, is given by
®,cue,. The representation r, is called the twisted tensor representation.
The vectors fixed by Fr, are those which are homogeneous on each orbit of
S, in the sense that e, = e; for a fixed ¢ = i(u) for all ¢ € u. In particular

trr(t, xFr,) = Htrru(tu xFr,) = Htr(tu) = H(,ulu—l—,ugu—l—u;ul—l—uful).

ulp ulp ulp
More generally let us compute the trace
trry[(6p x Frp)] = [ [ trrul(tu x Fr,)7].
ulp

We proceed to describe the action of Fr, on Emb(F,R).
Fixing a 09 : ' — QNR (C R), we identify Gal(Q/Q)/Gal(Q/F)
with Emb(F,Q NR) = {oy,...,0,}. The decomposition group of Q at
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p, Gal(Q,/Q,), acts by left multiplication. Suppose p is unramified in F.
Then Fr, acts, and the Fr,-orbits in Emb(F,R) are in bijection with the
places u1,...,u, of F over p.

The Frobenius Fr, acts transitively on its orbit u = Emb(Fu,@p).
The smallest positive power of Fr, which fixes each ¢ € w is n,. The
action of Fr, on @; = G™ s by Fr,(ty) = (tu2,- .., tun,,tu1), where
tu = (tut,---stun,). Then Frp*(t,) is t,

)= (T e T ) g
1<i<n,, 1<i<n,
and

(tu X Frp) = (oo tuituitt - tuigj—t1,- -5 1 <4 <ny) X FI"Z;-

A basis for the 4™»-dimensional representation r, = ®,r,, 0 € u, is
given by ®geueg(g), where ey, lies in the standard basis {e1, ez, e3,e4}
of C* for each ¢. To compute the action of Frf; on these vectors it is
convenient to enumerate the o so that the vectors become

i 1 2 Ny
@1<i<n, Co(i) = €o1) @ €p2) @ @€y, s
and Fr, acts by sending this vector to
i—1 _ i _ 1 2 nu
®i6€(i) = ®i€€(i+1) = 6@(2) ® 6@(3) R ® 66(1)'

Then FrZ“ fixes each vector, and a vector is fixed by Fr;f; iff it is fixed by
Frjpo, 0 < jo < ny, j = jo(modn,). A vector ®iei,(i) is fixed by Fr;f, iff
it is equal to ®i62(i§ = ®iez(7i§°, thus £(i) depends only on imodj (and
imodn,, ), namely only on ¢mod j,, where j, = (j,n,). Then

(bu x Frp) = (oo [ twigns..-) x Frje.
0<k<ju

This is

(tultu2 .. tu,ju? tugtug ce tu,ju+1) e 7tu7jutu7ju+1 e tu72ju—1;

Ju
tu,ju+1 . tu,2ju7 .. ) X FI‘p“ .
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It acts on vectors of the form
(ei,eu) ® ei,e(z) ®--® eiu,z(ju)) ® (6111,6(1) ® 62,@(2) @ efﬁz(]—u)) ®....

The product of the first j, vectors is repeated n,,/j, times.
On the vectors with superscript 1 the class (t, x Fr,)7* acts as

buitu2 gy a1 e b2y e (e 1y b g,

= H tyi =1ty = diag(:ulua M2, :U'27u17 Mi})v
1<i<na

and so (t, x Fry)? acts as #)/7%  The trace is then /Lﬁj“ + ,ué,/Lj“ + u;uj/j“ +
=3/ du

Hiq,

such factors. Put j, = (4,n,). We then have

. The same holds for each superscript, so we get the product of j,

=3

trry[(tu X Frp)’] = (uiy + poy + psy + pis )’

The spherical function fé{) » 18 defined by means of L-group homomor-
phisms “C} — FH' — LH;, where H} = Rgq,/q,H" and Q; denotes the
unramified extension of Q, in Q,, of degree j. Since the groups Cjj and H’
are products of groups Cp,, = R, /g, Co and H,, = R, jq, H, it suffices to
work with these groups. Thus Hj} =[], H,;, where H;,; = Rq, /0, H,,.

The function fé{) , Will be ® fgjo .» for analogously defined féjo w

Now
VH) = ('Y % (Bry) = [T (B, B = BP9, = A,
ulp
and Fr, acts on
x = (Xu), Xu:(xu17-~-7xuj)a Xme]f[;:ﬁ”u7

by
Frp(x) = (Frp(xu)),  Frp(xu) = (Frp(xu2), - .., Frp(xu;), Frp(xu1))-

It suffices to work with LH{”. = (H.) x (Fr,).
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Let si,...,s; be Fr,-fixed elements in Z(Cj,), thus s; = (si,...,8i),
s; € Z(C’O) = {£I,} x {£I>} repeated n, times, with s1...s; = s =
(s,...,s), s =diag(1l,—1,—1,1). Define

My : “Cy = O x (Fry) — LH;]' = (M) x (Fr,)
by
t—(t,...,t), Frp — (s1,82,...,8;) x Frp,

thus
A 7
FI‘p — (51S2...S7;,SQ...Si+1,...7Sjsl -~~Si—1) X FI'p.

The diagonal map H, — H,,; defines LH{U- — LH], (t1,...,t;) x Frzi) —
ti...t; x Fr;. The composition n; : LC}, — LH!, gives

t x Fr;) — t/st x Fr;.
The homomorphism 7); defines a dual homomorphism
H(Kuj\Hu;j/Kuj) — H(Kou\Cou/Kou)

of Hecke algebras. The function fé”o » is defined to be the image by the
relation

7 (7 (1)) (S0) =t mogu (D (FEL,)

of the function ¢; of [Ko4], p. 173, or rather the u-component ¢,,; of ¢;,
which is the characteristic function of Ky; - g, (p~!) - Ky;. Theorem 2.1.3
of [Ko3] (see also [Kod], p. 193) asserts that the product over u|p in F of

these traces is the product of p% dimSKy with the product over ulp of
tr TU(St(ﬂ'HU)j x Frp) = tr(St(WHu)j) = N{u + :U’l_lf - /j‘%u - /~L2_u]

Similarly for s = I we have that the analogous factor (with Cy replaced
by H) is the product with factors

trru (6(mra)? < Fry) = tr(t(mpa)?) = o, + pyg + 1, + pa -
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3. The Eigenvalues at »

We proceed to describe the eigenvalues i1, 12, for the various terms in
the formula, beginning with STF g (f#), according to the five parts which
make it. Note that

)\(WH(Mlua ,UQu)) = WG(Mlua H2u, MZ_ulv Ml_ul)’

where G = PGL(4, F,). We choose the complex numbers i, to have
|ttmu| > 1 (otherwise we replace as we may ji,,., by p,k; m = 1,2). Write
tu for diag(p1u, faus Lz, » 1, )-

The first part of STFy(fr) describes the stable spectrum. It has 3
types of terms.

(1) For the packets {mg} which A-lift to cuspidal g ~ g (¢ Im\p),
t, is

diag(prus p2us iz s 1) with g V2 < | < @i/,

since mg is unitary and so its component 7, is unitarizable. Note that the
unramified component mg,, is generic (since m¢ is), hence fully induced.

(2) For the quasi-packets {L(¢v,v~'/272)}, they Mlift to the resid-
ual J(u1/2772, 1/_1/2772), 72 cuspidal with central character ¢ # 1 = &2
satisfying é7? = w2, The component 72 of 72 at w is unramified of
the form 72(21,, 22,). This is an unramified generic representation of

GL(2, Fy,), hence fully induced, normalizedly from the character (g i’) —

z‘{il(a)z;il(c). We have that 21,22, = &u(m,,) has square 1. If £, # 1 then

{#1u, 224} = {1,—1}. If &, = 1, since 7?2 is unitary its component 72 is

/ 1/2

unitarizable, and so gy /% < |Zmul < @/”. In both cases we have

1/2 2_—1 _—1/2 71)

tu = dlag(qu Zlus qll/222u7 qu_l/ 2oy 1 4y Ay )

Better estimates are known for the |z,,,| (the exponent 1/2 can be reduced

to 1/4 by the theory of the symmetric square lifting), but for our 72 we

shall show below that |z,,.| = 1.
(3) For one dimensional representations 7, A(7mp) = 7 is one dimen-
sional representation g — x(det g), where x is a character of order 2, and

T i) = diag(firu, fou, Hag  H1y ) 18
/

1/2

2 Xu @2, Xuay Y

—3/2

diag(xugy % Xud %),
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where x,, = x(m,) has square 1. Since 7 is a quadratic character we have
3/2 1
that p1, = *qu' ", p2u = qu
The second part of STFy(fy) is a sum of terms indexed by {rg} =

Xo(m! x 72). Here 7t, 72

are cuspidal representations of PGL(2, A), and
tr 7y, (fre) = 0 as f, is spherical. Then the component of 7 (m =1, 2)

at u is the unramified generic thus fully induced 7 = 72(24, 2,,1), and

mu)
= diag(z1u, Zzu,ZQul,zlu) where |z, [Tt < q1/2
The terms in the third part of STF g (fz) correspond to A\o(7? x o15),

2

where 72 is a cuspidal representation of PGL(2, A) and o is a character of

AX/F*A*2. The factors at u|p of 72 are 72 (zu, 2, ), qu < |zi] < @/
So t, = diag(auq}/ Zus 25 Ly Oulu 1/2), where ¢, = o, (m,) has square 1.

The terms in the fourth part correspond to A\g(c&1s X ola), where o, &
are characters of AX/F*A*? with ¢ # 1. Put o, = o, (my). Then

1/2

ty, = diag<0’u§uqi y Ouly, _1/2)7 fu = gu(ﬂ'u)

Uuqu quuq

The fifth part consists of terms indexed by 7y = 1 x 72 where 72 is

a cuspidal representation of PGL(2,A). At u the factor 72 = m2(2,, 2, 1)
is fully induced with |z,|*! < qll/2 and A\(1 x 72) = I(72,72) so that
= dlag(zu, u 17 Zus Z'z:l)

In summary, as noted in the last section, the factor at p of each of the
summands in STF g (fg) has the form (where j, = (ny,7))

p* S e [(4(ray) x Frp)] = p* ™ [ (erft, x Br, )
ulp
ulp
REMARK. As p splits in F' into a product of primes v with F,/Q,, un-

ramified with [F": Q] =3~ [F, : Qp], and the dimension of the symmetric
space H(R)/K g r) is 3, we note that

dim Sk, =3[F : Q] =3 [F,: Q).

ulp
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4. Terms at p for the Endoscopic Group

The other trace formula which contributes is that of Cy(A) = PGL(2, A) x
PGL(2,A). The factors at p of the various summands have the form

p? % [T (st x Pyl

ulp

I dim S 1/ Ju —3/Ju i/ Ju —3/JuN\ju
= pF iy (0 + 45275 — 6l 3303,

ulp

where s = diag(1,—1,—1,1) is the element in H = Sp(2,C) whose cen-
tralizer is Cy = SL(2,C) x SL(2,C). We need to specify the 4-tuples t,
again, according to the three parts of STF¢, (fo). For the first part, where
the summands are indexed by pairs 7! x 72 of cuspidal representations
of PGL(2,A), the t, is the same as in the second part of STFy(fr) if
7t # 72, and as in the fifth part if 7! = 72. For the second part of
STF¢,(fo), the t, for the term indexed by (o, 7?) is the same as for the
third part of STFy(fr). For the third part of STF¢,(fo), the ¢, for the
term indexed by (o, £0) is the same as for the fourth part of STF g (fr) if
& # 1 or the fifth part when £ = 1.



IV. REAL REPRESENTATIONS
1. Representations of SL(2,R)

Packets of representations of a real group G are parametrized by maps of
the Weil group Wg to the L-group “G. Recall that Wg = (z,0;2 € C*,
o2 e R* — Ng/rC*, 0z = Zo) is

1—-Wg— Wg — Gal(C/R) — 1

an extension of Gal(C/R) by We = C*. It can also be viewed as the
normalizer C* U C*j of C* in H*, where H = R(1, 4, j, k) is the Hamil-
ton quaternions. The norm on H defines a norm on Wy by restriction
([D3], [Tt]). The discrete series (packets of) representations of G are
parametrized by the homomorphisms ¢ : Wg — G x Wx whose projection
to Wg is the identity and to the connected component G is bounded, and
such that CyZ(G)/Z(G) is finite. Here Cy is the centralizer Ze(d(Wr))
in G of the image of ¢.

When G = GL(2,R) we have G = GL(2,R), and these maps are ¢y,
(k > 1), defined by

We=C"5zr ((Z/Iozl)k <|z|3z)’“) X% 07 (0(1)) x o

Since 02 = —1 <(_S)k (_2)k) x 02, 1 must be (—1)*. Then det ¢y (c) =

(—=1)**1, and so k must be an odd integer (= 1,3,5,...) to get a dis-

crete series (packet of) representation of PGL(2,R). In fact mp is the

lowest discrete series representation, and ¢y parametrizes the so called

limit of discrete series representations; it is tempered. Even k > 2 and
01

o — (1 0) x o define discrete series representations of GL(2,R) with

the quadratic nontrivial central character sgn. Packets for GL(2,R) and
PGL(2,R) consist of a single discrete series irreducible representation 7.
Note that mp ® sgn ~ 7. Here sgn : GL(2,R) — {£1}, sgu(g) = 1 if
detg >0, =—1if detg < 0.

248



2. Cohomological Representations 249

The 7, (k > 0) have the same central and infinitesimal character as the
kth dimensional nonunitarizable representation

Symi~! C? = | det g|~*~1/2 Sym*~1 C2

into

SL(k,C)* = {g € GL(2,C);det g € {£1}}.

Note that det Symk_l(g) = det g**=1/2 The normalizing factor is

| det Sym*~1 |~1/k, Then SymAi~! (g 2)

= diag(sgn(a)* " sgn(b)a[F~ D2 b=/ < < ),

In fact both 7 and Sym’g_1 C? are constituents of the normalizedly in-
duced representation I (l/k/ 2 sgnk—1py—k/ 2) whose infinitesimal character
is (%, fg), where a basis for the lattice of characters of the diagonal torus

in SL(2) is taken to be (1, —1).

2. Cohomological Representations

An irreducible admissible representation m of H(A) which has nonzero
Lie algebra cohomology H% (g, K;m ® V) for some coefficients (finite di-
mensional representation) V is called here cohomological. Discrete series
representations are cohomological. The non discrete series representations
which are cohomological are listed in [VZ]. They are nontempered. We
proceed to list them here in our case of PGSp(2,R). We are interested in
the (g, K)-cohomology H% (sp(2,R),U(4);7 ® V), so we need to compute
H(sp(2,R),SU(4); 7 ® V) and observe that U(4)/SU(4) acts trivially on
the nonzero H%  which are C. If H (7 ®V) # 0 then ([BW]) the infinites-
imal character ([Kn]) of 7 is equal to the sum of the highest weight ([FH])
of the self contragredient (in our case) V', and half the sum of the positive
roots, 6. With the usual basis (1,0), (0,1) on X*(T%), the positive roots
are (1,—1), (0,2), (1,1), (2,0). Then d = 3>, is (2,1).

Here T denotes the diagonal subgroup {diag(x,y,1/y,1/x)} of the al-
gebraic group Sp(2). Its lattice X*(T¢) of rational characters consists of

(a,b) : diag(z,y,1/y,1/x) = 2%y (a,b € Z).



250 1V. Real Representations

The irreducible finite dimensional representations of Sp(2) are V, ;, para-
metrized by the highest weight (a,b) with a > b > 0 ([FH]). The central
character of V,  is ¢ — ¢¢*°, ¢ € {£1}. Tt is trivial iff a + b is even. Since
GSp(2) = Sp(2) x{diag(1,1, 2, 2)}, such V, ; extends to a representation of
PGSp(2) by (1,1, 2, 2) > 2~ (@+b)/2_ This gives a representation of H(R) =
PGSp(2,R), extending its restriction to the index 2 connected subgroup
H° = PSp(2,R). Another — nonalgebraic — extension is V, , = V., @ sgn,
where sgn(1,1, z, z) = sgn(z), z € R*. V,; is self dual.

To list the irreducible admissible representations = of PGSp(2,R) with
nonzero Lie algebra cohomology H*’(sp(2,R), SU(4); 7 ® V, ;) for some
a > b > 0 (the same results hold with V, ; replaced by Va’7b), we first list
the discrete series representations.

Packets of discrete series representations of H(R) = PGSp(2,R) are
parametrized by maps ¢ of Wy to “H = H x Wg which are admissible
(pry 0 = id) and whose projection to H is bounded and C¢Z(ﬁ)/Z(f1)
is finite. Here Cy is Zz(¢(Wr)). They are parametrized ¢ = ¢y, 1, by a
pair (ki1, ko) of integers with k; > ko > 0 and odd kq, ks.

The homomorphism ¢, &, : W — “G = G x Wg, G = SL(4, C), given
by

2 diag((2/12)", (2/12D)*2, (121/2)*, (121/2)") x =

and
JH( 0 W)XU (odd ky > kg > 0)

or
a|—><0w>><o (even ky > ko > 0),

factorizes via (*Cy —) “H = Sp(2,C) x Wx precisely when k; are odd.

