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The Tame Algebra

Yuval Z. Flicker

Abstract. The tame subgroup It of the Iwahori subgroup I and the
tame Hecke algebra Ht = Cc(It\G/It) are introduced. It is shown that
the tame algebra has a presentation by means of generators and re-
lations, similar to that of the Iwahori-Hecke algebra H = Cc(I\G/I) .
From this it is deduced that each of the generators of the tame algebra
is invertible. This has an application concerning an irreducible admis-
sible representation π of an unramified reductive p-adic group G : π
has a nonzero vector fixed by the tame group, and the Iwahori sub-
group I acts on this vector by a character χ , iff π is a constituent of the
representation induced from a character of the minimal parabolic sub-
group, denoted χA , which extends χ . The proof is an extension to the
tame context of an unpublished argument of Bernstein, which he used
to prove the following. An irreducible admissible representation π of
a quasisplit reductive p-adic group has a nonzero Iwahori-fixed vector
iff it is a constituent of a representation induced from an unramified
character of the minimal parabolic subgroup. The invertibility of each
generator of Ht is finally used to give a Bernstein-type presentation
of Ht , also by means of generators and relations, as an extension of an
algebra with generators indexed by the finite Weyl group, by a finite
index maximal commutative subalgebra, reflecting more naturally the
structure of G and its maximally split torus.
Mathematics Subject Classification 2000: Primary 11F70; Secondary
22E35, 22E50.
Key Words and Phrases: Tame algebra, Iwahori-Hecke Algebra, in-
duced representations.

1. Introduction

The Iwahori, or Hecke, algebra H of a reductive connected split group G over
a p-adic field has an explicit presentation by generators and relations (see [IM]),
and a presentation – due to Bernstein (see [L], [HKP]) – exhibiting a commutative
subalgebra of finite index. It proved to be useful in the study of the admissible
representations of G , especially those which have a nonzero vector fixed by the Iwa-
hori subgroup I , see, e.g., [KL], [L], [Re]. These representations are constituents
of representations induced from unramified characters of the Borel subgroup [Bo],
and have uses e.g. in the study of automorphic representations by means of the
trace formula.
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A purpose of this paper is to extend the study to constituents of repre-
sentations parabolically induced from characters which are tamely ramified. We
are then led to introducing the tame subgroup It of the Iwahori subgroup I and
the tame Hecke algebra Ht = Cc(It\G/It). This tame algebra is an extension
of the Iwahori-Hecke algebra H = Cc(I\G/I) by a finite commutative algebra
C[I/It] , and we show that it has a presentation by means of generators and rela-
tions, similar to that of the Iwahori-Hecke algebra H , but in which the relation
T 2 = qI + (q− 1)T ramifies. From this we deduce that each of these generators of
the tame algebra is invertible, as in the case of H .

This has the following application concerning an irreducible admissible rep-
resentation π of an unramified reductive p-adic group G : π has a nonzero vector
fixed by the tame group It , so that the Iwahori subgroup I acts on this vector by
a character, denoted χ , iff π is a constituent of the representation induced from
a tame character of the minimal parabolic subgroup, denoted χA , which extends
χ . The proof is an extension to the tame context of an unpublished argument of
Bernstein, which he used to prove the following result, also known to Borel [Bo].
An irreducible admissible representation π of a quasisplit reductive p-adic group
has a nonzero Iwahori-fixed vector iff it is a constituent of a representation induced
from an unramified character of the minimal parabolic subgroup.

The invertibility of each of the generators of the tame algebra Ht is what
is needed to give a Bernstein-type presentation of Ht , also by means of generators
and relations, as an extension of the finite tame Hecke algebra Hf,t = C(It\K/It),
with generators indexed by the finite tame Weyl group Wf,t , by a finite index
maximal commutative subalgebra Rt = Cc(A/At(O)), reflecting more naturally
the structure of G and its maximally split torus A . Our proof of this is natural,
being based on an isomorphism of Ht with the universal tame principal series
module Mt , in analogy with Bernstein’s proof of the isomorphism of the Hecke
algebra H with the universal principal series module M (see [HKP]). We do
not use Lusztig’s explicit yet partial description [L] in the Iwahori case, which
would require constructing the tame Weyl group Wt as an abstract extension of
the extended Weyl group W̃ by the finite torus A(Fq). See Vignéras [V] where
applications to Fp -representations are given. A detailed exposition of this approach
is in Schmidt’s thesis [Sch]. E. Große-Klönne informed me of [V] and [Sch] after
my talk on this work at HU Berlin, December 2009. For a potential extension
of [DF] to representations with tamely ramified principal series components – as
considered in this paper – we need a complete and easily verifiable proof, as given
in this paper. In analogy with the Hecke case, we present generators indexed by
torus elements in A/At(O) as a difference of dominant elements. Our presentation
takes the form (see Theorem 4.5): The tame algebra Ht is the tensor product
Rt⊗Rf,t Hf,t (Rf,t = C(A(O)/At(O))) subject to the relations (in the localization
R′ ⊗R Ht , where R′ is the fraction field of the integral domain R = Cc(A/A(O))
and Rt = R⊗C Cc(A(Fq)))

T (sα) ◦ a = sα(a) ◦ T (sα) + (sα(a)− a)

∑
ζ∈F×q α

∨(ζπππ)

1− α∨(πππ)

for all a ∈ A/At(O) and all simple roots α . Finally we compute the center Z(Ht)
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of Ht to be R
Wf,t

t and conclude that Ht is a module of finite rank over Z(Ht).

I am deeply indebted to J. Bernstein for his invaluable help in the prepara-
tion of this work.

2. The tame group and tame representations

Let F be a local field, O its ring of integers, πππ a generator of the maximal ideal
in O . The residue field Fq = O/πππ has cardinality q = pf where p is the residual
characteristic. Let G′ be an unramified (quasisplit and split over an unramified
extension of F ) reductive connected group defined over F . Let x be a hyperspecial
point in the building of G′ . Let G′x be the stabilizer StabG(F )(x) of x . The Bruhat-
Tits theory ([T], 3.4.1; [La]) produces a unique affine connected smooth group
scheme G = Gx over O whose generic fiber is G′ , for which G(OL) = StabG(L)(x)
for any unramified extension L of F , where OL is the ring of integers in L . Write
K for the hyperspecial maximal compact subgroup G(O) of G(F ).

Let I be an Iwahori subgroup of K . Then G has a minimal parabolic
subgroup scheme B over O such that I is the pullback under reduction mod πππ of
B(Fq). The group B has Levi decomposition B = AU where U is the unipotent
radical and A is a Levi subgroup. Both A and U are group schemes over O .
Denote by B− the opposite parabolic, thus B− ∩B = A and B− = AU− .

The Iwahori group I has the decomposition I = I−A(O)I+ = I+A(O)I− ,
where I+ = I∩U , I− = I∩U− , A(O) = I∩A . We introduce the tame subgroup It
of I to be the pullback of U(Fq) under reduction mod πππ . Then It = I−At(O)I+ =
I+At(O)I− where At(O) = It ∩A(O). Note that the decomposition of an element
of I according to I−A(O)I+ and according to I+A(O)I− is unique. We say that
g in G(F ) is prounipotent if limn→∞ g

pn = 1. Each g ∈ It is clearly prounipotent.
Conversely, any prounipotent g in I lies in It (since a prounipotent a in O× must
lie in 1 + πππO). Thus It can be defined to be the group of prounipotent elements
in I . We assume that G is unramified, namely that G is quasisplit, thus that
A is a torus, and that A splits over an unramified extension of F . Then the
quotient I/It = A(O)/At(O) is isomorphic to the torus A(Fq), a finite abelian
group consisting of elements of order prime to p .

Let π be an admissible irreducible representation of G(F ) over C ([BZ],
[B]). Denote by πIt the space of It -invariant vectors in π . It is finite dimensional
since π is admissible. The representation π is called tamely ramified if πIt 6= 0.
The group I acts on πIt since It is normal in I . Since I/It is a finite abelian
group, the finite dimensional space πIt splits as the direct sum of the eigenspaces

πI,χ = {v ∈ πIt ; gv = χ(g)v, g ∈ I}

over the characters χ of the finite abelian group I/It = A(O)/At(O) = A(Fq).
Any such χ can be viewed as a character of I trivial on I+ and I− , or of A(O),
and it extends (not uniquely) to a character χA of A(F ) since A(F )/A(O) is a
finitely generated discrete group.

