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THE ADJOINT REPRESENTATION L-FUNCTION
FOR GL(n)

YuvalL Z. FLICKER

Ideas underlying the proof of the “simple” trace formula are used
to show the following. Let F be a global field, and A its ring of
adeles. Let 7 be a cuspidal representation of GL(n, A) which has
a supercuspidal component, and « a unitary character of A*/F* .
Let sy be a complex number such that for every separable extension
E of F of degree n, the L-function L(s, w o Normg/r) over E
vanishes at s = 5o to the order m > 0. Then the product L-function
L(s, n ® w x &t) vanishes at s = s to the order m . This result is
a reflection of the fact that the tensor product of a finite dimensional
representation with its contragredient contains a copy of the trivial
representation.

Let F be a global field, A its ring of adeles and A* its group
of ideles. Denote by G the group scheme GL(n) over F, and put
G=G(F), G=GA),and Z ~ F*, Z ~ A* for the correspond-
ing centers. Fix a unitary character ¢ of Z/Z, and signify by n a
cuspidal representation of G whose central character is &. For al-
most all F-places v the component 7, of 7 at v is unrarrAliﬁed and
i1s determined by a semi-simple conjugacy class #(n,) in G = G(C)
with eigenvalues (z;(m,); 1 < i < n). Given a finite dimensional
representation r of G, and a finite set ¥ of F-places containing
the archimedean places and those where 7, is ramified, one has the
L-function

L"(s, n,r)= [] det(I — g, r(¢(ny)))™"!
vevV

which converges absolutely in some right half plane Re(s) >> 1. Here
gy 1s the cardinality of the residue field of the ring R, of integers in
the completion F, of F at v. R

In this paper we consider the representation r of G on the (n?—1)-
dimensional space M of n x n complex matrices with trace zero, by
the adjoint action r(g)m = Ad(g)m = gmg=! (me M, g € G).
More generally we can introduce the representation Adj of G x C*
by Adj((g, z)) = zr(g), and hence for any character w of Z/Z the
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L-function

LV(s, 7, w, Adj) = H det(I — g, 5t(wy)r(t(my))) 1.
vgvV

Here V contains all places v where @, or the component w, of w
is ramified, and #(w,) = wy(z,); m, is a generator of the maximal
ideal in R, .

In fact the full L-function is defined as a product over all v of local
L-functions. These are introduced in the p-adic case as (a quotient
of) the “greatest common denominator” of a family of integrals whose
definition is recalled from [JPS] after Proposition 3 below. The local
L-functions in the archimedean case are introduced below as a quo-
tient of the L-factors studied in [JS1]. We denote by L(s, xw,...)
the full L-function.

More precisely, we have

LV(s,n,w,Adj) =LY (s, n®wx #t)/LY (s, w),

where LY (s, my x m;) denotes the partial L-function attached to the
cuspidal GL(#n;, A)-modules n; (i = 1,2) and the tensor prod-
uct of the standard representation of G, = GL(n;, C) and G, =
GL(n,, C). This provides a natural definition for the complete func-
tion L(s, n, w, Adj) globally, and also locally. This definition per-
mits using the results of [JPS] and [JS1] mentioned above. In partic-
ular, for any cuspidal G-module 7, the L-function L(s, n, w, Adj)
has analytic continuation to the entire complex s-plane.

To simplify the notations we shall assume, when @ # 1, that w
does not factorize through z — v(z) = |z|; this last case can easily
be reduced to the case of w = 1. Indeed, L(s,n, w ® vs , Adj) =
L(s+s',n, ®w, Adj). Our main result is the following.

1. THEOREM. Suppose that the cuspidal G-module n has a supercus-
pidal component, and w is a character of Z/Z of finite order for which
the assumption (Ass; E, o) below is satisfied for all separable field ex-
tensions E of F of degree n. Then the L-function L(s, n, w, Adj)
is entire, unless w # 1 and n®w ~ 7. In this last case the L-function
is holomorphic outside s =0 and s = 1. There it has simple poles.

To state (Ass; E, w) note that given any separable field exten-
sion E of degree n of F there is a finite galois extension K of
F, containing E, such that w corresponds by class field theory to a
character, denoted again by w, of the galois group J = Gal(K/F).