When the k; are even it factorizes via “C' = SO(4,C) x Wg. When the

, : . Wh _hol ‘o g
ki are odd it parametrizes a packet {my 3 ,m>, } of discrete series repre-

sentations of H(R). Here 7" is generic and 7!

is holomorphic and
antiholomorphic. Their restrictions to H® are reducible, consisting of
mhe and md o Int(e), 7ol and 7ol o Int(w), ¢ = diag(1,1,—1,—1), and
W @ son = 7Wh ghol @ oy — rhol,

To compute the infinitesimal character of 7 , ~we note that m, C
I(VF/2 sgn*=1v=F/2) (e.g. by [JL], 15.7 and 15.11) on GL(2,R). Via

LCy — TH induced I(vF1/2 v=F1/2) x I(v%2/2 1,=F2/2) (in our case the
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k; are odd) lifts to the induced

IH(Vkl/Q,sz/Q) — V(k}1+k2)/2 X V(klfktg)/Q X V7k2/27

whose constituents (e.g. 7} ;. ,* = Wh, hol) have infinitesimal character

(dhe Bizka) — (21) + (a,b). Here a = B1fk2 —2>p =Bk 7 >

as ko > 1 and ky > kg and k1 — ko is even. For these a > b > 0, thus
ki=a+b+3,k =a—b+ 1, we have

HY(sp(2,R), SUM4);m 5, @ Vap) =C if (3,5) = (2,1),(1,2),

H"Y(sp(2,R),SUMA); 7, @ Vap) = C if (i,5) = (3,0),(0,3).

Here k1 > ko > 0 and kq, ko are odd. In particular, the discrete series
representations of PGSp(2,R) are endoscopic.

3. Nontempered Representations

Quasi-packets including nontempered representations are parametrized by
homomorphisms ¢ : Wg x SL(2,R) — LH and ¢y : Wg — LH defined
([A]) by

du(w) = viw, (M7 00 ).

lIwll
The norm ||.|| : Wg — R* is defined by ||z|| = 2Z and ||o|| = 1. Then

by(0) = P(o,I) and ¢y (2) = (2, diag(r,r~1)) if 2 = re?, r > 0. For
example, 1 : Wg x SL(2,C) — SL(2,C),

YW i 207 = €(—1),  ¥|SLE,C) = id,

gives

bu(z) = (g 9) Xz, p(0) =E(~1)Iy x o,

parametrizing the one dimensional representation & = J(£v'/2, v=1/2) of

PGL(2,R) (£ : R* — {£1}, v(2) = |z|). Here J denotes the Langlands

quotient of the indicated induced representation, I(§u1/27 §1/‘1/2).
Similarly the one dimensional representation

€= J(EP2 evt/? evm 12 g3/
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of PGL(4,R) is parametrized by v : Wg x SL(2,C) — SL(4,C),
(@|We)(207) = &(=1),  ¥|SL(2,C) = Symy,
thus
by (2) = diag(r®,r,r 1 r73) x 2, (o) =E&(—1)14 x 0.

This parameter factorizes via ¢ : Wg xSL(2,C) — Sp(2, C), which parame-
trizes the one dimensional representation £ of H(R), h — £(A(h)) where
A(h) denotes the factor of similitude of h, whose infinitesimal character is
(2,1) = 33> ,-0 . We have

H"Y(sp(2,R),SU4); &g @ Vo0) =C

for (i,5) = (0,0), (1,1), (2,2), (3,3). Of course 1y # sgny, and £ (1 +
sgny) is the characteristic function of HY in H(R). Moreover, the char-
acter of §(1g + sgny) + 73" + 759 vanishes on the regular elliptic set of
H(R), as ((m +7T§Y1h + Wgﬁl) |HY is a linear combination of properly induced

(“standard”) representations ([Vo], [Ln]) in the Grothendieck group.

4. The Cohomological L(v sgn,v=/2my,)

The nontempered nonendoscopic representation L(v sgn, v~ /?my;) of the
group H(R) (k > 1) is the Langlands quotient of the representation

~1/27,, induced from the Heisenberg parabolic subgroup of H.

v sgn Xv
It A-lifts to
J(W o, v 2 mgy),

the Langlands quotient of the induced representation I (Vl/ 2o, v Y 27tak)
of PGL(4,R). Note that the discrete series mor ~ sgn ®map =~ 7o has

central character sgn(# 1). Now

¥ : Wa x SL(2,C) — SL(4,C),  |Wg:w — <¢2k0<w> ¢2k°(w)) X W

with
— (/1D 0 _
¢2k(z)_ < 0 (Izl/z)2k> XZ, ¢2k(0') —wXU,
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d cl dI

Py(2) =9 (Z’ (\gl \2\071)) - (‘Z|¢3k(2) \ZIflgzk(z)) X%

du(0) = vl D)= (4 2).

and (¢| SL(2,C)) (C: b) = (al bl), defines

which factorizes via H = Sp(2,C) — SL(4,C) and parametrizes

L(v sgn, v~ 2my).
Note that when 2k is replaced by 2k + 1, ¢orr1(0) = ew X 0, € =
diag(1,—1), then

0 ew

bulo) =lo D) = (V 0)) =Iwewel,

by(2) = (‘(Z)I ‘z‘oﬂ) ® ans1(2) € C,

thus ¢, defines a representation of C(R) (which A;-lifts to the representa-
tion

1/2 —1/2
JW P o1, v P mgsn)

of PGL(4,R)), but not a representation of H(R).

As in [Ty] write 73, o for L(sgnv, v='/2my;15). We have that w3, , ~
sgn ®7r% k0» and W%k’O‘H Y consists of two irreducibles. In the Grothendieck
group the induced decomposes as

-1/2 —1/2 Wh hol
v sgn vy, = L(v sgn,v / Tk )+ Togt 3 2k 11+ okt 3,251 k=1

To compute the infinitesimal character of v sgn xv~/279;, note that

it is a constituent of the induced v sgn xv~Y/2I(v* sgnv %) ~ sgnv?* x

sgnv X v F=1/25on (using the Weyl group element (12)(34)), whose in-
finitesimal character is (2k,1) = (2,1) + (a,0), with a = 2k —2 > 0

as k > 1. For k > 1 we have H"(sp(2,R),SU(4); 73, o @ Varo) = C if
(1,7) = (2,0), (0,2), (3,1), (1,3).
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5. The Cohomological L(¢v!/?my 1, 6071/2)

The nontempered endoscopic representation L(£v'/%may 1,0~ 1/?) of the
group H(R) is the Langlands quotient of the representation £v/2mop 1
€v~1/2 induced from the Siegel parabolic subgroup of H(R). It is the \o-
lift of magy1 X €12 and A-lifts to the induced I(mar11,&12) of PGL(4,R).
The central character of mar41 is trivial, but that of mor is sgn. Hence
I(mak, &2) defines a representation of GL(4,R) but not of PGL(4,R). The
endoscopic map

¥ : Wg x SL(2,C) — 0y = SL(2,C) x SL(2,C) 2% H,

¢(ZUja 5) = )\0(¢2k+1(20j)a5(—1)j3)7

defines

du(z) = v (2 (5] L0 )) = diag((2/ 12024, 21, |21 (121/2)%4) x

1
¢Mw:wmn=<()+““al>>
_1)2k+1

which lies in H C SL(4, C) since 2k + 1 is odd.

As in [Ty] we write ﬂ'ifl’kfl for L(¢v ?mopyq, €v7Y2), k > 0. Now
én?l = 72¢ and 72¢|HY is irreducible. In the Grothendieck group the
induced decomposes as

/2 2,¢

1/2 —1/2 2. Wh
&/ Topr1 X &V =T 1+ Mokt

Here wg\,i}}rl’l is generic, discrete series if k > 1, tempered if £ = 0. Our

v 201 3 Ev~ /2 s a constituent of the induced

£V1/2I(V(2k+l)/2’V—(2k+1)/2) “ €V—1/2 _ §Vk+1 % gy—k 9 61/—1/2’

which is equivalent to &vFt! x &k x gu—k—1/2 (using the Weyl group
element (23)). Its infinitesimal character is (k+1,k) = (2,1)+(k—1,k—1).

We have

HY(sp(2,R), SUM); 7% @ Viciem1) =Cif (i,5) = (1,1), (2,2).
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In summary, HY (r ®V, ;) is 0 except in the following four cases, where
it is C.

(1) One dimensional case: (a,b) = (0,0) and 7 is ”§Y1h, 7T§1,°11, .
Wévo = L(v sgn,v™"/?my), 7T(2)S = L(&vY %3, €071/2),
(2) Unstable nontempered case: (a,b) = (k,k) (k> 1) and 7 is
o. 2, _
ﬂg\’i}i?”l’ ﬂg’fhr&l’ Wk,i = L(&Y *mop s, Ev71/2).

(3) Stable nontempered case: (a,b) = (2k,0) (k > 1) and 7 is

Wh hol 1 —1/2
Tok+3,2k+1s Tok+3,2k+1s T2k,0 = L(v sgn,v T2%k+2)-

(4) Tempered case: any other (a,b), thus a > b > 1, a + b even, and 7 is
WXSW w,}c‘f}kz. Here ki =a+b+3>ky=a—b+1 >0 are odd.

6. Finite Dimensional Representations

The Q-rational representation (p, V') of H' = Rp,oH has the form (h,) —
®p,(h,), where H = [[,H,, H = H, over Q, and p, is a represen-
tation (irreducible and finite dimensional) of H,. Here ¢ ranges over
S = Gal(Q/Q)/ Gal(Q/F), = Hom(F,R) and so H' = {(h,); h, € H}.
The Galois group Gal(Q/Q) acts by 7((h,)) = ((Th.)+.) = ((Thy-1,).).
The fixed points are the the (h,) with h, = thy, where hy ranges over H(F')
(the “1” indicates the fixed embedding F' — R). Thus H'(Q) = H(F) and
H'(R) =[[g H(R) with |S| = [F : Q] since F is totally real; S is the set of
embeddings F' — R. Now the representation p is defined over QQ, namely
fixed under the action of Gal(Q/Q). Thus ®,p,(h,) = ®,p+.(7h,). The
element h = (hy,1,...,1) (thus h, = 1 for all ¢ # 1) is mapped by 7 to
(1,...,1,7hy,1,...,1) (the entry 7h; is at the place parametrized by 7).
Hence p1(h1) equals p-(7hy) (both are equal to p(h)(= p(7h))). Hence
pr = "p1(: h1 +— p1(771hy)), and the components p, of p are all trans-
lates of the same representation p;. For (h,) = (thy) in H'(Q) = H(F),
p((h)) = ®.p,(thy) = @up1(h1) = p1(ha) @ -+ @ p1(ha) ([F : Q] times).

However, over F we have H' ~ [], ¢ H, with H, = H. An irreducible
representation (p, V) of H' over F has the form (pa b = ®uvespay by, Vab =
®vesVa, b, ), Where a, > b, >0, even a,, — b, for all v € S.
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7. Local Terms at «

Next we wish to compute the factors at oo of each of the terms in the trace
formulae STF g (fr) and TF¢, (fc,). The functions fu oo (= heo of [Ko4])
and fc,.0o are products ® fr, and ® fc,, over v in S. We fixed a finite
dimensional representation

(pa Vp) = (pa7b = QuveSPay,by> Va,b = ®’UESVav,bv)a ay > b, >0,

even a,—b, for all v € S, over F of the group H' over Q. Denote by {7, }
the packet of discrete series representations of H(R) with infinitesimal
character (a,,b,) + (2,1).

For any (py, Va, b, ), the packet {,m,} consists of two representations,
pﬂ'};v = Wl\f)\ff,kzv and 7, = W?f}”k%, where k1, = a, + by, +3 > ko, =
ay — by +1 > 0 are odd. It is the Ap-lift of the representations mx,, X mk,,
and mg,, X g, of Co(R) = PGL(2,R) x PGL(2,R). Denote by h(WXikZU)’

h(mp! 1., ) a pseudo coefficient of the indicated representation. Then

fH/,oo = pr’,oo = H hH,va

veS

(_1)q(H)

b = hH7U({p7T}’tI’U}) = [h(pwltru) + h(pTg,)]-

Put

fepoo = ofcpoo = [ how:  Ch=RrqCo,
vES

hCo,U = hc'ow(ﬂ-klu X ﬂ-kzu) = (_1)q(H) [h’(ﬂ-km X 7Tk2v) - h(ﬂ-k% X ﬂ-klv)}'

Note that if 7, = m,, then Ao(mg, X mg,,) = 1 X mg, which is not
discrete series but properly induced. In particular, the fifth term I(H,5)
of STFy(fr), and the corresponding terms of I(Cy,2) in TF¢,(fo,) —

those which are parametrized by 72 x o1y where 72

is cuspidal whose
components at oo are 7y, vanish for our functions frr, fc,- Moreover, as
explained at the end of section 6, I(H,4) and I1(Cy,3) are 0 for our fg,

feo-
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Note that ¢(H') = [F : Q]g(H) is half the real dimension of the sym-
metric space attached to H'(R), and ¢(H) is that of H(R), thus q(H) =3
in our case.

Then trﬂ'z\fik%(hmv) = tl"ﬂ'};?;k%(h[{’v) = 1(-1)9) = —1 When
(a,b) = (2k,0), k > 0, we have in addition tr L(v sgn, v~ ?mop10)(hg.) =
1. When (a,b) = (k,k), k > 0, we have tr L(£vY/ 2 maopy3, 071 2) (hg o) =
. When (a,b) = (0,0), we have in addition tr&y (hg.) =1, & = 1.

Note that if g contributes to I(H, 1), then its archimedean compo-

~— N

nents 7, have infinitesimal characters of the form (2k,,0), k, > 0, for all
vesS.

If my contributes to I(H, 3) then there is a contribution to I(Cy,2), and
the archimedean components 7y, have infinitesimal characters of the form
(ky, ky), ky >0, for all v € S.

If 7y contributes to I(H, 1) the infinitesimal characters of its archime-
dean components are (0,0).



V. GALOIS REPRESENTATIONS
1. Tempered Case

We apply the Lefschetz formula in Deligne’s conjecture form to the étale
cohomology
H: (SKf (229 ]F7 Va,b;)\)

with compact supports and coefficients in the representation (pa,b, Vab),
even a, — b,, for allv € S.

Suppose 7y occurs in the stable spectrum, namely in I(H,1);.

The choice of the function ,f.r guarantees that the components 7,
lie in the packet {W,X\S‘)kzﬂ, w,kc‘fik%}, kiy = ay + by + 3, koy = ay — by + 1,
at each archimedean place v € S.

We start by fixing a cuspidal representation 7wy with 7g, in the set
{ﬂﬁik%, W,};‘fik%} for all v in S and with wﬁ? # 0. In particular the
component at p of such 7 is unramified, of the form @y, mg (1w, t2w)-

We use a correspondence f4,, which is a K?—biinvariant function on
H(A%). Since there are only finitely many discrete series representations of
H(A) with a given infinitesimal character (determined by p) and a nonzero
K p-fixed vector, we can choose f7; to be a projection onto {Wﬁfc} Writing

tmy fOr fimy (), m = 1, 2, the trace of the action of Frf; on the {ngc}—
isotypic component of H; (Sk, @rF, V,) (which vanishes outside the middle
dimension 3[F : Q]), is multiplication by (we put j, = (j,74))

p%dims;(f H(t{,l/iu _"_té’{iu +t2_’j/.7u _"_t]-_J/Ju)ju
u|p

Note that H2FY oceurs in the alternating sum H} with coefficient
(—=1)3FQ | This sign is canceled by the sign (—1)4H") of the definition of
the functions fy/ e = Qveshmy.

Thus the {’/Tﬁ} }-isotypic part of HEQ (namely the ngc—isotypic part

for each member of the packet) is of the form {wg;} ® p({mrm}). Here

258
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p({ry}) is a 47 U_dimensional representation of Gal(Q/Q). The 4#{uIr}
nonzero eigenvalues ¢ of the action of Fr, are p2[F:@ L., t:r(:&),u’ m(u) €
{1,2}, t(u) € {£1}. This we see first for sufficiently large j by Deligne’s
conjecture, but then for all 7 > 0, by multiplicativity.

Deligne’s “Weil conjecture” purity theorem asserts that the Frobenius
eigenvalues are algebraic numbers and all their conjugates have equal com-
plex absolute values of the form q;/ 2 (0 <4 <2dimS). This is also referred
to as “mixed purity”. The eigenvalues of Fr,, on IH  have complex abso-
lute values equal q;/ 2, by a variant of the purity theorem due to Gabber.
We shall use this to show that the absolute values in our case are all equal

1 dim

to qg S In our case E = Q, the ideal p is (p), the residual cardinality
gp is p, and n, = [E : Q] is 1.
Note that the cuspidal 7 define part not only of the cohomology

Hi(Sk, ® Q,V)

but also part of the intersection cohomology IHi(S}(f ®r Q,V). By the
Zucker isomorphism it defines a contribution to the L?-cohomology, which
is of the form W;{f @ H(g, Koo; Too ® Ve(C)). We shall compute this
(g, Koo )-cohomology space to know for which 4 there is nonzero contri-
bution corresponding to our my. We shall then be able to evaluate the ab-
solute values of the conjugates of the Frobenius eigenvalues using Deligne’s
“Weil conjecture” theorem.