We can now characterize the tame representations.
Theorem 2.1. The space πI,χ is nonzero iff π embedsin I(χA) for some character
χA of A(F ) whose restriction to A(O) is χ.
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Here I(χA) signifies the representation of G(F ) parabolically and normal-
izedly induced from the character χA of A(F ) extended to B(F ) trivially on
U(F ).
Corollary 2.2. An irreducible admissible representation π of G(F )is tamely ram-
ified, thus has πIt 6= 0, iff it is a constituent of an induced I(χA) from a tamely
ramified χA , thus the restriction of χA to At(O) is trivial.
Remark 1. (1) The analogous statement for the congruence subgroup I1 (= {g ∈
I; g mod πππ = 1}) is false. There are cuspidal representations (in particular they
are not constituents of any induced representations) with vectors 6= 0 fixed by I1 .

(2) Of course a proof of Theorem 2.1 based on the complicated theory of
types can be extracted from [Ro]. Our proof is simple.

(3) The representations of the theorem can be parametrized by extending
([Re]) the Kazhdan-Lusztig ([KL]) parametrization to our tamely ramified context.

Let Λ be a lattice in A(F ), thus it is a finitely generated commutative
discrete subgroup of A(F ) with A(F ) = ΛA(O). Denote by Λ+ the cone of λ
in Λ such that Int(λ)(U(O)) ⊂ U(O), Int(λ)I+ ⊂ I+ , Int(λ−1)I− ⊂ I− , and
Int(λ)A(O) = A(O). Denote by Λ++ the subcone of λ ∈ Λ+ with

∩n>>0 Int(λn)(U(O)) = {1}, Int(λ−n)I+ ⊂ Int(λ−m)I+ if n < m

and ∪n>>0 Int(λ−n)(I+) = U(F ). Here the examples of GL(n) and the classical
groups may help elucidate the definition.

Denote by hλ a constant measure supported on the double coset ItλIt for
λ ∈ Λ+ . The volume of It is normalized to be 1.
Lemma 2.3. The hλ are multiplicative on Λ+ withrespect to convolution, namely
hλhµ = hλµ for λ, µ ∈ Λ+ .

Proof. To see this it suffices to consider the set ItλItµIt = ItλI+At(O)I−µIt ,
and note that λI+λ

−1 ⊂ I+ and µ−1I−µ ⊂ I− for λ, µ ∈ Λ+ . Of course
λAt(O)λ−1 = At(O).

Remark 2. Here we used only the decomposition It = I+At(O)I−and its properties,
and not the fact that I is Iwahori.

Proof of Theorem 2.1. Let us consider a vector v in πIt , and hnλv = hλnv (=
image of v under the action of hλn ) for λ ∈ Λ++ and n >> 0. Then

hnλv = hλnv = Itλ
nItv = I+At(O)I−λ

nv = I+λ
nv = λn · (Int(λ−n)I+)v

up to a scalar depending on the measure, where we write the set (e.g. Itλ
nIt )

for its characteristic function, and multiplication for convolution. We used here
λ−nI−λ

n ⊂ I− and λ−nA(O)λn ⊂ A(O). Now I+ is an open compact subgroup of
U(F ), and Int(λ−n) acts on I+ by expanding it, thus Int(λ−n)I+ ⊂ Int(λ−m)I+ if
n < m and ∪n>>0 Int(λ−n)I+ = U(F ). Here we use the assumption that λ ∈ Λ++ .

Lemma 2.33 of [BZ1], p. 25, asserts that a vector v ∈ π lies in the span
〈π(u)b− b; u ∈ U(F ), b ∈ V 〉 iff there exists a compact subgroup S in U(F ) with∫
S
π(u)vdu = 0. We conclude that for v in πIt , we have that hnλv = 0 for n >> 0

iff v lies in the kernel of the map π 7→ πU sending π to its module of coinvariants
πU = π/〈π(u)b − b; u ∈ U(F ), b ∈ V 〉 . In particular, if hλ is invertible then
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the kernel of πIt → πU (in fact this map has image in (πU)It∩A ) is zero, hence
πIt ↪→ (πU)It∩A is an embedding. In particular (πU)It∩A is nonzero.

Since It is normal in I , I acts on πIt and πIt = ⊕χπIt,χ , the sum ranges

over all characters χ of the torus A(Fq) = I/It = A(O)/At(O). Similarly π
At(O)
U =

⊕χπA(O),χ
U , where π

A(O),χ
U = {v ∈ π

At(O)
U ; g · v = χ(g)v, g ∈ A(O)} is the χ-

eigenspace. Then πI,χ ↪→ π
A(O),χ
U for each χ . If πI,χ 6= 0 then π

A(O),χ
U 6= 0. Let χA

be an irreducible quotient of π
A(O),χ
U ; it is a character of A(F ) whose restriction

to A(O) is χ . By Frobenius reciprocity: HomA(F )(πU , χA) = HomG(F )(π, I(χA)),

the nonzero map π
A(O),χ
U � χA defines a nonzero map π → I(χA) which is an

embedding since π is irreducible.

Conversely, if π is an irreducible subrepresentation of I(χA), then by Frobe-
nius reciprocity there is a surjection πU � χA , and since χA|A(O) = χ we have

π
A(O),χ
U � χA . Note that if π′ is an irreducible constituent of I(χ′A) then there is

an element w of the Weyl group of A such that π′ embeds in I(wχ′A). Now the
key step in the proof that the functor π 7→ πU of coinvariants takes admissible
representations π to admissible representations πU consists of the claim ([BZ1],
3.17), that the map π → πU , when restricted to πK , where K is any compact
open subgroup with Iwahori decomposition K = K−KAK+ = K+KAK− compat-
ible with B = AU and B− = AU− , thus the map πK → (πU)KA ([BZ1], 3.16(a)),

is surjective. In particular πIt = ⊕χπI,χ → π
At(O)
U = ⊕χπA(O),χ

U is onto, and so is

πI,χ � π
A(O),χ
U for all χ . Hence πI,χ � χA , which means that πI,χ 6= 0.

It remains to show that the hλ , λ ∈ Λ++ , are invertible. This is accom-
plished in Corollary 3.4 below. �
Remark 3. (1) The special case of χ = 1 in the theorem is awell known result of
Borel [Bo] and Bernstein. We followed Bernstein’s unpublished proof, replacing
the Iwahori subgroup I which is used in Bernstein’s original proof, by the tame
subgroup It , to be able to consider characters χ of I/It .

(2) The Iwahori Hecke algebra Cc(I\G/I) is defined ([IM]) by generators –
essentially double cosets of I in G(F ) – and relations, using which one sees that
the elements hIλ (= IλI , λ ∈ Λ+ ) are invertible. This completes the proof of the
theorem for the group I (that is, for χ = 1). We shall see below that hλ (= ItλIt ,
λ ∈ Λ+ ) are also invertible, by generalizing the presentation to the context of the
tame algebra Cc(It\G/It).

(3) The surjectivity of V K → V KA
U for an open compact K with Iwahori

decomposition is proven in [BD], Prop. 3.5.2, in the context of smooth (not neces-
sarily admissible) representations. This is used in [BD], Cor. 3.9, to characterize
the category of Cc(K\G/K)-modules as that of the smooth G(F )-modules V
generated by V K . In particular any constituent of such a G(F )-module is again
generated by its K -fixed vectors.

3. The tame algebra

We shall now describe the algebra Ht = Cc(It\G/It) by means of generators and
relations, when G is unramified. But we shall provide (complete) proofs only in
the case of the group G = GL(n, F ) and leave to the reader the formal extension
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to the context of a general unramified reductive connected p-adic group. This
way we can give explicit proofs by means of elementary matrix multiplication, and
hopefully elucidate the proof.

Thus let G be a quasisplit connected reductive group over F , with maxi-
mally split torus A and Borel subgroup B containing A . Then B = AU , where
U is the unipotent radical of B . We assume that G , A , U are defined over
O . We write G for G(F ), A for A(F ), etc. Write K = G(O) for the maximal
compact, and I for the Iwahori subgroup of K defined as the pullback of B(Fq)
under O → O/πππ = Fq , It for the pullback of U(Fq). Then It consists of the
prounipotent elements of I .

Our aim is to describe the tame convolution algebra Ht = Cc(It\G/It)
by means of generators and relations. We shall use the Bruhat decomposition
G = ItN(A)It = IN(A)I , where N(A) is the normalizer of A in G . The tame
affine Weyl group Wt = N(A)/At(O), At(O) = A(O) ∩ It , A(O) = N(A) ∩ I =

A ∩ I , is an extension 1 → A(Fq) → Wt → W̃ → 1 of the extended affine

Weyl group W̃ = N(A)/A(O) by the finite torus A(Fq) = A(O)/At(O). In

turn, W̃ is the semidirect product W nX∗(A) of the Weyl group W = N(A)/A
and the lattice X∗(A) = A/A(O), and Wt is an extension of W by the abelian
group Λt = A/At(O), which in itself is an extension of A/A(O) = X∗(A) by
A(O)/At(O) = A(Fq). Then W acts on Λt and on X∗(A) by permutations.