THE ADJOINT REPRESENTATION L-FUNCTION FOR GL(n) 233

Denote by H = Gal(K/E) the subgroup of J corresponding to E,
and by w|E the restriction of w to H. It corresponds to a charac-
ter, denoted again by w|E, of the idele class group Ap/E* of E.
When E/F is galois, and Ng,r is the norm map from E to F, then
W|E = w o Ng/p . Our assumption is the following.

(Ass; E, w) The quotient L(s, w|E)/L(s, w) of the Artin (or
Hecke, by class field theory) L-functions attached to the characters w|E
of Gal(K/E) = H and w of Gal(K/F) = J, is entire, exceptat s =0
and s=1 when w# 1 and w|E =1.

If E/F isan abelian extension, (Ass; E, w) follows by the product
decomposition L(s, w|E) = H¢ L(s, w{), where { runs through the
set of characters of Gal(E/F). More generally, (Ass; E, w) is known
when E/F is galois, and when the galois group of the galois closure
of E over F is solvable, for w =1 (see, e.g., [CF], p. 225, and the
survey article [W]). For a general £ we have

L(s, w|E) = L(s, Indf}(w|E)) = L(s, w)L(s, p),

where the representation Indj(w|E) of J = Gal(K/F) induced from
the character w|E of H, contains the character @ with multiplicity
one (by Frobenius reciprocity); p is the quotient by w of Indj;(w|E).
Artin’s conjecture for J now implies that L(s, p) is entire, unless
w|E =1 and w # 1, in which case L(s, p) is holomorphic except at
s =0, 1, where it has a simple pole. When [E: F]=n, w =1 and
K is a galois closure of E/F, then J = Gal(K/F) is a quotient of
the symmetric group S, . Artin’s conjecture is known to hold for S3
and Sy, hence (Ass; E, 1) holds for all E of degree 3 or 4 over
F, and Theorem 1 holds unconditionally (when w = 1) for GL(3)
and GL(4), as well as for GL(2).

The conclusion of Theorem 1 can be rephrased as asserting that
L(s, w) divides L(s, tQ w X &) when t® w # n or w =1, namely
the quotient is entire, and that the quotient is holomorphic outside s =
0,1,ifnQw=~n and w # 1; of course we assume (Ass; E, w) for
all separable extensions £ of F of degree n. Note that the product
L-function L(s, m; X m,) has been shown in [JS], [JS1], [JPS] and
(differently) in [MW] to be entire unless 7, ~ #; . In this last case the
L-function is holomorphic outside s = 0, 1, and has a simple pole at
s =0 and s = 1. This pole is matched by the simple pole of L(s, w)
when w = 1. Hence L(s, n, 1, Adj) is also entire.

Another way to state the conclusion of Theorem 1 is that if L(s, w)
vanishes at s = so to the order m > 0, then so does L(s, n @ w X &),
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provided that (Ass; E , w) is satisfied for all separable extensions E of
F of degree n. Note that L(s, w) does not vanish on |Res— %I > %

Yet another restatement of the Theorem: Let m be a cuspidal G-
module with a supercuspidal component, and w a unitary character
of Z/Z. Let sy be a complex number such that for every separable
extension E of F of degree n, the L-function L(s, w|E) vanishes at
s =8y totheorder m>0. Then L(s, m ® w X Tt) vanishes at s = s
to the order m. This is the statement which is proven below. Note
that the assumption that « is of finite order was put above only for
convenience. Embedding Ay as a torus in G, the character w|E can
be defined also by (w|E)(x) = w(detx) on x € Ay C G. In general
o would be a character of a Weil group, and not a finite galois group.

When 7 = 2 the three dimensional representation Adj of GL(2, C)
is the symmetric square Sym? representation, and the holomorphy of
the L-function L(s, o @ Sym?’n) (s#0,1 if tQ@w~n,w#1) is
proven in [GJ] using the Rankin-Selberg technique of Shimura [Sh],
and in [F1] using a trace formula. Another proof was suggested by
Zagier [Z] in the context of SL(2, R) and generalized by Jacquet-
Zagier [JZ] to the context of 7 on GL(2, A). This last technique is
the one extended to the context of cuspidal z with a supercuspidal
component and arbitrary n > 2, in the present paper.