The space H" (g, K;m ® V) is 0 for 7 = Tk ks * = Whoor hol, ky >
ky > 0 are odd (indexed by a > b > 0) except when (4,5) = (2,1), (1,2),
(3,0), (0,3) (respectively), when this space is C. From the “Matsushima-
Murakami” decomposition of section 2, first for the L2-cohomology Hy)
but then by Zucker’s conjecture also for TH*, and using the Kiinneth
formula, we conclude that IH*(r) is zero unless ¢ is equal to dim Sk, =
3[F : Q], and there dim IH2F*Q(r;) is 40 (as there are [F: Q] real
places of F'). Since 7y is the finite component of cuspidal representations
only, 7y contributes also to the cohomology H:(Sk, @& Q, Vab;\) only in
dimension ¢ = 3[F:Q], and dim g (my) = 47" This space depends
only on the packet of 7y and not on 7y itself.

Deligne’s theorem [D6] (in fact its I H-version due to Gabber) asserts
that the eigenvalues ¢ of the Frobenius Fr, acting on the ¢-adic intersection
cohomology TH® of a variety over a finite field of ¢, elements are algebraic
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and “pure”, namely all conjugates have the same complex absolute value, of

the form q;/ ?. In our case i = dim Sk ; = 3[F : Q], hence the eigenvalues
3 .
of the Frobenius are algebraic and each of their conjugates is ¢ [£:Q) in

absolute value. Consequently the eigenvalues p1,, p2, are algebraic, and
all of their conjugates have complex absolute value 1.

Note that we could not use only “mixed-purity” (that the eigenvalues
are powers of qglg/ ? in absolute value) and the unitarity estimates |fimy|=! <
gv/* on the Hecke eigenvalues, since the estimate (less than (Tp)2 4™
away from (,/g;)*™®) does not define the absolute value ((\/gg)"™?)
uniquely. This estimate does suffice to show unitarity when dim S = 1.

In summary, the representation p = p(myy) of Gal(Q/Q) attached to
mry depends only on the packet of mpy, its dimension is AFQ | Tts re-

striction to Gal(Q,/Q,) is unramified, and the trace of p(Fr,) on the

Fa P () X

Fr,). Here (r,, (C*)F@l) denotes the twisted tensor representation of
LRFu/Qp H = AFuQ] Gal(F,/Qp), Fr, is Frz[jF”:Q”]7 and v, is the char-
acter of LRFU /0, H which is trivial on the connected component of the

{7r§§ }-isotypic part of Hg[ is equal to the trace of Qv

identity and whose value at Fr, is ¢, *, where g, = plf»@]. The eigenval-
ues of t(mwp,,) and all of their conjugates, lie on the complex unit circle.

We continue by fixing a cuspidal representation mgy with 7z, in the set
{mt s el ) for all v in S and with 7?2 0. But now we assume
it occurs in the unstable spectrum, namely in I(H,2). We fix a correspon-
dence f7; which projects to the packet {n%; ;}. Since the function f¢, is cho-
sen to be matching f%,, by [F6] the contributions to I(Cy, 1) are precisely
those parametrized by 7! x 72 and 72 x !, where 7™ are cuspidal represen-
tations of PGL(2,A) whose real components are {7}, 72} = {mk,,, Thy, }+
a set of cardinality two.

Write {7} for the set of Tg f = @7 Hw, w < 00, which are the finite
part of an irreducible 7y in our packet {mg}, such that g, is 75, for
an even number of places w < oco. Similarly define {mp ¢}~ by replacing
“even” with “odd”. The contribution of {mp} to I(H,2) is

5 TT trlmme) ) - ot} (F5) + tr ) (73

v|oco
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ulp
Here and below f%, indicates — as suitable — its product with the unit
element of the H'(Z,)-Hecke algebra of H'(Q)).

The corresponding contribution to I(Cy, 1) is twice (from =
72 x wl)

L 72 and

3 TT i x 2 - tx(ay  23)(52,)

v|oo

idlmS e —i/Fu e —i/ju i
phem s T + 6521 — il — 2y
ulp
By choice of ff, we have that tr(r} x 77)(f¢,) = tr{mas}*(ff) —
tr{mr s}~ (f%). The choice of hy, is such that tr{m, }(hm,) = (1)),
and tr(m} x 72)(heyo) is (—1)2H) if 71} x 72 is 7y, X Ty, , and —(—1)20H)
if it is gy, X Ty, -
We conclude that for each irreducible 74 € {muys}t, the ﬂgfc—isotypic
part of H? is zero unless ¢ = 3[F : Q] (middle dimension), in which case it
is ﬂ'g; ® p({mrs}T), and Fr) acts on p({mps}*) with trace

1 ldlmS e —i/ju we i/
DL i [H(t{{f ot Tty ]

ulp

nﬂ‘l 7'{‘2 j 'u —J 4u j 4u —J 4u ‘u
T el = (60 7).
ulp

1

We write n(r! x 72) for the number of archimedean places v of F with

(7T11}7 71—121) = (szu ) 7Tk1v)'

_Similarly, for each irreducible mgy € {mpys}~, the Wgﬁ—isotypic part of
H! is zero unless ¢ = 3[F : Q] (middle dimension), in which case it is
ng; @ p({mmys}~), and Fr), acts on p({mmy}~) with trace

§p2 dim Sxcy [H(t.iq/ju + tluj/Ju + t;q/ju + tQJ/Ju )i
ulp

_ _1 n(7r1><7r2) t]/]u +t_]/JH _ t]/]u +t_1/]u Ju .
1w 1u 2u 2u

ulp
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As usual, we conclude from Deligne’s mixed purity [D6] that the Hecke
eigenvalues t,,, are algebraic and their conjugates all lie in the unit circle
in C.

2. Nontempered Case

Next we deal with the case of gy which occurs in I(H, 1), namely in a
quasi packet {L(¢v,v=1/272)} which Mlifts to the residual representation
J(272 v71/272) of G(A), G = PGL(4). Here 7?2 is a cuspidal represen-
tation of GL(2,A) with quadratic central character ¢ # 1 and &n? = 72,
and 773 = o, +2 at each v € S. The infinitesimal character of mpg, is
(2ky,0) + (2,1), ky > 0, for all v € S. Choosing f% to project on Wﬁ?
for such 7y, we note that there are no contributions from the endoscopic
group Cy, thus I(Cy, i) are zero. Namely the contributions to I(H, 1), are
stable. The result for Shimura varieties associated with GL(2) assures us
that the Hecke eigenvalues, or Satake parameters, of each component 72 of
72 at ulp are algebraic and their conjugates have complex absolute value
one. Alternatively we can conclude that the components above p are all
— unramified — of the form L(&, vy, 1/;1/2773) where 72 = 7(ft14, Eu/p1u),
€2 =1, 1, unramified and equals 1 or —1 if £, = —1.

As noted in section 12,

t(ﬂ—Hu) = diag(q}l/Q'Zlua Q11L/222u7 q;1/2zgu17 q;1/22;u1)

with 214, = p1u, 220 = &u/M1u, Where we write p1, and &, also for their

2
/2 we conclude from

values at m,. Using the estimate q;1/2 < |zmul < q,t
Deligne’s theorem [D6] that pi, is algebraic and the complex absolute

value of each of its conjugates is equal to one. On the Wﬁ?—isotypic part of

the cohomology, Fr, acts with the 4#{ulp} eigenvalues p% dim Sy I, @us

where

ulp

Ay € {Qzl/Q:uluv q'Ll/qu,ul_ulv QJl/quﬂluv qgl/zul_ul}'

Note that 7wy, = L(sgn vy, 1/;1/27721%+2) has HY (7p1, ®V,, 5,) # 0 only
when a, = 2k,, b, =0, and (4, j) = (2,0), (0,2), (3,1), (1,3).
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Next we deal with the case of my which occurs in I(H,3), namely

in a quasi-packet A\o(72 x £13), where 72

is a cuspidal representation
of PGL(2,A) whose real components are moy, 43, and £ is a character
of AX/F*A*2. There are corresponding contributions in I(Cp,2) from
7% x €15 and from €15 x 72, The infinitesimal character of 7, is (ky, ky),
ky, >0, forallv e S.

We fix a correspondence f7; which projects to the packet {r%;,}. Since
the function fgo is chosen to be matching f1;, by [F6] the contributions to
I(Cp, 1) are precisely those parametrized by 72 x 15 and €15 x 72,

Write {mps}* for the set of mpf = ®uTHw, w < 00, which are the
finite part of an irreducible 7p in our quasi-packet {7}, such that 7,
is 7wy, for an even number of places w < co. Similarly define {mg ¢}~ by
replacing “even” with “odd”. The contribution of {mg} to I(H,3) is

21

T T tntrg, — ) h) - e V() — o) ()

v|oo

delmstH (&u q1/2 )j/jru+(§uqi/2uu)—j/ju

ulp

+(&u q1/2 *1)J/Ju + (&4 ql/2 71) j/ju]ju

Here 2 = I(pu, i1y, ), and we abbreviate g, (m,) to p, and &,(m,) to &,.

The corresponding contribution to I(Cy, 2) is twice (from 72 x €15 and
from &1, x 72)

1 TL (2 % €12) () - tr(n? x €412 (75,

v|oo

dlmSKfH §q1/2 J/]u (fu%i/zuu)_j/j“

ulp
—(Euqt P )T — (EuqL Pty T e ]I
By choice of f¢, we have that tr(n} x £12)(f6,) = tr{ma s} (f1) +
tI‘{ﬂ'Hf} (f%). The ch01ce of hy, is such that tr 7y, (hp.) = 3(—1)1H) =

=3, trmpy, (hae) = 3, and tr(m) x 72)(heg) is (—1)1H) if 7l x 72 is
72 x £,15 and —(—1)90) if it is £,15 x 72
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We conclude that Frz) acts on the Wﬁ?—isotypic past of H, for each

irreducible 7 € {mg s}, with trace %p% dim 8Ky times

e(en®, 1) TII€ual/ 2 + (Eual/ ) 15

ulp
(E q1/2 )j/Ju (é‘ q1/2 _1) J/Ju]]u
+H fuql/Q J/]u + (& ql/2 W)~ 3/du

— (a2 = (€ Py

Similarly, Fri, acts on the Wﬁ?-isotypic past of H}, for each irreducible

mraf € {mus}~, with trace %p% dmSKs times

clen?, 3 TTIEwa 2775 + (ual2p) 1
ulp
(Euq1/2 )j/Ju + (&4 q1/2 —1) j/ju]ju
_H §q1/2 J/]u + (&u ql/2 W) 3/3u

S e Kl (T R

Note that mg, = L(ﬁUVi/Q’/TQ/H_&fUVU_I/Q) has H (mpy @ Vo, p,) # 0
only when a, = ky, b, = ky, and (¢,7) = (1,1) or (2,2).

As usual, we conclude from Deligne’s mixed purity [D6] that the i,
are algebraic and their conjugates all lie in the unit circle in C.

Finally we deal with the case of a one dimensional representation 7y =
&m, which occurs in I(H,1)s. We can choose f}; to factorize through
a projection onto this one dimensional representation my = £ such that
7er # 0. The infinitesimal character of 7, is (0,0) for all v € S. In
particular the component at p of such 7y is unramified, and the trace of
the action of Frf; on the 7y s-isotypic component of H(Sk, ®r F,V,) is

p? dim Sk H[(gqu/z)j/ju Tt (Eaqh/2) T (Eqy V2YI T 4 (€0 qy %) T

ulp
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Note that HY (sp(2,R),SU(4);C) is C for (i,5) = (0,0), (1,1), (2,2),
(3,3) and {0} otherwise. Thus gy = £y contributes only to the (even)

part

& H2"™(Sk, @r F, 1).
OgmgdimSKf ’

Note that the functions fr/ . = Qpeghp, satisfy
tr(&mo) (o) = _(_1)q(H) =1

We conclude that the representation p(mzf) of Gal(Q/Q) on H} at-
tached to myy is 4F*U-dimensional. Its restriction to Gal(Q,/Q) is un-
ramified. Its trace is equal to the trace of ®,,vu Y 2ru(Fru). Here ry,(Fry,)
acts on the twisted tensor representation (r,, (C*)F«:@l) as t(&,) x Fry,
t(&w) = (t1,. .., tn,), tm diagonal with

I tm = diag(6udd? €ual/?, €uan %, €ua®).

1<m<n.,






PART 3. BACKGROUND






I. ON AUTOMORPHIC FORMS
1. Class Field Theory

Underlying the discipline of Automorphic Representations is a hypothetical
reciprocity law that would generalize to the context of connected reductive
groups G over local or global fields F' the deep Class Field Theory, which
simply asserts that Wliib ~ Cp, and is to be viewed as the special case
of GL(1) = G,,. We review some of the key notions here, starting with
basics. Key topics are in bold letters, and new terms are in italics.
Number Theory concerns number fields F, finite extensions of the field
Q of rational numbers. The completion of F' at each of its valuations, v, is
denoted by F,. It is the field C of complex numbers or the field R of real
numbers if v is archimedean (|z + y|, < |z|y + |y|v), or a finite extension

of Q, for a prime p if v is nonarchimedean (|z + y|, < max(|z|y,|yls))-
There is a positive characteristic analogue, where F' is the function field of
a curve C over a finite field F,, the places v are the closed points of C' and
F, is Fr((t)), the field of power series over a finite extension of Fy. In the
nonarchimedean case denote by R, the ring of integers of F), (defined by
||, < 1).

The ring of F-adeles, denoted A or simply A, is the union over all
finite sets S of valuations of F' containing the archimedean ones, of the
products [[,cg Fo X vas R,. Thus an adele is a tuple (), z, € F, for
all v and z, € R, for almost all v (finite number of exceptions). The field
F embeds diagonally (z, = « for all v) in A as a discrete subgroup, and
Amod F' is compact. By Ap ¢, or Ay, we denote the ring of adeles without

archimedean components. Thus A = Ay [] F,, where oo is the set of

VE
archimedean places of F'.

The multiplicative group of A is the group of ideles, A*, consisting
of (z,) with z, € F) for all v, x, € R} for almost all v, where the
multiplicative group R of R, is the group of units, defined by |z|, = 1.
Thus A* = Ug [[,eq S % vas R . The multiplicative group F'* embeds

diagonally as a discrete subgroup in AX, and A'/F* is compact, where

269
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A' consists of the (z,) in AX with [, |2y, = 1. The product formula
1, |z]o = 1 for z in F* implies that F* C Al. Denote by , a generator of
the maximal ideal R, — R of the local ring R,, when v is nonarchimedean.
The field R, /(m,) is finite, of cardinality ¢, and residual characteristic p,.

The quotient space A* /F* is called the idele class group and is denoted
by Cr. When F is a local field put Cr = F*. For more on valuations,
adele, ideles, see, e.g., Platonov-Rapinchuk [PR].

Class Field Theory can be stated as providing a bijection between the
set of characters x of finite order of the profinite Galois group Gal(F'/F) of
F (F denotes a separable algebraic closure of F'), and the set of characters
7 of finite order of CF.

When F is global, the bijection is defined as follows.

The decomposition group D, of v, which consists of the g in Gal(F/F)
which fix an extension ¥ of v to F, is isomorphic to Gal(F, /F,). (In fact D,
depends on . Replacing v by o’ leads to a subgroup Dy conjugate to Dy.
Thus D, is determined by v only up to conjugacy). Its inertia subgroup
I, consists of the g € D, which induce the identity on Rz modulo its
maximal ideal. The quotient group D, /I, is Gal(F,, /F,, ). Any element
of D, which maps to the generator x — x9 of the Galois group of Iy, is
called a Frobenius at v, denoted Fr,. Now x is unramified at almost all v,
which means that its restriction to D, is trivial on I,. It is then determined
by its value x(Fr,) at Fr,. Chebotarev’s density theorem asserts that y is
uniquely determined by x(Fr,) at almost all v.

On the other hand, the character m of A* is the product ®,m,, where
Ty 18 the restriction of 7 to F* (F* is embedded in A* as (xy,), T, = 1 if
w # v). Since 7 is continuous, almost all components 7, are unramified,
namely trivial on R). Thus they are determined by their value 7, (m,) at
the generator m, of the maximal ideal R, — R.* in the local ring R,. By
the Chinese Remainder Theorem F* 'Hves F is dense in A*. Hence the
character = of A*/F* is uniquely determined by m,(m,) for almost all v.

The bijection of global Class Field Theory is x < = if x(Fr,) = w(m,)
for almost all v.

The bijection of local class field theory can be derived from this on
embedding a local situation in a global one, thus starting from x, or m,
one can construct global y and 7 with components x, and m, at v, when
Xv Or T, are ramified.
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In fact, CFT provides a homomorphism Cr — Gal(F/F)", named
the reciprocity law, where the maximal abelian quotient Gal(F/F)" of
Gal(F/F) is the inverse limit of Gal(E/F) over all abelian extensions F
of F in F (if G is a topological group, G2 is its quotient by the closure
G° of its commutator subgroup).