For simplicity, assume that the root system of G is irreducible. Let
α1, . . . , αn denote the B -positive simple roots. Let S = {sαi = s−αi ; 1 ≤ i ≤ n} be
the set of simple reflections corresponding to the B -positive (or B− -positive) sim-
ple roots. Let α̃ denote the B -highest root, and α̃∨ the corresponding coweight.
Denote by tµ = µ(πππ) the element of X∗(A) corresponding to the cocharacter µ .
Thus we have t−α̃∨ , and we put s0 = t−α̃∨ · sα̃ . The set Sa = S ∪ {s0} is the set
of simple affine reflections corresponding to the B− -positive affine roots.

The extended affine Weyl group W̃ is Wa o Ω, where Wa is the Coxeter
group generated by Sa , and Ω is the subgroup of W̃ which preserves the set
of B− -positive simple affine roots under the usual left action: an affine linear
automorphism acts on a functional by precomposition with its inverse. The set
Sa defines a length function and a Bruhat order on W̃ . The elements of Ω are of
length zero.

We embed X∗(A) inside A via µ 7→ µ(πππ), and regard each element of W as
an element of K , fixed once and for all. Also fix a primitive (q−1)th root ζ of 1 in
O× and identify F×q with 〈ζ〉 ⊂ O× , and A(Fq) with the elements in A with entries
in 〈ζ〉 . Then view Λt as the (direct) product of the W - and Ω-stable subgroups
X∗(A) and A(Fq) of A . However the decomposition Λt = X∗(A) × A(Fq) is not

canonical as it depends on the choice of πππ . This permits us to view lifts of W̃ and
Wt as subsets – but not subgroups! – of G .

The decomposition of G as the union of ItwIt (w in Wt ) is disjoint ([IM],
Thm 2.16). Hence each member of the convolution algebra Ht is a linear combi-
nation over C of the functions T (w) (w ∈ Wt ) which are supported on ItwIt and
attain the value 1/|It| there. The function T (w) is independent of the choice of
the representative w in ItwIt .

The group Ω is computed in [IM], Sect. 1.8, when G is split, to be Z/2 in
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types B` , C` , E7 ; trivial in types E8 , F4 , G2 ; Z/3 in type E6 ; and Z/2 × Z/2
in type D2` , Z/4 in type D2`+1 .

In the example of G = GL(n, F ), we choose lifts in G of elements of W̃ , as
follows. Let si (1 ≤ i < n) be the matrix whose entries are 0 except for aj,j = 1
(j 6= i, i + 1), ai,i+1 = 1, ai+1,i = −1, thus it has determinant 1, but order 4. Its

image in W is the transposition (i, i+1). The images {si; 1 ≤ i < n} in W̃ of the
{si; 1 ≤ i < n} generate W . Denote by τ the member (aij) of G whose nonzero
entries are ai,i+1 = 1 (1 ≤ i < n) and an1 = πππ . Then τn = πππ in GL(n, F ) and the

image of τ in W̃ generates Ω. Define s0 = sn to be τs1τ
−1 = τ−1sn−1τ . It is the

matrix in G whose nonzero entries are a1n = −πππ−1 , aii = 1 (1 < i < n), an1 = πππ .
Then τsi+1 = siτ (0 ≤ i < n). Let us also introduce the diagonal matrices εi
whose only diagonal entry which is not 1 is −1 at the ith place. Then s′i = siεi
has entries 0 or 1, and s′i

2 = 1 (1 ≤ i ≤ n).

The group Wa is generated by the images Sa = {si; 0 ≤ i < n} in W̃ of
the transpositions Sa = {si; 0 ≤ i < n} , W by the {si; 1 ≤ i < n} , Ω by the

image τ of τ in W̃ . Note that the group generated by Sa in Wt is bigger than
Wa , although Sa generates Wa . Thus (Wa, Sa) is a Coxeter group ([BN], IV, Sect.
1). Hence it has a length function ` which assigns w in Wa the minimal integer
m so that w = t1 · · · tm (ti in Sa ). In particular `(1) = 0, and `(w) = 1 iff w = si
for some i . The length function ` extends to W̃ by `(τw) = `(w) (w ∈ Wa ). The

function ` extends to Wt by `(w) = `(w), where w is the image of w ∈ Wt in W̃ .

The group Wt is generated by any pullback of W̃ and by the ρ ∈ A(O)/At(O).
Thus ` is well defined and `(ρw) = `(w).

Note that X∗(A) = Zn and A(O)/At(O) ' A(Fq) ' F×,nq . We identified
WA(O) with the group of matrices which have a single nonzero entry in O× at
each row and column, X∗(A) with the group of diagonal matrices with diagonal
entries in πππZ , and A(O)/At(O) with the group of diagonal matrices with diagonal
entries in O×/(1+πππO). For a in O× , write αi,a for diag(1, . . . , 1, a−1, a, 1, . . . , 1),
where a is in the (i + 1)th place and a−1 is in the ith place (1 ≤ i < n). Write
αn,a for diag(a, 1, . . . , 1, a−1), ρi,a for εiαi,a , and ρn,a for εnαn,a .

Recall that Ht is the convolution algebra Cc(It\G/It), general G . A C-
basis of Ht is given by T (w), the characteristic function of ItwIt divided by |It| ,
as w ranges over Wt , since It\G/It ' Wt . To simplify the notations we normalize
the Haar measure to assign It the volume |It| = 1.
Theorem 3.1. The tame algebra Ht is an algebra over C generated by T (w),
w ∈ Wt , subject to the relations
(i) T (w)T (w′) = T (ww′) if `(ww′) = `(w) + `(w′), w , w′ ∈ Wt;
(ii) T (si)

2 = qq2ι(i)T (s2
i ) + (q + 1)ι(i)

∑
a T (αi,asi) (1 ≤ i < n).

Here si = ( 0 1
−1 0 ) lies in a subgroup SL(2, F ) in G if G is split, and then

ι(i) = 0 and αi,a =
(

1/a 0
0 a

)
, and a ranges over (O/πππ)× , or si lies in a sub-

group SU(3, E/F ) = {g ∈ SL(3, E); gsg = s}, where si = s is antidiag(1,−1, 1),
and E is the unramified quadratic extension of F , and then ι(i) = 1 and
αi,a = diag(a−1, a/a, a), and a ranges over (OE/πππ)× .
Remark 4. (1) Put u(a) = ui(a) =

(
1/a 0
0 a

)
in SL(2, F ). We use in the proof

the relation siu(a)s−1
i = u(−a−1)αiasiu(−a−1) in SL(2, F ). It can be written
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in GL(2, F ) on replacing a by −a , thus we get s′iu(a)s′i = u(a−1)ρias
′
iu(a−1),

where s′i = siεi , ρia = αiaεi . The relation (ii) can then be expressed as T (si)
2 =

qT (1) +
∑

a∈O/πππ;a6=0 T (ρi,asi), closer to the relation T (si)
2 = qT (1) + (q − 1)T (si)

in H . This relation is (T − q)(T + 1) = 0. In the quasisplit nonsplit case it is
(T − q2)(T + q) = 0, or T 2 − q(q − 1)T − q3I = 0.

(2) In SU(3, E/F ) we put u(a, b) = ui(a, b) =
(

1 a b
0 1 a
0 0 1

)
, a ∈ E , b ∈ E with

b+ b = aa . Then su(a, b)s = u(−a/b, 1/b)αbsu(−a/b, 1/b).
Corollary 3.2. The tame algebra Ht is an algebra generated over the commutative
algebra C[A(Fq)] by T (si) (0 ≤ i < n), T (τ), subject to the relations
(iii) T (τ)n = T (τn); T (w)T (ρ) = T (w(ρ))T (w) where w(ρ) is the image of
ρ ∈ A(Fq) under w (where w is τ ∈ Ω or si ∈ Sa);
(iv) T (τ)T (si+1) = T (si)T (τ) (0 ≤ i < n);
the quadratic relation (ii) and the braid relations
(v) T (si)T (sj)T (si) = T (sj)T (si)T (sj) if sisjsi = sjsisj (namely when i = j±1
and n ≥ 3; 1 ≤ i, j < n);
(vi) T (si)T (sj) = T (sj)T (si) if sisj = sjsi (namely i 6= j, j ± 1 and n ≥ 4;
1 ≤ i, j < n).

It is clear that the presentation of Theorem 3.1 implies that of Corollary
3.2, and is implied by it.
Remark 5. By (iv), T (s0) = T (τ)T (s1)T (τ)−1 = T (τ)−1T (sn−1)T (τ) satisfies (v),
(vi), and with αn,a = τα1aτ

−1 = (α1,a · · ·αn−1,a)
−1 = diag(a, 1, . . . , 1, a−1), also

(ii)0 T (s0)2 = qq2ι(i)T (s2
0) + (q + 1)ι(i)

∑
a∈O/πππ;a6=0 T (αn,as0).