The path followed in [Z] and [JZ] is to compute the integral

/K(,(x, X)E(x,®, w, s)dx

on x in ZG\G, where E(x, ®, w, s) is an Eisenstein series, and
Ky(x, y) the kernel representing the cuspidal spectrum in the trace
formula. The computation shows that the integral is a sum of mul-
tiples of L(s, w|E) (with [E : F] = 2 in the case of [Z] and [JZ]),
and on the other hand of (a sum of multiples of) L(s, 7 ® w x ),
from which the conclusion is readily deduced. However, [Z] and [JZ]
computed all terms in the integral, and reported about the complexity
of the formulae. To generalize their computations to GL(n), n > 3,
considerable effort would be required.

To bypass these difficulties in this paper we use the ideas employed
in [FK] and [F2] to establish various lifting theorems by means of a
simple trace formula. In particular we use a special class of test func-
tions ¢, with one component supported on the elliptic regular set, and
another component is chosen to be supercuspidal. The first choice re-
duces the conjugacy classes contributing to K,(x, y) to elliptic ones
only, while the second guarantees the vanishing of the non-cuspidal
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terms in the spectral kernel. The first choice does not restrict the
applicability of our formulae. Thus our Theorem 1 is offered as an-
other example of the power and usefulness of the ideas underlying the
simple trace formula.

For a "twisted tensor” analogue of this paper see [F4].

We shall work with the space L(G) of smooth complex valued func-
tions ¢ on G\G which satisfy (1) ¢(zg) =e(2)9p(g) (z € Z, g€ G),
(2) ¢ is absolutely square integrable on ZG\G. The group G acts
on L(G) by right translation: (r(g)¢)(h) = ¢(hg). The action is uni-
tary since ¢ is. The function ¢ € L(G) is called cuspidal if for each
proper parabolic subgroup P of G over F with unipotent radical
N we have [¢(ng)dn =0 (n € N\N) forall g€ G. Let ry be
the restriction of r to the space Ly(G) of cusp forms in L(G). The
space Ly(G) decomposes as a direct sum with finite multiplicities of
invariant irreducible unitary G-modules called cuspidal G-modules.

Let ¢ be a complex valued function on G with ¢(g) = e(2)p(zg)
(z € Z),, compactly supported modulo Z, smooth as a function on the
archimedean part G(F) of G, and bi-invariant by an open compact
subgroup of G(Ay); here A is the ring of adeles without archimedean
components, and F,, is the product of F, over the archimedean
places. Fix Haar measures dg, on G,/Z, (Gy = G(Fy), Zy its
center) for all v such that the product of the volumes |K,/Z, N K,|
converges; K, is a maximal compact subgroup of G, , chosen to be
K, = G(Ry) at the finite places. Then dg = ®dg, is a measure
on G/Z. The convolution operator r(¢) = fc/z p(g)r(g)dg is an

integral operator on L(G) with the kernel K,(x,y) = 3 o(x~yy)
(y € G/Z). In this paper we work only with discrete functions ¢ .

DEeFINITION. The function ¢ is called discrete if for every x € G
and y € G we have ¢(x~lyx) =0 unless 7 is elliptic regular.

Recall that y is called regular if its centralizer Z,(G) is a torus, and
elliptic if it is semi-simple and Z,(G)/Z,(G)Z has finite volume. The
centralizer Z,(G) of an elliptic regular y € G is the multiplicative
group of a field extension E of F of degree n. For a general elliptic
7, we have that Z,(G) is GL(m, F’) with n=m[F': F].

The proof of Theorem 1 is based on integrating the kernel Ky (x, y)
on x =y against an Eisenstein series, as in [Z] and [JZ].

Identify GL(n — 1) with a subgroup of GL(n) via g — (‘g ?) . Let
U be the unipotent radical of the upper triangular parabolic subgroup
of type (n—1,1). Put Q = GL(r — 1)U. Given a local field F,
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let S(F™) be the space of smooth and rapidly decreasing (if F is
archimedean), or locally constant compactly supported (if F is non-
archimedean) complex valued functions on F”. Denote by ®° the
characteristic function of R” in F” if F is non-archimedean. For
a global field F let S(A"”) be the linear span of the functions @ =
Rd,, ®, € S(F) for all v, &, is ® for almost all v. Put
e=1(0,...,0,1) (e A"). The integral of

(1) flg.s)=a(detg)detel [ Blazgla*w’(@)d"a

converges absolutely, uniformly in compact subsets of Res > % . The
absolute value is normalized as usual, and w is a character of A*/F>.