However, in this form the statement is unsatisfactory, as it applies only
to characters of finite order, and indeed these are all the continuous char-
acters of the compact, profinite group Gal(F/F). However AX /F* is not
compact, and has characters of infinite order, e.g. = +— ||z| =[], |zv|v. To
extend CFT to characters of C'r of any order, Weil introduced the group
W that we describe next, following Deligne [D2] and Tate [Tt].

To introduce Weil groups, note that a Weil datum for F/F, F local
or global and F a separable algebraic closure, is a triple (Wg, ¢, {rg}).
Here Wy is a topological group and ¢ : Wr — Gal(F/F) is a continuous
homomorphism with dense image; FE ranges over all finite extensions of F’
in F. Put Wg = ¢~ 1(Gal(F/E)). It is open in Wg for each E since ¢ is
continuous and {Gal(F/E)}g makes a basis of the topology of Gal(F/F).
As Im ¢ is dense in Gal(F'/F), ¢ induces a bijection of homogeneous spaces

Wr/Wg = Gal(F/F)/Gal(F/E) ~ Homg(E, F)

for each E, and a group isomorphism Wr/Wg = Gal(E/F) when E/F is
Galois. The rg : Cg = ng are isomorphisms. A Weil datum is called a
Weil group if

. B
(W1) For each E, the composition Cp = W2l % Gal(F/E)* is the
reciprocity law homomorphism of CFT.

(W3) For each w € Wg and any E, commutative is the square

TE
Cr Wb

w(w){ llnt(w)

ab
C‘F(W)E To(w) B Wgo(w)E .
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(W3) If E' C E, commutative is the square

Tmr
Cpr ——> Wab

E,CEi ltr

ab
Cp ——=Wg".

The transfer map on the right is defined as follows. Suppose H is a closed
subgroup of finite index in a topological group G, s : H\G — G a section.
For any g € G, x € H\G, define hy, € H by s(xz)g = hg5(zg), and
tr(9G°) = [l em g hg.x(mod H?). Then tr : G* — H? is a homomor-
phism.

(Wy) Put Wg,p for Wrp/Wg. The natural map Wr — li_mWE/F is an
isomorphism of topological groups.

It follows that if (Wg, ¢, {rg}) is a Weil group for F/F and F is a
finite extension of F in F, then (Wg, ¢|Wg, {rg, } 5, ) is a Weil group
for F/E. We usually abbreviate the triple to Wr. Note that via rg, the
norm Ng g, : Cg — Cg, (for F C Ey C E) becomes the map Wg> — WP
induced by the inclusion Wg C Wg,. Note also the exactness of

1—Cgp— Wg/p— Gal(E/F) — 1

whenever E//F is a Galois extension.
When F is local archimedean, if ' = C we take Wp = C*, ¢ : C* —

{1}, rep = id.
If FF =R we take Wg to be the subgroup C* U jC* of H*, where H is
the Hamiltonian quaternions. It is (z,j;2 € C*,j? = —1,jz = Zj) where

Z is the complex conjugate of z. Then ¢ : Wr — Gal(C/R) takes C* to
1 and jC* to the nontrivial element in Gal(C/R). Further r¢ = 1 and
rg : RX — WP is o — zWg if > 0, and —1 — jWg, where W is the
unit circle C! = {z/z; 2 € C*} = ker N¢/g. The norm map N : H* — R%,
induces a norm zj + jzo — 2121 + 2222 on Wkg.

When F is local nonarchimedean, for each finite extension E of F in F
let kg = Rg/(mg) be the residual field of E and ¢g its cardinality. Put
k =Ugkgr and k = kp. Then

1 — Ir — Gal(F/F) — Gal(k/k) — 0,
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where I is the inertia subgroup, consisting of the o € Gal(F/F) fixing
k. The Galois group Gal(k/k) is the profinite group Z = lim Z/nZ, topo-

logically generated by o ~— 2. Any element of Gal(F/F) which maps
to this generator is called Frobenius and denoted by Frr. Then Wy is the
dense subgroup of Gal(F'/F) generated by the Frobenii. Thus the sequence
1— Irp - Wgp — Z — 1is exact. The subgroup I is a profinite subgroup
of Gal(F/F), and open in Wr, making Wr a topological group. Then
¢ : Wp — Gal(F/F) is the inclusion and rp : EX — W2P are the reci-
procity law homomorphisms, rg(a) acts as & — zlole on E, the valuation
being normalized by |7x|p = ¢

When F is a global function field the situation is similar to the previous
case, with “residual field” replaced by “constant field”, “inertia group Ip”
by “geometric Galois group Gal(F/Fk)”, and the absolute value |a|g of
the idele class a = (a,) € Cg is [[, |avo-

When F' is a number field Weil gave an abstract, cohomological con-
struction of Wg, and asked for a natural construction. He showed that
¢ : Wg — Gal(F/F) is onto. Its kernel is the connected component of the
identity in Wpg.

The isomorphism rp : Cp — W;ib and the absolute value Cr — RZ

>0
z = (xy) — |z|p = [[, |zv|o, define the norm Wr — R, w — |w].

Since ng C Wf,ib corresponds via rg and rp to NE/F : Cg — Cp and
|INg,ralr = |a|p, the restriction of Wrp — RZ, to Wg coincides with the
norm Wg — RZ, and we write simply |w| instead of |w|p. The kernel W}
of w + |w| is compact. The image of w +— |w| is ¢% and W is Wi x Z
in the nonarchimedean and function field cases, while in the archimedean
and number field cases the image is RX) and W is Wi x RZ,,.

Finally there are commutative squares of local-to-global maps, for each
v,

WFU - Gal(Fv/Fv)

! 1
Wrp — Gal(F/F).

Class Field Theory, which asserts that W2P ~ Cp, can then be phrased
as an isomorphism between the set of continuous, complex valued charac-
ters of Wg, and the set of continuous, complex valued characters of Cr (=
AX/F* globally, F* locally). One is interested in all finite dimensional
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(continuous, over C) representations of the Weil group W, as by the Tan-
nakian formalism these determine Wr itself as the “motivic Galois group”
of their category. The hypothetical reciprocity law would associate to
an irreducible n-dimensional representation A : Wr — GL(n, C) a cuspidal
representation 7w of GL(n, A) if F'is global and of GL(n, F') if F is local, and
to @7_, \; the representation Ip(ry,...,m,) normalizedly induced from the
cuspidal representation m ®- - - @, of the parabolic P (trivial on its unipo-
tent radical) of type (dim Aq,...,dim \,.), where \; — m;. We postpone
the explanation of the new terms, but note that this new correspondence
is defined similarly to the case of CFT, which is that of n = 1. The local
analogue has recently been proven (by Harris-Taylor [HT], Henniart [He])
in the nonarchimedean case, and by Lafforgue [Lf] in the function field
case.

Once the connection between n-dimensional representations of Wr and
admissible (locally) or automorphic (globally) representations is accepted,
one would like to include all admissible and automorphic representations.
For that the group Wg has to be replaced by a bigger group, which is
the Weil-Deligne group Wp x SU(2,R), an extension of Wg by a com-
pact group (see [D2], [Tt], Kazhdan-Lusztig [KL], and Kottwitz [Ko2],
§12) when F' is nonarchimedean (when F' is archimedean the group re-
mains Wg). This is necessary for inclusion of the square integrable but
noncuspidal representations of GL(n, F') in the reciprocity law. The rep-
resentations A of Wr x SU(2,R) of interest are analytic in the second
variable, thus extend to SL(2,C). We embed Wr in Wr x SL(2,C) by
w — w x diag(Jw|'/2, |w|~/?), where |.| : Wp — F* — C* is the compo-
sition of the usual absolute value with WaP ~ F.

For example, the Steinberg representation of GL(n, F') is parametrized
by the homomorphism A which is trivial on Wr while its restriction to
SL(2,C) is the irreducible n-dimensional representation Sym™~': it maps
diag(a,a™") to diag(a™=V/2 a(=3)/2 q=(=1/2) and (é 1) to the
regular unipotent matrix exp((d(;;4+1))). The nontempered trivial repre-
sentation of GL(n, F') is the quotient of the normalizedly induced rep-
resentation I(pi,...,u,) of GL(n, F), with p; = 7 v(z) = |z,
while the square integrable Steinberg is a subrepresentation. The quo-
tient is parametrized by A trivial on the second factor, SU(2,R), and with
Mw) = diag(pr(w), ..., up(w)), w € Wg.
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If the reciprocity law holds, the category of the representations 7 should
be Tannakian, with addition m; B --- H 7, being normalized induction
Ip(my,...,m), and multiplication 7 K- - - K m,., and fiber functor. At least
when considering only those representations formed by twisting tempered
representations, and assuming the Ramanujan conjecture (“cuspidal rep-
resentations of GL(n, A) are tempered, i.e. all their components are tem-
pered”), if the category is Tannakian, its motivic Galois group is expected
to be the correct substitute for W, for which the reciprocity law holds.
This hypothetical group is denoted Ly, named the “Langlands group”. We
often write W below for what would one day be Lp. See Arthur [A5] for
a proposed construction.

2. Reductive Groups

Since progress on the global reciprocity law for GL(n) is not expected
soon, one looks for a generalization to the context of any reductive
connected F-group (. This is not a generalization for its own sake, as
it leads to two practical developments. The first is the theory of liftings
of representations of one group to another. Reflecting simple relations of
representations of Galois or Weil groups, one is led to deep relations of
automorphic and admissible representations on different groups.

The second is the use of Shimura varieties (see [D5]) to actually prove
parts of the global reciprocity law for groups which define Shimura va-
rieties (symplectic, orthogonal and unitary groups, but not GL(n) and
its inner forms if n > 2), and for “cohomological” representations, whose
components at the archimedean places are discrete series or nontempered
representations with cohomology # 0.

The reciprocity law for G is stated in terms of the Langlands dual group
LG = G x Wy, where G is the connected component of the identity of LG,
a complex group, and Wy acts via its image in Gal(F/F). The law relates
homomorphisms A : Wy — LG whose composition with the projection to
Wp is the identity, with admissible and automorphic representations of
G(F) or G(A), in fact with packets of such representations. It was proven
by Langlands [L7] for archimedean local fields, as part of his classification
of admissible representations of real reductive connected groups, and for
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tori in [L8]. Globally it is compatible with the theory of Eisenstein series
[L3], [MW?2]. For unramified representations of a p-adic group it coincides
with the theory of the Satake transform, and for representations with a
nonzero Iwahori fixed vector it was proven by Kazhdan and Lusztig [KL].
These results, and those on liftings and cohomology of Shimura varieties,
in addition to the local and function field results for GL(n), give some hope
that the reciprocity law is indeed valid. Of course, a final form of this law
will be stated with Lp replacing the Weil group Wg, once L is defined.

We proceed to review the definition of the connected dual group
G and the L-group Y@, following Langlands [L1], Borel [Bol], Kottwitz
[Ko2], §1.

Books on linear algebraic groups include Borel [Bo2], Humphreys [Hu],
Springer [Sp].

Associated with a torus 7" defined over F is the characters lattice X*(T')
= Hom(T, G,,) and the lattice X, (T) = Hom(G,,,T) of 1-parameter sub-
groups, or cocharacters. These are free abelian groups, dual in the pairing

() Xo(T) x X*(T) — Z = Hom(Gyn, Gn).

The connected dual group of T is the complex torus 7' = Hom(X, (T'), C*).
Then X*(T) = X,(T), and by duality X,(T) = X*(T). Thus T — T
interchanges X, and X*. As T is defined over F', Gal(F/F) acts on X, (T),
hence on T. An action of Gal(F/F) on T, or “T = T x W, determines T
as an F-torus (up to isomorphism), since the F-isomorphism class of T is
determined by the Gal(F/F)-module X, (T)(= X*(T)). The Gal(F/F)-
action is trivial iff T' is an F-split torus.

Let X, XV be free Z-modules of finite rank, dual in a Z-valued pairing
< .,.>. Suppose V C X, VY C XV are finite subsets and o — «V,
V — VYV, is a bijection with < o, @V > = 2. The 4-tuple (X,V, XV, VV)
is a root datum if the reflection s,(z) = z — (x,a")a (¢ € X) maps V
to itself, and sov(y) = y — (o, y)a (y € XV) maps VV to itself. Then
V is the set of roots and VV the set of coroots. The root datum is called
reduced if o and na in V (n € Z) implies that n = +1. The set V
defines a root system in a subspace of the the vector space X ® R. Thus
one has the notions of positive roots and simple roots. If A = {a} is a
set of simple roots, put AY = {a"}. The 4-tuple ¥ = (X, A, XV, AY)
is called a based root datum (it determines the root datum). The dual
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based root datum is ¥V = (XY, AV X A), and the dual root datum is
(XV, VYV, X,V).

A Borel pair (B, T) of a reductive connected F-group G is a maximal
torus T of G and a Borel subgroup B of G containing 7', both defined over
F. If G has a Borel pair defined over F| it is called quasisplit. It is split if
there is such a pair with 7" split over F'. Any pair (B, T) defines a reduced
root datum V(G, B,T) = (X*(T),A, X.(T),AV). Here A = A(B,T) C
X*(T) is the set of simple roots of T'in B, and AY = AY(B,T) C X.(T) is
the set of coroots dual to A. Any two Borel pairs are conjugate under the
adjoint group G = G/Z(G) of G (here Z(G) denotes the center of G).
If Int(g) (x — gxg~') maps (B,T) to (B’,T"), it defines an isomorphism
V(G,B,T) = ¥(G,B’,T'), independent of g. Using this, we identify the
based root data, to get ¥(G). Then Aut(G) acts on ¥(G), with G2 acting
trivially.

A connected dual group for G is a complex connected reductive group
G with an isomorphism ¥(G) = ¥(G)V.

The map G +— ¥(G) defines a bijection from the set of F-isomorphism
classes of connected reductive groups G to the set of isomorphism classes
of reduced based root data ¥. An isomorphism G; = Gs determines an
isomorphism ¥(G1) = ¥(Gz), which in turn determines G; — G2 up to
an inner automorphism.

This classification theorem implies that a connected dual group G of G
exists and is unique up to an inner automorphism. It depends only on the
F-isomorphism class of G.

If (B,T) is a Borel pair for G and (E, §) is a Borel pair for G, there
exists a unique isomorphism T (defined from T') — S inducing the chosen
isomorphism

U(G) = (X*(5). A, X.(5),A%) =

U(G) = (X.(T) = X*(T),AY, X*(T) = X.(T),A).

If f: G — G is a normal morphism (its image is a normal subgroup),
and (B, T) is a Borel pair in G, there exists a Borel pair (B, T") in G’ with
f(B) C B', f(T) C T'. Hence there is a map ¥(f) : ¥(G) — ¥(G’') and a
dual map ¥V (f) : U(G")" — ¥(G)Y, and so amap f : G’ — G. Any other
SllCh map has the form Int(t) - ]? Int(t') (t € Tt ¢ f’), mapping T to T,
B’ to B.
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The simplest example is that of G = GL(n). Then X*(T') = Z" has the
standard basis {e;;1 < i < n}, and X, (T) = Z" the dual basis {e) (= ¢;)}.
Also A = {e; —eiy1;1 < i <n}and AY = {ef —e/ ;1 < i <n}. Then
¥(G) = ¥(G)Y and G = GL(n,C).

A more complicated example is G = PGSp(2) = {g € GL(4), ‘gJg =

A} Gy, J = _Ow 152’\,, w = ((1)(1) , the projective symplectic group of
similitudes of rank 2. With the form J, a Borel subgroup B is the upper

triangular matrices, and a maximal torus T is the diagonal subgroup. The
simple roots in X*(T) = Z2 are a = e; — ea, 3 = 2es, and the other
positive roots are a4+ = e; +ea, 2a+ 3 = 2e;. Then AY = {a" = e —ea,
BY = e3}. The isomorphism from the lattice

~

X*(T) =A{(z,y, z,t) mod(n,m,m,n); x,y, 2,t € Z},
where (x,v, 2,t) takes diag(a,b,b~!,a™1) in T to a®thY~Z to the lattice
X.(T) ={(, 8,7,0) mod(¢,€,€,€);a0 + 6 = B+, o, 3,7,6,¢ € L},
is given by (x,y,2,t) — (x + y,z + 2,y + t,z + t), with inverse
t:(a,8,7,0) = (e —v,a— (3,0,0).

The isomorphism ¢* : X, (T) = X*(T) dual to ¢ : X.(T) = X*(T) is
defined by (¢(u),v) = (u,¢*(v)). Thus v = (a,b, —b, —a) € X.(T) maps to
the character

V*(v) : diag(a, 8,7,0) — (/)" (a/B)"

of T. The character n : diag(a, 8,7,9) — p1(a/v)u2(a/B) of T corre-
sponds to the homomorphism

2(€ WiP) v diag(p (2), p2(2), p2(2) ™ (2)71) (€ 1),

By an isogeny we mean a surjective homomorphism f : G — G of
algebraic groups whose kernel is finite and central (in G). The finite kernel
is always central if char F' = 0, and if char F' > 0 our f is usually named
central isogeny.
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A connected (linear algebraic) group is called reductive if its unipo-
tent radical (the maximal connected unipotent normal subgroup) is trivial,
and semisimple if its radical (replace “unipotent” by “solvable” in the def-
inition of the unipotent radical) is trivial. A semisimple group G is called
simply connected if every isogeny f : H — G, where H is connected reduc-
tive (as is G), is an isomorphism, and adjoint if every such f : G — H is an
isomorphism. The adjoint group of a reductive G is G* = G/Z(G), where
Z(@) is the center of G. This G* is adjoint. The derived group G9er
of a reductive G (the closure of the subgroup generated by commutators
[z,y] = xyz~ly~!) is semisimple, denoted also by G=5.