The proof of the relations (iii) involving T (ρ) is immediate from the
definition of T (ρ) as the characteristic function of ρIt , and the proof of (iv), (v),
(vi) follows the proof of the corresponding statements for the Iwahori (unramified)
Hecke algebra Cc(I\G/I) in [IM], Prop. 3.8.

For example, to prove (v) it suffices to work in GL(3, F ) and show that
(v)′ Its1Its2Its1It = Its2Its1Its2It .
To show that both sides are equal to Its1s2s1It we first observe the crucial fact,
that will be used repeatedly, in particular in the proof of (ii), that It decomposes
as I−At(O)I+ = I+At(O)I− , where

I+ = I ∩U(F ) = It∩U(F ), I− = I ∩U−(F ) = It∩U−(F ), At(O) = It∩A(F ),

and U(F ) is the unipotent radical of the upper triangular subgroup B(F ), and
U−(F ) is the lower unipotent subgroup, so that A(F )U−(F ) is the parabolic
subgroup opposite to B(F ) = A(F )U(F ) (thus B(F ) ∩ A(F )U−(F ) = A(F )).

The decomposition of each element of It is unique. Of course, this follows
from the analogous decomposition I = I−A(O)I+ = I+A(O)I− where A(O) =
I ∩ A(F ) = A(O), of the Iwahori subgroup I . Write I ′t for the group of x in It
whose reduction mod πππ is 1 in G(Fq). Then siI

′
ts
−1
i = I ′t ⊂ It for any si . To

deal with unipotent elements in I+ not in I+ ∩ I ′t , say x , note that s1xs
−1
1 ∈ It

if x = (aij), a12 = 0. However, an upper unipotent matrix with nonzero entry
only at the (12) position is conjugated by s2 to an upper unipotent matrix with
nonzero entry only at the (13) position, and then by s1 to one with nonzero entry
only at the (23) position; but this lies in the It at the right side of the left wing of
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(v)′ , and so we see that the left side of (v)′ is equal to Its1s2s1It . Similar analysis
applies to the right wing of (v)′ , and the equality of (v)′ follows.

Proof of Theorem 3.1. The relation (ii) differs from the analogous relation T 2
s =

(q − 1)Ts + q · I in the Iwahori Hecke algebra, but the proof follows along similar
lines. Since the relation (ii) involves only the reflection si , it suffices to work in
the group SL(2, F ) if G is split, and in SU(3, E/F ) if not. The symbol T (s)2

stands for the convolution

[T (s)2](x) =

∫
G(F )

[T (s)](xy−1)[T (s)](y)dy =

∫
ItsIt

[T (s)](xy−1)dy.

We then need to find the y ∈ ItsIt with xy−1 ∈ ItsIt , thus x ∈ ItsItsIt .
We first work in SL(2, F ). Put u(a) = ui(a) =

(
1/a 0
0 a

)
. It suffices to look at the

It -double coset Itsu(a)sIt since It = ∪cI ′tu(c), union over a set of representatives
in O for O/πππ , and sI ′ts

−1 = I ′t ⊂ It . If a = 0 we obtain the double coset −It . If
a 6= 0 (mod πππ ) we observe that

su(a)s = −tu(−a) = −u(−a−1)αasu(−a−1) ∈ −αaItsIt, αa = diag(a−1, a).

It follows that ItsItsIt = −It ∪ ∪a6=0 − αaItsIt . Hence

T (s)2 = m0T (s2) +
∑
a6=0

maT (−αas).

Thus we need to compute the coefficients ma , a ∈ O/πππ . It suffices to compute
[T (s)2](x) at x = −1 and at x = −αas . At x = −1 the integral becomes the
cardinality of ItsIt/It ' It/It∩ sIts−1 , a set represented by u(a), a ∈ O/πππ . It has
cardinality q , so m0 = q .

Next we compute ma = [T (s)2](−αas), thus the volume of the set of
y ∈ ItsIt (that is, y−1 ∈ −ItsIt ) with −αasy−1 ∈ ItsIt , namely the volume of
the set (of y−1 in) (−ItsIt ∩ αasItsIt)/It . The intersection consists of a single
coset −u(a−1)sIt , so the volume is 1, and ma = 1 for every a 6= 0 in O/πππ .

The work in SU(3, E/F ) is analogous. We put u(a, b) = ui(a, b) =
(

1 a b
0 1 a
0 0 1

)
,

a ∈ E , b ∈ E with b+b = aa . We consider the It -double cosets Itsu(a, b)sIt since
It = ∪c,dI ′tu(c, d), union over a set of representatives c for OE/πππ ' FqE = Fq2 and
d = ιd′ + 1

2
cc , d′ ∈ O/πππ ' FqF = Fq , ι+ ι = 0, ι ∈ O×E , and sI ′ts

−1 = I ′t . If b = 0
(mod πππ ) we get the double coset It . If not, we use

su(a, b)s = u(−a/b, 1/b)αbsu(−a/b, 1/b) ∈ αbItsIt.

Then ItsItsIt = It ∪ ∪{a,b;b 6=0}αbItsIt . Hence

T (s)2 = m0T (1) + (q + 1)
∑

{b∈OE/πππ;b 6=0}

mbT (αbs).

Thus we need to compute the coefficients mb , b ∈ OE/πππ . It suffices to
compute [T (s)2](x) at x = 1 and at x = αbs . At x = 1 the integral becomes the
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cardinality of ItsIt/It ' It/It ∩ sIts−1 , a set represented by u(a, b), a ∈ OE/πππ ,
b′ ∈ O/πππ . It has cardinality q3 , so m0 = q3 .

Next we compute md = [T (s)2](αds), thus the volume of the set of y ∈ ItsIt
(that is, y−1 ∈ ItsIt ) with αdsy

−1 ∈ ItsIt , namely the volume of the set (of y−1

in) (ItsIt ∩ αds−1ItsIt)/It . The intersection consists of the q + 1 cosets u(a, b)sIt

with b = d
−1

, so mb = 1 for every b 6= 0 in OE/πππ , and there are q + 1 elements
a in OE/πππ with the same aa = b+ b .

To prove (i), in view of (iii) and (iv) it suffices to show that wIts ⊂ ItwsIt
where s is the reflection si (1 ≤ i < n) and w ∈ W ′ has `(ws) = 1 + `(w). Each
element of It can be expressed as the product u(a)g with g ∈ sIts−1∩ It and u(a)
is a matrix in the unipotent upper triangular subgroup whose only nonzero entry
is a (in O−πππO) at the (i, i+ 1) place. It remains to show that wu(a)s ∈ ItwsIt .
Since `(ws) = 1 + `(w), we have wu(a)s ∈ IwsI , thus u(a)s ∈ w−1Iw · s · I . We
now assume G is split – the quasisplit case is similarly handled. Let Gi be derived
group of the subgroup of G whose j th (j 6= i , i + 1) diagonal entry is 1, and its
nondiagonal entries not at positions (i, i), (i, i+1), (i+1, i), (i+1, i+1) are zero.
Then Gi ' SL(2, F ) and s, u(a) ∈ Gi , thus u(a)s ∈ (Gi∩w−1Iw) ·s ·(Gi∩I). The
group Gi ∩ I is the upper triangular Iwahori subgroup Ii in Gi ' SL(2, F ), and
Gi ∩ w−1Iw is either Ii or the lower conjugate Isi = sIis

−1 . By the uniqueness of
the Bruhat decomposition for Gi we conclude that u(a) ∈ Gi ∩w−1Iw ⊂ w−1Iw .
Hence wu(a)w−1 ∈ I . But u(a) is unipotent, in particular prounipotent. Hence
wu(a)w−1 ∈ It , as It is the prounipotent part of I . Then wu(a) ∈ Itw , and so
wu(a)s ∈ Itws , as required.

Note that the relation IwIsI = IwI ∪ IwsI (see [BN], IV, §2.2, p. 24)
implies that ItwItsIt = ∪aρaItwIt ∪ ∪bρbItwsIt for suitable diagonal matrices
ρa , ρb with entries in a set of representatives in O× for O×/(1 + πππO). When
`(wsi) = 1 + `(w) (`(si) = 1) we have that IwIsiI = IwsiI . We showed that
ItwItsiIt = ItwsiIt in this case. This establishes the last claim of the theorem. �

The hλ (λ ∈ Λ+ ) are generated by hλ with λ = (πππ, . . . ,πππ, 1, . . . , 1), where
πππ occurs m times. The latter hλ are expressible as a product of T (si) (1 ≤ i < n)
of minimal length, and the power, m , of τ . Note that τ normalizes It (and I )
and T (τ) is invertible by (iii). To check that each hλ (λ ∈ Λ+ ) is invertible it
then remains to show the following.
Proposition 3.3. Each T (si) is invertible (0 ≤ i < n).