It follows form Lemmas (11.5), (11.6) of [GoJ] that the Eisenstein
series

E(g,(I>,w,S)=Zf(yg,s) ('YEZQ\G)

converges absolutely in Res > 1. In [JS], (4.2), p. 5495, and [JS2],
(3.5), p. 7, it is shown (with a slight modification caused by the pres-
ence of w here) that E(g, @, w, s) extends to a meromorphic func-
tion on Res > 0, in fact to the entire complex s-plane with a func-
tional equation E(g, ®, w,s)=E('g™!, ®, w=!, 1 —s); here ‘g is
the transpose of g and ® is the Fourier transform of ®. Moreover,
E(g,®, w,s) is slowly increasing in g € G\G, and it is holomor-
phic except for a possible simple pole at s = 1 and 0. Note that f(g)
and E(g, s) are Z-invariant.

2. ProrosITION. For any character w of A*/F*, Schwartz func-
tion ® in S(A"), and discrete function ¢ on G, for each exten-
sion E of degree n of F there is an entire holomorphic function
AP, 9, w, E,s) in s such that

(2.1) Ky(x, x)E(x,®, w, s)dx
ZG\G

=) A@, 9,0, E,s)L(s, o|E)
E

on Res > 1. The sum over E ranges over a finite set depending on
(the support of ) ¢.

Proof. Since the function ¢ is discrete the sum in K,(x, x) =
Y @(x~!yx) ranges only over the elliptic regular elements y in G/Z .
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It can be expressed as

22 K x) =S O Y Y el 's 6w,

veT/Z 8€G/T

Here T ranges over a set of representatives for the conjugacy classes in
G of elliptic tori (7T is isomorphic over F to the multiplicative group
of a field extension E of degree n of F; T is uniquely determined
by such E, and each such E is so obtained). The cardinality of the
Weyl group (normalizer/centralizer) W(T') of T in G is denoted by
[W(T)]. It is easy to check that for any elliptic 7 we have G =TQ,
and TN Q ={1}. Hence the sum over J can be taken to range over
Q.

The left side of (2.1) is equal, in the domain of absolute convergence
of the series which defines the Eisenstein series, to

Ky(x,x) Y flyx,s)dx= / Kp(x, x)f(x, s)dx,

ZG\G YEZQ\G

since x — K,(x, x) is left G-invariant. Substituting (2.2) this is
equal to

[ Somrt Y Sewsmen e, s)dx

O\G 7 yeT)Z 3€Q
—Z[W )Nt Z / o(x1yx)f(x, s)dx;
yeT/Z

note that x — f(x, s) is left Q-invariant.

To justify the change of summation and integration note that given
@, the sums over T and y are finite. Indeed, the coefficients of the
characteristic polynomial of y are rational, and lie in a compact set
depending on the support of ¢ (and a discrete subset of a compact
is finite). This explains also the finiteness assertion at the end of the
proposition.

Substituting now the expression (1.1) for f(x, s) we obtain a sum
over T and y of

/ (p(x‘lyx)f(x,s)dx:/(a(x‘lyx)w(detx)ldetx|s<1>(§x)dx
Z\G G
= qo(x“yx)/<D(§tx)w(dettx)|dettx|s dtdx.
TG

Here T = T(A) ~ Ag, where T is the centralizer of y in G, and
I(F) = T. The inner integral, over T, is a “Tate integral” for
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L(s, w|E); it is a multiple of L(s, w|E) by a function which is holo-
morphic in s in C and smooth in x, depending on ¢, w and E.
The integral over x ranges over a compact in T\G, since ¢ is com-
pactly supported modulo Z. The proposition follows.

We now turn to the spectral expression for the kernel K,(x, y).

DEerINITION. The function ¢ on G is called cuspidal if for every
x,y in G and every proper F-parabolic subgroup P of G, we have
Jyo(xny)dn = 0, where N = N(A) is the unipotent radical of P =
P(A).