Let G be semisimple and ¥(G) = (X, A, XY, AY), V the root system
with basis A and VV the root system with basis AY. Then G is simply
connected iff the lattice of weights P(V) C X ® Q of V is X, and adjoint
iff the group Q(V) generated by V in X is X. Since

P(V)={Ae X®Q;(A, V') CZ}

and
P(VY)={A € XV ®Q; (A, V) €7},

G is simply connected iff Gis adjoint, G is adjoint iff Gis simply connected.

A simple group G (one which has no nontrivial connected normal sub-
group) is characterized — up to isogeny — by its type 4,,...,G2. The map
U(G) — ¥(G)Y interchanges B,, with C),, and fixes all other types. Thus
the connected dual of a simple group is a simple group of the same type
unless G is of type B,, or C),, and duality changes simply connected to ad-
joint. The classical simply connected simple groups and their duals are in
type A, : SL(n), PGL(n,C); B, : Spin(2n+1), PGSp(2n, C); C,, : Sp(2n),
SO(2n + 1,C); D,, : Spin(2n), PO(2n,C).

The dual group, or L-group, *G = G x W, is the semidirect product
of the connected dual group G with the Weil group Wg, which acts on G
via its image (by ¢) in Gal(F/F).

To explain how Gal(F/F) acts, note that we have a split exact sequence

1—-InnG — AutG — Owt G — 1,

where Inn G = Int G ~ G is the subgroup of inner automorphisms of G,
and the group Out G = Aut G/ Inn G of outer automorphisms is isomorphic

~ o~

to the group Aut U(G) = Aut ¥(G) of automorphisms of ¥(G) (or ¥(G)).
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A splitting for G is a triple & = (E,ﬁ {Xa;a € ﬁ}), where X, is an a-
root vector in Lie G for each simple root a of T in B. The set of splittings
is a principal homogeneous space for (the action of) G*d (by conjugation).
A choice of a splitting ¥ determines a splitting Aut \I/(@) — Aut G of our
exact sequence: an element of Aut \Il(a ) maps to the unique automorphism
of G fixing 3.

The action of Gal(F/F) on ¥(G)Y = U(G) then lifts to an action on G
which fixes the fixed splitting ¥. The L-group G = G x Wpr depends on
the choice of 3, but a different choice gives rise to an isomorphic L-group.

If v is a place of the number field F’ there is a natural Wg-conjugacy class
of embeddings Wg, — Wp, hence such a class of embeddings La J/F, —
LG/ F which restrict to the identity G — G.

3. Functoriality

The purpose of the principle of functoriality is to parametrize the admissi-
ble representations of G(F) in the local case, and automorphic representa-
tions of G(A) in the global case, in terms of L-parameters. These are the
(continuous) homomorphisms \ : Lp — LG = G x Wg, where Ly is Wg
if F is archimedean and Wr x SU(2,R) if F' is nonarchimedean, such that
A followed by the projection to Wg is the natural map Lp — Wpg, prg oA
is complex analytic if F' is archimedean, and pra(/\(w)) is semisimple for
all win Lp.

Two parameters A, A" are called equivalent if z- X = Int(g)\ for some g
inGand z: Ly — Z(@) such that the class of the 1-cocycle z in H!(Lp,
Z(CAJ)) is locally trivial.

If Gal(F/F) acts trivially on the center Z(G) of G then

H'(Lp, Z(G)) = Hom(Lp, Z(@)).

In this case Chebotarev density theorem for L%b = Wf,b implies that any
locally trivial element of H!(Lp, Z(G)) is trivial. Thus A(w) = ¢(w) X
0(w) where ¢§ denotes the projection Ly — Wy followed by ¢ : Wrp —
Gal(F/F), and ¢ is a (continuous) 1-cocycle of Ly in G. The cocycle
MN(w) = ¢'(w) x d(w) is equivalent to A iff ¢ and ¢’ are cohomologous.
Hence the set of equivalence classes, denoted A(G/F), is the quotient of the
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group H* (L, @) of (continuous) cohomology classes by ker[H (L, Z(G))
— @l (Lr,, Z(G))]

Functoriality for tori T over F concerns then (continuous) homo-
morphisms A : W — LT = T x Wy with pry,. oA = idw,., thus A which
factorize through the projection Lrp — Wpr. Langlands [L8] shows that
when F' is local, H 1(I/VF,T\) is canonically isomorphic to the group of
characters of T'(F') = Homgai(g/r) (X« (T), £*), where E is a finite Galois
extension of F' over which T splits. If F' is global the group of characters of
T(Ap)/T(F) is the quotient of H' (W, T') by the kernel of the localization
maps

ker[H' (W, f) — @, H (W, , f)]

Let m : G(F) — AutV be a representation (which simply means a
homomorphism) of the group G(F') of F-points of the connected reduc-
tive F-group G, on a complex vector space V. In other words, V is a
G(F)-module. If F'is a nonarchimedean local field, 7 is called algebraic
(Bernstein-Zelevinsky [BZ1]) or smooth if for each vector v in V' there is an
open subgroup U of G(F') which fixes v (thus 7(U)v = v). Such 7 is called
admissible if moreover, for every open subgroup U of G(F) the space VY
of U-fixed vectors in V is finite dimensional. Admissible representations
(m1, V1) and (e, V2) are equivalent if there exists a vector space isomor-
phism A : V; — V5 intertwining 71 and mq, thus A(m(g)v) = ma(g)Av.

In the next few paragraphs we abbreviate G for G(F) (same for a par-
abolic subgroup P, its unipotent radical N, its Levi factor M), where F'
is a local field. Put dp(p) = |det(Ad(p)| Lie N)| for p € P.

A useful construction in module theory is that of induction. Let (7, W)
be an admissible M-module. Denote by = = I(7) = I(7; G, P) the space
of all functions f : G — W with f(nmg) = 5}1;/2(m)7(m)f(g) (m e M,
n€ N, g € G). It is viewed as a G-module by (7(g)f)(h) = f(hg).

Another useful construction is that of the module mn of N-coinvariants
of an admissible G-module w. Thus if V' denotes the space of w, put
"V for V/{(n(n)v —v;n € N,v € V). Since the Levi factor M = P/N
of P normalizes N, 'V is an M-module, with action 'my. Put 7y =
5;1/ 2 'mn. The functor m — 7 of N-coinvariants is exact and left-adjoint
to the exact functor of induction. Indeed, this is the content of Frobenius
reciprocity ([BZ1], 3.13): Homps(wn,7) = Homg(m,Ind(7;G, P)). Let
N be the unipotent radical of the parabolic subgroup P opposite to P
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(thus PN P = M). Unpublished lecture notes of J. Bernstein show that
the functor 7 +— 7 is right adjoint to induction 7 — I(7;G, P), namely
Homg (Ind(7; G, P), 7) = Homp (7, m57).

An irreducible admissible representation 7 is called cuspidal if 7y is zero
for all proper F-parabolic subgroups P of G. Related notions are of square
integrability and temperedness. Thus 7 is square integrable, or discrete se-
ries, if its central exponents decay. A w is tempered if its central exponents
are bounded. A cuspidal 7 is square integrable. A square integrable
is tempered. Cuspidal 7 exist only for p-adic F. Langlands classification
parametrizes all irreducible 7 as unique quotients of induced I(7v%; G, P)
where 7 is tempered on M and v® is a character in the “positive cone” (see
[L7], [BW], [Si]). As for central exzponents, they are the central characters
of the irreducibles in the 7wy for proper P. Decay means that these expo-
nents are strictly less than 1 on the positive cone (defined by the positive
roots being positive on the center of M), and bounded means that these
exponents are < 1 there. All three definitions can be stated in terms of
matrix coefficients of 7.

Harish-Chandra used the term “supercuspidal” for what is termed in
[BZ1] and above “cuspidal”. He used the term “cuspidal” for what is
currently named “square integrable” or “discrete series”.

If Fis R or C, let K be a maximal compact subgroup of G(F'). By an
“admissible representation of G(F)” we mean a (g, K)-module V, thus
a complex vector space V on which both K, and the Lie algebra g of
G(F) act. The action is denoted w. The action of ¢ obtained from the
differential of the action of K coincides with the restriction to & of the
action of g, 7(Ad(k)X) = w(k)r(X)w(k™) (k € K, X € g). As a K-
module, V' decomposes as a direct sum of irreducible representations of
K, each occurring with finite multiplicities. A (g, K)-module (71, V1) is
equivalent to (g, V3) if there is an isomorphism V; — V5 which intertwines
the actions of both K and g.

Denote by II(G(F)) the set of equivalence classes of irreducible admis-
sible representations of G(F’), namely (g, K )-modules when F' is R or C.

The local Langlands conjecture, or the local Principle of Functori-
ality, predicts that there is a partition of the set II(G/F) of equivalence
classes of irreducible admissible representations of G(F') into finite sets,
named (L-)packets, which are parametrized by the set A(G/F) of admis-
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sible homomorphisms A of Lz into ©G, the “L-parameters”.

When F' is R or C the partition and parametrization were defined by
Langlands [L7].

When F' is p-adic, a packet for G = GL(n, F) consists of a single irre-
ducible, and the parametrization II(GL(n)/F) = A(GL(n)/F) is defined
by means of (identity of) L- and e- (or 7-) factors. The parametrization
for GL(n, F') has recently been proven by Harris-Taylor [HT] and Henniart
[He].

Packets for G = SL(n, F') can be defined to be the set of irreducibles
in the restriction to SL(n, F') of an irreducible of GL(n, F'). This is done
for G = SL(2,F) in Labesse-Langlands [LL]. Alternatively, packets for
G(F) = SL(n, F) can be defined to be the G*!(F)-orbit 79 (where w9 (h) =
7(g~ hg)) of an irreducible 7, as g ranges over G*(F) = PGL(n, F).

Other cases where packets were introduced are those of the unitary
group U(3, E/F) in 3-variables ([F4]) and the projective symplectic group
of similitudes of rank 2 ([F6]). Although the G®!(F)-orbit of an irreducible
representation is contained in a packet, in both cases there are packets
which consist of several orbits. In both cases the packets are defined by
proving liftings to representations of GL(n, F') for a suitable n, by means
of the trace formula and character relations. Such an intrinsic definition
is given in [F3] for SL(2).

There are several compatibility requirements on the packets II, and
their parameters A\. Some are:

(1) One element of II) is square integrable modulo the center Z(G)(F)
of G(F) iff all elements of II have this property, iff A(Lr) is not contained
in any proper Levi subgroup of “G.

(2) One element of II is (essentially) tempered iff all elements are, iff
A(Lr) is bounded (modulo the center Z(é) of G, resp.).

A representation 7 is “essentially «” if its product with some character
is .

(3) A packet should contain at most one unramified irreducible, and be
parametrized in this case by an unramified parameter (which is trivial on
the factor SU(2,R) and the inertia subgroup Ir of W), see below.

The parametrization is to be compatible with central characters. We
proceed to explain this (for details see [L1]).
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Given a parameter \ : Ly — “G, we define a character of the center
Z(G)(F) of G(F) as follows. Suppose Z is the maximal torus in Z(G).
The normal homomorphism Z < G defines a surjection “G — ©Z, hence
a map A(G/F) — A(Z/F). Duality for tori associates to A € A(G/F) a
character wy of Z(F). If Z(G) is a torus, this is the desired character.
If not, choose a connected reductive F-group G; generated by G and a
central torus, whose center is a torus. The normal homomorphism G — G4
defines a surjection A(G1/F) — A(G/F). We get a character of the center
of G1(F'), and by restriction one of the center of G(F'), independent of the
choice of G;.

Given a parameter ¢ : Lp — Z(é) x Wg, equivalently ¢ € H'(Lp,
Z(@)), where Z(@) is the center of G, we define a character & of G(F)
as follows. Let H be a z-extension of G (see [Kol]), namely an extension
1— D — H — G — 1 of G by a quasitrivial torus D (product of tori
REg/rGyy,, obtained by restriction of scalars from G, ), H and D are defined
over F and the derived group of H is simply connected, equal to G*¢. Then
the commutative diagram

Gs¢ L} G
! [
1—-— D — H — G —1
[ !

D % H/G*

has as dual the commutative diagram

o~

(H/G=)" D
_ ! I
1—- G — H — D —1
o
@ N (Gsc)/\

As (G5 = G| Z(G) = kerti. A diagram chase implies that Z(G) =
ker v. Hence there is a map

H'Y(Lp, Z(Q)) — ker[H' (Lp, (H/G*)") — H'(Lp, D)].

Thus given ¢ € H*(Lg, Z(G)) there is a character o¢ of (H/G)(F) which
is trivial on D(F'), hence a character & of G(F) = H(F')/D(F). It can be
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shown that & is independent of the choice of D. We have
wor=&wn, (€ H'Lp, Z(G), A€ AG/F).

Further conditions on A — II, A(G/F) — II(G/F), are:
(1) The central character w, of w € II is wj.
2) N =[N, N e A(G/F), ¢ € Hl(LF7Z(CA¥))], then Iy = {&cm;
s H)\}.

Note that (& - 7)(g) = & (9)7(g)-

4. Unramified Case

Local functoriality for tori leads to functoriality for unramified rep-
resentations. This is necessary for the global theory, as each irreducible
admissible representation 7 of G(A) decomposes as the restricted product
®m, of representations m, of G(F,) over all places v of F, where 7, is un-
ramified for almost all v. Thus assume that F' is local p-adic with residual
field Fy. Suppose G is (connected reductive) unramified over F', namely G
is quasisplit over F' and split over an unramified extension of F'. Then the
inertia subgroup I of Wr acts trivially on G, hence G x (Fr) is defined.

An L-parameter \ is called unramified if it reduces to (Fr) — G x (Fr).
It is determined by A(Fr) = ¢ x Fr where ¢ is semisimple in G. The set
A" (G/F) of equivalence classes of unramified L-parameters is the set of
@-Conjugacy classes in LG of elements ¢ x Fr, where t is semisimple. This
set is naturally bijected with the set II'"(G/F') of equivalence classes of
unramified representations m of G(F) (namely the irreducible admissible
representations (m, V') of G(F') which have a nonzero K-fixed vector, where
K is a fixed hyperspecial ([Ti]) maximal compact subgroup K of G(F).
Note that all such K are conjugate under G*4(F)).

Let us explain the isomorphism A" (G/F) = II""(G/F) when G is an
F-torus T'.

There is an isomorphism

u:T(F)/T(R) — Hom(X*(T)Gal(F/F)v 7) =X, (T)Gal(F/F)7

where T'(R) is the maximal compact subgroup of T'(F'). The isomorphism
is defined by (u(t))(x) = ordr(x(¥)).
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Here ordp is the map F* — Z, valgp(zn™) = n if z is in the group R*
of units (Jz| = 1).

The surjectivity of u follows on using an unramified splitting field E of
T and descending using Hilbert’s theorem 90, which implies

HY(Gal(E/F),Rf) = {1}, thus HY(Gal(E/F),T(R))= {1}.

Let S denote the maximal F-split torus in 7'. Then
X, (8) = X.(T)CF/F) 50

S = Hom(X, (T)%*'F/F) ¥} = Hom(T(F)/T(R),C*) = II"(T/F).

The inclusion X.(S) — X.(T) defines the exact sequence 1 — Ti-Fr
T—5—1 ButS= T/T1 Fris T x Fr /Int(T ) A (T/F).

When G is an unramified reductive group, let S be a maximal F-
split torus in G, and T a maximal F-torus Contalnmg S. There is a
unlque G-conjugacy class of embeddings of Tin G compatlble with ¢ :
\II(G) ZU(G)VY. Choose such an embedding and a Borel B > T such
that (E, f) is fixed by the Galois action. Then we get “T — LG
and a map S = AY(T/F) — A"(G/F). The Weyl group Wp(T) (=
normalizer of T(F) in G(F), quotient by T(F)) of T(F) in G(F) pre-
serves S and acts on S by duality. The map factorizes to an isomorphism
AV (T/F)/Wi(T) = A (G/F).

On the representation theoretic side there is a bijection
(T/F)/Wg(T) > 1"(G/F),

x — 7(x), constructed by means of the unramified principal series I(x)
as follows. Let B be a Borel subgroup containing 7', and N its unipo-
tent radical. Then B(F) = T(F)N(F) and G(F) = B(F)K. Extend
x € II""(T/F) to a character of B(F) trivial on N(F'). The induced rep-
resentation I(x) of G(F') acts by right translation on the space of locally
constant functions f : G(F) — C with f(nag) = 6'/%(a)x(a)f(g) for all
a € T(F),n e N(F), g€ G(F), where 6(a) = | det(Ad(a)|Lie N)|. Since
G(F) = B(F)K, I(x) is admissible and contains a unique (up to a scalar
multiple) nonzero K-invariant vector. Hence I(x) has a unique unramified
irreducible constituent, denoted 7(x). Every unramified irreducible repre-
sentation of G(F) is of the form 7 () for some unramified x : T(F) — C*,
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and w(x) ~ w(x) iff X' = x oInt(w), w being a representative in G(F') for
Wg(T).