Proof. It suffices to consider the case of GL(2) (or SU(3, E/F )). Put T (si)
′ =

T (s2
i )(T (si) − (q + 1)2ι(i)

∑
a∈(O/πππ)× T (αi,a)). Then T (si)T (si)

′ = T (si)
′T (si) =

qq2ι(i) .

Corollary 3.4. Every T (ρw) (ρ ∈ A(Fq), w ∈ W̃ ) in Ht is invertible.

Proof. By (iii), each T (ρ) is invertible. If w = t1 · · · tm is a reduced expression
for w in terms of the generators τ , si (1 ≤ i < n), then T (w) = T (t1) · · ·T (tm),
and each T (ti) is invertible.

This is the fact needed to complete the proof of Theorem 2.1.
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4. Bernstein-type presentation

The conclusion of Corollary 3.4, that each generator T (w), w ∈ Wt , of the tame
algebra Ht = Cc(It\G/It) is invertible, can be used to give a different presentation
of the tame algebra, exhibiting a commutative algebra of finite codimension,
parametrized by A/At(O), analogous to the Bernstein presentation of the Iwahori-
Hecke algebra H = Cc(I\G/I). We proceed following Bernstein’s abstract proof
of his presentation and the clear exposition of [HKP]. We do not follow Lusztig
[L] explicit but partial exposition of this presentation, as this would require in

particular constructing Wt as an extension of W̃ by A(Fq).

Our Bernstein-type presentation of the tame algebra Ht (see Theorem 4.5
below) asserts that (1) there is an explicitly described isomorphism of Ht with
Rt ⊗Rf,t Hf,t , where Rt = Cc(A/At(O)) is a commutative subalgebra, Hf,t =
C(NK(A)/At(O)) is a finite dimensional subalgebra, both containing a finite di-
mensional commutative algebra Rf,t = C(A(O)/At(O)), and (2) the commutation
relations of the generators a ∈ A/At(O) of Rt , and sα of Hf,t , take the form

T (sα) ◦ a = sα(a) ◦ T (sα) + (sα(a)− a)

∑
ζ∈F×q α

∨(ζπππ)

1− α∨(πππ)
.

We proceed to explain the notations, statement and proof of the presenta-
tion.

We first recall our notations. Let F be a p-adic field with a ring O of
integers whose maximal ideal is generated by πππ . The residue field O/πππ is Fq .
Consider a split connected reductive group G over F , with split maximal torus
A and Borel subgroup B = AU containing A . Let B− = AU− be the Borel
subgroup opposite to B containing A . Assume G , A , U are defined over O .
Write K for G(O), I for the Iwahori subgroup of K defined to be the inverse
image of B(Fq) under G(O) → G(Fq), and define the tame Iwahori subgroup It
to be the inverse image of U(Fq) under this map. For µ ∈ X∗(A) = Hom(Gm, A)
we have µ(πππ) ∈ A(F ), and µ 7→ µ(πππ) defines an isomorphism X∗(A)→ A/A(O).
We often write G , A , . . . for G(F ), A(F ), . . . .

The tame Weyl group Wt is the quotient NG(A)/At(O) of the normalizer
NG(A) of A in G , by the kernel At(O) = It ∩A(O) of the reduction mod πππ map
A(O) → A(Fq). It contains the finite torus A(Fq) = A(O)/At(O), which is the
commutative subgroup (F×q )n , where n is the dimension of A . Thus Wt is an

extension of the extended Weyl group W̃ = NG(A)/A(O) by A(Fq). Moreover
Wt contains the tame torus At = A/At(O), a commutative subgroup which is an
extension of the lattice A/A(O) = X∗(A) by the finite torus A(O)/At(O) = A(Fq).

The quotient of Wt by A/At(O) is the finite Weyl group Wf = NG(A)/A .

This Wf can be realized inside W̃ as the quotient NK(A)/A(O), expressing W̃
as the semidirect product of Wf and X∗(A). We introduce also the tame finite
Weyl group Wf,t = NK(A)/At(O). It is a subgroup of Wt .

We choose a section W̃ → Wt of the extension 1→ A(Fq)→ Wt → W̃ → 1,

namely we identify W̃ with a subset of Wt . But W̃ is not a subgroup of Wt .

The tame Weyl group Wt contains as subgroups the tame torus At and the
tame Weyl group Wf,t . Both subgroups contain At ∩Wf,t = A(Fq).
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Having fixed a generator πππ of the maximal ideal πππO in O , we can choose
a splitting F×/(1 + πππO) ' 〈πππ〉 · O×/(1 + πππO) ' Z × F×q , and so a splitting of
the tame torus At = A/At(O) as a direct product of the lattice A/A(O) ' X∗(A)
with the finite torus A(O)/At(O) ' A(Fq). However, these splittings depend on
the choice of πππ , hence are not canonical.
Proposition 4.1. The natural map Wt → At(O)U\G/It is a bijection.

Proof. To describe the inverse, write g ∈ G as g = µ(πππ)uk ∈ AUK , using
the Iwasawa decomposition. Then write k = u0wi with u0 ∈ U(O), i ∈ I ,
w ∈ W realized in K , using the Bruhat decomposition over the residue field.
Then g = µ(πππ)uu0wi defines the It -double coset of µ(πππ)wi .

Definition 1. (1) Denote by Ht the tame Hecke algebra Cc(It\G/It). It is a
convolution algebra, where we normalize the Haar measure of G by |It| = 1. The
characteristic functions T (x) = ch(ItxIt) of the double cosets ItxIt , x ∈ Wt , make
a C-basis of Ht , by the disjoint decomposition G = ItWtIt (where by x ∈ Wt we
mean a representative in G for x).

(2) The universal tame principal series module is Mt = Cc(At(O)U\G/It).
It is the space of It -fixed vectors in the smooth G-module C∞c (At(O)U\G), hence
Mt is a right Ht -module. For each x ∈ Wt denote by vx the characteristic function
ch(At(O)UxIt). The vectors vx (x ∈ Wt ) make a C-basis for Mt . For example,
we have v1 = ch(At(O)UIt).

(3) Let Rt = Cc(A/At(O)) be the group algebra of A/At(O). It is isomor-
phic, noncanonically, to Cc[X∗(A) × A(Fq)]. The elements ζµ(πππ) (µ ∈ X∗(A),
ζ ∈ A(Fq)) make a basis for the C-vector space Rt . The right Ht -module Mt

has a structure of a left Rt -module by a · vx = q−〈ρ,µa〉vax if a 7→ µa(πππ) un-
der A/At(O) → A/A(O), where ρ is half the sum of the roots of A in Lie(U).
If δB(a) denotes the absolute value of the determinant of the adjoint action of
a ∈ A on Lie(U), then q−〈ρ,µa〉 = δB(a)1/2 for any a ∈ A which maps to µa(πππ) in
A/A(O). As the actions of Rt and Ht commute, Mt is an Rt ⊗Rf,t Ht -module,
where the commutative algebra Rf,t = C(A(Fq)) is contained in both Rt and Ht .

(4) The finite dimensional tame algebra Hf,t = C(It\K/It) is a subalgebra
of Ht . The T (w) = ch(ItwIt), w ∈ Wf,t , make a basis. It contains Rf,t =
C(A(Fq)).

The representation of G by right translation on C∞c (At(O)U\G) is com-
pactly induced from the trivial representation of At(O)U . Inducing in stages we
get C∞c (At(O)U\G) = IGB (Rt). We are using normalized induction, and Rt is
viewed as an A-module via χ−1

univ : A/At(O) → R×t , a 7→ a . A vector in the
induced representation IGB (Rt) is a locally constant function φ : G → Rt with
φ(aug) = δB(a)1/2 · a−1 · φ(g) (a ∈ A, u ∈ U, g ∈ G). The group G acts by
right translation. If ϕ ∈ C∞c (At(O)U\G), the corresponding vector φ in IGB (Rt)
is φ(g) =

∑
a∈A/At(O) δB(a)−1/2ϕ(ag) · a , g ∈ G .

There is an Rt -module structure on IGB (Rt), defined by (rφ)(g) = r ·
φ(g). The isomorphism C∞c (At(O)U\G) = IGB (Rt) induces an Rt⊗Rf,tHt -module
isomorphism from Mt to IGB (Rt)

It , the space of It -fixed vectors in IGB (Rt).

A character χ : A/At(O) → C× determines a C-algebra homomorphism
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Rt → C . We use χ to extend scalars, to get the Ht -module

C⊗Rt,χMt = C⊗Rt,χ IGB (Rt)
It = IGB (χ−1)It .

Proposition 4.2. The map h 7→ v1h, v1 = ch(At(O)UIt), is an isomorphism of
right Ht -modules from Ht to Mt . Namely Mt is a free rank one Ht -module with
canonical generator v1 .

