UNRAMIFIED WHITTAKER FUNCTIONS ON
THE METAPLECTIC GROUP

YUVAL Z. FLICKER

(Communicated by Bhama Srinivasan)

ABSTRACT. Kazhdan (unpublished), Shintani [Sh] and Casselman and Shalika [CS] computed explicitly the unramified Whittaker function of a quasi-split p-adic group. This is the main local ingredient used in the Rankin-Selberg-Shimura method, which yielded interesting results in the study of Euler products such as $L(s, \pi \otimes \pi')$ by Jacquet and Shalika [JS] (here π, π' are cuspidal $GL(n, A_F)$-modules), and $L(s, \pi, \tau)$ by [F] (here π is a cuspidal $GL(n, A_F)$-module, E is a quadratic extension of the global field F, and τ is the twisted tensor representation of the dual group of $\text{Res}_{E/F} GL(n)$). Our purpose here is to generalize Shintani's computation [Sh] from the context of $GL(n)$ to that of the metaplectic r-fold covering group \tilde{G} of $GL(n)$ (see [F'], [FK]).

Notations. Let F be a nonarchimedean local field with a ring R of integers and a uniformizer u of the maximal ideal of R. Denote by q the cardinality of the residue field $R/(u)$ of F. Let r, n be positive integers. Put $G = GL(n, F), K = GL(n, R)$. Let μ_r be the cyclic group of order r. Denote by \tilde{G} the r-fold central topological covering group of G (see [FK]). Then there is an exact sequence $1 \to \mu_r \xrightarrow{i} \tilde{G} \xrightarrow{p} G \to 1$, with a preferred section $s: G \to \tilde{G}$ of p. We identify μ_r with its image via i. We also fix an embedding of μ_r in the field C of complex numbers. Suppose that r is a unit in R (its valuation is one). Then K embeds (see [FK]) as a subgroup of \tilde{G}; we identify K with its image. Fix a Haar measure on \tilde{G} by the requirement that the volume of K is one.

Let $L_c(\tilde{G} // K)$ denote the commutative convolution algebra (see [FK]) of complex-valued compactly-supported K-invariant anti-genuine functions on \tilde{G}. A function $f: \tilde{G} \to C$ is called anti-genuine if $f(\zeta g) = \zeta^{-1} f(g)$ for all ζ in μ_r and g in \tilde{G}. In writing ζg we used the embedding of μ_r in \tilde{G}; in writing $\zeta^{-1} f(g)$ we used the embedding of μ_r in C^\times. Let π be an irreducible representation of G which is unramified (has a nonzero K-fixed vector) and genuine ($\pi(\zeta g) = \zeta \pi(g); \zeta$ in μ_r, g in \tilde{G}). By the theory of the Satake transform (see [FK]) it determines an algebra homomorphism, denoted again by π, of $L_c(\tilde{G} // K)$ into C.

For any n-tuple $m = (m_1, \ldots, m_n)$ of integers, denote by u^m the diagonal matrix whose ith diagonal entry is u^{m_i} ($1 \leq i \leq n$). Denote by N the group of upper triangular unipotent matrices in \tilde{G}. The section s injects N and u^Z as subgroups of \tilde{G} (see [FK]). We identify N and u^Z with their images in \tilde{G}. Write $m(i)$ for
$m = (1, \ldots, 1, 0, \ldots, 0)$ where 1 appears in the first i places. Let f_i ($1 \leq i \leq n$) be the member of $L_c(\hat{G}/K)$ which is supported on $\mu_r K u^{-m(i)} K$ and attains the value 1 at $u^{-m(i)}$. Then $L_c(\hat{G}/K)$ is isomorphic to the polynomial ring generated by f_1, \ldots, f_n.

Choose n complex numbers t_1, \ldots, t_n so that the ith elementary symmetric function $\text{Sym}_i((t_j)) = \sum_{j_1 \leq \cdots \leq j_i} t_{j_1} \cdots t_{j_i}$ in the t_j's is equal to $q^{ir(i-1)/2} \pi(f_i)$ ($1 \leq i \leq n$). Let t be the diagonal matrix whose ith diagonal entry is t_i ($1 \leq i \leq n$). It lies in $GL(n, \mathbb{C})$ since $\det t = q^{n(r-1)/2} \pi(f_n) \neq 0$.

Let $c(t)$ be the complex-valued function on \mathbb{Z}^n which attains the value zero at $m = (m_1, \ldots, m_n)$ unless $m_1 \geq \cdots \geq m_n$, where

$$c(t; m) = \det(t_i^{m_i + n - j}; 1 \leq i, j \leq n) / \det(t_i^{n-j}; 1 \leq i, j \leq n).$$

Here the numerator is called a Schur function (see [M, p. 24]), and it is divisible in $\mathbb{Z}[t_1, \ldots, t_n]$ by the denominator, which is the Vandermonde determinant $\prod(t_i - t_j)$ ($1 \leq i < j \leq n$). Note that for m with $m_1 \geq \cdots \geq m_n$, $c(t; m)$ is the value at t of the character of the irreducible representation of $GL(n, \mathbb{C})$ with highest weight m. We have $c(t; m(i)) = \text{Sym}_i((t_j))$, and this is equal to $q^{ir(i-1)/2} \pi(f_i)$ by the definition of t.