The Hecke algebra H(G) of G(F') with respect to K is the convolution al-
gebra of compactly supported Z-valued K-biinvariant functions f on G(F).
One has H¢(G) = H(G) ® C. The Satake transform f — fV, f¥(r) =
trw(fdg) on I (G/F), is a map from H¢(G) to the space of functions on
the affine variety §/Wp(T), whose coordinate ring is C[X,(S)]"r (™). It
is an algebra isomorphism.

Let F be a global field, and G a connected reductive group over F.
A (smooth) representation 7 of G(A) is a vector space V' which is both
a (goo, Koo )-module (Koo = [[,co0 KvsGoo = [,co0 Guv, 8o denotes the
Lie algebra of G, 0o signifies the set of archimedean places of F') and a
(smooth) G(Af)-module (each vector of V' is fixed by some open subgroup
of G(Ay)), such that the action of G(Af) commutes with that of K, and
goo- Let K, be a maximal compact subgroup of G(F;,) at each place v of F,
which is hyperspecial ([Ti]) at almost all places, and put Ky = [ K,,
K = K Ky

A representation w is called admissible if it is smooth and for each

v oo

isomorphism class v of continuous irreducible representations of K, the
~-isotypic component of V' has finite dimension.

Every irreducible admissible representation (m, V') of G(A) is factorizable
as the restricted tensor product of admissible irreducible representations
(my, Vi) of G(F,), over all v, where 7, is unramified for almost all v. Thus
we fix a nonzero K,-fixed vector £0 at each place v where 7, is unramified,
and the space V of 7 is spanned by the products ®,&,, where &, € m,
for all v and &, = &2 for almost all v. We write 7 = ®,m,; the local
components 7, are uniquely determined by 7 up to isomorphism.

Suppose F;, is nonarchimedean, and G(F,) acts on a Hilbert space H,
by a unitary representation 7,. The space H? of K,-finite vectors is stable
under the action of G(F,). If H, is irreducible, H? is admissible. Unitary
Ty, T2, are unitarily equivalent iff the admissible 7?9, 79, are equivalent.

If {H,} is a family of Hilbert spaces, fix a unit vector z, in H, for
almost all v. The Hilbert restricted product H = ®,, H, is a Hilbert
space with basis Quphy, hy € P, for all v, h, = z, for almost all v, where
P, is an orthonormal basis of H,, including z, for almost all v. If 7 is a
continuous irreducible unitary Hilbert space representation of G(A) then
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there exist such representations m, of G(F,), unramified for almost all v,
unique up to isomorphism, with = ~ ®,. For each isomorphism class ~
of continuous irreducible representations of K, the v-isotypic component
of 7 has finite dimension. The space 7° of K-finite vectors in 7 is an
admissible irreducible G(A)-module. Then 7° = @79, and 70 is isomorphic
as an admissible G(F;,)-module to the space of K,-finite vectors of ,. For
references and further comments see Flath [F1].

By Schur’s lemma ([BZ1]), an admissible irreducible representation m,
has a central character, w,. Thus if Z(F,) is the center of G(F},), m,(zg) =
wy(2)my(g) for all z € Z(F,), g € G(F,). Similarly, an admissible irre-
ducible m of G(A) has central character, w.

5. Automorphic Representations

Very few of the admissible representations m of G(A) are of number the-
oretic significance. Those which are of interest are the automorphic
representations. Let Z denote the center of G, and let w be a unitary
character of Z(A)/Z(F). Let L = L2(G(F)Z(A)\G(A)) be the space of
smooth functions ¢ on G(F)\G(A) with ¢(zg) = w(z)d(g) (z € Z(A)) and
[ 16(9)|*dg < oo, where dg is the unique up to scalar invariant measure
on G(F)Z(A)\G(A). The completion of this space in the L?-norm is a
Hilbert space of the ¢ which are measurable (not smooth: right invariant
under an open subgroup of G(Ay)). The space L is a G(A)-module un-
der right translation: (r(g)¢)(h) = ¢(hg). Any irreducible constituent, or
subquotient, of (r, L), is called an automorphic representation.

The space L decomposes as a direct sum of irreducible representations
only when the homogeneous space G(F)Z(A)\G(A) is compact. In this
case G is called anisotropic, and all elements of G(F') are semisimple.

In general Langlands theory of Eisenstein series [L3] decomposes L as a
direct sum of two invariant subspaces, the discrete spectrum Ly, and the
continuous spectrum L.. The discrete spectrum is the sum of all irreducible
subspaces of L. Each irreducible summand, 7, in L4, occurs with finite
multiplicity, m (7). The continuous spectrum L, is the direct integral of
families of representations induced from parabolic subgroups of G(A).

The discrete spectrum splits as the direct sum of the cuspidal spectrum
Ly, and the residual spectrum L,. The cuspidal spectrum consists of the
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¢ in L with fN(F)\N(A) ¢(ng)dn = 0 for the unipotent radical N of any
proper F-parabolic subgroup P of G, and any g € G(A). The residual spec-
trum is generated by residues of Eisenstein series associated with proper
parabolic subgroups. The irreducible constituents in L,., named residual
representations, are quotients of properly induced representations. They
are determined in Moeglin-Waldspurger [MW1] for G = GL(n), in terms
of the divisors d of n and cuspidal representations of GL(d, A) (and the
parabolic subgroup of the type (d,...,d)). Cuspidal representations are
the constituents of Lg. Langlands [L4] has shown that the constituents of
an induced representation I(c) from a cuspidal representation o = ®o,, of
a parabolic subgroup P(A) (o trivial on the unipotent radical N(A)) are
the ®,m,, where 7, is a constituent of I(o,) for all v, and 7, is the unique
unramified constituent of I(o,,) for almost all v. Moreover, an admissible
irreducible representation 7 of G(A) is automorphic iff 7 is a constituent
of I(o) for some P and some o.

The global principle of functoriality relates parameters A : Ly — G
with irreducible automorphic representations m of G(A). The relation is
such that for almost all places, where the restriction A, of A to Lp, — Lp
is unramified and the component m, of 7 is unramified, the @—conjugacy
class A, (Fr,) = t(A\,) X Fry in G x (Fr,) corresponds to m, = m(Xy), Xo in

T/ F,) /W, (T) = I(G/F,) = (G /F,) = (T F,) /W, (T).

In other words, the unramified components of A and 7w correspond under
the correspondence for unramified representations. For split groups, G
is a direct product, and the unramified A\, and =, are parametrized by
semisimple conjugacy classes in G.

For the group G = GL(n) the principle can be stated as asserting that
there is a bijection between the set of n-dimensional irreducible represen-
tations A : Lp — GL(n,C), and the set of cuspidal (irreducible) represen-
tations 7 of GL(n,A). Here ) is uniquely determined by A, for almost all
v by the Chebotarev density theorem: the set of Frobenii at almost all v
is dense in Gal(F/F). The cuspidal 7 is uniquely determined by almost
all of its unramified components, by the rigidity theorem for GL(n) ([JS]).
When the global field F' is a function field, this principle was proven by
Lafforgue [Lf].

This case has as an application the (Emil) Artin conjecture, which pre-
dicts that the L-function of an irreducible nontrivial representation A\ of
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Gal(F/F) is entire. Indeed, if A « 7 then L(s,\) = L(s,7), and the
L-function of a cuspidal 7 is entire.

Note that if A; <> m;(1 <4 < k) then ®;\; <> H;m;, where H;7; indicates
the representation I(my, ..., ) normalizedly induced from 7 ® - ® 7y,
on the parabolic subgroup P(A) of G(A) of type (dim A, ..., dim Ag) which
is trivial on the unipotent radical N of P(A). The normalizing factor is
61/2 where §(m) = | det(Ad(m)| Lie N)|.

For general reductive connected group G over a global field F, a weak
form of the principle would assert the existence of an automorphic repre-
sentation 7 of G(A) for each parameter \ : Lr — G, such that \, « 7,
for almost all v, and conversely, given such 7 there is a A. The last claim,
that 7 defines ), is false even for GL(n), and the group Lz has to be in-
creased to L x SL(2,R). Before we explain this, let us present a strong
form of the conjectural principle of functoriality, in terms of all places.

Let P, be a packet of admissible irreducible representations of G(F,)
for each place v of the global field F', such that P, contains an unramified
representation 70 for almost all v. The global packet P = P({P,},) consists
of all G(A)-modules ®,7, with 7, € P, for all v and 7, = 70 for almost
all v. It is the restricted product of the P, with respect to {n2},. The
global packet is called automorphic (discrete spectrum, cuspidal, ...) if it
contains such a representation. The example of SL(2) shows that not all
irreducibles in an automorphic packet need be automorphic.

A strong form of the principle would assert that there is a bijection
between A(G/F), the set of equivalence classes of parameters A : Lp —
L@, and the set of automorphic packets P = {r} = ®{m,}, such that
Ay > {m,} for all v. Moreover it would specify which members of P = Py
are automorphic.

6. Residual Case

As noted above, the group Lg does not carry sufficiently many param-
eters A : Lr — Y@ to account for all discrete spectrum, or even cuspi-
dal, automorphic representations. These A correspond, by the Ramanujan
conjecture, to those discrete spectrum representations whose local compo-
nents are all tempered. A bigger group than Lp has to be introduced to
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account for the discrete spectrum, including cuspidal, representations of
G(A) which are not tempered, in fact at almost all places. To present it,
we consider first the case of GL(n).

The discrete spectrum representations of GL(n,A) have been deter-
mined by Moeglin and Waldspurger [MW1] in terms of the divisors d of
n, and the cuspidal representations 7 of GL(d, A). Denote by P the stan-
dard parabolic subgroup of GL(n) of type d = (d,d,...,d), and by N its
unipotent radical. Put dp, (p) = | det(Ad(p)| Lie N)|, for p € P(F,). Thus

Sp, (diag(gr, .- gm)) = [[ Idetgs|{mH =272,

1<i<m
where md = n, for g; € GL(d, F,,). Thus

m—1 m—3 —(m—1)
v v v X X, )

where v,(g) = | det g|,. The normalizedly induced representation

m—1 m—3 m—1

[0 = [ ™ rin ™ 70ve 77

is realized in the space of smooth functions f: G(F,) -V, ®--- @V, (V,
is the space of 7,) with

f(pg) =dp,()[To(91) ® - @T(9m)]f(9) (g9 € GL(n, F,)),

where diag(g1, . .., gm) is the Levi component of p. It has a unique quotient
m—1 _m=1
J(é};{?nﬁl) =Jwy? Ty,...,Vy 2 T,)when T, is generic (or tempered), by

[Z]. The discrete spectrum representations of GL(n, A) are precisely the

J(é]lD/QTd) _ J(l/m;lq—’]/m?,_ST,,,,7y_m2_17-)
m=1 m=3 _m—1
=QuJ(Vy 2 To, Vo 2 ToyeooyVy 2 Ty) = ®1)J(51142¢;i)

as d ranges over the divisors of n, m = n/d, and 7 range over the cuspidal
representations of GL(d, A).

If the cuspidal representations 7 of GL(n,A) are parametrized by the
A: Lr — G = GL(n,C) x Wg, namely n-dimensional representa-
tions A : Lp — GL(n,C), the discrete spectrum representations can be
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parametrized by the equivalence classes of the irreducible complex repre-
sentations

a: Lp x SL(2,C) — GL(n,C),
where « is the tensor product ags @ aunip- Here ags : Lp — GL(d, C) and
Qunip * SL(2,C) — GL(m, C) are irreducible representations with n = dm.

In particular ounip (( 11

01
(single Jordan block).
The cuspidal representations can then be viewed as the semisimple ones,

)) is a regular unipotent element in GL(m,C)

while the unipotent representations are those with ags = 1. The associated
discrete spectrum representation .J is the trivial representation of GL(n, A).
Further, the map

Aa(w) = « (w, (‘“’\01/2 \10\91/2 )) , Ao :Lp — GL(n,C),

is the n-dimensional representation of Lz which parametrizes J ((511;/ 2Td),
7 = 7(ass), by the principle of functoriality. Here |.| is the composition of
Ly - Wp — W}b ~ (C'r and the absolute value on CFr.

The group GL(n) has the special property that the decomposition of
its discrete spectrum into the cuspidal and residual parts is conjecturally
the same as its decomposition into tempered and nontempered represen-
tations. Indeed, the Ramanujan conjecture predicts that all local compo-
nents of any cuspidal representation of GL(n,A) are tempered. From the
explicit description given above of the residual spectrum it is clear that
each component of a residual representation of GL(n,A) is nontempered.
Such partition, cuspidal equals temperedness and residual equals nontem-
peredness, does not hold for groups which are not closely related to GL(n),
such as inner forms or SL(n).

To describe a conjectural picture of the automorphic representations of
G(A) for a reductive connected group G over a global field F', Arthur ([A2],
[A3], [A4]) introduced the notion of what we call A-parameter. It is a
homomorphism

a:LpxSL(2,C) — L@

whose restriction to Lp is an essentially tempered L-parameter (the pro-
jection to G of a(Lp) is bounded modulo Z(G), the composition of a|Lp
with the projection “*G — Wy is the natural map Ly — W, prgoa(w) is
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semisimple for every w € L) and whose restriction to the factor SL(2,C)
is a homomorphism SL(2,C) — G of complex algebraic groups. Moreover,
« is globally relevant: if prg of its image lies in a parabolic subgroup of

G the corresponding parabolic subgroup of G has to be defined over F.
Thus a tempered L-parameter \ is an A-parameter; an A-parameter
whose restriction to the second factor SL(2,C) is trivial (thus « is also
an L-parameter) is tempered; and the restriction of a to Ly, x SL(2,C)
defines a local parameter «, up to equivalence, for each v.

Two A-parameters o7 and «g are called equivalent if there exist g in
G and a l-cocycle z of Ly in Z(G) with Int(g)a; = zas such that the
class of z in H'(Lp, Z(@)) is locally trivial (lies in ker[H(Lp, Z(G)) —
1, H (Lr,, Z(G))]). If Gal(F/F) (hence Lp, W) acts trivially on Z(G)
then H'(Lg, Z(G)) = Hom(Lp, Z(G)) and Chebotarev density theorem
for L3> = W2P implies that z is trivial.

Denote by R(G/F) the set of equivalence classes of A-parameters for G
over F'.

For any o the parameter

Aaw) = (“’ (‘w‘om - ))

lies in A(G/F). Here w € Lp, and Lp — Wpr — Wf,lb ~ Cp together
with the absolute value on Cr defines w — |w|. The map a +— A, injects
R(G/F) in A(G/F), A(G/F) is the subset of R(G/F) of a with a = 1.

Locally, to each a € N(G/F,) there should be associated a finite set
[I, of irreducibles, containing [[, . The set [[,, named A-packet or
quasipacket, does not partition the set of representations. Examples of
U(3,E/F) ([F4]) and PGSp(2, F') ([F6]) show that a quasipacket has non-
trivial intersection with a packet of cuspidal representations. Quasipackets
come up in character relations which define liftings, by means of the trace
formula. They do however define a global partition of the discrete spec-
trum.

We define a global quasipacket as the restricted product over all v of
a family of local quasipackets for all v which contain a fixed unramified
irreducible 70 for almost all v. In fact 70 is [I,, for v where o, =
al(Lg, x SL(2,C)) is unramified. ’

However, not every irreducible in a quasipacket is discrete spectrum, or
automorphic.



294 1. On Automorphic Forms

Let Sq = So(G) be the set of s € G such that sa(w')s™ = z(w')a(w')
for all w’ in Lp x SL(2,C), where z(w') € Z(@) depends only on the Lp-
factor w of w’, and the class of the cocycle z in H!(Lp, Z(é)) is locally
trivial, namely in the kernel ker[Hl(LF,Z(@)) — II, H'(LF,, Z(@))] of
all localization maps. Put S, = S,/S2 - Z(A) = WO(SQ/Z(@)). Then
So — Sy, is surjective, where Sy = m(Sx/Z(G)) and S, is the group of
s € G with sA(w)s™! = z(w)A(w) (w € L), where z(w) € Z(G) defines a
locally trivial element in H'(Lp, Z(G)).

The composition of the map Lg, x SL(2,C) — Lp x SL(2,C) with «
defines a parameter a,, € X(G/F,). There are natural maps S, — S,, and
So — Sa,. Arthur ([A2], 1.3.3) then expects to have a finite set, [,
of irreducible representations of G(F)), containing [], , and a function
€a, ¢ [, — {£1} which is 1 on HA%, and which is 1 if a,, is tempered,
and a pairing (.,.), : Sa, X [I., — C', with various properties, including:
() m € [1), (CIl,,) iff (., m), is a character of Sa, pulled via Sq, — S,
from a character of S, .

(ii) The invariant distribution Z’TGHQ Ea, (M1, m)trm i stable (de-
pends only on the stable orbital integralsv of the test measure fdg).

(iii) [T, contains an unramified irreducible ) whenever c, is unramified
(trivial on the inertia subgroup of Wg,) and G is unramified over F,.