When ¢ is cuspidal, the convolution operator r(p) factorizes
through the projection on Ly(G). Then r(p) is an integral opera-
tor whose kernel has the form

Ky(x,y)=Y KZXx,y), whereKZ(x,y)= (r(p)d")(x)é (»).

/4 ¢"
The sum over 7 ranges over all cuspidal G-modules in Ly(G). The
@™ range over an orthonormal basis consisting of K = [], K,-finite
vectors in n. The ¢” are rapidly decreasing functions and the sum
over ¢" is finite for each ¢ (uniformly in x and y) since ¢ is K-
finite. The sum over © converges in L%, and hence also in a space of
rapidly decreasing functions. Hence K, (x, y) is rapidly decreasing
in x and y, and the product of K,(x, x) with the slowly increasing
functions E(x, ®, w, s), is integrable over ZG\G. The resulting
integral, which is equal to (2.1), can also be expressed then in the
form

3> L r@FI0F 2, @, 0, 9)dx.

To prove Theorem 1 we now assume that L(s, w) is zero at s = 5.
It is well known then that |[Resp — 3| < 3, hence sp # 0, 1. If s
is a zero of order m of L(s, w), then by (Ass; E, w) the function
L(s, w|E) vanishes at sy to the order m. Making this assumption for
every separable field extension E of degree n of F we conclude that
(2.1) vanishes at s = sy to the order m, and that forall j (0 < j < m)
we have

e TY / [ (FONETDED e, @, 0, ) dx =0,
Here EU)(%, s0) = ds E(*, 8)|s=s, -

At our disposal we have all cusp1dal discrete functions ¢ on G,
and our aim is to show the vanishing of some summands in the last
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double sum over 7 and ¢". In fact, fix a = for which Theorem 1
will now be proven. Let V' be a finite set of F-primes, containing
the archimedean primes and those where 7 or w ramify. Consider
¢ =@, ¢y (product over all F-places v ) where each ¢, is a smooth
compactly supported modulo Z, function on G, which transforms
under Z, via &;!. For almost all v the function ¢, is the unit
element 90 in the Hecke algebra H, of K,-biinvariant (compactly
supported modulo Z, transforming under Z, via &;!) functions on
G, . Forall v ¢ VV the component ¢, is taken to be spherical, namely
in H,.

Each of the operators 7,(¢,) for v ¢ V factorizes through the
projection on the subspace nf * of K,-fixed vectors in m,. This
subspace is zero unless 7, is unramified, in which case nf * i$ one-
dimensional. On this K,-fixed vector, the operator 7,(¢,) acts as the
scalar ¢ (t(ny)), where ¢, denotes the Satake transform of ¢, . Put
@V (t(x")) for the product over v ¢ V of ¢Y(t(n,)), and 7wy (py) =
Qyey Tw(@y) . Then (2.3) ; takes the form

(2.4); Y. eVeE")a(n, oy, j, @, ®, %) =0,
{n;nK’VaéO}

where

(2.5); a(m,ov,j, P, w,s)
= ;/ZG\G(”V(¢V)¢")(x)$n(x)E(j)(x, d, w, s)dx.

The sum over n ranges over the cuspidal G-modules 7 = @ 7, with

mae # {0} forall v ¢ V; 75V denotes the space of [Toey Ko-

fixed vectors in m. The sum over ¢" ranges over those elements in

the orthonormal basis of n which appears in (2.3) ;, which, for any

v &V, as functions in x € G, , are K,-invariant and eigenfunctions

of ny(py), ¢, € H,, with eigenvalues ¢(7,). In particular ¢"(x) =
%(x,) [logy $5(%0), for such ¢ (v & V).

A standard argument (see, e.g., Theorem 2 in [FK] in a more elab-
orate situation), based on the absolute convergence of the sum over
m in (2.4) j, standard estimates on the Hecke parameter #(m,) of the
unitary unramified n, (v € V'), and the Stone-Weierstrass theorem,
implies the following.