Proof. It suffices to show that the map h 7→ v1h , when presented in terms of
the bases {T (w) = ch(ItwIt); w ∈ Wt} and {vw = ch(At(O)UwIt); w ∈ Wt} , is a
triangular matrix with nonzero diagonal.

To show this, we claim that if UxIt ∩ ItyIt 6= ∅ then x ≤ y in the Bruhat
order on W̃ = NG(A)/A(O). Note that T (ζ) is invertible, for ζ ∈ A(Fq). Hence it
suffices to show the same claim with It replaced by I , namely that UxI ∩ IyI 6= ∅
implies x ≤ y . Then suppose that ux ∈ IyI with u ∈ U . Choose dominant enough
µ ∈ X∗(A) to have µ(πππ)uµ(πππ)−1 ∈ I . Then (µ(πππ)uµ(πππ)−1)µ(πππ)x ∈ µ(πππ)IyI ,
and so Iµ(πππ)xI ⊂ Iµ(πππ)IyI . But Iµ(πππ)IyI ⊂

∐
y′≤y Iµ(πππ)y′I , hence the claim

follows.

Corollary 4.3. There is a canonical isomorphism Ht ' EndHt(Mt).It identifies
η ∈ Ht with the endomorphism ϕη : v1h 7→ v1ηh of Mt , namely each Ht -
endomorphism ϕ : Mt →Mt is given by v1h 7→ v1hϕh for hϕ ∈ Ht .

Proof. For every h ∈ Ht , ϕ(v1h) = uh where u = ϕ(v1) = v1hϕ .

Recall that T (w) = ch(ItwIt), vw = ch(At(O)UwIt) for w ∈ Wt . Recall
that Wf,t = NK(A)/At(O) is a subgroup of Wt . We have
(1) v1T (w) = vw (w ∈ Wf,t).
Indeed, the Iwahori factorization implies It = (It ∩ U)At(O)(It ∩ U−). Then
At(O)UIt ·ItwIt = At(O)UwIt , and At(O)UIt∩wItw−1It = It as At(O)UIt∩K =
It .

Using the left Rt -module structure on Mt we conclude from (1)
(2) vaT (w) = vaw (w ∈ Wf,t, a ∈ A/At(O)).
Further we have
(3) v1T (a) = va (a ∈ A/At(O) with dominant image µa ∈ X∗(A)).
If µ is dominant then At(O)UIt · Itµ(πππ)It = At(O)Uµ(πππ)It since (µ(πππ)(It ∩
U)µ(πππ)−1 ⊂ It ∩ U and) µ(πππ)−1(It ∩ U−)µ(πππ) ⊂ It ∩ U− , and At(O)UIt ∩
µ(πππ)Itµ(πππ)−1It = It .

The elements of Rt can be viewed as endomorphisms of Mt . Hence by
Corollary 4.3 they can be viewed as elements in Ht . This way we can embed
Rt as a subalgebra of Ht . Denote by T̂a ∈ Ht the image of the basis element
a ∈ A/At(O) of Rt under the embedding Rt ↪→ Ht . From the definition of the

left Rt -action on Mt , we conclude that v1T̂a = av1 , namely v1 is an eigenvector
for the right action of the subalgebra Rt of Ht . Note that Rt contains the algebra
Rf,t too.
Proposition 4.4. Multiplication in Ht induces a vector space isomorphism

Rt ⊗Rf,t Hf,t→̃Ht,
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sending a⊗h to T̂ah. Composing this isomorphism with the isomorphism h 7→ v1h,
Ht →Mt , we get a vector space isomorphism Rt⊗Rf,tHf,t→̃Mt , mapping a⊗T (w)

to q−〈ρ,µa〉vaw .

Proof. From (1), the composition Rt ⊗Rf,t Hf,t → Ht → Mt maps a ⊗ T (w)

to q−〈ρ,µa〉vaw , consequently is an isomorphism. As Ht→̃Mt by Proposition 4.2,
Rt ⊗Rf,t Hf,t→̃Ht is an isomorphism as well.

Remark 6. From (3) and Definition 1(3) we have T̂a = q〈ρ,µ2−µ1〉T (a1)T (a2)−1 if

a = a1/a2 and µ1 = µa1 , µ2 = µa2 are dominant characters. In particular T̂a =
q−〈ρ,µa〉Ta for a ∈ A/At(O) which maps to a dominant µa ∈ X∗(A) = A/A(O).

The isomorphism Ht = Rt⊗Rf,tHf,t of Proposition 4.4 describes the gener-
ators of Ht . To complete our Bernstein-type presentation we need to describe the
relations among the generators a ∈ A/At(O) of Rt and T (sα) in Hf,t . For that,
let α be a simple root and sα a representative in Wt,f = NK(A)/At(O) of the
corresponding simple reflection, α∨ ∈ X∗(A) the coroot and α∨(πππ) ∈ A/A(O),
Sα the corresponding copy of SL(2, F ) with its Borel subgroup Bα = Sα ∩ B ,
torus Aα = Sα ∩ A , tame torus Aα/Aα,t(O) where Aα,t(O) = Sα ∩ At(O), lattice
Aα/Aα(O) and Kα = Sα ∩ K . If {α∨(ζ); ζ ∈ F×q } is a set of representatives
in Aα for Aα(O)/Aα,t(O) (' F×q ), denote by {α∨(ζπππ) = α∨(ζ)α∨(πππ); ζ ∈ F×q }
the inverse image of α∨(πππ) under Aα/Aα,t(O) → Aα/Aα(O). This is a subset of
A/At(O) independent of any choice of representatives (that is, of πππ ).
Theorem 4.5. The tame algebra Ht is the tensor productRt ⊗Rf,t Hf,t subject to
the relations

T (sα) ◦ a = sα(a) ◦ T (sα) + (sα(a)− a)

∑
ζ∈F×q α

∨(ζπππ)

1− α∨(πππ)

for all a ∈ A/At(O) and all simple roots α.
Note that the displayed expression is independent of the choice of πππ .

The proof of the relations relies on properties of intertwining operators. We
first need an inner product. Thus let ι : G→ G be the involution ι(g) = g−1 , and
ι : Ht → Ht the involution (ι(h))(x) = h(x−1). On Rt = Cc(A/At(O)) one has
the involution ιA defined by a 7→ a−1 .

The induced representation IGB (δ
1/2
B ) consists of the locally constant func-

tions f on G satisfying f(ang) = δB(a)f(g). The space of G-invariant linear func-

tionals on IGB (δ
1/2
B ) is one-dimensional. Denote by

∮
B\G the unique such functional

which takes the value 1 at the function f0 in IGB (δ
1/2
B ) defined by f0(ank) = δB(a).

Recall that χ−1
univ : A/At(O) → R×t is given by a 7→ a . On the induced represen-

tation IGB (χ−1
univ) define the Rt -valued pairing (φ1, φ2) =

∮
B\G ιA(φ1(g)) · φ2(g).

The product ιA(φ1(g)) · φ2(g) lies in IGB (δ
1/2
B ). This pairing is G-invariant and

Hermitian:

(r1φ1, r2φ2) = ιA(r1)r2 · (φ1, φ2), (φ2, φ1) = ιA((φ1, φ2)).

Using the ιA -linear isomorphism φ 7→ ιA ◦ φ , IGB (χ−1
univ) → IGB (χuniv), the

Hermitian form can be viewed as an Rt -bilinear pairing

IGB (χuniv)⊗Rt IGB (χ−1
univ)→ Rt.
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Extending scalars Rt → C using a character χ : A/At(O) → C× the pairing
becomes IGB (χ) ⊗C I

G
B (χ−1) → C. Since Mt = IGB (χ−1

univ)It , by restricting to the
subspace of It -invariant vectors we get a perfect Hermitian form on Mt , denoted
(m1,m2), satisfying the Hecke algebra analogue of G-invariance, thus

(m1h,m2) = (m1,m2ι(h)), ∀h ∈ Ht.

We next define, for each w ∈ Wt , an intertwining operator Iw from one
completion of Mt to another. For this we fix the maximal torus A , the tame
Iwahori subgroup It , and the maximal compact subgroup K , and let the Borel
subgroup B vary over the set B(A) of Borel subgroups containing A . Then Iw
will be recovered by conjugating the second Borel subgroup to the first using an
element of the Weyl group. For B = AU ∈ B(A) put MB,t = Cc(At(O)U\G/It).