There should also be a function ¢, : S, /Z(G) — {£1} which is conju-
gacy invariant, such that the map 7+ ¢, (s)(8, 7), on [[,, is independent
of the pairing (.,),. Here 3 is the projection of s to S,,. It is used in
endoscopy.

We name the [[,
SL(2,C) the quasipacket [], is simply a packet. The quasipackets do
not partition the set of (equivalence classes of) irreducible admissible rep-
resentations. The examples of U(3, E/F) ([F4]) and PGSp(2) ([F6]) show
that often a quasipacket consists of a nontempered irreducible together

quasipackets. When «, is trivial on the factor

with a cuspidal representation, and the cuspidal lies in a packet of cuspi-
dals. These examples show that quasipackets naturally occur in character
relations describing liftings, and are necessary to describe the discrete spec-
trum automorphic representations.

Given o € X(G/F) we define the quasipacket [[, as the restricted
tensor product of the local quasipackets [ | o, With respect to the unramified
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70 e]] A, for almost all v. There should be a global pairing

<., > Iga X Ha — (Cl, <§, 7T> - H<§v;7rv>v

v

where S, is the image of 5 in gav. Further there should be a function

€ Iy — {:I:l}v ga(ﬂ') = HEOCU (Wv)v T = Q.
v

Almost all €4, (7,) should be 1, and (5, 7,), = 1 for almost all v. Further
one expects that for s € S,/Z(G) the product [L, co(sv) is 1, where s, is
the image of s in S, /Z(G).

Tt is expected of the quasipackets, parametrized by a € RN(G/F), to
partition the automorphic representations of G(A). The automorphic 7
in [[,, occur in the discrete spectrum iff S, is finite. If S, is finite there
should exist an integer d,, > 0 and a homomorphism &, : S, — {£1} such
that the multiplicity m(m) with which 7 € ], occurs in the discrete
spectrum of L*(G(F)/G(A)) is

IS

. (5,m)&0(35).

ol 5€8,

In particular, if S, and each S, are abelian then the multiplicity of 7 is
dy if (., m) = &4, and 0 otherwise.

If S, consists of a single element then the multiplicity m () is constant
on [],, and we say that [],, is stable.

In case the quasipackets have nonzero intersection, the multiplicity m ()
will be the sum of the expressions displayed above over all o such that

mell,

7. Endoscopy

An auxiliary notion is that of an endoscopic group H of G. It comes
up on stabilizing the trace formula, which permits lifting representations
from H to G. We recall its definition following Kottwitz [Ko2].
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Let G be a connected reductive group over a local or global field F'. An
endoscopic datum for G is a pair (s, p). The s is a semisimple element of
G/Z(G). Put H for the connected centralizer Za(s)O of s in G. The p :
Wp — Out(ﬁ ) is a homomorphism (which factorizes via Wp — Gal(F/F).
We may work with Gal(F/F) instead of Wr). For each w in Wr the
element p(w) is required to have the form n x w € @ x w and it normalizes
H. In particular p induces an action of Wy on Z(H ) Of course Wy acts
on G and on its subgroup Z(G). The map Z(G) — Z(H) is a Wg-map.
The exact sequence 1 — Z(é) — Z(ﬁ) — Z(fI)/Z(é) — 1 gives a long
exact sequence ([Ko2], Cor. 2.3)

= mo(ZH)) = wo([Z(H)/Z(G)WF) — HY(F, Z(G)) —

The element s € Z(H)/Z(G) is required to be fixed by W, and its image
in

mo([Z(H)/Z(G)]"")

is in the subgroup £(s,p), consisting of the elements whose image in
H(F, Z(G)) is trivial if F' is local, and locally trivial if F is global.
An isomorphism of endoscopic data (s1,p1) and (s2,p2) is g € G with

Int(g)Hy = Hy; p2 = (Intg)° o py

((Int g)° is the isomorphism Out(H;) — Out(Hs) induced by Int g;
Int(g)s; and so have the same image in £(s, p).

Write Aut(s, p) for the group of automorphisms of (s,p). It is an alge-
braic subgroup of G with identity component H. Put

A(s, p) = Aut(s, p)/H.

An endoscopic datum (s, p) is elliptic if (Z(H)"*)° ¢ Z(G). Then
the 3rd condition in the definition of an isomorphism can be replaced by
Int(g)s1 = so.

An endoscopic group H of G is in fact a triple (H,s,n), where H is a
quasisplit connected reductive F-group, s € Z(H ), and 7 : H — G is an
embedding of complex groups. It is required that
(1) n(H) is the connected centralizer Z@(n(s))o of n(s) in G, and that
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(2) the G-conjugacy class of 7 is fixed by Wg (that is, by @(Wg) C
Gal(F/F)).

We regard Z(G) as a subgroup of Z(H). By (2), the Wp-actions on
Z(G) and Z(H) are compatible. Define a subgroup &(H/F) of

mo([Z(H)/Z(G)"r)

analogously to R(s, p) above. It is further required that
(3) the image of s in Z(H)/Z(G) is fixed by W and its image in 7
(1Z(H)/Z(G)]"F) lies in R(H/F).

An isomorphism of endoscopic groups (Hy, s1,m1) and (Ha, s2,72) is an
F-isomorphism « : Hy — Ho satisfying:
(1) m o @ and 1y are é—conjugate. (a is defined up to ﬁl—conjugacy; it
induces a canonical isomorphism &(Hz/F) = &(H;/F)).
(2) The elements of &(H;/F) defined by s; correspond under

R(H,/F) > &(H, /F).

The group Aut(H, s,n) of automorphisms of (H, s,n) contains
H*(F)(= (Int H)(F)) as a normal subgroup. Put

A(H,s,n) = Aut(H, s, n)/Had(F).

An endoscopic group (H, s,n) determines an endoscopic datum (n(s), p),
where p is the composition

Wi — Aut(H) = Aut(Z5(n(s))°) — Out(Zz(n(s))").

Every endoscopic datum arises from some endoscopic group. There is
a canonical bijection from the set of isomorphisms from an endoscopic
group (Hy,s1,m) to another, (Ha,s2,72), taken modulo Int(Hs), to the
set of isomorphisms from the corresponding endoscopic datum (n(s1), p1)
to (n(sz2), p2), taken modulo Za(n(SQ))O. Thus there is a bijection from the
set of isomorphism classes of endoscopic groups to the set of isomorphism
classes of endoscopic data. Moreover, there is a canonical isomorphism
A(H, s,m) = An(s), p).
We say that (H,s,n) is elliptic if (n(s), p) is elliptic.
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Twisted endoscopic groups are defined, discussed and used to stabilize
the twisted trace formula in [KS].
For further discussion of parameters and (quasi) packets see [A4].

Let f : G* — G be an F-isomorphism of F-groups. It defines a map
fU(G*) — ¥(G). Tt is called an inner twist if for every o in Gal(F/F)
there is g, in G(F) with f(o(g)) = Int(g,)(a(f(g))). In this case G* is
called an inner form of G. The L-group “G depends only on the class
of inner forms of G. In each such class there exists a unique quasisplit
form. The L-group determines the F-isomorphism class of the quasisplit
form. The Galois action on G is trivial iff G is an inner form of a split
group. The L-parameters of G are only those which factorize through *P
for an F-parabolic subgroup P of the quasisplit form G* of G, provided P
is relevant, namely is an F-parabolic subgroup of G itself.

The group G is defined over a field F', and the theory for G depends on
the choice of F'. What would happen if we replace the base field by a
finite extension F of F'?7 For this it is convenient to recall the theory of
induced groups. Let A’ be a subgroup of finite index in a group A. The
example of interest to us will later be A = Gal(F/F) and A’ = Gal(F/E).
Suppose A’ acts on a group G. The induced group I%,(G) = Ind% (G)
is defined to consist of all f : A — G with f(a'a) = a'f(a) (a € A,
a’ € A"). The group structure is (ff')(a) = f(a)f'(a). The group A acts
by (r(a)f)(z) = f(za) (a,z € A). For a coset s in A"\ A put

G ={f €I4(G); fla)=0ifa ¢ s}.

It is a group and I4 (G) is HseA,\A G,. The groups G, are permuted
by A. The subgroup Gz is stable under A’, and f — f(e), Ge — G, is
an A’-module isomorphism. Shapiro’s lemma asserts H'(A, I4,(G)) =
HY(A' Q).

Let B be a group, 4 : B — A a homomorphism, put B’ = p~1(A’),
and suppose p induces a bijection B'\B = A’\A. Then B’ acts on G via
w:b g = p®)g. The map f — po f is a p-equivarient isomorphism
W TA(G) = TE(G). We have r(u(a)) (s o /)(x) = o f(za).

If E/F is a finite field extension, we have

We\Wr = Gal(F/E)\ Gal(F/F) = Homg(E, F).
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If G is an E-group, its restriction of scalars G’ = Rp/pG is the F-group

IG where T = Ig:;gg)). Thus &' (F) = I(G(F)) = [1, G(F), where o

ranges over Homg(E,F). Let 0, € Wr (1 < i < [E : F]) be a set of
representatives for Wg\Wpg. Define an action of 7 € Wr on (4;1 < i <
[E: F]) by Wgoim—! = Wgo, . Put 7 = UT(,»)TU;l € Wg. Then

(V)i = Cam@VTO; | = Cam @Yoy T 70 = Yr(@)Ti € W,

The group W acts on G'(F) = [, G(F) by (¢:)7 = (7 ' (g4(»)))- Indeed,

(gl)( ) ((77—) (g(fy'r (2) )) = ((VT(i)Ti)i (g“/('r(i))))

= (% (g7 = ((9:)7)7-
In particular G'(F) = G(FE) and if E/F is Galois then G'(F) = [[, G(E).

Suppose G is reductive connected. Then U(G') = (X', V', X'*, V")
is related to ¥(G) = (X,V,X*,VY) by X' = IX, V = U,Vo (0 €
Gal(F/E)\ Gal(F/F)). Similarly, bases A’ and A of V' and V are related
by A’ = U,Ac. In particular we have a natural isomorphism G’ = I (@)7
thus G’ ~ GIEF],

The map P +— Rg,pP induces a bijection from the set of E-parabolic
subgroups of G to the set of F-parabolic subgroups of G’, P is a Borel
subgroup of G iff Rg/p P is one of G’. Hence G is quasisplit over E iff G
is quasisplit over F'.

If a: Lg x SL(2,C) — LG is an A-parameter for G, then the corre-
sponding parameter o/ : Lp x SL(2,C) — G’ is defined by

o (1 x s) = (a1 X 8),...,0(Tp.p) X 5)) X T.

The diagonal embeddlng G — G’ induces So — Sar, and by Shapiro’s
lemma gives ker® (LE,Z(G)) — ker'(Lp, Z (G')), where ker' denote the
set of classes in H' which are locally trivial. We have a commutative
square

Sy — S
b I
ker'(Lp, Z(G)) — ker'(Lp, Z(G")).

Hence S, = Z (@’ ) -Im(S,), and the diagonal map yields an isomorphism
Sa = S In other words, the representation theory of G(E) is the same
as that of G'(F).



300 1. On Automorphic Forms

8. Basechange

As an example, let us consider the case of basechange lifting. It concerns
an F-group G, and “lifting” admissible representations of G(F') to such
representations of G(E) if F' is local and E/F is a finite extension of fields,
or automorphic representations of G(A ) to such representations of G(Ag)
if E/F is an extension of global fields. We need to view G(E) (or G(Ag))
as the group of points of an F-group in order to compare L-parameters of
the F-group G with those of what should describe G(F). Such a group
is given by G’ = Rg,pG, which is an F-group with G'(F) = G(E). As
for L-parameters, we have that the composition of A : Wr — G with the
diagonal embedding

bCE/FZLG:@NWFﬁLG/:éINWF:(éX~--><é)><IWF

gives an L-parameter )\’ :AbCE/E()‘) : Wg — LG, In particular, the group
Wr permutes the factors G in G’. The parameter A’ can be viewed as the
restriction Ag : Wi — LG = G x Wg of A from Wg to Wg.

As a special case, suppose G is split, thus the group Wg acts trivially
on é, but it permutes the factors Gin G Suppose E/F is an unramified
local fields extension. Then an unramified representation 7 of G(F') is
determined by the image ¢(r) = A(Fr) of the Frobenius in G. This image
is determined up to conjugacy. The image of t(r) in £G’ is the conjugacy
class of t(7') = (t(m) x - - - x t(m)) x Fr = (¢(m)PF1 1... 1) x Fr, which is
the conjugacy class of t()[Z* in the L-group *(G/E) of G over E.

For example, the unramified irreducible constituent 7 in the normal-
izedly induced representation I(pq, ..., ty) of GL(n, F'), where p; : F* —
C* are unramified characters, lifts to the unramified irreducible constituent
7g in the normalizedly induced representation I(p10Ng/p, ..., finoNg/F),
Ng/p : B — F being the norm.

If v is a place of a global field F' which splits in E, thus F, = EQp F, =
F, ®--- @ F,, then bcg/p(m,) = m, X --- X m, is a representation of
G(Ev) = G(Fv) X X G(Fv)

The problem of basechange is to show, given an automorphic m of
G(AF), the existence of an automorphic g of G(Ag) = G'(Ap) with
t(mew) = beg p(t(m,)) for almost all v. For G = GL(n), if 7g exists it is
unique by rigidity theorem for GL(n).
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A related question is to define and prove the existence of the local lifting.

In any case, basic properties of basechange are, suitably interpreted:

e transitivity: if #/ C £ C L then ber,/g(beg/p(m)) = ber/p(m) for w
on G(F).

e twists: bcg,p(T®x) = beg p(T)®XE, XE = XoNg/p (if G = GL(n),
X:AR/F* —C*).

e parameters compatibility: bcg/p(m(A)) = T(Ag).

For G = GL(n), cyclic basechange (thus when E/F is a cyclic, in par-
ticular Galois, extension of number fields) was proven by Arthur-Clozel
[AC]. A simple proof, but only for 7 with a cuspidal component, is given
in [F2;I1], where the trace formula simplifies on using a regular-Iwahori
component of the test function. The case of n = 2 had been done by
Langlands [L6], using ideas of Saito and Shintani (twisted trace formula,
character relations). A simple proof of basechange for GL(2), with no
restrictions, is given in [F2;I], again using regular-Iwahori component to
simplify the trace formula. Basechange for GL(n) asserts (see [AC]): Let
E/F be a cyclic extension of prime degree /.

e Given a cuspidal automorphic representation of GL(n, Ar) there exists
a unique automorphic representation 7 = bcg,p(m) of GL(n, Ag) which
is the basechange lift of 7. It is cuspidal unless ¢ divides n and 7w = 7 for
some character w # 1 of A;,/F*Ng/pAf.

e If m and 7’ are cuspidal then bcg,p(7) = beg/p(n') iff 7' = mw for
some character w of Ay /F* Ng/pAj

e A cuspidal representation 7 of GL(n, Ag) is the basechange beg /()
of a cuspidal 7 of GL(n,Ap) iff “7g = 7g for all 0 € Gal(E/F). Here
ng(g9) = Tr(og).

o If n = ¢m and 7 is a cuspidal representation of GL(n, Ap) with rw =
7, w# 1 on Ay /F*Ng/pAj, (thus w has order £ = [E : F]), then there
is a cuspidal representation 7 of GL(m,Ag) with 97 # 7 for all 0 # 1 in
Gal(E/F) such that bcg,p(m) is the representation 1’(7,"'7,"2 Ty ,UK*IT)
normalizedly induced from 7 7T ® - - - ®° "' 1 on the parabolic of type
(m,...,m).

The last statement can also be stated as 7 +— m, as follows.

Let E/F be a cyclic extension of prime degree ¢. Let 7 be a cuspidal
representation of GL(m, Ag) with 77 # 7 for all o # 1 in Gal(E/F’). Con-
jecturally this 7 is parametrized by an L-parameter A¥ : Wg — GL(m, C).
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Consider A\ = Ind5 AP, Tt is a representation of Wr in GL(n,C), n = md.
The group GL(m, E), or Rg/p GL(m), can be viewed as an w-twisted
endoscopic group of GL(n) over F, where w is a primitive character on
AR /F*Ng/pAj. At a place v of F' which stays prime in F, an unram-
ified representation I(u;;1 < i < m) of GL(m, E,) would correspond to
I(Cj,u;/z;o <j<41<i<m)on GL(n,F,). Here C is a primitive ¢th
root of 1. At a place v of F' which splits in E, A\, = @ww\g and 7, of
GL(m, E,), which is @, of lev GL(m, F,) corresponds to I (@[, Tw)-
The last result stated above, as part of basechange for GL(n), asserts that
endoscopic lifting for GL(n) exists. Denote it be endg /(7). Namely

e Let E/F be a cyclic extension of prime degree ¢, and 7 and a cus-
pidal representation of GL(m,Ag). Then 7 = endg,p(7) exists as an
automorphic representation of GL(n, Ar), which is cuspidal when 77 # 7
for all ¢ # 1 in Gal(E/F). Moreover mw = 7 for any character w of
Ay /F*Ng/pAy. Any cuspidal 7 of GL(n,Ap) with wr = 7 for such
w# 1lis ™ =endg,p(7) for a cuspidal 7 of GL(m, Ag) with 77 # 7 for all
o in Gal(E/F). Further, endg,p(7') = endg,p(7) iff 7/ = 7.