3. PROPOSITION. Let n be a cuspidal G-module which has a su-
percuspidal component. Let w be a character of Z/Z . Suppose that
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L(s, w|E) vanishes at s = sy to the order m for every separable ex-
tension E of F of degree n. Then for any ® and a function ¢y such
that ¢ is cuspidal and discrete with any choice of @ ¢, (v € V), we
have that a(n, oy, j, P, w, sy) is zero.

We shall now recall the relation between the summands in (2.5) ;
and the L-function L(s, n®wx ). Let y be an additive non-trivial
character of A modulo F (into the unit circle in C), and denote by
¥, its component at v . An irreducible admissible G,-module =, is
called generic if Homy (7, , yy) # {0} . By [GK], or Corollary 5.17 of
[BZ], such 7, embeds in the G,-module Ind(y, ; G,, N,) induced
from the character n = (n;;) — w(n) = W(> |<jcnMi,i+1) of the
unipotent upper triangular subgroup N, of G,. Moreover, this em-
bedding is unique, equivalently the dimension of Homy (7, , ¥) is at
most one. The embedding is given by 7, 3¢ — W, where W;(g) =
AMr(g)E) (¢ € G) and A # 0 is a fixed element in Homy (7y, y).
Since 7, is admissible, each of the functions W is smooth (under
right action by G, ). If =, is generic, denote by W(m,) its realiza-
tion in Ind(y,); W(m,) is called the Whittaker model of m,. It is
well-known that any component of a cuspidal G-module is generic.

Given n, consider W, # 0 in W (n,) forall v, such that ¥ is the
normalized unramified vector W0 (it is K,-invariant and W2(1) =
1) for all v ¢ V. The function ¢'(x) = EpeN\Q W'(px), where
W'(x) =1, Wy(xv), is a cuspidal function in the space of # C Ly(G).
Substituting the series definition of E(x, ®, w, s) =3 70\¢ f(vx, 5)
in

/ §(X)F (Ex, @, w,5)dx  (¢" €1 C Lo(G))
ZG\G
one obtains

[ 0 ese, gdx= [ ¢0W @10, 9)dx,
ZO\G ZN\G

Since W'(nx) = y(n)W'(x), and [y @"(nx)W(n)dn = Wy (x)
is the Whittaker function associated to the cusp form ¢”, the integral
is equal to

Wy (X)W (x)f(x, s) dx
ZN\G

<55/

= Wy (X)W (x)P(ex)w(det x)|det x|* dx.
N\G
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If ¢” is also of the form ¢"(x) = EPGN\Q W"(px), where W"(x) =
[T, W) (xy) is factorizable, then W, = W" and the integral factorizes
as a product over all v of the local integrals

(3.1) / W (X)W, (x)®y (ex)wy (det x)| det x5 dx,
provided that ®(x) =[], Py (xy).

When W) = W0 = W/, and ®, is the characteristic function
@) of R? (and v ¢ V'), the integral (3.1) is easily seen (on using
Schur function computations; see [F3], p. 305) to be equal to
L(s, my ® wy X ). For a non-archimedean v € V' the L-factor
is defined in [JPS], Theorem 2.7, as a “g.c.d” of the integrals (3.1) for
all Wy, , Wy, € W(n,) and ®, . In the archimedean case the L-factor
is defined in [JS1], Theorem 5.1. It is shown in [JPS] and [JS1] that
the L-factor lies in the span of the integrals (3.1). The product of
the L-factors, as well as the various manipulations above, converges
absolutely for s in some right half plane.

4. LEMMA. The functions W, € W(rn,) (and so ¢' € n) can be
chosen to have the property that ¢' factorizes as @, ¢, .

Proof. Since W, is K,-invariant for v ¢ V', so is ¢', and we have

¢'(x) = ¢y (x,) [T 60 0x),

vV

where ¢8 is the K,-invariant function on G, which takes the value
1 at 1 and is the eigenfunction of the operators m,(¢y), ¢, € Hy,
with the eigenvalue ¢(7m,).