Let J be a set of coroots in a system of positive coroots. Recall that
Rt = Cc(A/At(O)). It is an extension of R = C[X∗(A)] = Cc(A/A(O)) by
Rf,t = C[A(Fq)]. Denote by C[J ]t the C-subalgebra of Rt generated by J
over C[A(Fq)] = Rf,t , and by C[J ]∨t the completion of C[J ]t with respect to
the maximal ideal generated by J . Denote by RJ,t the Rt -algebra C[J ]∨t ⊗C[J ]tRt .
It is a completion of Rt which can be viewed as a convolution algebra of complex
valued functions on A/At(O) supported on a finite union of sets x · CJ,t where
x ∈ A/At(O) and CJ,t is the submonoid of A/At(O) consisting of all products of
nonnegative integral powers of elements in J and the elements of A(O)/At(O).

Given B = AU ∈ B(A) and J as above, put MB,J,t = RJ,t ⊗Rt MB,t . This
left RJ,t -module and right Ht -module can be regarded as consisting of the functions
f on At(O)U\G/It whose support lies in a finite union of sets At(O)UaK where
a lies in a finite union of sets x · CJ,t .

Let B = AU , B′ = AU ′ be Borel subgroups in B(A), write B− = AU−
for the Borel subgroup in B(A) opposite to B . Let J be the set of coroots
which are positive for B′ and negative for B . We shall now define an intertwining
operator IB′,B,t : MB,J,t → MB′,J,t . It will be an RJ,t × Ht -module map. Given
ϕ ∈ MB,J,t , regarded as a function with support as above, on At(O)U\G/It ,
then IB′,B,t takes ϕ to the function ϕ′ on At(O)U ′\G/It whose value at g ∈ G
is ϕ′(g) =

∫
U ′∩U− ϕ(u′g)du′ . The Haar measure du′ is normalized to assign

U ′ ∩U− ∩K the volume 1. Note that the integral is not changed if J is increased
within some positive system, for example that defined by B′ .

Given B1 = AU1 , B2 = AU2 , B3 = AU3 ∈ B(A), let Jij be the set of
coroots which are positive for Bi and negative for Bj . Assume J31 is the disjoint
union of J21 and J32 . Abbreviate Iij for IBi,Bj ,t . Each of the integrals defining
I2,1 , I3,2 , I3,1 can be defined using the biggest of the three sets Jij , which is J3,1 .
When this is done we have I31 = I32I21 . We could have taken J to be the set of
all coroots positive for B3 .

To check the convergence of the integral which defines IB′,B,t , we record
Lemma 1.10.1 of [HKP]:
Lemma 4.6. For ν ∈ X∗(A) define a subset Cν of the groupU ′ ∩ U− by Cν =
U ′ ∩ U− ∩ ν(πππ)UK . (1) If Cν 6= ∅ then ν is a nonnegative integral linear
combination of coroots which are positive for B and negative for B′ .

(2) The subset Cν is compact.
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To understand how the IB′,B,t relate to the Hermitian form on MB,t , denote
by −J the set of negatives of the coroots in J . The involution ιA on Rt extends
to an isomorphism, still denoted ιA , between RJ,t and R−J,t . The Hermitian form
(., .) on MB,t extends to MB,−J,t ×MB,J,t : given m1 ∈ MB,−J,t , m2 ∈ MB,J,t , the
definition of (m1,m2) still makes sense and defines an element of RJ,t , and we
have (r1m1, r2m2) = ιA(r1)r2 · (m1,m2).

If J is the set of coroots which are positive for B′ and negative for B ,
we have IB′,B,t : MB,J,t → MB′,J,t , as well as IB,B′,t : MB′,−J,t → MB,−J,t . Given
m ∈MB,J,t and m′ ∈MB′,−J,t , we have (m′, IB′,B,tm) = (IB,B′,tm

′,m). Indeed, let
φ , φ′ be the members of IGB (χ−1

univ)⊗Rt RJ,t and IGB′(χuniv)⊗Rt RJ,t corresponding
to m , m′ . Put H = A(U ∩U ′). Then both sides of the asserted equality are equal
to
∮
H\G φ

′(g)φ(g). Here
∮
H\G is the unique G-invariant linear functional on the

space
{f ∈ C∞(G); f(hg) = δH(h)f(g), h ∈ H , compactly supported mod H}

whose value is 1 at the function f0 supported on HK with f0(hk) = δH(h).

Let now w be an element in Wf,t . There is an isomorphism
L(w) : MB,w−1J,t→̃ MwB,J,t given by (L(w)φ)(g) = φ(w̃−1g)

where w̃ is a representative for w in K . Define an intertwining operator Iw,t :
MB,w−1J,t →MB,J,t as the composition IB,wB,t ◦L(w). It is defined by the integral
(Iw,t(ϕ))(g) =

∫
Uw
ϕ(w̃−1ug)du , Uw = U ∩ wU−w−1 . We conclude:

Lemma 4.7. We have
(i) Iw,t ◦ a = w(a) ◦ Iw,t for all a ∈ A/At(O).
(ii) Iw1w2,t = Iw1,t ◦ Iw2,t if `(w1w2) = `(w1) + `(w2).
(iii) Iw,t is a homomorphism of right Ht -modules.

When G has semisimple rank 1 we consider ϕ = v1 = ch(At(O)UIt) and
compute Is,t(ϕ) where s is a representative in K for the unique nontrivial element
in Wf . We may assume that G is SL(2, F ) and s = ( 0 1

−1 0 ). Put a = ab =
(
b 0
0 b−1

)
.

Lemma 4.8. We have Is,t(v1) = q−1vs +
∑

b∈F×/(1+πππO), |b|<1 q
−1|b|va .

Proof. To express ϕ′ = Is,t(v1) as
∑

a cava +
∑

a casvas (a ∈ A/At(O)) we
compute the coefficients ca = ϕ′(a) and cas = ϕ′(as). To compute these integrals
write u = ( 1 x

0 1 ), a =
(
b 0
0 b−1

)
, and let w be 1 or s . The integrand ϕ(s−1uaw) is

nonzero iff
s−1uaw = ( 0 −1

1 0 ) ( 1 x
0 1 )

(
b 0
0 b−1

)
w =

(
0 −b−1

b x/b

)
w

lies in At(O)UIt = UIt . It then lies in A(O)UK = UK , hence |b| ≤ 1, |x/b| ≤ 1,
and |x/b| = 1 if |b| < 1 (consider the bottom row of UK ).

If |b| = 1 then |x| ≤ 1. In this case s−1uaw ∈ K . This s−1uaw lies in UIt
only if w = s , and |x| < 1, and a ∈ At(O) (thus b ∈ 1 + πππO). As we integrate
over x , we conclude that vs has coefficient cs = q−1 , while ca = 0 if |b| = 1, and
cas = 0 if |b| = 1, b /∈ 1 + πππO .

If |b| = q−j , j ≥ 1, then s−1uaw ∈ UK implies x = br , r ∈ O× . Then
s−1ua =

(
0 −b−1

b r

)
=
(

1 −1/br
0 1

) (
1/r 0
b r

)
. The last matrix lies in It iff r ∈ 1+πππO . The

one on its left lies in U . Hence the integral over x is equal to q−j(1−q−1)/(q−1) =
q−j−1 , so ca = q−j−1 if |b| = q−j (and w = 1).

If w is s then s−1uas =
(

1 −1/br
0 1

) (
1/r 0
b r

)
( 0 1
−1 0 ). The matrix on the left

lies in U , and the product of the two on the right is
(

0 1/r
−r b

)
/∈ I , hence cas = 0



Yuval Z. Flicker 17

if |b| = q−j , j ≥ 1.

Proof of Theorem 4.5. By Proposition 4.4 we have Ht = Rt⊗Rf,tHf,t , so it remains
to prove the relation. We use Is,t(v1) = q−1vs +

∑
ζ∈F×q

∑
j≥1 q

−1−jvα∨(ζπππj), from

Lemma 4.8. Recall – from Definition 1(3) – that α∨(ζπππj)v1 = q−jvα∨(ζπππj). Hence

Is,t = q−1T (s) + q−1
∑
ζ

∑
j≥1

α∨(ζπππj) = q−1

(
T (s) +

∑
ζ α
∨(ζπππ)

1− α∨(πππ)

)
.

Note that both expressions right of Is,t are independent of the choice of πππ . Note
that Rt = R ⊗C Cc(A(Fq)), where R = Cc(A/A(O)) is an integral domain. Let
R′ denote the fraction field of R . Then Is,t is an element of the localization
H ′t = R′ ⊗R Ht = R′ ⊗C Hf,t of Ht .

The operator Iw,t satisfies

Iw,t ◦ a = w(a) ◦ Iw,t, ∀a ∈ A/At(O).

Using this relation with w = s = sα we obtain the asserted relation

T (sα) ◦ a = sα(a) ◦ T (sα) + (sα(a)− a)

∑
ζ∈F×q α

∨(ζπππ)

1− α∨(πππ)

for all a ∈ A/At(O) and all simple roots α . �
Analogously to the last lemma, we show:

Lemma 4.9. We have Is,t(vs−1) = v1 + v1
1
q

∑
ζ α
∨(ζ)

1−α∨(πππ)
T (s−1).