This result was first proven for m = 1, thus £ = n, by Kazhdan [K1] for =
with a cuspidal component, and by [F1;I] without such restriction, and by
Waldspurger [W3] and [F1;]] for all . This technique, of endoscopic lifting
(twisted by w, into GL(n, F')), has the advantage of giving (local) character
relations which are useful in the study of the metaplectic correspondence
([FK1]). The theory of basechange gives other character relations, and lifts
m with 7w = 7 to I(7,°7,...). The endoscopic case of n = 2 = ¢ had been
done by Labesse-Langlands [LL]. See also [F6].

The basechange and endoscopic liftings described above were proven
using the trace formula, and they apply only to cyclic (Galois) extensions
E/F. By means of the converse theorem, Jacquet, Piatetski-Shapiro, Sha-
lika ([JPS]) showed

e Let E/F be a non-Galois extension of degree 3 of number fields.

If 7 is a cuspidal representation of GL(2,Ar) then the basechange lift
begp(m) exists and is a cuspidal representation of GL(2, Ag).

Again, the lifting is defined by means of almost all components 7, and
begp(m) is unique — if it exists — by rigidity theorem for GL(2).



II. ON ARTIN’S CONJECTURE

Let F be a number field, F an algebraic closure, and A : Gal(F/F) —
AutV, dim¢ V' < oo, an irreducible representation. Define L(s, A) to be
the product over all finite places v of F of the local factors L(s,\,) =
det[1—q, *-(\y|[V1*)(Fr, )] =1, where Vv is the space of vectors in V' fixed by
the inertia group I, at v, and A, is the restriction of A to the decomposition
group D, at v. Artin’s conjecture asserts that the L-function L(s,\) is
entire unless A is trivial (= 1). Langlands proposed approach to it is to
show that there exists a cuspidal representation 7(\) of GL(dimV,Ap)
with L(s, Ay) = L(s,m(\),) for almost all v. In this case, the holomorphy
follows from the fact that L(s,7) = [[, L(s,7,) is entire for a cuspidal
7w = ®m, # 1. Thus 7 = 7w(A) is related to A by the identity ¢(m,) = A(Fr,)
of semisimple conjugacy classes in GL(n, C) for almost all v. If this relation
holds, A is uniquely determined by Chebotarev’s density theorem, and « is
uniquely determined by the rigidity theorem for cuspidal representations
of GL(n,Ar). The case of dim¢ V' = 1 is that of Class Field Theory, which
asserts that m()\) exists as a character of A5 /F*.

Suppose dim A (i.e., dimV) is two. Denote by Sym? : GL(2,C) —
GL(3,C) the irreducible 3 dimensional representation of GL(2,C) which
maps g to Int(g) on Lie SL(2). Its image is SO(3,C) and its kernel is the
center of GL(2,C) (thus it gives

PGL(2,C) = S0(3,C) C SL(3,C)).

The finite subgroups of SO(3, C) are cyclic, dihedral, the alternating groups
Ay or As, or the symmetric group Sy on four letters; see, e.g., Artin [A], Ch.
5, Theorem 9.1 (p. 184). If Tm(Sym? o)) is cyclic then Tm()\) is contained
in a torus of GL(2,C) and A is reducible, the sum of two characters. This
case reduces to the case of CFT.

Let A : G — GL(2,C) be an irreducible two dimensional representation
of a finite group.

303
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1. PROPOSITION. Im(Sym?®o)) is dihedral iff X = Ind$ x is induced
from a character x of an index two subgroup H of G, and 9x # x for all
geG—H.

PROOF. Assume A is faithful by replacing G with G/ker A\. Let T be
the cyclic subgroup of Im(Sym2 oA) of index two. Since the kernel of
Sym? is central in GL(2,C) and A is faithful, the inverse image H of T
in G is abelian. Hence the restriction of A to H is the sum of two one
dimensional representations, x and x’. If x = x/, Clifford’s theory implies
that x extends to G in two different ways (differing by the sign character
on G/H). But A is irreducible two-dimensional, hence x' # x, x’ = % for
anygeG—H,and)\:Indgx. O

2. COROLLARY. Suppose Im(Sym? o)) is dihedral, where \ : Gal(F/F)
— GL(2,C) is two-dimensional. Then mw(\) exists as a cuspidal represen-
tation of GL(2,AF).

PROOF. By Proposition 1 there is a quadratic extension E of F and
a character y of Gal(F/E) such that A\ = Ind% y, x # x for all ¢ €
Gal(F/F) — Gal(F/E). The existence of (Ind% x) is proven in [JL], [LL],
[F3]. O

The irreducible representations of the symmetric group S, are paramet-
rized by the partitions of n, and the associated Young tableaux. The rep-
resentation A associated to the dual Young tableaux is A - sgn, where A
is associated with the original Young tableaux, and sgn is the nontrivial
character of S, /A,. The representation A of S,, becomes reducible when
restricted to A, precisely when the Young tableaux is selfdual. The di-
mension of A is the number of removal chains, by which we means a chain
of operations of deleting a spot of a Young diagram at the right end of a
row under which there is no spot. For example, S4 has the representations
listed in the table on the next page.

There the partitions (4) and (1,1,1,1) are dual. They parametrize the
trivial and sgn one dimensional representations of S4. The partitions (3,1)
and (2,1,1) are dual (obtained from each other by transposition), and pa-
rametrize 3-dimensional representations whose restrictions A3 to Ay re-
main irreducible and equal to one another. The selfdual partition (2,2)
parametrizes the 2-dimensional irreducible representation of Sy whose re-
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striction to A4 is reducible, equal to the sum of the two quadratic charac-
ters of Ay (trivial on the 3-Sylow subgroup).

partition Young T chains dim

(4) TXTL (zzz, 22, 7) 1

)

TT TT, T T T T
T, x,
e T TT TT, T T T T
(2,1,1) xx, ( ),( > 3
T 1’7 x?‘r?

[\

)

T T
T x, 1

(1,1,1,1)

The 3-dimensional representation Az of A, is induced. Indeed, consider
the 2-Sylow subgroup A of A4. It is generated by (12)(34), (13)(24),
(14)(23), and is isomorphic to Z/2®Z/2. The quotient A4/A) is Z/3. The
restriction to the abelian A/ of the irreducible 3-dimensional representation
Az of Ay is the sum of 3 characters permuted by the quotient Z/3 of Ay,
hence A3 is induced Ind‘ji‘1 X, xX2=1#x.

3. THEOREM. There exists a cuspidal representation w(A) of GL(2, Ap)
where \ : Gal(F/F) — GL(2,C) is an irreducible representation such that
Im(Sym? o) = Ay.

We record Langlands’ proof ([L6]).

4. LEMMA. There exists a cuspidal representation m(Sym? oA) of
GL(3,AF).

PROOF. The composition of Sym? o\ with the projection A, — Z/3isa
surjective map Gal(F/F) — Z/3. Its kernel has the form Gal(F/E) where
E/F is a cubic extension. As noted before the lemma, Sym? o\ = IndE X,
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where x : Gal(F/E) — {£1}, and °x # x for 0 # 1 in Gal(E/F) =
Z./3. The existence of m(Indk x) now follows from the theory of (cubic)
basechange for GL(3) [AC] or the endoscopic lifting for SL(3) of [K1] and
[F1;1]. O

Put A for \| Gal(F/E).
5. LEMMA. There exists a cuspidal representation n(Ag) of GL(2,Ag).

PROOF. We claim that Ag is irreducible. If not, it would be the direct
sum of two characters, permuted by Gal(F'/F)/ Gal(F/E) = Gal(E/F) =
7Z/3. This action would then be trivial and A be reducible. But A is
irreducible, hence so is A\g. Now Sym?o)g has as image the order 4
dihedral group, hence 7(A\g) exists. ]

6. PROPOSITION. Suppose m is a cuspidal representation of GL(2, Ar)
whose basechange beg p(m) to E is m(Ag), whose central character wy
is det X, and such that its symmetric square lift Sym? () is w(Sym? o)).
Then m = m(\).

PRrROOF. Denote by [a,b] the conjugacy class of diag(a,b) in GL(2,C).
At any place v where 7, and A, = \| D, are unramified (D, ~ Gal(F,/F,)
is the decomposition group of v in Gal(F/F)), put t(m,) = [a,b] and
A(Fr,) = [a,0]. If v splits in E then bcg/p(m) = 7(Ag) implies that
[a,b] = [a, B]. We need to show this also when F, = E ®@p F, is a field,
to conclude that # = w(X) by rigidity theorem for GL(2). When E, is a
field, from beg, p(7) = m(Ag) we conclude that [a®, b%] = [o?, ], and from
wy = det A that ab = o3. Hence a = (o and b = (23 for some ( € C* with
¢® = 1. As Sym?*(n) = 7(Sym® o)), we have [a/b,1,b/a] = [o/B3,1,3/al.
From t(m,) = [Ca, (28], ¢ # 1, we then conclude that (~la/8 = §/a,
hence that o/3 = £¢2. If a/B = (2, then a = (o = 3, b = (*3 = a and
[a,b] = [a, B]. If /B = —¢? then Sym® oA(Fr,) = [-¢2,1, =], but A4 has
no element of order 6. O

It remains to show that 7 as in Proposition 6 exists. Since “Ag = Ag for
all o in Gal(F/F), we have °m(Ag) = m(Ag). Hence there exists a cuspidal
7 of GL(2, Ap) with beg,p(m) = m(Ag). This 7 is unique only up to a twist
by a character of Ay /F*Ng,pAy = Z/3. From beg p(m) = m(Ag) we
get wr o Ng/p = det Ao Ng/p, hence wyw = det A for some character w of
AL /F*Ng/pAj. As wrgw? = wrw! = wrw, we may and do choose 7 with
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wy = det . Tt remains to show that 7; = Sym*(7) and 75 = 7(Sym?® o))
are equal, namely that the classes ¢(m1,) and ¢(m3,) are equal for almost
all v. For this we use the following theorem of Jacquet and Shalika [JS].

7. LEMMA. Let w1, mo be automorphic representations of GL(n,Ar)
with mo cuspidal, such that t(m1,) @ t(fray) = t(may) ® t(72,) for almost
all v, where 79, denotes the representation contragredient to mwo,. Then
T = T2.

We take n = 3, and note that t(m1,) = t(m2,) when v is split in E. It
remains to verify the requirement of the Lemma when v stays prime in
E. In this case the image of Fr, € Gal(F/F) in A4 has order 3, namely
t(m2y) = Sym?(A(Fr,)) = [1,¢,¢?] for some ¢ # 1 = ¢3. Hence A(Fr,) =
[ov, Car] for some v € C*. Since o is self-contragredient, we have t(7a,) =
t(may). But t(m,)? = A(Fr,,)? and det(t(m,)) = det(\(Fr,)). Hence t(m,) =
[a,b] with a® = b3 = a® and ab = (a?. So t(m,) = |a,(a] or [(2a, 2al.
Consequently t(m1,) is [1,¢,¢?] or [1,1,1], and we have (1) ® t(72,) =
t(may) ® (72, ) in both cases.

This completes the proof of the existence of a cuspidal representation
7(\) of GL(2,Ar) where A : Gal(F/F) — GL(2,C) is irreducible with
Im(Sym? o) = Ajy. O

The next case, completed by Tunnell [Tu] after some work of Langlands,
is that of

8. THEOREM. Let A : Gal(F/F) — GL(2,C) be an irreducible repre-
sentation with

Im(Sym? o)) = S; (~ PGL(2,F3)).

Then w(\) exists as a cuspidal representation of GL(2,Ap).

Suppose ker(Sym? o)) = Gal(F/N), thus N/F is an S;-Galois exten-
sion. The subgroup Sy of Sy, generated by (12)(34), (13)(24), (14)(23), is
normal in Sy, isomorphic to Z/2 @ Z/2, and there is an exact sequence

1*>S()*>S4—>53*>1.

As Sy is normal in Sy, its fixed field, M, is a Galois extension of F' of
type Ss. The sgn character on S3 defines a character of Sy; let E be the
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quadratic extension of I’ defined by its kernel. Let K be the nonGalois
cubic extension of F' fixed by a fixed 2-Sylow subgroup containing Sy. Since
Im(Sym? o\ is a dihedral group (A\x = A| Gal(F/K)), m(Ax) exists as
a cuspidal representation of GL(2, Ag). Since Im(Sym? oAg) is A4, 7(Ap)
exists as a cuspidal representation of GL(2,Ag). As usual, by bcy,p(7)
we mean the basechange of 7 from GL(2,Ar) to GL(2,A4).

We have the following diagram of fields

N\
N

9. LEMMA. Let w be a cuspidal representation of GL(2,Ar) such that
beg/p(m) = m(Ag) and begp(m) = 7(Ak). Then = m(\).

N

PROOF. At a place v of F' where both m# and A\ are unramified, put
t(my) = [a,b] and A\(Fr,) = [o, 8]. If v splits in FE or if K, = K ®p F, has
F, as a direct summand, we have t(m,) = A(Fr,) (equality of conjugacy
classes in GL(2,C)). If not, we get t(m,)? = A\(Fr,)? and t(m,)® = A\(Fr,)3.
If t(m,) and A(Fr,) share an eigenvalue, say a = «, then b? = % and
b® = 33 imply b = 3 and t(m,) = A(Fr,). If t(m,) # A(Fr,) then they do

not share an eigenvalue, and we may assume that a = —a. As t(7,)® =
A(Fr,)3, we have 3 = Ca, ¢3 = 1 # ¢. Hence \(Fr,) = [—a,(a] and
(Sym? o) (Fr,) = [—¢, 1, —¢?], an element of order 6, which does not exist
in Sy. Hence t(m,) = A(Fry). O

It remains to manufacture 7 as in Lemma 9. Since A\ extends to A we
have “Ap = A\ for 0 € Gal(F/F), o|E # 1. Hence °m(Ag) = m(Ag), and
basechange theorem for GL(2, Ar) implies that there exist precisely two
cuspidal representations 71 and 73 of GL(2, Ar) with beg,p(m;) = T(AEg),
and my = m ® X/, Where xg/p(g) is 1 iff det g € A*/F*Ng,pAj.

Since Im(Sym?® o)ys) is dihedral, and Ay is irreducible (see Lemma 5
in proof of Theorem 3), the cuspidal w(Aps) of GL(2,A)s) exists. Hence
m(Ax) lifts to m(Aar). But m(Aas) = beag/i (') for precisely two cuspidal
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representations 7’ of GL(2, Ak ), and these two differ by a twist with x s/
Hence 7" are m(Ax) and m(Ax) ® X/ k-

At this stage we require a theorem of Jacquet, Piatetski-Shapiro and
Shalika [JPS].

10. PROPOSITION. Let K/F be a field extension of degree 3 which is
nonGalois. Then the basechange ch/F(W) of a cuspidal representation m
of GL(2,AFr) exists and is a cuspidal representation of GL(2, Ak). O

This is proven by means of the converse theorem.

In particular beg/p(m1) and begp(me) exist. They lift to 7w(Aar). In-
deed, basechange is transitive, and is compatible with the Langlands cor-
respondence A — 7(\). Hence

bCM/K(bCK/F(ﬂ'i)) = bCM/F(’ITZ‘)

= beye(beg/r(mi)) = beyyp(r(Ag)) = m(An).

But m = m ® Xg/r, and Xy x = XE/F © Ng/p. By the compatibility of
basechange with twisting,

beg/p(m) = beg/p(m2 @ Xp/F) = bek/r(T2) @ Xp/K-

Hence beg/p(m;) = m(Ak) for either i = 1 or i = 2. This 7; has the
properties required by Lemma 9, hence theorem 8 follows. g
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AUTOMORPHIC FORMS AND
SHIMURA VARIETIES OF PGSp(2)

by Yuval Z. Flicker (The Ohio State University, USA)

The area of automorphic representations is a natural continuation of
the 19th and 20th centuries studies in number theory and modular forms.
A guiding principle is a reciprocity law relating the infinite dimensional
automorphic representations, with finite dimensional Galois representa-
tions. Simple relations on the Galois side reflect deep relations on the
automorphic side, called “liftings”. This monograph concentrates on an
initial example of the lifting, from a rank 2 symplectic group PGSp(2) to
PGL(4), reflecting the natural embedding of Sp(2, C) in SL(4,C). It devel-
ops the technique of comparison of twisted and stabilized trace formulae.
Main results include:

o A detailed classification of the representations of PGSp(2).

e A definition of the notions of “packets” and “quasi-packets”.

e A statement and proof of the “lifting” by means of character relations.
e Proof of multiplicity one and rigidity theorems for the discrete spectrum.

These results are then used to study the decomposition of the cohomol-
ogy of an associated Shimura variety, thereby linking Galois representa-
tions to geometric automorphic representations.

To put these results in a general context, the book ends with a technical
introduction to Langlands’ program in the area of automorphic represen-
tations. It includes a proof of known cases of Artin’s conjecture.

This research monograph will benefit an audience of graduate students
and researchers in number theory, algebra and representation theory.