Choose a character ψ of the additive group of F which is trivial on R but not on $u^{-1}R$. Denote by ψ also the character of N given by $\psi(x) = \prod_{i=1}^{r-1} \psi(x_{i,i+1})$, where $x_{i,i+1}$ is the $(i, i+1)$ entry of x. Given π and ψ, the function W on \hat{G} is called an unramified Whittaker function associated with π and ψ if it satisfies

(1) \quad $W(\zeta x g k) = \zeta \psi(x) W(g)$ \quad (x in N, ζ in μ_r, g in \hat{G}, k in K),

and

(2) \quad $\pi(f) W(g) = \int_G W(gh) f(h) \, dh$ \quad (f in $L_c(\hat{G}/K)$, g in \hat{G}).

The integral is taken over $G \simeq \hat{G}/\mu_r$; the integrand is invariant under μ_r. Let D be the set of m with $m_1 \geq \cdots \geq m_n \geq 0$ and $r + m_i < m_{i+1}$ ($1 \leq i < n$). For each d in D put $a(d; m) = W(s(u^d) u^{m})$. Recall that we identify $u^* \mathbb{Z}$ with its image in \hat{G} via the section s. Since $G = \bigcup N u^m K$ (disjoint union over m in \mathbb{Z}^n), to determine W on \hat{G} it suffices (by (1)) to evaluate $a(d; m)$ for all d in D and m in \mathbb{Z}^n. Since the conductor of ψ is R, if follows from (1) that $a(d; m)$ is zero unless $m_1 \geq m_2 \geq \cdots \geq m_n$.

Theorem. For each d in D we have $a(d; m) = a(d; 0) q^{\sum_{i=1}^{n} (i-n) m_i} c(t; m)$ for all m in \mathbb{Z}^n.

Let $I(i)$ be the set of all n-tuples $e = (e_1, \ldots, e_n)$ with entries e_i equal to zero or one such that $e_1 + \cdots + e_n = i$. Put $N_R = N \cap K$ and $N_R(e) = N_R \cap u^e K u^{-e}$. Note that the cardinality $|N_R/N_R(re)|$ of $N_R/N_R(re)$ is q^{rw}, where

$$w = \sum_{j > k} \max(e_j - e_k, 0) = in - i(i-1)/2 - \sum_{j=1}^{n} je_j.$$

Denote by $f[zu u^e K]$ the right K-invariant anti-genuine complex-valued function on \hat{G} which is supported on $\mu_r zu u^e K$ (e in $I(i)$, x in $N_R/N_R(re)$), and attains the value one at $zu u^e$.

We first assume the validity of the following lemma.
LEMMA. For each $1 \leq i \leq n$ we have $f_i = \sum_{e \in I(i)} \sum_{x \in N_R/N_R(re) F[xu^{re}K]}$. The Lemma implies that for $m = (m_1, \ldots, m_n)$ in \mathbb{Z}^n with $m_1 \geq \cdots \geq m_n$ we have

$$
\pi(f_i)a(d; m) = \int_G W(s(u^d)u^{rm}g)f_i(g) dg
= \sum_e [N_R/N_R(re)]a(d; m + e) \quad (e \text{ in } I(i))
= q^{irn-ir(i-1)/2} \sum_e q^{-r} \sum_{j=1}^{n-j} a(d; m + e).
$$

Put

$$
b(d; m) = q^r \sum_{j=1}^{n-j} a(d; m + e).
$$

If $m_1 \geq \cdots \geq m_n$, then we have

$$
q^{ir(i-1)/2} \pi(f_i)b(d; m) = \sum_e b(d; m + e) \quad (1 \leq i \leq n).
$$

Otherwise $b(d; m) = 0$. Namely $b(d; m)$ satisfies the equation

$$
c(t; m(i))b(d; m) = \sum_e b(d; m + e) \quad \text{if } m_1 \geq \cdots \geq m_n.
$$

On the other hand, the function $c(t; j)$ satisfies the equation

$$
c(t; m(i))c(t; m) = \sum_e c(t; m + e) \quad \text{if } m_1 \geq \cdots \geq m_n.
$$

Hence both $c(t; m)$ and $b(d; m)$ (for each d in D) are functions of m in \mathbb{Z}^n which satisfy the same system of difference equations which has a unique solution up to a constant multiple. Since $c(t; 0) = 1$ the theorem follows.

It remains to prove the Lemma.