Proof. To express ϕ′ = Is,t(vs−1) as
∑

a cava +
∑

a cas−1vas−1 (a ∈ A/At(O))
we compute the coefficients ca = ϕ′(a) and cas−1 = ϕ′(as−1). To compute these
integrals write u = ( 1 x

0 1 ), a =
(
b 0
0 b−1

)
, and let w be 1 or s−1 . The integrand

ϕ(s−1uaw) is nonzero iff

s−1uaws = ( 0 −1
1 0 ) ( 1 x

0 1 )
(
b 0
0 b−1

)
ws =

(
0 −b−1

b x/b

)
w

lies in At(O)Us−1Its = U · s−1Its . It then lies in A(O)UK = UK , hence |b| ≤ 1,
|x/b| ≤ 1, and |x/b| = 1 if |b| < 1 (consider the bottom row of UK ).

If |b| = 1 then |x| ≤ 1. In this case s−1uaws ∈ K . Suppose s−1uaws lies
in U · s−1Its .

If w = s−1 , when is s−1ua =
(

0 −b−1

b x/b

)
∈ U ·s−1Its? From

(
1 y
0 1

) (
0 −b−1

b x/b

)
=(

yb (xy−1)/b
b x/b

)
∈ s−1Its we see that x ∈ b+ πππO , thus cas−1 = 1/q if b ∈ F×q .

If w = 1, s−1uas =
(

0 −b−1

b x/b

)
( 0 1
−1 0 ) =

(
b−1 0
−x/b b

)
∈ U · s−1Its iff b ∈ 1 +πππO ,

thus c1 = 1.

Suppose |b| = q−j , j ≥ 1. Then x = br , |r| = 1. We have to find when is

s−1uaws =
(

0 −b−1

b x/b

)
ws =

(
1 −1/br
0 1

) (
r−1 0
b r

)
ws ∈ U · s−1Its.

If w = s−1 , then r ∈ 1 + πππO , thus cas−1 = q−j−1 .

If w = 1 then b ∈ 1 + πππO , contradicting |b| = q−j , j ≥ 1. So ca = 0.

Hence Is,t(vs−1) = v1 + 1
q

∑
ζ

∑
j≥0 q

−jvα∨(ζπππj)s−1 = v1 + v1
1
q

∑
ζ α
∨(ζ)

1−α∨(πππ)
T (s−1),

as asserted.
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The following is a deduction of Lemma 4.9 from Lemma 4.8.

Proof. By Lemma 4.8 Is,t(vs−1) is

Is,t(v1T (s−1)) = Is,t(v1)T (s−1) = q−1v1

[
T (s) +

∑
ζ

α∨(ζπππ)

1− α∨(πππ)

]
T (s−1).

From T (s)2 = qT (s2)+
∑

ζ α
∨(ζ)·T (s) we obtain T (s) = qT (s2)T (s)−1+

∑
ζ α
∨(ζ),

hence T (s)−1 = q−1T (s2)−1
[
T (s)−

∑
ζ α
∨(ζ)

]
; here s = ( 0 −1

1 0 ), so s2 = −I , and

T (s2)2 = I . As T (s−1) = T (s)T (s2)−1 ,

T (s)T (s−1) = T (s2)T (s)2 = q +
∑
ζ

α∨(ζ) · T (s−1),

and we conclude that Is,t(vs−1) is

= q−1v1

[
q +

∑
ζ

α∨(ζ) · T (s−1) +
∑
ζ

α∨(ζ)α∨(πππ)

1− α∨(πππ)
T (s−1)

]

= v1 + q−1 α∨(ζ)

1− α∨(πππ)
T (s−1), as 1 +

α∨(πππ)

1− α∨(πππ)
=

1

1− α∨(πππ)
.

Fix a simple root α and sα and α∨ . Put T for T (sα), write A for∑
ζ∈F×q α

∨(ζ), and α = α∨(πππ) and I = Is,t . Define J = Js,t to be (1 − α)I =

q−1(Aα + (1 − α)T ). We have A2 = (q − 1)A , TA = AT , T 2 = qT (−1) + AT ,
Tα = α−1T + A(1 + α). Then we claim
Lemma 4.10. We have J2 = q−2[(q − 1)A+ q(2− α− α−1)T (−1)].

Proof. We compute:

J2 = q−2(Aα + (1− α)T )(Aα + (1− α)T )

= q−2((q−1)Aα2 +Aα(1−α)T +(1−α)A(α−1T +A(1+α))+(1−α)(T 2−TαT )).

Now

T 2−TαT = (1−α−1)T 2−A(1+α)T = q(1−α−1)T (−1)+(1−α−1)AT−A(1+α)T

= q(1− α−1)T (−1)− (α−1 + α)AT.

The coefficient of q−2T in J2 is 0, thus the lemma follows.

Note that in the Iwahori case A is replaced by q − 1, and the expression
becomes (1− α

q
)(1− 1

αq
).

Proposition 4.11. The center Z(Ht) of Ht is R
Wf,t

t .



Yuval Z. Flicker 19

Proof. If R is a commutative algebra over C and χ : R → C is a character,
and H is an algebra which is a left R-module, the induced (from χ on R)
representation of H is πχ = C⊗χ,RH . If S is a variety, a character Ξ : R→ O(S)
(= ring of global sections) is a family of characters: each s ∈ S defines χ = χs :
R→ C .

A point in the O(S) × H -bimodule ΠΞ = O(S) ⊗Ξ,R H is the induced
representation πχ = C ⊗χ,R H . If we take S = SpecR , thus O(S) = R , and Ξ
the identity, then the induced representation is just H . The right regular repre-
sentation of H on itself as a right H -module is then a family of representations
parametrized by χ ∈ S = SpecR .

Suppose W is a group acting on the family {χs : R → C; s ∈ S} .
Given w ∈ W , suppose {Iw,s : πχs → πwχs} is a family of right H -module
homomorphisms defined on an open subset of S . Suppose there is a non zerodivisor
f ∈ R such that Jw,s = Ξ(f)(s)Iw,s is defined for all s ∈ S . Thus Jw,s defines a
right H -module endomorphism of H .

An endomorphism e of the right H -module H is clearly given by left
multiplication by an element g = g(e) of H . Indeed, if e : H → H , e(h) = e(1)h ,
e(1) = g ∈ H . Thus Jw,s ∈ H for all s ∈ S .

Recall that Ht = Rt⊗Rf,tHf,t , where Rt = Cc(A/At(O)) = R⊗CCc(A(Fq)),
and R = Cc(A/A(O)) is an integral domain. Let R′ be the fraction field of R .

Let us total order the w ∈ Wf in some way compatible with the length
function ` on Wf . Denote this order by w′ ≤ w . Consider Ht and its filtration
Qw generated over Rt by {T (w′); w′ ≤ w} . Thus the filtration starts with Rt , to
which we add copies of Rtsi , then copies of Rtsisj , then copies of Rtw , w in Wf ,
with nondecreasing length. Note that Qw is a bi-Rt -module (each filtration step
is).

Write w− for the largest element with w− < w . We have the relation
T (w)a = w(a)T (w) + terms in Qw− ; see the proof of Theorem 4.5. Thus on the
filtered quotient Qw/Qw− = Rt we have T (w)a = w(a)T (w). This quotient is a
bi-Rt -module, with left multiplication of r in Rt as r , and right multiplication by
r as w(r).

Suppose we have a filtration of a vector space H , and an eigenvector at
each filtered quotient such that the eigencharacters are pairwise distinct. Then
there exists an eigenvector which induces the given eigenvectors in the filtered
subquotients. As the characters a 7→ w(a), w : A → A , are all distinct, for
w ∈ Wf , and the filtered subquotients are all one dimensional, we conclude
that there exists Iw,t 6= 0 in R′ ⊗R Ht with Iw,ta = w(a)Iw,t for all a ∈ A .
From Ht = ⊕w∈Wf,t

Rt · T (w) (see Proposition 4.4) we deduce that R′ ⊗R Ht =
⊕w∈Wf,t

R′ ⊗Cc(A(Fq))Iw,t , namely some multiple Jw,t of Iw,t by an element of R
is in Ht .

Now R
Wf,t

t lies in the center of R′⊗RHt , as each of its elements commutes

with Rt and with each of the Jw,t . Hence R
Wf,t

t lies in the center of Ht .

On the other hand, no element of R′RtJw,t lies in the center when w 6= id.
Hence the center Z(Ht) is contained in Rt , and the relations Jw,t ◦ a = w(a) ◦Jw,t
which follow from Lemma 4.7 imply that only the Wf,t -invariant elements in Rt

are central.
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We conclude that Ht is a module of finite rank over Z(Ht).
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