The space n C Ly(G) is spanned by factorizable functions, namely
¢' is a finite sum over j (1 < j < J) of products @, ¢, of functions

;.v on G, (which are smooth, compactly supported modulo Z,,
transform under Z, via &), with ¢, = ¢) for all v ¢ V. Each
of the functions ¢}, (v € V) is (right) invariant under a congruence
subgroup K/ of the standard compact subgroup K, of G, . Namely

|, 18 a non-zero vector in the finite dimensional space m,Krj of K-
fixed vectors in m,. The Hecke algebra H(K,) of K] -biinvariant
compactly supported modulo Z, functions on G, which transform
under Z, via g;! generate the algebra of endomorphisms of the finite

dimensional space 7, X . Consider ¢, € H(K]) such that m,(¢,) acts
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as an orthogonal projection on ¢},. Then (Q,cp Tu(9y))¢’ lies in
n, is of the form ), ¢}, , and is defined by the Whittaker functions
ny(@py) W, , as required.

Proof of Theorem 1. For n as in the theorem, and sp as in (2.3) ;,
we shall choose W, € W(m,) with factorizable ¢'(x) = @, ¢, (xy) =
> pemo W'(px) and proceed to show the vanishing of the correspond-
ing summand in (2.5) ;. Recall that by the assumption of Theorem
1 there is an F-place v, such that 7, is supercuspidal. Let v; be
another F-place in V, say where 7 and w are unramified. Put
V"=V —{v,} and V'’ for V" —{v;}.

Consider the matrix coefficient ¢7, (x) = (7, (x~1) u,» $v,) of the
supercuspidal Gy,-module =, . Note that ¢§,2 is a Cg°-function on
Gy, modulo Z,,, and (-, -) denotes the natural inner product. The
function %z is smooth and compactly supported on G, modulo Z, ,
and it is a supercusp form ([ (0{,2 (xny)dn =0, n € N,, = unipotent
radical of any parabolic subgroup of G, ). It is well-known that a
function ¢ = @ ¢, whose component at v, is a supercusp form is
cuspidal. By the Schur orthogonality relations, the convolution oper-
ator ”vz(%z) acts as an orthogonal projection on the subspace gener-
ated by ¢;,2 . Working with ¢ = @ ¢, whose component at v, is qo{,2
we then have that ¢ is cuspidal and that the sum in (2.5) ; ranges
only over the ¢ (= ¢") whose component at v, is c;S{,z (up to a scalar
multiple).

As in the proof of Lemma 4, for each v € V' we may choose ¢
in H(K]) such that m,(p,) acts as an orthogonal projection to the
subspace of n;, spanned by ¢; . Choosing the components ¢, of ¢
at v € V' to be of the form ¢} * ¢, , with any ¢, the sum in (2.5) ;
for our n extends only over those ¢ in the orthonormal basis of the
chosen n C Ly(G) whose component at v # v; is ¢, . But ¢ is left
G-invariant, being a cusp form, and G =G [Iy, Gv - Hence the only
¢ which contributes to the sum in (2.5) ; is ¢', whatever ¢, is.

We still need to choose ¢, such that ¢ = @ ¢, be discrete. It
suffices to choose @y, to be supported on the regular elliptic set in
Gy, . Moreover, since qﬁ;,l is right invariant under a compact open
subgroup K{,l of K, C le , we can choose the support of @y, to be
contained in ZUIK{,1 . Then ”U.(‘Pvl) acts as a scalar on qS: , and we
normalize @y, so that this scalar be one.

In conclusion, for any choice of W, € W(n,) for all v, with W, =
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W0 for v &V, and any choice of ¢, (v € V'), we have that
[ @lor#) 0 ER, @, 0, 5)dx
ZG\G

- 11 / (7o (90) W) ()T () Do (£) 0y (et x)| det x5 dx
veV Nv\Gv
. H L(s, my @ wy X Tty)
veV

vanishes at sp to the order m. Here my (9y)W, = Wv’l . In fact we
may choose Wv’l to be W;,‘? € W(nvl), and @, to be <I>81. Since Ty,
and w, are unramified, the corresponding integral is then equal to
the L-factor, so v; can be deleted from the set V.

To complete the proof of Theorem 1, note that the L-function
L(s, my ® w, X 7,) lies in the span of the integrals (3.1). Hence the
assumption for every separable extension E of F of degree » that
L(s, w|E) vanishes at s = sy, to the order m, implies the vanishing
of T[L(s, my ® wy X #ty) to the order m. This completes the proof
of Theorem 1.
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