PROOF OF LEMMA. Let W be the Weyl group of permutation matrices in K, realized as a group of matrices with entries zero and one only. Let I be the Iwahori subgroup of K which consists of all matrices in K whose lower diagonal entries are all in uR. Put \overline{N} for the group of lower triangular unipotent matrices, N_I for $\overline{N} \cap I$, and A_R for the diagonal subgroup of K. We have the decompositions $I = N_R A_R \overline{N}_I = \overline{N}_I A_R N_R$ and $K = \bigcup N_R \overline{N}_I wN_R A_R$ (disjoint union over w in W). Put $c(i)$ for $m = (0, \ldots, 0, 1, \ldots, 1)$, where 1 appears in the last i entries. Since $u^{-re(i)} N_R u^{re(i)}$ lies in K, we have

$$
K u^{rm(i)} K = K u^{re(i)} K \subset \bigcup_{w \in W} N_R A_R \overline{N}_I w u^{re(i)} w^{-1} K.
$$

Put y for the element $wu^{re(i)}w^{-1}$ of \tilde{G}. For $1 \leq j < k \leq n$, and a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, write $\begin{pmatrix} a & b \\ c & d \end{pmatrix}_{jk}$ for the matrix (x_{uv}) in $GL(n)$ whose entries along the diagonal are one except that $x_{jj} = a$, $x_{kk} = d$, and its nondiagonal entries are zero except that $x_{jk} = b$ and $x_{kj} = c$.

Suppose that $\tilde{n} = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$, is a matrix in \overline{N}_I, and $y^{-1} \tilde{n} y$ does not lie in K.

Write $| \cdot |$ for the valuation on F normalized by $|u| = q^{-1}$. Then $q^{-r} < |x| < 1$, the
\(j \)th diagonal entry of \(p(y) \) is one and the \(k \)th is \(u^r \), and

\[
y^{-1} \tilde{ny} = \begin{pmatrix} 1 & 0 \\ u^{-r} & 1 \end{pmatrix}_{jk}.
\]

We have

\[
\begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}_{jk} = \begin{pmatrix} 1 & x^{-1} \\ 0 & 1 \end{pmatrix}_{jk} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}_{jk} \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix}_{jk} \begin{pmatrix} 1 & x^{-1} \\ 0 & 1 \end{pmatrix}_{jk}.
\]

Given the matrix \(s \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}_{jk} \) in \(\tilde{G} \), we have in \(\tilde{G} \) (see [FK, (2.1)]) the relation

\[
s \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix}_{jk} s \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix}_{jk} s \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}_{jk}^{-1} = s \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix}_{jk} \left(\frac{b}{a, x} \right).
\]

Here \((\cdot, \cdot)\) denotes the nondegenerate bimultiplicative \(r \)th Hilbert symbol

\[
F^\times / F^\times \times F^\times / F^\times \to \mu_r.
\]

Taking \(b = 1 \) and a unit \(a \), namely \(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}_{jk} \) in \(K \), we conclude that the anti-genuine \(K \)-bi-invariant function \(f_t \) attains the value zero at \(\tilde{ny} \), since

\[
f_t(\tilde{ny}) = f_t \left(\begin{pmatrix} 1 & 0 \\ x^{-1}u^r & 1 \end{pmatrix}_{jk} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}_{jk} \right) \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix}_{jk} \begin{pmatrix} 1 & x^{-1}u^r \\ 0 & 1 \end{pmatrix}_{jk})
\]

\[
= f_t \left(s \begin{pmatrix} x^{-r} & 0 \\ 0 & x^{-1}u^r \end{pmatrix}_{jk} \right) y
\]

\[
= f_t \left(s \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}_{jk} \right) s \begin{pmatrix} x^{-r} & 0 \\ 0 & x^{-1}u^r \end{pmatrix}_{jk} \right) y
\]

\[
= (a, x)f_t \left(s \begin{pmatrix} x^{-r} & 0 \\ 0 & x^{-1}u^r \end{pmatrix}_{jk} \right) y s \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}_{jk}
\]

\[
= (a, x)f_t(\tilde{ny}).
\]

Since the Hilbert symbol \((\cdot, \cdot)\) is nondegenerate we can find a unit \(a \) with \((a, x) \neq 1\); indeed, \((a, b) = 1\) for any pair \(a, b \) of units, hence there exists some unit \(a \) with \((a, u) = \zeta\), where \(\zeta \) is a primitive \(r \)th root of unity. It follows that \(f_t \) is supported on the subset

\[
\mu_r \bigcup_{w \in W} N_{Rwu^{r\epsilon(i)}w^{-1}K} \text{ of } \tilde{G}.
\]

Since this set is contained in \(\mu_r Ku^{m(i)}K \), the Lemma follows.
REMARK. If π has a Whittaker model, namely we have $\pi(g)W(h) = W(hg)$ for all h, g in \hat{G}, then $a(d; m) = \pi(s(u^d)u^m)a(0; 0)$, and in particular $a(d; 0) = \pi(s(u^d))a(0; 0)$ for all d in D. In this case there exists a unique (up to a scalar multiple) unramified Whittaker function associated with π, ψ.

REFERENCES

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, SCIENCE CENTER, ONE OXFORD STREET, CAMBRIDGE, MASSACHUSETTS 02138